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Geometric Problems and Structures Arising from
the Study of Wireless Networks

Matthew J. Katz*

The study of wireless networks has motivated the formulation of interesting geometric optimization problems such
as the power assignment problem, as well as the definition of new geometric data structures such as the bounded-
angle spanning tree (related to networks with angular constraints) and the SINR diagram (induced by the Signal to
Interference plus Noise Ratio equation). This talk will discuss some of these problems and structures, mentioning a
few open problems along the way.

*Ben-Gurion University of the Negev, matya@cs.bgu.ac.il
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Low Ply Drawings of Trees and 2-Trees

Michael T. Goodrich*

Abstract

Ply number is a recently developed graph drawing met-
ric inspired by studying road networks. Informally, for
each vertex v, which is associated with a point in the
plane, a disk is drawn centered on v with a radius that
is a times the length of the longest edge incident to v,
for some constant o € (0,0.5]. The ply number is the
maximum number of disks that overlap at a single point.
We show that any tree with maximum degree A has a
1-ply drawing when o = O(1/A). We also show that
trees can be drawn with logarithmic ply number (for
a = 0.5), with an area that is polynomial for bounded-
degree trees. Lastly, we show that this logarithmic up-
per bound does not apply to 2-trees, by giving a lower

bound of Q(y/n/logn) ply.

1 Introduction

A useful paradigm for drawing graphs involves visualiz-
ing them as maps or road networks, allowing a visual-
izer to “zoom” in and out of the graph based on known
techniques that apply to maps. For example, Gansner
et al. [10] describe a GMap system for visualizing clus-
ters in graphs as countries with nearby clusters drawn
as neighboring countries. In addition, Nachmanson et
al. [18, 19] describe a GraphMaps system for visualizing
graphs as embedded road networks, so as to leverage the
drawing and zooming capabilities of a roadmap viewer
to explore the graph. Thus, a natural question arises as
to which graphs are amenable to being drawn as road
networks.

To answer this question, we formulate a precise defi-
nition of what we mean by a graph that could be drawn
as a road network. One might at first suggest that graph
planarity would be a good choice for such a formal-
ism. But the class of planar graphs includes several
graph instances that are difficult to visualize as road
networks, such as the so-called “nested triangles” graph
(e.g., see [6, 9, 12]). In addition, as shown by Eppstein
and Goodrich [7], the class of planar graphs is not gen-
eral enough to include all real-world road networks, as
road networks are often not planar. For example, the
California highway system alone has over 6,000 cross-

*Dept. of Computer Science, University of California, Irvine,
goodrich@uci.edu

TDept. of Computer Science, University of California, Irvine,
tujohnsoQuci.edu

Timothy Johnson'

ings. Instead of using planarity, then, Eppstein and
Goodrich [7] introduce the concept of the ply number of
an embedded graph, and they demonstrate experimen-
tally that real-world road networks tend to have small
ply. Intuitively, the ply concept tries to capture how
road networks have features that are well-separated at
multiple scales. The formal definition of the ply num-
ber of a graph is derived from the definition of ply for
a set of disks (which captures the depth of coverage for
such a set of disks) [17]; hence, the ply number of an
embedded graph is defined in terms of the ply of a set
of disks defined with respect to this embedding.

Let us therefore formally define the ply number of
an embedded geometric graph. Let I' be a straight-line
drawing of a graph G. For every vertex v € G, let
C% be the open disk centered at v and whose radius
re is a times the length of the longest edge incident
to v. The set of ply disks containing a point ¢ is then
S¢ ={Cy | [lv—gql < ry}. The a-ply number of this
drawing is defined as

I = “.
pu(T) = max |5 |

Usually, « is chosen in the range (0,0.5]. In this range,
a graph with two vertices and a single edge connecting
them has ply number 1, because the ply disks for the
two vertices will not overlap. If not otherwise specified,
the default value for « is 0.5, and if the value of « is
taken as this default value or known from the context,
then we refer to the a-ply number simply as the ply
number.

Previous related work. As an empirical justifica-
tion of the use of ply numbers, De Luca et al.’s exper-
imental study [4] found that some force-directed algo-
rithms, including Kamada-Kawai [16], stress majoriza-
tion [11], and the fast multipole method [13] all tend to
produce drawings with low ply number. Their experi-
ments also suggest that trees with at most three children
per node can have unbounded ply number.

The problem of drawing graphs with ply number
equal to 1 is related to that of constructing circle-
contact representations. A circle-contact representation
for a graph is a collection of interior-disjoint circles, in
which each circle represents a single vertex, and two
vertices are adjacent if and only if their circles are tan-
gent to one another [14, 15]. Di Giacomo et al. [5] show
that graphs with ply number 1 are equivalent to graphs
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with weak unit disk contact representations, which are
known to be NP-hard to recognize [3]. They also show
that binary trees have drawings with ply number 2, or
with ply number 1 when « is reduced to 1/3. One such
drawing is reproduced in the appendix in Figure 10.

Angelini et al. [2] relax our definition of ply number
to define the vertez-ply of a drawing, which is the max-
imum number of intersecting disks at any vertex of the
drawing. Graphs with vertex-ply number 1 can then be
interpreted as a new variant of proximity drawings.

In an earlier paper, Angelini et al. [1] show that 10-
ary trees have unbounded ply number. Furthermore,
they prove that 5-ary trees can be drawn with logarith-
mic ply number and polynomial area. The ply number
of drawings of trees with between three and nine chil-
dren per node remains an interesting and surprisingly
daunting open problem.

Our results. In this paper, we study a number of re-
lated problems concerning low-ply drawings of bounded-
degree trees. We first answer an open question proposed
by Di Giacomo et al. [5], which asks whether all trees
with maximum degree A have 1-ply drawings for a suffi-
ciently small . We show in Section 2 that a simple frac-
tal drawing pattern can achieve this when oo = O(1/A).

In Section 3, we show that all trees (not just 5-ary
trees) can be drawn with logarithmic ply number, for
«a = 0.5. Furthermore, the area is polynomial for trees
with bounded degree. These results depend on some
careful arguments about geometric configurations and
fractal-like geometric constructions, as well as yet an-
other use of the heavy-path decomposition technique of
Sleator and Tarjan [20].

It is then natural to consider whether any planar
graph classes larger than trees can be drawn with log-
arithmic ply number for « = 0.5. In Section 4, we
show that this is not the case for 2-trees, by construct-
ing a family of 2-trees that require a ply number of
Q(4/n/logn). Previous lower bounds have only ap-
plied for planar drawings, while non-planar drawings
are known to sometimes have better ply number.

2 1-ply Drawings

In this section, we provide conditions on « and related
constructions for producing 1-ply drawings of trees of
any bounded degree. At a high level, our drawings are
constructed as follows. For a tree with maximum degree
A, we divide the area around each parent vertex radially
into A equal wedges. Then we draw one subtree inside
each wedge. The distance from each node to its children
is chosen to be a constant fraction f of its distance from
its own parent.

This produces a drawing that is highly symmetric, in
a fashion that would produce a fractal if continued in

=

Figure 1: Our edges decrease by a factor of f at each
level, and the ply disks have radius « times the length
of the incoming edge.

the limit.! Thus, any bounded-degree tree is a subtree
of this infinite tree; hence, this drawing algorithm can
produce a drawing of any bounded-degree tree. Filling
in the details of this construction requires setting the
values of two parameters: f, the ratio between outgoing
and incoming edge lengths; and «, the ratio between
the radius of a ply disk for a vertex and the length of
its longest incident edge. We provide constraints for
the following three cases, which taken together ensure
that there are no overlaps, so that the ply number of
our drawings is 1. We then maximize « such that all of
these constraints are satisfied.

1. Ply disks for adjacent vertices must not overlap.

2. Ply disks for vertices on separate subtrees must not
overlap.

3. A ply disk for a vertex must never overlap a ply
disk for one of its descendants.

It is easily verified that these three conditions are nec-
essary and sufficient for a tree to have a 1-ply drawing.

Condition 1: Separate adjacent vertices. Except
for the root vertex, which has no incoming edge, we
proportion the lengths of the edges for each vertex as
shown in Figure 1.

That is, taking the length of a reference edge as 1
(illustrated in Figure 1 going from parent to child in a
left-to-right orientation), then, based on our definition
of the a-ply number, the radius of the larger circle is
a/ f, the radius of the smaller circle is «, and their dis-
tance is 1. Thus, we have our first condition relating o
and f:

f
a< T (1)

ISee Falconer [8] for further reading about fractal geometry.
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Figure 2: Our default constraint on a wedge containing
a subtree of a central vertex.

Condition 2: Separate subtrees with the same
root. We require that the ply disks for any subtree all
be contained within a wedge of angle 6 = QK’T around its
parent vertex, where A is the degree. Since our wedges
for each subtree are disjoint, this ensures that the ply
disks for two adjacent subtrees cannot overlap.

As illustrated in Figure 2, the distance from a child
vertex to the boundary of its containing wedge is d =
sin (%) Note also that the lengths of edges along a path
in this subtree form a geometric sequence with ratio f.
So the maximum distance from a child vertex to any
vertex in its subtree is Y oo, f' = ﬁ

Therefore, to confine each subtree within its wedge,

we must set
L < sin (£>
1-f~ A’
Solving for f, we get

sin (i)
f< ﬁ- (2)

Condition 3: Separate each vertex from its de-
scendants. Our last condition is that the ply disk for
a vertex cannot overlap any of its descendants. The
closest descendants will be those in the wedges on either
side of the edge between their parent and grandparent,
which are at an angle of QK” from their parent, as in
Figure 3.

Normalizing a grandparent-to-parent edge, (u,v), as
having length 1 and performing a rigid transforma-
tion that takes the grandparent, u, to the origin so
that the edge (u,v) is along the z-axis, u’s closest
grandchild, which we call w, is located at the point

w=(1— fcosh, fsinf)

/

Figure 3: Our layout leaves a gap of angle 6§ = QK” for
the edge from the parent vertex. The descendants on
either side must not be able to overlap their ancestors.

(1 — fcos (QK”) , fsin (%’T)) We require that the dis-
tance from w to its descendants be no greater than the
distance from w to the boundary of the ply disk for
u. Recall that our wedge angle 6 = QK’T. We apply the
following constraint:

V(1 = fcosf)? + (fsinh)2 > ?—i—ifi
i=2

After simplifying and solving for «, our condition is

f
1—f

Let us now compare our three conditions. We see
that equation 2 gives us an upper bound for f, while
equations 1 and 3 give us upper bounds for « that both
increase as f gets larger. So to maximize «, we let f be
equal to its upper bound. This gives us the following
theorem, and a corollary that is proved in the appendix.

o< f/1—2fcosf+ f2 —

Theorem 1 Let T be a tree with maximum degree /A,
and let
= sin (%)
C 1+sin(%)
T has a 1-ply drawing if

a<min<f fV/1—=2fcos(2n/A) + f2 — f )
- L+ f 1—f

Corollary 2 A tree with maximum degree A has a 1
ply drawing when o = O(1/A).

Note, however, that some of our conditions are not
tight. For condition 2, we assumed that the branches
of our subtrees would approach the sides of their wedge
directly. But when the degree of our tree is 4, the an-
gle between two subtrees is 90°. Therefore, every edge
in our tree is either horizontal or vertical, so we can
measure the distance to the boundary of the wedge us-
ing Manhattan distance instead of Euclidean distance.
(See Figure 4.)



30" Canadian Conference on Computational Geometry, 2018

Figure 4: An improved bound for Condition 2. The
Manhattan distance is sufficient to confine subtrees
within a wedge when all edges are either horizontal or
vertical.

Figure 5: A 1-ply drawing of a tree with maximum de-
gree four, for which f =1/2, a =1/3.

So for a tree with degree 4, we replace condition 2
with > f% < 1. This implies f = 1/2, and our other
i=1

1=
conditions imply @ = 1/3. In this case, our bound is

tight. (See Figure 5.)

3 Polynomial area, logarithmic ply number
In this section, we prove the following theorem.

Theorem 3 For a = 0.5, a tree with maximum degree
A can be drawn with ply number O(logn) in area n®®) .

Note that for a bounded-degree tree, A is a constant,
so our area is polynomial in n. We first give a simple

Figure 6: If each layer in a tree drawing is at least
three times as far as the previous layer, the ply disks
for the layers will not overlap. In this figure, d; = 2r
and ds = 67, so our condition holds.

fractal layering algorithm that proves our theorem for
balanced trees. Then we extend it to all trees by using a
heavy path decomposition. A similar approach was used
by Angelini et. al. [1] for drawing trees up to maximum
degree six, but we add our layering technique to make
their algorithm work for all trees.

Radially layered drawings. We begin with a simple
algorithm for drawing trees by layering their children.
For each vertex, we choose a sequence of distances d;
for the layers, such that vertices in adjacent layers have
disjoint ply disks.

Lemma 4 Suppose that r is the root of a star graph.
Let vi, v be children at distances dy, ds, respectively. If
do > 3dy, then the ply disks for vi and vy are disjoint.

Proof. The distance to vy is dy, so its ply disk will have
radius 0.5dq, and will be contained within an open disk
of radius 1.5d; centered at r. The distance to vs is dg, so
its ply disk will have radius 0.5ds. Its closest approach
to r will be at distance 0.5dy > 1.5d;. Thus, the ply
disks for v and vy are disjoint. (See Figure 6.) O

Next, note that we can put up to six vertices in each
layer without overlaps. So for a tree with degree A,
we need [A/6] layers. We pick any desired size for the
initial layer around our root, then draw the subtrees for
each child vertex recursively within their own ply disks.
Therefore, the size of the smallest layer must shrink by
a factor of 3[2/61 each time we add a level to our tree.

Since our tree is balanced, its total height is O(log n).
Thus the ratio of the longest to the smallest edge is
30(Aalogn) — pO(A) " The area will then also be n@(®),
for a larger constant.

This completes our proof for balanced trees. Figure
11 in the appendix provides an example drawing of a
tree with degree 18 using three layers.
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p1

D5

Figure 7: A tree and its heavy path decomposition.

Heavy path decomposition. When our trees are
not balanced, we will use the heavy path decomposi-
tion [20] to still produce drawings with logarithmic ply
number. This decomposition partitions the vertices in
our tree into paths that each end at a leaf. To choose
the first path, we begin at the root. Then from its child
subtrees, we choose the largest one and add its root to
our path. We continue downward until we reach a leaf.

We next remove the vertices on this path from our
tree, creating a new set of subtrees, and repeat the same
process for each subtree. That is, the root vertex for
each of these subtrees will become the starting point for
a new path constructed by the same process. We recurse
until every vertex in our tree is assigned to some path.
The subtrees that are rooted at a child of a vertex v and
whose root is not on the same path as v are are said to
be anchored at v. The path containing the root of each
of those subtrees is also said to be anchored at v.

The set of paths constructed by this process now itself
forms a new tree (see Figure 7), in which the path P; is
a parent of P; if one of the vertices in P; is an anchor for
P;. We will show that the ply number of our drawings
is proportional to the height of this decomposition tree,
which is known to be O(logn).

Now we describe how to draw each path in the de-
composition tree. First, we define a 2-drawing of a path
P = (v1,...,v,) as a straight-line drawing of P along
a single segment that satisfies the following properties.

e All of the vertices appear in the line segment in the
same order as they appear in P.

e For each ¢ = 2,...,m — 1 we have
l(vi, vig1) < 20(vi—1, ;).

l(vi—1,v;)
—5 <

Lemma 5 A 2-drawing of a path has ply number at
most 2.

Proof. See Lemma 5 in Angelini et al. [1]. O

Now suppose that we have a path P = (vy,vs,...,vg)
in our heavy path decomposition, and let P be anchored
at vertex v, so that v is the parent of v;. Let n be the
total size of the subtrees anchored at v, and let n; be

%
Ty v/ T T
.
.

n=73,Ti

ng =1 1

II
o

vy

Figure 8: Labels for different sizes in a heavy path de-
composition tree.

the total size of the subtrees anchored at v; (Figure 8).
Lastly, we denote the length of the edge (v, w) as l(v, w).

Intuitively, we want to draw each path so that more
space is available for vertices that have larger subtrees.
At the same time, we want to ensure that the lengths
of the two edges for a vertex are within a factor of two,
so that our path is a 2-drawing. This can be achieved
using the following algorithm DRAWPATH.

To draw the path P, we first set {(v,v1) = n; and
U(vi, vi41) = ni+ni41, foreach i = 1,..., k—1. Next we
visit the edges of our path in decreasing order of length.
When an edge (v;,v;41) is visited, we make sure that
both of its neighboring edges are at least half as long.
That is, we set:

L] l(vi,hvi) = max{l(vi’#,l(vi,l,vi)}

I(vivi41

® U(vit1,vig2) = max{==5"% {(vig1, vig2)}

Lemma 6 The algorithm DRAWPATH constructs a 2-
drawing I' of P such that l(v,v1) > n1, (v, vi41) >
n;+nip1, and for each i =1,...,m—1, and [(P) < 6n.

Proof. See Lemma 6 in Angelini et al. [1]. O

We now perform a bottom-up construction of our
tree, drawing each path using the DRAWPATH algo-
rithm. Once all of the paths anchored at vertices in
P have been drawn, we construct a drawing of P with
each path in a separate layer (Figure 9). This transla-
tion may increase the ply radius of the first vertex in
each of these paths, so the ply number of the drawing
for each path may increase from 2 to 3.

The drawing is described in more detail in the ap-
pendix, and the following properties are shown.

Lemma 7 For each vertex v we can associate a drawing
disk D, (which is distinct from the ply disk for v) that
satisfies the following properties.

1. If v,w are two distinct vertices on the same path,
then their disks D,, D,, are disjoint.
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Figure 9: Three vertices along a path in our decomposi-
tion, along with their drawing disks (not the ply disks).
For the center vertex v;, we show three paths in different
layers around it, which would be drawn recursively.

2. The ply disks for the subtrees anchored at v are all
contained within D,,, and are within disjoint layers.

3. Each path is scaled by a factor of O(3%) larger than
the paths that are anchored at its vertices.

Together, these properties imply that the ply disks for
a path can only overlap with ply disks for their ancestor
paths in the heavy path decomposition tree. Therefore,
since each path is drawn with ply number at most 3,
the total ply number is at most 3(h + 1), where h is
the height of the heavy path decomposition tree. Since
h = O(logn), the ply number is O(logn).

Lastly, if A is a constant, then the total scaling for
our largest disk is 3°(21°87) which simplifies to n®®).
This completes our proof of Theorem 4.

4 Lower bound for 2-trees

Since all trees can be drawn with O(logn) ply number,
it is natural to consider larger planar graph classes. We
show that a 2-tree can require at least Q(y/n/logn) ply.

We know that a star can be drawn with ply num-
ber 2 when the distance to successive vertices increases
exponentially [1]. A tree can be drawn with O(logn)
ply number when the distances from parents to their
children decrease exponentially as we move down the
tree. Intuitively, combining these two graphs produces
a graph that requires large ply, since it is impossible to
satisfy both conditions simultaneously.

Accordingly, we begin with m disjoint complete bi-
nary trees of height h, which we label T;, 1 < i < m,
where m and h will be determined later. Then we add
one vertex v connected to every vertex in each tree. Let
d(w) be the distance from v to w, for any tree vertex w.

Suppose that w; is a tree vertex in the tree T;, and
ws is its child. Then if d(wy) > 3d(wy), the ply radius
for wy is larger than d(w;). Therefore, the ply disk
for wy contains v. Similarly, if d(wy) > 3d(ws), then
the ply disk for wy contains v. Assume without loss of

generality that the distance from v to the root of T; is
1. We can then show by induction that if no ply disk
in T; contains v, then the nodes at the jth level of our
tree are at distance at most 37 from v, and at least 377,

Next suppose that some tree T; has no vertices whose
ply disk contains v. Then partition our drawing into
annuli S;, where the inner radius of S; is 3!, and the
outer radius is 31, Next choose [ to be the index of the
annulus containing the maximum number of vertices.
S; must contain at least 2" /2h vertices, each with a ply
radius at least 3!/2.

_Let D be the disk centered at v with a radius of rp =
3!72/2, so that all of the ply disks for vertices in Sy
are contained in D. Now we compute the ratio of the
areas of the ply disks in D to its own area, which is a
lower bound for the ply number. Note that D contains
2" /2h ply disks that each have a radius of at least /9.
Therefore, this ratio is at least:

ply area per vertex

2h wrd 1 2"

— = =Q(2"/h
2h 81 7r?  162h @*/h)
N~~~ N

vertices ,verse disk area

Now let h = (logn + loglogn)/2, and let m =

n/logn. Note that the total number of vertices in
each tree is 2(logntloglogn)/2 —  /nToon. The total
number of vertices overall is then m - 2" 4+ 1 = O(n).

If every tree T; has a vertex whose ply disk contains v,
then the ply number is at least Q(m) = Q(y/n/logn).
Otherwise, if some tree does not have such a vertex, then
that tree’s ply number is Q(2" /h) = Q(y/n/logn). This
gives us the following theorem.

Theorem 8 There is a 2-tree with O(n) wvertices for
which any drawing has ply number Q(y/n/logn).

5 Conclusion

We have shown that all trees have 1-ply drawings when
a = 0(1/A), or logarithmic ply number when o« = 0.5,
and that 2-trees may require Q(y/n/logn) ply.

There are many open questions left to resolve, but we
are especially interested in closing the gap between con-
stant and logarithmic ply for trees with between three
and nine children per node. We would also like to con-
sider intermediate planar graph classes between trees
and 2-trees, such as outerplanar graphs, and determine
whether they can be drawn with O(logn) ply.
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Appendix

Here we include additional proofs and figures that were
postponed from the main paper due to lack of space.

Corollary 9 A tree with mazimum degree A has a 1
ply drawing when o = O(1/A).

Proof. First, recall that we defined:
= sin (%)
S 1+sin(%)
Now we will consider the limiting value of A - f.

. . Asin(m/A)
lim A-f= lim ——————> =
A A S = i Ay T T
Therefore, f = ©(1/A). So as A — oo, f — 0.
Secondly, recall that in our theorem we showed:

a<min<f /1= 2fcos(2n/A) + f2 — f? )
- 1+ f 1—f

Suppose that we use the first condition, « = f/(1+f).
Then a/f =1/(1+ f). Solimyoa/f = 1.

Then suppose that we use the second condition:

fS
1—f
Again, limy ,oa/f =1,s0 a =O(f) =0(1/A). O

a= f\/1—2fcos(2r/A) + f2 —

Lemma 10 For each vertex v we can associate a draw-
ing disk D, (which is distinct from the ply disk for v)
that satisfies the following properties.

1. If v,w are two distinct vertices on the same path,
then their disks D,, D,, are disjoint.

2. The ply disks for the subtrees anchored at v are all
contained within D, and are within disjoint layers.

3. Each path is scaled by a factor of O(3%) larger than
the paths that are anchored at its vertices.

Proof. We prove each part of our lemma as follows.

1. Suppose that our heavy path decomposition tree
has a total height of H, and the path P is at height
h. Then we use the DRAWPATH algorithm to con-
struct a drawing of P. We set the drawing disk for
a vertex v; in P to have radius n;, that is, the size of
the subtrees anchored at v;. Since the length of the
edge (v, vi41) is at least n; + n;y1 (by Lemma 7),
the drawing disks for any two adjacent vertices in
our path will not overlap.

. Next we scale the drawing of P by 32~ Note

that each path anchored at a vertex in P is scaled
by 32H=(h+1)) 5o the difference in the scaling fac-
tor is 3. We show that at least A — 1 paths can
be anchored in different layers around each vertex
vin P.

From Lemma 7, we know that each path anchored
at v has an unscaled length of at most 6n, where
n is the total size of the subtrees anchored at wv.
We also know by Lemma 5 that the ply disks for
vertices in two different paths will not overlap if
their distance from v differs by at least a factor of
three.

So we will draw the jth path anchored at wv; is
drawn between z; and x;11, where x; satisfies the
following recurrence:

1 = 6nz

x; = 3x;_1 +6n;

Solving the recurrence, we find that z; = 3n(37-1).
Since we have at most A —1 layers, the largest layer
will have an outer radius less than 3%n,;. Since the
unscaled drawing disk for v; had a radius of n;, a
relative scaling factor of 32 is sufficient to fit the
paths that are anchored at it.

. Since our heavy path decomposition has height

O(logn), the largest path will be scaled by a factor
of 30(Alogn) from its original length of O(n). So the
diameter of our drawing is 3°(21°8")y which sim-
plifies to n©(®). The total area is then also n@%),

for a larger constant.

O
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Figure 10: Di Giacomo et al.’s drawing of a binary tree
with a-ply number 1, for a = % The edge lengths

decrease by a factor of 2 at each level.

A L
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Figure 11: A tree with degree 18, where the children of
each vertex are drawn in three layers.
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The Crossing Number of Semi-Pair-Shellable Drawings
of Complete Graphs

Petra Mutzel *

Abstract

The Harary-Hill Conjecture states that for n > 3 every
drawing of K, has at least

linjyn=1jn=2)1n-3

H(”)'_dzﬂ 2 H 2 H 2 J
crossings. In general the problem remains unsolved, ho-
wever there has been some success in proving the conjec-
ture for restricted classes of drawings. The most recent
and most general of these classes is seq-shellability [16].
In this work, we improve these results and introduce the
new class of semi-pair-shellable drawings. We show that
each drawing in this new class has at least H(n) cros-
sings using novel results on k-edges. So far, approaches
for proving the Harary-Hill Conjecture for specific clas-
ses rely on a fixed reference face. We successfully apply
new techniques in order to loosen this restriction, which
enables us to select different reference faces when consi-
dering subdrawings. Furthermore, we introduce the no-
tion of k-deviations as the difference between an optimal
and the actual number of k-edges. Using k-deviations,
we gain interesting insights into the essence of k-edges,
and we further relax the necessity of fixed reference fa-
ces.

1 Introduction

The crossing number ¢r(G) of a graph G is the smal-
lest number of edge crossings over all possible drawings
of G. In a drawing D of G = (V, E) every vertex v € V
is represented by a point and every edge uv € E with
u,v € V is represented by a simple curve connecting
the corresponding points of v and v. We call an inter-
section point of the interior of two edges a crossing. The
Harary-Hill Conjecture states the following.

Conjecture 1 (Harary-Hill [10]) Let K, be the
complete graph with n vertices, then

er(K,) = H(n) :ﬂanQIHHQQJ {n;:),J

*Department of Computer Science, TU Dortmund University
petra.mutzel@tu-dortmund.de

TDepartment of Computer Science, TU Dortmund University
lutz.oettershagen@tu-dortmund.de
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There are construction methods for drawings of K, that
lead to exactly H(n) crossings, for example the class of
cylindrical drawings first described by Hill [11]. Howe-
ver, there is no proof for the lower bound of the con-
jecture for arbitrary drawings of K, with n > 13. The
cases for n < 10 have been shown by Guy [10] and
for n = 11 by Pan and Richter [17]. Guy [10] argues
that cr(Kaopy1) > H(2n + 1) implies cr(Ksp41)) >
H(2(n + 1)), hence er(Ki2) > H(12). McQuillan et
al. [14] showed that cr(Ki3) > 219. Abrego et al. [1]
improved the result to cr(K;3) € {223,225}.

Beside these results for arbitrary drawings, there has
been success in proving the Harary-Hill Conjecture for
different classes of drawings. So far, the conjecture
has been verified for 2-page-book [3], cylindrical [5], z-
monotone [8, 4], z-bounded [5], shellable [5], bishella-
ble [2] and recently seg-shellable drawings [16]. Seq-
shellability is the broadest of the beforehand mentioned
classes comprising the others. Here, the proof of the
Harary-Hill Conjecture makes use of the concept of k-
edges. Each edge e € E in a drawing is assigned a
specific value between 0 and | 5] — 1 with respect to a
fixed reference face. The edge e separates the remaining
n — 2 to vertices into two distinct sets, and is assigned
the cardinality & of the smaller of the two sets, i.e. is
a k-edge (see section 2 for details). We can express the
number of crossings in a drawing in terms of the num-
bers of k-edges for each k € {0,..., 5| —2}. Therefore,
having lower bounds on the (cumulated) number of k-
edges implies a lower bound on the crossing number of
a drawing. After two cumulations, we obtain double
cumulated k-edges. However, the possibilities of their
usage for further improvements to new classes of dra-
wings seem to be limited.

Our contribution and outline In this work, we resolve
the limitations of double cumulated k-edges by applying
two new ideas. Firstly, instead of double cumulated k-
edges we utilize triple cumulated k-edges. Balko et al.
introduced these in [8]. Secondly, so far all classes, in-
cluding seq-shellability, depend on a globally fized refe-
rence face. We call a reference face globally fixed if we
do not allow to select a different one when considering
subdrawings, which constitutes a strong limitation in
the proofs. In this work, we show that under certain
conditions and/or assumptions, we are able to change



30" Canadian Conference on Computational Geometry, 2018

the reference face locally or even without restrictions.
Changing the reference face locally means, given a ver-
tex v incident to an initial reference face F', we select a
new reference face F’, such that F” is also incident to v.
Using the new results, we introduce a new class of dra-
wings for which we show that each drawing in this class
has at least H(n) crossings; we call drawings belonging
to this class semi-pair-shellable. There are semi-pair-
shellable drawings that are not seqg-shellable. But un-
like seg-shellability, semi-pair-shellability does not com-
prise all previously found classes and only contains dra-
wings with an odd number of vertices. However, every
(5] —1)-seq-shellable drawing with n odd is semi-pair-
shellable. Furthermore, we introduce k-deviations of a
drawing D of K,,. They are the difference between the
numbers of cumulated k-edges in D and reference values
corresponding to a drawing with exactly H(n) crossings.
They allow us to further relax the necessity of a globally
fixed reference face.

The outline of this paper is as follows. In Section
2 we introduce the preliminaries, and in particular the
necessary background on (cumulated) k-edges and their
usage for verifying the lower bound on the number of
crossings. In the following Section 3, we present our no-
vel results for triple cumulated k-edges, followed by the
introduction of semi-pair-shellable drawings in Section
4. We show that each drawing in this class has at least
H(n) crossings, and discuss the distinctive differences
to seg-shellability. In Section 5 we use k-deviations to
formulate conditions under which we are able to furt-
her loosen the need for a globally fixed reference face.
We conjecture these conditions to be true in all good
drawings. Assuming our conjecture holds, we prove a
lower bound of H(n) crossings for another broad class
of drawings. Finally, in Section 6 we draw our conclusi-
ous and give an outlook to further possible work. Note
that due to the space restrictions some proofs had to be
omitted. A full version which contains all proofs and
additional figures is available [15].

2 Preliminaries

A drawing D of a graph G on the plane is an injection ¢
from the vertex set V into the plane, and a mapping of
the edge set F into the set of simple curves, such that the
curve corresponding to the edge e = uv has endpoints
¢(u) and ¢(v), and contains no other vertices [19]. We
call an intersection point of the interior of two edges a
crossing; a shared endpoint of two adjacent edges is not
considered a crossing. The crossing number cr(D) of a
drawing D equals the number of crossings in D and the
crossing number ¢r(G) of a graph G is the minimum
crossing number over all its possible drawings. We re-
strict our discussions to good drawings of K, and call
a drawing good if (1) any two of the curves have finitely
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many points in common, (2) no two curves have a point
in common in a tangential way, (3) no three curves cross
each other in the same point, (4) any two edges cross
at most once and (5) no two adjacent edges cross. It
is known that every drawing with a minimum number
of crossings is good [18]. Given a drawing D, we call
the points also vertices and the curves edges, V' denotes
the set of vertices (i.e. points), and E denotes the set
of edges (i.e. curves) of D. If we subtract the drawing
D from the plane, a set of open regions remains. We
call (D) := R?\ D the set of faces of the drawing D.
If we remove a vertex v and all its incident edges from
D, we get the subdrawing D — v. We denote by f(v)
the unique face in D — v that contains all the faces that
are incident to v in D, and call f(v) the superface of v.
We might consider the drawing to be on the surface of
the sphere S2, which is equivalent to the drawing on the
plane due to the homeomorphism between the plane and
the sphere minus one point. Next, we introduce k-edges;
according to [7] the origins of k-edges lie in computatio-
nal geometry and problems over n-point set, especially
problems on halving lines and k-sets. An early defi-
nition in the geometric setting goes back to Erdds et
al. [9]. Given a set P of n points in general position in
the plane, the authors add a directed edge e = (p;,p;)
between the two distinct points p; and p;, and consider
the continuation as line that separates the plane into a
left and a right half plane. There is a (possibly empty)
point set P, C P on the left side of e, i.e. in the left
half plane. Erdés et al. assign k := min(|P|,|P \ Pr]|)
to e. Later, the name k-edge emerged for any edge that
is assigned the value k. Lovasz et al. [13] used k-edges
for determining a lower bound on the crossing number
of rectilinear graph drawings. Finally, Abrego et al. [3]
extended the concept of k-edges from rectilinear to to-
pological graph drawings and used the concept to show
that the crossing number of 2-page-book drawings is at
least H(n). Every edge in a good drawing D of K, is a
k-edge for a specific value of k € {0,...,[5| —1}. Let
D be on the surface of the sphere S2, and e = uv be an
edge in D and F € F(D) be an arbitrary but fixed face;
we call F' the reference face. Together with any vertex
w € V\ {u,v}, the edge e forms a triangle uvw and
hence a closed curve that separates the surface of the
sphere into two parts. For an arbitrary but fixed orien-
tation of e, one can distinguish between the left part
and the right part of the separated surface. If I lies
in the left part of the surface, we say the triangle has
orientation + else it has orientation —. For e there are
n — 2 possible triangles in total, of which 0 <i <n —2
triangles have orientation + (or —) and n —2 —1 triang-
les have orientation — (or + respectively). We define
the k-value of e to be the minimum of ¢ and n — 2 — 4.
We say e is an i-edge with respect to the reference face
F if its k-value equals ¢. See Figure 1 for an example.
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Abrego et al. [3] showed that the crossing number of
a drawing is expressible in terms of the number of k-
edges for 0 <k <[5 ] — 1 with respect to the reference
face. The following definitions of the cumulated num-
bers of k-edges are used for determining lower bounds
of the crossing number. The double cumulated number
of k-edges has been defined by Abrego et al. [3], and the
triple cumulated number of k-edges has been introduced
by Balko et al. [8] in the context of the crossing number
of z-monotone drawings.

Definition 1 [3, 8] Let D be a good drawing and Ej, (D)
be the number of k-edges in D with respect to a reference
face F € F(D) and for each k € {0,...,|5] —1}. We
denote
koj k
BEy(D) =Y > E(D)=Y (k+1-i)E(D)
i=0

§=0 i=0 i=0

the double cumulated number of k-edges, and

k k .
Ex(D) = ZEz(D) = Z <k+22 - Z>Ei(D)

i=0 i=0
the triple cumulated number of k-edges.

We also write double (triple) cumulated k-edges or dou-
ble (triple) cumulated k-value instead of double (triple)
cumulated number of k-edges. We express the crossing
number of a drawing using the triple cumulated k-edges.

Theorem 2 [8] Let D be a good drawing of K, and
m = | 5| —2. With respect to a reference face F' € F(D)
we have for n odd

er(D)=2-E,(D) — én(n —1)(n—13)

and for n even
. . 1

cr(D) =FE, (D) + E,—1(D) — én(n —1)(n—2).

It is an important observation, that for n odd the value
E,,(D) and n even E,, (D) + E,,_1(D) are identical for
all faces of D. Note that this does not apply to the dou-
ble cumulated case, i.e. E,,(D) or E,,(D) + E,,_1(D),
respectively. Using the following lower bounds, we are
able to verify the Harary-Hill Conjecture.

Corollary 3 [8] Let D be a good drawing of K,,. If n
s odd and
n—1
. =42
Bus (D) 23( z, )

or n is even and with respect to a face F' € F(D)

~ n49 A 241
E;_2<D>23<24+ ) and E;_3<D>23<24+ )

then cr(D) > H(n).
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Figure 1: Example (a) shows a crossing optimal drawing
D of Kg with the k-values at the edges. (b) shows the
subdrawing D —vs and its k-values. The fat highlighted
edges vouy, vovs and vivs are invariant and keep their
k-values. The reference face is the outer face F.

If a vertex touches the reference face, it is incident to a
certain set of k-edges.

Lemma 4 [3] Let D be a good drawing of K,,, F €
F(D) andv € V be a vertex incident to F'. With respect
to F, vertex v is incident to two i-edges for 0 < i <
| 5] — 2. Furthermore, if we label the edges incident to
v counter clockwise with eq,...,e,_o such that eq and
en—2 are incident to the face F, then e; is a k-edge with
k=min(i,n —2—1) for0<i<n-—2.

The definition of semi-pair-shellability uses seq-
shellability, which itself is based on simple sequences.

Definition 5 (Simple sequence) [16] Let D be a
good drawing of K, F € F(D) and v € V with v in-
cident to F. Furthermore, let S, = (uo,...,ur) with
u; € V\{v} be a sequence of distinct vertices. If ug is
incident to F' and vertex u; is incident to a face con-
taining F in the subdrawing D — {uq,...,u;—1} for all
1 <i <k, then we call S, a simple sequence of v.

Definition 6 (Seq-Shellability) [16] Let D be a good
drawing of K,,. We call D k-seq-shellable for k > 0 if
there exists a face F € F(D) and a sequence of distinct
vertices ao,...,ar such that ag is incident to F, and
(1) for each i € {1,...,k}, vertex a; is incident to
the face containing F in drawing D — {ag,...,a;—1},
and (2.) for each i € {0,...,k}, vertex a; has a simple
sequence S; = (ug, ..., up—;) with u; € V\{ao,...,a;}
for 0 <j <k—iin drawing D — {ag,...,a;—1}.

If a drawing D of K, is (|5 | —2)-seg-shellable, we omit
the (| 5] —2) part and say that D is seq-shellable. The
class of seg-shellable drawings contains all drawings that

are (| 5| — 2)-seq-shellable.

3 Properties of Triple Cumulated k-Edges

In this section, we present new results for triple cumu-
lated k-edges. First, we introduce the triple cumulated
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value of edges incident to v. Having a vertex v incident
to the reference face F', we know from Lemma 4 that v is
incident to two k-edges for each k € {0,...,[§]—2} and
it follows that the triple cumulated number of k-edges
incident to v is Ex(D,v) = S8 o (F1277) .2 = 2(*f?).

Next, we introduce the double cumulated invariant
edges. Consider removing a vertex v € V from a good
drawing D of K,,, resulting in the subdrawing D —v. By
deleting v and its incident edges every remaining edge
loses one triangle, i.e. for an edge uw € E there are only
(n — 3) triangles uwz with € V'\ {u, v, w} (instead of
the (n —2) triangles in drawing D). The k-value of any
edge e € F is defined as the minimum number of + or
— oriented triangles that contain e. If the lost triangle
had the same orientation as the minority of triangles,
the k-value of e is reduced by one else it stays the same.
Therefore, every k-edge in D with respect to F' € F(D)
is either a k-edge or a (k — 1)-edge in the subdrawing
D — v with respect to F' € F(D —v) and F C F'. We
call an edge e invariant if e has the same k-value with
respect to F in D as for F’ in D’. See Figure 1 for an
example.

For 0 < k < | §]—1 we denote the number of invariant
k-edges between D and D’ (with respect to F' and F’
respectively) by I (D, D’). Furthermore, we define the
double cumulated invariant k-value as

J k

k,
I.(D,D') =Y "> I(D,D')=> (k—i+1)Li(D,D').

j=0 i=0 =0

We define E_;(D) = 0, and introduce the recursive
representation for the triple cumulated k-edges.

Lemma 7 Let D be a good drawing of K,, v € V and
F € F(D). With respect to the reference face F and for
all k € {0,...,|5] — 2}, we have

Ex(D) = E_1(D —v) 4+ Ep(D,v) + I.(D, D — v).

Using the triple cumulated value, we only have to ensure
that Ek(D) > 3(k1'4) for k = ";1 —2if n is odd, or for
each k € {§ —2, 5 —3} if nis even in order to prove that
cr(D) > H(n) (Theorem 2). Mutzel and Oettershagen
[16] showed that any seg-shellable drawing D of K, has
E;y(D) > 3("3%) forall i € {0,...,k} with respect to the
reference face F'. This implies the following corollary.

Corollary 8 Let D be a drawing of K, thal is seq-
shellable for a reference face F' € F(D), then Ey(D) >
3("1%) for all k € {0,...,| %] — 2} with respect to F.

The following lemma gives a lower bound on double cu-
mulated invariant edges incident to a vertex that tou-
ches the reference face.

Lemma 9 Let D be a good drawing of K,, with two ver-
tices v and w incident to the reference face F' € F(D).
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If v is removed, the double cumulated value of invariant
k-edges incident to w with respect to F is at least (@'2)

for all k €{0,...,|5] —2}.

The following lemma is the gist that allows us to locally
change the reference face if we have an odd number of
vertices.

Lemma 10 Let D be a good drawing of K, andv € V.
For n odd, the number of double cumulated invariant
edges jL%J,Q(D, D — v) is the same with respect to any
face incident to v in D and the superface f(v) in D —wv.

Proof. Let m = [5| — 2. Lemma 7 implies that with

respect to a face incident to v

In(D,D —v) =B, (D) — Ep_1(D —v) — Ep (D, v).

E,(D) is the same for all faces of D, the value
E_1(D — v) with respect to face f(v) is fixed and for
each face incident to v we have E,,(D,v) = Q(m;?’).
Therefore, it follows that also the value of I,,,(D, D —v)
has to be the same for every face incident to v. O

4 Semi-Pair-Shellability

Basis for the new class of semi-pair-shellable drawings
are pair-sequences.

Definition 11 (Pair-sequence) Let D be a good dra-
wing of Kn, v € V and P, = (ug,...,un| o)
be a sequence of distinct vertices u; € V \ {v} for
0<i<|2|-2

We call P, a pair-sequence of v if for
je{l,....|5] =3} and (n — j) odd, the vertex
u; in the drawing D — {ug,...,uj_1} is incident to
a face F' € F(D — {ug,...,uj_1}), where F' is also
incident to v, and in the drawing D — {ug,...,u;}
vertex uj1 s incident to face f(uj;), and vertex ug is
incident to F € F(D), where F is also incident to v.

For example, in Figure 2 vertex v in the drawing of K7
has the pair-sequence (ug, u1, ug, us). The pair-sequence
of vertex v ensures that if we remove v from D, there are
enough double cumulated invariant k-edges. Therefore,
we are able to guarantee a lower bound on EL%J,Q(D)
using Lemma 7.

Lemma 12 Let D be a good drawing of K,, veV
and (uo,...,uL%J_Q) a pair-sequence of v, then
Ii3)2(D, D —v) > (7).

Proof. Without loss of generality let n be odd and let

m = ”T’l — 2 (for n even we can proceed similarly and
start with m = § —2). Lemma 9 states that the double

cumulated value of invariant edges incident to ug equals
(%‘2) for 0 < k < m with respect to a face F' incident
to v and ug, and the removal of v from D. Likewise,
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Figure 2: Single-pair-seq-shellable drawing of K7;. The
initial reference face is F', vertex v has the pair-sequence
(w0, u1,uz, u3).

the double cumulated value of invariant edges incident
to uq is at least (k;r2) for 0 < k < m —1 if we remove v
from D — ug with respect to F'. The edge ugu; may be
invariant or non-invariant in D with respect to removing
v. Now consider the drawing D — {ug,u;} with n — 2
vertices and 252 —2 = 221 —3 = ;m —1. Because n—2 is
odd, we know that for all faces incident to v the value of
Ly —1(D—{ug,u1}, D—{v,ugp,u1 }) is the same (Lemma
10). We may select a new reference face F’, such that
v and us are incident to F’, and we can argue again,
using Lemma 9, that removing v leads to at least (k—20—2)
for 0 < k < m — 2 double cumulated value of invariant
edges incident to wg, since wug is incident to F’. The
double cumulated value of invariant edges incident to
ug is at least (’“52) for 0 < k < m — 3 with respect to F”’
if we remove v from D — {ug,u1,us2}. Again, the edge
usuz may be invariant or non-invariant in D — {ug, u1 }
with respect to removing v.

In general, we are able to change the reference face in-
cident to v if a subdrawing K. of K,, with 0 < r < n has
an odd number of vertices because the number of dou-
ble cumulated invariant (| 5| —2)-edges does not change
(see Lemma 10). Furthermore, since vertex u; for 0 <
i < | 5] —2is incident to the (current) reference face, u;
contributes at least ("7/"?) to the value of the double
cumulated invariant m-value with respect to removing v
from D. Thus, I,,(D,D—v) > 702 () = ("F%). O
In Figure 2, both vertices ug and u; are incident to the
initial reference face F. Figure 3 shows the drawing
after removing the first pair (i.e. up and uy). The face
F is not incident to any vertex except v. Changing the
reference face to F’ allows to proceed with us and us.
Notice that in a drawing D of K,, with n odd, only the
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Figure 3: Subdrawing D—{ug, u1 } of the drawing shown
in Figure 2. The reference face is now F’, which is
incident to v and us.

value of fL%J_Q(D,D — v) is invariant with respect to
changing the reference face. The values Ij,(D, D — v)
for k € {0,...,[5] — 3} may change when selecting a
different reference face.

Lemma 13 Let D be a good drawing of K, with n odd
and v € V. If v has a pair-sequence and for the sub-
drawing D —v we have E|»|_3(D —v) > 3(L5i+1) with

2

respect to f(v), then cr(D) > H(n).

Proof. We have EA’L%J_Q(D,U) > 2(%%“) for any
face that is incident to v in D, and because v has a
pair-sequence and due to Lemma 12, it follows that
Iizj—2(D,D —v) > (L2)*). Using Lemma 7, it fol-
lows for every face incident to v EA’L%J_Q(D) > S(L%i+2).
Since n is odd, the result follows with Corollary 3. [

Next, we define semi-pair-shellability.

Definition 14 Let D be a good drawing of K, with n
odd. If there exists a vertex v € V that has a pair-
sequence and the subdrawing D — v is seq-shellable for
f(v), then we call D semi-pair-shellable.

Using Lemma 13, we show that semi-pair-shellable dra-
wings have at least H(n) crossings. By definition the
subdrawing D — v is seq-shellable, hence EL%J,;),(D —
v) > 3(L%i+1) for f(v) (see Corollary 8). Consequently,
Theorem 15 follows.

Theorem 15 If D is a semi-pair-shellable drawing of
K, then cr(D) > H(n).

The drawing D in Figure 2 is semi-pair-shellable but not
seg-shellable. It is impossible to find a vertex sequence
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and corresponding simple sequences to apply the defini-
tion of seq-shellability. However, the subdrawing D — v
is seg-shellable for face f(v) and v has a pair-sequence.
Consequently, D is semi-pair-shellable.

We are not aware of a crossing optimal semi-pair-
shellable drawing that is not seg-shellable. Every (|5 ]—
1)-seq-shellable drawing D with n odd is also semi-
pair-shellable: By definition, D has a vertex sequence

ao,.-.,a|z -1, and each a; has a simple sequence Si
with i € {0,...,[§] — 1}. The first [ 5] — 2 vertices of

Sy are a pair-sequence for ag. Moreover, the drawing
D —ag is (5] — 2)-seg-shellable with the vertex se-
quence a,...,a » 1 and its corresponding simple se-
quences. However, there exist (|§] — 2)-seq-shellable
drawings that are not semi-pair-shellable. Thus, semi-
pair-shellability is a new distinct class that intersects

but does not contain the class of seq-shellable drawings.

5 k-Deviations

In the following, we introduce k-deviations, which we
use to represent, the difference between (cumulated) k-
edges and optimal values; k-deviations allow us to for-
mulate conditions under which we are able to change
the reference face even more freely. Note that if for a
drawing D of K, it holds that Ey(D) = 3(k + 1) for
all0 <k < [5] =2, then cr(D) = H(n). We define k-
deviations as the difference between this value and the
number of k-edges in a drawing.

Definition 16 Let D be a good drowing of K,, F
F(D) and Ey(D) the number of k-edges for 0 < k
|5 ] — 2 with respect to F. We denote by Ay(D)
Er(D) — 3(k + 1) the k-deviation of the drawing D for
0 <k < |5] —2 with respect to . Moreover, we define
the cumulated versions of the k-deviation for F as

MIA m

Ap(D):=>"> Aj(D)=> (k+1—i)Ai(D) and
i=0 j=0 i=0
k k .

Ak(D) = Ai(D)_Z<k+§_Z>Ai(D)-

i=0 =0

Finally, we define the deviation of the crossing number
of D from the Harary-Hill optimal number of crossings
as A, (D) == cr(D) — H(n).

We can express k-deviations in the following ways.

Lemma 17 Let D be a good drawing of K,. For a
reference face F' € F(D) and 0 < k < | 5] — 2, we have

Ak(D) = Ay_1(D) + Ay(D).

Corollary 18 Let D be a good drawing of K,. Forn
odd we have A..(D) = ZA%_Q(D), and for a refe-
rence face F' € F(D) and n even A (D) = A%_Q(D) +
Az _5(D).
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Notice, that Corollary 18 implies Kleitman’s parity the-
orem for complete graphs [12]. The following lemma
gives a lower bound on A|n|_3(D).

Lemma 19 Let D be a good drawing of K, with
cr(D) > H(n). For each F' € F(D) with A ») (D) >
Az |_2(D), it holds that Az _5(D) > 0.

With the following proposition, we are able to select a
new reference face for the subdrawing D — v.

Proposition 20 Let D be a good drawing of K, with
n odd and v € V, such that the subdrawing D — v s
seq-shellable for any face F € F(D—v). If v has a pair-
sequence and in subdrawing D — v for f(v) it holds that
Ausi o(D=v) > Aus _o(D—v), then cer(D) > H(n).

So far, for all drawings and all faces we inspected, the
condition of Lemma 19 has been fulfilled. We conjecture
it to be true for all good drawings of K,.

Conjecture 2 Let D be a good drawing of K,. With
respect to any face F € F(D), we have

Ala)—2(D) > A3 (D).

Under the assumption that Conjecture 2 holds, we are
able to prove the Harary-Hill Conjecture for another
new class of drawings. Here, we can select a different
reference face for each vertex.

Theorem 21 Let D be a good drawing of K, and
v1,...,U, G Sequence of the vertices, such that every
vertex v; with i € {1,...,n} and i odd has a pair-
sequence, and every vertex v; with i € {1,...,n} and

i even has a simple sequence. If Conjecture 2 holds,
then cr(D) > H(n).

6 Conclusions and Outlook

We introduced semi-pair-shellable drawings of complete
graphs and verified that each drawing in this class has
at least H(n) crossings. For the first time, we used
more than a single globally fixed reference face in or-
der to show lower bounds on the triple cumulated k-
edges. Semi-pair-shellability is only defined for dra-
wings of K, with n odd so far. Extending semi-pair-
shellability to drawings of K, with an even number
of vertices is an open problem. Here, it would suf-
fice to show that Ajn| (D) + A|n| 3(D) > 0 implies
AL%J,g(D) > 0 in order to generalize our results from
semi-pair-shellability to pair-shellability, i.e. a version
of seqg-shellability with pair-sequences instead of simple
sequences. Moreover, we introduced k-deviations to for-
mulate conditions under which we are able to select a
new reference face in each subdrawing. Proving Con-
jecture 2 would settle the Harary-Hill Conjecture for a
very broad class of drawings, comprising seq- and semi-
pair-shellability. Still, there are optimal drawings where
each face touches a single vertex only [6], thus no vertex
has a simple or pair-sequence.
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Learning Simplicial Complexes from Persistence Diagrams

Brittany Terese Fasy*!
Anna Schenfisch*

Robin Lynne Belton*
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Abstract

Topological Data Analysis (TDA) studies the “shape”
of data. A common topological descriptor is the persis-
tence diagram, which encodes topological features in a
topological space at different scales. Turner, Mukher-
jee, and Boyer showed that one can reconstruct a sim-
plicial complex embedded in R? using persistence dia-
grams generated from all possible height filtrations (an
uncountably infinite number of directions). In this pa-
per, we present an algorithm for reconstructing plane
graphs K = (V, E) in R?| i.e., a planar graph with ver-
tices in general position and a straight-line embedding,
from a quadratic number height filtrations and their re-
spective persistence diagrams.

1 Introduction

Topological data analysis (TDA) is a promising tool in
fields as varied as materials science, transcriptomics,
and neuroscience [8,11,14]. Although TDA has been
quite successful in the analysis of point cloud data [13],
its purview extends to any data that can be encoded as
a topological space. Topological spaces can be described
in terms of their homology, e.g., connected components
and “holes.” Simplicial complexes, in particular, are the
most common representation of topological spaces. In
this work, we focus our attention on a subset of simpli-
cial complexes, namely, plane graphs embedded in R2,
with applications to shape reconstruction.

In this paper, we explore the question, Can we re-
construct embedded simplicial complexes from a finite
number of directional persistence diagrams? Our work
is motivated by [15], which proves that one can recon-
struct simplicial complexes from an uncountably infinite
number of diagrams. Here, we make the first step to-
wards providing a polynomial-time reconstruction for
simplicial complexes. In particular, the main contribu-
tions of this paper are to set a bound on the number
of persistence diagrams required to reconstruct a plane
graph and to provide a polynomial-time algorithm for
reconstructing the graph.
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2 Related Work

The problem of manifold and stratified space learning is
an active research area in computational mathematics.
For example, Zheng et al. study the 3D reconstruction of
plant roots from multiple 2D images [16]. Their method
uses persistent homology to ensure the resulting 3D root
model is connected.

Map construction algorithms reconstruct street maps
as an embedded graph from a set of input trajectories.
Three common approaches are Point Clustering, Incre-
mental Track Insertion, and Intersection Linking [1].
Ge, Safa, Belkin, and Wang develop a point cluster-
ing algorithm using Reeb graphs to extract the skeleton
graph of a road from point-cloud data [6]. The original
embedding can be reconstructed using a principal curve
algorithm [10]. Karagiorgou and Pfoser give an incre-
mental track insertion algorithm to reconstruct a road
network from vehicle trajectory GPS data [9]. Ahmed
et al. provide an incremental track insertion algorithm
to reconstruct road networks from point could data [2].
The reconstruction is done incrementally, using a vari-
ant of the Fréchet distance to add curves to the cur-
rent basis. Ahmed, Karagiorgou, Pfoser, and Wenk de-
scribe all these methods in [1]. Finally, Dey, Wang, and
Wang use persistent homology to reconstruct embedded
graphs. This research has also been applied to input
trajectory data [4]. Dey et al. use persistence to guide
the Morse cancellation of critical simplices. In contrast,
the work presented here uses persistence to generate the
diagrams that encode the underlying graph.

Our work extends previous work on the persistent
homology transform (PHT) [15]. As detailed in Sec-
tion 3, persistent homology summarizes the homological
changes for a filtered topological space. When applied
to a simplicial complex embedded in R, we can com-
pute a different filtration for every direction in S%1;
this family of persistence diagrams is referred to as the
persistent homology transform (PHT). The map from
a simplicial complex to PHT is injective [15]. Hence,
knowing the PHT of a simplicial complex uniquely iden-
tifies that complex. The proof presented in [15] relies on
the continuity of persistence diagrams as the direction
of filtration varies continuously.

Our paper bounds the number of directions by pre-
senting an algorithm for reconstructing the simplicial
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complex, when we are able to obtain persistence dia-
grams for a given set of directions. Simultaneous to our
investigation, others have also observed that the num-
ber of directions can be bounded using the Radon trans-
form; see [3,7]. In the work presented in the current pa-
per, we seek to reconstruct graphs from their respective
persistence diagrams, using a geometric approach. We
bound the number of directional persistence diagrams
since computing the PHT, as presented in [15], requires
the computation of filtrations from an infinite number
of possible directions. Our work provides a theoretical
guarantee of correctness for a finite subset of directions
by providing the reconstruction algorithm.

3 Preliminary

In this paper, we explore the question, Can we re-
construct embedded simplicial complexes from a finite
number of directional persistence diagrams? We be-
gin by summarizing the necessary background informa-
tion, but refer the reader to [5] for a more comprehen-
sive overview of computational topology.

Simplices and Simplicial Complexes Intuitively, a k-
simplex is a k-dimensional generalization of a triangle,
i.e., a zero-simplex is a vertex, a one-simplex is an edge
connecting two vertices, a two-simplex is a triangle, etc.
In this paper, we focus on a subset of simplicial com-
plexes embedded in R? consisting of only vertices and
edges. Specifically, we study plane graphs with straight-
line embeddings (referred to simply as plane graphs
throughout this paper). Furthermore, we assume that
the embedded vertices are in general position, meaning
that no three vertices are collinear and no two vertices
share an x- or y-coordinate.

Height Filtration Let K be a plane graph and denote
S! as the unit sphere in R2. Consider s € S'; we define
the lower star filtration with respect to direction s in
two steps. First, we let hy : K — R be defined for a
simplex 0 C K by hs(0) = max,e, v-s, where z-y is the
inner (dot) product and measures height in the direc-
tion of y, if y is a unit vector. Intuitively, the height of o
from s is the maximum height of all vertices in 0. Then,
for each t € R, the subcomplex K; := h;!([—o0,t)) is
composed of all simplices that lie entirely below or at the
height ¢, with respect to the direction s. Notice K. C K;
for all » < t and K, = K, if no vertex has height in the
interval [r,t]. The sequence of all such subcomplexes,
indexed by R, is the height filtration with respect to s,
notated as F5(K). Often, we simplify notation and de-
fine Fs := Fy(K).

Persistence Diagrams The persistence diagram is a
summary of the homology groups H,(K}) as the height
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parameter t ranges from —oo to oo; in particular, the
persistence diagram is a set of birth-death pairs (b;, d;).
Each pair represents an interval [b;,d;) corresponding
to a homology generator. For example, a birth event
may occur when the height filtration discovers a new
vertex, representing a new component, and the corre-
sponding death represents the vertex joining another
connected component. By definition [5], all points in
the diagonal y = x are also included with infinite mul-
tiplicity. However, in this paper, we consider only those
points on the diagonal that are explicitly computed in
the persistence algorithm found in [5], which correspond
to features with the same birth and death time. For
a direction s € S!, let the directional persistence dia-
gram D;(Fs(K)) be the set of birth-death pairs for the
i-th homology group from the height filtration Fs(K).
As with the height filtration, we simplify notation and
define D;(s) := D;(Fs(K)) when the complex is clear
from context. We conclude this section with a remark
relating birth-death pairs in persistence diagrams to the
simplices in K; a full discussion of this remark is found
in [5, pp. 120-121 of §V.4].

Remark 1 (Adding a Simplex) Let K be a simpli-
cial complex and o a k-simplex whose faces are all in K.
Let B; refer to the i-th Betti number, i.e., the rank of
the i-th homology group. Then, the addition of o to K
will either increase By, by one or decrease Bx_1 by one.

Thus, we can form a bijection between simplices of K
and birth-death events in a persistence diagram. This
observation is the crux of the proofs of Theorem 5 in
Section 4 and Lemma 7 in Section 5.

4 \Vertex Reconstruction

In this section, we present an algorithm for recovering
the locations of vertices of a simplicial complex K using
three directional persistence diagrams. Intuitively, for
each direction, we identify the lines on which the vertices
of K must lie. We show that by choosing the three
directions such that they satisfy a simple property, we
can identify all vertex locations by searching for points
in the plane where three lines intersect. We call these
lines filtration lines:

Definition 2 (Filtration Lines) Given a direction
vector s € S', and a height h € R the filtration line at
height h is the line, denoted £(s,h), through point h s
and perpendicular to direction s, where x denotes scalar
multiplication. Given a finite set of vertices V. C R2,
the filtration lines of V' are the set of lines

L(s, V) = {l(s, hs(v)) }vev -

Notice that all lines in L(s, V') are parallel. Intuitively,
if v is a vertex in a simplicial complex K, then the
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Do

S1 S2 S3

Figure 1: A vertex set, V, of size 4 with filtration lines
that satisfy the Vertex Existence Lemma. Here, s1, s2 €
S! are linearly independent and the filtration lines are
colored so that L(sy, V) are the black horizontal lines,
L(s2,V) are the blue vertical lines, and L(s3, V') are the
magenta diagonal lines. An intersection of three colored
lines corresponds to the location of a vertex in V.

line £(s, hs(v)) occurs at the height where the filtra-
tion Fy(K) includes v for the first time. If the height is
known but the complex is not, the line £(s, hs(v)) defines
all potential locations for v. By Remark 1, the births
in the zero-dimensional persistence diagram are in one-
to-one correspondence with the vertices of the simplex
complex K. Thus, we can construct L(s, V') from a sin-
gle directional diagram in O(n) time. Given filtration
lines for three carefully chosen directions, we next show
a correspondence between intersections of three filtra-
tion lines and vertices in K.

In what follows, given a direction s; € S! and a point
p € R?, define £;(p) := £(s;, hs,(p)) as a way to simplify
notation.

Lemma 3 (Vertex Existence Lemma) Let K be a
simplicial complex with verter set V of size n. Let
51,89 € St be linearly independent and further suppose
that L(s1,V) and L(s2,V) each contain n lines. Let A
be the collection of vertices at the intersections of lines
in L(s1,V) UL(s2,V). Let s3 € S such that for all
u,v € A, l3(u) = l3(v) < u=wv. Then, the follow-
ing two statements hold true:

(H)veV < 3(v) € L(s3, V) and Ants(v) = {v}

(2) For all £ € L(s3,V), ANL#0.

Proof. First, we prove Part (1).

(=) Let v € V. Then, 4;(v) € L(s;, V) and v € ¢;(v)
for i = {1,2,3}. Hence, ¢1(v) N¥a(v) Nl3(v) = {v}, as
desired.

(<) Assume, for the sake of contradiction, that
l3(v) € L(s3,V) and AN ts(v) = {v}, yet v & V.
Since l3(v) € L(s3,V) and v ¢ V, some other vertex

u € V must have height hs,(v). Since u € V, we know
l;(u) € L(s;, V) for i € {1,2,3}. And, by (=) applied
to u, we know u € A. Since f3(u) = ¢3(v), both u and v
are in A and on the line ¢3(v), but w # v, which is
a contradiction.

Next, we prove Part (2) of the lemma. Assume, for
contradiction, that there exists £ € L(s3, V) such that
ANt =10. As ¢ € L(s3, V), a vertex v € V exists
such that ¢ = /3(v) and v lies on ¢. However, v €
£y (v) Nla(v) C A, which is a contradiction. O

In the previous lemma, we needed to find a third di-
rection with specific properties. If we use horizontal and
vertical lines for our first two directions, then we can
use the geometry of the boxes formed from these lines
to pick the third direction. More specifically, we look at
the box with the largest width and smallest height and
pick the third direction so that if one of the correspond-
ing lines intersects the bottom left corner of the box
then it will also intersect the box somewhere along the
right edge. In Figure 1, the third direction was com-
puted using this procedure with the second box from
the left in the top row. Next, we give a more precise
description of the vertex localization procedure.

Lemma 4 (Vertex Localization) Let Ly and Ly
be n horizontal and n vertical lines, respectively. Let w
(and h) be the largest (and smallest) distance between
two lines of Ly (and Ly, respectively). Let B be the
smallest axis-aligned bounding box containing the in-
tersections of lines in Ly U Ly. For 0 < & < h, let
s = (w,h —€). Any line parallel to s can intersect at
most one line of Ly in B.

Proof. Note that, by definition, s is a vector in the di-
rection that is at a slightly smaller angle than the diago-
nal of the box of size w by h. Assume, by contradiction,
that a line parallel to s may intersect two lines of Ly
within B. Specifically, let ¢1,¢5 € Ly and let £5 be a
line parallel to s such that the points ¢;N¢s = (x;,y;) for
i = {1, 2} are the two such intersection points within B.
Notice since the lines of Ly are horizontal and by the
definition of h, we observe that |y; — y2| > h. Let

w’' = |z1 — x2|, and observe w’ < w. Since the slope
of 45 is (h — €)/w, we have |y; — y2| < h, which is a
contradiction. O

We conclude this section with an algorithm to deter-
mine the coordinates of the vertices of the original graph
in R2, using only three height filtrations.

Theorem 5 (Vertex Reconstruction) Let K be a
plane graph. We can can compute the coordinates of
all n vertices of K in O(nlogn) time from three direc-
tional persistence diagrams.

Proof. Let s; = (1,0) and s = (0,1), which
are linearly independent. We compute the filtration
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lines L(s;, V) for i = 1,2 in O(n) time by Remark 1. By
our general position assumption, no two vertices of K
share an z- or y-coordinate. Thus, the sets L(s1,V)
and L(s2, V) each contain n distinct lines. Let A be
the set of intersection points of the lines in L(s1, V)
and L(s2, V). The next step is to identify a direction s3
such that each line in L(s3, V) intersects with only one
point A, so that we can use Lemma 3.

Let w (and h) be the greatest (and least) distance
between two adjacent lines in L(s1,V) (and L(s2, V),
respectively). Let B be the smallest axis-aligned bound-
ing box containing A, and let s, = (w, £). By Lemma 4,
any line parallel to s, will intersect at most one line
of L(s2,V) in B. Thus, we choose s3 € S! that is per-
pendicular to s.. By the second part of Lemma 3, we
now have that each line in L(s3, V') intersects A. Thus,
there are n intersections between L(sq, V') and L(s3, V)
in B, each of which also intersects with L(sq, V).

The previous paragraph leads us to a simple algo-
rithm for finding the third direction and identifying all
the triple intersections. In the analysis below, steps that
do not mention a number of diagrams use no diagrams.
First, we construct L(s1, V) and L(s2, V) in O(n) time
using two directional persistence diagrams. Second, we
sort the lines of L(s1, V) and L(sz, V) by their z- and
y-intercepts respectively in O(nlogn) time. Third, we
find s3 by computing w and h from our sorted lines
in O(n) time. Fourth, we construct L(s3, V) in O(n)
time using one directional persistence diagram. Fifth,
we sort the lines in L(s3, V) by their intersection with
the leftmost line of L(s1, V) in O(nlogn) time. Finally,
we compute coordinates of the n vertices by intersect-
ing the i-th line of L(s2, V') with the 4-th line of L(s3, V)
in O(n) time. (Observe, this last step works since the
vertices correspond to the n intersections in B, as de-
scribed above).

Therefore, we use three directional diagrams (two in
the first step and one in the fourth step) and O(nlogn)
time (sorting of lines in the second and fifth steps) to
reconstruct the vertices. g

5 Edge Reconstruction

Given the vertices constructed in Section 4, we describe
how to reconstruct the edges in a plane graph using
n(n — 1) persistence diagrams. The key to determining
whether an edge exists or not is counting the degree of
a vertex, for edges “below” the vertex with respect to a
given direction. We begin this section by defining neces-
sary terms, and then explicitly describing our algorithm
for constructing edges.

Definition 6 (Indegree of Vertex) Let K be a
plane graph with vertex set V.. Then, for every vertex
v € V and every direction s € S*, we define:

INDEG(v, s) = |[{(v,v") € E | s-v" < s-v}|.
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In other words, the indegree of v is the number of edges
incident to v that lie below v, with respect to direction s;
see Figure 2.

S

Figure 2: A plane graph with a dashed line drawn in-
tersecting v in the direction perpendicular to s. Since
four edges incident to v lie below v, with respect to
direction s, INDEG(v, s) = 4.

Next, we prove that given a direction, we can deter-
mine the indegree of a vertex:

Lemma 7 (Indegree from Diagram) Let K be a
plane graph with vertex set V.. Let s € S' be such that
no two vertices are at the same height with respect to s,
i.e., |[L(s, V)| =n. Let Dy(s) and D1 (s) be the zero- and
one-dimensional persistence diagrams resulting from the
height filtration Fs on K. Then, for allv € V,

INDEG(v, 5) =|{(x,y) € Do(s) | y = v - s}|+
[{(z,y) € Di(s) [z =v- s}

Proof. Let v,v’ € V such that s-v' < s-wv, i.e., the ver-
tex v’ is lower in direction s than v. Then, by Remark 1,
if (v,v") € E, it must be one of the following in the filter
of K defined by s: (1) an edge that joins two discon-
nected components; or (2) an edge that creates a one-
cycle. Since edges are added to a filtration at the height
of the higher vertex, we see (1) as a death in Dy(s) and
(2) as a birth in Dy (s), both at height s-v. In addition,
each finite death in Dy(s) and every birth in Dy (s) at
time s-v must correspond to an edge, i.e., edges are the
only simplices that can cause these events. Then, the set
of edges of types (1) and (2) is {(z,y) € Do(s) | y = v-s}
and {(z,y) € D1(s) | * = v- s}, respectively. The size of
the union of these two multi-sets is equal to the number
of edges starting at v’ lower than v in direction s and
ending at v, as required. O

In order to decide whether an edge (v,v’) exists be-
tween two vertices, we look at the degree of v as seen
by two close directions such that v’ is the only vertex in
what we call a bow tie at v:

Definition 8 (Bow Tie) Let v € V, and choose
51,80 € St. Then, a bow tie at v is the symmetric dif-
ference between the half planes below v in directions s,
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and sy. The width of the bow tie is half of the angle
between s1 and ss.

Because no three vertices in our plane graph are
collinear, for each pair of vertices v,v’ € V, we can
always find a bow tie centered at v that contains the
vertex v’ and no other vertex in V; see Figure 3. We

DD

S1 S92

Figure 3: A bow tie B at v, denoted by the gray shaded
area. B contains exactly one vertex, v/, so the only po-
tential edge in B is (v,v").

use bow tie regions that only contain one vertex, v’ other
than the center, v to determine if there exists an edge
between v and v'; see Figure 4. We then use Lemma 9
to decide if the edge (v, v’) exists in our plane graph.
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DD

S1 59

151

Figure 4: A bow tie at v that contains the vertex v’
and no other vertices. In order to determine if there ex-
ists an edge between v and v’, we compute INDEG(v, $1)
and INDEG(v, $3), i.e., the number of edges incident to v
in the purple and green arcs, respectively. An edge
exists between v and v’ if and only if |[INDEG(v,s1) —
INDEG(v, s9)| = 1.

Lemma 9 (Edge Existence) Let K be a plane graph
with vertex set V and edge set E. Let v,v' € V. Let
51,52 € S' such that the bow tie B at v defined by s
and so satisfies: BNV =v'. Then,

|INDEG(v, s1) — INDEG(v, 82)| = 1 <= (v,v') € E.

Proof. Since edges in K are straight lines, any edge in-
cident to v will either fall in the bow tie region B or will
be on the same side (above or below) of both lines. Let
A be the set of edges incident on v and below both lines;
that is A = {(v,v.) € E'| s; - v« < s; - v}. Furthermore,
suppose we split the bowtie into the two infinite cones.
Let Bj be the set of edges in one cone and Bs be the set
of edges in the other cone. We note that ||B;| — |Bs|| is

equal to one if there is an edge (v,v’) € F with v/ € By
or v' € By and zero otherwise. Then, by definition of
indegree,

|INDEG(v, s1)—INDEG(v, s2)|
= [|Al+ [B1] = [A] — [ Be||

= [|B1| = | Bzl

=|VnB|,
which holds if and only if (v,v’) € E.  Then
|INDEG(v, s1) — INDEG(v, $2)] = 1 <= (v,0) € E,
as required. O

Next, we prove that we can find the embedding of
the edges in the original graph using O(n?) directional
persistence diagrams.

Theorem 10 (Edge Reconstruction) Let K be a
plane graph, with vertex set V and edge set E. If V is
known, then we can compute E using O(n?) directional
persistence diagrams.

Proof. We prove this theorem constructively. Intu-
itively, we construct a bow tie for each potential edge
and use Lemma 9 to determine if the edge exists or not.
Our algorithm has three steps for each pair of vertices
in V: Step 1 is to determine a global bow tie width,
Step 2 is to construct suitable bow ties, and Step 3 is
to compute indegrees. See Appendix A for an example
of walking through the reconstruction.

Step 1: Determine bow tie width. For each ver-
tex v € V., we consider the cyclic ordering of the points
in V'\ {v} around v. We define 6(v) to be the minimum
angle between all adjacent pairs of lines through v; see
Figure 5, where the angles between adjacent lines are
denoted 6;. Finally, we choose 6 less than min,cy 6(v).
By Lemmas 1 and 2 of [12], we compute the cyclic order-
ings for all vertices in V in O(n?) time. Since computing
each 6(v) is O(n) time once we have the cyclic ordering,
the runtime for this step is O(n?).

Step 2: Constuct bow ties. For each pair of vertices
(v,v") € V x V such that v # ¢/, let s be a unit vector
perpendicular to vector (v — v), and let s1,$2 be the
two unit vectors that form angles +6 with s. Let B
be the bow tie between £(s1, hs, (v)) and £(s2, hs, ().
Note that by the construction, B contains exactly one
point from V', namely v'.

Step 8: Compute indegrees. Using B as the bow tie
in Lemma 7, compute INDEG(v, s1) and INDEG(v, s2).
Then, using Lemma 9, we determine whether (v, v’) ex-
ists by checking if |INDEG(v, $1) — INDEG(v, s2)| = 1. If
it does, the edge exists; if not, the edge does not.

Repeating for all vertex pairs requires O(n?) diagrams
and discovers the edges of K. O

The implications of Theorem 5 and Theorem 10 lead
to our primary result. We can find the embedding of the
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Figure 5: Using a vertex set of a plane graph to con-
struct a bow tie at vertex, v. Lines are drawn through
all vertices and then angles are computed between all
adjacent pairs of lines. The smallest angle is chosen
as 0(v). Here, 6(v) = 6s.

vertices V' by Theorem 5 using three directional persis-
tence diagrams. Furthermore, we can discover edges F
with O(n?) directional persistence diagrams by Theo-
rem 10. Thus, we can reconstruct all edges and vertices
of a one-dimensional simplicial complex:

Theorem 11 (Plane Graph Reconstruction)

Let K be a plane graph with vertex set V and edge
set E.  The wvertices, edges, and eract embedding
of K can be determined using persistence diagrams
from O(n?) different directions.

6 Discussion

In this paper, we provide an algorithm to reconstruct
a plane graph with n vertices embedded in R?. Our
method uses O(n?) persistence diagrams by first deter-
mining vertex locations using only three directions, and,
second, determining edge existence based on height fil-
trations and vertex degrees. Moreover, if we have an or-
acle that can return a diagram given a direction in O(T)
time, then constructing the vertices takes O(T+nlogn)
and reconstructing the edges takes takes O(T'n?) time.

This approach extends to several avenues for future
work. First, we plan to generalize these reconstruction
results to higher dimensional simplicial complexes. We
can show that the vertices of a simplicial complex K
in R? can be reconstructed in O(dT + n?) time using
the complete arrangement of hyperplanes and (d + 1)
directional persistence diagrams. We conjecture that
this bound can be improved to O(dT + dnlogn) using
the same observation that allows us to do the final step
of the vertex reconstruction in linear time. We have a
partial proof in this direction, and can likewise extend
the bow tie idea to higher dimensions, but the number
of directions grows quite quickly. Second, we conjecture
that we can reconstruct these plane graphs with a sub-
quadratic number of height filtrations by utilizing more
information from each height filtration. Third, we sus-
pect a similar approach can be used to infer other graph
metrics, such as classifying vertices into connected com-
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ponents. Intuitively, determining such metrics should
require fewer persistence diagrams than required for a
complete reconstruction. Finally, we plan to provide an
implementation for reconstruction that integrates with
existing TDA software.
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Appendix
A Example of Reconstructing a Plane Graph

We give an example of reconstructing a plane graph.
Consider the complex given in Figure 6.

Vertex Reconstruction First, we find vertex locations
using the algorithm described in Section 4. We need
to choose pairwise linearly independent vectors si, so
and s3 such that only n three-way intersections in
A =1L(s1,V) UL(s2,V) UL(s3,V) exist; note that in

this example, n = 4. Using the persistence diagrams
from height filtrations in directions s; = (0,1) and sy =
(1,0), we construct the set of lines L(s1, V) UL(s2, V).
This results in n? = 16 possible locations for the ver-
tices at the intersections in A. We show these filtration
lines and intersections in Figure 6b. Next, we compute
the third direction sz using the algorithm outlined in
Theorem 5. To do this, we need to find the greatest
horizontal distance between two vertical lines, d; = 2
and the least vertical distance between two horizon-
tal lines, do = 1. Then, we use these to choose a
direction s3 perpendicular to s, = (di,2) = (2,1)
(e.g., s3 = (\;—%7, \;iﬁ) € S'). Then, the four three-way
intersections in L(sy, V)UL(s2, V)UL(s3, V') identify all
Cartesian coordinates of the original complex. We show
filtration lines from all three directions in Figure 6c.

Edge Reconstruction Next, we reconstruct all edges
as described in Section 5. In order to do so, we
first find the 6 we will use to construct bow ties.
To do this, we examine each vertex v in turn, find-
ing A(v), the minimum angle between adjacent pairs
of lines through v and v € V — {v}. Ordering v by
increasing z-coordinate, we find 6(v) to be approxi-
mately 0.237,0.219,0.399, and 0.180 radians, respec-
tively. Then, we take 6 to be less than the minimum of
these, i.e. < 0.180radians.

Now, for each of the @ pairs of vertices (v,v’) €
V2, we construct a bow tie B and then use this bow
tie to determine whether an edge exists between the
two vertices. We go through two examples: one for
a pair of vertices that does have an edge between,
and one for a pair that does not. First, consider
the pair v = (0.25,0) and v" = (1,1). To construct
their bow tie, we first find the unit vector perpen-
dicular to the vector that points from v to v/, which
is s = (—0.8,0.6). Now, we find s1, s2 such that they
make angles 6 with s. We choose s; = (—0.956, 0.293)
and s; = (—0.433,0.902). Now, by Lemma 7, we can
use the persistence diagrams from these two directions
to compute INDEG(v, s1) and INDEG(v, s2). We observe
that Dy(s1) contains exactly one birth-death pair (z,y)
such that y = v - s; and D;(s1) has one birth-death
pair such that x = v - s;. Thus, INDEG(v,s1) = 2. On
the other hand, Dy (s2) contains exactly one birth-death
pair (z,y) such that y = v - s2, but D;(s2) contains no
birth-death pair such that © = v-s3. So INDEG(v, s2) =
1. Now, since |INDEG(v,s1) — INDEG(v,s2)| = 1, we
know that (v,v") € E, by Lemma 9.

For the second example, consider the pair of ver-
tices v = (0.25,0) and v = (—1,2). Again, we
construct their bow tie by finding a unit vector per-
pendicular to the vector pointing from v to v/. We
choose this s = (0.848,0.530). Then, the s; and sg
which form angle 6 < 0.180 radians (e.g § = .170)



30" Canadian Conference on Computational Geometry, 2018

with s are s; = (0.968,0.248) and sy = (0.472,0.882).
Again by Lemma 7, we examine the zero- and one-
dimensional persistence diagrams from these two direc-
tions to compute the indegree from each direction for
vertex v. In Dy(s1), we have one pair (x,y) which dies
at y = v-s1, but in D;(s1), no pair is born at © = v - s1.
So INDEG(v,s1) = 1. We see the exact same for sg,
which means that |INDEG(v,s1) — INDEG(v, s2)| = 0.
Since Lemma 9 tells us that we have an edge between v
and v’ only if the absolute value of the difference of in-
degrees is one, we know that there is no edge between
vertices (0.25,0) and (—1,2).

In order to reconstruct all edges, we perform the same
computations for all pairs of vertices.

25
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2\ 2
1 1
> >
0 0—
-1 \CD \ T \ \ -1 =2 \ \
-1.0 -0.5 0.0 0.5 1.0 -1.0 -0.5 0.0 0.5 1.0
X X
(a) Filtration lines for s; (b) Filtration lines for sz
o0—0 A o0—0 A c©— O A
ﬁﬁ 2+ o Hy ﬁcﬁ 2 o Hy % 2 o Hy
a1 o A Hy a1 o A Hy A 14 A H,y
o
0 0 0
-1 -1 1+
I I I I I [ [ [ [ [ I I I I I
-1 0 1 2 [ee] -1 0 1 2 [e] -1 0 1 2 0o
Birth Birth Birth

(d) Diagrams for s1 (e) Diagrams for so (f) Diagrams for s3

Figure 6: Example of vertex reconstruction from three directions, s, so and s3 with corresponding persistence

diagrams built for height filtrations from these directions. The filtration lines are the dotted lines superimposed over
the complex.
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2] 00 oo A
7 = 27 o H = 27 o H
s g °l B ’
A 1 4 H a1 A H
0 5O
0 g 0 o
S1®
-1+ -1+ -1+
I I T I I I I I I I I I I I I
-1.0 -0.5 0.0 0.5 1.0 -1 0 1 2 00 -1 0 1 2 0
X Birth Birth
(a) Bow tie lines for s1 and sz (b) Diagram for s1 (c) Diagram for so
2— 00— O A c0— O A
Y 2 27 o H 2 27 o H
2 g °| B !
[ A Hy a1 A H,y
Ofs2® |
0 Y 0 4
Sl®
-1 -1 -1+
I I T I I I I I I I l l I I l
-1.0 -0.5 00 05 1.0 -1 0 1 2 (o] -1 0 1 2 (o]
X Birth Birth

(d) Bow tie lines for s; and s2 (e) Diagram for s; (f) Diagram for sg
Figure 7: Example of edge reconstruction for two edges. The first edge (top row) exists while the second edge
(bottom row) does not. The bow tie is given on the left while the persistence diagrams Dy(s1) and D;(s1) are given

in the middle and the persistence diagrams Dy(s2) and D (s2) are given on the right. The dotted lines indicate v - s1
and v - s9 in diagrams for s; and s respectively.
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Sto-Stone is NP-Complete

Addison Allen *

Abstract

Sto-Stone is a paper-and-pencil puzzle created by
Japanese publisher Nikoli. A puzzle consists of an m-
by-n grid whose squares are partitioned into connected
‘rooms’ each of which may have an associated number.
The solver shades in squares of the grid, which form
maximal ‘stones’ based on orthogonal connectivity. The
goal is to shade squares so that (a) each room contains
one stone, (b) individual stones do not cross between
rooms, (¢) numbered rooms contain a stone with exactly
that number of squares, and (d) when the stones are
“dropped” downward they perfectly fill the bottom half
of the grid. We show that Sto-Stone is NP-complete.
This is also true when rule (d) is weakened or omitted.

1 Introduction

This article proves the NP-completeness of a new paper-
and-pencil puzzle by Japanese publisher Nikoli. The
puzzle is Sto-Stone (X M 2 b ) and it was introduced
in Puzzle Communication magazine Volume 156 [1].

When discussing individual grid squares we use adja-
cent and connected to mean orthogonally adjacent and
orthogonally connected, respectively.

1.1 Rules of the Puzzle

Sto-Stone is played on an m-by-n grid where m is
even. The grid’s squares are partitioned into connected
“rooms” and the size of a room is its number of squares.
A room may have a positive number w written in one
of its squares, and in this case its required weight or re-
quirement is w. A grid with these properties is a board.
The solver interacts with the puzzle by shading indi-
vidual squares. The shaded squares partition into stones
based on connectivity. In other words, any two shaded
squares that are adjacent belong to the same stone. The
weight of a stone is its number of shaded squares. The
goal is to create stones subject to the following rules:
(S1) There is exactly one stone in each room. That is,
in each room there are shaded squares and these
squares are connected.

*Bard College at Simon’s Rock, Massachusetts,
aallenl15@simons-rock.edu
fBard  College at Simon’s Rock, Massachusetts,

awilliams@simons-rock.edu

Aaron Williams

(S2) Shaded squares in different rooms are not adjacent.
That is, stones can’t be inside more than one room.
(S3) Rooms with requirement w have a weight w stone.
That is, a room labeled w has w shaded squares.
(S4) When all stones are “dropped” downward they fill
the bottom half of the grid with no gaps.
Rule (S4) requires clarification. ~When stones are
dropped they move down as if influenced by gravity.
Stones do not change shape when they are dropped,
and all room boundaries are ignored during this time.
Figure 1 has a sample puzzle and Figure 2 illustrates
the solving process. Figure 1 (c) visually verifies (S4),
and - denotes a square that cannot be shaded.

3 1 3 1
3| j 3 3| j 3
1 1
3 3 3 3 . I

(a) Board. (b) Solution. (c) Drop check.

Figure 1: The corrected version of Sto-Stone Puzzle 4
from Puzzle Communication Volume 162 [2].

(a) (S3) forces the (b) (S3) forces (c) (S3) forces the

above stones; (S2) the above stones; bottom-middle

contributes the —.  (S2) and (S4) stones; (S4) forces
contribute the —.  the bottom-right.

Figure 2: Solving the Sto-Stone puzzle in Figure 1.

1.2 Drop Rules: Stone, Sand, Silt

We refer to (S4) as the stone drop rule. We also define
a weaker sand drop rule as follows.

(s4) There are % shaded squares in every column.
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Notice that (s4) differs from (S4) in that it ignores
the shape of the stones. In other words, the shaded
squares are dropped independently like individual grains
of sand. We refer to the lack of a drop rule as the silt
drop rule. In other words, the shaded squares linger in
the air like fine grains of silt.

The drop rule in Sto-Stone is somewhat unusual
among Nikoli puzzles, and it has led to some initial con-
fusion among puzzle designers, solvers, and academics.
Figure 1 actually contains a corrected version of Sto-
Stone Puzzle 4 from Puzzle Communication Volume 162
[2]. The originally published puzzle shown in Figure 3
can only be solved with the weaker drop rules.

¢

(b) Solution with (c) Drop rule (S4)
respect to SAND fails, but (s4)
but not STONE. would pass.

(a) Board.

Figure 3: The original version of Sto-Stone Puzzle 4
from Puzzle Communication Volume 162 [2].

The error was announced by @nikoli official on
twitter [8]. In response, @postpostdoc posted an early
version of this article [9]. However, the authors did not
properly understand rule (S4) at that time, and only es-
tablished the hardness of (S1)-(S3) with (s4). The early
version also allowed ‘empty’ rooms with no stone, and
w = 0 requirements, which we now believe are invalid.

1.3 Decision Problems

We formalize three different puzzles based on the type
of drop rule that is used. Each of these puzzles has an
associated decision problems that takes a board B as
input and answers ’yes’ or 'no’ depending on whether it
can be solved using the rules for that puzzle.

e Nikoli’s Sto-Stone puzzle uses rules (S1)-(S3) and

drop rule (S4). The decision problem is STONE(B).

o The Sto-Sand puzzle uses rules (S1)-(S3) and drop

rule (s4). The decision problem is SAND(DB).

o The Sto-Silt puzzle uses rules (S1)-(S3) and no drop

rule. The decision problem is siLT(B).

If STONE(B) is 'yes’, then SAND(B) is ’yes’. Similarly,
if SAND(B) is ’yes’, then SILT(B) is 'yes’. Figure 3 gave
an example board B in which STONE(B) is 'no’ and both
SAND(B) and SILT(B) are ’yes’.

All three decision problems are in NP because shading
an m-by-n board can be done with m -n binary guesses,
and each rule can be checked in O(mn)-time.

29

Remark 1 The decision problems STONE, SAND, and
SILT are all in NP.

1.4 Popularity

Nikoli is currently promoting three new puzzles includ-
ing Sun or Moon (H #»X), Pencils (X ¥ )L X),
and Sto-Stone (2 b 2 b ). During a November
2017 poll held on twitter by @nikoli_official, the Sto-
Stone puzzle ranked behind Sun or Moon in popularity.
However, this has changed in a more recent poll from
May 2018, as seen in Figure 4.

% niko‘li/l::l')
BRIEDWEIFAIFERDIE...

@ Translate

% nikoli/‘:3')
BRIEDWESAFERDIF......

20% AHKME
21% RS
28% NVYILZX
12% XU ILX
20% A RRA K=V
18% AR =
2% AEMNTEHDAELL
54% FEMVTZADASEL °

8:26 AM - 10 May 2018
10:56 PM - 7 Nov 2017

Figure 4: The popularity of three new Nikoli puzzles,
where the bottom option translates to “I do not know”.

Establishing the hardness of Nikoli puzzles has also
been a popular pursuit in academia. An excellent re-
source on this general topic is Games, Puzzles, and
Computation by Hearn and Demaine [6].

1.5 Outline

The article is organized as follows. Section 2 defines
the NP-complete problem that we will use as a source
problem. Section 3 introduces our gadgets and other
preliminaries. Sections 4, 5, and 6 proves that SILT,
SAND, and STONE are NP-complete, respectively. Sec-
tion 7 concludes with final remarks and open problems.

2 Source Problem

This section defines the satisfiability problem used in
our reduction. We also describe a slight variation to its
standard representation.

2.1 Planar Monotone Rectilinear 3SAT

A (Boolean) variable is a variable that can be assigned
TRUE or FALSE. If z; is a variable, then its positive
literal is x;, and its negative literal is —x;. A Boolean
formula ¢ is in 3 conjunctive normal form (3CNF) if it
equals C; ACy A ... A Cy, where each clause C; has the
form (¢; 1V £; 2V £;3) and each ¢; ; is a literal.

A clause is positive or negative if it has only positive
or negative literals, respectively. The 3CNF formula ¢
is monotone if each clause is either positive or negative.



30

CCCG 2018, Winnipeg, Canada, August 8-10, 2018

A 3CNF formula is planar if the bipartite incidence
graph of variables and clauses is planar. A rectilinear
embedding of a planar monotone 3CNF formula is a
drawing on a grid with the following properties:

e Variables and clauses are horizontal line segments.

e Vertical line segments connect variables to clauses.

e Variable line segments are on the same horizontal

line called the variable line.

e Positive clauses are above the variable line, and

negative clauses are below.
Rectilinear embeddings are drawn with their horizontal
line segments vertically extended as in Figure 5.

The decision problem PLANAR MONOTONE RECTILIN-
EAR 3SAT (PMR3SAT) takes a rectilinear embedding of
a planar monotone 3CNF formula ¢ as input. A ‘yes’
instance occurs when the variables can be assigned so
that ¢ evaluates to TRUE. In this case, ¢ is satisfiable.
Otherwise, ¢ is a ‘no’ instance and is unsatisfiable. For
brevity, we often refer to the input of PMR3SAT as the
Boolean formula ¢ as opposed to a rectilinear embed-
ding of it. Theorem 1 is by de Berg and Khosravi [4].

x]vx4Vx5

"362\/ “363 V “x4

T?CIVﬂx2Vﬂx4 "DC4V"JC5V".X36

Figure 5: A ‘yes’ instance of PMR3SAT with ¢ = (x1 V
X4 V .135) A (1‘2 \Y T3 V .234) A\ (—\.132 V T3 V —\JJ4) A\ (—\.131 V
—T9 V _\SC4) N ("134 V —T5 V _\1'6).

Theorem 1 ([4]) PMR3SAT is NP-complete.

When working with PMR3SAT we assume that the
variables are ordered from left-to-right as x1,xo, ...,y
in the embedding. We also arrange each clause C' as
(@i Va; Vay) or (mx; V—x; V-axy) with the distinet in-
dices satisfying i < j < k, and we refer to z;, x;, and z;
as the left, middle, and right literals in C', respectively.

2.2 Bent Representation

We will find it helpful to make the following cosmetic
adjustments to the input to the PMR3SAT problem:

e Shrink each clause line by moving its left end and
right end closer together by any small amount;

e Connections from clauses to positive left literals are

redrawn as " lines. Similarly, negative left literals,

positive right literals, and negative right literals are
redrawn with ., 7, and J lines, respectively.
We refer to this modified embedding as bent rectilinear
representation since two-thirds of the connecting lines
have a 90° bend. Figure 6 shows the result of adjusting
Figure 5 in this way.

xl\/x4Vx5

"x2\/"x3\/"x4

X,V X, VX,

X,V XV K,

Figure 6: A bent embedding of Figure 5.

3 Gadgets and Preliminaries

In this section we introduce some conventions and ter-
minology, and then present gadgets for Sto-Silt.

3.1 Grid Parity

A square in location (z,y) of the grid is even or odd
based on the sum x + y, where the top-left square is in
location (1, 1). In other words, the grid has an under-
lying even/odd checkerboard pattern.

Each room we create will have size at least two, so
it will contain at least one even and one odd square.
Therefore, we can use the following convention to make
our figures more readable: If a room has required weight
w, then w is written in a square whose parity is the same
as w. In other words, odd requirements are written in
odd locations, and even requirements are written in even
locations. This convention extends back to Figure 1.

3.2 Rooms

In a partially shaded board B a room with a require-
ment w is satisfied if it has a stone of weight w, and
otherwise it is unsatisfied. Furthermore, a room is un-
satisfiable if it is impossible to satisfy the room by shad-
ing in additional squares while respecting the rules.
Rooms with size s and requirement w have type s.w.
Our reductions will be primarily restricted to the fol-
lowing special room types.
e A room of type 2.1 is a binary room. A binary room
can be satisfied in two ways.
e A room of type 3.2 is a trinary room. A trinary
room can be satisfied in two ways.
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e A room of type 3.1 is a ternary room. A ternary
room can be satisfied in three ways.

e A room with no requirement is a wild-card room.
These rooms do require at least one shaded square.

In the following subsections we will create gadgets

that propagate decisions made at certain binary rooms
to other binary rooms. When discussing these gadgets
we use the following terminology and conventions.

e An input room is a horizontal binary room with
an ‘on’ square to the right of an ‘off’ square. A
positive or negative input room has its ‘on’ square
in an even or odd position, respectively.

e An output room is a horizontal or vertical binary
room with specified ‘on’ and ‘off’ squares.

Input and output rooms are coloured red and blue, re-
spectively. These rooms are ‘on’ if a stone is in their ‘on’
square, and are ‘off” if a stone is in their ‘off” square.

To simplify our figures we assume that empty regions

on a board are wild-card rooms which are not drawn.

3.3 Variable Gadget

A variable gadget is designed to be satisfiable in one of
two ways. Furthermore, this choice must be duplicat-
able so that it can be passed to any number of clause
gadgets. To accomplish these goals we create a cycle of
binary rooms. Our wvariable gadget of width w consists
of a positive row with w positive input rooms, and be-
low it is a negative row with w negative input rooms,
as shown in Figure 7 (a). The top-left square is always
placed on an even grid location.

off on off on off on off on
1 1 |1 1

1 1].. 1 1
off on off on
(a) Variable gadget.

off on off on off on off on off on off on off on off on
1 1 )1 1 1 1 o 1

1 1. 1 1 1 1].. 1 1

off on off on

off on off on

off on off on off on off on off on off on

(b) Positive state. (c) Negative state.

Figure 7: The variable gadget in (a) can be satisfied in
exactly two ways (b)—(c).

Shading a single square anywhere in the gadget forces
the entire gadget to be satisfied in a particular manner.
The precise behavior and state of the gadget is defined
Remark 2 and illustrated in Figure 7 (b)—(c).

Remark 2 In a solved Sto-Silt board, a variable gadget
must be satisfied in one of two ways:
e [is positive state has positive input rooms ‘on’ and
negative input rooms ‘off .
e [is negative state has positive input rooms ‘off > and
negative input rooms ‘on’.
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3.4 Wire Gadget

A wire gadget propagates the choice made in one binary
room to another binary room. More specifically, the
wire ensures a relationship between two specific squares
on the board. Remark 3 outlines the main property of
the wire gadget that we will construct.

Remark 3 Binary input and output rooms that are
connected by a wire in a solved Stone-Silt board have
the following properties. If the input room is ‘off’, then
the output room is also ‘off’. If the input room is ‘on’,
then the output room can be ‘on’ or ‘off’.

output room output room

1 II 1 I 1 I output room I 1 I 1 II 1

L on off 1 Joff off on L

T on T

— - —
= =

1

2 2

1 I input room 1 input room input room| 1 |
off on off on off on

(a) Three types of positive wires.

off on off on off on
1 | input room | 1 I input room input room‘ 1 |
1
2 2
_— T _—
1 1
T T on T
B output room off output room B
1 S B EE output room B EENE 1
on off off on

(b) Three types of negative wires.

Figure 8: Wire gadgets connect an input room to an
output room, and are paths of binary rooms and at
most one trinary room. Shading the ‘off’ square of an
input room forces the shading of the ‘off” square in the
connected output room.

Remark 3 is ‘weak’ since it only guarantees one direc-
tion, but this will be sufficient for our reduction. Now
we define our wires with Figure 8 providing illustrations.

e A positive/negative wire is a path of binary and

trinary rooms starting from the ‘off’ square of a

positive/negative input room and ending at the ‘on’

square of a positive/negative output room.
A wire is straight if it travels vertically from an input
room to a vertical output room. The other wires pro-
ceed vertically from an input room, then make a sin-
gle right-turn or left-turn, and travel horizontally to a
horizontal output room. The straight wires only use bi-
nary rooms, whereas the turning wires leave their out-
put room with a single trinary room and then consist
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of binary rooms. As a result, the straight and turn-
ing wires reach their respective input rooms on opposite
parity squares. All wire types are illustrated in Figure
8 and in each case it is easy to verify Remark 3.

3.5 Clause Gadget

We base our clause gadgets on a ternary clause room
and three binary output rooms. Each clause room is
horizontal with output rooms adjacent to its left and
right squares. In the positive clause gadget another out-
put room is adjacent to the bottom of its middle square,
whereas in the negative clause gadget it is adjacent to
the top of its middle. The behavior of the gadget is
given in Remark 4 and shown in Figures 9 and 10.

xi (xl. \ xj \ xk) xk

(1t 1] |

on off 1 Joff off on 1
%L fon L
(a) Positive clause. (b) Unsatisfiable if all ‘off’.

| N Y | ENI DY

1 |1
L L

(d) Satisfiable if z; is ‘on’.

i 1

(c) Satisfiable if x; is ‘on’.

Figure 9: The positive clause gadget is satisfiable if and
only if at least one input room is ‘on’.

=Xx.11 jon 1
J
on off I off off on I

| IS IER EN Y ERN

—|xi ( “xi \4 "xj VX A )X °

(a) Negative clause. (b) Unsatisfiable if all ‘off’.
[ ]
| |
I E NN INERE N

(d) Satisfiable if x; is ‘on’.

(c) Satisfiable if x; is ‘on’.

Figure 10: The negative clause gadget is satisfiable if
and only if at least one input room is ‘on’.

Remark 4 In a solved Sto-Silt board, a clause gadget
is satisfiable if and only if at least one of its adjacent
output rooms is ‘on’.

Note: In Theorem 2’s proof we always satisfy clauses by
shading their middle square if their middle wire is ‘on’.

4 NP-Completeness of Sto-Silt

In this section we reduce PMR3SAT to SILT. An example
of the reduction based on Figure 6 appears in Figure 11.

1 [ B | 1
71
2 2 2
B 1 1| 1 1 1| [T |
1 1 1 1 [ 1]
1 1
2 J 2 2 2 2 2
| | 1 1] | L _|
1

S RE 1]

2 2 2| * * 2
[T T[] 1 T T [T ] [T [
B i 1] 1 i 1| 1] [ 1 [ 1]

«[1T+ A T *
2 J 2 2 2 2 | | 2
|| 1 il 1 |1 | | || 1

* *

1 IR EEE 1 1 i 1 Ju T|

(b) A solution to S(¢) via z4 = x5 = FALSE and z1 = z2 =
r3 = ©¢ = TRUE. The marked square * can be shaded in the
outer wild-card room without violating (S2). Similarly, *’s
and *’s mark all suitable squares along the straight wires.

Figure 11: The reduction of the PMR3SAT instance ¢
from Figure 6 to SILT(¢).

Suppose ¢ is an instance of PMR3SAT with p positive
clauses and z negative clauses. Our reduction creates a
board B = S(¢) whose rows are organized as follows:

e Row 1 is empty.

Rows 2,4, ...,2p contain positive clause gadgets.
Rows 2p + 3 and 2p + 4 contain variable gadgets.
Rows 2p+7,2p+9,...,2p+ 2245 contain negative
clause gadgets.

e Row 2p + 2z + 6 is empty.

Now suppose that ¢ has p; clauses with positive literal
x;, and z; clauses with negative literal —x; for all . The
variable gadgets are sized and positioned as follows:

e Column 1 is empty.

e The variable gadgets are placed side-by-side start-
ing from column 2 with two columns between them.
Each z; gadget is max(p;,n;) input rooms wide.

The width of the variable gadgets allow us to connect
wires to distinct input rooms for each literal. In partic-
ular, the wire connected to the middle literal of a clause
travels straight vertically to the middle of the corre-
sponding clause gadget. Similarly, left and right literals
enter the left and right sides of their clause gadgets.

Theorem 2 SILT is NP-complete.

Proof. Let ¢ be an instance of PMR3SAT. Remarks 3
and 4 imply that the variable, wire, and clause gadgets
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(a) A 7-by-24 board B is extended to 16-by-24 board B’
with 2-by-24 and 9-by-24 wild-card rooms.

(b) If siLT(B) is ‘yes’, then fill the added wild-card rooms to
satisfy (S4), so SAND(B’) and STONE(B’) are ‘yes’.

Figure 12: Reduction from SILT to SAND to STONE.

of B = S(¢) can be satisfied if and only if ¢ is satisfi-
able. The remaining detail is to show that the wild-card
rooms of S(¢) can also be satisfied when ¢ is satisfiable.
Since these rooms have no requirement we can satisfy
them by shading any single square subject to (S2). See
Figure 11 (b) for examples of the arguments below.

By the empty rows and column in B there is a wild-
card room surrounding the gadgets. In this outer room
we shade the rightmost column in row 2p + 2 or 2p + 5.

All other wild-card rooms border a straight wire.

e If this wire is on, then without loss of generality
we can assume that its clause gadget is satisfied by
shading its middle cell. Therefore, we can shade a
square next to this clause gadget.

e [f this wire is off, then we can shade a square next
to its variable gadget.

Therefore, B is solvable if and only if ¢ is satisfiable.

Theorem 1 and Remark 1 complete the proof. O

5 NP-Completeness of Sto-Sand

Now we prove that SAND is NP-complete by a reduction
from siLT. Our strategy is to add rows to a given board
so that the sand drop rule (s4) can be satisfied regardless
of how the other squares are shaded. See Figure 12.

Theorem 3 SAND is NP-complete.
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Proof. Suppose B is an m-by-n board that is an input
to STONE. We create board B’ of size (2m + 2)-by-n by
adding m + 2 rows to the bottom of B. The additional
rows are organized into two wild-card rooms as follows:

e A room of size 2-by-n is added below B.

e A room of size (m + 2)-by-n is then added below.

Suppose that SILT(B) is a ‘yes’ instance. We now

show that SAND(B’) is ‘yes’. We shade the top m rows
of B’ in any way that proves that SILT(B) is ‘yes’. Then
we shade the additional wild-card rooms as follows:

e The 2-by-n room has a single shaded square in its
bottom-right corner.

e The bottom row of the larger room is fully shaded.
If there are s shaded squares in kth column of B,
then m — s 4+ 1 additional squares are shaded in its
kth column from the bottom up. The only excep-
tion is the rightmost column which has one fewer
square shaded.

This satisfies (S1)-(S3) and (s4), so SAND(B’) is ‘yes’.

Suppose that SILT(B) is a ‘no’ instance. In this case

there is no way to satisfy rules (S1) — (S3) in the top m
rows of B’, hence, SAND(B’) is ‘no’.

Theorem 2 and Remark 1 complete the proof. O

6 NP-Completeness of Sto-Stone

Now we prove that STONE is NP-complete. We do this
by analyzing the previous two reductions and showing
that they create boards that can be solved using stones
of width 1. In this context (s4) and (S4) are equivalent.

Theorem 4 STONE is NP-complete.

Proof. Let ¢ be an instance of PMR3SAT. Let B =
S(¢) and B’ be created as in Sections 4-5. We claim
that ¢ is satisfiable if and only if STONE(B’) is ‘yes’.
Suppose that ¢ is satisfiable. By the proof of Theo-
rem 2, SILT(B) is solvable using stones of width 1. By
the proof of Theorem 3, this is also true for SAND(B’),
except for the bottom stone which is already “bottom
justified”. Therefore, STONE(B’) is also ‘yes’.
Conversely, if ¢ is unsatisfiable, then SILT(B) is ‘no’
by Theorem 2, and so STONE(B') is also ‘no’. O

7 Final Remarks

A numberless Sto-Stone puzzle is a Sto-Stone puzzle
with no requirements. In other words, (S3) is ignored.
What is the complexity of numberless Sto-Stone?

Jack Lance Puzzles [7] has several numberless exam-
ples. Numberless versions of other Nikoli puzzles have
also been considered. For example, Shakashaka [5] and
its numberless version [3] are both NP-complete. We
note that numberless Sto-Silt is in P since (S1) and (S2)
are satisfied by an empty board.

We thank the referees, one whom suggested parame-
terized Sto-Stone where the bottom k rows must fill.
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A Paper on Pencils: A Pencil and Paper Puzzle
Pencils is NP-Complete

Daniel Packer *

Abstract

Pencils is a paper-and-pencil puzzle created by
Japanese publisher Nikoli. A puzzle is an m-by-n grid
where some squares hold a number or a pencil tip that
is pointed in one of the cardinal directions. The goal is
to draw ‘pencils’ that partition the squares of the grid.
Each pencil occupies 2k + 1 squares for some k > 1. A
k-pencil has a horizontal or vertical body of length &,
a tip pointing away from one end of the body, and a
lead that is a path of k squares starting from the tip.
In addition, any number inside a body must match the
body’s size. We show that Pencils is NP-complete even
when limited to 1-pencils and 2-pencils.

1 Introduction

This article proves the NP-completeness of a new paper-
and-pencil puzzle by Japanese publisher Nikoli. The
puzzle is Pencils ("X ¥ )L X) and it was introduced
in Puzzle Communication magazine Volume 158 [2].

In this article we use adjacent and connected to mean
orthogonally adjacent and orthogonally connected.

1.1 Rules of the Puzzle

Pencils is played on a board, which is an m-by-n grid
where each square is initially empty or filled with a
number or pencil tip pointed in a cardinal direction.
A player draws pencils which each occupy 2k + 1 con-
nected squares for some k > 1. A k-pencil consists of
the following parts:
(P1) The body is a horizontal or vertical line of k squares.
(P2) The tip is 1 square after one end of the body, and
it is pointed away from the body.
(P3) The lead is a line through the center of k£ + 1 con-
nected squares starting from and including the tip.
The goal of Pencils is to draw pencils on the given grid
subject to the following rules [3]:
(P4) The pencils partition the m - n squares of the grid.
(P5) If = is a number on the board, then x must be
drawn inside of the body of some z-pencil.

*Bard College at Simon’s  Rock, Massachusetts,
dpacker14@simons-rock.edu
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With regard to (P5), an individual z-pencil may have
a single x, multiple x’s, or no x’s inside of it.

|
21 2 211 2

(a) Pencils puzzle. (b) Solution.

Figure 1: A 4-by-4 Pencils puzzle that uses 1-pencils
and 2-pencils.

A simple puzzle and its solution (originally published
in Puzzle Communication Nikoli Volume 162 [4]) is dis-
played in Figure 1, and its solution process is shown in
Figure 2. The PENCILS decision problem answers ‘yes’
or ‘no’ depending on whether an input board is valid
and is solvable based on rules (P1)-(P5).

—

VAN

2.1 2 211 2 211 2

(a) The tip above (b) Placement of (c) Leads for the

the 1-pencil forces
a pencil body.
The tip above
the 2-pencil must
be part of the 2-
pencil due to the

the 1-pencil and 2-
pencil bodies and
tips are forced.

1-pencil and the
left 2-pencil are
drawn in, leaving
only one solution
for the remaining
leads.

2-pencil position.

Figure 2: Solving the Pencils puzzle in Figure 1.

Notice that a solution to an m-by-n board must fill
each of the m-n squares with a finite number of possible
symbols. More specifically, a square is covered by a hor-
izontal or vertical body, a tip that points in one of four
directions, or by a lead that proceeds horizontally, ver-
tically, or turns 90°. Therefore, we can guess a possible
solution in non-deterministic polynomial-time. Rules
(P1)—(P5) can then be checked in polynomial-time.

Remark 1 PENCILS s in NP.
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1.2 Outline

The central proof of this paper will be done by reduc-
tion from a Boolean satisfiability problem. The spe-
cific source problem is included in Section 3 along with
an outline of the reduction. Section 4 introduces our
gadgets, and then Section 5 proves that PENCILS is
NP-complete even when restricted to 1-pencils and 2-
pencils. Section 6 concludes with open problems. We
begin by characterizing the rectangular regions that can
be filled with pencils in Section 2.

A preliminary unpublished version of this article was
announced on twitter by @postpostdoc [5].

2 Empty Rectangles

When solving a pencils puzzle, the solver sometimes
faces empty regions of the board that must be com-
pletely filled with new pencils. Similarly, we will need
to understand how empty space can be filled during our
reduction. In this section we provide a full character-
ization of when rectangular regions can be filled. We
formulate this result in terms of solving empty puzzle
boards, but we will use the result to solve rectangular
“sub-puzzles” inside of larger puzzles.

Define an empty board to be an m-by-n grid where
each square is empty.

Lemma 1 Suppose that B is an empty m-by-n board.
The decision problem PENCILS(B) is TRUE if and only

ifm-n¢{1,2,4}.

Proof. We begin by considering the negative cases.
Observe that the smallest individual pencil (i.e. a 1-
pencil) covers 3 squares. Thus, if B has area 1 or 2,
then is too small to be filled with a pencil. Similarly,
rectangles of area 4 can only admit a 1-pencil, which
then leaves one unfillable square.

Now we consider the remaining positive cases. Since
the board B can be rotated 90° without changing the
result of PENCILS(B), we can assume without loss of
generality that m < n. If the area of B is 3, then it
must be that m = 1 and n = 3, and in this case it can
be filled with a single 1-pencil. In the remaining cases
the area of B is greater than 4, so we can assume that
n > 3.

Figure 3: A 5-by-4 grid with a line moving back-and-
forth along each row though the centers of the squares
in boustrophedon order.
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Our strategy is to draw the pencils one after another
from end-to-lead in a single line. This line will proceed
back-and-forth along each row starting from the top-left
square, as illustrated in Figure 3'. More specifically, we
will primarily draw 1-pencils along the line, since they
can turn corners. Since 1-pencils occupy 3 squares, we
now proceed in three cases based on the area modulo 3.

o If the area is 3k, then we draw successive 1-pencils
along the line until they fill the entire rectangle.

e If the area 3k + 2, then recall that our previous
assumption that n > 3. Therefore, we can begin
the line with a 2-pencil. This is because the board
is wide enough to contain its body and tip, and its
lead can bend if n = 3 or n = 4. Then we fill the
remainder of the line with 1-pencils.

e If the area is 3k + 1, then we consider two cases. If
k =1, then the area is 3k + 1 = 7, and it must be
that n = 1 and m = 7. In this case the rectangle
can be filled with a single 3-pencil. Otherwise, if
k > 1, then the area is 3k +1 > 10. In this case we
can draw two 2-pencils along the line, one starting
at the beginning of the line and one starting at the
end of the line, and then fill in the remainder of the
line with 1-pencils.

]

Now we specialize the previous lemma based on 1-
pencils and 2-pencils.

Corollary 1 If B is an empty m-by-n board, then it
can be filled entirely with 1-pencils and 2-pencils if and
only if m-n ¢ {1,2,4,7}.

Proof. Observe that the proof of Lemma 1 uses only 1-
pencils and 2-pencils, except in the case that m-n = 7.
Furthermore, 1-pencils and 2-pencils occupy 3 and 5
squares respectively, so it is impossible for them to fill
a board of area 7. |

3 Source Problem

Our hardness proof reduces from a satisfiability prob-
lem, and in this section we review relevant terminology
and results. Then we give a high-level outline of our
reduction.

3.1 Rectilinear Planar 1-in-3SAT

A (Boolean) variable can be assigned a truth value of
TRUE or FALSE. If x; is a variable, then its positive
literal is x;, and its negative literal is —~xz;. A (Boolean)
formula is in 3 conjunctive normal form (3CNF) if it is

IThis back-and-forth order can be described as boustrophedo-
nic which is Greek for “as the ox plows”.
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written ¢ = C1 A Cy A ... A C), where each clause C;
has the form (¢; 1V £;2 V ¢, 3) and each ¢; ; is a literal.
A clause is positive if every one of its literals is posi-
tive, and a 3CNF formula is positive if every clause is
positive. The 3CNF formula ¢ is a yes instance of the
3SAT decision problem if its variables can be assigned so
that ¢ evaluates to true; otherwise ¢ is a no instance.
In other words, 3SAT asks if there is an assignment in
which every clause has at least one literal that evalu-
ates to true. The 1-IN-3SAT decision problem instead
asks if there is a variable assignment in which exactly
one literal evaluates to true. A formula is planar if the
bipartite incidence graph of variables and clauses is pla-
nar. A formula is rectilinear planar if the graph can be
embedded into a grid in such a way that the vertices
can be represented by horizontal line segments and the
edges can be drawn as vertical lines.

Theorem 2 (Mulzer and Réte [1]) RECTILINEAR
POSITIVE PLANAR 1-IN-3SAT is NP-Complete.

We will drop the positive condition from Theorem 2
and instead use RECTILINEAR PLANAR 1-IN-3SAT as our
source problem. Since every instance of the former prob-
lem is an instance of the latter problem, we can easily
conclude that the latter is also NP-complete.

3.2 Reduction Outline

Our reduction constructs a planar graph that represents
the 1-in-3 satisfiability (or not) of a logical statement
in 3CNF. The graph connects variables to their literals
in the statement, with not gates appearing along the
connections to negative literals. The reduction will use
“variable assignment” gadgets—one for each variable—
where the player will be able to select whether a variable
has a truth value of TRUE or FALSE. Then, wires will
carry these truth values to the corresponding literals in
each clause. Because a variable can appear more than
once in a statement, we include a gadget to duplicate its
truth value onto two different wires, thereby ensuring
that the choice is consistent in each clause it appears
in. Finally, because the statement is in 3CNF, we will
also create a gadget that represents an arbitrary 1-in-3
clause, with wire inputs. Using these gadgets, we will
reduce the decision problem, PLANAR 1-IN-3 SAT to
PENCILS, by transforming a particular logical statement
to a pencils board.

4 Gadgets

In this section we present the various gadgets used in
our reduction.

Lemma 3 (Wire) The gadget shown in Figure 4a
transmits a truth value from onme part of the puzzle to
another as an edge in PLANAR 1-IN-3 SAT.
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Proof. Suppose that we have the left 2-pencil already
filled in, pointing into the wire (the direction is forced
by the variable assignment gadget, shown later). Then
the adjacent 2-pencil must point in the same direction
as its neighbor, since there is not room for it to point in
the opposite direction. Furthermore, the pencil can nei-
ther overlap with its neighbor nor leave a gap of size 1
between itself and its neighbor (as this would be unfill-
able), so the pencil must have the same position relative
to the predrawn 2 as its neighboring 2-pencil. Thus, a
2-pencil/predrawn 2 positioning assigned at the front of
the wire gets precisely transmitted to all other parts of
the wire. ]

Using this lemma, we can establish the formalism that
if a wire has its 2-pencils with the number 2 in the square
adjacent to the tip, then it carries FALSE, and if the 2
is in the other square, then it carries TRUE.

Currently, our wires require that all of our gadgets are
a multiple of five squares apart, since the 2’s are spaced
exactly that far apart in our wire gadget. However, we
can deal with this issue with the “modularity switcher”
gadget in Figure 5a.

Lemma 4 (Modularity Switch) The gadget shown
i Figure 5a preserves the truth value that a surrounding
wire gadget is carrying.

Proof. Suppose that the incoming truth value is TRUE.
Then there will be six unfilled squares between the end
of incoming 2’s lead and the pair of 2’s. Since the 2’s
on the right are only one square apart from each other,
they must both be pointing outward. Thus, the left 2
must have a 2-pencil pointing left, which will occupy
either three or four of the empty middle squares. If the
2-pencil fills four middle squares, then there will only
be two unfilled middle squares, which cannot be filled
by any pencil. Thus, the 2-pencil must fill three middle
squares, which must be filled by a 1-pencil. This then
forces play on the last 2-pencil, as seen in Figure 5b.
If the incoming truth value is FALSE, then there will
seven unfilled squares between the end of the incom-
ing 2’s lead and the pair of 2’s on the right. Again,
the left of the pair of 2-pencils must fill either three or
four squares. This 2-pencil cannot occupy three mid-
dle squares, for it would leave four squares unoccupied,
which cannot be filled. Thus, the 2-pencil must occupy
four middle squares, with the remaining three filled by
a 1-pencil. This forces the subsequent 2-pencil to play
as in Figure 5c. Thus, regardless of the incoming truth
value, the modularity switcher does not alter the truth
value carried by the wire. ]

Lemma 5 (Variable Assignment) The gadget pre-
sented in Figure 6a allows the player to assign a value to
a variable that will be transmitted out through the wire
on the right.
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(a) The initial wire gadget.

(b) The board filled in with TRUE.

(¢) The board filled in with FALSE.

Figure 4: The initial wire gadget and the manners it can be filled in.
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(a) The initial modularity
gadget.

switching

(b) The modularity
with value TRUE.

gadget filled in (¢) The modularity
with value FALSE.

gadget filled in

Figure 5: The initial modularity gadget and the manners it can be filled in.

Proof. The area in which new pencils may be added is
limited to a space of size 9 (there are two possible ways
for this to happen, depending on whether the one pencil
in the lower right has an upward or leftward pointing
lead). Next, the first 2 is located such that its tip must
be leftward pointing. If it pointed to the right, there
would not be room for the two squares that the line
would need to occupy. Thus, the other 2-pencil must
be rightward pointing with its body either filling in the
square between the 2’s or not. Figures 6b and 6¢ de-
scribe how to fill the 3x3 space for TRUE and FALSE
variable assignments.

Since the player is not able to play the right 2-pencil
another way than the two variable assignments, and the
player is able to assign either truth value, our Lemma
is proven. O

Lemma 6 (Not Gate) Figure 7a presents a not gate
for a leftward facing wire.

Proof. First, consider the scenario where the initial
value of the wire is true. Then, the remaining number
of squares up to the next 2 is 7. The next 2 must have
its pencil pointing to the left, so it will occupy either
three or four of the open spaces. This would leave either
three or four consecutive unoccupied spaces. However,
we cannot fill four unoccupied spaces by Lemma 1, so
we must play the second 2 so that it occupies four of
the internal spaces. This forces the last 2 (which must
be played to the right) to occupy the empty space be-
tween the 2’s, making the transmitted value false. On
the other hand, if the initial value is false, then there
will be eight open squares in the middle. The second 2
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can be played so that it occupies three or four spaces.
This corresponds to four or five open middle spaces. Of
the two options, we can only fill five consecutive middle
spaces, so the the second 2 must be played to occupy the
empty space between the 2’s. This forces the final 2 to
be played in the true position. Both of these scenarios
are illustrated in Figures 7b and 7c. ]

Lemma 7 (Split Gate) For a given input in the wire
on the left, the gadget in Figure Sa assigns truth values
to two wires on the right and bottom each carrying the
opposite of the given input (to make this a true split
gate, we would add a not gate between the input and the
gadget or add two more not gates to the ends).

Proof. Of the 2-pencils on the right and on the bot-
tom, the inner pencils of each must be pointing inward;
there is not room for them to point outward. If the en-
tering wire is true, then there are 8 remaining spaces
within the center of the gadget. The right and bottom
inner 2’s can occupy either 3 or 4 spaces. If they both
occupy 3 squares, then there will be 2 squares unfilled,
which cannot be filled by the addition of another pencil.
If one occupies 3 squares and the other 4, there will be
one square unfilled, which is not fillable by the addition
of another pencil. If they both occupy 4 squares, then
there are no squares left unfilled, and the gadget is sat-
isfied. This case is forced if the input is true, since there
are no other ways to fill the gadget. In this case, the
output 2’s are both forced to be false, so the input was
flipped and placed into two wires, as in the statement
of the lemma.

If the entering wire is false, then there are 9 remaining
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(a) Unfilled assignment.

(b) Filled with TRUE.

(c) Filled with FALSE.

Figure 6: The assignment gadget unfilled and filled.

(a) An unfilled not gate.

(b) Turning TRUE to FALSE.

(¢) Turning FALSE to TRUE.

Figure 7: A not gate unfilled and filled with both truth values.

open squares. If either of the inward pointing 2-pencils
occupy 4 squares, then the gadget is unfillable, since
there will be either 1 or 2 unfilled squares. Thus, the
2 inward pointing pencils must occupy 3 of the inner
squares, leaving 3 open squares, which can be filled with
a single 1-pencil. This scenario also forces the output
2’s to both be true as desired. 0

Lemma 8 (1-in-3 Gate) The gadget of Figure 9
(which takes in input from three wires) is only fillable if
exactly one of the input wires is true.

Proof. Note that each input wire ends its line at either
{RT, LT, BT} if it is true or {RF, LF, BF} if it is
false. If all the statements are false, then there are four
unoccupied squares, so the gadget is unsolvable if all the
wires are carrying false values. If all the the statements
are true, then there is only one unoccupied square, so
the gadget is unsolvable in this case as well. If two of
the statements are true, then there exactly two unfilled
squares, so the gadget is unsolvable if two statements
are true. If only one statement is true, then there are
three connected unoccupied squares, which can be filled
with a 1-pencil, so the gadget is solvable if and only if
exactly one statement is true. Thus, the gadget serves
the purpose of a 1-in-3 Gate. g
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5 NP-Completeness of Pencils
Now we are ready to prove our main result.

Theorem 9 (Pencils is NP-Complete) For a given
board, B, the decision problem PENCILS(B) is NP-
Complete. Furthermore, this is true when the puzzle
designer and solver are restricted to using I-pencils and
2-pencils.

Proof. We use Theorem 2 and reduce RECTILINEAR
PLANAR 1-IN-3SAT(S) to PENCILS(B). Starting with
Gg, the graph corresponding to S, we will encode this
graph into a pencils game.

We replace each source variable with the variable as-
signment gadget and add sufficiently many split and not
gates such that each source vector has as many outward
going wires as edges leading to literals in the formula.
We can then create each clause by leading in the cor-
responding literals with wires (with not gates if they
appear with a = modifier in the formula). This is pos-
sible since Gg was planar and we can line up the wires
to fit in perfectly by inserting modularity switchers suf-
ficiently many times. Call this pencil board Bg.

By the lemmas for each gadget, if RECTILINEAR PLA-
NAR 1-IN-3SAT(S) is true, then by matching up our vari-
able assignment to that which solves S, we can solve the
corresponding pencil board, Bg. Thus, RECTILINEAR
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(a) An unfilled split gate.

(b) TRUE input.

(c) FALSE input.

Figure 8: A split gate unfilled and filled with both truth values.

RT | RF 2

BF

Figure 9: An unfilled 1-in-3 Gate. The non-numeral
entries exist to refer to potential pencil endings (and
will not affect the actual puzzle).

PLANAR 1-IN-3SAT(S) = TRUE implies PENCILS(Bg) =
TRUE.

If PENCILS(Bs) = TRUE, then there must be some
assignment of the variable assignment gadgets such
that each 1-in-3 gadget was satisfied. However, be-
cause this board was derived directly from the graph,
it provides a variable assignment for S such that S
is true (under 1-in-3 satisfiability rules). Thus, PEN-
CILS(Bg) = TRUE true implies RECTILINEAR PLANAR
1-IN-3SAT(S) = TRUE. So, PENCILS is NP-Hard.

Membership in NP was given in Remark 1. Thus,
PENcILS is both NP-Hard and in NP, so it is NP-
Complete. d

6 Final Remarks and Open Problems

We proved that a restricted form of the PENCILS de-
cision problem is NP-complete in which only 1-pencils
and 2-pencils are used. In this section we provide open
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problems in several different directions.

Define PENCILSs(B) as the decision problem in which
the puzzle designer and solver are restricted to pen-
cils whose lengths appear in the set S. For example,
we proved the NP-completeness of PENCILS; 9y (B), or
simply PENCILS; 2(B). This raises the following open
problems:

e Is PENCILS;(B) in P? In other words, is there a
polynomial-time algorithm for solving Pencils when
only 1-pencils are allowed?

e Is PENCILSy(B) NP-complete?

e More generally, what is the complexity of
PENCILS,(B) for single fixed values of £7

Besides pencil sizes, we could also consider other re-
strictions to the pencil bodies and leads. For example,
we can define a straight-line pencil as one in which the
lead is a straight line. Similarly, we can define a horizon-
tal pencil and a vertical pencil based on the orientation
of the pencil’s body.

e What is the complexity of PENCILS when restricted
to straight-line pencils?

e What is the complexity of PENCILS when restricted
to horizontal pencils?

Nikoli typically designs individual puzzle instances to
have a unique solution. The associated complexity class
is Another Solution Problem (ASP) in which the input
is a problem and a solution and the goal is to deter-
mine if there is a second solution. This complexity class
was popularized by Ueda and Nagao [6]. We pose the
question: is PENCILS ASP-hard?

The authors would like to thank the referees whose
comments led to many improvements throughout the
article.
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Switches are PSPACE-Complete

Jonathan Gabor *

Abstract

Switches is a grid-based puzzle game invented by
Jonathan Gabor and implemented using MIT’s Scratch
programming language in 2014. The puzzle is based on
the ’switch’ mechanism which allows the player to tog-
gle the presence and absence of barriers by walking over
a switch of the same color. At first glance the mech-
anism seems to be similar to previously studied video
game mechanisms including pressure plates and doors,
but it is in fact quite different. We prove that decid-
ing if a Switches puzzle is solvable is PSPACE-complete
and furthermore, this hardness result is true even when
the puzzle is only r = 3 rows in height. On the other
hand, we provide a polynomial-time algorithm for solv-
ing Switches puzzles with r = 1 row. The computational
complexity of the problem with r = 2 is open.

1 Introduction

Switches is a puzzle game that was invented by
Jonathan Gabor in 2014 while he was a high school
student. The puzzle was implemented using MIT’s vi-
sual programming language called Scratch [8]. This
implementation is available online as Switches v2.1
https://scratch.mit.edu/projects/33587070/. A
new implementation containing playable versions of
every level discussed in this paper is available
as Switches Remastered https://scratch.mit.edu/
projects/203220688/.

The puzzle was designed to be played on an r-by-c
grid, and each object is placed inside of a single cell. The
player’s goal on each level is to move their avatar from
the start location to the goal location called the portal.
The core mechanism involves switches and doors. Each
door is independently on or off and a door is only a
barrier to the player’s movement when it is on. When a
player steps on a switch, then the state of all doors of the
same color are toggled. (The player toggles any switch
they touch, and they must move to another before tog-
gling it again.) There can be multiple switches of the
same color, multiple doors of the same color in either
state, and multiple colors that operate independently.

*Bard College at Simon’s Rock, Massachusetts,
jgabor16@simons-rock.edu
fBard  College at Simon’s Rock, Massachusetts,
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Aaron Williams

A sample level and its solution are given in Figure 1,
along with a legend of graphical symbols.

Legend

Closed door

E Avatar .
. Wall D Open door
6\ Portal .

Switch

Figure 1: The player solves the 13-by-5 level by walking
over the red switch, followed by the orange switch, and
then by again walking over the red switch. The images
should be read in column-major order.

At first glance, this mechanism may seem to be quite
similar to previously studied video game mechanisms
such the pressure plate mechanism that was examined
by Viglietta [9]. More specifically, a switch behaves like
an ’on’ pressure plate combined with an ’off’ pressure
plate, so one might try to simulate pressure plates us-
ing switches. However, this is far more difficult than it
sounds, because in all but a few cases, levels of switches
are reversible. In other words, the player can return
to any state they were previously in by performing the
previously made moves in reverse! order. On the other
hand, this is not true for the pressure plate mechanism.
Similarly, the mechanisms and hardness results obtained
by Aloupis, Demaine, Guo, and Viglietta [1] do not seem
to apply to this puzzle. The authors are unaware of any
previous puzzle that uses the switch mechanism, but it
seems possible that such a puzzle could exist given the
mechanism’s simplicity.

The Switches decision problem takes a Switches level
on an r-by-c grid as input, and the output is ’yes’ or 'no’

IThere is some subtlety to reversibility in Switches levels. If
the players avatar is on a blank tile or an open door, then they can
return to any previous state by reversing their previous moves.
Furthermore, if they can reach a blank tile, they can return to
any previous state. However, there are also cases where player
can trap themselves.
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depending on whether the level is solvable or not. We
prove that this decision problem is PSPACE-complete
by a reduction from True Quantified Boolean Formula
(TQBF). More remarkably, we are able to show that
the decision problem remains PSPACE-complete when
restricted to levels that have at most » = 3 rows. This
differentiates it from other PSPACE puzzle games such
as Sokoban [2] and Rush Hour [3]. We refer the read-
ers to Hearn and Demaine [6] for further results on the
hardness of puzzles and games.

To complement our hardness results, we also prove
that Switches puzzles with 1 row can be solved in
polynomial-time. The complexity of the decision prob-
lem for Switch levels with 2 rows is presently unknown
and is a compelling open problem.

The paper is structured as follows. In Section 2 we
show how to determine if a level with » = 1 rows is
solvable in polynomial-time. In Section 3 we show that
Switches is NP-hard via a standard 3SAT reduction.
In Section 4 we provide a level construction that forces
the player to iterate through the well-known binary re-
flected Gray code. Section 5 then combines the results
of Section 3 and 4 to obtain our main PSPACE-hardness
result. Section 6 concludes with open problems.

To our knowledge our this article marks the first time
that an original Scratch game has been proven to be
NP-hard or PSPACE-hard. According to Wikipedia
[10],“Scratch has influenced many other programming
environments and is now considered a standard for in-
troductory coding experiences for children.” As a re-
sult, this paper shows that the ’fun’ of computational
complexity is not just for adults.

2 Polynomial-Time Algorithm for 1 Row

In this section we provide a polynomial-time algorithm
for solving Switches levels with » = 1 row. Figure 2
gives examples of solvable and unsolvable levels with
r=1.

| 05022 H M ONeLs HA2O

(a) This level is solvable by alternately moving left and right
to flip switch 1, switch 2, left switch 4, right switch 4, switch
3, right switch 4, switch 5, switch 2, switch 4, and then
moving to the portal.

¥l OHe[:e H[2S

(b) This level is unsolvable because the player can never
reach switch 5 since one of the two 3-doors will always be
closed.

Figure 2: Two similar levels with r = 1.

Throughout this section we can assume the portal
appears on the rightmost square of a level without loss of
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generality. To understand this assumption, first notice
that we can assume that the portal appears to the right
of the player’s initial position, since otherwise we can
instead consider the mirror image of the level. Next
notice that any squares to the right of the portal cannot
be accessed by the player.

We start this section by considering clusters of adja-
cent switches, and then by showing how to manipulate
their state. Then we consider levels in which the avatar
starts on the leftmost square. Finally, we consider lev-
els in which the avatar does not start on the leftmost
square.

2.1 Clusters, Configurations, and Traversals

We define a cluster of switches (or simply a cluster) to be
a maximal sequence of adjacent switches. In a level with
1 row, membership in a cluster is reflexive, symmetric,
and transitive, so the switches partition uniquely into
clusters. Figure 3 gives an illustration of clusters.

[02c0650 Mo W20

Figure 3: This level has three clusters.

A left-to-right traversal of a cluster is a sequence of
moves in which the player starts at the square imme-
diately to the left of the cluster, ends at the square
immediately to the right of the cluster, and at no time
moves outside of this region. The traversal ends when
the player moves to the next square to the right. We
similarly define a right-to-left, right-to-right, and left-to
left traversal of a cluster.

When playing a Switches level each color is in one of
two states which we call the color’s current parity (or
parity for short). A cluster containing switches with d
distinct colors has 2% different configurations based on
the current parities of these colors. We now show that
the player can set a cluster to any configuration during
a left-to-right traversal.

Lemma 1 Suppose the player is standing to the left of
a cluster, and the square to the right of the cluster is
either open or has the same color as a switch within the
cluster. Then the player can set the cluster to any con-
figuration during a left-to-right traversal. Furthermore,
the number of steps is linear in terms of the length of
the cluster.

Proof. Suppose that the cluster contains k switches.
For convenience let us number the squares from left-to-
right starting at 0 from the player’s position. In other
words, we are focused on the squares numbered 0, 1, 2,
..., k+1 where 0 and k+1 are immediately outside of
the cluster. The pseudocode below uses 'L’ and 'R’ to
denote left and right moves, respectively. The basic idea
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is to set the switches to their desired parity from left-to-
right. More specifically, if we are standing on square s
and the switch on square s-1 has the wrong parity, then
we move L then R to correct it, and continue. There are
special cases to handle at the right side of the cluster,
and we discuss those in more detail below.

R
for s =1, 2, ..., k-1
R
if the switch on square s has the wrong parity
LR

if the switch on square k has the wrong parity
if square k+1 is a door with switch k’s color
LRRLLRR
else
RLR
else
R

After each iteration of the for loop, the avatar will be
one space farther to the right, and the color of switch
to the players left will be in the correct parity. After
completing the for loop, the players avatar will be on
the rightmost switch. If this switch is in the correct
parity, the player can simply exit the cluster by moving
to the right. If it is in the incorrect parity the player will
usually be able to fix this by moving right, and then left.
Then the player can exit the cluster. Doing this will not
affect the parity of any other color because the tile to
the right of the player cannot be a switch. However, it
is possible that there is a door of the last switchs color
directly to the players right. In this case, the player can
move left and then right twice (the first time the player
moves right, they open the door). However, now the
switch on square k — 2 will be in the wrong parity. This
can be fixed by moving left twice and then right twice.
This will change the parity of switch k — 2, but leave
the parity of switch k — 1 constant. O

If the player must end on the same side of the cluster
they started on, they can simply move all the way to
the left of the cluster, then follow the above algorithm
ignoring the leftmost switch. Then, if this switch is in
the wrong parity, the player can move all the way to the
left, and all the way to the right to fix it.

Lemma 1 also applies to right-to-left and right-to-
right traversals, respectively, so long as the player starts
on the square to the cluster’s immediate right.

2.2 Left-to-Right Levels

Now we focus on r = 1 levels in which the player starts
on the leftmost square. We refer to these levels as left-
to-right levels; when solving these levels we can prove
that the player never needs to backtrack to a previously
traversed cluster.

For each door, let s(d) be the location of the rightmost
switch of its color to its left.

Lemma 2 A left-to-right level is solvable if and only
if the following conditions both hold: If two doors have
the same s(d), then they have the same parity; If s(d)
1s undefined for a door, then that door is initially open.

Proof. We begin by proving the forward direction.
Consider the first point. Obviously, when changing the
parity of a door d, the player must either be to the left
of location s(d) or to the right of that door. To proceed
to the right, they must make that door open. Therefore,
to proceed to the right of two doors with the same s(d),
they must make both of them open when at position
s(d). This is only possible if they have the same parity.

Now consider the second point. If s(d) is undefined,
then there is no switch to the left of that door. Then if
it is initially closed, the player cannot change its parity,
until they go to the right of it, but they cant go to the
right of it until they change its parity.

Now consider the reverse direction. We claim that
any level satisfying the two points above can be solved
using the following linear time algorithm.

Let a clusters ideal configuration be the configuration
such that for each switch in it, if that switch is at lo-
cation s(d) for some door d, the switch is in the parity
such that door d is open.

Moving from left to right, we adjust each cluster to its
ideal configuration. The only way this algorithm could
fail is if the player encounters a closed door which pre-
vents them from traveling farther the right. However,
such a door must have a defined s(d). Then it must
have been made open. Therefore, encountering a closed
door is impossible. O

The algorithms in Lemma 1 runs in linear time in
terms of the length of the cluster. Because each cluster
is only adjusted once, and the total length of all the clus-
ters is capped by the length of the level, this algorithm
runs in linear time.

Theorem 3 Any solvable level with r = 1 row can be
solved in polynomial time.

Proof. Let Ly be the location of the portal. Let L, 41
be the leftmost location the player must reach before
reaching location L, if n is even, and the rightmost
such location if n is odd (usually this location will be
a switch of the color of a closed door blocking location
Ly,).

The player can travel from L,41 to L, in a linear
amount of time by Lemma 2.

We will now demonstrate that L, 1o is always in be-
tween L1 and L, (inclusively). Without loss of gener-
ality assume that n is even. Because L,, 5 is the right-
most location the player must reach before L, 1, it is to
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the right of L, (inclusively). Since Ly, is the rightmost
location the player must reach before reaching location
L, _1, and the player must visit L, o before visiting
Ly, Lypio must to the left of L,, (if it was to the right,
then it would be the rightmost location before visiting
Ly_q).

It follows that if L,, = L,41, for all m > n, L,, =
L,,. Then there is some k which is the lowest value
such that Ly = Lg4+1. Then, all L, with ¢ < k must
be distinct. Because there are only a linear number of
locations in the level, and moving between each requires
a linear amount of time, the level can be solved in O(n?)
time. g

3 NP-Hardness

In this section we prove that the Switches problem is
NP-hard by a reduction from 3SAT.

Suppose that we are given an instance of 3SAT ¢ with
clauses c¢q,co,...,¢,n, and variables xz1,x9,23,...,ZTn,.
We construct a Switches level S(¢) that has 3 rows and
n + 2m + 4 columns. The level S(¢) uses n colors in
total and there is a single switch of color i. The num-
ber of initially open or closed doors of color i is given
by the number of positive or negative x; literals in ¢,
respectively.

The level is organized as follows. The Avatar starts
on the left side of the level and to their right is a variable
corridor of height 1 and width n+1. The variable cor-
ridor contains a variable cluster which is a cluster con-
taining one switch of each color . This corridor leads
into a room of height 3 and width 2m+1 called the
clause room. Every second column in the clause room
is blank, and between these blank columns are columns
associated with each of the clauses. Each clause column
consists of three doors in a vertical line. The colors
of the doors are given by the variable of the literal in
the associated clause, and these doors are initially open
or closed based on whether the said literals are true or
false. The portal is located to the right of the clause
room. Figure 4 illustrates this construction.

Figure 4: S(¢) for ¢ = (x5 V x4 Vxs) A....

Theorem 4 Switches is NP-hard.

Proof. Given an instance of 3SAT ¢ we construct the
level S(¢) as described. Suppose that ¢ is satisfiable
by an assignment A which sets variable z; to a; for all
1 < i < n. By the results of Section 2 the Avatar can
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perform a left-to-right traversal of the variable cluster
with the following property: The switch of color i is
switched an even number of times if a; = True and
and odd number of times if a; = False. Now consider
a given clause ¢; = (£,0,0,,) where £, £,, and £, are
either positive or negative literals of variables z,, x,,
Ty, respectively. Observe that the ith clause column is
traversable if and only at least one of its three doors are
open. Also recall that the doors associated with positive
literals start open, and doors associated with negative
literals start closed within S(¢). Since clause ¢; is sat-
isfied the assignment A, it must be that the Avatar’s
left-to-right traversal of the variable cluster results in
the ith clause column being traversable. Therefore, the
Avatar can traverse the entire clause room and reach
the portal. Therefore, if ¢ is satisfiable, then S(¢) is
solvable.

Suppose that S(¢) is solvable and consider a partic-
ular solution. When the Avatar reaches the portal let
p; € {0,1} denote the parity of the number of times
that switch i was switched during this solution. That is,
p; = 0 if switch i was switched an even number of times
during the solution, and p; = 1 if switch i was switched
an odd number of times during the solution. We con-
struct an assignment A for ¢ as follows: z; = True if
p; = 0, and z; = False if p; = 1. Due to the struc-
ture of the S(¢) level, when the Avatar reaches the por-
tal, it must be that each one of the clause columns is
traversable. Therefore, in each clause in ¢ there must
be at least one literal that evaluates to true with respect
to assignment A. Therefore, ¢ is solvable.

The reduction is completed by noting that the size of
S(¢) is polynomially bounded by the size of ¢. O

4 Exponentially Long Levels

In this section we construct Switches levels that require
an exponential number of moves to solve. More specif-
ically, the levels contain n distinct colors, and the level
forces the player to iterate over all 2™ different states or
parities for these colors.

The binary reflected Gray code was previously used in
a similar manner in a paper by Greenblatt, Kopinsky,
North, Tyrrell, and Williams [5] for the puzzle game
MazezaM. The presentation here closely resembles a
similar section in that paper.

4.1 Binary Reflected Gray Code

Let B(n) be the set of n-bit binary strings. The weight
of biby -+ - by, € B(n) is its bitwise sum > ; b;. We use
exponents to denote bitwise concatenation. For exam-
ple, 1* = 1111 is the only string of weight four in B(4).

The binary reflected Gray code (BRGC) is an ordering
of B(n) attributed to Gray [4]. In the order each pair
of consecutive strings have Hamming distance one (i.e.
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they differ in exactly one bit). The order starts with 0"
and ends with 0"~11. The BRGC for n = 4 is below
with overlines showing the bit that changes to create
the next string:

0000, 1000, T100, 0100, 0110, 1110, 7010, 0010,
0011,1011,T111,01T1,0101, 1701, 7001, 0001.

Now we explain how to create each successive string
in the BRGC starting from the initial string 0™.

Definition 1 Fach biby - b, € B(n) has up to two ac-
tive bits: (a) its leftmost bit by, and (b) its bit immedi-
ately to the right of its leftmost 1.

For example, the leftmost 1 in b1b2b3b4b5b6 = 000111
is by = 1; therefore, its active bits are b; and bs. Every
binary string has two active bits except 0" and 0"~ '1.

The following theorem is well-known (see Knuth [7]).

Theorem 5 If b1by ---b, has even weight, then com-
plementing active bit (a) gives the next string in the
BRGC. Otherwise, if bibs---b, has odd weight, then
complementing active bit (b) gives the next string.

On the other hand, complementing the ‘other’ active
bit of b1bs - - - by, gives the previous string in the BRGC.

For example, 000111 has odd weight, so 000101 is the
next string in the BRGC and 100111 is the previous.

4.2 Gray Code Level

Now we construct a level Gray(n) based on the BRGC
for n-bit binary strings. The construction is illustrated
in Figure 5. Remarkably, Gray(n) has only r = 3 rows
c=2n+ 1 in general.

Figure 5:

The level Gray(8) in state biby---bg =
00000000 (top) and byiby---bs = 00000100 (bottom).
In the latter case observe that only those columns with
switches 1 and 7 at the top are accessible as per Theo-
rem 5.

The level a corridor along the bottom row, and then
n—+1 columns protruding upwards from the bottom row.
The tops of these columns include switches for colors

1,2,...,n and the portal, respectively. The switch for
color 1 is not protected, and the column with switch ¢
at the top is protected by a door of color ¢ — 1 which
is initially on. Furthermore, the corridor below the col-
umn with switch ¢ at the top is protected by a door of
color ¢ — 2 which is initially off.

We associated a binary string b1 by - - - b, with the state
of Gray(n)’s switches that is initially 00---0. Due to
the structure of the level and Theorem 5 we have the
following theorem.

Theorem 6 To complete Gray(n) the player must it-
erate over all 2" states of Gray(n) according to the bi-
nary reflected Gray code.

5 PSPACE Hardness

In this section we prove that Switches is PSPACE-hard.
We do this by combining the results of Sections 3 and
4 to create a level Q(¢) that models a True Quanti-
fied Boolean Formula (TQBF) ¢. More specifically, we
model the unquantified Boolean 3SAT formula within
¢ as in Section 3, and then we force the player to it-
erate overall all possible 2" states of the u universally
quantified variables according Section 4.

When creating the level we utilize the fact that the
leftmost bit is changed every second time in the binary
reflected Gray code. We leverage this fact by horizon-
tally separating the leftmost bit and the remaining bits
in the level, and placing the 3SAT construction between
them. In other words, we force the player to traverse the
3SAT formula (from left-to-right or right-to-left) every
time they wish to change one of the quantified variable
bits. Thus, the player must ensure that the 3SAT for-
mula is satisfied before they can make progress in the
higher-level problem that is iterating through the binary
reflected Gray code.

A sample construction involving n = 8 variables is
shown in Figure 6. Due to width restrictions we illus-
trate the sample level with 9 rows; the taller rows can
easily be turned (at the expense of making the level
much wider) to create a level with 3 rows.

Theorem 7 The Switches decision problem is
PSPACE-hard even when restricted to levels with
r =3 rows.

Finally, we prove membership in PSPACE below.

Lemma 8 The Switches

PSPACE.

decision problem is in

Proof. Consider an r-by-c level with d distinct colors of
switches. There are at most 2¢-r¢ possible states for this
level, where 2¢ counts the number of different states for
the colors, and rc is an upper bound on the number of
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Figure 6: Level P(¢) which models the TQBF formula ¢
with quantified variables JxVro3drsVasdrsVagIdr Vas.
The bottom of the level contains clause gadgets includ-
ing the rightmost clause x7 V x4 V zg.

locations for the player’s avatar. Therefore, we can rep-
resent an individual state of the level with d - logs(rc)
bits. Similarly, d - loga(rc) bits bits are sufficient for
counting from 0 to 2¢ - r¢ — 1. Therefore, we can now
establish membership in NPSPACE by nondeterministi-
cally moving the avatar in one of the four cardinal direc-
tions, and it keeping a counter for the number of times
we have done this. If the avatar reaches the portal, then
we stop the algorithm and answer yes. Otherwise, once
the counter exceeds the number of possible states then
we terminate the algorithm and answer no. If there is
a solution to the level, then there will be at least one
path through the computation that answers yes. Since
we used only d - loga(rc) bits of storage, this establishes
membership in NPSPACE, and by Savitch’s theorem,
PSPACE. O

Corollary 1 The Switches decision problem is

PSPACE-Complete.

6 Final Remarks

In this paper we investigated the computational com-
plexity of the Switches puzzle game. There are a num-
ber of interesting open problems:

e What is the computational complexity of solving
Switches levels with r = 2 rows?

e Our PSPACE-hardness reduction uses an arbitrar-
ily large number of colors. What is the computa-
tional complexity if the number of colors is a con-
stant?

e Our PSPACE-hardness reduction uses an arbitrar-
ily large number of doors per color. What is the
computational complexity if each doors color can
be used only a constant number of times?

e Our PSPACE-hardness reduction uses up to two
switches per color. What is the computational com-
plexity if no two switches have the same color?
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e Are there any other geometric puzzle games created
on Scratch that are NP-hard or PSPACE-hard?

Regarding the 2-row case, there are several reasons
to think that it should be solvable in polynomial time.
First, when there are two rows, if the player’s avatar
is in the same column as a square, then the player can
immediately reach that square. This means that the
player cannot ”pass by” an object while being unable to
interact with it, something essential to constructing ex-
ponential orderings. Second, with only two rows, there
is no obvious way to implement clause gadgets. Third,
if there are no switches between 2 points in a level, de-
termining whether there exists a set of parities to travel
between those points can be done in polynomial time,
since it can be reduced to a 2-sat problem.

We also mention that the original Switches imple-
mentation has an additional dual switch mechanism in
which two switches are toggled simultaneously. We did
not require its use to establish PSPACE-hardness, and
its inclusion does not change the problem’s inclusion in
PSPACE.
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Packing Plane Spanning Trees into a Point Set

Ahmad Biniaz*

Abstract

Let P be a set of n points in the plane in general posi-
tion. We show that at least [n/3] plane spanning trees
can be packed into the complete geometric graph on
P. This improves the previous best known lower bound
Q (y/n). Towards our proof of this lower bound we show
that the center of a set of points, in the d-dimensional
space in general position, is of dimension either 0 or d.

1 Introduction

In the two-dimensional space, a geometric graph G is a
graph whose vertices are points in the plane and whose
edges are straight-line segments connecting the points.
A subgraph S of G is plane if no pair of its edges cross
each other. Two subgraphs S; and S5 of G are edge-
disjoint if they do not share any edge.

Let P be a set of n points in the plane. The com-
plete geometric graph K(P) is the geometric graph
with vertex set P that has a straight-line edge be-
tween every pair of points in P. We say that a se-
quence S1,S9,S53,... of subgraphs of K(P) is packed
into K(P), if the subgraphs in this sequence are pair-
wise edge-disjoint. In a packing problem, we ask for the
largest number of subgraphs of a given type that can be
packed into K(P). Among all subgraphs, plane span-
ning trees, plane Hamiltonian paths, and plane perfect
matchings are of interest. Since K(P) has n(n —1)/2
edges, at most |n/2] spanning trees, at most |n/2|
Hamiltonian paths, and at most n—1 perfect matchings
can be packed into it.

A long-standing open question is to determine
whether or not it is possible to pack |n/2] plane span-
ning trees into K(P). If P is in convex position, the
answer in the affirmative follows from the result of Bern-
hart and Kanien [3], and a characterization of such plane
spanning trees is given by Bose et al. [5]. In CCCG
2014, Aichholzer et al. [1] showed that if P is in general
position (no three points on a line), then Q(y/n) plane
spanning trees can be packed into K(P); this bound
is obtained by a clever combination of crossing family
(a set of pairwise crossing edges) [2] and double-stars
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TUniversidad de Zaragoza, Spain. Partially supported by
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(trees with only two interior nodes) [5]. Schnider [12]
showed that it is not always possible to pack [n/2] plane
spanning double stars into K(P), and gave a neces-
sary and sufficient condition for the existence of such a
packing. As for packing other spanning structures into
K(P), Aichholzer et al. [1] and Biniaz et al. [4] showed
a packing of 2 plane Hamiltonian cycles and a packing
of [logy n] — 2 plane perfect matchings, respectively.

The problem of packing spanning trees into (ab-
stract) graphs is studied by Nash-Williams [11] and
Tutte [13] who independently obtained necessary and
sufficient conditions to pack k spanning trees into a
graph. Kundu [10] showed that at least [(k — 1)/2]
spanning trees can be packed into any k-edge-connected
graph.

In this paper we show how to pack |n/3] plane span-
ning trees into K (P) when P is in general position. This
improves the previous Q(y/n) lower bound.

2 Packing Plane Spanning Trees

In this section we show how to pack |[n/3] plane span-
ning tree into K (P), where P is a set of n > 3 points
in the plane in general position (no three points on a
line). If n € {3,4,5} then one can easily find a plane
spanning tree on P. Thus, we may assume that n > 6.
The center of P is a subset C' of the plane such that
any closed halfplane intersecting C' contains at least
[n/3] points of P. A centerpoint of P is a member
of C, which does not necessarily belong to P. Thus,
any halfplane that contains a centerpoint, has at least
[n/3] points of P. It is well known that every point
set in the plane has a centerpoint; see e.g. [7, Chapter
4]. We use the following corollary and lemma in our
proof of the [n/3] lower bound; the corollary follows
from Theorem 4 that we will prove later in Section 3.

Corollary 1 Let P be a set of n > 6 points in the plane
in general position, and let C be the center of P. Then,
C' is either 2-dimensional or 0-dimensional. If C is O-
dimensional, then it consists of one point that belongs
to P, moreover n is of the form 3k +1 for some integer
k>2.

Lemma 1 Let P be a set of n points in the plane in
general position, and let ¢ be a centerpoint of P. Then,
for every point p € P, each of the two closed halfplanes,
that are determined by the line through ¢ and p, contains
at least [n/3] + 1 points of P.
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Figure 1: Ilustration of the proof of Lemma 1.

Proof. For the sake of contradiction assume that a
closed halfplane H, that is determined by the line
through ¢ and p, contains less than [n/3] 4+ 1 points
of P. By symmetry assume that H is to the left side
of this line oriented from ¢ to p as depicted in Figure 1.
Since ¢ is a centerpoint and H contains ¢, the definition
of centerpoint implies that H contains exactly [n/3]
points of P (including p and any other point of P that
may lie on the boundary of H). By slightly rotating
H counterclockwise around ¢, while keeping ¢ on the
boundary of H, we obtain a new closed halfplane that
contains ¢ but misses p. This new halfplane contains
less than [n/3] points of P; this contradicts ¢ being a
centerpoint of P. O

Now we proceed with our proof of the lower bound.
We distinguish between two cases depending on whether
the center C' of P is 2-dimensional or 0-dimensional.
First suppose that C' is 2-dimensional. Then, C' con-
tains a centerpoint, say ¢, that does not belong to P.
Let p1,...,pn be a counter-clockwise radial ordering of
points in P around c¢. For two points p and ¢ in the
plane, we denote by ]ﬁ, the ray emanating from p that
passes through gq.

Since every integer n > 3 has one of the forms 3k,
3k + 1, and 3k + 2, for some k > 1, we will consider
three cases. In each case, we show how to construct
k plane spanning directed graphs G1,..., G that are
edge-disjoint. Then, for every i € {1,...,k}, we obtain
a plane spanning tree T; from G;. First assume that
n = 3k. To build G;, connect p; by outgoing edges
t0 Di+1,Pit+2s-- -, Di+k, then connect p; 1 by outgoing
edges to Dijtk+1,Pitk+2,---,Pi+2k, and then connect
Pit+2k by outgoing edges to pii2k+1,Pit2k+2; - - - Pitdks
where all the indices are modulo n, and thus p;43; = p;.
The graph Gj, that is obtained this way, has one cycle
(i, Pitk, Pitok,Pi); see Figure 2. By Lemma 1, every
closed halfplane, that is determined by the line through
c and a point of P, contains at least k + 1 points of P.
Thus, all points p;, pit1, ..., Pi+k lie in the closed half-
plane to the left of the line through ¢ and p; that is ori-
ented from c to p;. Similarly, the points p;ik, ..., Pitok
lie in the closed halfplane to the left of the oriented
line from ¢ to p;4k, and the points p;iok, ..., pitsr lie
in the closed halfplane to the left of the oriented line
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from c to p;1or. Thus, all the k edges outgoing from p;
are in the convex wedge bounded by the rays c’ﬁl and
m, all the edges outgoing from p;;j are in the con-
vex wedge bounded by m and Cl+—2k> , and all the edges
from p;yok are in the convex wedge bounded by m
and m . Therefore, the spanning directed graph G;
is plane. As depicted in Figure 2, by removing the
edge (pi+2k, p;) from G; we obtain a plane spanning (di-
rected) tree T;. This is the end of our construction of k
plane spanning trees.

Figure 2: The plane spanning trees 77 (the top) and
T5 (the bottom) are obtained by removing the edges
(p1+2k, p1) and (patok, p2) from G1 and G, respectively.

To verify that the k spanning trees obtained above are
edge-disjoint, we show that two trees T; and T}, with
i # j, do not share any edge. Notice that the tail of
every edge in T; belongs to the set I = {p;, ik, Pit2k )
and the tail of every edge in T} belongs to the set J =
{pj,pj+ksPjt+2r}, and I NJ = . For contrary, suppose
that some edge (p,,ps) belongs to both 7; and Tj, and
without loss of generality assume that in 7; this edge is
oriented from p, to ps while in 7} it is oriented from p,
to py. Then p, € I and p; € J. Since (p.,ps) € T; and
the largest index of the head of every outgoing edge from
pr is r + k, we have that s < (r+ k&) mod n. Similarly,
since (ps,pr) € T; and the largest index of the head
of every outgoing edge from ps is s + k, we have that
r < (s + k) mod n. However, these two inequalities
cannot hold together; this contradicts our assumption
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Figure 3: The dimension of a point set in the plane, that is not in general position, can be any number in {0, 1, 2}.

that (p,,ps) belongs to both trees. Thus, our claim,
that T3, ...,T}) are edge-disjoint, follows. This finishes
our proof for the case where n = 3k.

If n = 3k+1, then by Lemma 1, every closed halfplane
that is determined by the line through ¢ and a point of
P contains at least k + 2 points of P. In this case,
we construct GG; by connecting p; to its following & + 1
points, i.e., piy1,...,Pi+k+1, and then connecting each
of pitr+1 and p;yok41 to their following k points. If
n = 3k + 2, then we construct G; by connecting each of
p; and p; k41 to their following k& + 1 points, and then
connecting p;or12 to its following k£ points. This is the
end of our proof for the case where C' is 2-dimensional.

Now we consider the case where C is 0-dimensional.
By Corollary 1, C consists of one point that belongs to
P, and moreover n = 3k + 1 for some k > 2. Let p € P
be the only point of C', and let py, ..., p,—1 be a counter-
clockwise radial ordering of points in P\ {p} around p.
As in our first case (where C' was 2-dimensional, ¢ was
not in P, and n was of the form 3k) we construct k edge-
disjoint plane spanning trees 77, ..., T on P\{p} where
p playing the role of ¢. Then, for every i € {1,...,k}, by
connecting p to p;, we obtain a plane spanning tree for
P. These plane spanning trees are edge-disjoint. This
is the end of our proof. In this section we have proved
the following theorem.

Theorem 2 FEvery complete geometric graph, on a set
of n points in the plane in general position, contains at
least [n/3] edge-disjoint plane spanning trees.

3 The Dimension of the Center of a Point Set

The center of a set P of n > d + 1 points in R? is a
subset C' of R? such that any closed halfspace intersect-
ing C' contains at least &« = [n/(d+ 1)] points of P.
Based on this definition, one can characterize C' as the
intersection of all closed halfspaces such that their com-
plementary open halfspaces contain less than « points of
P. More precisely (see [7, Chapter 4]) C is the intersec-
tion of a finite set of closed halfspaces Hy, Ha, ..., H,,
such that for each H;

1. the boundary of H; contains at least d affinely in-
dependent points of P, and

2. the complementary open halfspace H; contains at
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most a — 1 points of P, and the closure of H; con-
tains at least « points of P.

Being the intersection of closed halfspaces, C is a con-
vex polyhedron. A centerpoint of P is a member of C,
which does not necessarily belong to P. It follows, from
the definition of the center, that any halfspace contain-
ing a centerpoint has at least a points of P. It is well
known that every point set in the plane has a center-
point [7, Chapter 4]. In dimensions 2 and 3, a center-
point can be computed in O(n) time [9] and in O(n?)
expected time [6], respectively.

A set of points in R?, with d > 2, is said to be in
general position if no k42 of them lie in a k-dimensional
flat for every k € {1,...,d — 1}.} Alternatively, for a
set of points in R? to be in general position, it suffices
that no d 4+ 1 of them lie on the same hyperplane. In
this section we prove that if a point set P in R is in
general position, then the center of P is of dimension
either 0 or d. Our proof of this claim uses the following
result of Grinbaum.

Theorem 3 (Griinbaum, 1962 [8]) Let F be a finite
family of convex polyhedra in R?, let I be their inter-
section, and let s be an integer in {1,...,d}. If every
intersection of s members of F is of dimension d, but I
is (d — s)-dimensional, then there exist s + 1 members
of F such that their intersection is (d — s)-dimensional.

Before proceeding to our proof, we note that if P is
not in general position, then the dimension of C' can be
any number in {0,1,...,d}; see e.g. Figure 3 for the
case where d = 2.

Observation 1 For every k € {1,...,d+1} the dimen-
sion of the intersection of every k closed halfspaces in
R? is in the range [d — k + 1, d].

Theorem 4 Let P be a set of n > d + 1 points in
R?, and let C be the center of P. Then, C is either
d-dimensional, or contained in a (d — s)-dimensional
polyhedron that has at least n — (s + 1)(a — 1) points of
P for some s € {1,...,d} and a = [n/(d+1)]. In the
latter case if P is in general position and n > d + 3,
then C' consists of one point that belongs to P, and n is
of the form k(d+ 1) + 1 for some integer k > 2.

LA flat is a subset of d-dimensional space that is congruent to

a Euclidean space of lower dimension. The flats in 2-dimensional
space are points and lines, which have dimensions 0 and 1.
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Proof. The center C is a convex polyhedron that is
the intersection of a finite family H of closed halfspaces
such that each of their complementary open halfspaces
contains at most o — 1 points of P [7, Chapter 4]. Since
C is a convex polyhedron in R?, its dimension is in the
range [0,d]. For the rest of the proof we consider the
following two cases.

(a) The intersection of every d + 1 members of H is of
dimension d.

(b) The intersection of some d + 1 members of H is of
dimension less than d.

First assume that we are in case (a). We prove that
C is d-dimensional. Our proof follows from Theorem 3
and a contrary argument. Assume that C is not d-
dimensional. Then, C is (d — s)-dimensional for some
s € {1,...,d}. Since the intersection of every s mem-
bers of H is d-dimensional, by Theorem 3 there ex-
ist s + 1 members of H whose intersection is (d — s)-
dimensional. This contradicts the assumption of case
(a) that the intersection of every d + 1 members of H
is d-dimensional. Therefore, C is d-dimensional in this
case.

Now assume that we are in case (b). Let s be the
largest integer in {1,...,d} such that every intersection
of s members of H is d-dimensional; notice that such
an integer exists because every single halfspace in H is
d-dimensional. Our choice of s implies the existence of a
subfamily H’ of s+1 members of H whose intersection is
d’-dimensional for some d’ < d. Let s’ be an integer such
that d’ = d — s’. By Observation 1, we have that d’ >
d— s, and equivalently d— s’ > d — s; this implies s’ < s.
To this end we have a family H’ with s+ 1 members for
which every intersection of s’ members is d-dimensional
(because s’ < s and H' C H), but the intersection of
all members of H’ is (d — s’)-dimensional. Applying
Theorem 3 on H' implies the existence of s’+1 members
of H’ whose intersection is (d — s)-dimensional. If ' <
s, then this implies the existence of s’ + 1 < s members
of H' C H, whose intersection is of dimension d — s’ <
d. This contradicts the fact that the intersection of
every s members of H is d-dimensional. Thus, s’ = s,
and consequently, d = d — s’ = d — s. Therefore C is
contained in a (d— s)-dimensional polyhedron I which is
the intersection of the s+ 1 closed halfspaces of H’. Let
Hy,...,Hs41 be the complementary open halfspaces of
members of H’, and recall that each H; contains at most
a — 1 points of P. Let I be the complement of I. Then,

n=[IUIl=|IUH;U-- UHg]
S|+ [Hi|+ -+ [Hopa| < ]+ (s + 1) (a = 1),
where we abuse the notations I, I, and H; to refer to the

subset of points of P that they contain. This inequality
implies that I contains at least n — (s+1)(a— 1) points
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of P. This finishes the proof of the theorem except for
the part that P is in general position.

Now, assume that P is in general position and n >
d+ 3. By the definition of general position, the number
of points of P in a (d — s)-dimensional flat is not more
than d—s+1. Since I is (d—s)-dimensional, this implies
that

n—(s+1)(a—1)<d—s+1.

Notice that n is of the form k(d + 1) + ¢ for some
integer k > 1 and some i € {0,1,...,d}. Moreover, if
7is 0 or 1, then k& > 2 because n > d + 3. Now we
consider two cases depending on whether or not ¢ is 0.
If i = 0, then o = k. In this case, the above inequality
simplifies to k(d — s) < d — 2s, which is not possible
because k > 2 and d > s > 1. If i € {1,...,d}, then
a =k + 1. In this case, the above inequality simplifies
to (k —1)(d — s) + 4 < 1, which is not possible unless
d = s and i = 1. Thus, for the above inequality to hold
we should have d = s and ¢ = 1. These two assertions
imply that n = k(d+ 1)+ 1, and that I is 0-dimensional
and consists of one point of P. Since C' C I and C is
not empty, C' also consists of one point of P. O
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Abstract

Let P and @ be finite point sets of the same cardinal-
ity in R?, each labelled from 1 to n. Two noncrossing
geometric graphs Gp and G¢ spanning P and @), re-
spectively, are called compatible if for every face f in
G p, there exists a corresponding face in G¢g with the
same clockwise ordering of the vertices on its boundary
as in f. In particular, Gp and G must be straight-
line embeddings of the same connected n-vertex graph
G. No polynomial-time algorithm is known for deciding
whether two labelled point sets admit compatible geo-
metric graphs. The complexity of the problem is open,
even when the graphs are constrained to be triangula-
tions, trees, or simple paths.

We give polynomial-time algorithms to find compat-
ible paths or report that none exist in three scenarios:
O(n) time for points in convex position; O(n?) time for
two simple polygons, where the paths are restricted to
remain inside the closed polygons; and O(n?logn) time
for points in general position if the paths are restricted
to be monotone.

1 Introduction

Computing noncrossing geometric graphs on finite point
sets that are in some sense ‘compatible’ is an active area
of research in computational geometry. The study of
compatible graphs is motivated by applications to shape
animation and simultaneous graph drawing [4, 12].

Let P and @ be finite point sets, each containing n
points in the plane labelled from 1 to n. Let Gp and Gg
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be two noncrossing geometric graphs spanning P and @,
respectively. Gp and Gg are called compatible, if for ev-
ery face f in Gp, there exists a corresponding face in
G with the same clockwise ordering of the vertices on
its boundary as in f. It is necessary, but not sufficient,
that Gp and G represent the same connected n-vertex
graph G. Given a pair of labelled point sets, it is nat-
ural to ask whether they have compatible graphs, and
if so, to produce one such pair, Gp,Gg. The question
can also be restricted to specific graph classes such as
paths, trees, triangulations, and so on; previous work
(described below) has concentrated on compatible tri-
angulations. Compatible triangulations of polygons are
also of interest, which motivated us to examine compat-
ible paths inside simple polygons.

In this paper we examine the problem of computing
compatible paths on labelled point sets. Equivalently,
we seek a permutation of the labels 1,2,...,n that cor-
responds to a noncrossing (plane) path in P and in Q.
Figures 1(a)—(b) show a positive instance of this prob-
lem, and Figures 1(c)—(d) depict an affirmative answer.

Our results. We describe a quadratic-time dynamic
programming algorithm that either finds compatible
paths for two simple polygons, where the paths are re-
stricted to remain inside the closed polygons, or reports
that no such path exists. For the more limited case of
two point sets in convex position, we give a linear time
algorithm to find compatible paths (if they exist). For
two general point sets, we give an O(n?logn)-time al-
gorithm to find compatible monotone paths (if they ex-
ist). Finding (unrestricted) compatible paths of point
sets remains open.

1.1 Background

Saalfeld [11] first introduced compatible triangulations
of labelled point sets, which he called “joint” triangula-
tions. In Saalfeld’s problem, each point set is enclosed
inside an axis-aligned rectangle, and the goal is to com-
pute compatible triangulations (possibly using Steiner
points). Although not every pair of labelled point sets
admit compatible triangulations, Saalfeld showed that
one can always construct compatible triangulations us-
ing (possibly an exponential number of) Steiner points.

Aronov et al. [2] proved that O(n?) Steiner points are
always sufficient and sometimes necessary to compatibly
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Figure 1: (a)—(b) A pair of labelled point sets P and Q. (c)—(d) A pair of compatible paths.

triangulate two polygons when the vertices of the poly-
gons are labelled 1,2, ..., n in clockwise order. Babikov
et al. [3] extended the O(n?) bound to polygonal regions
(i.e., polygons with holes), where the holes are also la-
belled ‘compatibly’ (with the same clockwise ordering
of labels). The holes may be single points, so this in-
cludes Saalfeld’s “joint triangulation” problem. Pach et
al. [10] gave an Q(n?) lower bound on the number of
Steiner points in such scenarios.

Lubiw and Mondal [9] proved that finding the mini-
mum number of Steiner points is NP-hard for the case
of polygonal regions. The complexity status is open
for the case of polygons, and also for point sets. Test-
ing for compatible triangulations without Steiner points
may be an easier problem. Aronov et al. [2] gave
a polynomial-time dynamic programming algorithm to
test whether two polygons admit compatible triangula-
tions without Steiner points. But testing whether there
are compatible triangulations without Steiner points is
open for polygonal regions, as well as for point sets.

The compatible triangulation problem seems chal-
lenging even for unlabelled point sets (i.e., when a bi-
jection between P and @) can be chosen arbitrarily).
Aichholzer et al. [1] conjectured that every pair of unla-
belled point sets (with the same number of points on the
convex hull) admit compatible triangulations without
Steiner points. So far, the conjecture has been verified
only for point sets with at most three interior points.

Let G5 be a complete geometric graph on a point
set S. Let H(S) be the intersection graph of the edges
of Gg, i.e., each edge of Gg corresponds to a vertex in
H(S), and two vertices are adjacent in H(.S) if and only
if the corresponding edges in G g properly cross (i.e., the
open line segments intersect). Every plane triangulation
on S has 3n—3—h edges, where & is the number of points
on the convex hull of S, and thus corresponds to a max-
imum independent set in H(S). In fact, H(S) belongs
to the class of well-covered graphs. (A graph is well cov-
ered if every maximal independent set of the graph has
the same cardinality). A rich body of research attempts
to characterize well-covered graphs [6, 13]. Deciding
whether two point sets, P and (), admit compatible tri-
angulations is equivalent to testing whether H(P) and
H(Q) have a common independent set of size 3n—3—h.
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2 Paths in Polygons and Convex Point Sets

In this section we describe algorithms to find compat-
ible paths on simple polygons and convex point sets.
By compatible paths on polygons, we mean: given two
polygons, find two compatible paths on the vertices of
the polygons that are constrained to be non-exterior to
the polygons. (See Figures 2(a)—(b).) Note that convex
point sets correspond to a special case, where the poly-
gons are the convex hulls. Not every two convex point
sets admit compatible paths, e.g., 5-point sets where the
points are labelled (1,2,3,4,5) and (1,3,5,2,4), resp., in
counterclockwise order (Appendix A).

We first give a quadratic-time dynamic programming
algorithm for simple polygons, and then a linear time
algorithm for convex point sets.

We begin with two properties of any noncrossing path
that visits all vertices of a simple polygon. Let P be a
simple polygon with vertices p1,ps,...,pn in some or-
der (so the vertices have labels 1,2,...,n). Let o be
a label sequence corresponding to a noncrossing path
that lies inside P and visits all vertices of P. Define
an interval on P to be a sequence of labels that appear
consecutively around the boundary of P (in clockwise
or counterclockwise order). For example, in Figure 2(a),
one interval is (2, 1,7, 6). Define an interval set on P to
be the unordered set of elements of an interval.

Claim 1 The set of labels of every prefiz of o is an
interval set on P. Furthermore, if the prefix does not
contain all the labels, then the last label of the prefix
corresponds to an endpoint of the interval.

Proof. We proceed by induction on ¢, the length of
the prefix, with the base case ¢ = 1 being obvious. So
assume the first ¢ — 1 labels form an interval set corre-
sponding to interval I. Let £ be the ¢-th element of o.
Suppose vertex py is not contiguous with the interval I
on P. Let u and v be the two neighbors of p, around
the polygon P. Then uw and v do not belong to I, and so
the path must visit both of them after p,. But then the
subpath between u and v crosses the edge of the path
that arrives at py, contradicting the assumption that the
path is noncrossing. Thus vertex p, must appear just
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Figure 2: (a)—(b) Compatible paths on a pair of labelled polygons. The paths are drawn with dotted lines. (c)
Nlustration for Claim 2, where I = (pr, pg, Ps, P4, p3). (d)—(e) Illustration for the dynamic programming algorithm.

before or after I, forming a longer interval with p, as an
endpoint of the interval. O

Claim 2 If I is an interval on P and o does not start or
end in I, then the labels of I appear in the same order in
o and in I (either clockwise or counterclockwise). Note
that the labels need not appear consecutively in o.

Proof. Consider three labels i, j, k that appear in this
order in I. Assume, for a contradiction, that these labels
appear in a different order in o and suppose, without
loss of generality, that they appear in the order i, k&, j
in 0. Let £ be the last label of o. Because ¢ does not
lie in I, the order of vertices around P is p;,p;, Dk, Pe-
See, e.g., Figure 2(c) where 4,5,k = 7,5,3. Then the
subpath of o from p; to py crosses the subpath from py
to py, a contradiction. O

2.1 An O(n?)-time dynamic programming algorithm

Let P, @ be two n-vertex simple polygons with labelled
vertices. Let p; (resp., g;) be the vertex of P (resp., Q)
with the label i.

Two vertices of a polygon are wvisible if the straight
line segment connecting the vertices lies entirely inside
the polygon. We precompute the visibility graph of each
polygon in O(n?) time [8] such that later we can answer
any visibility query in constant time.

Notation for our dynamic programming algorithm
will be eased if we relabel so that polygon P has labels
1,2,...,nin clockwise order. For each labelt=1,...,n
and each length t = 1,...,n let Io(4,t, cw) denote the
interval on @ of ¢ vertices that starts at ¢; and pro-
ceeds clockwise. Define I (%, t, ccw) similarly, but pro-
ceed counterclockwise from ¢;. Define Ip(i,t, cw) and
Ip(i,t, ccw) similarly. Note that Ip(i,t, cw) goes from
p;i 10 pi+¢—1 (index addition modulo n).

We say that a path traverses interval Ig(i,t,d) (where
d = cw or ccw), if the path is noncrossing, lies inside
@, visits exactly the vertices of Ig(i,t,d) and ends at
¢;- We make a similar definition for a path to traverse
an interval Ip(i,t,d).

Our algorithm will solve subproblems A(Z,t,dp,dg)
where i is a label from 1 to n, ¢ is a length from 1 to n,

and dp and dg take on the values cw or ccw. This sub-
problem records whether there is a path that traverses
Io(i,t,dg) and a path with the same sequence of labels
that traverses Ip(i,t,dp). If this is the case, we say that
the two intervals are compatible. Observe that P and
@ have compatible paths if and only if A(7,n,dp, dg) is
true for some %, dp, dg.

We initialize by setting A(i,1,dp,dg) to TRUE for
all ¢,dp, dg, and then solve subproblems in order of in-
creasing ¢. In order for intervals Ig(i,¢t + 1,dg) and
Ip(i,t+1,dp) to be compatible, the intervals of length
t formed by deleting the last label, ¢, must also be com-
patible, with an appropriate choice of direction (cw or
ccw) on those intervals. There are two choices in P and
two in Q. We try all four combinations. For a partic-
ular combination to ‘work’ (i.e., yield compatible paths
for the original length ¢ + 1 intervals), we need the last
labels of the length ¢ intervals to match, and we need
appropriate visibility edges in the polygons for the last
edge of the paths.

We give complete details for A(,t + 1, cw, cw). See
Figure 2(d)-(e). (The other four possibilities are simi-
lar.) Deleting label i from Ip(i,t + 1, cw) gives Ip(i +
1,t, cw) and Ip(i +t,t, ccw). Let g; be the vertex fol-
lowing ¢; in clockwise order around @ and let g be the
other endpoint of Ig(i,t + 1, cw) (in practice, for effi-
ciency, we would store k with the subproblem). Delet-
ing label ¢ from Ig(i,t + 1, cw) gives Ig(j,t, cw) and
Io(k,t, ccw). The two possibilities for P and @ are
shown by blue dash-dotted and red dotted lines in Fig-
ures 2(d) and (e), respectively. We set A(i,t+1, cw, cw)
TRUE if any of the following four sets of conditions
hold:

1. Conditions for Ip(i+ 1,t, cw) and Ig(j,t, cw): i+
1=jand A(i + 1,¢t, cw, cw).

2. Conditions for Ip(i + 1,t,cw) and Ig(k,t, ccw):
i+1 =k and gx sees ¢; in Q and A(i+1,¢, cw, ccw).
Note that the last edge of the path in ¢ must be
(qk, g;) which is why we impose the visibility con-
dition.

3. Conditions for Ip(i+t,t, ccw) and Ig(j,t, cw): i+
t = j and p;4 sees p; in P and A(i + ¢, ¢t, ccw, cw).
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4. Conditions for Ip(i+t,t, ccw) and Ig(k,t, ccw): i+
t = k and p;¢ sees p; in P and g sees ¢; in @ and
A(i + t,t, ccw, ccw).

Since there are a quadratic number of subproblems,
each taking constant time to solve, this algorithm runs
in time O(n?), which proves:

Theorem 1 Given two n-vertexr polygons, each with
points labelled from 1 to n in some order, one can find
a pair of compatible paths or determine that none exist
in O(n?) time.

2.2 A linear-time algorithm for convex point sets

In this section we assume that the input is a pair of
convex point sets P, (Q, along with their convex hulls.

Given a label z, we first define a greedy construction
to compute compatible paths starting at x. The output
of the construction is an ordered sequence o, of labels.
Using Claim 1 we keep track of the intervals in P and
Q@ corresponding to o,. Initially o, contains the label
z. Each subsequent step attempts to add a new label
to 0., maintaining intervals in P and ). Suppose the
intervals corresponding to the current o, are Ip and
Ig in P and @ respectively. Let a and b be the labels
of the vertices just before and just after interval Ip on
the boundary of P. Similarly, let ¢ and d be the labels
of the vertices just before and just after interval Ig on
the boundary of Q. If {a,b} = {¢,d}, then we add a
and b to o, in arbitrary order. Otherwise, if there is
one label in common between the two sets, we add that
label to o,. Finally, if there are no common labels, then
the construction ends. Let o, be a maximal sequence
constructed as above.

Lemma 2 P and @ have compatible paths starting at
label x if and only if o, includes all n labels.

Proof. If P and @Q have compatible paths with label
sequence o starting at label z then by Claim 1 every
prefix of o corresponds to an interval in P and in @,
and we can build o, in exactly the same order as o.
For the other direction, we claim to construct non-
crossing paths in P and @ corresponding to o,. Ob-
serve that when we add one or two labels to o,, we can
add the corresponding vertices to our paths because the
point sets are convex, so every edge is allowable. Fur-
thermore, the paths constructed in this way are non-
crossing because the greedy construction of o, always
maintains intervals in P and Q). Hence the new edges
are outside the convex hull of the paths so far. O

Lemma 2 allows us to find compatible paths (if they
exist) in O(n?) time by trying each label z as the initial
label of the path. In order to improve this to linear time,
we first argue that when o, does not provide compatible
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paths, then we need not try any of its other labels as
the initial label.

Lemma 3 If o, has length less than n, then no label
in oy can be the starting label for compatible paths of P
and Q.

Proof. Suppose that there are compatible paths with
label sequence s, starting at a label y in 0,. Let z be
the first label that appears in s, but not in o,. Let
Ip and Ig be the intervals corresponding to o, in P
and @ respectively. By Claim 1 the prefix of s, before
z corresponds to intervals, say Ip and I on P and
Q, respectively. Then I, C Ip and Iy, C Ig (by our
assumption that z is the first label of s, not in o).
Since the vertex with label z must be adjacent to I on
the boundary of P and to I, ég on the boundary of ), and
z does not appear in o,, therefore the vertex with label
z must be adjacent to Ip on the boundary of P and to
Ig on the boundary of (). But then our construction
would add label z to o. O

We will use Lemma 3 to show that we can eliminate
some labels entirely when o, is found to have length
less than n. Suppose o, does not include all labels. Let
Ip and Ig be the intervals on P and @, respectively,
corresponding to the set of labels of ¢,. Let a and b be
the labels that appear at the endpoints of Ip.

Suppose P and @ have compatible paths (of length
n) with label sequence o. Then by Lemma 2 the initial
and final label of ¢ lie outside of o,. Furthermore, by
Claim 2, the set of labels of ¢, must appear consecu-
tively and in the same order around P and around @
(either clockwise or counterclockwise). Our algorithm
checks whether Ip and Ig have the same ordered lists
of labels. If not, then there are no compatible paths.

So suppose that Ip and Ig have the same ordered lists
of labels. Then the endpoints of Ig must have labels
a and b. We will now reduce to a smaller problem by
discarding all internal vertices of Ip and Ig. Let P’ and
Q@' be the point sets formed from P and @, respectively,
by deleting the vertices with labels in o, — {a, b}.

Lemma 4 Suppose z is a label appearing in P'. P and
@ have compatible paths with initial label z if and only
if P! and Q' have compatible paths with initial label z.

Proof. If P and @ have compatible paths (of length n)
with initial label z, then we claim that deleting from
those paths the vertices with labels in o, — {a, b} yields
compatible paths of P’ and @’ with initial label z. It
suffices to show that if we delete one vertex from a non-
crossing path on points in convex position then the re-
sulting path is still noncrossing. The two edges incident
to the point to be deleted form a triangle, and the new
path will use the third side of the triangle. Since the
points are in convex position, the triangle is empty of
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Figure 3: (a)—(b) Compatible paths on the point sets P\ {pa, P, Pc,Pa} and Q \ {qa, v, qc, g4} (¢)—(d) Insertion of

the deleted points keeps the paths compatible.

other points, and so the new edge does not cross any
other edge of the path.

For the other direction, suppose that ¢’ is a label
sequence of compatible paths of P’ and @)’ with initial
label z. Suppose without loss of generality that label
a comes before label b in ¢’/. Construct a sequence o
by adding the labels of o, — {a, b} after a in ¢’ in the
order that they appear in Ip. It remains to show that
the corresponding paths in P and ) are noncrossing.
This follows from the fact that in both P and @ the
added points appear consecutively around the convex
hull following the point with label a. O

We can now prove the main result of this section.

Theorem 5 Given two sets of n points in convex po-
sition (along with their conver hulls) each with points
labelled from 1 to n, one can find a pair of compatible
paths or determine that none exist in linear time.

Proof. The algorithm is as described above. At each
stage we try some label x to be the initial label of com-
patible paths, by computing o, using the greedy con-
struction. If o, has length n we are done. Otherwise if
o has length 1 or 2, then we have ruled out the labels
in o, as initial labels. Finally, if o, has length less than
n and at least 3 then we test whether the intervals cor-
responding to o, in P and ) have the same ordering,
and if they do, then we apply the reduction described
above and recurse on the smaller instance as justified
by Lemma 4.

The running time of the algorithm is determined by
the length of all the o-sequences we compute. Define a
o-sequence to be ‘long’ or ‘short’ depending on whether
it contains at least three labels or not. Every long se-
quence of length ¢ reduces the number of points by (£—2)
and requires O(¢) time. Thus, long sequences take O(n)
time in total. Computing any short sequence takes O(1)
time. Since for each label, we compute ¢ at most once,
the short sequences also take O(n) time in total. O

3 Monotone Paths in General Point Sets

In this section we examine arbitrary point sets in general
position, but we restrict the type of path.

Let P be a point set in general position. An ordering
o of the points of P is called monotone if there exists
some line ¢ such that the orthogonal projection of the
points on /¢ yields the order o. A monotone path is a
path that corresponds to a monotone ordering. Note
that every monotone path is noncrossing.

Two points sets P and @) each labelled 1,2, ...,n have
compatible monotone paths if there is an ordering of the
labels that corresponds to a monotone path in P and
a monotone path in Q. To decide whether compatible
monotone paths exist, we can enumerate all the mono-
tone orderings of P, and for each of them check in linear
time whether it determines a monotone path in Q.

A method for enumerating all the monotone orderings
of a point set P was developed by Goodman and Pollack:

Theorem 6 (Goodman and Pollack [7]) Let ¢y be
a line not orthogonal to any line determined by two
points of P. Starting with { = £y, rotate the line ¢
through 360° counter-clockwise about a fixed point. Pro-
jecting the points onto £ as it rotates gives all the possible
monotone orderings of P. There are 2(3) = n(n — 1)
orderings, and each successive ordering differs from the
previous one by a swap of two elements adjacent in the
ordering.

Furthermore, the sequence of swaps that change each
ordering to the next one can be found in O(n?logn)
time by sorting the O(n?) lines (determined by all pairs
of points) by their slopes.

This gives a straight-forward O(n?) time algorithm to
find compatible monotone paths, since we can generate
the O(n?) monotone orderings of P in constant time per
ordering, and check each one for monotonicity in @ in
linear time.

We now present a more efficient O(n?logn) time al-
gorithm. For ease of notation, relabel the points so that
the order of points P along £y is 1,2,...,n. As the line
¢ rotates, let LY LY ... LY | where t = n(n — 1), be
the monotone orderings of P, and let Sp be the corre-
sponding swap sequence. Similarly, let ng , L?, e LtQ71
be the monotone orderings of () and let Sg be the cor-
responding swap sequence (Figure 4). We need to find
whether there exist some i and j such that LY = L?.
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Figure 4: Illustration for computing compatible mono-
tone paths.

As noted above, Sp and Sg have size O(n?) and can be
computed in time O(n? logn).

Recall that the inversion number, I(L) of a permu-
tation L is the number of pairs that are out of order.
It is easy to see that the inversion numbers of the L’s
progress from 0 to (g) and back again. In particular,
I(LF) =ifor 0 <i < (3). Our algorithm will compute
the inversion numbers of the LJQ’S, which also have some

structure. Let I; be the inversion number of L?. Note
that we can compute Iy in O(nlogn) time—sorting al-
gorithms can be modified to do this [5].

Claim 3 For all j, 1<j<n(n—1), I; differs from I;,_;
by £1, and can be computed from I;_1 in constant time.

Proof. L;‘?2 is formed by swapping one pair of adjacent

elements in L?_l. If this swap moves a smaller ele-
ment after a larger one then I;=I;_;+1. Otherwise, it
is Ij,l—l. [l

The main idea of our algorithm is as follows. If LJfQ =
LF, then they must have the same inversion number,
I;. There is one value of ¢ in the range 0 < ¢ < (g)
that gives this inversion number, namely i = I;. There
is also one value of 7 in the second half of the range
that gives this inversion number, but we can ignore the
second half of the range based on the following;:

Remark 1 If there exist i,j such that LY = L?, then
there is such a pair with i in the first half of the index
range, i.e., 0 <i < (Z)

Proof. The second half of each list of orderings con-
tains the reversals of the orderings in the first half [7].
Thus if there is a match LI = L]Q then the rever-
sals of the two orderings also provide a match, say
LI = L]qi%, and either 7 or i’ is in the first half of the
index range. U

Our plan is to iterate through the orderings Lin for
0 < j < n(n—1). Since each ordering differs from the
previous one by a single swap, we can update from one
to the next in constant time. For each j, we will check
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if L9 is equal to LT | i.e., for each j, 0 < j < n(n —1)
J I
we will compute the following four things:

o LY, I;, LT, and

e [, which is the Hamming distance—i.e., the num-
ber of mismatches—between LJiQ and Li

If we find a j with H; = 0 then we output L? and LZ
as compatible monotone paths. Otherwise, we declare
that no compatible monotone paths exist. Correctness
of this algorithm follows from Remark 1 and the discus-
sion above:

Claim 4 P and Q have compatible monotone paths if
and only if H; =0 for some j, 0 < j <n(n—1).

We now give the details of how to perform the above
computations. For j = 0 we will compute everything
directly, and for each successive j, we will show how to
update efficiently. We initialize the algorithm at j =
0 by computing Lg and I; in O(nlogn) time, LZ in
O(n?) time, and H; in linear time.

Now consider an update from j — 1 to j. As already
mentioned, L? differs from L?_l by one swap of adja-
cent elements, so we can update in constant time. By
Lemma 3, I; differs from I;_; by £1 and we can com-
pute it in constant time. This also means that ij differs

from LPj _, by one swap of adjacent elements, so we can
update 1t in constant time.

Finally, we can update the Hamming distance in a
two-step process as the two orderings change. When
we update from L?f1 to L?, two positions in the list
change, and we can compare them to the same positions
in LZ—l to update from H;_; to obtain the number of

mismatches between L? and Li _,- When we update

to LZ , two positions in this list change, and we can

compare them to the same positions in L?j to update
to H;. This two-step process takes constant time.

In total, we spend O(n?) time on initialization and
constant time on each of O(n?) updates, for a total of
O(n?) time. We thus obtain the following theorem.

Theorem 7 Given two point sets, each containing n
points labelled from 1 to n, one can find a pair of com-
patible monotone paths or determine that none exist in
O(n?logn) time.
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Appendix A

In this section we show that for every n > 5, there exist two
convex labelled point sets, each containing n points, that do
not admit compatible trees. Note that this also rules out the
existence of compatible paths.

Claim 5 Let P and Q be point sets in convex position, each
containing n > 2 points labelled by {1,2,...,n}. If they

admit a compatible tree that is not a star, then there exists
a partition {1,2,...,n} = AU B such that 2 < |A] < |B| <
n — 2 such that A and B are interval sets for both P and Q.

Proof. Suppose that P and @ admit a compatible tree T',
which is not a star. Then T has an edge e between two ver-
tices of degree two or higher. The deletion of e decomposes
T into two subtrees, say 71 and T, each with at least two
vertices. The vertex sets of T1 and T5, resp., correspond to

an interval set in P and Q. a
U1 o U1
Vs (5] V4 V3
° L] Y o
Vg @ o U3 V2 @ e Us

(a) (b)

Figure 5: Illustration for Lemma 8.

Theorem 8 For every integer n > 5, there exist two sets,
P, and Q., each of n labelled points in convex position, such
that P, and Q. do not admit any compatible tree.

Proof. For n = 5, let Ps and @5 be point sets labelled
(1,2,3,4,5) and (1,3,5,2,4), respectively, in counterclock-
wise order (Figure 5). If a compatible star exists, then the
four leaves would appear in the same counterclockwise or-
der in both Ps and Qs (by the definition of compatibility).
However, the two convex sets have distinct counterclockwise
4-tuples. If there is a compatible tree that is not a star,
then by Claim 5, a 2-element set A C {1,2,3,4,5} is an in-
terval set for both Ps and Q5. However, all five consecutive
pairs along the convex hull of Ps are nonconsecutive in the
convex hull of Q5. Therefore, Ps and Q5 do not admit any
compatible tree.

For n > 5, we can construct P, and @, analogously.
Let P, be labelled (1,2...,n) in counterclockwise order.
For i« = 0,1,2,3,4, let N; be the sequence of labels in
{1,2,...,n} congruent to ¢ modulo 5 in increasing order.
Now let @, be labelled by the concatenation of the sequences
N1, N3, No, N2, Ny in counterclockwise order.

If a compatible star exists, then the n — 1 leaves would
appear in the same counterclockwise order in both P, and
Q@n (by the definition of compatibility). However, the both
neighbors of a vertex in P, are different from the two neigh-
bors in @, consequently P,, and @, do not share any coun-
terclockwise (n — 1)-tuple. If there is a compatible tree
that is not a star, then by Claim 5, there is a partition
{1,2,...,n} = AU B into interval sets, where |A|,|B| > 2.
However, A and B cannot partition any subset of 5 consec-
utive elements in sequence (1,2, ...,n), similarly to the case
when n = 5. Consequently, P, and @, do not admit any
compatible tree. O
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Ladder-Lottery Realization

Katsuhisa Yamanaka™

Abstract

A ladder lottery of a permutation m = (p1,pa,...,Pn) is
a network with n vertical lines and zero or more hori-
zontal lines each of which connects exactly two consecu-
tive vertical lines. The top ends and the bottom ends of
the vertical lines correspond to the identity permutation
and 7, respectively. Each horizontal line corresponds to
an intersection of two vertical lines. Suppose that we
are given a permutation 7 of [n] = {1,2,...,n} and a
multi-set S of intersections each of which is a pair of el-
ements in [n]. Then LADDER-LOTTERY REALIZATION
problem asks whether or not there is a ladder-lottery
of m in which each intersection in S appears exactly
once. We show that LADDER-LOTTERY REALIZATION
problem is NP-complete. We also present some posi-
tive results of LADDER-LOTTERY REALIZATION and its
variant.

1 Introduction

A ladder lottery, known as the “Amidakuji” in Japan, is
a very common way to obtain a “random” assignment.
Japanese kids often use ladder lotteries to determine an
assignment in a group. Let us show an example of how
to use ladder lotteries. Suppose that, in an elementary
school, we have to determine a group leader among n
classmates. First, a teacher draws n vertical lines in a
notebook and ticks off one of the bottom ends of the
vertical lines so that any student cannot predict where
the tick-mark is. See Figure 1(a). Second, the teacher
covers the bottom ends of all vertical lines, then the
teacher draws some horizontal lines connecting adjacent
vertical lines (Figure 1(b)). Third, each student chooses
the top end of a vertical line (Figure 1(c)). Finally, the
teacher takes off the cover. The obtained figure gives
an assignment (Figure 1(d)).

Formally, for a permutation # = (p1,pa,...,pn) of
[n] ={1,2,...,n}, a ladder lottery is a network with n
vertical lines (lines for short) and zero or more horizon-
tal lines (bars for short) each of which connects exactly
two consecutive vertical lines. The top ends of lines cor-
respond to the identity permutation (1,2,...,n). The
bottom ends of lines correspond to 7. See Figure 2(a).

*Iwate University, Japan. yamanaka@cis.iwate-u.ac.jp
fSaitama University, Japan. horiyama@al.ics.saitama-u.ac. jp
fNational Institute of Informatics, Japan. uno@nii.ac.jp
§National Institute of Informatics, Japan. wasa@nii.ac.jp
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C B D A

Figure 1: An example of how to use a ladder lottery.
Imagine the situation that we choose a leader among
four students A, B, C, and D. (a) four vertical lines
and a tick-mark. (b) The tick-mark is hided and six
horizontal lines are drawn by a teacher according to his
or her intuition. (¢) Each student chooses a top end of a
vertical line. (d) The result of the obtained assignment.
In this assignment, D is a leader.

1 23456 1 23456

Figure 2: (a) A ladder lottery of (4,1,6,3,5,2) and (b)
its pseudoline drawing.

Each element 7 in [n] starts from the top end of ith
line from the left, and goes down along the line, then
whenever i comes to an end of a bar, ¢ goes horizontally
along the bar to the other end, then goes down again.
Finally, 7 reaches the bottom end of jth line from the
left such that i = p;. We can regard a bar as a mod-
ification of the current permutation, and a sequence of
such modifications in a ladder lottery always results in
the identity permutation.

Ladder lotteries of the reverse permutations have
a one-to-one correspondence to pseudoline arrange-
ments [12]. The route of an element from a top end
to a bottom end corresponds to a pseudoline and a bar
corresponds to an intersection of two pseudolines. To
calculate the number of pseudoline arrangements, some
enumeration and counting algorithms of ladder lotteries
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were presented in [5, 12]. The history of the counting
results is shown in the Online Encyclopedia of Integer
Sequences [7]. In the area of algebra, a ladder lottery is
regarded as a decomposition of a permutation into adja-
cent transpositions. The top ends of lines correspond to
the identity permutation. The bottom ends of lines cor-
respond to a permutation. Each bar corresponds to an
adjacent transposition. From these viewpoints, ladder
lotteries have been studied as mathematically attractive
objects. In recent years, from the viewpoint of theoreti-
cal computer science, some problems on ladder lotteries
are considered: counting [11], random generation [11],
enumeration [5, 12, 10, 11], reconfiguration [3].

A few years ago, Yamanaka et al. [8] proposed the
puzzle, called TOKEN SWAPPING problem: We are
given a permutation and a set of allowable transpo-
sitions. The TOKEN SWAPPING problem asks to find
a minimum-length decomposition using only transposi-
tions in the set.! Recently, this puzzle and its variants
have been actively studied [1, 4, 6, 9].

In this paper, we propose a new puzzle regarding lad-
der lotteries. The purpose of TOKEN SWAPPING prob-
lem is to find a shortest decomposition of a permuta-
tion. On the other hand, we consider the problem,
called LADDER-LOTTERY REALIZATION, of construct-
ing a target permutation using compositions of desig-
nated transpositions. Let us describe our problem more
formally. We are given a target permutation m of and a
multi-set S of transpositions. The problem asks whether
one can construct the target permutation by compos-
ing each transposition in the set exactly once. In this
paper, we investigate the computational complexity of
LADDER-LOTTERY REALIZATION problem. We show
the NP-completeness of the problem and give some pos-
itive results for the problem and its variant.

Due to page limitation, all proofs are omitted.

2 Preliminaries

A ladder lottery of a permutation m = (p1,pa, ..., pn) is
a network with n vertical lines (lines for short) and zero
or more horizontal lines (bars for short) each of which
connects two consecutive vertical lines. The top ends
of the n lines correspond to the identity permutation.
The bottom ends of the n lines correspond to m. See
Figure 2(a). Each element 7 in the identity permutation
starts the top end of ith line from the left, and goes
down along the line, then whenever ¢ comes to an end
of a bar, i goes to the other end and goes down again,
then finally ¢ reaches the bottom end of jth line such

1 Actually, the TOKEN SWAPPING problem is defined as a puzzle
consisting of n tokens on n-vertex graph where each token has a
distinct starting vertex and a distinct target vertex it wants to
reach, and the only allowed transformation is to swap the tokens
on adjacent vertices [8].
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that i = p;. By representing the route for each ele-
ment ¢ as a pseudoline and each bar as an intersection
of two pseudolines, one can represent a ladder lottery as
a drawing of pseudolines. In this paper, for convenience
of descriptions, we use the pseudoline drawing to rep-
resent a ladder lottery. For example, Figure 2(b) is the
pseudoline drawing of the ladder lottery in Figure 2(a).
From now on, if it is clear from the context, we call the
route of an element as a pseudoline. Clearly, we can
regard that a pseudoline in the pseudoline drawing of a
ladder lottery forms a y-monotone curve. Hence, in the
following, we assume that any pseudoline is y-monotone.
Now, let us define LADDER-LOTTERY REALIZATION
problem. Suppose that we are given a permutation m =
(p1,D2; - -, Pn) of [n] and a multi-set S of intersections
each of which is a pair of elements in [n]. Then LADDER-
LOTTERY REALIZATION asks whether or not there is
a ladder-lottery of 7 in which each intersection in S
appears exactly once. For example, suppose that we are
given the permutation (4,1,6,3,5,2) and the multi-set

{1,357, {1,4},{2,3}, {2,4}°,{2,5}%, {2, 6}, {3,4},
{3,6},{5,6}°}

of intersections, where {i,j}* means k {i,j}s. Then,
the answer is yes, since the ladder lottery in Figure 2(a)
is a solution.

3 Hardness of ladder-lottery realization

We give a reduction from a well-known NP-complete
problem ONE-IN-THREE 3SAT:

Problem: ONE-IN-THREE 3SAT [2]

Instance: Set X of variables, collection C' of clauses
over X such that each clause in C' contains exactly three
literals.

Question: Is there a truth assignment for X such that
each clause in C' has exactly one true literal?

Let Is = (X,C) be an instance of ONE-IN-THREE
3SAT, where X = {z1,29,...,2,} is a set of variables
and C' = {C4,Cy,...,Cy} is a collection of clauses. We
may assume without loss of generality that any clause
C; € C does not contain both the positive and the neg-
ative literals of any variable in X. We denote by n and
m the numbers of variables and clauses, respectively.
We are going to construct an instance Ir = (,S) of
LADDER-LOTTERY REALIZATION from Ig, where 7 is a
permutation and S is a multi-set of intersections.

To reduce Ig to Ir, we prepare the gadgets: a room
gadget, a drawer gadget, a variable gadget, a clause
gadget, and an assignment gadget. Let us explain these
gadgets one by one.
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Figure 3: Room gadget with 4 rooms.

Room gadget

First, we define a room gadget. The room gadget con-
sists of two pseudolines sy, s, and a multi-set Sg(Ig) of
intersections. The top ends of the two pseudolines ap-
pear in the order sy, s, and their bottom ends appear
in the reverse order. We define the multi-set of inter-
sections so that the two pseudolines form 4n regions:

SR(Is) = {Sl, ST}4n_1.

Then the two pseudolines intersect 4n — 2 closed regions
and the top and bottom regions enclosed by s; and s,..
See Figure 3. We call the ith region from the top the
ith room.

Later, we use two rooms to represent an assignment
of each variable. More precisely, we use the (4i — 3)rd
and (47 — 1)th rooms to represent the assignment of the
variable x; for 1 =1,2,...,n.

Drawer gadget

We next define a drawer gadget, which consists
of 4n pseudolines dy,d},ds,dh, ..., doy,ds, and a
multi-set Sp(lg) of intersections.  The top ends
of the pseudolines are arranged in the order
dy, don,dy, 1, don—_1,...,d7,dy in the left region of
the pseudolines of the room gadget and their bot-
tom ends are arranged in the reverse order, namely
dy,dy,da,db, ... day,ds, (see Figure 4).

We define Sp(Ig) such that d; and d} for each i =
1,2,...,2n come to the (2 — 1)th and (27)th rooms and
leave the rooms, respectively. Besides, every pseudoline
in the drawer gadget crosses with all other pseudolines
except itself in the gadget exactly once. The formal
definition of Sp(Ig) is as follows:

Sp(Is) =
({di,dy}, {di, di} | i, =1,2,...,2n and i < i’}
U{{d,d}|i=1,2,...,2n}
uU{{d,,di},{d;,d.,} | i,i' =1,2,...,2n and i < i'}
U{{di,se}?|i=1,2,...,2n}.
U{{d;,s}*|i=1,2,...,2n}.
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d,d, dyd; dyd, d; d, ) Sy

d, d) dydy d; di d, d), Se S

Figure 4: Drawer gadget.

Figure 4 shows an example of pseudolines of a drawer
gadget and a room gadget. From the definition of
Sp(Is), one can observe the form of a pseudoline in
the drawer gadget, as follows. First, d; for each ¢ =
1,2,...,2n crosses with every d; and d}, with i’ < i.
Then d; crosses with s, two times. That is, d; comes
to (2¢ — 1)th room and leaves it. Then d; crosses with
every dy with ¢ > ¢ and every d}, with " > i. As a
result, the bottom end of d; is (2¢ — 1)th one from the
left among the pseudolines of the drawer gadget. The
shape of d} for each i = 1,2,...,2n is similar.

Now, we explain why d; and d} for i = 1,2,...,2n
form the above shape more formally. For any y-
coordinate, a pseudoline d; (and d}) is rightmost if, in
the y-coordinate, the z-coordinate of d; (and d}) is the
largest among all the pseudolines in a drawer gadget.
The rightmost y-coordinate set of d; (and d) is the set
of the y-coordinates in which d; (and d}) is rightmost.
From the definition of a drawer gadget, the pseudolines
in the drawer gadget cross each other exactly once and
the order of the bottom ends of the pseudolines is the
reverse order of their top ends. Hence, it can be ob-
served that a rightmost y-coordinate set of a pseudoline
always forms an open interval. Since sy crosses with
dy,ds,...,ds, and does not cross with df,d,,...,d5,,
s¢ crosses with d; in a y-coordinate in the rightmost
y-coordinate set of d;. Similarly, s, crosses with d in
a y-coordinate in the rightmost y-coordinate set of d.
Therefore, the drawing of the pseudolines of a drawer
gadget and a room gadget is unique, as shown in Fig-
ure 4.
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Variable gadget

Here, let us define a variable gadget consisting of n pseu-
dolines and a multi-set Sx (Ig) of intersections. We cre-
ate a pseudoline p(z;) for each variable z;, and arrange
their top ends in the order p(x1),p(z2),...,p(zy), and
all the top ends appear in the right of s,.. We also define
the order of their bottom ends as the same one.

Let us explain the outline of the form of p(z;) (Fig-
ure 5). p(xz;) crosses with do;—1 and dg; but does not
cross with s,. Hence, p(z;) crosses the two pseudolines
in only the coresponding rooms. First, the pseudo-
line p(x;) crosses with other pseudolines to approach
the room gadget. Then, p(x;) comes to and leaves two
rooms one by one. In the rooms, p(z;) crosses with dg;_1
and dg;. Finally, p(z;) crosses with other pseudolines to
go back to its the original position. Now, we define the
multi-set S(p(z;)) of intersections for p(z;) as follows:

S(p(x:)) ={p(x;), s} U{p(x:), d2i—1}° U {p(;), da; }?

i—1
U U {p(z:), plai)}>.

Let us explain the shape of p(x;) more carefully. The
multi-set S(p(x;)) does not include {p(z;),s¢}, and
hence p(z;) cannot enter the left region of s,. However,
S(p(z;)) includes both {p(z;), de;i—1}? and {p(z;), d2; }>.
Hence, p(z;) comes to the (4¢é — 3)rd and (4¢ — 1)th
rooms to cross with do;_1 and dy;, respectively. To ap-
proach the rooms, p(x;) crosses with p(x;_1), p(zi—2),

.., p(z1). Then, p(x;) arrives at the region next to the
target rooms. First, p(x;) comes to the (47 —3)rd room,
crosses with do;_1 two times in the room, and leaves the
room. Next, p(x;) comes to the (4i — 1)th room, crosses
with do; two times in the room, and leaves the room.
Then, to go back to the original position, p(x;) crosses
with p(z1), p(x2), ..., p(zi—1) again.

We show an example in Figure 5. Note that, since
p(x;) does not cross with sy, it has to cross with pseu-
dolines of a drawer gadget only in the rooms to which
the pseudolines come.

Now, let us define the multi-set of intersections of a
variable gadget:

Sx(Is) := U S(p(xi))-

Clause gadget

A clause gadget consists of m pseudolines correspond-
ing to the clauses in C' and a multi-set S¢(Ig) of inter-
sections. We create a pseudoline p(C;) for each clause
C; € C. The order of the top ends of the pseudolines is
p(C1),p(Cs),...,p(Cy) between the top ends of s, and
p(z1) (See Figure 6). The order of the bottom ends of
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d,d, &5d; d’,d, d’; d, 5y s, p(xy) p(xz)

0
i

J

T

E/
E

d, &) dyd’yd; d’5d, &4 S 8§

l\

p(x;) p(x,)

Figure 5: An example of a variable gadget for n = 2.

the pseudolines is the same as the top ends. The bot-
tom ends are arranged between the bottom ends of s,
and p(x1) (See Figure 6).

We design a multi-set of intersections for p(C;) for
j=1,2,...,m so that p(C;) forms the shape below. If
C; includes a positive literal of x;, then p(C;) comes
to and leaves the (4i — 3)rd room. If C; includes a
negative literal of x;, p(C;) comes to and leaves the
(4i — 1)th room. Otherwise, C; includes neither the
positive nor negative literals of z;, p(C}) comes to nei-
ther the (47 — 3)rd nor (43 — 1)th rooms. To force p(C})
to be such a shape, we define a multi-set of intersec-
tions, as follows. We denote by L(C;) the set of literals
in C;. Let L(C;j) = {{;1,¢2,¢;3}. For each literal
lip, p € {1,2,3}, we define the following multi-set of
intersections.

S, Cj) :={{p(Cy), p(Ci)Y* | ' <iNtp ¢ L(Cyr)}
U{{p(C)),doi1}? | £ = 2}
U{{p(C)),dai}? | £ = T}

U {{p(Cy), sr}?}

The intersections in the first set of S(¢;,,C;) are used
to approach the room gadget corresponding to ¢;,. If
L, € L(C;) holds, p(C;) and p(Cj/) has no intersec-
tion. The intersections in the second and third sets are
used to force p(C;) to come to the rooms corresponding
to the literals of z;.

Besides, we define the following multi-set of intersec-
tions for p(C;) and p(z;):

S(Ejvp,Cj,QZi) =
{p(Cy),p(x)}* [ £jp # i Aljp # T3}
U{{p(Cy),p(@:)}? | £jp = 2 V £, = T3}
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The intersections above are used so that p(x;) comes to
the corresponding the room gadget.

Now we define the set of intersections for clauses, as
follows:

Sc(Ils) =

QL:J ip, C UUUS JP’C]"rl)

i=1j=1p=1

We give an example shown in Figure 6. The exam-
ple shows an reduced instance from the ONE-IN-THREE
3SAT instance (X, C), where X = {x1,z2, 23,24}, C =
{01,02}, C; = (xT\/xg \/l‘73)7 and Cy = (332 \/$3\/l‘4).

Assignment gadget

The last gadget is the one for representing a truth-false
assignment of variables. We define an assignment gad-
get consisting of a pseudoline a and a set of intersections
for a. The top and bottom ends of a are respectively lo-
cated in the left of d},, and d; (see Figure 6). We define
that a crosses with each p(z;) twice for i = 1,2,...,n
and a crosses with s, 2n times but does not cross with
sy to make a cross with each p(z;) in either (4¢ — 3)th
or (4i — 1)th room. If a crosses with p(x;) in (4é — 3)rd
room, then it means that x; is assigned true. Other-
wise, if a crosses with p(z;) in (4 — 1)th room, then it
means that x; is assigned false. Besides, we force that a
crosses with each p(C;) two times. This corresponds to
make the clause C; true. The pseudoline a touches each
(' exactly once, and hence this assignment corresponds
to a solution of an instance of ONE-IN-THREE 3SAT.
We can define the multi-set of intersections which im-
plements such shape of a:

n 2n
Is) = <U{a,p(xi)}2> U (U({a,di}zn,{a,d§}2")>
i=1

i=1

U{a,s¢}?".

U {a’ Cj}2

The first term is for the intersections with p(z;) for
eachi =1,2,...,n. The second term is the intersections
with the pseudolines in the drawer gadget to approach
the rooms and to go back to the original position. Note
that a does not have to go back to the leftmost region
for each entrance to a room. In Figure 6, a goes back to
the leftmost region immediately after each entrance to
a room. This is just an example of the form of a. The
third term is for the intersections with the pseudolines in
the clause gadget. The last term is for the intersections
with sy to come to rooms. The pseudoline a cannot go
inside the right region of s, since there is no intersection
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{a,s¢}. Hence, a has to cross with the pseudolines of
the variables and the clauses in the rooms.

Now, we are ready to describe a reduced instance of
LADDER-LOTTERY REALIZATION. Given an instance
Is = (X, C) of ONE-IN-THREE 3SAT, we construct an
instance Ir = (w(Ig),S(Is)), where

( ) (a' d17 d27 a"'vd/2nad2n787‘7sl7

p(C1),p(Ca); - -, p(Crm),
p(x1),p(2), - -, p(an))

and
S(Is) =

Using the reduction above, one can show NP-
completeness of LADDER-LOTTERY REALIZATION.

SR(Is) U SD(Is) U Sx(fs) U Sc(fs) U SA(Is).

Theorem 1 LADDER-LOTTERY REALIZATION is NP-
complete.

4 Positive results

In this section, we give positive results. Let Ir = (7, .S)
be an instance of LADDER-LOTTERY REALIZATION,
where 7 is a permutation of [n] and S is a multi-set of
intersections. If {i, j}*¥ € S, we say that the multiplicity
of {i,j} in S is k.

Theorem 2 Let Ir = (m,5) be an instance of
LADDER-LOTTERY REALIZATION. If the multiplicity of
every intersection in S is 1, one can determine whether
or not Ir s a yes-instance in polynomial time.

Now, let us consider a variant of LADDER-LOTTERY
REALIZATION problem. Suppose that we are given only
a multi-set S of intersections each of which is a pair of
elements in [n]. Then, ANYPERM-LADDER-LOTTERY
REALIZATION asks whether or not there is a ladder-
lottery of a permutation in which each intersection in
S appears exactly once. Note that, in this problem, we
have no permutation as an input. The problem simply
asks whether or not there is a ladder-lottery of “some
permutation” for S.

Theorem 3 Let S be a multi-set of intersections. If
the multiplicity of every intersection in S is 1, one can
solve ANYPERM-LADDER-LOTTERY REALIZATION for
S in polynomial time.

In the case that the multiplicity of every intersection
is odd, we can solve LADDER-LOTTERY REALIZATION
in polynomial time.

Theorem 4 Let Ir = (m,S) be an instance of
LADDER-LOTTERY REALIZATION. If the multiplicity
of every intersection in S is odd, one can determine
whether Ir is a yes-instance in polynomial time.
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a dgd;dgdsd,dy;dyd; s S p(C)  pxy) p(xy) p(x;) p(x,)
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Figure 6: Reduced instance from (X,C) of a ONE-IN-THREE 3SAT instance, where X = {z1,29,23,24}, C =
{C1,Cs}, Cy = (T1 Va2 VT3), and Co = (22 Va3V ay). The assignment gadget represents (z1, 22, 23, 24) = (0,0, 1,0).
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Away from Rivals

Kazuyuki Amano *

Abstract

Let P be a set of n points, and d(p, ¢) be the distance
between a pair of points p,q in P. We assume the dis-
tance is symmetric and satisfies the triangle inequality.
For a point p € P and a subset S C P with |S| > 3, the
2-dispersion cost costa(p,S) of p with respect to S is
the sum of (1) the distance from p to the nearest point
in S\ {p} and (2) the distance from p to the second
nearest point in S\ {p}. The 2-dispersion cost costz(.S)
of § C P with |S| > 3 is minyeg{costa(p, S)}.

In this paper we give a simple 1/8—approximation
algorithm for the 2-dispersion problem.

1 Introduction

Many facility location problems compute locations min-
imizing some cost or distance [4, 5]. While in this paper
we consider a dispersion problem which computes loca-
tions maximizing some cost or distance [1, 2, 3, 6, 9, 10,
11].

Dispersion problems has an important application for
information retrieval. It is desirable to find a small sub-
set of a large data set, so that the small subset have a
certain diversity. Such a small subset may be a good
sample to overview the large data set [2], and diver-
sity maximization has became an important concept in
information retrieval.

A typical dispersion problem is as follows. Given a
set P of points and an integer k, find k points subset
S of P maximizing a designated cost. If the cost is
the minimum distance between a pair of points in S
then it is called the max-min dispersion problem, and
if the cost is the sum of the distances between all pair
of points in .S then it is called the max-sum dispersion
problem. Unfortunately both problems are NP-hard,
even the distance satisfies the triangle inequality [9].

In this paper we consider a recently proposed related
problem called the 2-dispersion problem [7, 8]. We give
a simple approximation algorithm for the 2-dispersion
problem, where the cost of a point in S is the sum of the
distances to the nearest two points in S, and the cost of
S is the minimum among the cost of points in S. Intu-
itively we wish to locate our k chain stores so that each

*Department of Computer Science,
amano@cs.gunma-u.ac. jp
TDepartment of Computer Science,

nakano@cs.gunma-u.ac. jp

Gunma University,

Gunma University,

Shin-ichi Nakano T
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store is located far away from the nearest two “rival”
stores to avoid self-competition. We call the problem
2-dispersion problem. In [7, 8] more general variants,
including max-min and max-sum dispersion problems
are studied.

In this paper we give a simple approximation algo-
rithm for the 2-dispersion problem defined above. Our
algorithm computes a 1/8-approximate solution for the
2-dispersion problem. This is the first approximation
algorithm for the 2-dispersion problem.

The remainder of the paper is organized as follows.
Section 2 gives some definitions. Section 3 gives our sim-
ple approximation algorithm for the 2-dispersion prob-
lem. In Section 4 we consider more general problem
called c-dispersion problem. Finally Section 4 is a con-
clusion.

2 Definitions

Let P be a set of n points, and d(p, ) be the distance be-
tween a pair of points p, ¢ in P. We assume that the dis-
tance is symmetric and satisfies the triangle inequality,
meaning d(p,q) = d(q,p) and d(p,q) + d(q,7) > d(p,7).

For a point p € P and a subset S C P with |S| > 3,
the 2-dispersion cost costa(p, S) of p with respect to S is
the sum of (1) the distance from p to the nearest point
in S\ {p} and (2) the distance from p to the second
nearest point in S\ {p}. The 2-dispersion cost costs(S)
of S C P with |S| > 3 is minyeg{costa(p, S)}.

Given P,d and an integer k > 3, the 2-dispersion
problem is the problem to find the subset S of P with
|S| = k such that the 2-dispersion cost costz(S) is max-
imized.

3 Greedy Algorithm

Now we give an approximation algorithm to solve the 2-
dispersion problem. See Algorithm 1. The algorithm
is a simple greedy algorithm.

Now we consider the approximation ratio of the solu-
tion obtained by the algorithm.

Let S* C P be the optimal solution for a given
2-dispersion problem, and S C P the solution ob-
tained by the algorithm above. We are going to show
costa(S) > costa(S*)/8, namely the approximation ra-
tio of our algorithm is at least 1/8.
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Algorithm 1 greedy(P,d, k)

compute S3 C P consisting of the three points

D1, P2, p3 with maximum cost costs(Ss)

for i=4tok do
find a point p; € P\ S;_1 such that costa(p;, Si—1)
is maximized
Si =81 U{pi}

end for

output S

Let D, be the disk with center at p and the radius
r* = costy(S*)/4. Let D* = {D,|p € S*}. We have the
following three lemmas.

Lemma 1 For any p € P, D, properly contains at
most two points in S*.

Proof. Assume for a contradiction that D, properly
contains three points p1,pa,p3s € S*. Now d(p1,p2) <
2r* and d(p1,p3) < 2r* hold, then costa(p1,S*) <
d(p1,p2) + d(p1,p3) < 4r* = costa(S*), a contradic-
tion. g

*

Lemma 2 For eachi=3,4,...,k, costa(p;, Si—1) > r
holds.

Proof. Clearly the claim holds for ¢ = 3. Assume j —
1 < k and the claim holds for each ¢ = 3,4,...,7 — 1.
Now we consider for ¢ = j. We have the following two
cases.

Case 1: There is a point p* in S* such that D,-
properly contains at most one point in S;_;. Note
that Dy~ is the disk with center at p* and the radius
r* = costy(S*) /4.

Then the distance from p* to the 2nd nearest point
in S;_; is at least 7* so costa(p*, S;—1) > r*. Since the
algorithm choose p; in a greedy manner, costa(p;, Sj_1)
is also at least r*. Thus costa(p;, Sj—1) > r* holds.
Case 2: Otherwise. (For each point p* in S*, D«
contains at least two points in S;_1.)

We now count the number N of distinct pairs (p*, q)
with (1) p* € 8%, (2) ¢ € Sj—1 and (3) d(p*,q) < r*.

By Lemma 1 each D, with ¢ € S;_; contains at most
two points in S*. Thus N < 2(j — 1) < 2k. Since Case
1 does not occur, each Dy~ with p* € S* contains two
or more points in S;_1, so N > 2k. A contradiction.

Thus Case 2 never occurs. O

Lemma 3 For each i = 3,4,...,k, costa(S;) > r*/2
holds.

Proof. Clearly the claim holds for i = 3. Assume that
j—1 < k and the claim holds for each i = 3,4,...,j—1.
Now we consider for i = j.

To prove costz(S;) > r*/2 we only need to show for
any three points u, v, w in S;, d(u,v) + d(u, w) > r* /2.
We have the following four cases.
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If none of w,v,w is p;, then d(u,v) + d(u,w) > r*/2
is clearly held as it was held in S;_1.

If wis pj, then by Lemma 2 d(p;,v) + d(pj,w) >
costa(pj, Sj—1) > r*. Thus d(u,v) + d(u,w) > r*/2
holds.

If v is p;, assume for a contradiction that d(u,p;) +
d(u,w) < r*/2. Then clearly d(u,p;) = d(pj,u) <
r*/2 and by the triangle inequality d(p;,w) <
d(pj,u) + d(u,w) = d(u,p;) + d(u,w) < r*/2. Then
costa(pj, Sj—1) < d(pj,u) +d(p;, w) < r*, contradiction
to Lemma 2. Thus if v is p; then d(u, p;) + d(u,w) >
r*/2 holds.

If w is pj, then we can prove the claim in a similar
manner to the case v is p;. O

Since S = S, we have the following theorem.
Theorem 4 costs(S) > costa(S*)/8.

Thus the approximation ratio of Algorithm 1 is at
least 1/8.

Is the approximation ratio above best possible? We
now provide an example for which our algorithm com-
putes a solution with approximation ratio asymp-
totically 1/4. See an example in Fig.l. P =
{¢1,92,43, 94,95, g6, 7, 8} and k = 6 for which our algo-
rithm computes a solution S = {q1,¢2,...,q6}, where
the points are chosen in this order. The distances be-
tween points are as follows. d(q1,¢2) = d(q2,q3) =
d(gs,q1) = 1. g5 is the midpoint between ¢; and
q2. qs is on the line segment between ¢; and ¢s and
d(g1,96) = 0.75 and d(gs,qs) = 0.25. Finally we set
d(q1,7) = d(g2,8) = d(g3,q4) = €, where € is small
enough.

Note that costs(S) = costa(qs, S) < 0.25 + € while
costa(S*) = 1 for S* = {q1,92,43,94,7,8}. Thus the
approximation ratio is 1/4.

Thus we still have a chance to improve the approxi-
mation ratio of our simple greedy algorithm, or we can
find an example of P for which our algorithm generates
a solution with approximation ratio smaller than 1/4.

4 Generalization

The 2-dispersion problem can be naturally generalized
to the c-dispersion problem as follows.

For a point p € P and a subset S C P with |S| > ¢+1,
the c-dispersion cost cost.(p,S) of p € S with respect
to S is the sum of the distances from p to the nearest
¢ points in S\ {p}. The c-dispersion cost cost.(S) of
S C P with |S] > ¢+ 1 is minyeg{cost.(p,S)}. Given
P,d and an integer k > ¢ + 1, the c-dispersion problem
is the problem to find the subset S of P with |S| =k
such that the c-dispersion cost cost.(S) is maximized.

We can naturally generalize our greedy algorithm in
Section 3 to the algorithm to solve the c-dispersion prob-
lem. See Algorithm 2.



70

CCCG 2018, Winnipeg, Canada, August 8-10, 2018

Ay 9y

q, r S q
1 q5 2

Figure 1: An example of a solution S = {q1,¢2,...,¢s}

with approximation ratio 1/4.

Algorithm 2 greedy-c(P,d, k)

compute S.y1 C P consisting of the ¢ + 1 points

D1,D2, - -+, Pet1 With maximum cost cost.(S.)

for i=c+2tok do
find a point p; € P\ S;_1 such that cost.(p;, S;i—1)
is maximized
Si = 8Si—1 U{pi}

end for

output S

Let S* be the optimal solution for a given c-dispersion
problem, and .S C P the solution obtained by the greedy
algorithm above. We now consider the approximation
ratio of the solution obtained by the greedy algorithm.

Let D, be the disk with center at p and the radius
= coste(S*)/(2¢). Let D** = {D,lp € S*}. We
have the following three lemmas.

Lemma 5 For any p € P, D, properly contains at
most ¢ points in S*.

Proof. Assume for a contradiction that D, properly
contains ¢ + 1 points, say q1,G2,-..,Gc+1 € S*. Now
d(get+1,qt) < 2r** holds for each t = 1,2,...,c
Then costa(qet1,5") < d(qet1,q1) + d(ges1,q2) + -+ +
d(Ges1,qc) < 2cr™ = cost.(S*), a contradiction. O
Lemma 6 For each ¢ = Lk
cost.(pi, Si—1) > r** holds.

c + l,c + 2,...,k,

Proof. Clearly the claim holds for ¢ = ¢+ 1. Assume
j —1 < k and the claim holds for each i = ¢+ 1,¢c +
2,...,5 — 1. Now we consider for ¢ = j. We have the
following two cases.
Case 1: There is a point p* in S* such that Dy« prop-
erly contains at most ¢ — 1 point in S;_;.

Then the distance from p* to the c-th nearest point in
S;_1 is at least r** so cost.(p*,Sj—1) > r**. Since the

algorithm choose p; in a greedy manner, cost.(p;, Sj—1)
is also at least r**. Thus cost.(p;, Sj—1) > r** holds.
Case 2: Otherwise.

We now count the number N of distinct pairs (p*, q)
with (1) p* € S*, (2) ¢ € S;—1 and (3) d(p*,q) < r**.

By Lemma 5 each D, with ¢ € S;_; contains at most
¢ points in S*. Thus N < ¢(j — 1) < ck. Since Case
1 does not occur, each D, with p* € S* contains c or
more points in S;_1, so N > ck. A contradiction.

Thus Case 2 never occurs. |

Lemma 7 For eachi=c+1,c+2,...,k, cost.(S;) >
r** /c holds.

Proof. Clearly the claim holds for ¢ = ¢ + 1. Assume
that j —1 < k and the claim holds for each i = c+1,c+
2,...,7 — 1. Now we consider for i = j.

For any point u in S; we show cost.(u,S;) > r**/c
holds. We have three cases. Let S(u) be the set of point
in S; \ {u} consisting of the nearest ¢ points to u.

If p; ¢ {u} U S(u), then clearly cost.(u,S;) > r**/c
holds, since cost.(u,S;—1) > r**/c holds.

If p; = u, then by Lemma 6 cost.(u, S;) > r** holds,
so cost.(u, S;) > r**/c holds.

If p; € S(u), then assume for a contradiction that
cost.(u, S;) < r**/c. Let S(u) = {¢q1,¢2,...,q.} and
¢z = pj. Then clearly d(u,p;) < cost.(u,S;) <
r**/c and by the triangle inequality for each t # =z
d(pj,q) < d(pj,u) + d(u,q) = costc(u,S;) < r**/c.
Then cost.(pj, S;) < d(p;,q1) +d(pj, q2)+- - -+d(pj, gc)
< r**, contradiction to Lemma 6. O

Since S = S, we have the following theorem.

Theorem 8 cost.(S) > cost.(S*)/(2¢?).

5 Conclusion

In this paper we have presented a simple
1/8—approximation algorithm to solve the 2-dispersion
problem.  The running time of the algorithm is
O(n?). Similarly we have presented a simple
1/(2¢?)—approximation algorithm to solve the c-
dispersion problem. The running time of the algorithm
is O(net1).
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An efficient approximation for point-set diameter in higher dimensions

Mahdi Imanparast*

Abstract

In this paper, we study the problem of computing the
diameter of a set of n points in d-dimensional Euclidean
space for a fixed dimension d, and propose a new (1+¢)-
approximation algorithm with O(n + 1/?72) time and
O(n) space, where 0 < € < 1. We also show that the
proposed algorithm can be modified to a (1 + O(g))-
approximation algorithm with O(n+1/% ~%) running
time. These results provide some improvements in com-
parison with existing algorithms in terms of simplicity,
and data structure.

1 Introduction

Given a finite set S of n points, the diameter of S, de-
noted by D(S) is the maximum distance between two
points of §. Namely, we want to find a diametrical pair
p and ¢ such that D(S) = max, 4es(||p —¢||). Comput-
ing the diameter of a set of points has a large history,
and it may be required in various fields such as database,
data mining, and vision. A trivial brute-force algorithm
for this problem takes O(dn?) time, but this is too slow
for large-scale data sets that occur in the fields. Hence,
we need a faster algorithm which may be exact or is an
approximation.

By reducing from the set disjointness problem, it
can be shown that computing the diameter of n points
in R? requires (nlogn) operations in the algebraic
computation-tree model [1]. It is shown by Yao that
it is possible to compute the diameter in sub-quadratic
time in each dimension [2]. There are well-known so-
lutions in two and three dimensions. In the plane, this
problem can be computed in optimal time O(nlogn),
but in three dimensions, it is more difficult. Clarkson
and Shor [3] present an O(nlogn)-time randomized al-
gorithm. Their algorithm needs to compute the inter-
section of n balls (with the same radius) in R3. It may
be slower than the brute-force algorithm for the most
practical data sets, and it is not an efficient method for
higher dimensions because the intersection of n balls
with the same radius has a large size. Some deter-
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ministic algorithms with running time O(nlog®n) and
O(nlog®n) are found for this problem in three dimen-
sions. Finally, Ramos [4] introduced an optimal deter-
ministic O(nlogn)-time algorithm in R3.

In the absence of fast algorithms, many attempts
have been made to approximate the diameter in low
and high dimensions. A 2-approximation algorithm in
O(dn) time can be found easily by selecting a point of
S and then finding the farthest point of it by brute-
force manner for the dimension d. The first non-
trivial approximation algorithm for the diameter is pre-
sented by Egecioglu and Kalantari [5] that approxi-
mates the diameter with factor v/3 and operations cost
O(dn). They also present an iterative algorithm with
t < n iterations and the cost O(dn) for each itera-

tion that has approximate factor \/5 —2v/3. Agar-
wal et al. [6] present a (1 + ¢)-approximation algorithm
in R? with O(n/e(@=1/2) running time by projection
to directions. Barequet and Har Peled [7] present a
V/d-approximation diameter method with O(dn) time.
They also describe a (1 4 ¢)-approximation approach
with O(n + 1/¢2?) time. They show that the running
time can be improved to O(n + 1/24=1). Similarly,
Har Peled [8] presents an approach which for the most
inputs is able to compute very fast the exact diame-
ter, or an approximation with O((n + 1/£2¢)log1/e)
running time. Although, in the worst case, the algo-
rithm running time is still quadratic, and it is sensitive
to the hardness of the input. Chan [9] observes that
a combination of two approaches in [6] and [7] yields
a (1 + e)-approximation with O(n + 1/£3(¢=1/2) time
and a (1 + O(e))-approximation with O(n + 1/e%2)
time. He also introduces a core-set theorem, and shows
that using this theorem, a (1 + O(e))-approximation
in O(n + 1/e%=%) time can be found [10]. Recently,
Chan [11] has proposed an approximation algorithm
with O((n/y/z + 1/e2+1)(log L)°(M) time by applying
the Chebyshev polynomials in low constant dimensions,
and Arya et al. [12] show that by applying an efficient
decomposition of a convex body using a hierarchy of
Macbeath regions, it is possible to compute an approx-
imation in O(nlog L + 1/5”5”*“) time, where « is an
arbitrarily small positive constant.

1.1 Our results

In this paper, we propose a new (1 + ¢)-approximation
algorithm for computing the diameter of a set S of
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Table 1: A summary on the complexity of some non-
constant approximation algorithm for the diameter of a
point set. Our results are denoted by +.

Ref. Approx. Factor Running Time
[6] 1+¢ O(W)
7] 1+e O(n +1/2(d=1))
8] l+e O((n+1/¢*") log 1)
[9] 1+e¢ O(n+1/53(d+1))
+ l+e O(n+1/e972)
[9] 1+ 0(e) O(n+1/e43)
[10] 1+0(e) O(n+1/e%%)
1] 1406 O+ 1/e%+l><log )ow)
[12] 14+ 0(¢e) O(nlog 1 + 1/e 7 e
+ 14+ O(e) O(n—l—l/ss_%)

n points in R? with O(n + 1/£972) time and O(n)
space, where 0 < ¢ < 1. Moreover, we show that the
proposed algorithm can be modified to a (1 + O(e))-
approximation algorithm with O(n+1/e% ~2) time and
O(n) space. As stated above, two new results have been
recently presented for this problem in [11] and [12]. It
should be noted that our algorithms are completely dif-
ferent in terms of computational technique. The poly-
nomial technique provided by Chan [11] is based on us-
ing Chebyshev polynomials and discrete upper envelope
subroutine [10], and the method presented by Arya et
al. [12] requires the use of complex data structures to
approximately answer queries for polytope membership,
directional width, and nearest-neighbor. While our al-
gorithms in comparison with these algorithms are sim-
pler in terms of understanding and data structure. We
have provided a summary on the non-constant approx-
imation algorithms for the diameter in Table 1.

2 The proposed algorithm

In this section, we describe our new approximation al-
gorithm to compute the diameter of a point set. In our
algorithm, we first find the extreme points in each co-
ordinate and compute the axis-parallel bounding box of
S, which is denoted by B(S). We use the largest length
side ¢ of B(S) to impose grids on the point set. In
fact, we first decompose B(S) to a grid of regular hy-
percubes with side length &, where £ = 56/2\/&. We call
each hypercube a cell. Then, each point of § is rounded
to its corresponding central cell-point. See Figure 1.
In the following, we impose again an &;-grid to B(S)
for & = /2¢/2v/d. We round each point of the rounded
point set S to its nearest grid-point in this new grid that
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Figure 1: (a) A set of points in R? and an &-grid. Initial
points are shown by blue points and their correspond-
ing central cell-points are shown by circle points. (b)
Rounded point set S.

results in a point set S;. Let, Bs (p) be a hypercube with
side length § and central-point p. We restrict our search
domain for finding diametrical pairs of the first rounded
point set S into two hypercubes Bag, (1) and Bae, (1)
corresponding to two diametrical pair points p; and ¢y
in the point set Si. Let us use two point sets By and
B, for maintaining points of the rounded point set S,
which are inside two hypercubes Bag, (1) and Bae, (41),
respectively (see Figure 2). Then, it is sufficient to find
a diameter between points of S , which are inside two
point sets By and By. We use notation Diam(By, Bs)
for the process of computing the diameter of the point
set By U By. Altogether, we can present the following
algorithm.

Algorithm 1: APPROXIMATE DIAMETER (S, ¢)

Input: a set S of n points in R% and an error parameter .

Output: Approximate diameter D.
1:  Compute the axis-parallel bounding box B(S) for
the point set S.

2: £ <+ Find the length of the largest side in B(S).

3: Set & « el/2V/d and &1 + /el/2Vd.

4: 8 « Round each point of S to its central-cell point
in a &-grid.

5: S; + Round each point of S to its nearest grid-point

in a &;-grid.

6: Dy« Compute the diameter of the point set Si by brute-
force manner, and simultaneously, a list of the diam-
etrical pairs (p1, 1), such that D1 = ||p1 — Gu]|.

7: Find points of S which are in two hypercubes By = Bag, (P1)

and Bz = By¢, (¢1), for each diametrical pair (p1,q1).

8 D« Compute Diam(B1, B2), corresponding to each diamet-
rical pair (p1,§1) by brute-force manner and return the
maximum value between them.

9: D« D+ el/2.

10: Output D.

2.1 Analysis

In this subsection, we analyze the proposed algorithm.

Theorem 1 Algorithm 1 computes an approximate di-
ameter for a set S of n points in RY in O(n + 1/e472)
time and O(n) space, where 0 < e < 1.
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Figure 2: Points of the set S are shown by circle points
and their corresponding nearest grid-points in set Sy are
shown by blue square points.

Proof. Finding the extreme points in all coordinates
and finding the largest side of B(S) can be done in
O(dn) time. The rounding step takes O(d) time for
each point, and for all of them takes O(dn) time. But
for computing the diameter over the rounded point set
S we need to know the number of points in the set Si.

We know that the largest side of the bounding box B(S)
has length ¢ and the side length of each cell in & -grid
is &, = \/el/2v/d. On the other hand, the volume of
a hypercube of side length L in d-dimensional space is
L%, Since, corresponding to each point in the point set
31, we can take a hypercube of side length &. There-
fore, in order to count the maximum number of points
inside the set 5'1, it is sufficient to calculate the number
of hypercubes of length & in a hypercube (bounding
box) with length ¢ + &;. See Figure 2. This means that
the number of grid-points in an imposed &;-grid to the
bounding box B(S) is at most

(0 +&)?

2v/d (2f)
@) ‘(f“) ‘O< 3 ) o

So, the number of points in Sy is at most O((2v/d)?/¢%).
Hence, by the brute-force quadratic algorithm, we need
O((2Vd)?/22)?) = O((2V/d)?*4 /&%) time for computing
all distances between grid-points of the set 31, and
its diametrical pair list. Then, for a diametrical pair
(1, ¢1) in the point set S1, we compute two sets B and
Bs. This work takes O(dn) time. In addition, for com-
puting the diameter of point set B; U Bs, we need to
know the number of points in each of them. On the
other hand, the number of points in two sets By or Bs
is at most

VOZ(BQEI)
Vol(Be)

@R eyt e,
(et/2V/d)? g? ef
Hence, for computing Diam(Bi,Bs2), we need
0(((2)%/e2)?) = O((2)%/e?) time by brute-force
manner, but we might have more than one diamet-
rical pair (Bi,Bz2). Since the point set S; is a set

of grid-points, so we could have in the worst-case
0O(2%) different diametrical pairs (B, Bz) in the point
set S;.  This means that this step takes at most
0(2% - (2)??/?) = 0((2v/2)?4 /%) time. Now, we can
present the complexity of our algorithm as follows:

Td(n):O(dn)—&-O((Q\[) >+O(2dd) <(2\§)2d>

<O <2ddn + (2f) ) . (3)

Since d is fixed, we have: Ty(n) = O(n + id)

We can also reduce the running time of tghe Algorithm
1 by discarding some internal points which do not have
any potential to be the diametrical pairs in rounded
point set 31, and similarly, in two point sets By and Bs.
By considering all the points which are same in their
(d—1) coordinates and keep only highest and lowest [7].
Then, the number of points in S1, and two point sets
By and By can be reduced to O(1/e21). So, using the
brute-force quadratic algorithm, we need O((1/%~1)2)
time to find the diametrical pairs. Hence, this gives
us the total running time O(n + 1/e%72). About the
required space, we only need O(n) space for storing re-
quired point sets. So, this completes the proof. O

Now, we explain the details of the approximation factor.

Theorem 2 Algorithm 1 computes an approximate di-

ameter D such that: D < D < (1 4+ &)D, where
0<e<l.

Proof. In line 7 of the Algorithm 1, we compute two
point sets By and By, for each diametrical pair (p1,G1)
in the point set S1. We know that a grid-point p; in
point set &; is formed from points of the set S which
are inside hypercube Be, (p1). We use a hypercube B;
of side length 2¢; to make sure that we do not lose any
candidate diametrical pair of the first rounded point set
S around a diametrical point p; (see Figure 2). In the
next step, we should find the diametrical pair (p,q) €
S for points which are inside two point sets B; and
By. Hence, it is remained to show that the diameter,
which is computed by two points p and §, is a (1 + ¢)-
approximation of the true diameter. Let p and ¢ are two
central-cell points of the first rounded point set S which
are used in line 8 of the Algorithm 1 for computing
the approximate diameter D. Then, we have two cases,
either two true points p and ¢ are in far distance from
each other in their corresponding cells (Figure 3 (a)), or
they are in near distance from each other (Figure 3 (b)).
It is obvious that the other cases are between these two
cases.

For first case (Figure 3 (a)), let for two projected
points p’ and ¢, we set dy = ||p—p'|| and dy = ||¢—¢'||-
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Figure 3: Two cases in proof of the Theorem 2.

We know that the side length of each cell in a grid which
is used for S is €. So, the hypercube (cell) diagonal is
£V/d. From Figure 3 (a) it can be found that d; < £v/d/2
and dy < £v/d/2. Therefore, we have

D=D+d +ds,
D < D+ ¢V,
D—¢Vd<D. (4)

Similarly, for the second case (Figure 3 (b)), we know
that ¢; = ||[p—p'|| < €V/d/2 and ¢z = ||G—¢'|| < £V/d/2.
So,

D=D+c +co,
D < D+¢Vd. (5)
Then, from (4) and (5) we can result:
D—¢/d< D < D+¢Vd. (6)
Since we know that £ = £/2v/d, we have:
D —el/2 < D< D+et/2,
D<D+¢el/2<D+el. (7)
We know that ¢ < D. For this reason we can result:
D<D+el/2<(1+¢)D. (8)
Finally, if we assume that D = D + &/ /2, we have:
D<D<(1+¢)D. (9)

Therefore, the theorem is proven. O

2.2 The modified algorithm

In this subsection, we present a modified version of our
proposed algorithm by combining it with a recursive ap-
proach due to Chan [9]. Hence, we first explain Chan’s
recursive approach. As mentioned before, Agarwal et
al. [6] proposed a (1 + ¢)-approximation algorithm for
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computing the diameter of a set of points in R%. Their
result is based on the following simple fact that we can
find O(1/£4=Y/2) numbers of directions in R?, for ex-
ample by constructing a uniform grid on a unit sphere,
such that for each vector z € R?, there is a direction
that the angle between this direction and = be at most
Ve. In fact, they found a small set of directions which
can approximate well all directions. This can be done
by forming unit vectors which start from origin to grid-
points of a uniform grid on a unit sphere [6], or to grid-
points on the boundary of a box [10]. These sets of di-
rections have cardinality O(1/e(¢=1/2). The following
observation explains how we can find these directions
on the boundary of a box.

Observation 1 (/10]) Consider a box B which includes
origin o such that the boundary of this box (0B) be in
the distance at least 1 from the origin. For a \/6/72-gm'd
on 0B and for each vector X, there is a grid point a on
OB such that the angle between two vectors d and T is
at most arccos(l — e/8) < /.

This observation explains that grid-points on the
boundary of a box (0B) form a set Vy of O(1/e(4=1)/2)
numbers of unit vectors in R? such that for each = € R,
there is a vector a € V; from the origin o to a grid-point
a on 0B, where the angle between two vectors x and a
is at most /. On the other hand, according to observa-
tion 1, there is a vector a € V; such that if a be the angle
between two vectors z and a, then, o < arccos(1—¢/8),
and so cosa = (1 —¢/8). If ’ is the projection of the
vector x on the vector a, then:

||| o 1
||]| = < 12|
cosa (1-¢%)
e €% &
<N+ =4+ =+ =4+---
IO+ S+ 5+ 5+
< |2l +¢). (10)
So, we have:
I2/I| < ll=ll < (1 +€)ll2"]]- (11)

This means that if pair (p, g) be the diametrical pair of
a point set, then there is a vector a € V,; such that the
angle between two vectors pg and a is at most /2. See
Figure 4. Then, pair (p’,¢’) which is the projection of
the pair (p, q) on the vector a, is a (1+4¢)-approximation
of the true diametrical pair (p, ¢), and we have:

' =d'l| <llp—qll <A +e)llp’ = || (12)

In other words, we can project point set S on
O(1/(@=1/2) directions for all a € Vg, and compute a
(1 + e)-approximation of the diameter by finding max-
imum diameter between all directions. We project n
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Figure 4: Projecting a point set on a direction a.

points on |Vy| = O(1/(?=1)/2) directions. Since, com-
puting the extreme points on each direction a € Vg
takes O(n) time. Consequently, Agarwal et al. [6] al-
gorithm computes a (1 + €)-approximation of the diam-
eter in O(n/e'@1/2) time. Chan [9] proposes that if
we reduce the number of points from n to O(1/e?71)
by rounding to a grid and then apply Agarwal et
al. [6] method on this rounded point set, we need
O((1/e4=1) Jeld=1/2) = O(1/3(4=1)/2) time to com-
pute the maximum diameter over all O(1/¢(@=1/2) di-
rections. Taking into account O(n) time for rounding
to a grid, this new approach takes O(n + 1/g3(@=1)/2)
time. Moreover, Chan [9] observed that the bottleneck
of this approach is the large number of projection opera-
tions. Hence, he proposes that we can project points on
a set of O(1/4/¢) 2-dimensional unit vectors instead of
O(1/e4=1/2) d-dimensional unit vectors to reduce the
problem to O(1/+/¢) numbers of (d—1)-dimensional sub-
problems which can be solved recursively. In fact, ac-
cording to the relation (11), for a vector z € R?, there
is a vector a such that:

Il < llell < @+ e)lle'll, =eR:  (13)

where z’ is the projection of the vector z on vector a.
Since a is a unit vector (||a|] = 1), therefore, ||z/|| =
(a-x)/||lal| = a- z. Hence, we can rewrite the previous
relation as follows:

(a-2)* < l=]* <

or

(1+¢e)*(a-x)% z € R ac Vs, (14)

(a1714a222)* < (27+23) <
(15)

where z; be the ith coordinate for a point x € R%.

We can expand (15) to:

(@121 + a52)* + - 27 < (27 + 25 + - +27) <

(1+¢)*((a121 + agws)® + - - - + 23). (16)
Now, define the projection 7, : R? — RI~! : 7,(z) =
(a121 + agxa, T3, -+ ,xq) € R4, Then, we can rewrite
relation (16) for each vector z € R? as follows:

[Ima(@)I* < [l2l* < (1 +€)?[|ma ()%,

So, since [|ma(p — )|l = 1ma(p)l| — [[7a(q)]| we have for
diametrical pair (p, q):

a€Vy (17)

(1 +5)H7ra(p* Q)Ha ac ‘/2
(18)

e — DI < llp—qll <

(1—1—5) (a121+a222)?, a € Va.

Therefore, for finding a (1 + O(e))-approximation for
the diameter of point set P C RY, it is sufficient that
we approximate recursively the diameter of a projected
point set 7, (P) C R4=1 over each of the vectors a € Va.
Then, the maximum diametrical pair computed in the
recursive calls is a (1 4+ O(e))-approximation to the
diametrical pair. Now, let us reduce the number of
points from n to m = O(1/e?!) by rounding to a
grid, and we denote the required time for computing
the diameter of m points in d-dimensional space with
tg(m). Then, for m = O(1/e9~1) grid points, this ap-
proach breaks the problem into O(1/+/¢) subproblems
in a (d — 1) dimension. Hence, we have a recurrence
ta(m) = O(m + 1/y/et4_1(0(1/e%71))). By assuming
E =1/¢, we can rewrite the recurrence as:

ta(m) = O(m + E2t4_1(O(E*"1)).  (19)

This can be solved to: tq(m) = O(m + E*~2). In this
case, m = O(1/e%1), so, this recursive takes O(1/e%~2)
time. Taking into account O(n) time, we spent for
rounding to a grid at the first, Chan’s recursive ap-
proach computes a (1 + O(e))-approximation for the
diameter of a set of n points in O(n+1/¢%~2) time [9].

In the following, we use Chan’s recursive approach in
a phase of our proposed algorithm.

Algorithm 2: APPROXIMATE DIAMETER 2 (S,¢)

Input: a set S of n points in R% and an error parameter «.

Output: Approximate diameter D.
1: Compute the axis-parallel bounding box B(S) for
the point set S.

2: £ <+ Find the length of the largest side in B(S).

3: Set € « e£/2/d and & < £3£/2/d.

4: S + Round each point of S to its central-cell point
in a &-grid.

5: S < Round each point of S to its nearest grid-point

in a €2-grid.

6: Dy« Compute the diameter of the point set Si by
brute-force, and simultaneously, a list of the diam-
etrical pairs (p1, 1), such that D1 = ||p1 — Gu]|.

7: Find points of S which are in two hypercubes By = Bag, (P1)

and Bz = Bag¢, (41) for each diametrical pair (p1,§1)-

8 D <+ Compute Diam(B1,Bz), corresponding to each diame-
trical pair (p1,¢1) using Chan’s [9] recursive approach
and return the maximum value ||p’ —¢’|| over all of them.

9: Output D.

Now, we will analyze the Algorithm 2.

Theorem 3 A (1+ O(g))-approzimation for the diam-
eter of a set of m points in d-dimensional Euclidean
space can be computed in O(n+ 1/52-*5_%) time and O(n)
space, where 0 < & < 1.

Proof. As it can be seen, lines 1 to 6 of the Algorithm
2 are the same as the Algorithm 1. In this case, the
number of points in rounded points set Sy is at most:

G- () o (%) e
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This can be reduced to O((2v/d)?/e5~1), by keeping 3 Conclusion

only highest and lowest points which are the same in

their (d — 1) coordinates. So, for finding all diametrical We have presented two new non-constant approxima-
pairs of the point set 31’ we need O(@ﬂ)d/gg—l)z) _ tion algorithms to compute the diameter of a point set

O((z\/a)Zd/g%f% time. Moreover, the number of S of n points in R? for a fixed dimension d, which pro-

points in two sets By or By is at most vide some improvements in terms of simplicity, and data

N . structure.
Vol(Bae,)  (2e3¢/2V/d)?  (2e3)¢  (2)¢ (21)
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Computing the Shift-Invariant Bottleneck Distance for Persistence Diagrams

Don Sheehy*

Abstract

We define an algorithm that can compute the minimum
of the bottleneck distance between two persistence dia-
grams over all diagonal shifts, in O(n3®) time. When
applied to log-scale persistence diagrams, this is a scale-
invariant version of bottleneck distance.

1 Introduction

A persistence diagram is a set of points in the plane that
describes the changes in topology of the sublevel sets of
a function. Each point’s coordinates represent the birth
and death of a topological feature. Often, persistence
diagrams are generated from other geometric data sets
and can serve as data summaries. They have risen to
prominence in topological data analysis for their ability
to capture multi-scale structure in a way that is invari-
ant to distance-preserving transformations.

The stability theory of persistence diagrams implies
that for small changes in the inputs, the persistence
diagrams will have correspondingly small changes with
respect to the bottleneck distance. This distance is de-
fined in terms of a minimal matching between two di-
agrams that allows points to be matched with the di-
agonal. This distance is used as the foundation of all
approximation results in persistent homology.

Persistence diagrams from metric inputs are sensitive
to scaling of the input data. One way to combat this is
to use log-scale persistence diagrams, as in [5]. In such
a diagram, the prominence of a feature—its distance to
the diagonal—is determined by the ratio of the death
and birth times of the original diagram. This eliminates
the artificial inflation of prominence that would result
from a change in units.

Even log-scale persistence diagrams cannot recognize
that two diagrams are generated by the same metric
input measured in different units. Although the promi-
nence of the features will remain the same, the two dia-
grams will differ by a shift along the diagonal. To resolve
this, we introduce a new pseudometric, the shifted bot-
tleneck distance on persistence diagrams that minimizes
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over all possible shifts, thus adding scale-invariance to
the resulting metric space of diagrams. In the language
of Euclidean geometry, this makes persistent homology
useful not only for congruence but also similarity.

We give the formal definition of the shifted bottle-
neck distance and the proof of its metric properties. It
is stable in the sense proven for bottleneck distance in
[2]. Then, we show how to compute the distance in
polynomial time.

1.1 Persistent Homology—A Quick Example

The results in this paper do not depend on a deep un-
derstanding of persistent homology, and we refer the
reader to the accessible survey by Edelsbrunner and
Morozov [3] for more background. We give a simple
example here to show a common way that geometric
points are turned into persistence diagrams that cap-
ture multiscale structure.

For the point set P shown in Figure 1, we will com-
pute the persistent homology of the sublevel sets of the
function rp : R2 — R, which is the distance to the set
P:

rp(z) = miy |2 — p]. 1)

The sublevel sets of rp are topologically equivalent to
subcomplexes of the Delaunay triangulation of P. As
one considers larger scales (i.e. sublevels of rp for larger
thresholds), one obtains larger and larger subcomplexes
of Del (P). The persistence algorithm will convert this
growing sequence of complexes into a persistence dia-
gram, Dgm(rp), as shown in Figure 2. Each point in
Dgm(rp) is a pair (b, d) representing the birth and death
of a topological feature. In general, for a filtration based
on distance from a finite point set, one can use log-scale
diagrams for features of any dimension except 0. The
eye-catching features of P—two cycles—appear at dif-
ferent scales, and in the original persistence diagram,
the inside of the big cycle dwarfs the other features. In
the log-scale diagram, both cycles are prominent. Both
diagrams are shown in Figure 2.

2 Defining Shifted Bottleneck Distance

The only distance we consider between points in the
plane is the infinity metric, do.

doo ((2,9), (',y")) = max{|z — 2|, [y — ']} (2)
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Figure 1: A point set P with its Delaunay triangulation
Del (P)

Figure 2: Persistence diagram from the filtration of P.
Each point is a (birth, death) pair. On the left is the
original persistence diagram. On the right is the log-
scale diagram. The two cycles look similarly prominent
on the log-scale.

2.1 Shifted Points and Shifted Bottleneck Distance

Fix p = (x,y), a point in the plane, and fix s € R.
Define the image of p under shift s as

ps = (x + s,y + 5). (3a)

Define the image of an entire multiset A of points in R?
under shift s as the multiset

A ={ps |p € A}. (3b)

If p is an off-diagonal point, then &(p) denotes the or-
thogonal projection of p onto the diagonal.

5((2,y)) = ( ) (4)

Define A, the diagonal, to be the multiset containing
each point (z,x) in R? with infinite multiplicity.

Let A be a finite multiset in the plane, with z < y
for all (x,y) in A. Denote by A the infinite persistence
diagram A U A. We assume all persistence diagrams
have finitely many off-diagonal points.

For two multisets of points A and B in R?, the bot-
tleneck distance dp (A, B) is defined as follows:

Tty vty
2 72

dp (Aa B) = H}Vl[n (aI,Il}?eXM doo (aa b) (5)

where M ranges over all perfect matchings between A
and B.
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For multisets A and B of points in the plane, define
the shifted bottleneck distance of A and B:

dSB (A, B) = Héll%{l dB (AS, B) (6)

Given finite multisets A and B, our algorithm com-
putes dgp (A4, B).

Lemma 1 If A and B are finite multisets of points,
then dsg (A, B) is well-defined.

If A and B are finite multisets of points with x < y
for all (z,y) in AU B, then dsp (121, B) is well-defined.

Proof. Let r = infscr dp (4s, B). We need to show
dp (As, B) = r for some real shift s.

It’s clear that dp (As, B) is a continuous function of
s. This means it is sufficient to demonstrate a closed,
bounded set S such that r = infsc g dp (As, B). The set

s= U

(a,b)cAxB

{s € R |d (as,b) <7} (7)

will suffice. S is closed and bounded because it is a
finite union of closed intervals.

We show that dsp (A, B) is well-defined by a similar
argument. Let 7 = inf,cg dp (/157 B)

We can assume that A and B are nonempty and that
7 < maxpe auB doo (P, (p)), because otherwise there is
nothing to show. With that assumption, we use the
same argument as before, with the same set S. ]

If (6) used inf instead of min, then dgg might be well-
defined for more inputs. However, it is useful to know
that there always exists some s such that

dss (4, B) = dg (4, B).

Lemma 2 Let X, Y, and Z be persistence diagrams or
finite sets of points.

dsp (X, Z) <ds (X,Y) +dss (Y, Z) (8)

In other words, shifted bottleneck distance satisfies the
triangle inequality.

Proof. Let sy and s; be shifts such that

dsp (X, Y) =dp (XSO, Y) (9)
dsg (Y, 2) = dg (Ys,, 2) (10)

Since dp is a metric, we have

dp (X50+517 Z) <dp (X50+817Y;1) +dp (Y517Z) (11)
=dp (X4,,Y)+dp (Vs,, 2) 12)
= dgp (X, Y) + dsp (Y, Z) 13)

(

(
(We reach (12) by applying (3a), and we get (13) by
applying (9) and (10).) Now we apply (6) to get (14).

dSB (Xa Z) <dgp (Xso-‘rsuZ) (14)
Combining (13) and (14) yields (8). O
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It’s typical to compare two persistence diagrams us-
ing bottleneck distance, thanks to the following stability
result proven in [2].

Let Dgm(f) denote the persistence diagram of sub-
level sets of f. The main theorem of [2] states that,
assuming some conditions on the topological space X
and the continuous functions f,g : X — R, we have

dp (Dgm(f), Dgm(g)) < [|f — gllee

Since it’s obvious that in general dsp (A,B) <
dp (A, B), the stability result by [2] must hold for dsg
as well:

(15)

Theorem 3 Let X be a topological space X, and let
f,9: X — R be functions. If X, f, and g satisfy the
conditions for the main stability result of [2], then we
have the same result for shifted bottleneck distance.

dsg (Dgm(f),Dgm(g)) < [If — glleo (16)

2.2 Related Work

We make use of some ideas from prior work concerning a
different pseudo-metric, which we’ll call general shifted
bottleneck distance, or dgsi.

dass (X7Y):trg]1RI%dB ({$+t|$€X},Y) (17)
Here X and Y are finite sets of points in the plane.

The earliest relevant algorithm for dgsg is by Alt
et al. in [1]. They compute dgsp in time O(n®logn).
To do this, they first make an O(n®) time decision
algorithm that, given X, Y, and r, tests whether
dgss (X,Y) < r. Then they generate and sort all O(n°)
possible answers and find the correct answer with a bi-
nary search.

One idea of theirs that we adopt is their subroutine
in which a bipartite matching is repeatedly maximized
(and pruned) while the set of available edges changes
incrementally. This involves O(n?*) invocations of the
Hopcroft-Karp augmenting paths algorithm at a cost of
O(n?) time per augmenting path. That’s lower than the
cost of computing a matching from scratch O(n?*) times.

Efrat et al. improved this result by using geometry
to optimize the augmenting-path routine [4]. They use
near-neighbor structure to represent edges implicitly
during the graph searches of the Hopcroft-Karp, which
results in running time of logn per node of the graph,
and thus O(nlogn) per augmenting path. Like Alt et
al., they find O(n*) total augmenting paths, so their
algorithm runs in O(n°logn) time.

Efrat et al. also use the optimized Hopcroft-Karp al-
gorithm to compute bottleneck distance between finite
point sets [4], and Kerber et al. use the same technique
to compute bottleneck distance between persistence di-
agrams in O(n'®logn) time [6].

To minimize dg over all two-dimensional shifts, Alt
et al. pay quadratic time just to reduce the problem to
a one-dimensional problem in polar coordinates. Their
key idea is to guess (O(n?) times) which edge is the
bottleneck. Knowing that (x,y) € X x Y is the bot-
tleneck, you can test whether dgsp (X,Y) < r by test-
ing only shifts ¢ such that de (x +¢t—y) = 7. (This
works for Euclidean distance as well.) Then only a one-
dimensional value, the angle from y to x+t, is unknown.
And so they compute O(n?) critical angles at which an-
other edge has value exactly r, and they check for a
matching at each critical angle.

Our algorithm is faster. Since we compute dsg, we
have a one-dimensional parameter from the beginning,
the shift, so we need not spend O(n?) immediately. Fur-
thermore, in our setting we can process the critical shifts
only once, reducing the radius and reordering the crit-
ical shifts on the fly. Because we needn’t perform a
binary search, our full algorithm resembles the decision-
only version of the other algorithms.

3 Background

Throughout the remaining discussion we refer to A and
B, the finite input multisets to our algorithm. These
are to be distinguished from the infinite sets A and B.

3.1 Diagonal-Perfect Matchings

Edges with at least one end on the diagonal are called
diagonal edges. Edges in A X B are non-diagonal edges.

A finite matching M between A and B is diagonal-
perfect if the degree in M of each point in AU B equals
the multiplicity of that point. For such a matching M,
the wvalue of M is the minimum, over all shifts, of the
greatest edge length in M.

value (M) = min max de (as,b)
s€R (a,b)e M

An r-matching is a diagonal-perfect matching M be-
tween A and B with value (M) = r. Clearly such a
matching is a certificate that dgp (A, B) < 7. A less-
than-r-matching is an r’-matching for some r’ < r.

If M is a diagonal-perfect matching between A and B,
then the union of M with any perfect matching from A
to A is a perfect matching. In particular, if you extend
M by adding edges of the form (z,xs) € A, where s is
the optimal shift for M, then the value of the resulting
perfect matching is value (M).

As proven in [6], if an r-matching exists, then one
exists that contains no “skew” diagonal edges. A non-
skew diagonal edge is an edge (p,d(p)) or (6(p),p). This
includes (p,p) where p = d(p).
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3.2 Working with the Diagonal

The addition of points on the diagonal in the definition
of persistence diagrams is useful for stability results, but
requires special consideration in our algorithm. Bot-
tleneck distance between diagrams can be reduced to
bottleneck distance between finite sets using (18).

dp (A, B) = dg (AU 8(B), BU§(A)) (18)

However, this does not work for shifted bottle-
neck distance. It is not true that dsp (121,3) =
dsg (AU 6(B),BUG(A)), because you can’t match B
to the shifted image 0(B), or match A, to §(A). In-
stead, we must handle the diagonal as a special case.
As noted in [6], it is faster to give the diagonal spe-
cial treatment, because all but O(n) edges involving the
diagonal can be ignored.

Diagonal-to-Diagonal Edges Augmenting paths dis-
covered by the Hopcroft-Karp algorithm can include
diagonal-to-diagonal (A-to-A) edges. Because A and
B include every point of the diagonal with infinite mul-
tiplicity, the length of the longest A-to-A edge in any
matching can be made arbitrarily small via augment-
ing paths in A x A. This lets us consider the length
of A-to-A edges to be zero. The diagonal parts of A
and B form a complete bipartite graph on zero-length
edges. As a result, we represent ANA and BNA as two
nodes A4 and Ap, both with infinite multiplicity. We
identify any edge (a,d(a)) with (a, Ap), and similarly
we identify (6(b),b) with (A4, b).

As noted in [6], the near-neighbor search structure
(used in the optimized Hopcroft-Karp algorithm) can
be adapted to handle A, and Ap.

4 A Kinetic Data Structure Approach

The main algorithm will look at an increasing sequence
of shifts. At different shifts, edges will appear or disap-
pear. These are the events we want to track. Moreover,
as we discover better matchings, our upper bound on
the radius r decreases. Changing the radius reorders
future events, i.e. the partition P,.. In this section, we
will define the events and introduce an event queue that
provides access to the events in the correct order.

4.1 Searching for a Better Matching

Let 7 be an upper bound on dgg (A, B) The left shift \
of a non-diagonal edge ((az,ay), (bz,by)) at radius r is

A({(az,ay), (bg,by)), ) = max{b, —r —az, by —r —ay}.
Similarly, the right shift p is

p (((az, ay), (be,by)),r) = min{by +7 — az, by +1 —ay}.
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For any edge e = (a, b) and shift s such that d(as,b) <
r, we have A(e,r) < s < p(e,r). Let P. denote the set
of all left and right shifts, i.e.

P.={Xe,r)|ec Ax B}U{p(e,r) | e€ Ax B}

If sg,..., s, are the shifts of P,., where sg < --- < s,
then INTVL P, is the set of open intervals {(s;, $;1+1) |
i€{0,...,k—1}}.

The set of available non-diagonal edges for a shift s
and radius 7 is:

E(r,s) ={{a,b) € Ax B|dw (as,b) <1}

At radius r, the set of available non-skew diagonal edges,
which includes (A 4, Ap) when r > 0, is:

D(’/‘) = {6 € Ax {AB} U{AA} x BU {<AA,AB>}
| doo(e) <7}

For each interval (s;,s;+1) in INTVL P, we have a
graph
Si + Sit1

2

The graph contains the diagonal edges and the avail-
able non-diagonal edges at a shift inside the interval
(8iy8i+1). The choice of the midpoint is arbitrary, and
indeed, G(r,s;) = E(r,s) UD(r) for any s; < s < S;j41.
This implies the following lemma. (Proofs of these facts
can be found in the appendix.)

G(r,s;) = E(r, YU D(r).

Lemma 4 If M is a less-than-r-matching, then M C
G(r,A(e,r)) for some e in A X B.

Lemma 5 For any edge e and radii v’ < r, we have
G(r', Me,r")) C G(r,\e,r)).

4.2 The Event Queue

In this section, we will describe the event queue data
structure. The events provided by this structure are L-
events and R-events. An event e of either type stores
an edge e.edge. An L-event also stores a shift e.shift
such that G(r, A\(e.edge,r)) = E(r,e.shift) UD(r).

The event queue Q holds three stacks of edges. The
stack Q.D contains all non-skew diagonal edges, including
(A4, Ag), in decreasing order by length. (Longer edges
are popped first.) The stacks Q.L and Q.R contain the
edges of A x B sorted increasing by A and p respectively
(at radius 0). The order within those stacks does not
depend on the radius, because for any x,r € R, A(e,r +
x) — MNe,r) =z and p(e,7 —x) — p(e,r) = x.

The method Q.nextevent(r) goes like this: If the top
of Q.D has length r or greater, return an R-event for
Q.D.pop(). If p (Q.R,r) < A(Q.L,r), return an R-event for
Q.R.pop(). Otherwise, return an L-event for Q.L.pop().
Also remove from Q.L any edges with the same left shift
as the edge popped.
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Input: Event queue Q, radius r
if |Q.D| > 0 and d (Q.D.top()) > r then
| return RightEvent(edge < Q.D.pop())
if p(Q.R.top(),r) < A(Q.L.top(),r) then
| return RightEvent(edge < Q.R.pop())
Let e + Q.L.pop()
while |Q.L| > 0 and A(e,0) = A(Q.L.top(),0) do
| Q.L.pop()
Let t < p(Q.R.top(),r)
if |Q.L| > 0 then
| Set t <+ min{t, A(Q.L.top(),r)}
return
LeftEvent(edge < e,shift + (A(e,r) +1t) +2)

© 00 g OO A W N =

o
= o

Algorithm 1: Q.nextevent(r)

Theorem 6 Let Q be the event queue, and let r1 > ro >
-+ > 1y be a nonincreasing sequence of radii. Say that
Q.nextevent(r;) is called fori from 1 ton in order, and
suppose the call to Q.nextevent(r,) returns an L-event
whose shift is s. Then after the sequence of calls, we
have the following.

D(r,) =Q.D
E(rn,s) =QR\Q.L
Here, Q.L, Q.R, and Q.D are treated as sets.
The proof is in the appendix.

Corollary 7 A modified wversion of Theorem 6
holds, where in the sequence of operations,
e < Q.unextevent(r) may be followed immediately
by Q.L.push(e.edge), provided e is an L-event.

Proof. Reinserting the edge undoes the previous oper-
ation and has no other side effects. O

4.3 Reducing the Radius

To reduce the radius after we find a perfect matching,
we use the method Q.newradius(), which returns

mae{d-c (@D.£0p()). £ (A(@L-t0p().0)~p (@R.t0p(),0))}.

Lemma 8 The invocation Q.nextevent(r) returns an
R-event if and only if r < Q.newradius().

Proof. Consider Algorithm 1. Q.nextevent(r) re-
turns an R-event from line 2 if and only if r <
deo(Q.D.top()). Otherwise, Q.nextevent() returns an
R-event if and only if p (Q.R.top(),r) < A(Q.L.top(),).
In fact p(Q.R.top(),r) < A(Q.L.top(),r) exactly when
r < 3(AQL.top(),0) — p(Q.R.top(),0)), with equal-
ity only when r = $(A(Q.L.top(),0) — p (Q.R.top(),0)).
Thus r.nextevent() an L-event is returned, by line 11,
if and only if 7 > Q.newradius(). O

Lemma 9 Suppose the event queue Q is in a state such
that Q.nextevent(r) would return an L-event with shift
s, and there is a less-than-r-matching M in G(r,s).
Then

r > Q.newradius() > value (M) > dgg (4, B).

Proof. Lemma 8 gives us r > Q.newradius(), since
Q.nextevent(r) would return an L-event. For any r >
r’ > Q.newradius(), call s’ the shift of the L-event re-
sulting from Q.nextevent(r’). Because Q.nextevent(r)
and Q.nextevent(r’) have equivalent effects on the
state of Q, Theorem 6 says G(r',s') = G(r,s). Thus
" > value (M) for any r’ > Q.newradius(), and
so Q.newradius() > value (M). The last inequality,
value (M) > dgp (fl, 3), holds for any diagonal-perfect
M. O

5 The Algorithm

Here we state the main algorithm and prove its correct-
ness and running time in the real RAM model.

5.1 Algorithm for Shifted Bottleneck Distance

Algorithm 2 computes the shifted bottleneck distance
as follows. Let Q be the event queue. Set the radius r to
be an upper bound on dgg (A, B), say the length of the
longest non-skew diagonal edge. Maintain a bipartite
matching M, initially empty, between A and B. While
Q is not empty, get the next event e from Q. If e is
an R-event, remove e.edge from M. Otherwise, e is an
L-event: Augment M using the geometrically-optimized
version of Hopcroft-Karp (as in [4] and [6]), and if M is
now diagonal-perfect, then reinsert e.edge into Q.L and
reduce 7 to Q.newradius(). Finally, return r, which now
equals dgp (A, B).

Input: Multisets A and B representing
diagrams A and B
1 Let r + max{d (z,d(x)) |z € AU B}
2 Let Q be the event queue
3 Let M be an empty matching
4 while Q.L, Q.R and Q.D are nonempty do

5 Let e + Q.nextevent(r)

6 if e is an R-event then

7 ‘ Remove e.edge from M

8 else

9 Use augmenting paths to maximize M at

shift e.shift and radius r

10 if M is diagonal-perfect then

11 Q.L.push(e.edge)

12 r < Q.newradius()

13 return r
Algorithm 2: dgp (A, B)
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5.2 Correctness in the Real RAM Model

Lemma 10 After line 9 executes, M is a mazimum
matching in G(r, \(e.edge,r)).

Proof. If M C G(r, A(e.edge, )) before line 9, then M is
a maximum matching in G(r, A\(e.edge,r)) after line 9
because the augmenting path algorithm .

It will suffice to show that M C G(r, A(e.edge,r))
whenever the execution reaches line 9. We proceed by
induction. For the base case, in the first execution of
line 9, the matching M is initially empty.

In the inductive case, we have M C G(r, A(e.edge, 1))
after line 9. By Corollary 7, this is equivalent to M C
QDUQ.R\ Q.L. This still holds just before line 9 next
executes, because Q.L has not increased and every edge
popped from Q.D or Q.R has been removed from M. [

Theorem 11 Given persistence diagrams A and B, Al-
gorithm 2 outputs dsp (A, B) in time O(n>®) where
n=|A|+|B]|.

Proof. Each iteration makes progress toward termina-
tion. For iterations where we reinsert an edge into Q.L,
we set 1 to Q.newradius(), guaranteeing an R-event will
be processed next (Lemma 8). In all other cases, we
shrink Q.L, Q.R, or Q.D. Thus the outer loop executes at
most 2|A||B| + |A| + |B| times. As in [6], line 9 takes
time O((|A| + |B|)'®) per augmenting path. We find
at most |A| + |B| paths the first time we augment the
matching, and subsequently we find at most one path
per event, as in [4]. Thus the total running time is
O((|4] + 1)(|B| + 1)(|4] + |B])'), i.e. O(n>5).

Initially, 7 = value(D(occ)) > dsp (A4, B). (Note
D(c0) is diagonal-perfect.) Because M is diagonal-
perfect at line 12, Lemma 9 tells us that r > dgp (4, B)
always and that r always decreases at line 12.

We reinsert an edge e in Q.L unless G(r,A(e,r))
contains no diagonal-perfect matching. When the ra-
dius decreases from r to ', we get G(r', A(e,7’)) C
G(r,A(e,r)) for each edge e by Lemma 5. So by in-
duction, there is never a diagonal-perfect matching in
G(r,A(e,r)) for any edge e in A x B\ Q.L at the start
of the loop. The base case is vacuous.

When we exit the loop, we have G(r, A(e,r)) = D(r)
for every edge e in Q.L. (This is vacuous if Q.L is
empty; if Q.D is empty, then » = 0; otherwise, Q.R is
empty, and Theorem 6 applies.) So we know there is no
diagonal-perfect matching in G(r, A(e,r)) for any edge
ein A x B. Thus r < dgg (4, B) by Lemma 4. Now
r < dgg (4, B) <r, and so r = dgg (4, B). O

5.3 A Constant-Factor Improvement

At line 6 of Algorithm 1, whenever several edges in
Q.L have the same left shift, we discard all but one of
them. With negligible extra effort, we set e to be the
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edge maximizing p (e,0). Then before line 9 of Algo-
rithm 2, we test, for the event e, whether A(e.edge,r) >
p (e.edge,r), and if so we skip the rest of the iteration.
(In particular, we skip the expensive line 9.)

If A(e.edge,r) > p(e.edge,r), then e.edge is not
in G(r, A(e.edge,r)), and neither are any other edges
with the same left shift as e.edge. This means
G(r,\(e.edge,r)) C G(r,A(¢/,7)), where €’ is the pre-
vious edge popped from Q.L. Since we have no hope of
finding a diagonal-perfect matching, it is sound to skip
the rest of the iteration.

6 Implementation

We have implemented Algorithm 2 with Python 3. Our
near-neighbor structure uses a kd-tree. Our implemen-
tation is slow for even small point sets. (This is consis-
tent with the O(n3-®) running time.) For inputs of sizes
32 (i.e. |A| = |B| = 32), 64, and 128, the computation
takes about two seconds, 15 seconds, and two minutes.
To compute shifted bottleneck distance for medium or
large point sets, we will need a faster algorithm.

Our implementation needed some tweaking to ac-
count for floating point errors. The research-grade code
is available on request.
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Appendix

Lemma 12 If two shifts so and s1 lie in the same (open)
wnterval of INTVL (P,), then E(r, s0) = E(r, s1).

Proof. Suppose (WLOG) that so < s1 and that we have
some edge e = (a,b) € &(r,s0) \ £(r,s1). Then, since
deo (as,b) is a continuous function of s, the intermediate
value theorem tells us there is a shift so < s’ < s1 such that

deo (agr,b) = 7.
This s’ must be either A(e,r) or p (e, r), and so so and s1
do not lie in the same interval of INTVL (P;). O

There are a few prerequisites to Lemma 4.

Lemma 13 Let s;-1 < s < 8; < 8 < 841 € R, where
Si—1, 8i, Sit1 are consecutive elements of P.. Then E(r, s;) C
E(r,s)NE(r,s').

Proof. Suppose for contradiction there is an edge e = (a, b)
in E(r,s;) \ £(r,s). Lemma 12 tells us e ¢ £(r,t) whenever
Si—1 < t < s;. Thus for the continuous function f(t) =
doo(at, b), we have f(t) > r for s;—1 <t < s; but f(s;) <r,
which is impossible. Therefore E(r, s;) C E(r, s).

A similar argument shows &£(r, s;) C E(r,s). a

Lemma 14 Let s; < si+1 < Si+2 be consecutive elements
of P, such that s;+1 is not the left shift of any edge. If
5i <8< 8it1 < 8 < Sita2, then E(r,s") C E(r,s).

Consequently, if there is no diagonal-perfect matching in
G(r, si), then there is no such matching in G(r, siy1).

Proof. The statement £(r,s’) C £(r, s) holds because if we
have an edge e € £(r,s') — E(r, s), then A(e, ) = sit+1, which
violates the premise.

The second statement is immediate. g

Proof. [Lemma 4] Let M be a less-than-r-matching. We
know M C &(r,s) U D(r) for some shift s. Consider two
cases:

1. minP- < s < maxP,.. Lemma 13 lets us assume

WLOG that s; < s < s;+1 for consecutive elements
Si, Si+1 of Pr. Then Lemma 12 tells us £(r, s) UD(r) =
G(r,s:).
If s; is not a left shift, we can apply Lemma 14 to
show that M C G(r,s;—1). We iterate this until we
reach a left shift. (If we never reach a left shift, then
M C D(r).)

2. s < min P, or s > max P.. This means £(r,s) = 0, so
M C D(r) C G(r,t) for any t in P,.

O

Proof. [Lemma 5] Pick some small offset ¢ such that
G, Me, 7)) = E0' , Me, ") +t)UD(r') and G(r, Me, 7)) =
E(r,A(e,r) +t) UD(r). It is clear that D(r") C D(r).

Let €’ be an edge in £(r’, (e, ') + t). This means

e, ) < Me, ')+t < p(e,r).
Subtracting (r — r’) from all three sides yields
e, r) < Me,r)+t < p(e,r)—2(r—1r").

This means e’ € E(r,\(e,r) +t) C G(r,\(e,r)), since r —
r’ > 0. Thus G(r', Me, ")) C G(r, A(e,T)). O

Proof. [Theorem 6] Let {e;}1<i<n be the results of the n
successive calls Q.nextevent(r;).

Since e, is an L-event, we know the condition at line 1 is
false during the call Q.nextevent(r,). Therefore, there are
no edges in Q.D of length r, or less, and so Q.0 C D(ry).
Because r; > 1, for all i < n, we have only popped edges
longer than 7, from Q.D. Thus D(ry,) C Q.D, and (19) follows.

Because the order of Q.L is independent of the radius, and
because we pop all edges with the same left shift as e, .edge,
we have

QL={ec€ Ax B| A, rn) > Aen.edge, )}

If Q.L is nonempty, then e,.shift < A(Q.L.top(),rn). Thus

QL={e€ Ax B|\e,rn) > e,.shift}. (21)
Let
S={e€ Ax B| \en.edge,r,) < p(e,rn)}.
We will prove Q.R = 5, which implies
QR={e € Ax B|ey.shift < p(e,rn)}. (22)

Because the call Q.nextevent(r,) returns an L-event, we
know Q.R C S because of line 3. Fix an edge e in A x B\Q.R.
Let e; be the R-event such that e = e;.edge. At the
time when Q.nextevent(r;) returns e;, we have p(e,r;) <
AQ.L.top(),r:) < A(en.edge,r;). Because r; < rp, we get
p(e,mn) < A(en.edge, ), which means e is not in S. This
means S C Q.R, and so S = Q.R.
From (21) and (22), we get

QR\QL={e€ AXx B| A(e,mn) < en.shift < p(e,rn)}
= &(Tn, en.shift).



Hitting a Set of Line Segments with One or Two Discrete Centers

Xiaozhou He* Zhihui Liu® Bing Sut

Abstract

Given the scheduling model of bike-sharing, we con-
sider the problem of hitting a set of n axis-parallel line
segments in R? by a square (and two squares) whose
center(s) must lie on some line segment(s) such that
the (maximum) edge length of the square(s) is mini-
mized. Under a different model, we also consider the
cases when one needs to compute one (and two) centers
on some edge(s) of a tree of size m, where n labeled seg-
ments must be hit, and the objective is to minimize the
maximum path length from the labeled segments to the
nearer center(s). We give three linear-time algorithms
and an O(n?logn) algorithm for the four problems in
consideration.

1 Introduction

In recent years, the (private) bike-sharing business are
booming in China (and in Singapore). To use a shared-
bike, a user can use his/her smartphone to scan and
unlock the bike. A small amount of fee, about US$0.16
currently, is charged for any use/transaction during that
day. It is estimated that there are at least 30 million
such transactions in major cities of China alone. Dif-
ferent from the traditional public bike-sharing services,
wherein a user must return the bike to specified bike
racks at fixed locations, in this bike-sharing service a
user can lock and drop a bike anywhere after finishing
using it. Of course, a lot of these bikes are dropped
on some streets typically near bus/subway stations. In
fact, right before and after rush hours, it is not un-
common to notice hundreds of bikes near some major
subway stations in big cities like Beijing and Shanghai.
This also holds when there is a major event near some
site, like an open music show.

*Business School, Sichuan University, Chengdu, Sichuan,
China, xiaozhouhe126@qq.com

TSchool of Computer Science and Technology, Shandong
Technology and Business University, Yantai, Shandong, China,
dane.zhihui.liu@gmail.com

¥School of Economics and Management, Xi’an Technological
University, Xi’an, China, subing684@sohu.com

§School of Management, Xi’an Jiaotong University, Xi’an,
China, yfxu@mail.xjtu.edu.cn

9Glorious Sun School of Business and Management, Donghua
University, Shanghai, China, ffzheng@dhu.edu.cn

I Gianforte School of Computing, Montana State University,
Bozeman, MT, 59717, USA, bhz@montana.edu

85

Yinfeng Xu®

Feifeng Zheng¥ Binhai Zhu!

For the bike-sharing company, the objective is cer-
tainly to maximize the profit (i.e., the number of use
of the bikes) and minimize the cost (i.e., collecting the
scattered bikes quickly, and manually, to re-distribute
them in bulk). Our research is motivated by this: given
a set of roads (segments) scattered with shared-bikes,
distribute these bikes in bulk from a center (or several
centers) and transport them to these streets. Hence the
problem is to find a center (resp. several centers) on
these roads as the stations to store the bikes so that
the distance to the farthest target road from the near-
est station is minimal. Note that these centers change
when the target roads are changed.

In this paper, we give two model of the streets in the
cities. One is the classic grid network that is widely
used in the urban streets model. In this model, we de-
scribe all the n target roads as some axis-parallel line
segments and we use the /,-norm to measure the dis-
tance. Here we also consider a practical restriction: the
center (station) is exactly on one line segment (road) for
the convenience of storage and scheduling, and we only
need to touch every line segment (target road) at any
point (position) to manually distribute the bikes. Also,
note that a  circle is an axis-parallel square.

Thus, follow this model the one-hitting-square prob-
lem is to find the minimum axis-parallel square whose
center is on a line segment, to hit all the line segments,
such that the edge length of the square is minimized.
Analogously, the two-hitting-square problem can be de-
fined.

In addition to the grid networks, we also consider
the geometric tree network, with size m, to model the
streets. The target roads are n segments/edges on the
tree and the distance between any two points on the
tree is the shortest distance between them along the
tree edges. In this case we consider the one-center and
two-center problems such that the centers must lie on
some tree edges and the maximum distance between the
target segments to the nearer centers is minimized. We
next review some previous works.

When the target are n points and the distance is /s,
the corresponding one-center [9, 12], two-center [2, 6, 11]
(and discrete two-center [1]) problems have been well
studied. In fact, even under /., the two-center and
three-center problem can be solved in O(n) time [4, 7]
and a variation of the discrete two-center problem
(where the centers of the congruent axis-parallel squares
must be on some input points and the area of the squares



is minimized) can be solved in O(nlog®n) time [8].
(There are other variations of these problems, like the
target to cover is a convex polygon. We refer the read-
ers to [5] for the references.) The research which is the
closest to this one is by Sadhu et al., where the prob-
lem is to cover/hit a set of line segments using one or
two (congruent) axis-parallel squares with the smallest
size (edge length) [10]. Linear time algorithms are given
for these problems. Our problems can be considered as
the discrete version of these problems, where the centers
must line on some input segments. We give O(n) and
O(n?logn) algorithms respectively. On the tree model,
little is known for the corresponding two-center problem
when the target is a set of edges, though the one-center
solution (for edges) can be adapted to some forklore al-
gorithm on computing the diameter of a tree in linear
time.

This paper is organized as follows: In Section 2, we
present some definitions and formally describe the four
problems. Then, in Section 3-4 we give details for our
solutions for the four problems. We conclude the paper
in Section 5.

2 Preliminaries

2.1 Notations and Definitions

Coordinates: For every point p € R?, we use z(p)
and y(p) to denote its z-coordinate and y-coordinate,
respectively.

Endpoints: We use L(l;), R(l;), T(l;) and B(l;) to
denote the left endpoint, right endpoint, top endpoint
and bottom endpoint of the line segment I; (1 <i < n)
where xz(L(l;)) < z(R(1;)) and y(T'(L;)) > y(B(1;)).

Remark: A horizontal line segment has only a
left endpoint and a right endpoint with the same y-
coordinate, this is similar for a vertical line segment.
Distance: (I) In the first model, we use doo(p,!;) to
denote the distance between a point p € R? and a line
segment I; (1 <4 < mn), and it is defined to be the min-
imum /..-distance between p and some point ¢ on I;,
where deo (p, ¢) = max{|z(p) — z(q)], [y(p) — y(q)[} and
|x(p) —x(q)], ly(p) —y(q)| are the horizontal and vertical
components respectively (also denoted as dy,(p,1;) and
dy(p,1;) as shown red in Fig. 1, where p = ¢').

(IT) In the tree network T, the distance between
two points p, ¢ (denoted as d(p, q)) is the length of the
(unique) path between p and ¢ along tree edges. And
we denote the distance between a point p on an edge of
T and a target edge (line segment) I; by d(p,l;), which
is the minimum distance between p and any point in
l;; formally, d(p, ;) = gréiln d(p,q). Hence, d(p,l;) must

J
be the shortest distance between p and an endpoint of

l;. Also, we use d(l;,1;) to denote the distance between

two line segments I; and [; as d(l;,1;) = min d(p,q),
PELiq€l;
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Figure 1: A minimum (unrestricted) rectangle S’ hitting
all segments.

Figure 2: Distance on a tree T: d(p, q) = d(p,t)+d(t, q),
and d(pa lj) = d(lzv lj) = d(p7 q)

which is the shortest distance between the endpoints of
l;,1;. (See Fig. 2)

Diameter and radius: The diameter D and radius R
of a set of line segments in a tree network 7" is defined as
follows. For n line segments U = {i1,ls,...,l,} on T its
diameter is the longest of the (shortest) path between
any two line segments (in Fig. 2 the red path denotes the
diameter). And the diameter D is also used to denote

the length of this path, i.e., D = | Inax d(l;,1;). And
<i,j<n

naturally the radius is half of diameter R = D/2.

2.2 Problems

Throughout this paper, all squares are axis-parallel.
Let S be an axis-parallel square with center s and its
edge length (or size) is ¢, then S can be defined as
S = {plds(p,s) < £/2}. We say a square S hits a seg-
ment /; if there is a point p € S such that do(p, ;) = 0.
We now define the first two problems on finding one and
two hitting squares.

Problem 1 (Discrete One-Hitting-Square):
Given a set of axis-parallel line segments U =
{l1,12,...,1,} in R? the problem is to find a square S
of minimum size such that S hits all the line segments
in U and its center s is on a line segment in U. (See
Fig. 3)

Problem 2 (Discrete Two-Hitting-Square):
Given a set of axis-parallel line segments U =
{l1,12,...,1,} in R? the problem is to find two congru-
ent squares S; and Sy of minimum size such that each
line segment in U is hit by at least one square and the
center s; (resp. s2) of Sy (resp. S2) is on a line segment
in U.



Figure 3: An example for the one hitting-square prob-
lem.

We next define the problems on a tree network. Note
that in this case a hitting ‘square’ is virtual.

Problem 3 (One-tree-center): Given a set of
edges (line segments) U = {ly,lz,...,l,} on a geomet-
ric tree T in R?, the problem is to find a center ¢ on an
edge of T such that the maximum distance from a line
segment in U to ¢ is minimized. (See Fig. 2)

Problem 4 (Two-tree-center): Given a set of
edges (line segments) U = {l1,l2,...,1,} on a geometric
tree T in R2, the problem is to find two centers ¢; and
co on some edges of T such that the maximum distance
from a segment in U to the nearer center is minimized.

3 Solutions for Discrete Hitting-Square Problems

3.1 Discrete One-Hitting-Square

We first compute the minimum axis-parallel rectangle
S’ (with no restriction on its center s’) such that all the
line segments are hit by S’ as in [10]. We then adjust
this rectangle by moving s’ to s and expanding the edge
length to obtain the required square S whose center s
must lie on a line segment in U.

To obtain the rectangle S’, we present the definition
of boundary line segments and boundary points at first.
As shown in Fig. 1, we define four boundary line seg-
ments: the leftmost segment [, the rightmost segment
lg, the topmost segment [ and the bottommost seg-
ment [p to be the line segments that have boundary
points [, r,t and b at one of their endpoints, respectively,
where [, 7,t and b are defined as follows:

I = min x(R(;)), r = max x(L(l;))

Vi, eU Vi;eU
t= max y(B(l:)), b= Jnin, y(T'(l:))

Remark: If a boundary line segment is parallel to the
boundary, then any point on it can be recognized as the
boundary point since it is fine to hit any point on this
line segment.

And we can then construct the rectangle S’ by com-
puting its four sides. This is based on the fact that S’
hits all the line segments is equivalent to hitting the four
boundary line segments I, g, lr and [p.
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Now, we focus on how to adjust the rectangle to ob-
tain the desired square. For every line segment [;, we
compute the distance doo(s’,1;), and record the verti-
cal and horizontal components of the distance. Then
we compute the expanding lengths v;’s, i.e., the length
that the longer side of the rectangle must be expanded
into a square which hits all the segments and whose
center lies on [;. Finally, we choose the minimum ~v* to
obtain the target square S.

Without loss of generality, we assume that the hori-
zontal and vertical edge length of the rectangle S’ are
L and H (L > H) respectively, as shown in Fig. 1.

Lemma 1 To obtain a feasible square S(i) which hits
all the segments in U and whose center lies on some seg-
ment l;, we need to expand the (horizontal) edge length
of the minimum hitting rectangle S’ by at least 7;, where

L-H

Vi = 2% max{max{dv - 9 30}7 dh}v (1)
and dp, = dp(s',1;), dy = dy(s',1;) are the horizontal
and wvertical components of d(s',1;) respectively, with
s’ being the center of S'.

Proof. As we need to move the center s’ of S’ horizon-
tally by a value dj, to obtain S(7), the edge length of S(7)
would be expanded by at least 2dy,. (In this proof, imag-
ine that S’ is expanded smoothly in both directions, at
the same pace.) At the vertical direction, the height of
S(i) would not be influenced by d,, if d, < £5£. This is
because after an expansion by 2d, the height of S’ is still
shorter than the length. If d, > %, the edge length
of S’ would have to be expanded by at least 2(d, — £5)
to have a feasible S(i) (due to the vertical move of s).
Hence, 7; = 2 * max{max{d, — £5£,0},d,}. O

Theorem 2 The edge length of the smallest discrete
hitting square S is L +~*, where v* = vrlnirllj{'y,-}; more-
i€

over, S can be computed in O(n) time.

Proof. We first compute v*. Then, S can be computed
from S’ by finding the segment {* which is v* distance
away from s, i.e., doo(s’,1*) = v*/2. The point s on [*
realizing doo (8',1*) = doo(s’,8) = v*/2 is the center of
S, and the edge length of S is L + ~*. g

3.2 Discrete Two-Hitting-Square

It seems hard to solve this ‘two-hitting-square’ version
in the same way because simultaneously moving the two
centers of the two hitting rectangles (presumably con-
structed as in [10]) to the destination is hard, and a
brute-force method trying all the O(n?) combinations
of the locations of the two centers s1, so (which must lie
on some segments) would result in a high running time.
Hence we use a different method. We try to fix one tar-
get square S7 and then find the other square S3. And



[Configuration 1]

[Configuration 2]

Figure 4: Two configurations for the two centers.

in order to fix Sy, it is natural to consider the corre-
sponding decision problem and then obtain the optimal
solution.

For the decision problem, the question is to determine
whether there are two congruent (axis-parallel) squares
S1(a) and Sa(«) such that every line segments in U is hit
by at least one of them, the center s1(a) (resp. s2(a))
is on some line segment in U, and the edge length of
Si(a) and Sz(a) is 2a.

As the previous subsection, we find the smallest axis-
parallel rectangle S’ that hits all the segments in U.
We assume that we also have the four boundary line
segments and the four boundary points. Besides, we also
assume that the two edge lengths of S’ satisfy L > H.
Then, there are two configurations of S;(«) and Sa(«)
similar to [10], see Fig. 4. Here we only discuss the
configuration that Sq(«) (resp. S2(«)) hits i and b (resp.
r and t), and the other configuration can be handled
symmetrically.

We know that the coordinates of the center s;(«)
must satisfy z(s1(a)) < z(l)+a and y(s1(a)) < y(b)+a
since the edge length of S7(«) is 2«. Then, for every line
segment /;(1 <i < n), we determine whether s;(«) can
lie on it (to constitute a feasible solution) following Ob-
servation 1.

Observation 1 If si(a) is on a horizontal segment ;,
then the left endpoint u of l; satisfies that x(s1(«)) >
x(u). Similarly, if s1(a) is on a vertical segment l;,
then the bottom endpoint v of I; satisfies that y(si(a)) >
y(v).

In fact, Observation 1 implies that, when [; is hor-
izontal, we could locate sj(a) on it such that (A)
z(s1(a)) = minfz(l)+a, 2(R(L:))} and y(s1(a)) = y(l),
where the y-coordinate of [; is y(l;). Similarly, when [;
is vertical, we could locate s1(«) on it such that (B)
y(s1(a)) = min{y(b)+a,y(T (%))} and z(s1 () = z(l),
where the z-coordinate of [; is x(1;).

Then, the decision procedure is straightforward: we
locate s1(a) (consequently Si(«)) on a candidate seg-
ment [; according to (A) and (B), and for all the seg-
ments not covered by S1(a) we use Theorem 2 to decide
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whether they can be covered by Sz(«) in O(n) time. As
there are n candidate segments [;’s, the decision proce-
dure takes O(n?) time.

For the optimization problem, notice that the opti-
mal solution value o* must be in the form doo(l;,1;)
or dss(li,1;)/2 (the corresponding optimal squares have
an edge length 2d.(l;,1;) or doo(l;,1;) respectively).
Hence we can compute and sort this list of distances
in O(n?logn) time. Then, we just use the decision
procedure to perform a binary search to find a* in
O(n?log(n?)) = O(n%logn) time. Consequently, S; «+
51(04*),52 — Sg(a*).

Theorem 3 The Discrete Two-Hitting-Square problem
can be solved in O(n?logn) time.

4 Solution for Hitting the Line Segments on a Tree

In this section, we consider the problems on hitting a set
of n segments on a tree T'. We assume that T' contains m
edges, with m > n. Here a segment [; is hit by a center
con T if d(c,1;) is bounded from above by some value
B. Our problems are to hit all target segments with
either one or two centers such that the corresponding 3
is minimized (Fig. 2).

4.1 One-tree-center

We present the algorithm to find ¢ in the following al-
gorithm. This algorithm is adapted from a folklore al-
gorithm on computing the diameter of a tree.

1. Arbitrarily choose a node r; in the tree T as the
root and find the line segment [, that is the far-
thest from r; by breadth-first-search on T. Let
d(r1,1;) = d(r1, ), where x is an endpoint of I,.

2. Find the farthest line segment /,, from z by breadth-
first-search on T'. Let d(x,l,) = d(z,y), where y is
an endpoint of [,,.

3. Compute the path between x and y as the diameter.
The center ¢ is the midpoint on the path between
z and y (e.g., Iy and 1,).

Theorem 4 The One-Tree-Center problem can be
solved in O(m + n) time; in fact, the optimal center
c is just the midpoint of the diameter D; formally,
D = d(l;,1y) = 1£zji_><<nd(li,lj) and c is on the path

between l, and 1, such that d(c,l,) = d(c, ly).

Proof. The correctness can be proved by contradiction.
The details will be given in the full paper. The running
time of the algorithm is obviously O(m+mn) as the main
cost is two runs of the breadth-first-search algorithm
[3]. O



4.2 Two-Tree-Center

In this problem, the objective is to find two centers c;
and co on the tree T' such that

£ maxmin{d(cr, 1), d(ca, 1;)}
L,eU
is minimized for any line segment /; on the tree T

To make our analysis more clean, we initially take c
as a virtual root of the tree T and then perform some
preprocessing, i.e., remove all the subtrees that do not
contain target line segments and denote the position of
every line segment by its endpoint (node) that is closer
to ¢. Thus, every leaf node is the endpoint of a line
segment in the transformed tree (we still call it T'), and
we abuse the terminology by calling these line segments
as leaves.

For the sake of brevity, we use the notation f; (resp.
f2) to denote the distance between ¢; (resp. cz) and the
farthest line segment it hits. Thus, f = max{f1, f2}.

In this subsection, we propose the algorithm first and
sketch its correctness a bit later. We first implement
the same algorithm as we did in the last subsection to
obtain Il;,l, € U and c¢. (Recall that d(I,1l,) gives the
diameter of the segments in U on T'.) Then, we discuss
the next steps in the following two cases:

(1) ¢ is not a node of T, i.e., ¢ is between two
adjacent nodes in 7. Cut T into two parts T’ and
T" at c such that [, [, are contained in T, T" re-
spectively. We can find the center ¢’ (resp. ¢”) of T”
(resp. T") as done in Section 4.1. In Section 4.2.1
we give details to show that ¢ and ¢’ are just the
two centers ¢; and c3 of TV and T", respectively, and
f=max{d(d,l;),d(c",1,)}.

(2) c is exactly a node of T. In this case, there
are two subcases to be discussed:

(2.1) There are exactly two subtrees (also denoted
by T’ and T") of ¢: One contains I, while the other
contains [,. Without loss of generality, it is assumed
that ¢ is contained in 7" but not in T”. We can also
compute ¢ and ¢’ similar to (1) and they are also
the two centers of 77, 7”. And in this case it can be
computed that f = D/4 =d(l,,1,)/4.

(2.2) There are more than two subtrees of ¢, denoted
by T',T?,...,T*, respectively. (Suppose ¢ does not be-
long to any subtree.) Let the two subtrees that contains
l; and [, be T' and T? respectively. Compute the cen-
ters ¢!, ¢, ¢71, ¢72 and radii R', R%2, R, R™2 of T",
T2, T7', T2, where 77! = T2 UT?U..UTFUCc
and T72 = TV UT3 U ..UTFUec In this case,
f = min{max{R!, R~'} max{R? R~?}}. We obtain ¢;
and cy respectively as ¢! and ¢!, if max{R!, R™!} <
max{R? R~2}; and vice versa. In summary we have
the following theorem.
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Figure 5: Illustration for the proof of Lemma 9, under
the assumption that [,, can be hit by ¢; but cannot be
hit Co.

Theorem 5 The Two-Tree-Center problem can be
solved in O(m + n) time.

We next give some details for the above theorem, due
to space constraints, we leave out some details for the
final version of this paper.

4.2.1 Case 1. cis not a node of the tree T

For this case, we have the following properties which are
intuitively obvious. Due to space limit, the proofs are
omitted in this version.

Observation 2 [, and [, must be two leaf nodes of T
and are the farthest nodes from c.

Lemma 6 The two centers ¢y and c2 of T must be in
T and T" respectively.

Observation 3 [, and Iy in T are hit by c1 and co
respectively.

Lemma 7 I, andl, are the farthest line segments hit by
c1 and co respectively, i.e., d(ci,ly) = fi and d(ca,ly) =

f2.

Lemma 8 ¢; (resp. c2) is on the path between ¢ and I,
(resp. 1y).

Lemma 9 In an optimal solution, even if there is a line
segment l,, in T" which is hit by c1, i.e., d(c1,ly) < fi1,
we can make a swap to use co to hit it without making
the solution worse. Similarly, even if there is a line
segment L, in T which is hit by co, we can make a swap
to hit 1, with c;.

Proof. Due to space limit, we only give a sketch of
the proof, see Fig. 5. Assume that [, in 7" is hit by
c1, e, d(ei,ly) < f1, but cannot be hit by ca, i.e.,
d(ca,ly) > fo. We have f = fo > f1, but we can show
f1 > f2 to lead the needed contradiction. O

Corollary 1 In an optimal solution of the Two-Tree-
Center problem, c¢1 hits all the line segments in T' and
co hits all the line segments in T". Thus we can find c;
(resp. co2) by solving the One-Tree-Center problem on
T (resp. T").



4.2.2 Case 2. cis a node of the tree T

(2.1) There are exactly two subtrees T’ and T" of c.
It is easy to see that c1, cp are in TV, T” and hit [,
ly respectively, similar to Lemma 6 and Observation 3.
Moreover, at least one of ¢; and ¢ hits I, and ¢ (or,
l, and ¢) simultaneously. (Otherwise the solution is
not optimal.) Assume that ¢; hits both I, and ¢, then
fi = d(lz,ly)/4 = D/4 and f> cannot be greater, be-
cause I, and [, are the two line segments farthest from
c. Hence, f = max{fi, fo} = max{d(c1,l;),d(ca, 1)} =
d(e1,ly) = D/4 =d(ls, 1) /4.

(2.2) There are more than two subtrees of c:
T, 72, ...,TF. Assume that [, and [, are in 7! and
T2, respectively. We first claim that ¢; and c; must
be in T' and T2, respectively. (Otherwise, one of 7!
and T2, say it is T, does not contain any center; thus
f = max{d(c1,lz),d(ca,lz)} > d(c,ly) = D/2 which is
even worse than the corresponding one-center solution.
A contradiction.)

In this case we can also prove that d(c1,l;) = fi,
d(ca,ly) = fa, and ¢1 (resp. c2) is on the path between
c and I, (resp. l,) similar to Lemma 7 and Lemma 8.
Thus we can also obtain the conclusion that all the line
segments in T (resp. T?) are hit by ¢; and cs, respec-
tively, as in Lemma 9 and Corollary 1. Now we only
need to comsider the line segments in 73, ..., 7% As-
sume that the tree containing the farthest line segment
from c other than 7' and 72 is T2, and suppose that
c1 hits all the line segments in 7. When we compute
f1 for ¢; to hit all the line segments in T' and T3, it is
obvious that all the line segments in T4, ..., 7% can also
be hit by ¢; without increasing fi. That is to say, the
line segments in T4, 73, ...,T% are all hit by ¢;. Simi-
larly, if all the line segments in 73 are hit by ¢y, then all
the line segments in 72,73, ..., T* are hit by cy. Hence
we obtain the conclusion that either (a) ¢; hits all the
line segments in 7! and ¢ hits all the line segments
in T2, T3,...,T%, or (b) c; hits all the line segments in
TY,73,...,T* and ¢y hits all the line segments in 72
Thus, f = min{max{R', R7'}, max{R? R~?}}, and ¢;
and cs can be computed accordingly. This concludes
the correctness proof of Case 2.

5 Concluding Remarks

An extension of this research is to use a more realistic
model, i.e., an irregular grid network (a grid network
with some edges randomly deleted, e.g., something sim-
ilar to a wall graph). It seems to take some effort to
solve the discrete two-center problem in roughly O(m?)
time or even better, where m is size of the network and
there are n(n < m) streets/segments to cover.
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Finding Intersections of Algebraic Curves in a Convex Region using
Encasement

Joseph Masterjohn*

Abstract

We present a subdivision based technique for finding the
intersections of two algebraic curves inside a convex re-
gion. Even though it avoids computing resultants, the
technique is guaranteed to find all intersections with
bounded backwards error. The subdivision, called an
encasement, also encodes the arrangement structure of
the curves. We implement the encasement algorithm
using adaptive precision interval arithmetic. We com-
pare its performance to the CGAL library implemen-
tation of resultant based curve intersection techniques.
We provide CPU and CPU/GPU versions of the algo-
rithm and implementation. On the CPU, encasement
generates all curve intersections, to accuracy 1078, 10
to 30 times faster than CGAL for degrees 8 to 18, and
it handles degrees up to 20 that CGAL cannot handle.
The GPU speeds up the calculation by a factor of 3 to
4.

1 Introduction

An algebraic curve f is the zero set of a bivariate poly-
nomial f(z,y). Given a convex polygon B, we find all
intersections of curves f and ¢ inside B. Curve inter-
section is a core geometric calculation. It is a key step
in calculating the arrangement of n curves fi,..., fu:
a partition of B into intersection vertices, open curve
segments, and open regions. We have in mind scien-
tific or industrial applications, which provide the poly-
nomial coefficients as floating-point numbers. Broadly
speaking, numerical programs use double-float for calcu-
lations and aim for single-float accuracy in the output.
An arrangement with accuracy 6 = 10~® would more
than satisfy the latter. Nevertheless, exact arrangement
computation is required to support CG algorithms that
manipulate arrangements. These algorithms require the
signs of predicates evaluated on the vertices of the ar-
rangement. An incorrect sign can lead to program fail-
ure or to nonsensical output. This is the robustness
problem of Computational Geometry.
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Exact Computational Geometry (ECG) uses ex-
tended precision and algebraic algorithms to determine
the signs of primitives. This approach can be numeri-
cally expensive even when heuristics are used, such as
floating point filtering. In the case of curve arrange-
ments, an exact algorithm requires construction of resul-
tant polynomials. These have high degree and bignum
coefficients.

Numerical methods, such as subdivision and curve
tracing, are often stymied by ill-conditioned inputs.
Usually, the subdivision is by axis-parallel lines, which
can require a large number of cuts to separate features.
Curve tracing is faster but is even less reliable.

1.1 Prior Work

Algebraic methods compute the turning points and the
intersection points of bivariate polynomial curves via
resultants and other algebraic computation. For exam-
ple, the CGAL arrangement package [5, 15] implements
a sweep algorithm for plane algebraic curves using Ex-
acus [4].

Subdivision methods [7, 1] provide a faster means to
isolate the intersection points of algebraic curves and
to trace algebraic curves, but they cannot guarantee
correctness and are prone to failure on ill-conditioned
inputs. They use convex bounding polyhedra during
intersection isolation, but the outputs are axis-parallel
enclosures. They typically operate on polynomials given
in the Bernstein-Bézier basis and involve a non-robust
numerical subdivision phase followed by a robust (no
false positive) certification phase on candidate intersec-
tions [9]. They can isolate the vertices and edges of
an arrangement, but an axis-parallel enclosure requires
Q(1/€) cells for e-separated curves (e distant under the
Hausdorff metric). Other work focuses on improving
the efficiency rather than reliability of the subdivision
phase through the use of low degree approximations [3],
blending schemes for quick elimination of regions con-
taining no roots [2], and deflation techniques [13].

Wang, Chiang, and Yap [14] formalize resolution-
exact subdivision methods for motion planning, but this
work is also limited to axis-parallel enclosures.
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Figure 1: Encasement of f (red) with respect to g
(green) and their intersections (yellow) in B (bounding
square).

1.2 Encasement-Based Intersection Construction

We present an algebraic curve intersection algorithm
based on conver encasement. The algorithm combines
subdivision methods with exact computational geome-
try to achieve both efficiency and guaranteed accuracy.

Algebraic curves f and g are generic (in general po-
sition) if they are nonsingular (i.e. no solution to
flz,y) = fo(z,y) = fy(z,y) = 0) and have no tangent
intersections. A convex encasement of f with respect
to g in a convex polygonal region B is a partition of
B into convex polygonal cells such that 1) no cell con-
tains a loop of f or g or more than one segment of f,
2) if a cell intersects both f and g, it contains a single
intersection point of f and g (Fig. 1).

An encasement isolates the components of f and the
intersections of f and g. The arrangement in B of a set
of curves F' can be reduced to the encasement in B of
each pair f, g from F (Sec. 7.1).

1.2.1 Intersection Algorithm Summary

The curve intersection algorithm (Sec. 7) takes two bi-
variate polynomials as inputs, perturbs the coefficients
by § = 2726 ~ 1078, and constructs an encasement of
the corresponding generic algebraic curves f and g by
recursive subdivision of B by straight lines. If a cell
C violates the definition of encasement, for example by
containing a loop of f, the algorithm splits C by a line
L. The following summarizes the selection of L with
details in the indicated sections.

Loop splitting (Sec. 2) Construct a critical set S
for f in B: S does not intersect f and contains all local
extrema of f(z,y). Since a loop of f must surround an
extremum, it must surround a connected component of
S. If a cell C' contains a connected component of S,
L is selected to intersect it and hence splits any loop
surrounding it (Fig. 2). Likewise g.
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Figure 2: Curves f (red) and g (green) with undetected
loop not shown (a). Critical regions (b) (colors match
curves). Splitting lower middle f-region with vertical
line reveals and splits missing loop (c).
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Figure 3: Cell with two segments (red) of f and one
segment (green) of g (a). Segments of f separated by
splitting line (b).

Figure 4: Cell (center) with non-intersecting segments
of f and g (a). Separated by splitting line (b).

Self-separation (Sec. 3) If C' contains more than one
segment of f, L is selected to separate one segment from
another (Fig. 3).

Curve separation (Sec. 4) If f has a single segment
ab in C and no intersections with g, L separates f from
g (Fig. 4).

Intersection separation (Sec. 4) If ab intersects g
an even number of times inside C, L splits C' between
two of the intersections (Fig. 5).

Intersection isolation and encasement (Secs. 5
and 6) If ab intersects g an odd number of times in C, we
construct an axis-parallel rectangle R C C containing a
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Figure 5: Cell with two intersections (a). Separated by
splitting line through p € f in direction of Vf(p) at a
local minimum of g(p) on f (red) (b).

Figure 6: Segment ¢ (red) blocks the intersection’s
“view” of boundary along angle bisector (a). Angle bi-
sectors reach boundary of smaller cell proving intersec-
tion is unique (b).

single intersection. This is standard zero isolation using
a 2D interval: R is not a cell. Split C' by up to four
lines to encase that intersection in a cell that excludes
all other intersections (Fig. 6).

Self-separation and curve separation might not be
possible using a single split if the two segments are close
and curved. In that case, multiple splits are required.

1.2.2 Contribution

Encasement based curve intersection improves on prior
work in several ways. We ensure correctness, with ac-
curacy 9, for all inputs by perturbing polynomials to re-
move singular points and tangent intersections then em-
ploying adaptive precision interval arithmetic. Replac-
ing boxes with convex polygons reduces the space com-
plexity for e-separated curves to €2(1/4/€). The number
of splits, other than for self-separation or curve separa-
tion, is in O(d?), for d the maximum degree of f and
g. We introduce a stronger criterion for showing that a
cell contains a single intersection.

On the CPU, encasement generates all curve intersec-
tions, to accuracy ¢, 10 to 30 times faster than CGAL
for degrees 8 to 18, and it handles degrees up to 20 that
CGAL cannot handle. The GPU speeds up the calcula-
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Figure 7: p minimizes f(p) on v;v;41, f(p) < 0, and di-
rection u decreases f(z,y). Split by p + ut (a). p max-
imizes f(z,y) and f(p) > 0 but direction u decreases
f(z,y). If this happens for every edge, C' must contain
a saddle point ¢g. Split by ¢ 4+ tv and g 4 tw, where v
and w are the eigenvectors of the Hessian of f(z,y) at

q (b).
tion by a factor of 3 to 4.

2 Critical sets

A region S is a critical set of a curve f with respect to B
if it does not intersect f and it contains all local extrema
of f(x,y) in B. To construct a critical set, let R be the
bounding rectangle of B. If we can show that f(z,y)
is nonzero in R, return R. If we can show that one
of the partial derivatives f,(z,y) or fy(x,y) is nonzero
in R (hence R does not contain an extremum), return
(). Otherwise, bisect R across its longer dimension, re-
curse on the two halves, and return the the union of
the results. Since f(x,y) is nonsingular, the algorithm
terminates.

We test if a polynomial is nonzero on a rectan-
gle with a generalization of Descartes’ rule of signs.
If R = [a,b] X [¢,d], the rational function g(z,y) =
fA/(z+1/(b—a)) +a,1/(y + 1/(d — c)) + ¢), takes
on the same set of values on [0,00] x [0,00] as f(x,y)
on R, and g(z,y) is nonzero on [0,00] x [0,00] (hence
f(z,y) on R) if all the coefficients of z™y™g have the
same sign, where m and n are the degrees of f(z,y) in
x and y.

3 Self-separation

We can find the intersections of a curve f with the
boundary of a cell C' by substituting the parametric
form v; + t(v;41 — v;) of each edge v;v;41 into f(z,y)
and solving for the zeros of the univariate in ¢ € [0, 1]
[11]. Since f has no loops in C' after loop splitting, the
number of segments of f inside C' is half the number of
intersections with the boundary. If there are more than
two intersections, we split C' in a manner that partially
or completely separates at least one pair of segments.
For each clockwise oriented edge v;v; 41 of the bound-
ary, solve for all p such that (v; — v;+1) - Vf(p) = 0
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Figure 8: Chain from « (initial p) to ¢ to r to p separates
ap from g (a). g(x,y) is decreasing at p and p’ (= b)
towards b and a, so we split at minimum m of g(x,y)
on f, separating two intersections with g (b).

(Fig. 7(a)). The vector u = sV f(p) with s = sign((v; —
vit1) X Vf(p)) points inward. If sign(f(p)) = s,
|f(p+ tw)|, t > 0, increases at ¢ = 0. We split by the
line p + tu. If there is more than one such p, we choose
the one between the closest pair of boundary intersec-
tions. If no such p exists on any edge, we claim that
V f(p) makes at least one full counterclockwise turn as
p traverses the boundary clockwise. This claim is a spe-
cialization of the generalized Poincaré-Hopf index theo-
rem [8]. We isolate an intersection g of f, (fz(x,y) = 0)
and f, in a rectangle with the same property (Sec. 5),
which implies that ¢ is a saddle point (Fig. 7(b)). Let v
and w be principle directions of f at g. We split by the
lines ¢ + tv and g + tw.

4 Curve or intersection separation

If a cell C' contains a single segment ab of f and
sign(g(a)) = sign(g(b)), f crosses g an even number of
times inside C. If there is a local minimum m of g(x,y)
on f, we expect that it separates two intersections, so
we split at m. Some minima may not separate pairs of
intersections, but there are at most O(d?) minima for d
the maximum total degree of f(z,y) and g(x,y). Other-
wise, we try to certify zero intersections by constructing
a splitting line that separates f from g. The details of
curve/intersection separation are complicated. We pro-
vide a summary here. Details are in a forthcoming full
paper. We discuss separating f from ¢ in terms of con-
structing a polygonal chain, but actually we split along
the lines of the segments in the chain.

Suppose we are at a point p € f, initially p = a.
We have separated ap from g. Specifically, ap does not
intersect a segment of g with both endpoints to the right
of ab. (The left has to be handled similarly.) The sign of
Vf(p) x Vg(p) tells us that g(x,y) is increasing at p in
the direction of b. We move away from f in the direction
of Vf(p) to ¢ halfway to g, meaning g(q) = g(p)/2.
Next we move in a direction perpendicular to V f(q),
“parallel” to f. If we hit f first, that is the new position
of p. If we hit g or the boundary of C at r, we drop back
to f in the direction opposite of its gradient to the new
pon f, with ap separated from ¢ (Fig. 8(a)). Since the
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Figure 9: a is a positive tail of f but b is a negative
head (a), so i = —1 = sign(Vf(p) X Vg(p)) (a). a and
d are positive tails and b and d are positive heads i = 0
(b). a and ¢ are positive tails, b is negative head, and d
is positive head so i = —1 (c).

parallel move is off f and parallel to it, it goes far before
hitting f. Since g(z,y) is increasing in the direction of
b, g is getting farther from f in that direction so the
parallel move goes far before hitting g.

If g(x,y) is decreasing on f at p in the direction of
b, we try to work from the opposite direction, starting
with p’ = b. If g(z,y) is decreasing at both p and p’ in
the direction of b and a, g(x,y) has a local minimum on
f between p and p’. We isolate the minimum m, which
is an intersection between f and V f(z,y)xVg(z,y) =0
(Sec. 5). Then we split f by a line through m in the
direction V f(m) (Fig. 8(b)). If there is a pair of inter-
sections with g between p and p’ and only one minimum,
this will put the two intersections in different cells. If
not, m becomes a new starting point for separations be-
cause g(z,y) is increasing on f in both directions away
from m.

5 Intersection isolation

If sign(g(a)) = —sign(g(d)), f intersects g an odd num-
ber of times inside C, and we isolate one of these inter-
sections to a rectangle R C C. Let P be the precision
of the arithmetic: initially double-float (P = 53). Iso-
lation uses two operations: subdivide(D) subdivides a
convex region D containing an intersection by the bi-
sector of its longer dimension and returns the half D’
containing an intersection (Sec. 5); and Newton(R) it-
erates 2D Interval Newton’s method [12] on a rectangle
R until it stops shrinking.

While 0 € Vf(bbox(D)) x Vg(bbox(D)) or
Newton(bbox(D)) = bbox(D), D <+ subdivide(D). Re-
turn Newton(bbox(D)). Isolation does not alter C: the
subdivisions are temporary. The output R can be made
smaller by doubling the P used to create it and return-
ing Newton(R). We speed up the method by running
ordinary Newton’s method on each cell centroid. If it
converges to a point inside the cell, we expand it to a
rectangle based on its condition.

Subdivision might result in one or both halves con-
taining more than one segment of f. We can tell which
half contains the intersection by examining the inter-
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Figure 10: Each angle bisector of the gradient vectors
can “see” the boundary (a). Split the cell 90% of the
way to the nearest intersection (b) or boundary. Bound-
ary splits are dropped if not needed.

sections of f. A tail is a point a € f N IC such that
f > 0 in a neighborhood counterclockwise from a. If
a is on edge v;v;41 of the boundary, the condition is
equivalent to (vi+1 — v;) - Vf(a) < 0. A head has the
opposite sign. We say a € fNIC is positive if g(a) > 0,
otherwise negative. A cell contains an intersection if the
intersection number i of positive heads minus positive
tails is nonzero (Fig. 9(a)). This number also equals the
winding number of (f(p), g(p)) around the origin as p
travels around the boundary: (f(p), g(p)) sweeps coun-
terclockwise through the first quadrant for each positive
head and clockwise for each positive tail. For at least
onepe€ fNngnC,sign(Vf(p) x Vg(p)) = sign(i). Sub-
division calculates the intersection number for each half
and selects the one whose sign is the same as the original
cell (Fig. 9(c)).

6 Intersection encasement

The output R of intersection isolation is an adaptive-
precision 2D interval representation of an intersection
point p of f and g inside a cell C. However, C' can
contain an even number of additional intersections. In-
tersection encasement uses up to four splits to isolate p
within a cell that excludes all other intersections.

Let v1,v2,vs3,v4 be vectors that bisect the angle be-
tween =V f(p) and +Vg(p). If g also intersects C' in a
single segment and if the four rays p + tv;, t > 0, reach
the boundary of C' without intersecting f or g, the four
curve segments connecting p to the boundary of C' via f
or g are isolated, and f and g have no other intersection
in C (Fig. 10(a)).

Otherwise, for each 1 < i < 4, compute t = r; > 0 the
minimum value at which p + tv; intersects f, g, or the
boundary of C, and split C' by the line perpendicular
to v; through the point p + 0.97;v; (Fig. 10(b)). While
f or g intersects the boundary of the cell containing p
more than twice, halve each r; and split again.

7 Encasement based intersection algorithm

The encasement based algebraic curve intersection al-
gorithm takes two bivariate polynomials, f(z,y) and
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g(z,y), and a desired accuracy 0 as input and perturbs
their coefficients by n uniform in [—d, §]. When generat-
ing a splitting line, it rounds its coefficients to double-
float and perturbs them. However, if perturbation puts
the line on the wrong side of a vertex, it expresses each
coefficient as the sum of two double-floats and perturbs
the smaller one, and so forth as necessary. It uses inter-
val arithmetic, increasing precision [6] as necessary to
correctly determine signs of predicate expressions.

Separation of curves might require multiple splits, but
the separation algorithms are correct for linear curves,
and each split shrinks the. Since the curves are generic,
their deviation from linear also shrinks, ensuring termi-
nation [10].

7.1 Encasement implies arrangement

Using encasement of pairs of curves, we can construct
an arrangement of n curves inside B. Given curves
F={f1,fa,..., fn}, calculate intersections of all pairs.
For each f € F, calculate its intersections with the par-
tial derivatives f; and f,. Starting with B, add inter-
sections of f with other curves sequentially. First add
intersections with f, and f,. If a cell contains two in-
tersections, split it with a horizontal or vertical line.
After adding the intersections with f, and f,, apply
self-separation of f. Each cell now contains an x or
y-monotonic segment of f and hence the cell can be
split with a vertical or horizontal line without creating
a cell with more than one segment. Add the remain-
ing intersections of f with other curves, splitting ver-
tically /horizontally as appropriate. The result is the
intersection encasement Z(f) of f in B with respect to
F.

An arrangement segment is a segment of f connecting
two cell boundary intersections, in a cell C' € Z(f) not
containing an intersection, or a segment ap connecting
a boundary intersection a to a curve intersection p € C'
with g. To trace the boundary of an arrangement cell,
we need to take a “left turn” at p to the segment pc or
pd of g in its encasement. The choice is determined by
the the sign sign(Vf(p) x Vg(p)), a byproduct of iso-
lating the intersection (Sec. 5). Hence the arrangement
cells can be traced using only information stored in the
intersection encasements.

7.2 GPU speedup

The GPU version subdivides B (or its bounding box if
it is not a rectangle), into rectangular cells and assigns
the task of showing f or g has no zeros on a cell C to a
thread. Cells which fail this test are subdivided. This
process stops when the number of failing cells stabilizes.
CPU based encasement is run on each resulting cell.
Details in full paper.
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8 Results

The first set of experiments uses random curves of de-
gree d from 3 to 20. We use B = [-1,1] x [-1,1].
To generate a curve, we select d(d + 1)/2 — 1 points at
random in B and interpolate through them. For each
degree d, we generate a set Fy of 16 curves. The test is
to generate all the intersections of every pair of curves
in F'. We compare the CGAL curve arrangement library
with the CPU and CPU/GPU versions of encasement.
For CGAL, we monotonize each curve once, compute
the arrangement of every pair, and then calculate each
vertex in double-float. For CPU encasement, we gen-
erate the critical regions for each curve once, calculate
the encasement for each pair of curves, and increase
the precision P until the interval contains at most one
double-float point. For the GPU algorithm, we use an
initial subdivision small enough to ensure that 90% of
subcells are eliminated. The CPU results use an Intel
Core i5-3570K over-clocked at 4.2GHz and 8GB RAM.
The GPU results in addition use an Nvidia GTX 780
with 4GB DRAM. Results are in Table 8.

For d > 10, the CPU version of encasement is about
30 times faster than CGAL. CGAL times out for degrees
greater than 18. For degrees up to 13, using the GPU
speeds up encasement by a factor of 3. At degree 20,
there is no benefit.

The three right columns of Table 8 help to analyze
the number of splits required for encasement. Isolating
i intersections requires at least 7 splits. The number of
splits is almost proportional, rising slowly from 57 up to
7.74i for d = 3 to d = 22.

For the second experiment, we tested the robustness
of encasement and the cost of encasing near degener-
ate cases. We generated pairs of curves with a tangent
intersection, which is perturbed to a near-tangency. Ta-
ble 8 shows the effect of the tangent intersection. Since
i ordinary intersections require about 5i to 7i faces to
encase, it appears that a tangency requires about 50 to
60 faces to encase. Since the perturbation is 2726, this
is proportional to the number of bits of accuracy, which
is still a very reasonable number.

9 Conclusion

Although it uses perturbation, encasement is an exact
algorithm, hence correct. The perturbation adds a con-
trollable backwards error. The choice § = 2726 ~ 1078
randomizes half the bits of the input, which makes it
generic with high probability. For most applications, a
10~® error is an acceptable price for a 10 to 30 times
improvement in running time. The GPU is consumer
grade, and so it has an acceptable price for an addi-
tional factor of 3 in running time.

We were hoping for more speed up from using a GPU,
but the current version uses a quadratic approximation
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d CGAL CPU GPU I S S/1
3 0.05 0.01 0.14 5 25 5.0
4 0.16 0.03 0.15 11 49 4.4
5 0.33 0.07  0.17 15 65 4.3
6 0.67 0.16 0.18 16 99 6.1
7 1.56 0.38 0.23 23 179 7.7
8 8.29 0.74  0.30 30 200 6.6
9 17.06 1.56 0.41 35 267 7.6
10 32.65 1.99 0.48 47 291 6.1
11 54.62 2.68 0.89 o7 432 75
12 119.53  3.28 1.09 99 440 7.4
13 161.72  5.01 1.66 74 542 7.3
14 178.71  8.76 2.40 76 509 6.6
15 36797  9.35 3.72 95 727 7.6
16 41851 13.22 587 100 743 74
17 597.84 1976 9.00 114 951 83
18  881.81 28.89 15.72 135 1062 7.8
19 00 33.09 17.81 130 1010 7.7

20 o0 43.28 38.86 151 1168 7.7

Table 1: Degree d, CGAL, CPU encasement, and
GPU/CPU encasement running times in seconds, num-
ber of intersections I, number of cell/line splits in the
resulting encasement S, and ratio of S/I.

to f(x,y), at a cost of d?, instead of expanding f(1/(x+
1/(b—a)) +a,1/(y + 1/(d — ¢)) + ¢) (Sec. 2), which
has d® complexity. Also, it is limited to axis-parallel
subdivision.

Another goal of this research is 3D surface intersec-
tions and arrangement. We believe subdivision by non-
axis-parallel planes will be similarly beneficial.
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d time I S S/1
3 0.02 3 67 223
4 0.03 4 70 17.5
) 0.06 4 61 15.3
6 0.09 1 51  51.0
7 0.16 2 54 27.0
8 031 3 84  28.0
9 0.48 2 73 36.5
10 086 6 82 13.7
11 147 7 118 16.9
12 175 8 152 19.0
13 223 2 81  40.5
14 284 8 161 20.1
15 464 6 127 21.2
16 9.26 6 133 222
17 685 4 143 358
18 936 6 127 21.2
19 11.7 10 93 9.3
20 16.2 9 128 14.2

Table 2: Degree d, encasement running time for tangen-
tially intersecting curves.
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Geometric Fingerprint Recognition via Oriented Point-Set Pattern Matching

David Eppstein *

Abstract

Motivated by the problem of fingerprint matching, we
present geometric approximation algorithms for match-
ing a pattern point set against a background point set,
where the points have angular orientations in addition
to their positions.

1 Introduction

Fingerprint recognition typically involves a three-step
process: (1) digitizing fingerprint images, (2) identifying
minutiae, which are points where ridges begin, end,
split, or join, and (3) matching corresponding minutiae
points between the two images. An important con-
sideration is that the minutiae are not pure geometric
points: besides having geometric positions, defined
by (z,y) coordinates in the respective images, each
minutiae point also has an orientation (the direction
of the associated ridges), and these orientations should
be taken into consideration in the comparison, e.g.,
see [13, 9, 16, 19, 10, 11, 17, 15, 12] and Figure 1.

Figure 1: Screenshot of the display of fingerprint minu-
tiae in NIST’s Fingerprint Minutiae Viewer (FpMV).

In this paper, we consider computational geometry
problems inspired by this fingerprint matching problem.
The problems we consider are all instances of point-
set pattern matching problems, where we are given a
“pattern” set, P, of m points in R? and a “background”
set, B, of n points in R?, and we are asked to find a
transformation of P that best aligns the points of P
with a subset of the points in B, e.g., see [3, 4, 5, 6, 7].

*University of California, Irvine
T University of Illinois

Michael T. Goodrich*

Jordan Jorgensen* Manuel R. Torres

A natural choice of a distance measure to use in this
case, between a transformed copy, P’, of the pattern,
P, against the background, B, is the directed Hausdorff
distance, defined as h(P’, B) = max,ec pr minge g p(p, q),
where p is an underlying distance metric for points, such
as the Euclidean metric. In other words, the problem is
to find a transformation of P that minimizes the farthest
any point in P is from its nearest neighbor in B. Rather
than only considering the positions of the points in P
and B, however, in this paper we consider instances in
which each point in P and B also has an associated
orientation defined by an angle, as in the fingerprint
matching application.

It is important in such oriented point-set pattern
matching problems to use an underlying distance that
combines information about both the locations and the
orientations of the points, and to use this distance in
finding a good transformation. Our goal is to design
efficient algorithms that can find a transformation that
is a good match between P and B taking both positions
and orientations into consideration.

Previous Work. In the domain of fingerprint match-
ing, past work tends to focus on matching fingerprints
heuristically or as pixelated images, taking into con-
sideration both the positions and orientation of the
minutiae or other features, e.g., see [13, 9, 16, 19,
10, 11, 17, 15, 12]. We are not aware of past work
on studying fingerprint matching as a computational
geometry problem, however.

Geometric pattern matching for point sets without
orientations, on the other hand, has been well studied
from a computational geometry viewpoint, e.g., see [1,
4, 6, 18]. For such unoriented point sets, existing
algorithms can find an optimal solution minimizing
Hausdorff distance, but they generally have high poly-
nomial running times. Several existing algorithms give
approximate solutions to geometric pattern matching
problems [3, 5, 7, 8], but we are not aware of previous
approximation algorithms for oriented point-set pattern
matching. Goodrich et al. [7] present approximation
algorithms for geometric pattern matching in multiple
spaces under different types of motion, achieving ap-
proximation ratios ranging from 2 to 8 4 ¢, for constant
€ > 0. Cho and Mount [5] show how to achieve improved
approximation ratios for such matching problems, at
the expense of making the analysis more complicated.
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Other algorithms give approximation ratios of 1 + €,
allowing the user to define the degree of certainty they
want. Indyk et al. [8] give a (1 + €¢)-approximation
algorithm whose running time is defined in terms of both
the number of points in the set as well as A, which is
defined as the the distance between the farthest and the
closest pair of points. Cardoze and Schulman [3] offer
a randomized (1 + €)-approximation algorithm for R?
whose running time is also defined in terms of A. These
algorithms are fast when A is relatively small, which is
true on average for many application areas, but these
algorithms are much less efficient in domains where A
is likely to be arbitrarily large.

Our Results. In this paper, we present a family
of simple algorithms for approximate oriented point-
set pattern matching problems, that is, computational
geometry problems motivated by fingerprint matching.
Each of our algorithms uses as a subroutine a base algo-
rithm that selects certain points of the pattern, P, and
“pins” them into certain positions with respect to the
background, B. This choice determines a transformed
copy P’ of the whole point set P. We then compute
the directed Hausdorff distance for this transform by
querying the nearest neighbor in B for each point of
P’. To find nearest neighbors for a suitably-defined
metric on oriented points that combines straight-line
distance with rotation amounts, we adapt balanced box
decomposition (BBD) trees [2] to oriented point sets,
which may be of independent interest. The general idea
of this adaptation is to insert two copies of each point
such that, for any query point, if we find its nearest
neighbor using the L, /Lo-norm, we will either find the
nearest neighbor based on p1/us or we will find one of
its copies. The full details of this approach are described
in Appendix B. The output of the base algorithm is the
transformed copy P’ that minimizes this distance. We
refer to our base algorithms as pin-and-query methods.

These base algorithms are all simple and effective, but
their approximation factors are larger than 2, whereas
we seek (1 + €)-approximation schemes for any constant
€ > 0. To achieve such results, our approximation
schemes call the base algorithm twice. The first
call determines an approximate scale of the solution.
Next, our schemes apply a grid-refinement strategy that
expands the set of background points by convolving it
with a fine grid at that scale, in order to provide more
candidate motions. Finally, they call the base algorithm
a second time on the expanded input. This allows us to
leverage the speed and simplicity of the base algorithms,
gaining greater accuracy while losing only a constant
factor in our running times.

The resulting approximation algorithms run in the
same asymptotic time bound as the base algorithm
(with some dependence on € in the constants) and
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achieve approximations that are a (1 + ¢) factor close
to optimal, for any constant ¢ > 0. For instance, one
of our approximation schemes, designed in this way,
guarantees a worst case running time of O(ngmlog n)
for rigid motions defined by translations and rotations.
Thus, our approach results in polynomial-time approx-
imation schemes (PTASs), where their running times
depend only on combinatorial parameters. Specifically,
we give the runtimes and approximations ratios for our
algorithms in Table 1.

’ Algorithm \ Running Time \ Approx. Ratio ‘

T O(nmlogn) 1+e€
TR O(n?mlogn) 1+e
TRS O(n*mlogn) 1+e€

Table 1: Running times and approximation ratios for
our approximation algorithms.

The primary challenge in the design of our algo-
rithms is to come up with methods that achieve an
approximation factor of 1 4 ¢, for any small constant
€ > 0, without resulting in a running time that is
dependent on a geometric parameter like A. The main
idea that we use to overcome this challenge is for our
base algorithms in some cases to use two different
pinning schemes, one for large diameters and one for
small diameters, We show that one of these pinning
schemes always finds a good match, so choosing the
best transformation found by either of them allows us
to avoid a dependence on geometric parameters in our
running times. As mentioned above, all of our base
algorithms are simple, as are our (1 + €)-approximation
algorithms. Moreover, proving each of our algorithms
achieves a good approximation ratio is also simple,
involving no more than “high school” geometry. Still,
for the sake of our presentation, we postpone some
proofs and simple cases to appendices.

2 Formal Problem Definition

Let us formally define the oriented point-set pattern
matching problem. We define an oriented point set in
R2 to be a finite subset of the set O of all oriented points,
defined as

0= {(x,y,a) | z,y,a € R,a € [0,27r)}.

We consider three sets of transformations on oriented
point sets, corresponding to the usual translations,
rotations, and scalings on R?. In particular, we define
the set of translations, T, as the set of functions T, :
O — O of the form

Tv(xayva) = ((E + Uz, Y + Uy»a’)v
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where v = (v, v,) € R? is referred to as the translation
vector.

Let R, be a rotation in R? where p and 6 are the
center and angle of rotation, respectively. We extend
the action of R,y from unoriented points to oriented
points by defining

Ryo(z,y,a) = (Rpe(z,y), (a+ 0) mod 27),

and we let R denote the set of rotation transformations
from O to O defined in this way.

Finally, we define the set of scaling operations on
an oriented point set. Each such operation S, is
determined by a point p = (zp,¥p,ap) at the center
of the scaling and by a scale factor, s. If a point ¢
is Euclidean distance d away from p before scaling, the
distance between ¢ and p should become sd after scaling.
In particular, this determines S, : O — O to be the
function

Spos(@,y,a) = (zp + s(x — p),yp + 5(Y — yp), a).

We let S denote the set of scaling functions defined in
this way.

As in the unoriented point-set pattern matching prob-
lems, we use a directed Hausdorff distance to measure
how well a transformed patten set of points, P, matches
a background set of points, B. That is, we use

h(P,B) = i
(P, B) glealgcgggu(p,q),

where pu(p, q) is a distance metric for oriented points in
R2. Our approach works for various types of metrics,
u, for pairs of points, but, for the sake of concreteness,
we focus on two specific distance measures for elements
of O, which are based on the Li-norm and Ls-norm,
respectively. In particular, for (z1,y1,a1), (%2, y2,a2) €
0, let

M1((1‘1,y1,01)7 (5627242,&2)) =
|z1 — 22| + |y1 — y2| + min(|a; — as|, 27 — |a1 — as)),

and let

M2(($17y1; al)’ (an Y2, a2)) =

V(@1 —22)2 + (y1 — ¥2)? + min(Ja1 — az], 27 — |a; — az)%.

Intuitively, one can interpret these distance metrics to
be analogous to the Li-norm and Ls-norm in a cylin-
drical 3-dimensional space where the third dimension
wraps back around to 0 at 27w. Thus, for i € {1,2},
and B, P C O, we use the following directed Hausdorff
distance:
h;(P,B) = max min j1; (p,b).

Therefore, for some subset & of T U R U S, the
oriented point-set pattern matching problem is to find
a composition E of one or more functions in £ that
minimizes h;(E(P), B).

3 Translations and Rotations

In this section, we present our base algorithm and
approximation algorithm for approximately solving the
oriented point-set pattern matching problem where we
allow translations and rotations. Given two subsets of
O, P and B, with |P| = m and |B| = n, our goal here
is to minimize h;(E(P), B) where E is a composition of
functions in 7 U R. In the case of translations and
rotations, we actually give two sets of algorithms—
one set that works for point sets with large diameter
and one that works for point sets with small diameter.
Deciding which of these to use is based on a simple
calculation (which we postpone to the analysis below),
which amounts to a normalization decision to determine
how much influence orientations have on matches versus
coordinates.

Base Algorithm Under Translation and Rotation
with Large Diameter. In this subsection, we present
an algorithm for solving the approximate oriented point-
set pattern matching problem where we allow transla-
tions and rotations. This algorithm provides a good
approximation ratio when the diameter of our pattern
set is large. Given two subsets P and B of O, with
|P| = m and |B| = n, we wish to minimize h;(E(P), B)
over all compositions F of one or more functions in
T UR. Our algorithm is as follows (see Figure 2).

Algorithm BaseTranslateRotateLarge(P, B):

Find p and ¢ in P having the maximum value of
[(@p, yp) — (25 Yg)l2-
for every pair of points b,b’ € B do
Pin step: Apply the translation, T,, € T, that takes
p to b, and apply the rotation, R, ¢, that makes p,
b’, and ¢ collinear.
Let P’ denote the transformed pattern set, P.
for every ¢ € P/ do
Query step: Find a nearest-neighbor of ¢ in B
using the p; metric, and update a candidate
Hausdorff distance accordingly.
end for
return the smallest candidate Hausdorff distance
found as the smallest distance, h; (R, 6(T,(P)), B).
end for

The points p and ¢ can be found in O(mlogm)
time [14]. The pin step iterates over O(n?) translations
and rotations, respectively, and, for each one of these
transformations, we perform m BBD queries, each of
which takes O(log n) time. Therefore, our total running
time is O(n?mlogn). Our analysis for this algorithm’s
approximation factor uses the following simple lemma.



30" Canadian Conference on Computational Geometry, 2018

Translate Rotate

T T
b p b
o B S B
Lo PRS
s
i — |,
. . \\
A
4 ; \'h’
— P e
-~ il l
Result
s ~
4
‘
/
/
-,
- v
)

Figure 2: Illustration of the translation and rotation
steps of the base approximation algorithm for transla-
tion and rotation in O when diameter is large.

Lemma 1 Let P be a finite subset of O. Consider the
rotation Rcg in R. Let ¢ = (z4,Yq,0q) be the element
in P such that ||(xq,yq) — (e, Ye)|l2 = D is mazimized.
For any p = (xp,Yp,ap) € P, denote Reg(xp,yp,ap)
as p' = (xp,Yp,ap). Let i € {1,2}. Then for all
p € P, pi(p,p') < |(xq,yq) = (xg, yq )i + 7l (24, ¥q) —
(g, yg)ll2/(2D).

Theorem 2 Let hopy be hi(E(P),B) where E is the
composition of functions in T U R that attains the
minimum of h;, fori € {1,2}. The algorithm above runs
in time O(n?mlogn) and produces an approzimation to
hopt that is at most (A1 + €)hopt for b1 and at most
(A2 + €)hopt for ho, where € > is a fized constant,
Ay =6++21/D, and Ay =2 ++/2(2+ /D).

Grid Refinement. In this subsection, we describe
our grid refinement process, which allows us to use
a base algorithm to obtain an approximation ratio
of 1 + e To achieve this result, we take advantage
of an important property of the fact that we are
approximating a Hausdorff distance by a pin-and-query
algorithm. Owur base algorithm approximates hopt by
pinning a reference pattern point, p, to a background
point, b. Reasoning backwards, if we have a pattern in
an optimal position, where every pattern point, p, is at
distance d < hope from its associated nearest neighbor in
the background, then one of the transformations tested
by the base pin-and-query algorithm moves each pattern
point by a distance of at most (A; — 1)d away from this
optimal location when it performs its pinning operation.

Suppose we could define a constant-sized “cloud” of
points with respect to each background point, such that
one of these points is guaranteed to be very close to the
optimal pinning location, much closer than the distance
d from the above argument. Then, if we use these
cloud points to define the transformations checked by
the base algorithm, one of these transformations will
move each point from its optimal position by a much
smaller distance.
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To aid us in defining such a cloud of points, consider
the set of points G(p,l,k) C R? (where p = (2p,y,) is
some point in R?, [ is some positive real value, and k is
some positive integer) defined by the following formula:

G(p,l,k) = {q€R2|
q=(zp+il,y, +jl),i,j € Z,—k < i,j < k}.

Then G(p,l,k) is a grid of (2k + 1)? points within
a square of side length 2kl centered at p, where the
coordinates of each point are offset from the coordinates
of p by a multiple of [. An example is shown in Figure 3.

)

Figure 3: An example of G(p, [, 3).

L]
[

Now consider any point ¢ whose Euclidean distance
is no more than kI from p. This small distance forces
point ¢ to lie within the square convex hull of G(p, [, k).
This implies that there is a point of G(p,l, k) that is
even closer to ¢:

Lemma 3 Let i € {1,2}. Given two points p,q € R2,
if lp—alls < Kl, then |lg—s|ly <1 and |lq—slla <1/V2,
where s is q’s closest neighbor in G(p,l, k).

A (14¢)-Approximation Algorithm Under Trans-
lation and Rotation with Large Diameter. Here,
achieve a (1 + €)-approximation ratio when we allow
translations and rotations. Again, given two subsets of
O, P and B, with |P| = m and |B| = n, our goal is
to minimize h;(E(P), B) over all compositions F of one
or more functions in 7 U R. We perform the following
steps.

1. Run algorithm, BaseTranslateRotateLarge(P, B),
from Section 3 to obtain an approximation hgp, <
A - hopt, where A = A +eor A = Ay + ¢ for a
constant € > 0.

2. For every b € B, generate the grid of points
2
Gy = G(b, Z‘g’j’;, [4=41) for hy or the grid G, =
G(b, \/Egj’f, A\z/geﬂ) for hy. Let B’ denote the
resulting point set, which is of size O(A4%n), i.e.,
|B’| is O(n) when A is a constant.

3. Run algorithm, BaseTranslateRotateLarge(P, B’),
except use the original set, B, for nearest-neighbor
queries in the query step.
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It is easy to see that this simple algorithm runs in
O(A®n2?mlogn), which is O(n?mlogn) when A is a
constant (i.e., when the points in P have a large enough
diameter).

Theorem 4 Let hop be hi(E(P),B) where E is the
composition of functions in T U R that attains the
minimum of h;. The algorithm above Tuns in time
O(A®n?mlogn) and produces an approzimation to hop:
that is at most (1 + €)hopy for both hy and hs.

Base Algorithm Under Translation and Rotation
with Small Diameter. In this subsection, we present
an alternative algorithm for solving the approximate
oriented point-set pattern matching problem where we
allow translations and rotations. Compared to the
algorithm given in Section 3, this algorithm instead
provides a good approximation ratio when the diameter
of our pattern set is small. Once again, given two
subsets of O, P and B, with |P| = m and |B| = n,
we wish to minimize h;(E(P), B) over all compositions
E of one or more functions in 7 U R. We perform the
following algorithm (see Figure 4).

Algorithm BaseTranslateRotateSmall( P, B):

Choose some p € P arbitrarily.
for every points b € B do
Pin step: Apply the translation, T,, € T, that
takes p to b, and then apply the rotation, R, g,
that makes p and b have the same orientation.
Let P’ denote the transformed pattern set, P.
for every ¢ € P’ do
Query step: Find a nearest-neighbor of ¢ in B
using the p; metric, and update a candidate
Hausdorff distance accordingly.
end for
return the smallest candidate Hausdorff distance
found as the smallest distance, h;(Rp ¢(T,(P)), B).
end for

Theorem 5 Let hop, be h;(E(P),B) where E is the
composition of functions in T U R that attains the
minimum of h;. The algorithm above runs in time
O(nmlogn) and produces an approximation to hop; that
is at most (A; + €)hopt for h;, where i = {1,2}, € > 0 is
a fized constant, Ay =2+ /2D, and Ay =2+ D.

A (1+e)-Approximation Algorithm Under Trans-
lation and Rotation with Small Diameter. In
this subsection, we utilize the algorithm from Section 3
to achieve a (1 + €)-approximation ratio when we allow
translations and rotations. Again, given two subsets of

Rotate

Figure 4: Illustration of the translation and rotation
steps of the base approximation algorithm for transla-
tion and rotation in O when diameter is small.

O, P and B, with |P| = m and |B| = n, our goal is
to minimize h;(E(P), B) over all compositions F of one
or more functions in 7 U R. We begin by describing
another type of grid refinement we use in this case.

In particular, let us consider a set of points C'(p, k) C
O where p = (zp, yp, ap) is some point in O and k is some
positive integer. We define the set in the following way
(see Figure 5):

Clp, k) ={q€ 0|
q= (zp,Yp,a+2mi/k mod 2m),i € Z,1 < i<k}

Figure 5: An example of C(p,8).

From this definition, we can see that C(p, k) is a set
of points that share the same position as p but have
different orientations that are equally spaced out, with
each point’s orientation being an angle of %’T away from
the previous point. Therefore, it is easy to see that,
for any point ¢ € O, there is a point in C(p, k) whose
orientation is at most an angle of 7 away from the
orientation of ¢. Given this definition, our algorithm
is as follows.

1. Run algorithm, BaseTranslateRotateSmall(P, B),
from Section 3, to obtain hgp, < A - Aopt.

2. For every b € B, generate the point set

=6 (0 iy [))
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for hy or

hapre [A2—A
Gy =G| b, -2~
=6 [
for hy. Let B’ denote the resulting set of points,
i.e., B = UbEB Gb.

3. For every b’ € B’, generate the point set

Cy=C (z)MA))

Thapre

for hq or

C.=C v M
b " Thapre

for hy. Let B” denote the resulting set of points.

4. Run algorithm, BaseTranslateRotateSmall(P, B"),
but continue to use the points in B for nearest-
neighbor queries.

Intuitively, this algorithm uses the base algorithm to
give us an indication of what the optimal solution might
be. We then use this approximation to generate a larger
set of points from which to derive transformations to
test, but this time we also generate a number of different
orientations for those points as well. We then use this
point set in the base algorithm when deciding which
transformations to iterate over, while still using B to
compute nearest neighbors.

The first step of this algorithm runs in time
O(nmlogn), as we showed. The second step takes time
proportional to the number of points which have to be
generated, which is determined by n, our choice of the
constant €, and the approximation ratio, A, of our base
algorithm. The time needed to complete the second
step is O(A*n). The third step generates even more
points based on points generated in step two, which
increases the size of B” to be O(A%n). The last step
runs in time O(A%nm logn), which is also the running
time for the full algorithm.

Theorem 6 Let hop be h;(E(P),B) where E is the
composition of functions in T U R that attains the
minimum of h;. The algorithm above runs in time
O(A®nmlogn) and produces an approzimation to hop
that is at most (1 + €)hopy for both hy and he.

Combining the Algorithms for Large and Small
Diameters. For the two cases above, we provided two
base algorithms that each had a corresponding (1 + ¢)-
approximation algorithm. As mentioned above, we clas-
sified the two by whether the algorithm achieved a good
approximation when the diameter of the pattern set
was large or small. This is because the large diameter
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base algorithm has an approximation ratio with terms
that are inversely proportional to the diameter, and the
small diameter base algorithm has an approximation
ratio with terms that are directly proportional to the
diameter.

Both of the resulting (1+¢)-approximation algorithms
have running times which are affected by the approxi-
mation ratio of their base algorithm, meaning their run
times are dependent upon the diameter of the pattern
set. We can easily see, however, that the approximation
ratios of the large and small diameter base algorithms
intersect at some fixed constant diameter, D*. For
hi, if we compare the expressions 6 4+ v/27/D and
2 + V2D, we find that the two expressions are equal
at D* = V2 + 2+ 7 ~ 3.68. For ho, we compare
2++/2(2+7/D) and 2 + D to find that they are equal
at D* =2+ V2 + V271 ~ 3.95. For diameters larger
than D*, the approximation ratio of the large diameter
algorithm is smaller than at D*, and for diameters
smaller than D*, the approximation ratio of the small
diameter algorithm is smaller than at D*. Thus, if we
choose to use the small diameter algorithms when the
diameter is less than D* and we use the large diameter
algorithms when the diameter is greater or equal to D*,
we ensure that the approximation ratio is no more than
the constant value that depends on the constant D*.
Thus, based on the diameter of the pattern set, we
can decide a priori if we should use our algorithms for
large diameters or small diameters and just go with that
set of algorithms. This implies that we are guaranteed
that our approximation factor, A, in our base algorithm
is always bounded above by a constant; hence, our
running time for the translation-and-rotation case is
O(n?mlogn).

4 Conclusion

We present distance metrics that can be used to measure
the similarity between two point sets with orientations
and we also provided fast algorithms that guarantee
close approximations of an optimal transformation. In
the appendices, we provide additional algorithms for
other types of transformations and we also provide
results of experiments.
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A Postponed Proofs

In this appendix, we present proofs that were postponed
from the body of our paper.

Lemma 3. Leti € {1,2}. Given two points p,q € R?, if
Ilp —alli < KL, then |lg — slly <1 and |lg — sz < 1/V2,

where s is q’s closest neighbor in G(p,l, k).

Proof. Because ||p — q||; < kl, we know that ¢ exists
within the square of side length 2kl which encompasses
G(p,l, k) (which we will refer to as G for the remainder
of this proof). This square can be divided into (2k)?
non-overlapping squares of side length [. It is easy to
see that the vertices of these squares are all points in
G and that ¢ exists within (or on the edge of) at least
one of these squares. The point inside of a square that
maximizes the distance to the square’s closest vertex
is the exact center of the square. If the side length
is [, simple geometry shows us that at this point, the
distance to any vertex is [ with respect to the L;-norm
and [/+/2 with respect to the Ly-norm. Thus, because ¢
exists within a square of side length [ whose vertices are
points in G, the furthest that ¢ can be from its nearest
neighbor in G is [ for the Li-norm and l/\/i for the
Lo-norm. Il

Lemma 1. Let P be a finite subset of O. Consider the
rotation R.g in R. Let ¢ = (z4,Yq,0q) be the element
in P such that ||(zq,Yq) — (Tc, Ye)|l2 = D is mazimized.
For any p = (zp,Yp,ap) € P, denote Reo(Tp,Yp,ap)
as p' = (xp,Yp,ap). Let i € {1,2}. Then for all
p € P, pi(pp) < (g, 9q) — (g, yg )i + 7l (2, yq) —
(g yq')ll2/(2D).

c

Figure 6: The rotation of ¢ to ¢’ about ¢

Proof. After applying the rotation R, g, we know ¢ has
moved at least as far than any other point because it is
the farthest from the center of rotation. Without loss
of generality, 0 < 6 < m. Then it is easily verifiable
that 6/7 < sin(6/2). As 2Dsin(6/2) is the Euclidean
distance ¢ moves under R. g, it follows that

2D¢0 .
== < 2D5in(0/2) = (4, v4) — (27, v) 2

This scenario is illustrated in Figure 6. Thus, 8 <

(7| (24 ) — (7> )I12)/(2D), which implies that R..,
moves the position of ¢ by at most ||(zq, yq) — (¢, Yg')|li
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and changes the orientation of ¢ by at most 7||(z4, yq) —
(xq/,yq')|l2/(2D). Therefore, because ¢ moves farther
than any other point in P, any point p € P has moved
a distance of at most ||(z4, yq) — (zg, Yo )i +7 || (24, yg) —
(xg',yq')|l2/(2D) with respect to the distance function
Hi- O

Theorem 2. Let hop be hi(E(P),B) where E is the
composition of functions in T U R that attains the
minimum of h;, fori € {1,2}. The algorithm above runs
in time O(n?mlogn) and produces an approzimation to
hopt that is at most (A1 + €)hopt for h1 and at most
(Ag + €)hopt for ha, where € > 0 is a fized constant,
Ay =6+21/D, and Ay =2 ++/2(2+ /D).

Proof. The additional € terms come entirely from using
approximate nearest neighbor queries (defining BBD
trees so they return (1 + €/A;)-approximate nearest
neighbors, for ¢ € {1,2}). So it is sufficient for us to
prove approximation bounds that are A; - hopt.

The first step is argued similarly to that of the proof
of Theorem 8. Let E be the composition of functions
in 7 UR that attains the minimum of h(E(P), B) and
let P’ be E(P). Then for all p in P’, there exists b
in B such that p;(p,b) < hopt. Let p’,¢" € B be the
closest background points to optimal positions of p and
q respectively, where p and ¢ are the diametric points
we choose in the first step of the algorithm. Thus,

[(@p, yp) — (@, yp)|li < pi(p,p') < hopt -

Apply the translation T;, on P’ so that p coincides with
p’, which is equivalent to moving every point ||(zp, yp) —
(zp, ypr)|ls with respect to position. Lemma 7, then,
implies that all points have moved at most hopt.

Next, apply the rotation Ry, ¢ to P’ that makes p,q,
and ¢’ co-linear. With respect to position, ¢ moves at
most a Euclidean distance of 2D sin(f/2) away from ¢
where D is the Euclidean distance between p and gq.
As all points were already at most 2hep; away from
their original background point in B, this implies that
2Dsin(0/2) < 2v2hopi. Thus, |[(z4,94) — (Tg,Yg')l2
is at most 2\/§hopt. Then by Lemma 1, as ¢ is the
furthest point from p, the rotation moves all points at
most 2\/§hopt + \/Eﬂ'hopt/D with respect to hy and at
most 4hop + \/iwhopt/D for hq.

Since each point in the pattern set started out at
most hopt away from a point in the background set,
we combine this with the translation and rotation
movements to find that every point ends up at most
(6 + V27/D)hopy away from a background point for
hy and at most (2 + V2(2 + 7/D))hepy away from a
background point for he. As our algorithm checks this
combination of T, and R, g, our algorithm guarantees
at least this solution. Note that we assume p’ and ¢’
are not the same point. However if this is the case, then
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we know that D < 2hgp thus when we translate p to p’
every point is within (v/5 + 2m/D)hept of p’, which is a
better approximation than the case where p’ # ¢’ under
our assumption that D is large. U

Theorem 4. Let hgy, be hi(E(P),B) where E is the
composition of functions in T U R that attains the
minimum of h;. The algorithm above runs in time
O(A%n®*m]logn) and produces an approzimation to Ropt
that is at most (1 + €)hope for both hy and ha.

Proof. Let E be the composition of functions in T UR
that attains the minimum of h(E(P),B). Let P’ be
E(P). Then every point ¢ € P’ is at most hept from
the closest background point in B. By running the base
algorithm, we find hqp, < A - hopt, where A is the ap-
proximation ratio of the base algorithm. Now consider
the point &’ € B which is the closest background to some
pattern point p € P. The square which encompasses Gy
has a side length of 2h,,,.. This guarantees that p, which
is at most hopy away from &', lies within this square. As
we saw from Lemma 3, this means that p is at most
ZZ“’_I’;‘ away from its nearest neighbor in Gy. Thus, if a
transformation defined by the nearest points in B would
move our pattern points at most (A — 1)hgpt from their
optimal position, then using the nearest points in Gy
to define our transformation will move our points at
most (A — 1);’;‘1”2 = Eh% < €hopt. Thus, the modified
algorithm gives a solution that is at most (14€)hop;. O

Theorem 5. Let hopy be hi(E(P),B) where E is the
composition of functions in T U R that attains the
minimum of h;. The algorithm above runs in time
O(nmlogn) and produces an approxzimation to h,p; that
is at most (A; + €)hopt for h;, where i = {1,2}, ¢ >0 is
a fized constant, Ay =2+ /2D, and Ay =2+ D.

Proof. The additional € terms come entirely from using
approximate nearest neighbor queries, so it is sufficient
to prove approximations which do not include the €
term using exact nearest neighbor queries (defining the
BBD tree so that it returns points that are (1 + €/A;)-
approximate nearest neighbors). Particularly, we will
prove a bound of (2 + \/?D)hopt for h; and a bound of
(24 D)hepy, for hs.

Let E be the composition of functions in 7 U R that
attains the minimum of h(E(P), B). Let P’ be E(P).
Then every point p € P’ is at most hop from the closest
background point in B. That is, for all p in P’, there
exists b in B such that p;(p,b) < hepe. Let p' € B be
the closest background point to the optimal position of
p where p is the point we chose in the first step of the
algorithm. Thus,

:u’z(pvp/) S hopt~

Apply the translation T, and rotation R,y on P’ so
that p coincides with p’ and both points have the same
orientation. It is easy to see that p has moved from
its optimal position by exactly p;(p,p’) < hopt. Using
Lemma 7 and the fact that a rotation on P causes the
orientation of each point in P to change by the same
amount, we find that every point ¢ € P has moved at
most p;(p,p’) + d from its original position, where d is
the change in the position of g caused by the rotation.

We know that the angle rotated, #, must be less than
hopt and, without loss of generality, we assume 0 < 6 <
m. Therefore it is easily verifiable that sin(6/2) < 6/2.
If D is the diameter of P, then regardless of our choice
of p, each point in P is displaced at most 2D sin(0/2)
by the rotation. Thus each point is displaced at most
D8 < Dhop.

Since each point in the pattern set started out at
most hopt away from a point in the background set,
we combine this with the translation and rotation
movements to find that every point ends up at most
(2+V/2D)hopt away from a background point for hy and
at most (2 + D)hopy away from a background point for
ho. As our algorithm checks this combination of T, and
R, 6, our algorithm guarantees at least this solution. [

Theorem 6. Let hop be hi(E(P),B) where E is the
composition of functions in T U R that attains the
minimum of h;. The algorithm above runs in time
O(ASnm]logn) and produces an approzimation to Ropt
that is at most (1 4 €)hopy for both hy and hs.

Proof. Let E be the composition of functions in 7T UR
that attains the minimum of h;(E(P),B). Let P’
be E(P). Then every point ¢ € P’ is at most Agpt
from the closest background point in B. By running
the base algorithm, we find hqpr < A - hopt Where
A is the approximation ratio of the base algorithm.
Now consider the point b € B which is the closest
background to some pattern point p € P. The square
which encompasses Gy has a side length of 2hy,. This
guarantees that p, which is at most hepy away from
b, lies within this square. As we saw from Lemma 3,
this means that p is at most % away from its
nearest neighbor g in Gy with respect to the L1-norm,
and at most —= with respect to the L2-norm.

V343 A)
For this point, g, there are a number of points in
Cgy which are at the same position but with different

orientation. For some point ¢ in Cy, the orientation of

point p is within an angle of at most 2(}2“27% for hq
and at most % for hy. If we combine together

the maximum difference in position between p and c,
and the maximum difference in orientation between
p and ¢, then we see that for both pu; and ps, the
distance between p and c is at most Z;P_TZ. Thus, if a
transformation defined by the nearest point in B would
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move our pattern points at most (A — 1)hgpt, from their
optimal position, then using the nearest point in Cj
to define our transformation will move our points at
most (A — 1)22‘:?;1 = Eh% < €hopt. Thus, the modified
algorithm gives a solution that is at most (14€)hops. O

B Translations Only

In this section, we present our base algorithm and
approximation algorithm for approximately solving the
oriented point-set pattern matching problem where we
allow only translations. In this way, we present the basic
template and data structures that we will also use for
the more interesting case of translations and rotations
(TUR).

Our methods for handling translations, rotations, and
scaling is an adaptation of our methods for 7UR; hence,
we give our methods for 7 UR U S in an appendix.

Given two subsets of O, P and B, with |P| = m and
| B| = n, our goal here is to minimize h;(E(P), B) where
E is a transformation function in 7.

Base Algorithm Under Translation Only. Our
base pin-and-query algorithm is as follows.

Algorithm BaseTranslate(P, B):

Choose some p € P arbitrarily.
for every b € B do
Pin step: Apply the translation, T,, € T, that takes
p to b.
for every ¢ € T,(P) do
Query step: Find a nearest-neighbor of ¢ in B
using the p; metric, and update a candidate
Hausdorff distance for T, accordingly.
end for
return the smallest candidate Hausdorff distance
found as the smallest distance, h;(T,(P), B).
end for

This algorithm uses a similar approach to an algo-
rithm of Goodrich et al. [7], but it is, of course, different
in how it computes nearest neighbors, since we must
use an oriented distance metric rather than unoriented
distance metric. One additional difference is that rather
than find an exact nearest neighbor, as described above,
we instead find an approximate nearest neighbor of
each point, ¢, since we are ultimately designing an
approximation algorithm anyway. This allows us to
achieve a faster running time.

In particular, in the query step of the algorithm, for
any point ¢ € T,,(P), we find a neighbor, b € B, whose
distance to ¢ is at most a (1 + €)-factor more than the
distance from ¢ to its true nearest neighbor. To achieve
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this result, we adapt the balanced box-decomposition
(BBD) tree of Arya et al. [2] to oriented point sets.
Specifically, we insert into the BBD tree the following
set of 3n points in R3:

{b, b, b |be B,
b/ = (xp7ybvab + 27T)7
b = (b, Yp, ap — 27‘(‘)}.

This takes O(nlogn) preprocessing and it allows the
BBD tree to respond to nearest neighbor queries with
an approximation factor of (1 + €) while using the L;-
norm or Lo-norm as the distance metric, since the BBD
is effective as an approximate nearest-neighbor data
structure for these metrics. Indeed, this is the main
reason why we are using these norms as our concrete
examples of p; metrics. Each query takes O(logn)
time, so computing a candidate Hausdorff distance for a
given transformation takes O(mlogn) time. Therefore,
since we perform the pin step over n translations, the
algorithm overall takes time O(nmlogn). To analyze
the correctness of this algorithm, we start with a simple
observation that if we translate a point using a vector
whose L;-norm is d, then the distance between the
translated point and its old position is d.

Lemma 7 Let (z,y,a) be an element of O. Consider a
transformation T, in T where v is a translation vector.
Let T, (z,y,a) = (¢',y',a). If the Li-norm of v is ||v||; =
d, then ui((x,y,a), (x’,yﬂa)) =d, where i € {1,2}.

Proof. First consider the case where ¢ = 1. By
definition of p; and Ty,

Ml((x7y7 a)7 (xlayla a))

= |z — 2’|+ |y — ¢/| + min(|a — a|, 27 — |a — a])
= [va] + [vy]

=d.

Now consider the case where i = 2:

Mg((l‘,:’.},&),(ﬂ?/,y/,a))
=/(z—2)2+ (y — )% + min(a — a, 27 — |a — a|)?

— 02 2
=/ Uz Ty

=d.

Thus, for either case, the lemma holds. O

Theorem 8 Let hopy be hi(E(P),B) where E is the
translation in T that attains the minimum of h;. The
algorithm above runs in time O(nmlogn) and produces
an approzimation to hep: that is at most (2+€)hopt, for
either hy and hgy, for any fixed constant € > 0.
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Proof. The e term comes from the approximate nearest
neighbor queries using the BBD tree, and expanding
B to a set of size 3n by making a copy of each point
in B to have an angle that is 27 greater and less
than its original value. So it is sufficient to prove a
2-approximation using exact nearest neighbor queries
(while building the BBD tree to return (1 + ¢/2)-
approximate nearest neighbors). We prove this claim by
a type of “backwards” analysis. Let E be a translation
in 7 that attains the minimum of h;(E(P), B), and let
P’ = E(P). Then every point ¢ € P’ is at most hopt
from its closest background point in B. That is, for all
g in P’, there exists b in B such that p;(g,b) < hopt. Let
b € B be the closest background point to the optimal
position of p, where p is the point we choose in the first
step of the algorithm. Thus,

[(2p yp) — @or, yp)lle < ps(p,0') < hop.

Apply the translation T, on P’ so that p coincides with
b’, which is equivalent to moving every point’s position
by ||(zp, yp) — (x4, Yo )||;- Hence, by Lemma 7, all points
have moved at most hgp.

As all points in the pattern started at most hop away
from a point in the background set and the translation
T, moves all points at most hpy, all points in T, (P’)
are at most 2hopt from a point in the background set B.
Since our algorithm checks T, as one of the translations
in the second step of the algorithm, it will find a
translation that is at least as good as T,. Therefore,
our algorithm guarantees an approximation of at most
2hopt, for either h; and ho. O

A (1 + e)-Approximation Algorithm Under
Translations Only. In this subsection, we utilize
the algorithm from Appendix B to achieve a (1 + ¢)-
approximation when we only allow translations.
Suppose, then, that we are given two subsets of O, P
and B, with |[P| = m and |B| = n, and our goal is to
minimize h;(E(P), B) over translations E in 7. Our
algorithm is as follows:

1. Run the base algorithm, BaseTranslate(P, B), from
Appendix B, to obtain an approximation, hgp, <
A hop.

2. For every b € B, generate the point set

B €hapr [AZ— A
w=alnizzn [ )

for hy or

Gy =G be\/ﬁhapr A7 A
i A2 _A? e\/§
for hy. Let B’ denote this expanded set of back-

ground points, i.e., B" = |J,c g Gp, and note that if
A is a constant, then |B’| is O(n).

3. Return the result from calling BaseTranslate( P, B'),
but restricting the query step to finding nearest
neighbors in B rather than in B’.

Intuitively, this algorithm uses the base algorithm to
give us a first approximation for the optimal solution.
We then use this approximation to generate a larger set
of points from which to derive transformations to test.
We then use this point set again in the base algorithm
when deciding which transformations to iterate over,
while still using B to compute nearest neighbors. The
first step of this algorithm runs in time O(nmlogn), as
we showed. The second step takes time proportional
to the number of points which have to be generated,
which is determined by n, our choice of the constant e,
and the approximation ratio of our base algorithm A,
which we proved is the constant 2+ e. The time needed
to complete the second step is O(n). In the last step,
we essentially call the base algorithm again on sets of
size m and O(n), respectively; hence, this step requires
O(nmlogn) time.

Theorem 9 Let hope be hi(E(P),B) where E is the
translation in T that attains the minimum of h;, fori €
{1,2}. The algorithm above runs in time O(nmlogn)
and produces an approzimation to hep: that is at most
(14 €)hopt, for either hy and ho.

Proof. Let E be the translation in 7 that attains the
minimum of h;(E(P), B). Let P’ be E(P). Then every
point ¢ € P’ is at most hopy from the closest background
point in B. By running the base algorithm the first time,
we find hgpr < A - hopt, Where A is the approximation
ratio of the base algorithm. Now consider the point,
b’ € B, that is the closest background to some pattern
point p € P. The square which encompasses G has a
side length of 2h,p,. This guarantees that p, which is
at most hepy away from b/, lies within this square. As
we saw from Lemma 3, this means that p is at most
Zﬁ"j’z away from its nearest neighbor in Gy. Thus, if a
transformation defined by the nearest point in B would
move our pattern points at most (A — 1)hgp; from their
optimal position, then using the nearest point in Gy
to define our transformation will move our points at
most (A — 1)2’;‘3’;‘ = eh% < ¢€hopt. Therefore, our
algorithm gives a solution that is at most (1 + €)hopt
from optimal. (|

C Translation, Rotation, and Scaling

In this appendix, we show how to adapt our algorithm
for translations and rotations so that it works for
translations, rotations, and scaling. The running times
are the same as for the translation-and-rotation cases.
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Base Algorithm Under Translation, Rotation
and Scaling with Large Diameter. In this section
we present an algorithm for solving the approximate
oriented point-set pattern matching problem where we
allow translations, rotations and scaling. This algo-
rithm is an extension of the algorithm from Section 3
and similarly provides a good approximation ratio when
the diameter of our pattern set is large. Given two
subsets P and B of O, with |P| = m and |B| = n,
we wish to minimize h;(E(P), B) over all compositions
E of one or more functions in 7T UR US. We perform
the following algorithm:

Algorithm BaseTranslateRotateScaleLarge(P, B):

Find p and ¢ in P having the maximum value of
[(@p,yp) = (xq: Yg)l2-
for every pair of points b,b’ € B do
Pin step: Apply the translation, T, € T, that takes
p to b, and apply the rotation, R, ¢, that makes p,
b, and ¢ collinear. Then apply the scaling, S, s,
that makes g and b’ share the same position.
Let P’ denote the transformed pattern set, P.
for every ¢ € P/ do
Query step: Find a nearest-neighbor of ¢ in B
using the p; metric, and update a candidate
Hausdorff distance accordingly.
end for
return the smallest candidate Hausdorff distance
found as the smallest Hausdorff distance,
ha(Sps(Rpa(Tu(P))), B).
end for

This algorithm extends the algorithm presented in
Section 3 so that after translating and rotating, we
also scale the point set such that, after scaling, p and
b have the same z and y coordinates, and ¢ and b’
have the same x and y coordinates. As with the
algorithm presented in Section 3, this algorithm runs
in O(n?mlogn) time.

Theorem 10 Let h,p, be h;(E(P), B) where E is the
composition of functions in T URUS that attains the
minimum of h;. The algorithm above runs in time
O(n?mlogn) and produces an approvimation to Ropt
that is at most (6 +v/2(2+ /D) + €)hopt for hy and at
most (4 +v/2(2+ /D) + €)hopt for ha.

Proof. The additional € terms come entirely from using
approximate nearest neighbor queries, so it is sufficient
to prove approximations which do not include the € term
using exact nearest neighbor queries. Particularly, we
will prove a bound of (6 +v/2(2+ 7/D))hept for hy and
a bound of (4 4+ v/2(2 + 7/D))hepy, for ha.
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Figure 7: Illustration of the translation, rotation and
scaling steps of the base approximation algorithm for
translation, rotation and scaling in O when diameter is
large.

Let E be the composition of functions in 7 U R U
S that attains the minimum of h;(E(P),B). Let P’
be E(P). Because this algorithm is only an extension
of the algorithm in Section 3 we can follow the same
logic as the proof of Theorem 2 to see that after the
translation and rotation steps, each point p € P’ is at
most Ahepe away from a background point b € B where
A =6++/2r/D for hy and A = 2++/2(2+7/D) for hy.
Now we need only look at how much scaling increases
the distance our points have moved.

If p,q € P’ are our diametric points after translation
and rotation, and p’, ¢’ € B are the closest background
points to the optimal position of p and ¢ respectively,
then let us define the point g; as the position of ¢ after
translation, but prior to the rotation step. Now it is
important to see that the points ¢, ¢’ and ¢; are three
vertices of an isosceles trapezoid where the line segment
q+q' is a diagonal of the trapezoid and the line segment
qq: is a base of the trapezoid. This situation is depicted
in Figure 8. The length of the line segment ¢q’ is equal
to the distance that ¢ will move when we scale P’ so
that ¢ and ¢’ share the same position. Because qq’ is
a leg of the trapezoid, the length of that leg can be no
more than the length of the diagonal ¢;q’. In the proof
of Theorem 2, we showed that ¢; is at most 2h, away
from ¢’ so this implies that the distance g moves from
scaling is at most 2hqp¢.

Point ¢ is the farthest point away from the point p
that is the center for scaling. Thus, no point moved
farther as a result of the scaling than ¢ did, with respect
to pe. For u; it is possible that, if ¢ moved a distance d,
another point could have moved up to a distance v/2d.
Thus, we find that after scaling, any point in P’ is at
most (A + 2v/2)hopy and (A + 2)hepy from its nearest
background point for p; and ps respectively. Because
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this is a transformation that the algorithm checks, we
are guaranteed at least this solution. Note that we
assume p’ and ¢’ are not the same point. However if
this is the case, then we know that D < 2h, thus
when we translate p to p’ and scale ¢ down to p’ every
point is within (27/D)hep of p’, which is a better
approximation than the case where p’ # ¢’ under our

assumption that D is large. O
- ’
q _.--—1
P 4 \
\ \
\ \
‘\ B <2h0pt ‘l
's U — '
P qt
Figure 8: Tllustration of the points ¢, ¢’, and ¢

forming three of the corners of an isosceles trapezoid,
as described in the proof of Theorem 10

A (1+e€)-Approximation Algorithm Under Trans-
lation, Rotation and Scaling with Large Di-
ameter. In this subsection, we utilize the algorithm
from Appendix C to achieve a (1 4 €)-approximation
ratio when we allow translations, rotations, and scaling.
Again, given two subsets of O, P and B, with |P| =m
and |B| = n, our goal is to minimize h;(E(P), B) over
all compositions F of one or more functions in TURUS.
We perform the following steps.

1. Run BaseTranslateRotateScaleLarge(P, B), from
Appendix C, to obtain an approximation hgp, <
A hop-

2. For every b € B, generate the point
€ 2_

set Gy = G(b 2 [A=AY) for by or

Gy = G(b, Y3 [A2A]) for hy.  Let B’

denote the resulting set.

3. Run BaseTranslateRotateScaleLarge(P, B'), from
Appendix C, but use the set B for the nearest-
neighbor queries.

This algorithm uses the base algorithm to give us
an indication of what the optimal solution might be.
We then use this approximation to generate a larger
set of points from which to derive transformations to
test. We next use this point set in the base algorithm
when deciding which transformations to iterate over,
while still using B to compute nearest neighbors. The
running time is O(A8%n?mlogn), which is O(n?mlogn)
for constant A.

Theorem 11 Let h,p be hi(E(P), B) where E is the
composition of functions in T URUS that attains the

minimum of h;. The algorithm above runs in time
O(A8n®mlogn) and produces an approzimation to hopt
that is at most (1 + €)hope for both hy and hs.

Proof. Let E be the composition of functions in 7 U
R U S that attains the minimum of h;(E(P), B). Let
P’ be E(P). Then every point ¢ € P’ is at most
hopt from the closest background point in B. By
running the base algorithm, we find hqp, < Ahopy Where
A is the approximation ratio of the base algorithm.
Now consider the point ¥ € B which is the closest
background to some pattern point p € P. The square
which encompasses Gy has a side length of 2h,y,,. This
guarantees that p, which is at most hop, away from ¥,
lies within this square. As we saw from Lemma 3,
this means that p is at most ;Z‘f;; away from its
nearest neighbor in Gy. Thus, if a transformation
defined by the nearest points in B would move our
pattern points at most (A — 1)hep, from their optimal
position, then using the nearest points in G to define
our transformation will move our points at most

€hapr €hapr
(A1) P gy

Thus, the modified algorithm gives a solution that is at
most (1 + €)hopt. O

Base Algorithm Under Translation, Rotation
and Scaling with Small Diameter. In this subsec-
tion, we present an alternative algorithm for solving the
approximate oriented point-set pattern matching prob-
lem where we allow translations, rotations and scaling.
This algorithm is an extension of the algorithm from
Section 3 and similarly provides a good approximation
ratio when the diameter of our pattern set is small.
Once again, given two subsets of O, P and B, with
|P| = m and |B| = n, we wish to minimize h;(E(P), B)
over all compositions F of one or more functions in
T UR. We perform the following algorithm:

Algorithm BaseTranslateRotateSmall(P, B):

Find p and ¢ in P having the maximum value of
@y ) — (s )2
for every point b € B do
15 Pin: Apply the translation, T}, € T, that takes
p to b, and then apply the rotation, R,g, that
makes p, b have the same orientation.
Let P’ denote the transformed pattern set, P.
for each point p in P’ and each ' € B do
284 pin:  Apply the scaling, S,s, so that
[(@p, yp) — (g, ya)ll2 = [[(@o, 35) — (@1, v )|z
Let P” denote the transformed pattern set.
for every ¢ € P” do
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Query step: Find a nearest-neighbor of ¢ in B
using the p; metric, and update a candidate
Hausdorff distance accordingly.
end for

end for

return the smallest candidate Hausdorff distance

found as the smallest Hausdorff distance,

Bi(Sps (Rya(T,(P))), B).

end for

This algorithm extends the algorithm from Section 3
by scaling the point set for so that p, ¢, and &’ form the
vertices of an isosceles triangle. This requires a factor
of n more transformations to be computed. Thus, the
running time of this algorithm is O(n?mlogn).
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Figure 9: Illustration of the translation, rotation and
scaling steps of the base approximation algorithm for
translation, rotation and scaling in O when diameter is
small.

Theorem 12 Let h,y be hi(E(P), B) where E is the
composition of functions in T URUS that attains the
minimum of h;. The algorithm above Tuns in time
O(n?*mlogn) and produces an approzimation to hop
that is at most ((2+2v2)(1+ D)+ €)hopt for h1 and at
most (442D + €)hopt for hs.

Proof. The additional € terms come entirely from using
approximate nearest neighbor queries, so it is sufficient
to prove approximations which do not include the € term
using exact nearest neighbor queries. Particularly, we
will prove a bound of (6 ++/2(2+7/D))hopt for hy and
a bound of (4 4+ v/2(2 + 7/ D))hept for hs.

Let E be the composition of functions in 7 U R U
S that attains the minimum of h;(E(P),B). Let P’
be E(P). Because this algorithm is only an extension
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of the algorithm in Section 3 we can follow the same
logic as the proof of Theorem 5 to see that after the
translation and rotation steps, each point p € P’ is at
most Ahqpe away from a background point b € B where
A =2+4++2D for hy and A = 2+ D for hy. Now we need
only look at how much scaling increases the distance our
points have moved.

If p,q € P’ are our diametric points after translation
and rotation, and p’, ¢’ € B are the closest background
points to the optimal position of p and ¢ respectively,
then let us define the point ¢, as the position of ¢ after
scaling. The points ¢, ¢’ and g, are three vertices of
an isosceles trapezoid where the line segment qq’ is a
diagonal of the trapezoid and the line segment ¢.q’ is a
base of the trapezoid. The length of the line segment qq;
is equal to the distance that ¢ will move when we scale
P’. Because qqg; is a leg of the trapezoid, the length of
that leg can be no more than the length of the diagonal
qq’. In the proof of Theorem 5, we showed that ¢ is
at most Ahepy away from ¢’ so this implies that the
distance ¢ moves from scaling is at most Ahgpt.

Point ¢ is the farthest point away from the point
p which is the center of our scaling. Thus, no point
moves farther as a result of the scaling than ¢ does,
with respect to uo. For u, it is possible that, if ¢ moved
a distance d, another point could have moved up to
a distance v/2d. Thus we find that after scaling, any
point in P’ is at most (1 + v/2)Ahepy and 2Ahep; from
its nearest background point for p; and po respectively.
Because this is a transformation that the algorithm
checks, we are guaranteed at least this solution. (|

A (1+e€)-Approximation Algorithm Under Trans-
lation, Rotation and Scaling with Small Diame-
ter. In this subsection, we utilize the algorithm from
Appendix C to achieve a (1 + €)-approximation ratio
when we allow translations, rotations, and scalings.
Again, given two subsets of O, P and B, with |P| =m
and |B| = n, our goal is to minimize h;(E(P), B) over
all compositions E of one or more functions in 7URUS.
We perform the following steps.

1. Run BaseTranslateRotateScaleSmall(P, B), from
Appendix C to obtain an approximation hgp, <
A - hops.

2. For every b € B, generate the point set

€ 2_
Gb = G(ba 2(}}4&213:14)7 (2(‘46 A)]) for h1 or
Gy = G325, [£54]) for hy Tet
B" = Uyep Gv denote the resulting set of

points.

3. For every b’ € B’, generate the point set Cp =
2 2
O, 22 =AY for by or Gy = O, VA=A for

’ Thapre Thapre

hs. Let B” denote the resulting set of points.
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4. Run BaseTranslateRotateScaleSmall(P, B”), but
use the points in B for nearest-neighbor queries.

This algorithm uses the base algorithm to give us
an indication of what the optimal solution might be.
We use this approximation to generate a larger set of
points from which to derive transformations to test,
but this time we also generate a number of different
orientations for those points as well. We then use this
point set in the base algorithm when deciding which
transformations to iterate over, while still using B to
compute nearest neighbors. The running time of this
algorithm is O(A'2n%mlogn).

Theorem 13 Let h,p, be hi(E(P), B) where E is the
composition of functions in T U R that attains the
minimum of h;. The algorithm above runs in time
O(A¥2n2m]logn) and produces an approzimation to Ropt
that is at most (1 + €)hopt for both hy and hs.

Proof. Let E be the composition of functions in 7 U
RUS that attains the minimum of h;(E(P), B). Let P’
be E(P). Then every point ¢ € P’ is at most hgpy, from
the closest background point in B. By running the base
algorithm, we find hgpr < Ahgpt where A is the approx-
imation ratio of the base algorithm. Now consider the
point & € B which is the closest background to some
pattern point p € P. The square which encompasses
Gy has a side length of 2hg,p,.. This guarantees that
p, which is at most hep, away from ¥, lies within this
square. As we saw from Lemma 3, this means that p
is at most % away from its nearest neighbor g in

Gy with respect to the L1-norm, and at most %
with respect to the L2-norm. For this point g, there
are a number of points in C; which are at the same
position but with different orientation. For some point

¢ in Cy, the orientation of point p is within an angle

_hapre __ftapr€ £
2(A%2—A) V2(A2—A)

ho. If we combine together the maximum difference in
position between p and ¢, and the maximum difference
in orientation between p and ¢, then we see that for
both w1 and ps, the distance between p and c is at most
ASP_T;. As we explain at the beginning of this section,
if a transformation defined by the nearest points in B
would move our pattern points at most (A—1)hep from
their optimal position, then using the nearest points in

Cy to define our transformation will move our points at

most (A — 1)22‘?2 = db% < €hopt. Thus the modified

algorithm gives a solution that is at most (14-€)hop;. O

hapre

of at most for h; and at most

As with our methods for translation and rotation,
we can compute in advance whether we should run our
algorithm for large diameter point sets or our algorithm
for small diameter point sets. For h;, we compare the
expressions 6+ v/2(2+7/D) and (2+2v2)(1+ D), and
we find that the two expressions are equal at D* ~ 1.46.

For hs, we compare 4++1/2(2+7/D) and 442D to find
that they are equal at D* ~ 2.36. Using D* as the
deciding value allows us to then find a transformation
in TURUS that achieves a (1 + €)-approximation, for
any constant € > 0, in O(n?mlogn) time.

D Experiments

In reporting the results of our experiements, we use the
following labels for the algorithms:

e (GR: the non-oriented translation and rotation al-
gorithm from Goodrich et al. [7],

® LDy, /n,: the base version of the large diameter
algorithm using either the h; or hy distance metric,

® SDy,/n,: the base version of the small diameter
algorithm using either the h; or ho distance metric.

These algorithms were implemented in C++ (g++
version 4.8.5) and run on a Quad-core Intel Xeon
3.0GHz CPU Eb5450 with 32GB of RAM on 64-bit
CentOS Linux 6.6.

Accuracy Comparison. We tested the ability of
each algorithm to identify the orginal point set after
it had been slightly perturbed. From set of randomly
generated oriented background point sets, one was se-
lected and a random subset of the points in the set were
shifted and rotated by a small amount. Each algorithm
was used to match this modified pattern against each
of the background point sets and it was considered a
success if the background set from which the pattern
was derived had the smallest distance (as determined
by each algorithm’s distance metric). Figure 10 shows
the results of this experiment under two variables: the
number of background sets from which the algorithms
could choose, and the size of the background sets. Each
data point is the percentage of successes across 1000
different pattern sets.

In every case, the oriented algorithms are more
successful at identifying the origin of the pattern than
GR. LD was also more successful for each distance
metric than SD.

Performance Comparison. We also compared the
performance of the LD and SD algorithms against GR
as we increased the pattern size and the background
size. The most significant impact of increasing the
background size is that the number of nearest neighbor
queries increase, and thus the performance in this case
is dictated by quality of the nearest neighbor data
structure used. Therefore in Figure 11 we use the
number of nearest neighbor queries as the basis for
comparing performance. As the FD and GR algorithms
only differ in how the nearest neighbor is calculated,
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Figure 10: Results of Accuracy Comparison

they both perform the same number of queries while
the SD algorithm performs significantly fewer nearest
neighbor queries.

For pattern size, we compared running time and the
results are shown in Figure 12. In this case, LD is slower
than GR, while SD is signifcantly faster than either of
the others.

107¢
i o
g 10 . 3
g -
g 1055* 3
2 ]
[P}
z 10 4
154 rl S 1
Z 1000l o —e— LD/GR |
E’/ —<— SD 1
‘
1004\ L | L L L | L L L | L L L | L L L
0 200 400 600 800 1000
Size of Background Set

Figure 11: Comparison of nearest neighbor queries as
function of background size
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Figure 12: Comparison of running time as a function of
pattern size
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The Computational Complexity of Finding Hamiltonian Cycles in Grid
Graphs of Semiregular Tessellations

Kaiying Hou*

Abstract

Finding Hamitonian cycles in square grid graphs is
a well studied and important question. Recent work
has extended these results to triangular and hexagonal
grids, as well as further restricted versions such as solid
or thin grids [7, 8, 4]. In this paper, we examine a class
of more complex grids, as well as investigate the prob-
lem with restricted types of paths. We investigate the
hardness of Hamiltonian cycle problem in grid graphs of
semiregular tessellations. We give NP-hardness reduc-
tions for finding Hamiltonian paths in grid graphs based
on all eight of the semiregular tessellations. Next, we
investigate variations on the problem of finding Hamil-
tonian Paths in grid graphs when the path is forced to
turn at every vertex. Related problems were considered
in[6]. We show deciding if 3D square grid graphs admit
a Hamiltonian cycle is NP-complete, even if the height
of the grid is restricted to 2 vertices. We give a polyno-
mial time algorithm for deciding if a solid square grid
graph admits a Hamiltonian cycle which visits vertices
at most twice and turns at every vertex.

1 Introduction

The Hamiltonian cycle problem (HCP) in grid graphs
has been well studied and has led to application in nu-
merous NP-hardness proofs for problems such as the
milling problem [2], Pac-Man [10], finding optimal so-
lutions to a Rubik’s Cube [3], and routing in wireless
mesh networks [11]. The problem has been of inter-
est to computer scientists for many years and recently
a number of variations on the problem have been in-
vestigated. Itai, Papadimitriou, and Szwarcfiter proved
that the HCP in square grid is NP-complete by reducing
from the HCP in planar max-degree-3 bipartite graphs
[7]. More recently, the HCPs in triangular and hexago-
nal grid were shown to be NP-complete[8]. This paper
also introduced several new constrains on grid graphs,
such as being thin or polygonal. Several of those open
problems were solved by Demaine and Rudoy [4] by re-
ducing from 6-Regular Tree-Residue Vertex Breaking
problem (TRVB) [5]. These papers also show results
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TMIT Computer Science and Artificial Intelligence Laboratory,
jaysonl@mit.edu

Jayson Lynch'
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