
Proceedings of the 30th Canadian
Conference on Computational Geometry

(CCCG 2018)

August 8-10, 2018
University of Manitoba
Winnipeg, Manitoba

Canada

Logo designed using Sliceform Studio App (https://www.sliceformstudio.com/)

Compilation copyright c© 2018 Stephane Durocher and Shahin Kamali

Copyright of individual papers retained by authors

Preface

This volume contains the proceedings of the 30th Canadian Conference on Computational Geometry
(CCCG 2018), which took place on August 8–10, 2018, at the University of Manitoba, in Winnipeg,
Manitoba, Canada. These proceedings will be made available electronically after the conclusion of
the conference on the CCCG website: http://www.cccg.ca/.

We are grateful to the CCCG 2018 Program Committee and external reviewers, for their time
and effort carefully reviewing all submissions. Each submission was reviewed by a minimum of
three program committee members. The program committee accepted 46 papers out of 65 papers
submitted. We thank the authors of all submitted papers and all conference attendees. We thank
the invited speakers: Dr. Matthew (Matya) Katz (Paul Erdős Memorial Lecture), Dr. Marc van
Kreveld (Ferran Hurtado Memorial Lecture), and Dr. Carola Wenk. In addition, we are grateful
for the tremendous efforts of the CCCG 2018 Local Organizing Committee for their assistance; in
particular, we would like to acknowledge Avery Miller and Victoria Harris.

We acknowledge the generous financial support from our sponsors: the Pacific Institute for the
Mathematical Sciences (PIMS), Elsevier, the Fields Institute for Research in Mathematical Sci-
ences, and the University of Manitoba.

Stephane Durocher
Shahin Kamali
CCCG 2018 Program Committee Co-Chairs

i

http://www.cccg.ca/

Sponsored by

ii

Invited Speakers

Matthew J. Katz Ben-Gurion University of the Negev
Marc van Kreveld Utrecht University
Carola Wenk Tulane University

Program Committee

David Bremner University of New Brunswick
Jean-Lou De-Carufel University of Ottawa
Stephane Durocher (Co-chair) University of Manitoba
David Eppstein University of California, Irvine
Will Evans The University of British Columbia
Ruy Fabila-Monroy Cinvestav-IPN
Zachary Friggstad University of Alberta
Konstantinos Georgiou Ryerson University
Ellen Gethner University of Colorado Boulder
Shahin Kamali (Co-chair) University of Manitoba
Akitoshi Kawamura Kyushu University
Erik Krohn University of Wisconsin Oshkosh
Jason S. Ku Massachusetts Institute of Technology
Maarten Loffler Utrecht University
Anna Lubiw University of Waterloo
Tamara Mchedlidze Karlsruhe Institute of Technology
Saeed Mehrabi Carleton University
Debajyoti Mondal University of Saskatchewan
Lata Narayanan Concordia University
Michael Payne Monash University
Zahed Rahmati Amirkabir University of Technology
Don Sheehy University of Connecticut
Bettina Speckmann Eindhoven University of Technology
Andrew Winslow University of Texas Rio Grande Valley

iii

Additional Reviewers

Mohammad Ali Abam, Ahmed Abdelkader, Arash Ahadi, Carlos Alegŕıa-Galicia, Aritra Banik,
John Bowers, Guido Brueckner, Luis Evaristo Caraballo de La Cruz, Farah Chanchary, Mansoor
Davoodi, Frank Duque, Mohammad Farshi, Kyle Fox, Kirk Gardner, Noah Giansiracusa, Barbara
Gutiérrez, Aldo Guzmán-Sáenz, Carlos Hidalgo-Toscano, Ivor V.D. Hoog, Mahmoodreza Jahanseir,
Mohammad Reza Kazemi, Kamyar Khodamoradi, Bernhard Kilgus, Chih-Hung Liu, Benjamin
Niedermann, Tim Ophelders, Jeff Phillips, Marcel Roeloffzen, Erika Roldan, Rasoul Shahsavarifar,
Naghmeh Shahverdi Zade Shargh, Willem Sonke, Frank Staals, Katharine Turner, Jérôme Urhausen,
Mees van de Kerkhof, Marc Van Kreveld, Erik Jan van Leeuwen, Jordi L. Vermeulen, Lionov
Wiratma, Matthias Wolf, Alexander Wolff

Local Organizers

Yeganeh Bahoo Helen Cameron Stephane Durocher (Co-chair)
Victoria Harris Shahin Kamali Avery Miller (Co-chair)
Jason Morrison Sameer Naib Nima Sheibani

(All at University of Manitoba)

iv

Table of Contents

Wednesday, August 8

Paul Erdős Memorial Lecture

Geometric Problems and Structures Arising from the Study of Wireless Networks 1

Matthew J. Katz

Session 1A

Low Ply Drawings of Trees and 2-Trees . 2

Michael T. Goodrich and Timothy Johnson

The Crossing Number of Semi-Pair-Shellable Drawings of Complete Graphs 11

Lutz Oettershagen and Petra Mutzel

Learning Simplicial Complexes from Persistence Diagrams . 18

Robin Lynne Belton, Brittany Terese Fasy, Rostik Mertz, Samuel Micka, David L.
Millman, Daniel Salinas, Anna Schenfisch, Jordan Schupbach and Lucia Williams

Session 1B

Sto-Stone is NP-Complete . 28

Addison Allen and Aaron Williams

A Paper on Pencils: A Pencil and Paper Puzzle - Pencils is NP-Complete. 35

Daniel Packer, Sophia White and Aaron Williams

Switches are PSPACE-Complete. 42

Jonathan Gabor and Aaron Williams

Session 2A

Packing Plane Spanning Trees into a Point Set . 49

Ahmad Biniaz and Alfredo Garcia

Compatible Paths on Labelled Point Sets . 54

Elena Arseneva, Yeganeh Bahoo, Ahmad Biniaz, Pilar Cano, Farah Chanchary, John
Iacono, Kshitij Jain, Anna Lubiw, Debajyoti Mondal, Khadijeh Sheikhan and Csaba D. Toth

Ladder-Lottery Realization . 61

Katsuhisa Yamanaka, Takashi Horiyama, Takeaki Uno and Kunihiro Wasa

Session 2B

Away from Rivals . 68

Kazuyuki Amano and Shin-Ichi Nakano

An Efficient Approximation for Point-set Diameter in Higher Dimensions . 72

Mahdi Imanparast, Seyed Naser Hashemi and Ali Mohades

v

Computing the Shift-Invariant Bottleneck Distance for Persistence Diagrams. 78

Don Sheehy, Oliver Kisielius and Nicholas Cavanna

Session 3A

Hitting a Set of Line Segments with One or Two Discrete Centers . 85

Xiaozhou He, Zhihui Liu, Bing Su, Yinfeng Xu, Feifeng Zheng and Binhai Zhu

Finding Intersections of Algebraic curves in a Convex Region using Encasement 91

Joseph Masterjohn, Victor Milenkovic and Elisha Sacks

Geometric Fingerprint Recognition via Oriented Point-Set Pattern Matching 98

David Eppstein, Michael Goodrich, Jordan Jorgensen and Manuel Torres

Session 3B

The Computational Complexity of Finding Hamiltonian Cycles in Grid Graphs of
Semiregular Tessellations . 114

Kaiying Hou and Jayson Lynch

Improved Bounds for the Traveling Salesman Problem with Neighborhoods on Uniform Disks . 129

Ioana Orianna Bercea

Width and Bounding Box of Imprecise Points . 142

Vahideh Keikha, Maarten Löffler, Ali Mohades and Zahed Rahmati

Open Problem Session

Open Problems from CCCG 2017 . 149

Joseph O’Rourke

Thursday August 9

Distinguished Lecture

On Map Construction, Map Comparison, and Trajectory Clustering . 155

Carola Wenk

Session 4A

On the Coverage of Points in the Plane by Disks Centered at a Line . 158

Logan Pedersen and Haitao Wang

A Composable Coreset for k-Center in Doubling Metrics . 165

Sepideh Aghamolaei and Mohammad Ghodsi

Approximation Schemes for Covering and Packing in the Streaming Model 172

Christopher Liaw, Paul Liu and Robert Reiss

Formigrams: Clustering Summaries of Dynamic Data . 180

Woojin Kim and Facundo Memoli

vi

Session 4B

Unfolding Low-Degree Orthotrees with Constant Refinement . 189

Mirela Damian and Robin Flatland

Dihedral Rigidity and Deformation . 209

Nina Amenta and Carlos Rojas

Vertex Unfoldings of Orthogonal Polyhedra: Positive, Negative, and Inconclusive Results 217

Luis Garcia, Andres Gutierrez, Isaac Ruiz and Andrew Winslow

Approximate Free Space Construction and Maximum Clearance Path Planning for a Four
Degree of Freedom Robot . 223

Chloe Arluck, Victor Milenkovic and Elisha Sacks

Session 5A

Integral Unit Bar-Visibility Graphs . 230

Therese Biedl, Ahmad Biniaz, Veronika Irvine, Philipp Kindermann, Anurag Murty
Naredla and Alexi Turcotte

Continuous Terrain Guarding with Two-Sided Guards . 247

Wei-Yu Lai and Tien-Ruey Hsiang

Finding Minimum Witness Sets in Orthogonal Polygons . 253

Israel Aldana-Galván, Carlos Alegŕıa-Galicia, José Luis Álvarez-Rebollar, Nestaly
Marin-Nevárez, Erick Soĺıs-Villarreal, Jorge Urrutia and Carlos Velarde

Session 5B

Red-Blue-Partitioned MST, TSP, and Matching . 259

Matthew P. Johnson

Optimal Solutions for a Geometric Knapsack Problem using Integer Programming 265

Rafael Cano, Cid de Souza and Pedro de Rezende

Approximate Data Depth Revisited . 272

Rasoul Shahsavarifar and David Bremner

Session 6A

Approximate Range Closest-Pair Search . 282

Jie Xue, Yuan Li and Ravi Janardan

Time-Dependent Shortest Path Queries Among Growing Discs . 288

Anil Maheshwari, Arash Nouri and Jörg-Rüdiger Sack

Trajectory Planning for an Articulated Probe . 296

Ovidiu Daescu, Kyle Fox and Ka Yaw Teo

vii

Session 6B

Distance-Two Coloring of Barnette Graphs . 304

Tomas Feder, Pavol Hell and Carlos Subi

Emanation Graph: A New t-Spanner . 311

Bardia Hamedmohseni, Zahed Rahmati and Debajyoti Mondal

Uniform 2D-Monotone Minimum Spanning Graphs . 318

Konstantinos Mastakas

Friday, August 10

Ferran Hurtado Memorial Lecture

On Nonogram and Graph Planarity Puzzle Generation . 326

Marc van Kreveld

Session 7A

Threadable Curves . 328

Joseph O’Rourke and Emmely Rogers

Looking for Bird Nests: Identifying Stay Points with Bounded Gaps . 334

Ali Gholami Rudi

When Can We Treat Trajectories as Points? . 340

Parasara Duggirala and Donolad R. Sheehy

Compatible 4-Holes in Point Sets . 346

Ahmad Biniaz, Anil Maheshwari and Michiel Smid

Session 7B

Some Heuristics for the Homological Simplification Problem . 353

Erin Chambers, Tao Ju, David Letscher, Mao Li, Christopher Topp and Yajie Yan

Isomorphism Elimination by Zero-Suppressed Binary Decision Diagrams . 360

Takashi Horiyama, Masahiro Miyasaka and Riku Sasaki

On Error Representation in Exact-Decisions Number Types . 367

Martin Wilhelm

Author Index . 374

viii

CCCG 2018, Winnipeg, Canada, August 8–10, 2018

Geometric Problems and Structures Arising from
the Study of Wireless Networks

Matthew J. Katz∗

The study of wireless networks has motivated the formulation of interesting geometric optimization problems such
as the power assignment problem, as well as the definition of new geometric data structures such as the bounded-
angle spanning tree (related to networks with angular constraints) and the SINR diagram (induced by the Signal to
Interference plus Noise Ratio equation). This talk will discuss some of these problems and structures, mentioning a
few open problems along the way.

∗Ben-Gurion University of the Negev, matya@cs.bgu.ac.il

1

CCCG 2018, Winnipeg, Canada, August 8–10, 2018

Low Ply Drawings of Trees and 2-Trees

Michael T. Goodrich∗ Timothy Johnson†

Abstract

Ply number is a recently developed graph drawing met-
ric inspired by studying road networks. Informally, for
each vertex v, which is associated with a point in the
plane, a disk is drawn centered on v with a radius that
is α times the length of the longest edge incident to v,
for some constant α ∈ (0, 0.5]. The ply number is the
maximum number of disks that overlap at a single point.
We show that any tree with maximum degree ∆ has a
1-ply drawing when α = O(1/∆). We also show that
trees can be drawn with logarithmic ply number (for
α = 0.5), with an area that is polynomial for bounded-
degree trees. Lastly, we show that this logarithmic up-
per bound does not apply to 2-trees, by giving a lower
bound of Ω(

√
n/ log n) ply.

1 Introduction

A useful paradigm for drawing graphs involves visualiz-
ing them as maps or road networks, allowing a visual-
izer to “zoom” in and out of the graph based on known
techniques that apply to maps. For example, Gansner
et al. [10] describe a GMap system for visualizing clus-
ters in graphs as countries with nearby clusters drawn
as neighboring countries. In addition, Nachmanson et
al. [18, 19] describe a GraphMaps system for visualizing
graphs as embedded road networks, so as to leverage the
drawing and zooming capabilities of a roadmap viewer
to explore the graph. Thus, a natural question arises as
to which graphs are amenable to being drawn as road
networks.

To answer this question, we formulate a precise defi-
nition of what we mean by a graph that could be drawn
as a road network. One might at first suggest that graph
planarity would be a good choice for such a formal-
ism. But the class of planar graphs includes several
graph instances that are difficult to visualize as road
networks, such as the so-called “nested triangles” graph
(e.g., see [6, 9, 12]). In addition, as shown by Eppstein
and Goodrich [7], the class of planar graphs is not gen-
eral enough to include all real-world road networks, as
road networks are often not planar. For example, the
California highway system alone has over 6,000 cross-

∗Dept. of Computer Science, University of California, Irvine,
goodrich@uci.edu
†Dept. of Computer Science, University of California, Irvine,

tujohnso@uci.edu

ings. Instead of using planarity, then, Eppstein and
Goodrich [7] introduce the concept of the ply number of
an embedded graph, and they demonstrate experimen-
tally that real-world road networks tend to have small
ply. Intuitively, the ply concept tries to capture how
road networks have features that are well-separated at
multiple scales. The formal definition of the ply num-
ber of a graph is derived from the definition of ply for
a set of disks (which captures the depth of coverage for
such a set of disks) [17]; hence, the ply number of an
embedded graph is defined in terms of the ply of a set
of disks defined with respect to this embedding.

Let us therefore formally define the ply number of
an embedded geometric graph. Let Γ be a straight-line
drawing of a graph G. For every vertex v ∈ G, let
Cαv be the open disk centered at v and whose radius
rαv is α times the length of the longest edge incident
to v. The set of ply disks containing a point q is then
Sαq = {Cαv | ‖v − q‖ < rαv }. The α-ply number of this
drawing is defined as

pn(Γ) = max
q∈R2

‖Sαq ‖.

Usually, α is chosen in the range (0, 0.5]. In this range,
a graph with two vertices and a single edge connecting
them has ply number 1, because the ply disks for the
two vertices will not overlap. If not otherwise specified,
the default value for α is 0.5, and if the value of α is
taken as this default value or known from the context,
then we refer to the α-ply number simply as the ply
number.

Previous related work. As an empirical justifica-
tion of the use of ply numbers, De Luca et al.’s exper-
imental study [4] found that some force-directed algo-
rithms, including Kamada-Kawai [16], stress majoriza-
tion [11], and the fast multipole method [13] all tend to
produce drawings with low ply number. Their experi-
ments also suggest that trees with at most three children
per node can have unbounded ply number.

The problem of drawing graphs with ply number
equal to 1 is related to that of constructing circle-
contact representations. A circle-contact representation
for a graph is a collection of interior-disjoint circles, in
which each circle represents a single vertex, and two
vertices are adjacent if and only if their circles are tan-
gent to one another [14, 15]. Di Giacomo et al. [5] show
that graphs with ply number 1 are equivalent to graphs

2

30th Canadian Conference on Computational Geometry, 2018

with weak unit disk contact representations, which are
known to be NP-hard to recognize [3]. They also show
that binary trees have drawings with ply number 2, or
with ply number 1 when α is reduced to 1/3. One such
drawing is reproduced in the appendix in Figure 10.

Angelini et al. [2] relax our definition of ply number
to define the vertex-ply of a drawing, which is the max-
imum number of intersecting disks at any vertex of the
drawing. Graphs with vertex-ply number 1 can then be
interpreted as a new variant of proximity drawings.

In an earlier paper, Angelini et al. [1] show that 10-
ary trees have unbounded ply number. Furthermore,
they prove that 5-ary trees can be drawn with logarith-
mic ply number and polynomial area. The ply number
of drawings of trees with between three and nine chil-
dren per node remains an interesting and surprisingly
daunting open problem.

Our results. In this paper, we study a number of re-
lated problems concerning low-ply drawings of bounded-
degree trees. We first answer an open question proposed
by Di Giacomo et al. [5], which asks whether all trees
with maximum degree ∆ have 1-ply drawings for a suffi-
ciently small α. We show in Section 2 that a simple frac-
tal drawing pattern can achieve this when α = O(1/∆).

In Section 3, we show that all trees (not just 5-ary
trees) can be drawn with logarithmic ply number, for
α = 0.5. Furthermore, the area is polynomial for trees
with bounded degree. These results depend on some
careful arguments about geometric configurations and
fractal-like geometric constructions, as well as yet an-
other use of the heavy-path decomposition technique of
Sleator and Tarjan [20].

It is then natural to consider whether any planar
graph classes larger than trees can be drawn with log-
arithmic ply number for α = 0.5. In Section 4, we
show that this is not the case for 2-trees, by construct-
ing a family of 2-trees that require a ply number of
Ω(
√
n/ log n). Previous lower bounds have only ap-

plied for planar drawings, while non-planar drawings
are known to sometimes have better ply number.

2 1-ply Drawings

In this section, we provide conditions on α and related
constructions for producing 1-ply drawings of trees of
any bounded degree. At a high level, our drawings are
constructed as follows. For a tree with maximum degree
∆, we divide the area around each parent vertex radially
into ∆ equal wedges. Then we draw one subtree inside
each wedge. The distance from each node to its children
is chosen to be a constant fraction f of its distance from
its own parent.

This produces a drawing that is highly symmetric, in
a fashion that would produce a fractal if continued in

α
f︷ ︸︸ ︷

︸ ︷︷ ︸
1

α︷ ︸︸ ︷

1
f

Figure 1: Our edges decrease by a factor of f at each
level, and the ply disks have radius α times the length
of the incoming edge.

the limit.1 Thus, any bounded-degree tree is a subtree
of this infinite tree; hence, this drawing algorithm can
produce a drawing of any bounded-degree tree. Filling
in the details of this construction requires setting the
values of two parameters: f , the ratio between outgoing
and incoming edge lengths; and α, the ratio between
the radius of a ply disk for a vertex and the length of
its longest incident edge. We provide constraints for
the following three cases, which taken together ensure
that there are no overlaps, so that the ply number of
our drawings is 1. We then maximize α such that all of
these constraints are satisfied.

1. Ply disks for adjacent vertices must not overlap.

2. Ply disks for vertices on separate subtrees must not
overlap.

3. A ply disk for a vertex must never overlap a ply
disk for one of its descendants.

It is easily verified that these three conditions are nec-
essary and sufficient for a tree to have a 1-ply drawing.

Condition 1: Separate adjacent vertices. Except
for the root vertex, which has no incoming edge, we
proportion the lengths of the edges for each vertex as
shown in Figure 1.

That is, taking the length of a reference edge as 1
(illustrated in Figure 1 going from parent to child in a
left-to-right orientation), then, based on our definition
of the α-ply number, the radius of the larger circle is
α/f , the radius of the smaller circle is α, and their dis-
tance is 1. Thus, we have our first condition relating α
and f :

α ≤ f

1 + f
. (1)

1See Falconer [8] for further reading about fractal geometry.

3

CCCG 2018, Winnipeg, Canada, August 8–10, 2018

θ 1

d
. . .

. . .

θ

1

d

Figure 2: Our default constraint on a wedge containing
a subtree of a central vertex.

Condition 2: Separate subtrees with the same
root. We require that the ply disks for any subtree all
be contained within a wedge of angle θ = 2π

∆ around its
parent vertex, where ∆ is the degree. Since our wedges
for each subtree are disjoint, this ensures that the ply
disks for two adjacent subtrees cannot overlap.

As illustrated in Figure 2, the distance from a child
vertex to the boundary of its containing wedge is d =
sin
(
π
∆

)
. Note also that the lengths of edges along a path

in this subtree form a geometric sequence with ratio f .
So the maximum distance from a child vertex to any
vertex in its subtree is

∑∞
i=1 f

i = f
1−f .

Therefore, to confine each subtree within its wedge,
we must set

f

1− f ≤ sin
(π

∆

)
.

Solving for f , we get

f ≤ sin
(
π
∆

)

1 + sin
(
π
∆

) . (2)

Condition 3: Separate each vertex from its de-
scendants. Our last condition is that the ply disk for
a vertex cannot overlap any of its descendants. The
closest descendants will be those in the wedges on either
side of the edge between their parent and grandparent,
which are at an angle of 2π

∆ from their parent, as in
Figure 3.

Normalizing a grandparent-to-parent edge, (u, v), as
having length 1 and performing a rigid transforma-
tion that takes the grandparent, u, to the origin so
that the edge (u, v) is along the x-axis, u’s closest
grandchild, which we call w, is located at the point

u = (0, 0)

1
2π
∆

...

f

v = (1, 0)

w = (1− f cos θ, f sin θ)

Figure 3: Our layout leaves a gap of angle θ = 2π
∆ for

the edge from the parent vertex. The descendants on
either side must not be able to overlap their ancestors.

(
1− f cos

(
2π
∆

)
, f sin

(
2π
∆

))
. We require that the dis-

tance from w to its descendants be no greater than the
distance from w to the boundary of the ply disk for
u. Recall that our wedge angle θ = 2π

∆ . We apply the
following constraint:

√
(1− f cos θ)2 + (f sin θ)2 ≥ α

f
+
∞∑

i=2

f i

After simplifying and solving for α, our condition is

α ≤ f
√

1− 2f cos θ + f2 − f3

1− f
Let us now compare our three conditions. We see

that equation 2 gives us an upper bound for f , while
equations 1 and 3 give us upper bounds for α that both
increase as f gets larger. So to maximize α, we let f be
equal to its upper bound. This gives us the following
theorem, and a corollary that is proved in the appendix.

Theorem 1 Let T be a tree with maximum degree ∆,
and let

f =
sin
(
π
∆

)

1 + sin
(
π
∆

) .

T has a 1-ply drawing if

α ≤ min

(
f

1 + f
, f
√

1− 2f cos(2π/∆) + f2 − f3

1− f

)
.

Corollary 2 A tree with maximum degree ∆ has a 1
ply drawing when α = O(1/∆).

Note, however, that some of our conditions are not
tight. For condition 2, we assumed that the branches
of our subtrees would approach the sides of their wedge
directly. But when the degree of our tree is 4, the an-
gle between two subtrees is 90◦. Therefore, every edge
in our tree is either horizontal or vertical, so we can
measure the distance to the boundary of the wedge us-
ing Manhattan distance instead of Euclidean distance.
(See Figure 4.)

4

30th Canadian Conference on Computational Geometry, 2018

1

1

∞∑
i=1

f i

Figure 4: An improved bound for Condition 2. The
Manhattan distance is sufficient to confine subtrees
within a wedge when all edges are either horizontal or
vertical.

Figure 5: A 1-ply drawing of a tree with maximum de-
gree four, for which f = 1/2, α = 1/3.

So for a tree with degree 4, we replace condition 2

with
∞∑
i=1

f i ≤ 1. This implies f = 1/2, and our other

conditions imply α = 1/3. In this case, our bound is
tight. (See Figure 5.)

3 Polynomial area, logarithmic ply number

In this section, we prove the following theorem.

Theorem 3 For α = 0.5, a tree with maximum degree
∆ can be drawn with ply number O(log n) in area nO(∆).

Note that for a bounded-degree tree, ∆ is a constant,
so our area is polynomial in n. We first give a simple

r r r 3r

Figure 6: If each layer in a tree drawing is at least
three times as far as the previous layer, the ply disks
for the layers will not overlap. In this figure, d1 = 2r
and d2 = 6r, so our condition holds.

fractal layering algorithm that proves our theorem for
balanced trees. Then we extend it to all trees by using a
heavy path decomposition. A similar approach was used
by Angelini et. al. [1] for drawing trees up to maximum
degree six, but we add our layering technique to make
their algorithm work for all trees.

Radially layered drawings. We begin with a simple
algorithm for drawing trees by layering their children.
For each vertex, we choose a sequence of distances di
for the layers, such that vertices in adjacent layers have
disjoint ply disks.

Lemma 4 Suppose that r is the root of a star graph.
Let v1, v2 be children at distances d1, d2, respectively. If
d2 ≥ 3d1, then the ply disks for v1 and v2 are disjoint.

Proof. The distance to v1 is d1, so its ply disk will have
radius 0.5d1, and will be contained within an open disk
of radius 1.5d1 centered at r. The distance to v2 is d2, so
its ply disk will have radius 0.5d2. Its closest approach
to r will be at distance 0.5d2 ≥ 1.5d1. Thus, the ply
disks for v1 and v2 are disjoint. (See Figure 6.) �

Next, note that we can put up to six vertices in each
layer without overlaps. So for a tree with degree ∆,
we need d∆/6e layers. We pick any desired size for the
initial layer around our root, then draw the subtrees for
each child vertex recursively within their own ply disks.
Therefore, the size of the smallest layer must shrink by
a factor of 3d∆/6e each time we add a level to our tree.

Since our tree is balanced, its total height is O(log n).
Thus the ratio of the longest to the smallest edge is
3O(∆ logn) = nO(∆). The area will then also be nO(∆),
for a larger constant.

This completes our proof for balanced trees. Figure
11 in the appendix provides an example drawing of a
tree with degree 18 using three layers.

5

CCCG 2018, Winnipeg, Canada, August 8–10, 2018

p1 p4

p6

p7

p2
p3 p5

p1

p2 p3 p4

p5

p6 p7

Figure 7: A tree and its heavy path decomposition.

Heavy path decomposition. When our trees are
not balanced, we will use the heavy path decomposi-
tion [20] to still produce drawings with logarithmic ply
number. This decomposition partitions the vertices in
our tree into paths that each end at a leaf. To choose
the first path, we begin at the root. Then from its child
subtrees, we choose the largest one and add its root to
our path. We continue downward until we reach a leaf.

We next remove the vertices on this path from our
tree, creating a new set of subtrees, and repeat the same
process for each subtree. That is, the root vertex for
each of these subtrees will become the starting point for
a new path constructed by the same process. We recurse
until every vertex in our tree is assigned to some path.
The subtrees that are rooted at a child of a vertex v and
whose root is not on the same path as v are are said to
be anchored at v. The path containing the root of each
of those subtrees is also said to be anchored at v.

The set of paths constructed by this process now itself
forms a new tree (see Figure 7), in which the path Pi is
a parent of Pj if one of the vertices in Pi is an anchor for
Pj . We will show that the ply number of our drawings
is proportional to the height of this decomposition tree,
which is known to be O(log n).

Now we describe how to draw each path in the de-
composition tree. First, we define a 2-drawing of a path
P = (v1, . . . , vm) as a straight-line drawing of P along
a single segment that satisfies the following properties.

• All of the vertices appear in the line segment in the
same order as they appear in P .

• For each i = 2, . . . ,m − 1 we have l(vi−1,vi)
2 ≤

l(vi, vi+1) ≤ 2l(vi−1, vi).

Lemma 5 A 2-drawing of a path has ply number at
most 2.

Proof. See Lemma 5 in Angelini et al. [1]. �

Now suppose that we have a path P = (v1, v2, . . . , vk)
in our heavy path decomposition, and let P be anchored
at vertex v, so that v is the parent of v1. Let n be the
total size of the subtrees anchored at v, and let ni be

v2

v3

v4

n2 = 1

n3 = 1n1 = 5

T1

v

v1 T2 T3

n =
∑

i |Ti|
P

Figure 8: Labels for different sizes in a heavy path de-
composition tree.

the total size of the subtrees anchored at vi (Figure 8).
Lastly, we denote the length of the edge (v, w) as l(v, w).

Intuitively, we want to draw each path so that more
space is available for vertices that have larger subtrees.
At the same time, we want to ensure that the lengths
of the two edges for a vertex are within a factor of two,
so that our path is a 2-drawing. This can be achieved
using the following algorithm DrawPath.

To draw the path P , we first set l(v, v1) = n1 and
l(vi, vi+1) = ni+ni+1, for each i = 1, . . . , k−1. Next we
visit the edges of our path in decreasing order of length.
When an edge (vi, vi+1) is visited, we make sure that
both of its neighboring edges are at least half as long.
That is, we set:

• l(vi−1, vi) = max{ l(vi,vi+1

2 , l(vi−1, vi)}

• l(vi+1, vi+2) = max{ l(vi,vi+1

2 , l(vi+1, vi+2)}

Lemma 6 The algorithm DrawPath constructs a 2-
drawing Γ of P such that l(v, v1) ≥ n1, l(vi, vi+1) ≥
ni+ni+1, and for each i = 1, . . . ,m−1, and l(P) ≤ 6n.

Proof. See Lemma 6 in Angelini et al. [1]. �

We now perform a bottom-up construction of our
tree, drawing each path using the DrawPath algo-
rithm. Once all of the paths anchored at vertices in
P have been drawn, we construct a drawing of P with
each path in a separate layer (Figure 9). This transla-
tion may increase the ply radius of the first vertex in
each of these paths, so the ply number of the drawing
for each path may increase from 2 to 3.

The drawing is described in more detail in the ap-
pendix, and the following properties are shown.

Lemma 7 For each vertex v we can associate a drawing
disk Dv (which is distinct from the ply disk for v) that
satisfies the following properties.

1. If v, w are two distinct vertices on the same path,
then their disks Dv, Dw are disjoint.

6

30th Canadian Conference on Computational Geometry, 2018

vi−1 vi+1vi

Figure 9: Three vertices along a path in our decomposi-
tion, along with their drawing disks (not the ply disks).
For the center vertex vi, we show three paths in different
layers around it, which would be drawn recursively.

2. The ply disks for the subtrees anchored at v are all
contained within Dv, and are within disjoint layers.

3. Each path is scaled by a factor of O(3∆) larger than
the paths that are anchored at its vertices.

Together, these properties imply that the ply disks for
a path can only overlap with ply disks for their ancestor
paths in the heavy path decomposition tree. Therefore,
since each path is drawn with ply number at most 3,
the total ply number is at most 3(h + 1), where h is
the height of the heavy path decomposition tree. Since
h = O(log n), the ply number is O(log n).

Lastly, if ∆ is a constant, then the total scaling for
our largest disk is 3O(∆ logn), which simplifies to nO(∆).
This completes our proof of Theorem 4.

4 Lower bound for 2-trees

Since all trees can be drawn with O(log n) ply number,
it is natural to consider larger planar graph classes. We
show that a 2-tree can require at least Ω(

√
n/ log n) ply.

We know that a star can be drawn with ply num-
ber 2 when the distance to successive vertices increases
exponentially [1]. A tree can be drawn with O(log n)
ply number when the distances from parents to their
children decrease exponentially as we move down the
tree. Intuitively, combining these two graphs produces
a graph that requires large ply, since it is impossible to
satisfy both conditions simultaneously.

Accordingly, we begin with m disjoint complete bi-
nary trees of height h, which we label Ti, 1 ≤ i ≤ m,
where m and h will be determined later. Then we add
one vertex v connected to every vertex in each tree. Let
d(w) be the distance from v to w, for any tree vertex w.

Suppose that w1 is a tree vertex in the tree Ti, and
w2 is its child. Then if d(w2) > 3d(w1), the ply radius
for w1 is larger than d(w1). Therefore, the ply disk
for w1 contains v. Similarly, if d(w1) > 3d(w2), then
the ply disk for w2 contains v. Assume without loss of

generality that the distance from v to the root of Ti is
1. We can then show by induction that if no ply disk
in Ti contains v, then the nodes at the jth level of our
tree are at distance at most 3j from v, and at least 3−j .

Next suppose that some tree Ti has no vertices whose
ply disk contains v. Then partition our drawing into
annuli Sl, where the inner radius of Sl is 3l, and the
outer radius is 3l+1. Next choose l̄ to be the index of the
annulus containing the maximum number of vertices.
Sl̄ must contain at least 2h/2h vertices, each with a ply
radius at least 3l̄/2.

Let D be the disk centered at v with a radius of rD =
3l̄+2/2, so that all of the ply disks for vertices in Sl̄
are contained in D. Now we compute the ratio of the
areas of the ply disks in D to its own area, which is a
lower bound for the ply number. Note that D contains
2h/2h ply disks that each have a radius of at least rD/9.
Therefore, this ratio is at least:

2h

2h︸︷︷︸
vertices

ply area per vertex︷︸︸︷
πr2
D

81

1

πr2
D︸︷︷︸

inverse disk area

=
2h

162h
= Ω(2h/h)

Now let h = (log n + log log n)/2, and let m =√
n/ log n. Note that the total number of vertices in

each tree is 2(logn+log logn)/2 =
√
n log n. The total

number of vertices overall is then m · 2h + 1 = O(n).
If every tree Ti has a vertex whose ply disk contains v,

then the ply number is at least Ω(m) = Ω(
√
n/ log n).

Otherwise, if some tree does not have such a vertex, then
that tree’s ply number is Ω(2h/h) = Ω(

√
n/ log n). This

gives us the following theorem.

Theorem 8 There is a 2-tree with O(n) vertices for
which any drawing has ply number Ω(

√
n/ log n).

5 Conclusion

We have shown that all trees have 1-ply drawings when
α = O(1/∆), or logarithmic ply number when α = 0.5,
and that 2-trees may require Ω(

√
n/ log n) ply.

There are many open questions left to resolve, but we
are especially interested in closing the gap between con-
stant and logarithmic ply for trees with between three
and nine children per node. We would also like to con-
sider intermediate planar graph classes between trees
and 2-trees, such as outerplanar graphs, and determine
whether they can be drawn with O(log n) ply.

Acknowledgements

This research was supported by DARPA agreement
no. AFRL FA8750-15-2-0092 and NSF grants 1526631
and 1815073. The views expressed are those of the au-
thors and do not reflect the official policy or position of
the Department of Defense or the U.S. Government.

7

CCCG 2018, Winnipeg, Canada, August 8–10, 2018

References

[1] Patrizio Angelini, Michael A Bekos, Till Bruckdor-
fer, Jaroslav Hančl, Michael Kaufmann, Stephen
Kobourov, Antonios Symvonis, and Pavel Valtr.
Low ply drawings of trees. In International Sym-
posium on Graph Drawing and Network Visualiza-
tion, pages 236–248. Springer, 2016.

[2] Patrizio Angelini, Steve Chaplick, Felice De Luca,
Jiri Fiala, Jan Hancl Jr, Niklas Heinsohn, Michael
Kaufmann, Stephen Kobourov, Jan Kratochvil,
and Pavel Valtr. On vertex-and empty-ply prox-
imity drawings. arXiv preprint arXiv:1708.09233,
2017.

[3] Heinz Breu and David G Kirkpatrick. Unit disk
graph recognition is NP-hard. Computational Ge-
ometry, 9(1-2):3–24, 1998.

[4] F. De Luca, E. Di Giacomo, W. Didimo,
S. Kobourov, and G. Liotta. An experimental study
on the ply number of straight-line drawings. In In-
ternational Workshop on Algorithms and Compu-
tation (to appear). Springer, 2017.

[5] Emilio Di Giacomo, Walter Didimo, Seok-hee
Hong, Michael Kaufmann, Stephen G Kobourov,
Giuseppe Liotta, Kazuo Misue, Antonios Symvo-
nis, and Hsu-Chun Yen. Low ply graph drawing.
In Information, Intelligence, Systems and Appli-
cations (IISA), 2015 6th International Conference
on, pages 1–6. IEEE, 2015.

[6] Christian A. Duncan, David Eppstein, Michael T.
Goodrich, Stephen G. Kobourov, and Martin Nl-
lenburg. Lombardi drawings of graphs. Journal of
Graph Algorithms and Applications, 16(1):85–108,
2012.

[7] David Eppstein and Michael T Goodrich. Studying
(non-planar) road networks through an algorithmic
lens. In Proceedings of the 16th ACM SIGSPA-
TIAL International Conference on Advances in
Geographic Information Systems, page 16. ACM,
2008.

[8] Kenneth Falconer. Fractal Geometry: Mathemat-
ical Foundations and Applications. John Wiley &
Sons, 2004.

[9] Fabrizio Frati and Maurizio Patrignani. A note
on minimum-area straight-line drawings of planar
graphs. In Seok-Hee Hong, Takao Nishizeki, and
Wu Quan, editors, 15th Int. Symp. on Graph Draw-
ing (GD), pages 339–344, 2008.

[10] Emden R Gansner, Yifan Hu, and Stephen
Kobourov. Gmap: Visualizing graphs and clusters

as maps. In Visualization Symposium (PacificVis),
2010 IEEE Pacific, pages 201–208. IEEE, 2010.

[11] Emden R Gansner, Yehuda Koren, and Stephen
North. Graph drawing by stress majorization.
In International Symposium on Graph Drawing,
LNCS 3383, pages 239–250. Springer, 2004.

[12] Ashim Garg and Roberto Tamassia. Planar
drawings and angular resolution: Algorithms and
bounds. In Jan van Leeuwen, editor, 2nd European
Symp. on Algorithms (ESA), pages 12–23, 1994.

[13] Stefan Hachul and Michael Jünger. Drawing large
graphs with a potential-field-based multilevel al-
gorithm. In International Symposium on Graph
Drawing, LNCS 3383, pages 285–295. Springer,
2004.

[14] Petr Hliněnỳ. Contact graphs of curves. In In-
ternational Symposium on Graph Drawing, pages
312–323. Springer, 1995.

[15] Petr Hliněnỳ. Classes and recognition of curve con-
tact graphs. Journal of Combinatorial Theory, Se-
ries B, 74(1):87–103, 1998.

[16] Tomihisa Kamada and Satoru Kawai. An algo-
rithm for drawing general undirected graphs. In-
formation Processing Letters, 31(1):7–15, 1989.

[17] Gary L. Miller, Shang-Hua Teng, William
Thurston, and Stephen A. Vavasis. Geometric sep-
arators for finite-element meshes. SIAM Journal
on Scientific Computing, 19(2):364–386, 1998.

[18] Debajyoti Mondal and Lev Nachmanson. A
new approach to graphmaps, a system browsing
large graphs as interactive maps. arXiv preprint
arXiv:1705.05479, 2017.

[19] Lev Nachmanson, Roman Prutkin, Bongshin Lee,
Nathalie Henry Riche, Alexander E Holroyd, and
Xiaoji Chen. Graphmaps: Browsing large graphs as
interactive maps. In International Symposium on
Graph Drawing and Network Visualization, pages
3–15. Springer, 2015.

[20] Daniel D Sleator and Robert Endre Tarjan. A data
structure for dynamic trees. Journal of Computer
and System Sciences, 26(3):362–391, 1983.

8

30th Canadian Conference on Computational Geometry, 2018

Appendix

Here we include additional proofs and figures that were
postponed from the main paper due to lack of space.

Corollary 9 A tree with maximum degree ∆ has a 1
ply drawing when α = O(1/∆).

Proof. First, recall that we defined:

f =
sin
(
π
∆

)

1 + sin
(
π
∆

) .

Now we will consider the limiting value of ∆ · f .

lim
∆→∞

∆ · f = lim
∆→∞

∆ sin(π/∆)

1 + sin(π/∆)
= π

Therefore, f = Θ(1/∆). So as ∆→∞, f → 0.

Secondly, recall that in our theorem we showed:

α ≤ min

(
f

1 + f
, f
√

1− 2f cos(2π/∆) + f2 − f3

1− f

)

Suppose that we use the first condition, α = f/(1+f).
Then α/f = 1/(1 + f). So limf→0 α/f = 1.

Then suppose that we use the second condition:

α = f
√

1− 2f cos(2π/∆) + f2 − f3

1− f

Again, limf→0 α/f = 1, so α = O(f) = O(1/∆). �

Lemma 10 For each vertex v we can associate a draw-
ing disk Dv (which is distinct from the ply disk for v)
that satisfies the following properties.

1. If v, w are two distinct vertices on the same path,
then their disks Dv, Dw are disjoint.

2. The ply disks for the subtrees anchored at v are all
contained within Dv, and are within disjoint layers.

3. Each path is scaled by a factor of O(3∆) larger than
the paths that are anchored at its vertices.

Proof. We prove each part of our lemma as follows.

1. Suppose that our heavy path decomposition tree
has a total height of H, and the path P is at height
h. Then we use the DrawPath algorithm to con-
struct a drawing of P . We set the drawing disk for
a vertex vi in P to have radius ni, that is, the size of
the subtrees anchored at vi. Since the length of the
edge (vi, vi+1) is at least ni + ni+1 (by Lemma 7),
the drawing disks for any two adjacent vertices in
our path will not overlap.

2. Next we scale the drawing of P by 3∆(H−h). Note
that each path anchored at a vertex in P is scaled
by 3∆(H−(h+1)), so the difference in the scaling fac-
tor is 3∆. We show that at least ∆ − 1 paths can
be anchored in different layers around each vertex
v in P .

From Lemma 7, we know that each path anchored
at v has an unscaled length of at most 6n, where
n is the total size of the subtrees anchored at v.
We also know by Lemma 5 that the ply disks for
vertices in two different paths will not overlap if
their distance from v differs by at least a factor of
three.

So we will draw the jth path anchored at vi is
drawn between xj and xj+1, where xj satisfies the
following recurrence:

x1 = 6ni

xi = 3xi−1 + 6ni

Solving the recurrence, we find that xj = 3n(3j−1).
Since we have at most ∆−1 layers, the largest layer
will have an outer radius less than 3∆ni. Since the
unscaled drawing disk for vi had a radius of ni, a
relative scaling factor of 3∆ is sufficient to fit the
paths that are anchored at it.

3. Since our heavy path decomposition has height
O(log n), the largest path will be scaled by a factor
of 3O(∆ logn) from its original length ofO(n). So the
diameter of our drawing is 3O(∆ logn)n, which sim-
plifies to nO(∆). The total area is then also nO(∆),
for a larger constant.

�

9

CCCG 2018, Winnipeg, Canada, August 8–10, 2018

Figure 10: Di Giacomo et al.’s drawing of a binary tree
with α-ply number 1, for α = 1

3 . The edge lengths
decrease by a factor of 2 at each level.

Figure 11: A tree with degree 18, where the children of
each vertex are drawn in three layers.

10

CCCG 2018, Winnipeg, Canada, August 8�10, 2018

The Crossing Number of Semi-Pair-Shellable Drawings

of Complete Graphs

Petra Mutzel ∗ Lutz Oettershagen †

Abstract

The Harary-Hill Conjecture states that for n ≥ 3 every
drawing of Kn has at least

H(n) :=
1

4

⌊n
2

⌋⌊n− 1

2

⌋⌊n− 2

2

⌋⌊n− 3

2

⌋

crossings. In general the problem remains unsolved, ho-
wever there has been some success in proving the conjec-
ture for restricted classes of drawings. The most recent
and most general of these classes is seq-shellability [16].
In this work, we improve these results and introduce the
new class of semi-pair-shellable drawings. We show that
each drawing in this new class has at least H(n) cros-
sings using novel results on k-edges. So far, approaches
for proving the Harary-Hill Conjecture for speci�c clas-
ses rely on a �xed reference face. We successfully apply
new techniques in order to loosen this restriction, which
enables us to select di�erent reference faces when consi-
dering subdrawings. Furthermore, we introduce the no-
tion of k-deviations as the di�erence between an optimal
and the actual number of k-edges. Using k-deviations,
we gain interesting insights into the essence of k-edges,
and we further relax the necessity of �xed reference fa-
ces.

1 Introduction

The crossing number cr(G) of a graph G is the smal-
lest number of edge crossings over all possible drawings
of G. In a drawing D of G = (V,E) every vertex v ∈ V
is represented by a point and every edge uv ∈ E with
u, v ∈ V is represented by a simple curve connecting
the corresponding points of u and v. We call an inter-
section point of the interior of two edges a crossing. The
Harary-Hill Conjecture states the following.

Conjecture 1 (Harary-Hill [10]) Let Kn be the
complete graph with n vertices, then

cr(Kn) = H(n) :=
1

4

⌊n
2

⌋⌊n− 1

2

⌋⌊n− 2

2

⌋⌊n− 3

2

⌋

∗Department of Computer Science, TU Dortmund University

petra.mutzel@tu-dortmund.de
†Department of Computer Science, TU Dortmund University

lutz.oettershagen@tu-dortmund.de

There are construction methods for drawings ofKn that
lead to exactly H(n) crossings, for example the class of
cylindrical drawings �rst described by Hill [11]. Howe-
ver, there is no proof for the lower bound of the con-
jecture for arbitrary drawings of Kn with n ≥ 13. The
cases for n ≤ 10 have been shown by Guy [10] and
for n = 11 by Pan and Richter [17]. Guy [10] argues
that cr(K2n+1) ≥ H(2n + 1) implies cr(K2(n+1)) ≥
H(2(n + 1)), hence cr(K12) ≥ H(12). McQuillan et
al. [14] showed that cr(K13) ≥ 219. Ábrego et al. [1]
improved the result to cr(K13) ∈ {223, 225}.
Beside these results for arbitrary drawings, there has

been success in proving the Harary-Hill Conjecture for
di�erent classes of drawings. So far, the conjecture
has been veri�ed for 2-page-book [3], cylindrical [5], x-
monotone [8, 4], x-bounded [5], shellable [5], bishella-
ble [2] and recently seq-shellable drawings [16]. Seq-
shellability is the broadest of the beforehand mentioned
classes comprising the others. Here, the proof of the
Harary-Hill Conjecture makes use of the concept of k-
edges. Each edge e ∈ E in a drawing is assigned a
speci�c value between 0 and bn2 c − 1 with respect to a
�xed reference face. The edge e separates the remaining
n − 2 to vertices into two distinct sets, and is assigned
the cardinality k of the smaller of the two sets, i.e. is
a k-edge (see section 2 for details). We can express the
number of crossings in a drawing in terms of the num-
bers of k-edges for each k ∈ {0, . . . , bn2 c−2}. Therefore,
having lower bounds on the (cumulated) number of k-
edges implies a lower bound on the crossing number of
a drawing. After two cumulations, we obtain double
cumulated k-edges. However, the possibilities of their
usage for further improvements to new classes of dra-
wings seem to be limited.

Our contribution and outline In this work, we resolve
the limitations of double cumulated k-edges by applying
two new ideas. Firstly, instead of double cumulated k-
edges we utilize triple cumulated k-edges. Balko et al.
introduced these in [8]. Secondly, so far all classes, in-
cluding seq-shellability, depend on a globally �xed refe-
rence face. We call a reference face globally �xed if we
do not allow to select a di�erent one when considering
subdrawings, which constitutes a strong limitation in
the proofs. In this work, we show that under certain
conditions and/or assumptions, we are able to change

11

30th Canadian Conference on Computational Geometry, 2018

the reference face locally or even without restrictions.
Changing the reference face locally means, given a ver-
tex v incident to an initial reference face F , we select a
new reference face F ′, such that F ′ is also incident to v.
Using the new results, we introduce a new class of dra-
wings for which we show that each drawing in this class
has at least H(n) crossings; we call drawings belonging
to this class semi-pair-shellable. There are semi-pair-
shellable drawings that are not seq-shellable. But un-
like seq-shellability, semi-pair-shellability does not com-
prise all previously found classes and only contains dra-
wings with an odd number of vertices. However, every
(bn2 c−1)-seq-shellable drawing with n odd is semi-pair-
shellable. Furthermore, we introduce k-deviations of a
drawing D of Kn. They are the di�erence between the
numbers of cumulated k-edges in D and reference values
corresponding to a drawing with exactlyH(n) crossings.
They allow us to further relax the necessity of a globally
�xed reference face.
The outline of this paper is as follows. In Section

2 we introduce the preliminaries, and in particular the
necessary background on (cumulated) k-edges and their
usage for verifying the lower bound on the number of
crossings. In the following Section 3, we present our no-
vel results for triple cumulated k-edges, followed by the
introduction of semi-pair-shellable drawings in Section
4. We show that each drawing in this class has at least
H(n) crossings, and discuss the distinctive di�erences
to seq-shellability. In Section 5 we use k-deviations to
formulate conditions under which we are able to furt-
her loosen the need for a globally �xed reference face.
We conjecture these conditions to be true in all good
drawings. Assuming our conjecture holds, we prove a
lower bound of H(n) crossings for another broad class
of drawings. Finally, in Section 6 we draw our conclusi-
ons and give an outlook to further possible work. Note
that due to the space restrictions some proofs had to be
omitted. A full version which contains all proofs and
additional �gures is available [15].

2 Preliminaries

A drawing D of a graph G on the plane is an injection φ
from the vertex set V into the plane, and a mapping of
the edge set E into the set of simple curves, such that the
curve corresponding to the edge e = uv has endpoints
φ(u) and φ(v), and contains no other vertices [19]. We
call an intersection point of the interior of two edges a
crossing; a shared endpoint of two adjacent edges is not
considered a crossing. The crossing number cr(D) of a
drawing D equals the number of crossings in D and the
crossing number cr(G) of a graph G is the minimum
crossing number over all its possible drawings. We re-
strict our discussions to good drawings of Kn, and call
a drawing good if (1) any two of the curves have �nitely

many points in common, (2) no two curves have a point
in common in a tangential way, (3) no three curves cross
each other in the same point, (4) any two edges cross
at most once and (5) no two adjacent edges cross. It
is known that every drawing with a minimum number
of crossings is good [18]. Given a drawing D, we call
the points also vertices and the curves edges, V denotes
the set of vertices (i.e. points), and E denotes the set
of edges (i.e. curves) of D. If we subtract the drawing
D from the plane, a set of open regions remains. We
call F(D) := R2 \D the set of faces of the drawing D.
If we remove a vertex v and all its incident edges from
D, we get the subdrawing D − v. We denote by f(v)
the unique face in D− v that contains all the faces that
are incident to v in D, and call f(v) the superface of v.
We might consider the drawing to be on the surface of
the sphere S2, which is equivalent to the drawing on the
plane due to the homeomorphism between the plane and
the sphere minus one point. Next, we introduce k-edges;
according to [7] the origins of k-edges lie in computatio-
nal geometry and problems over n-point set, especially
problems on halving lines and k-sets. An early de�-
nition in the geometric setting goes back to Erd®s et
al. [9]. Given a set P of n points in general position in
the plane, the authors add a directed edge e = (pi, pj)
between the two distinct points pi and pj , and consider
the continuation as line that separates the plane into a
left and a right half plane. There is a (possibly empty)
point set PL ⊆ P on the left side of e, i.e. in the left
half plane. Erd®s et al. assign k := min(|PL|, |P \ PL|)
to e. Later, the name k-edge emerged for any edge that
is assigned the value k. Lovász et al. [13] used k-edges
for determining a lower bound on the crossing number
of rectilinear graph drawings. Finally, Ábrego et al. [3]
extended the concept of k-edges from rectilinear to to-
pological graph drawings and used the concept to show
that the crossing number of 2-page-book drawings is at
least H(n). Every edge in a good drawing D of Kn is a
k-edge for a speci�c value of k ∈ {0, . . . , bn2 c − 1}. Let
D be on the surface of the sphere S2, and e = uv be an
edge in D and F ∈ F(D) be an arbitrary but �xed face;
we call F the reference face. Together with any vertex
w ∈ V \ {u, v}, the edge e forms a triangle uvw and
hence a closed curve that separates the surface of the
sphere into two parts. For an arbitrary but �xed orien-
tation of e, one can distinguish between the left part
and the right part of the separated surface. If F lies
in the left part of the surface, we say the triangle has
orientation + else it has orientation −. For e there are
n− 2 possible triangles in total, of which 0 ≤ i ≤ n− 2
triangles have orientation + (or −) and n−2− i triang-
les have orientation − (or + respectively). We de�ne
the k-value of e to be the minimum of i and n− 2− i.
We say e is an i-edge with respect to the reference face
F if its k-value equals i. See Figure 1 for an example.

12

CCCG 2018, Winnipeg, Canada, August 8�10, 2018

Ábrego et al. [3] showed that the crossing number of
a drawing is expressible in terms of the number of k-
edges for 0 ≤ k ≤ bn2 c − 1 with respect to the reference
face. The following de�nitions of the cumulated num-
bers of k-edges are used for determining lower bounds
of the crossing number. The double cumulated number
of k-edges has been de�ned by Ábrego et al. [3], and the
triple cumulated number of k-edges has been introduced
by Balko et al. [8] in the context of the crossing number
of x-monotone drawings.

De�nition 1 [3, 8] Let D be a good drawing and Ek(D)
be the number of k-edges in D with respect to a reference
face F ∈ F(D) and for each k ∈ {0, . . . , bn2 c − 1}. We
denote

Ēk(D) :=

k∑

j=0

j∑

i=0

Ei(D) =

k∑

i=0

(k + 1− i)Ei(D)

the double cumulated number of k-edges, and

Êk(D) :=
k∑

i=0

Ēi(D) =
k∑

i=0

(
k + 2− i

2

)
Ei(D)

the triple cumulated number of k-edges.

We also write double (triple) cumulated k-edges or dou-
ble (triple) cumulated k-value instead of double (triple)
cumulated number of k-edges. We express the crossing
number of a drawing using the triple cumulated k-edges.

Theorem 2 [8] Let D be a good drawing of Kn and
m = bn2 c−2. With respect to a reference face F ∈ F(D)
we have for n odd

cr(D) = 2 · Êm(D)− 1

8
n(n− 1)(n− 3)

and for n even

cr(D) =Êm(D) + Êm−1(D)− 1

8
n(n− 1)(n− 2).

It is an important observation, that for n odd the value
Êm(D) and n even Êm(D) + Êm−1(D) are identical for
all faces of D. Note that this does not apply to the dou-
ble cumulated case, i.e. Ēm(D) or Ēm(D) + Ēm−1(D),
respectively. Using the following lower bounds, we are
able to verify the Harary-Hill Conjecture.

Corollary 3 [8] Let D be a good drawing of Kn. If n
is odd and

Ên−1
2 −2(D) ≥ 3

(n−1
2 + 2

4

)

or n is even and with respect to a face F ∈ F(D)

Ên
2−2(D) ≥ 3

(n
2 + 2

4

)
and Ên

2−3(D) ≥ 3

(n
2 + 1

4

)
,

then cr(D) ≥ H(n).

0 0

0

1

1 1

1

1 1

v0 v1

v2

v3 v4

v5

0 0

0

1 1

1

1 1

v0 v1

v3 v4

v5

F F

1 1

(a) (b)

2

2

2

22

2

Figure 1: Example (a) shows a crossing optimal drawing
D of K6 with the k-values at the edges. (b) shows the
subdrawing D−v2 and its k-values. The fat highlighted
edges v0v1, v0v4 and v1v3 are invariant and keep their
k-values. The reference face is the outer face F .

If a vertex touches the reference face, it is incident to a
certain set of k-edges.

Lemma 4 [3] Let D be a good drawing of Kn, F ∈
F(D) and v ∈ V be a vertex incident to F . With respect
to F , vertex v is incident to two i-edges for 0 ≤ i ≤
bn2 c − 2. Furthermore, if we label the edges incident to
v counter clockwise with e0, . . . , en−2 such that e0 and
en−2 are incident to the face F , then ei is a k-edge with
k = min(i, n− 2− i) for 0 ≤ i ≤ n− 2.

The de�nition of semi-pair-shellability uses seq-
shellability, which itself is based on simple sequences.

De�nition 5 (Simple sequence) [16] Let D be a
good drawing of Kn, F ∈ F(D) and v ∈ V with v in-
cident to F . Furthermore, let Sv = (u0, . . . , uk) with
ui ∈ V \ {v} be a sequence of distinct vertices. If u0 is
incident to F and vertex ui is incident to a face con-
taining F in the subdrawing D − {u0, . . . , ui−1} for all
1 ≤ i ≤ k, then we call Sv a simple sequence of v.

De�nition 6 (Seq-Shellability) [16] Let D be a good
drawing of Kn. We call D k-seq-shellable for k ≥ 0 if
there exists a face F ∈ F(D) and a sequence of distinct
vertices a0, . . . , ak such that a0 is incident to F , and
(1.) for each i ∈ {1, . . . , k}, vertex ai is incident to
the face containing F in drawing D − {a0, . . . , ai−1},
and (2.) for each i ∈ {0, . . . , k}, vertex ai has a simple
sequence Si = (u0, . . . , uk−i) with uj ∈ V \ {a0, . . . , ai}
for 0 ≤ j ≤ k − i in drawing D − {a0, . . . , ai−1}.

If a drawing D of Kn is (bn2 c−2)-seq-shellable, we omit
the (bn2 c − 2) part and say that D is seq-shellable. The
class of seq-shellable drawings contains all drawings that
are (bn2 c − 2)-seq-shellable.

3 Properties of Triple Cumulated k-Edges

In this section, we present new results for triple cumu-
lated k-edges. First, we introduce the triple cumulated

13

30th Canadian Conference on Computational Geometry, 2018

value of edges incident to v. Having a vertex v incident
to the reference face F , we know from Lemma 4 that v is
incident to two k-edges for each k ∈ {0, . . . , bn2 c−2} and
it follows that the triple cumulated number of k-edges
incident to v is Êk(D, v) =

∑k
i=0

(
k+2−i

2

)
· 2 = 2

(
k+3
3

)
.

Next, we introduce the double cumulated invariant
edges. Consider removing a vertex v ∈ V from a good
drawing D of Kn, resulting in the subdrawing D−v. By
deleting v and its incident edges every remaining edge
loses one triangle, i.e. for an edge uw ∈ E there are only
(n− 3) triangles uwx with x ∈ V \ {u, v, w} (instead of
the (n− 2) triangles in drawing D). The k-value of any
edge e ∈ E is de�ned as the minimum number of + or
− oriented triangles that contain e. If the lost triangle
had the same orientation as the minority of triangles,
the k-value of e is reduced by one else it stays the same.
Therefore, every k-edge in D with respect to F ∈ F(D)
is either a k-edge or a (k − 1)-edge in the subdrawing
D − v with respect to F ′ ∈ F(D − v) and F ⊆ F ′. We
call an edge e invariant if e has the same k-value with
respect to F in D as for F ′ in D′. See Figure 1 for an
example.
For 0 ≤ k ≤ bn2 c−1 we denote the number of invariant

k-edges between D and D′ (with respect to F and F ′

respectively) by Ik(D,D′). Furthermore, we de�ne the
double cumulated invariant k-value as

Īk(D,D′) :=
k∑

j=0

j∑

i=0

Ii(D,D
′) =

k∑

i=0

(k − i+ 1)Ii(D,D
′).

We de�ne Ê−1(D) := 0, and introduce the recursive
representation for the triple cumulated k-edges.

Lemma 7 Let D be a good drawing of Kn, v ∈ V and
F ∈ F(D). With respect to the reference face F and for
all k ∈ {0, . . . , bn2 c − 2}, we have

Êk(D) = Êk−1(D − v) + Êk(D, v) + Īk(D,D − v).

Using the triple cumulated value, we only have to ensure
that Êk(D) ≥ 3

(
k+4
4

)
for k = n−1

2 − 2 if n is odd, or for
each k ∈ {n2 −2, n2 −3} if n is even in order to prove that
cr(D) ≥ H(n) (Theorem 2). Mutzel and Oettershagen
[16] showed that any seq-shellable drawing D of Kn has
Ēi(D) ≥ 3

(
i+3
3

)
for all i ∈ {0, . . . , k} with respect to the

reference face F . This implies the following corollary.

Corollary 8 Let D be a drawing of Kn that is seq-
shellable for a reference face F ∈ F(D), then Êk(D) ≥
3
(
k+4
4

)
for all k ∈ {0, . . . , bn2 c − 2} with respect to F .

The following lemma gives a lower bound on double cu-
mulated invariant edges incident to a vertex that tou-
ches the reference face.

Lemma 9 Let D be a good drawing of Kn with two ver-
tices v and w incident to the reference face F ∈ F(D).

If v is removed, the double cumulated value of invariant
k-edges incident to w with respect to F is at least

(
k+2
2

)

for all k ∈ {0, . . . , bn2 c − 2}.

The following lemma is the gist that allows us to locally
change the reference face if we have an odd number of
vertices.

Lemma 10 Let D be a good drawing of Kn and v ∈ V .
For n odd, the number of double cumulated invariant
edges Ībn2 c−2(D,D − v) is the same with respect to any
face incident to v in D and the superface f(v) in D−v.

Proof. Let m = bn2 c − 2. Lemma 7 implies that with
respect to a face incident to v

Īm(D,D − v) =Êm(D)− Êm−1(D − v)− Êm(D, v).

Êm(D) is the same for all faces of D, the value
Êm−1(D − v) with respect to face f(v) is �xed and for
each face incident to v we have Êm(D, v) = 2

(
m+3
3

)
.

Therefore, it follows that also the value of Īm(D,D−v)
has to be the same for every face incident to v. �

4 Semi-Pair-Shellability

Basis for the new class of semi-pair-shellable drawings
are pair-sequences.

De�nition 11 (Pair-sequence) Let D be a good dra-
wing of Kn, v ∈ V and Pv = (u0, . . . , ubn2 c−2)
be a sequence of distinct vertices ui ∈ V \ {v} for
0 ≤ i ≤ bn2 c − 2.
We call Pv a pair-sequence of v if for

j ∈ {1, . . . , bn2 c − 3} and (n − j) odd, the vertex
uj in the drawing D − {u0, . . . , uj−1} is incident to
a face F ′ ∈ F(D − {u0, . . . , uj−1}), where F ′ is also
incident to v, and in the drawing D − {u0, . . . , uj}
vertex uj+1 is incident to face f(uj), and vertex u0 is
incident to F ∈ F(D), where F is also incident to v.

For example, in Figure 2 vertex v in the drawing of K11

has the pair-sequence (u0, u1, u2, u3). The pair-sequence
of vertex v ensures that if we remove v from D, there are
enough double cumulated invariant k-edges. Therefore,
we are able to guarantee a lower bound on Êbn2 c−2(D)
using Lemma 7.

Lemma 12 Let D be a good drawing of Kn, v ∈ V
and (u0, . . . , ubn2 c−2) a pair-sequence of v, then

Ībn2 c−2(D,D − v) ≥
(bn2 c+1

3

)
.

Proof. Without loss of generality let n be odd and let
m = n−1

2 − 2 (for n even we can proceed similarly and
start with m = n

2 − 2). Lemma 9 states that the double
cumulated value of invariant edges incident to u0 equals(
k+2
2

)
for 0 ≤ k ≤ m with respect to a face F incident

to v and u0, and the removal of v from D. Likewise,

14

CCCG 2018, Winnipeg, Canada, August 8�10, 2018

u3

u1
u0

u2

v

F

Figure 2: Single-pair-seq-shellable drawing of K11. The
initial reference face is F , vertex v has the pair-sequence
(u0, u1, u2, u3).

the double cumulated value of invariant edges incident
to u1 is at least

(
k+2
2

)
for 0 ≤ k ≤ m− 1 if we remove v

from D − u0 with respect to F . The edge u0u1 may be
invariant or non-invariant inD with respect to removing
v. Now consider the drawing D − {u0, u1} with n − 2
vertices and n−3

2 −2 = n−1
2 −3 = m−1. Because n−2 is

odd, we know that for all faces incident to v the value of
Īm−1(D−{u0, u1}, D−{v, u0, u1}) is the same (Lemma
10). We may select a new reference face F ′, such that
v and u3 are incident to F ′, and we can argue again,
using Lemma 9, that removing v leads to at least

(
k+2
2

)

for 0 ≤ k ≤ m − 2 double cumulated value of invariant
edges incident to u2, since u2 is incident to F ′. The
double cumulated value of invariant edges incident to
u3 is at least

(
k+2
2

)
for 0 ≤ k ≤ m−3 with respect to F ′

if we remove v from D − {u0, u1, u2}. Again, the edge
u2u3 may be invariant or non-invariant in D− {u0, u1}
with respect to removing v.
In general, we are able to change the reference face in-

cident to v if a subdrawing Kr of Kn with 0 < r ≤ n has
an odd number of vertices because the number of dou-
ble cumulated invariant (b r2c−2)-edges does not change
(see Lemma 10). Furthermore, since vertex ui for 0 ≤
i ≤ bn2 c−2 is incident to the (current) reference face, ui
contributes at least

(
m−i+2

2

)
to the value of the double

cumulated invariantm-value with respect to removing v
from D. Thus, Īm(D,D− v) ≥∑m+2

i=1

(
i
2

)
=
(
m+3
3

)
. �

In Figure 2, both vertices u0 and u1 are incident to the
initial reference face F . Figure 3 shows the drawing
after removing the �rst pair (i.e. u0 and u1). The face
F is not incident to any vertex except v. Changing the
reference face to F ′ allows to proceed with u2 and u3.
Notice that in a drawing D of Kn with n odd, only the

u3

u2

v

F ′

F

Figure 3: SubdrawingD−{u0, u1} of the drawing shown
in Figure 2. The reference face is now F ′, which is
incident to v and u2.

value of Ībn2 c−2(D,D − v) is invariant with respect to
changing the reference face. The values Īk(D,D − v)
for k ∈ {0, . . . , bn2 c − 3} may change when selecting a
di�erent reference face.

Lemma 13 Let D be a good drawing of Kn with n odd
and v ∈ V . If v has a pair-sequence and for the sub-
drawing D− v we have Êbn2 c−3(D− v) ≥ 3

(bn2 c+1
4

)
with

respect to f(v), then cr(D) ≥ H(n).

Proof. We have Êbn2 c−2(D, v) ≥ 2
(bn2 c+1

3

)
for any

face that is incident to v in D, and because v has a
pair-sequence and due to Lemma 12, it follows that
Ībn2 c−2(D,D − v) ≥

(bn2 c+1
3

)
. Using Lemma 7, it fol-

lows for every face incident to v Êbn2 c−2(D) ≥ 3
(bn2 c+2

4

)
.

Since n is odd, the result follows with Corollary 3. �

Next, we de�ne semi-pair-shellability.

De�nition 14 Let D be a good drawing of Kn with n
odd. If there exists a vertex v ∈ V that has a pair-
sequence and the subdrawing D − v is seq-shellable for
f(v), then we call D semi-pair-shellable.

Using Lemma 13, we show that semi-pair-shellable dra-
wings have at least H(n) crossings. By de�nition the
subdrawing D − v is seq-shellable, hence Êbn2 c−3(D −
v) ≥ 3

(bn2 c+1
4

)
for f(v) (see Corollary 8). Consequently,

Theorem 15 follows.

Theorem 15 If D is a semi-pair-shellable drawing of
Kn, then cr(D) ≥ H(n).

The drawingD in Figure 2 is semi-pair-shellable but not
seq-shellable. It is impossible to �nd a vertex sequence

15

30th Canadian Conference on Computational Geometry, 2018

and corresponding simple sequences to apply the de�ni-
tion of seq-shellability. However, the subdrawing D− v
is seq-shellable for face f(v) and v has a pair-sequence.
Consequently, D is semi-pair-shellable.
We are not aware of a crossing optimal semi-pair-

shellable drawing that is not seq-shellable. Every (bn2 c−
1)-seq-shellable drawing D with n odd is also semi-
pair-shellable: By de�nition, D has a vertex sequence
a0, . . . , abn2 c−1, and each ai has a simple sequence Si

with i ∈ {0, . . . , bn2 c − 1}. The �rst bn2 c − 2 vertices of
S0 are a pair-sequence for a0. Moreover, the drawing
D − a0 is (bn2 c − 2)-seq-shellable with the vertex se-
quence a1, . . . , abn2 c−1 and its corresponding simple se-
quences. However, there exist (bn2 c − 2)-seq-shellable
drawings that are not semi-pair-shellable. Thus, semi-
pair-shellability is a new distinct class that intersects
but does not contain the class of seq-shellable drawings.

5 k-Deviations

In the following, we introduce k-deviations, which we
use to represent the di�erence between (cumulated) k-
edges and optimal values; k-deviations allow us to for-
mulate conditions under which we are able to change
the reference face even more freely. Note that if for a
drawing D of Kn it holds that Ek(D) = 3(k + 1) for
all 0 ≤ k ≤ bn2 c − 2, then cr(D) = H(n). We de�ne k-
deviations as the di�erence between this value and the
number of k-edges in a drawing.

De�nition 16 Let D be a good drawing of Kn, F ∈
F(D) and Ek(D) the number of k-edges for 0 ≤ k ≤
bn2 c − 2 with respect to F . We denote by ∆k(D) :=
Ek(D)− 3(k + 1) the k-deviation of the drawing D for
0 ≤ k ≤ bn2 c− 2 with respect to F . Moreover, we de�ne
the cumulated versions of the k-deviation for F as

∆̄k(D) :=

k∑

i=0

i∑

j=0

∆j(D) =

k∑

i=0

(k + 1− i)∆i(D) and

∆̂k(D) :=
k∑

i=0

∆̄i(D) =
k∑

i=0

(
k + 2− i

2

)
∆i(D).

Finally, we de�ne the deviation of the crossing number
of D from the Harary-Hill optimal number of crossings
as ∆cr(D) := cr(D)−H(n).

We can express k-deviations in the following ways.

Lemma 17 Let D be a good drawing of Kn. For a
reference face F ∈ F(D) and 0 ≤ k ≤ bn2 c − 2, we have

∆̂k(D) = ∆̂k−1(D) + ∆̄k(D).

Corollary 18 Let D be a good drawing of Kn. For n
odd we have ∆cr(D) = 2∆̂n−1

2 −2(D), and for a refe-

rence face F ∈ F(D) and n even ∆cr(D) = ∆̂n
2−2(D)+

∆̂n
2−3(D).

Notice, that Corollary 18 implies Kleitman's parity the-
orem for complete graphs [12]. The following lemma
gives a lower bound on ∆̂bn2 c−3(D).

Lemma 19 Let D be a good drawing of Kn with
cr(D) ≥ H(n). For each F ∈ F(D) with ∆̂bn2 c−2(D) ≥
∆̄bn2 c−2(D), it holds that ∆̂bn2 c−3(D) ≥ 0.

With the following proposition, we are able to select a
new reference face for the subdrawing D − v.
Proposition 20 Let D be a good drawing of Kn with
n odd and v ∈ V , such that the subdrawing D − v is
seq-shellable for any face F ∈ F(D−v). If v has a pair-
sequence and in subdrawing D− v for f(v) it holds that
∆̂n−1

2 −2(D− v) ≥ ∆̄n−1
2 −2(D− v), then cr(D) ≥ H(n).

So far, for all drawings and all faces we inspected, the
condition of Lemma 19 has been ful�lled. We conjecture
it to be true for all good drawings of Kn.

Conjecture 2 Let D be a good drawing of Kn. With
respect to any face F ∈ F(D), we have

∆̂bn2 c−2(D) ≥ ∆̄bn2 c−2(D).

Under the assumption that Conjecture 2 holds, we are
able to prove the Harary-Hill Conjecture for another
new class of drawings. Here, we can select a di�erent
reference face for each vertex.

Theorem 21 Let D be a good drawing of Kn and
v1, . . . , vn a sequence of the vertices, such that every
vertex vi with i ∈ {1, . . . , n} and i odd has a pair-
sequence, and every vertex vi with i ∈ {1, . . . , n} and
i even has a simple sequence. If Conjecture 2 holds,
then cr(D) ≥ H(n).

6 Conclusions and Outlook

We introduced semi-pair-shellable drawings of complete
graphs and veri�ed that each drawing in this class has
at least H(n) crossings. For the �rst time, we used
more than a single globally �xed reference face in or-
der to show lower bounds on the triple cumulated k-
edges. Semi-pair-shellability is only de�ned for dra-
wings of Kn with n odd so far. Extending semi-pair-
shellability to drawings of Kn with an even number
of vertices is an open problem. Here, it would suf-
�ce to show that ∆̂bn2 c−2(D) + ∆̂bn2 c−3(D) ≥ 0 implies

∆̂bn2 c−3(D) ≥ 0 in order to generalize our results from
semi-pair-shellability to pair-shellability, i.e. a version
of seq-shellability with pair-sequences instead of simple
sequences. Moreover, we introduced k-deviations to for-
mulate conditions under which we are able to select a
new reference face in each subdrawing. Proving Con-
jecture 2 would settle the Harary-Hill Conjecture for a
very broad class of drawings, comprising seq- and semi-
pair-shellability. Still, there are optimal drawings where
each face touches a single vertex only [6], thus no vertex
has a simple or pair-sequence.

16

CCCG 2018, Winnipeg, Canada, August 8�10, 2018

References

[1] B. Ábrego, O. Aichholzer, S. Fernández-Merchant,
T. Hackl, J. Pammer, A. Pilz, P. Ramos, G. Sala-
zar, and B. Vogtenhuber. All good drawings of small
complete graphs. In Proc. 31st European Workshop on
Computational Geometry (EuroCG), pages 57�60, 2015.

[2] B. Ábrego, O. Aichholzer, S. Fernández-Merchant,
D. McQuillan, B. Mohar, P. Mutzel, P. Ramos, R. Rich-
ter, and B. Vogtenhuber. Bishellable drawings of Kn.
In Proc. XVII Encuentros de Geometría Computacional
(EGC), pages 17�20, Alicante, Spain, 2017.

[3] B. Ábrego, O. Aichholzer, S. Fernández-Merchant,
P. Ramos, and G. Salazar. The 2-page crossing num-
ber of Kn. In Proceedings of the Twenty-eighth Annual
Symposium on Computational Geometry, SoCG '12, pa-
ges 397�404, New York, NY, USA, 2012. ACM.

[4] B. M. Ábrego, O. Aichholzer, S. Fernández-Merchant,
P. Ramos, and G. Salazar. More on the crossing num-
ber of Kn: Monotone drawings. Electronic Notes in
Discrete Mathematics, 44:411�414, 2013.

[5] B. M. Ábrego, O. Aichholzer, S. Fernández-Merchant,
P. Ramos, and G. Salazar. Shellable drawings and the
cylindrical crossing number of Kn. Discrete & Compu-
tational Geometry, 52(4):743�753, 2014.

[6] B. M. Ábrego, O. Aichholzer, S. Fernández-Merchant,
P. Ramos, and B. Vogtenhuber. Non-shellable dra-
wings of Kn with few crossings. In Proceedings of the
26th Canadian Conference on Computational Geome-
try, CCCG 2014, Halifax, Nova Scotia, Canada, 2014.

[7] B. M. Ábrego, M. Cetina, S. Fernández-Merchant,
J. Leaños, and G. Salazar. On ≤ k-edges, crossings,
and halving lines of geometric drawings of Kn. Dis-
crete & Computational Geometry, 48(1):192�215, 2012.

[8] M. Balko, R. Fulek, and J. Kyn£l. Crossing num-
bers and combinatorial characterization of monotone
drawings of Kn. Discrete & Computational Geometry,
53(1):107�143, 2015.

[9] P. Erdös, L. Lovász, A. Simmons, and E. G. Straus.
Dissection graphs of planar point sets. In A Survey of
Combinatorial Theory, pages 139�149. Elsevier, 1973.

[10] R. K. Guy. A combinatorial problem. Nabla, Bulletin
of the Malayan Mathematical Society, 7:68�72, 1960.

[11] F. Harary and A. Hill. On the number of crossings in
a complete graph. Proceedings of the Edinburgh Mathe-
matical Society, 13(4):333�338, 1963.

[12] D. J. Kleitman. A note on the parity of the number of
crossings of a graph. Journal of Combinatorial Theory,
Series B, 21(1):88�89, 1976.

[13] L. Lovász, K. Vesztergombi, U. Wagner, and E. Welzl.
Convex quadrilaterals and k-sets. Contemporary Mat-
hematics, 342:139�148, 2004.

[14] D. McQuillan, S. Pan, and R. B. Richter. On the cros-
sing number of K13. J. Comb. Theory, Ser. B, 115:224�
235, 2015.

[15] P. Mutzel and L. Oettershagen. The crossing number of
semi-pair-shellable drawings of complete graphs. CoRR,
abs/1805.06780, 2018.

[16] P. Mutzel and L. Oettershagen. The crossing number of
seq-shellable drawings of complete graphs. In C. S. Ilio-
poulos, H. W. Leong, and W. Sung, editors, Combinato-
rial Algorithms - 29th International Workshop, IWOCA
2018, Singapore, July 16-19, 2018, Proceedings, volume
10979 of Lecture Notes in Computer Science, pages 273�
284. Springer, 2018.

[17] S. Pan and R. B. Richter. The crossing number of K11

is 100. Journal of Graph Theory, 56(2):128�134, 2007.

[18] M. Schaefer. The graph crossing number and its vari-
ants: A survey. The Electronic Journal of Combinato-
rics (Dec 22, 2017), 1000:DS21�May, 2013.

[19] L. A. Székely. A successful concept for measuring non-
planarity of graphs: The crossing number. Electronic
Notes in Discrete Mathematics, 5:284�287, 2000.

17

CCCG 2018, Winnipeg, Canada, August 8–10, 2018

Learning Simplicial Complexes from Persistence Diagrams

Robin Lynne Belton∗ Brittany Terese Fasy∗† Rostik Mertz† Samuel Micka† David L. Millman†

Daniel Salinas† Anna Schenfisch∗ Jordan Schupbach∗ Lucia Williams†

Abstract

Topological Data Analysis (TDA) studies the “shape”
of data. A common topological descriptor is the persis-
tence diagram, which encodes topological features in a
topological space at different scales. Turner, Mukher-
jee, and Boyer showed that one can reconstruct a sim-
plicial complex embedded in R3 using persistence dia-
grams generated from all possible height filtrations (an
uncountably infinite number of directions). In this pa-
per, we present an algorithm for reconstructing plane
graphs K = (V,E) in R2, i.e., a planar graph with ver-
tices in general position and a straight-line embedding,
from a quadratic number height filtrations and their re-
spective persistence diagrams.

1 Introduction

Topological data analysis (TDA) is a promising tool in
fields as varied as materials science, transcriptomics,
and neuroscience [8, 11, 14]. Although TDA has been
quite successful in the analysis of point cloud data [13],
its purview extends to any data that can be encoded as
a topological space. Topological spaces can be described
in terms of their homology, e.g., connected components
and “holes.” Simplicial complexes, in particular, are the
most common representation of topological spaces. In
this work, we focus our attention on a subset of simpli-
cial complexes, namely, plane graphs embedded in R2,
with applications to shape reconstruction.

In this paper, we explore the question, Can we re-
construct embedded simplicial complexes from a finite
number of directional persistence diagrams? Our work
is motivated by [15], which proves that one can recon-
struct simplicial complexes from an uncountably infinite
number of diagrams. Here, we make the first step to-
wards providing a polynomial-time reconstruction for
simplicial complexes. In particular, the main contribu-
tions of this paper are to set a bound on the number
of persistence diagrams required to reconstruct a plane
graph and to provide a polynomial-time algorithm for
reconstructing the graph.

∗Depart. of Mathematical Sciences, Montana State U.
†School of Computing, Montana State U.

{robin.belton, brittany.fasy, david.millman, annaschenfisch,

jordan.schupbach}@montana.edu {samuel.micka, daniel.salinas,

lucia.williams}@msu.montana.edu rostik.mertz@student.montana.edu

2 Related Work

The problem of manifold and stratified space learning is
an active research area in computational mathematics.
For example, Zheng et al. study the 3D reconstruction of
plant roots from multiple 2D images [16]. Their method
uses persistent homology to ensure the resulting 3D root
model is connected.

Map construction algorithms reconstruct street maps
as an embedded graph from a set of input trajectories.
Three common approaches are Point Clustering, Incre-
mental Track Insertion, and Intersection Linking [1].
Ge, Safa, Belkin, and Wang develop a point cluster-
ing algorithm using Reeb graphs to extract the skeleton
graph of a road from point-cloud data [6]. The original
embedding can be reconstructed using a principal curve
algorithm [10]. Karagiorgou and Pfoser give an incre-
mental track insertion algorithm to reconstruct a road
network from vehicle trajectory GPS data [9]. Ahmed
et al. provide an incremental track insertion algorithm
to reconstruct road networks from point could data [2].
The reconstruction is done incrementally, using a vari-
ant of the Fréchet distance to add curves to the cur-
rent basis. Ahmed, Karagiorgou, Pfoser, and Wenk de-
scribe all these methods in [1]. Finally, Dey, Wang, and
Wang use persistent homology to reconstruct embedded
graphs. This research has also been applied to input
trajectory data [4]. Dey et al. use persistence to guide
the Morse cancellation of critical simplices. In contrast,
the work presented here uses persistence to generate the
diagrams that encode the underlying graph.

Our work extends previous work on the persistent
homology transform (PHT) [15]. As detailed in Sec-
tion 3, persistent homology summarizes the homological
changes for a filtered topological space. When applied
to a simplicial complex embedded in Rd, we can com-
pute a different filtration for every direction in Sd−1;
this family of persistence diagrams is referred to as the
persistent homology transform (PHT). The map from
a simplicial complex to PHT is injective [15]. Hence,
knowing the PHT of a simplicial complex uniquely iden-
tifies that complex. The proof presented in [15] relies on
the continuity of persistence diagrams as the direction
of filtration varies continuously.

Our paper bounds the number of directions by pre-
senting an algorithm for reconstructing the simplicial

18

30th Canadian Conference on Computational Geometry, 2018

complex, when we are able to obtain persistence dia-
grams for a given set of directions. Simultaneous to our
investigation, others have also observed that the num-
ber of directions can be bounded using the Radon trans-
form; see [3,7]. In the work presented in the current pa-
per, we seek to reconstruct graphs from their respective
persistence diagrams, using a geometric approach. We
bound the number of directional persistence diagrams
since computing the PHT, as presented in [15], requires
the computation of filtrations from an infinite number
of possible directions. Our work provides a theoretical
guarantee of correctness for a finite subset of directions
by providing the reconstruction algorithm.

3 Preliminary

In this paper, we explore the question, Can we re-
construct embedded simplicial complexes from a finite
number of directional persistence diagrams? We be-
gin by summarizing the necessary background informa-
tion, but refer the reader to [5] for a more comprehen-
sive overview of computational topology.

Simplices and Simplicial Complexes Intuitively, a k-
simplex is a k-dimensional generalization of a triangle,
i.e., a zero-simplex is a vertex, a one-simplex is an edge
connecting two vertices, a two-simplex is a triangle, etc.
In this paper, we focus on a subset of simplicial com-
plexes embedded in R2 consisting of only vertices and
edges. Specifically, we study plane graphs with straight-
line embeddings (referred to simply as plane graphs
throughout this paper). Furthermore, we assume that
the embedded vertices are in general position, meaning
that no three vertices are collinear and no two vertices
share an x- or y-coordinate.

Height Filtration Let K be a plane graph and denote
S1 as the unit sphere in R2. Consider s ∈ S1; we define
the lower star filtration with respect to direction s in
two steps. First, we let hs : K → R be defined for a
simplex σ ⊆ K by hs(σ) = maxv∈σ v ·s, where x·y is the
inner (dot) product and measures height in the direc-
tion of y, if y is a unit vector. Intuitively, the height of σ
from s is the maximum height of all vertices in σ. Then,
for each t ∈ R, the subcomplex Kt := h−1s ([−∞, t)) is
composed of all simplices that lie entirely below or at the
height t, with respect to the direction s. NoticeKr ⊆ Kt

for all r ≤ t and Kr = Kt if no vertex has height in the
interval [r, t]. The sequence of all such subcomplexes,
indexed by R, is the height filtration with respect to s,
notated as Fs(K). Often, we simplify notation and de-
fine Fs := Fs(K).

Persistence Diagrams The persistence diagram is a
summary of the homology groups H∗(Kt) as the height

parameter t ranges from −∞ to ∞; in particular, the
persistence diagram is a set of birth-death pairs (bi, di).
Each pair represents an interval [bi, di) corresponding
to a homology generator. For example, a birth event
may occur when the height filtration discovers a new
vertex, representing a new component, and the corre-
sponding death represents the vertex joining another
connected component. By definition [5], all points in
the diagonal y = x are also included with infinite mul-
tiplicity. However, in this paper, we consider only those
points on the diagonal that are explicitly computed in
the persistence algorithm found in [5], which correspond
to features with the same birth and death time. For
a direction s ∈ S1, let the directional persistence dia-
gram Di(Fs(K)) be the set of birth-death pairs for the
i-th homology group from the height filtration Fs(K).
As with the height filtration, we simplify notation and
define Di(s) := Di(Fs(K)) when the complex is clear
from context. We conclude this section with a remark
relating birth-death pairs in persistence diagrams to the
simplices in K; a full discussion of this remark is found
in [5, pp. 120–121 of §V.4].

Remark 1 (Adding a Simplex) Let K be a simpli-
cial complex and σ a k-simplex whose faces are all in K.
Let βi refer to the i-th Betti number, i.e., the rank of
the i-th homology group. Then, the addition of σ to K
will either increase βk by one or decrease βk−1 by one.

Thus, we can form a bijection between simplices of K
and birth-death events in a persistence diagram. This
observation is the crux of the proofs of Theorem 5 in
Section 4 and Lemma 7 in Section 5.

4 Vertex Reconstruction

In this section, we present an algorithm for recovering
the locations of vertices of a simplicial complex K using
three directional persistence diagrams. Intuitively, for
each direction, we identify the lines on which the vertices
of K must lie. We show that by choosing the three
directions such that they satisfy a simple property, we
can identify all vertex locations by searching for points
in the plane where three lines intersect. We call these
lines filtration lines:

Definition 2 (Filtration Lines) Given a direction
vector s ∈ S1, and a height h ∈ R the filtration line at
height h is the line, denoted `(s, h), through point h ∗ s
and perpendicular to direction s, where ∗ denotes scalar
multiplication. Given a finite set of vertices V ⊂ R2,
the filtration lines of V are the set of lines

L(s, V) = {`(s, hs(v))}v∈V .

Notice that all lines in L(s, V) are parallel. Intuitively,
if v is a vertex in a simplicial complex K, then the

19

CCCG 2018, Winnipeg, Canada, August 8–10, 2018

Figure 1: A vertex set, V , of size 4 with filtration lines
that satisfy the Vertex Existence Lemma. Here, s1, s2 ∈
S1 are linearly independent and the filtration lines are
colored so that L(s1, V) are the black horizontal lines,
L(s2, V) are the blue vertical lines, and L(s3, V) are the
magenta diagonal lines. An intersection of three colored
lines corresponds to the location of a vertex in V .

line `(s, hs(v)) occurs at the height where the filtra-
tion Fs(K) includes v for the first time. If the height is
known but the complex is not, the line `(s, hs(v)) defines
all potential locations for v. By Remark 1, the births
in the zero-dimensional persistence diagram are in one-
to-one correspondence with the vertices of the simplex
complex K. Thus, we can construct L(s, V) from a sin-
gle directional diagram in O(n) time. Given filtration
lines for three carefully chosen directions, we next show
a correspondence between intersections of three filtra-
tion lines and vertices in K.

In what follows, given a direction si ∈ S1 and a point
p ∈ R2, define `i(p) := `(si, hsi(p)) as a way to simplify
notation.

Lemma 3 (Vertex Existence Lemma) Let K be a
simplicial complex with vertex set V of size n. Let
s1, s2 ∈ S1 be linearly independent and further suppose
that L(s1, V) and L(s2, V) each contain n lines. Let A
be the collection of vertices at the intersections of lines
in L(s1, V) ∪ L(s2, V). Let s3 ∈ S1 such that for all
u, v ∈ A, `3(u) = `3(v) ⇐⇒ u = v. Then, the follow-
ing two statements hold true:

(1) v ∈ V ⇐⇒ `3(v) ∈ L(s3, V) and A∩ `3(v) = {v}
(2) For all ` ∈ L(s3, V), A ∩ ` 6= ∅.

Proof. First, we prove Part (1).
(⇒) Let v ∈ V . Then, `i(v) ∈ L(si, V) and v ∈ `i(v)

for i = {1, 2, 3}. Hence, `1(v) ∩ `2(v) ∩ `3(v) = {v}, as
desired.

(⇐) Assume, for the sake of contradiction, that
`3(v) ∈ L(s3, V) and A ∩ `3(v) = {v}, yet v 6∈ V .
Since `3(v) ∈ L(s3, V) and v 6∈ V , some other vertex

u ∈ V must have height hs3(v). Since u ∈ V , we know
`i(u) ∈ L(si, V) for i ∈ {1, 2, 3}. And, by (⇒) applied
to u, we know u ∈ A. Since `3(u) = `3(v), both u and v
are in A and on the line `3(v), but u 6= v, which is
a contradiction.

Next, we prove Part (2) of the lemma. Assume, for
contradiction, that there exists ` ∈ L(s3, V) such that
A ∩ ` = ∅. As ` ∈ L(s3, V), a vertex v ∈ V exists
such that ` = `3(v) and v lies on `. However, v ∈
`1(v) ∩ `2(v) ⊂ A, which is a contradiction. �

In the previous lemma, we needed to find a third di-
rection with specific properties. If we use horizontal and
vertical lines for our first two directions, then we can
use the geometry of the boxes formed from these lines
to pick the third direction. More specifically, we look at
the box with the largest width and smallest height and
pick the third direction so that if one of the correspond-
ing lines intersects the bottom left corner of the box
then it will also intersect the box somewhere along the
right edge. In Figure 1, the third direction was com-
puted using this procedure with the second box from
the left in the top row. Next, we give a more precise
description of the vertex localization procedure.

Lemma 4 (Vertex Localization) Let LH and LV
be n horizontal and n vertical lines, respectively. Let w
(and h) be the largest (and smallest) distance between
two lines of LV (and LH , respectively). Let B be the
smallest axis-aligned bounding box containing the in-
tersections of lines in LH ∪ LV . For 0 < ε < h, let
s = (w, h − ε). Any line parallel to s can intersect at
most one line of LH in B.

Proof. Note that, by definition, s is a vector in the di-
rection that is at a slightly smaller angle than the diago-
nal of the box of size w by h. Assume, by contradiction,
that a line parallel to s may intersect two lines of LH
within B. Specifically, let `1, `2 ∈ LH and let `s be a
line parallel to s such that the points `i∩`s = (xi, yi) for
i = {1, 2} are the two such intersection points within B.
Notice since the lines of LH are horizontal and by the
definition of h, we observe that |y1 − y2| ≥ h. Let
w′ = |x1 − x2|, and observe w′ ≤ w. Since the slope
of `s is (h − ε)/w, we have |y1 − y2| < h, which is a
contradiction. �

We conclude this section with an algorithm to deter-
mine the coordinates of the vertices of the original graph
in R2, using only three height filtrations.

Theorem 5 (Vertex Reconstruction) Let K be a
plane graph. We can can compute the coordinates of
all n vertices of K in O(n log n) time from three direc-
tional persistence diagrams.

Proof. Let s1 = (1, 0) and s2 = (0, 1), which
are linearly independent. We compute the filtration

20

30th Canadian Conference on Computational Geometry, 2018

lines L(si, V) for i = 1, 2 in O(n) time by Remark 1. By
our general position assumption, no two vertices of K
share an x- or y-coordinate. Thus, the sets L(s1, V)
and L(s2, V) each contain n distinct lines. Let A be
the set of intersection points of the lines in L(s1, V)
and L(s2, V). The next step is to identify a direction s3
such that each line in L(s3, V) intersects with only one
point A, so that we can use Lemma 3.

Let w (and h) be the greatest (and least) distance
between two adjacent lines in L(s1, V) (and L(s2, V),
respectively). Let B be the smallest axis-aligned bound-
ing box containing A, and let s∗ = (w, h2). By Lemma 4,
any line parallel to s∗ will intersect at most one line
of L(s2, V) in B. Thus, we choose s3 ∈ S1 that is per-
pendicular to s∗. By the second part of Lemma 3, we
now have that each line in L(s3, V) intersects A. Thus,
there are n intersections between L(s2, V) and L(s3, V)
in B, each of which also intersects with L(s1, V).

The previous paragraph leads us to a simple algo-
rithm for finding the third direction and identifying all
the triple intersections. In the analysis below, steps that
do not mention a number of diagrams use no diagrams.
First, we construct L(s1, V) and L(s2, V) in O(n) time
using two directional persistence diagrams. Second, we
sort the lines of L(s1, V) and L(s2, V) by their x- and
y-intercepts respectively in O(n log n) time. Third, we
find s3 by computing w and h from our sorted lines
in O(n) time. Fourth, we construct L(s3, V) in O(n)
time using one directional persistence diagram. Fifth,
we sort the lines in L(s3, V) by their intersection with
the leftmost line of L(s1, V) in O(n log n) time. Finally,
we compute coordinates of the n vertices by intersect-
ing the i-th line of L(s2, V) with the i-th line of L(s3, V)
in O(n) time. (Observe, this last step works since the
vertices correspond to the n intersections in B, as de-
scribed above).

Therefore, we use three directional diagrams (two in
the first step and one in the fourth step) and O(n log n)
time (sorting of lines in the second and fifth steps) to
reconstruct the vertices. �

5 Edge Reconstruction

Given the vertices constructed in Section 4, we describe
how to reconstruct the edges in a plane graph using
n(n− 1) persistence diagrams. The key to determining
whether an edge exists or not is counting the degree of
a vertex, for edges “below” the vertex with respect to a
given direction. We begin this section by defining neces-
sary terms, and then explicitly describing our algorithm
for constructing edges.

Definition 6 (Indegree of Vertex) Let K be a
plane graph with vertex set V . Then, for every vertex
v ∈ V and every direction s ∈ S1, we define:

Indeg(v, s) = |{(v, v′) ∈ E | s · v′ ≤ s · v}|.

In other words, the indegree of v is the number of edges
incident to v that lie below v, with respect to direction s;
see Figure 2.

Figure 2: A plane graph with a dashed line drawn in-
tersecting v in the direction perpendicular to s. Since
four edges incident to v lie below v, with respect to
direction s, Indeg(v, s) = 4.

Next, we prove that given a direction, we can deter-
mine the indegree of a vertex:

Lemma 7 (Indegree from Diagram) Let K be a
plane graph with vertex set V . Let s ∈ S1 be such that
no two vertices are at the same height with respect to s,
i.e., |L(s, V)| = n. Let D0(s) and D1(s) be the zero- and
one-dimensional persistence diagrams resulting from the
height filtration Fs on K. Then, for all v ∈ V ,

Indeg(v, s) =|{(x, y) ∈ D0(s) | y = v · s}|+
|{(x, y) ∈ D1(s) | x = v · s}|.

Proof. Let v, v′ ∈ V such that s ·v′ < s ·v, i.e., the ver-
tex v′ is lower in direction s than v. Then, by Remark 1,
if (v, v′) ∈ E, it must be one of the following in the filter
of K defined by s: (1) an edge that joins two discon-
nected components; or (2) an edge that creates a one-
cycle. Since edges are added to a filtration at the height
of the higher vertex, we see (1) as a death in D0(s) and
(2) as a birth in D1(s), both at height s · v. In addition,
each finite death in D0(s) and every birth in D1(s) at
time s ·v must correspond to an edge, i.e., edges are the
only simplices that can cause these events. Then, the set
of edges of types (1) and (2) is {(x, y) ∈ D0(s) | y = v·s}
and {(x, y) ∈ D1(s) | x = v ·s}, respectively. The size of
the union of these two multi-sets is equal to the number
of edges starting at v′ lower than v in direction s and
ending at v, as required. �

In order to decide whether an edge (v, v′) exists be-
tween two vertices, we look at the degree of v as seen
by two close directions such that v′ is the only vertex in
what we call a bow tie at v:

Definition 8 (Bow Tie) Let v ∈ V , and choose
s1, s2 ∈ S1. Then, a bow tie at v is the symmetric dif-
ference between the half planes below v in directions s1

21

CCCG 2018, Winnipeg, Canada, August 8–10, 2018

and s2. The width of the bow tie is half of the angle
between s1 and s2.

Because no three vertices in our plane graph are
collinear, for each pair of vertices v, v′ ∈ V , we can
always find a bow tie centered at v that contains the
vertex v′ and no other vertex in V ; see Figure 3. We

Figure 3: A bow tie B at v, denoted by the gray shaded
area. B contains exactly one vertex, v′, so the only po-
tential edge in B is (v, v′).

use bow tie regions that only contain one vertex, v′ other
than the center, v to determine if there exists an edge
between v and v′; see Figure 4. We then use Lemma 9
to decide if the edge (v, v′) exists in our plane graph.

Figure 4: A bow tie at v that contains the vertex v′

and no other vertices. In order to determine if there ex-
ists an edge between v and v′, we compute Indeg(v, s1)
and Indeg(v, s2), i.e., the number of edges incident to v
in the purple and green arcs, respectively. An edge
exists between v and v′ if and only if |Indeg(v, s1) −
Indeg(v, s2)| = 1.

Lemma 9 (Edge Existence) Let K be a plane graph
with vertex set V and edge set E. Let v, v′ ∈ V . Let
s1, s2 ∈ S1 such that the bow tie B at v defined by s1
and s2 satisfies: B ∩ V = v′. Then,

|Indeg(v, s1)− Indeg(v, s2)| = 1 ⇐⇒ (v, v′) ∈ E.

Proof. Since edges in K are straight lines, any edge in-
cident to v will either fall in the bow tie region B or will
be on the same side (above or below) of both lines. Let
A be the set of edges incident on v and below both lines;
that is A = {(v, v∗) ∈ E | si · v∗ < si · v}. Furthermore,
suppose we split the bowtie into the two infinite cones.
Let B1 be the set of edges in one cone and B2 be the set
of edges in the other cone. We note that ||B1| − |B2|| is

equal to one if there is an edge (v, v′) ∈ E with v′ ∈ B1

or v′ ∈ B2 and zero otherwise. Then, by definition of
indegree,

|Indeg(v, s1)−Indeg(v, s2)|
= ||A|+ |B1| − |A| − |B2||
= ||B1| − |B2||
= |V ∩B| ,

which holds if and only if (v, v′) ∈ E. Then
|Indeg(v, s1) − Indeg(v, s2)| = 1 ⇐⇒ (v, v′) ∈ E,
as required. �

Next, we prove that we can find the embedding of
the edges in the original graph using O(n2) directional
persistence diagrams.

Theorem 10 (Edge Reconstruction) Let K be a
plane graph, with vertex set V and edge set E. If V is
known, then we can compute E using O(n2) directional
persistence diagrams.

Proof. We prove this theorem constructively. Intu-
itively, we construct a bow tie for each potential edge
and use Lemma 9 to determine if the edge exists or not.
Our algorithm has three steps for each pair of vertices
in V : Step 1 is to determine a global bow tie width,
Step 2 is to construct suitable bow ties, and Step 3 is
to compute indegrees. See Appendix A for an example
of walking through the reconstruction.

Step 1: Determine bow tie width. For each ver-
tex v ∈ V , we consider the cyclic ordering of the points
in V \{v} around v. We define θ(v) to be the minimum
angle between all adjacent pairs of lines through v; see
Figure 5, where the angles between adjacent lines are
denoted θi. Finally, we choose θ less than minv∈V θ(v).
By Lemmas 1 and 2 of [12], we compute the cyclic order-
ings for all vertices in V in O(n2) time. Since computing
each θ(v) is O(n) time once we have the cyclic ordering,
the runtime for this step is O(n2).

Step 2: Constuct bow ties. For each pair of vertices
(v, v′) ∈ V × V such that v 6= v′, let s be a unit vector
perpendicular to vector (v′ − v), and let s1, s2 be the
two unit vectors that form angles ±θ with s. Let B
be the bow tie between `(s1, hs1(v)) and `(s2, hs2(v)).
Note that by the construction, B contains exactly one
point from V , namely v′.

Step 3: Compute indegrees. Using B as the bow tie
in Lemma 7, compute Indeg(v, s1) and Indeg(v, s2).
Then, using Lemma 9, we determine whether (v, v′) ex-
ists by checking if |Indeg(v, s1)− Indeg(v, s2)| = 1. If
it does, the edge exists; if not, the edge does not.

Repeating for all vertex pairs requiresO(n2) diagrams
and discovers the edges of K. �

The implications of Theorem 5 and Theorem 10 lead
to our primary result. We can find the embedding of the

22

30th Canadian Conference on Computational Geometry, 2018

Figure 5: Using a vertex set of a plane graph to con-
struct a bow tie at vertex, v. Lines are drawn through
all vertices and then angles are computed between all
adjacent pairs of lines. The smallest angle is chosen
as θ(v). Here, θ(v) = θ2.

vertices V by Theorem 5 using three directional persis-
tence diagrams. Furthermore, we can discover edges E
with O(n2) directional persistence diagrams by Theo-
rem 10. Thus, we can reconstruct all edges and vertices
of a one-dimensional simplicial complex:

Theorem 11 (Plane Graph Reconstruction)
Let K be a plane graph with vertex set V and edge
set E. The vertices, edges, and exact embedding
of K can be determined using persistence diagrams
from O(n2) different directions.

6 Discussion

In this paper, we provide an algorithm to reconstruct
a plane graph with n vertices embedded in R2. Our
method uses O(n2) persistence diagrams by first deter-
mining vertex locations using only three directions, and,
second, determining edge existence based on height fil-
trations and vertex degrees. Moreover, if we have an or-
acle that can return a diagram given a direction in O(T)
time, then constructing the vertices takes O(T+n log n)
and reconstructing the edges takes takes O(Tn2) time.

This approach extends to several avenues for future
work. First, we plan to generalize these reconstruction
results to higher dimensional simplicial complexes. We
can show that the vertices of a simplicial complex K
in Rd can be reconstructed in O(dT + nd) time using
the complete arrangement of hyperplanes and (d + 1)
directional persistence diagrams. We conjecture that
this bound can be improved to O(dT + dn log n) using
the same observation that allows us to do the final step
of the vertex reconstruction in linear time. We have a
partial proof in this direction, and can likewise extend
the bow tie idea to higher dimensions, but the number
of directions grows quite quickly. Second, we conjecture
that we can reconstruct these plane graphs with a sub-
quadratic number of height filtrations by utilizing more
information from each height filtration. Third, we sus-
pect a similar approach can be used to infer other graph
metrics, such as classifying vertices into connected com-

ponents. Intuitively, determining such metrics should
require fewer persistence diagrams than required for a
complete reconstruction. Finally, we plan to provide an
implementation for reconstruction that integrates with
existing TDA software.

Acknowledgements This material is based upon work
supported by the National Science Foundation under
the following grants: CCF 1618605 (BTF, SM), DBI
1661530 (BTF, DLM, LW), DGE 1649608 (RLB), and
DMS 1664858 (RLB, BTF, AS, JS). Additionally, RM
thanks the Undergraduate Scholars Program. All au-
thors thank the CompTaG club at Montana State Uni-
versity and the reviewers for their thoughtful feedback
on this work.

References

[1] Mahmuda Ahmed, Sophia Karagiorgou, Dieter
Pfoser, and Carola Wenk. Map construction al-
gorithms. In Map Construction Algorithms, pages
1–14. Springer, 2015.

[2] Mahmuda Ahmed and Carola Wenk. Constructing
street networks from GPS trajectories. In European
Symposium on Algorithms, pages 60–71. Springer,
2012.

[3] Justin Curry, Sayan Mukherjee, and Katharine
Turner. How many directions determine a shape
and other sufficiency results for two topological
transforms. arXiv:1805.09782, 2018.

[4] Tamal K. Dey, Jiayuan Wang, and Yusu Wang.
Graph reconstruction by discrete Morse theory.
arXiv:1803.05093, 2018.

[5] Herbert Edelsbrunner and John Harer. Computa-
tional Topology: An Introduction. American Math-
ematical Society, 2010.

[6] Xiaoyin Ge, Issam I Safa, Mikhail Belkin, and Yusu
Wang. Data skeletonization via Reeb graphs. In
Advances in Neural Information Processing Sys-
tems, pages 837–845, 2011.

[7] Robert Ghrist, Rachel Levanger, and Huy Mai.
Persistent homology and Euler integral transforms.
arXiv:1804.04740, 2018.

[8] Chad Giusti, Eva Pastalkova, Carina Curto, and
Vladimir Itskov. Clique topology reveals intrinsic
geometric structure in neural correlations. Pro-
ceedings of the National Academy of Sciences,
112(44):13455–13460, 2015.

[9] Sophia Karagiorgou and Dieter Pfoser. On vehi-
cle tracking data-based road network generation.

23

CCCG 2018, Winnipeg, Canada, August 8–10, 2018

In SIGSPATIAL ’12: Proceedings of the 20th In-
ternational Conference on Advances in Geographic
Information Systems, pages 89–98. ACM, 2012.

[10] Balázs Kégl, Adam Krzyzak, Tamás Linder, and
Kenneth Zeger. Learning and design of principal
curves. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 22(3):281–297, 2000.

[11] Yongjin Lee, Senja D. Barthel, Pawe l D lotko,
S. Mohamad Moosavi, Kathryn Hess, and Berend
Smit. Quantifying similarity of pore-geometry in
nanoporous materials. Nature Communications,
8:15396, 2017.

[12] David L. Millman and Vishal Verma. A slow algo-
rithm for computing the Gabriel graph with double
precision. CCCG ’11: Proceedings of the 23rd An-
nual Canadian Conference on Computational Ge-
ometry, 2011.

[13] Monica Nicolau, Arnold J. Levine, and Gunnar
Carlsson. Topology based data analysis identifies
a subgroup of breast cancers with a unique muta-
tional profile and excellent survival. Proceedings of
the National Academy of Sciences, 108(17):7265–
7270, 2011.

[14] Abbas H. Rizvi, Pablo G. Camara, Elena K. Kan-
dror, Thomas J. Roberts, Ira Schieren, Tom Ma-
niatis, and Raul Rabadan. Single-cell topological
RNA-seq analysis reveals insights into cellular dif-
ferentiation and development. Nature Biotechnol-
ogy, 35(6):551, 2017.

[15] Katharine Turner, Sayan Mukherjee, and Doug M.
Boyer. Persistent homology transform for modeling
shapes and surfaces. Information and Inference: A
Journal of the IMA, 3(4):310–344, 2014.

[16] Ying Zheng, Steve Gu, Herbert Edelsbrunner,
Carlo Tomasi, and Philip Benfey. Detailed recon-
struction of 3d plant root shape. Proceedings of
the IEEE International Conference on Computer
Vision, pages 2026–2033, 11 2011.

Appendix

A Example of Reconstructing a Plane Graph

We give an example of reconstructing a plane graph.
Consider the complex given in Figure 6.

Vertex Reconstruction First, we find vertex locations
using the algorithm described in Section 4. We need
to choose pairwise linearly independent vectors s1, s2
and s3 such that only n three-way intersections in
A = L(s1, V) ∪ L(s2, V) ∪ L(s3, V) exist; note that in

this example, n = 4. Using the persistence diagrams
from height filtrations in directions s1 = (0, 1) and s2 =
(1, 0), we construct the set of lines L(s1, V) ∪ L(s2, V).
This results in n2 = 16 possible locations for the ver-
tices at the intersections in A. We show these filtration
lines and intersections in Figure 6b. Next, we compute
the third direction s3 using the algorithm outlined in
Theorem 5. To do this, we need to find the greatest
horizontal distance between two vertical lines, d1 = 2
and the least vertical distance between two horizon-
tal lines, d2 = 1. Then, we use these to choose a
direction s3 perpendicular to s∗ = (d1,

d2
2) = (2, 12)

(e.g., s3 = (−1√
17
, 4√

17
) ∈ S1). Then, the four three-way

intersections in L(s1, V)∪L(s2, V)∪L(s3, V) identify all
Cartesian coordinates of the original complex. We show
filtration lines from all three directions in Figure 6c.

Edge Reconstruction Next, we reconstruct all edges
as described in Section 5. In order to do so, we
first find the θ we will use to construct bow ties.
To do this, we examine each vertex v in turn, find-
ing θ(v), the minimum angle between adjacent pairs
of lines through v and v′ ∈ V − {v}. Ordering v by
increasing x-coordinate, we find θ(v) to be approxi-
mately 0.237, 0.219, 0.399, and 0.180 radians, respec-
tively. Then, we take θ to be less than the minimum of
these, i.e. < 0.180radians.

Now, for each of the n(n−1)
2 pairs of vertices (v, v′) ∈

V 2, we construct a bow tie B and then use this bow
tie to determine whether an edge exists between the
two vertices. We go through two examples: one for
a pair of vertices that does have an edge between,
and one for a pair that does not. First, consider
the pair v = (0.25, 0) and v′ = (1, 1). To construct
their bow tie, we first find the unit vector perpen-
dicular to the vector that points from v to v′, which
is s = (−0.8, 0.6). Now, we find s1, s2 such that they
make angles θ with s. We choose s1 = (−0.956, 0.293)
and s2 = (−0.433, 0.902). Now, by Lemma 7, we can
use the persistence diagrams from these two directions
to compute Indeg(v, s1) and Indeg(v, s2). We observe
that D0(s1) contains exactly one birth-death pair (x, y)
such that y = v · s1 and D1(s1) has one birth-death
pair such that x = v · s1. Thus, Indeg(v, s1) = 2. On
the other hand, D0(s2) contains exactly one birth-death
pair (x, y) such that y = v · s2, but D1(s2) contains no
birth-death pair such that x = v ·s2. So Indeg(v, s2) =
1. Now, since |Indeg(v, s1) − Indeg(v, s2)| = 1, we
know that (v, v′) ∈ E, by Lemma 9.

For the second example, consider the pair of ver-
tices v = (0.25, 0) and v′ = (−1, 2). Again, we
construct their bow tie by finding a unit vector per-
pendicular to the vector pointing from v to v′. We
choose this s = (0.848, 0.530). Then, the s1 and s2
which form angle θ < 0.180 radians (e.g θ = .170)

24

30th Canadian Conference on Computational Geometry, 2018

with s are s1 = (0.968, 0.248) and s2 = (0.472, 0.882).
Again by Lemma 7, we examine the zero- and one-
dimensional persistence diagrams from these two direc-
tions to compute the indegree from each direction for
vertex v. In D0(s1), we have one pair (x, y) which dies
at y = v · s1, but in D1(s1), no pair is born at x = v · s1.
So Indeg(v, s1) = 1. We see the exact same for s2,
which means that |Indeg(v, s1) − Indeg(v, s2)| = 0.
Since Lemma 9 tells us that we have an edge between v
and v′ only if the absolute value of the difference of in-
degrees is one, we know that there is no edge between
vertices (0.25, 0) and (−1, 2).

In order to reconstruct all edges, we perform the same
computations for all pairs of vertices.

25

CCCG 2018, Winnipeg, Canada, August 8–10, 2018

-1.0 -0.5 0.0 0.5 1.0

X

Y

-1

0

1

2

(a) Filtration lines for s1

-1.0 -0.5 0.0 0.5 1.0

X

Y

-1

0

1

2

(b) Filtration lines for s2

-1.0 -0.5 0.0 0.5 1.0

X

Y

-1

0

1

2

(c) Filtration lines for s3

Birth

D
ea
th

-1 0 1 2 ∞
-1

0

1

2

∞

H0
H1

(d) Diagrams for s1

Birth

D
ea
th

-1 0 1 2 ∞
-1

0

1

2

∞

H0
H1

(e) Diagrams for s2

Birth

D
ea
th

-1 0 1 2 ∞
-1

0

1

2

∞

H0
H1

(f) Diagrams for s3

Figure 6: Example of vertex reconstruction from three directions, s1, s2 and s3 with corresponding persistence
diagrams built for height filtrations from these directions. The filtration lines are the dotted lines superimposed over
the complex.

26

30th Canadian Conference on Computational Geometry, 2018

-1.0 -0.5 0.0 0.5 1.0

X

Y

-1

0

1

2

s1

s2

(a) Bow tie lines for s1 and s2

Birth

D
ea
th

-1 0 1 2 ∞
-1

0

1

2

∞

H0
H1

(b) Diagram for s1

Birth

D
ea
th

-1 0 1 2 ∞
-1

0

1

2

∞

H0
H1

(c) Diagram for s2

-1.0 -0.5 0.0 0.5 1.0

X

Y

-1

0

1

2

s1

s2

(d) Bow tie lines for s1 and s2

Birth

D
ea
th

-1 0 1 2 ∞
-1

0

1

2

∞

H0
H1

(e) Diagram for s1

Birth

D
ea
th

-1 0 1 2 ∞
-1

0

1

2

∞

H0
H1

(f) Diagram for s2

Figure 7: Example of edge reconstruction for two edges. The first edge (top row) exists while the second edge
(bottom row) does not. The bow tie is given on the left while the persistence diagrams D0(s1) and D1(s1) are given
in the middle and the persistence diagrams D0(s2) and D1(s2) are given on the right. The dotted lines indicate v · s1
and v · s2 in diagrams for s1 and s2 respectively.

27

CCCG 2018, Winnipeg, Canada, August 8–10, 2018

Sto-Stone is NP-Complete

Addison Allen ∗ Aaron Williams †

Abstract

Sto-Stone is a paper-and-pencil puzzle created by
Japanese publisher Nikoli. A puzzle consists of an m-
by-n grid whose squares are partitioned into connected
‘rooms’ each of which may have an associated number.
The solver shades in squares of the grid, which form
maximal ‘stones’ based on orthogonal connectivity. The
goal is to shade squares so that (a) each room contains
one stone, (b) individual stones do not cross between
rooms, (c) numbered rooms contain a stone with exactly
that number of squares, and (d) when the stones are
“dropped” downward they perfectly fill the bottom half
of the grid. We show that Sto-Stone is NP-complete.
This is also true when rule (d) is weakened or omitted.

1 Introduction

This article proves the NP-completeness of a new paper-
and-pencil puzzle by Japanese publisher Nikoli. The
puzzle is Sto-Stone (ストストン) and it was introduced
in Puzzle Communication magazine Volume 156 [1].

When discussing individual grid squares we use adja-
cent and connected to mean orthogonally adjacent and
orthogonally connected, respectively.

1.1 Rules of the Puzzle

Sto-Stone is played on an m-by-n grid where m is
even. The grid’s squares are partitioned into connected
“rooms” and the size of a room is its number of squares.
A room may have a positive number w written in one
of its squares, and in this case its required weight or re-
quirement is w. A grid with these properties is a board.

The solver interacts with the puzzle by shading indi-
vidual squares. The shaded squares partition into stones
based on connectivity. In other words, any two shaded
squares that are adjacent belong to the same stone. The
weight of a stone is its number of shaded squares. The
goal is to create stones subject to the following rules:

(S1) There is exactly one stone in each room. That is,
in each room there are shaded squares and these
squares are connected.

∗Bard College at Simon’s Rock, Massachusetts,
aallen15@simons-rock.edu
†Bard College at Simon’s Rock, Massachusetts,

awilliams@simons-rock.edu

(S2) Shaded squares in different rooms are not adjacent.
That is, stones can’t be inside more than one room.

(S3) Rooms with requirement w have a weight w stone.
That is, a room labeled w has w shaded squares.

(S4) When all stones are “dropped” downward they fill
the bottom half of the grid with no gaps.

Rule (S4) requires clarification. When stones are
dropped they move down as if influenced by gravity.
Stones do not change shape when they are dropped,
and all room boundaries are ignored during this time.

Figure 1 has a sample puzzle and Figure 2 illustrates
the solving process. Figure 1 (c) visually verifies (S4),
and - denotes a square that cannot be shaded.

3 1

3 1 3

1

3 3

(a) Board.

3 1

3 1 3

1

3 3

(b) Solution. (c) Drop check.

Figure 1: The corrected version of Sto-Stone Puzzle 4
from Puzzle Communication Volume 162 [2].

3 – 1 – –

3 1 – 3

– – –

1 –

3 3

(a) (S3) forces the
above stones; (S2)
contributes the −.

3 – 1 – –

3 1 – 3

– – –

1 –

– 3 3

– –

(b) (S3) forces
the above stones;
(S2) and (S4)
contribute the −.

3 – 1 – –

3 1 – 3

– – –

1 –

– 3 – 3

– – – –

(c) (S3) forces the
bottom-middle
stones; (S4) forces
the bottom-right.

Figure 2: Solving the Sto-Stone puzzle in Figure 1.

1.2 Drop Rules: Stone, Sand, Silt

We refer to (S4) as the stone drop rule. We also define
a weaker sand drop rule as follows.

(s4) There are m
2 shaded squares in every column.

28

30th Canadian Conference on Computational Geometry, 2018

Notice that (s4) differs from (S4) in that it ignores
the shape of the stones. In other words, the shaded
squares are dropped independently like individual grains
of sand. We refer to the lack of a drop rule as the silt
drop rule. In other words, the shaded squares linger in
the air like fine grains of silt.

The drop rule in Sto-Stone is somewhat unusual
among Nikoli puzzles, and it has led to some initial con-
fusion among puzzle designers, solvers, and academics.
Figure 1 actually contains a corrected version of Sto-
Stone Puzzle 4 from Puzzle Communication Volume 162
[2]. The originally published puzzle shown in Figure 3
can only be solved with the weaker drop rules.

4 1

3 3

1

3 3

(a) Board.

4 1

3 3

1

3 3

(b) Solution with
respect to sand
but not stone.

(c) Drop rule (S4)
fails, but (s4)
would pass.

Figure 3: The original version of Sto-Stone Puzzle 4
from Puzzle Communication Volume 162 [2].

The error was announced by @nikoli official on
twitter [8]. In response, @postpostdoc posted an early
version of this article [9]. However, the authors did not
properly understand rule (S4) at that time, and only es-
tablished the hardness of (S1)-(S3) with (s4). The early
version also allowed ‘empty’ rooms with no stone, and
w = 0 requirements, which we now believe are invalid.

1.3 Decision Problems

We formalize three different puzzles based on the type
of drop rule that is used. Each of these puzzles has an
associated decision problems that takes a board B as
input and answers ’yes’ or ’no’ depending on whether it
can be solved using the rules for that puzzle.

• Nikoli’s Sto-Stone puzzle uses rules (S1)-(S3) and
drop rule (S4). The decision problem is stone(B).
• The Sto-Sand puzzle uses rules (S1)-(S3) and drop

rule (s4). The decision problem is sand(B).
• The Sto-Silt puzzle uses rules (S1)-(S3) and no drop

rule. The decision problem is silt(B).

If stone(B) is ’yes’, then sand(B) is ’yes’. Similarly,
if sand(B) is ’yes’, then silt(B) is ’yes’. Figure 3 gave
an example board B in which stone(B) is ’no’ and both
sand(B) and silt(B) are ’yes’.

All three decision problems are in NP because shading
an m-by-n board can be done with m ·n binary guesses,
and each rule can be checked in O(mn)-time.

Remark 1 The decision problems stone, sand, and
silt are all in NP.

1.4 Popularity

Nikoli is currently promoting three new puzzles includ-
ing Sun or Moon (月か太), Pencils (ペンシルズ),
and Sto-Stone (ストストン). During a November
2017 poll held on twitter by @nikoli official, the Sto-
Stone puzzle ranked behind Sun or Moon in popularity.
However, this has changed in a more recent poll from
May 2018, as seen in Figure 4.

Figure 4: The popularity of three new Nikoli puzzles,
where the bottom option translates to “I do not know”.

Establishing the hardness of Nikoli puzzles has also
been a popular pursuit in academia. An excellent re-
source on this general topic is Games, Puzzles, and
Computation by Hearn and Demaine [6].

1.5 Outline

The article is organized as follows. Section 2 defines
the NP-complete problem that we will use as a source
problem. Section 3 introduces our gadgets and other
preliminaries. Sections 4, 5, and 6 proves that silt,
sand, and stone are NP-complete, respectively. Sec-
tion 7 concludes with final remarks and open problems.

2 Source Problem

This section defines the satisfiability problem used in
our reduction. We also describe a slight variation to its
standard representation.

2.1 Planar Monotone Rectilinear 3SAT

A (Boolean) variable is a variable that can be assigned
True or False. If xi is a variable, then its positive
literal is xi, and its negative literal is ¬xi. A Boolean
formula φ is in 3 conjunctive normal form (3CNF) if it
equals C1 ∧C2 ∧ . . .∧Cm where each clause Ci has the
form (`i,1 ∨ `i,2 ∨ `i,3) and each `i,j is a literal.

A clause is positive or negative if it has only positive
or negative literals, respectively. The 3CNF formula φ
is monotone if each clause is either positive or negative.

29

CCCG 2018, Winnipeg, Canada, August 8–10, 2018

A 3CNF formula is planar if the bipartite incidence
graph of variables and clauses is planar. A rectilinear
embedding of a planar monotone 3CNF formula is a
drawing on a grid with the following properties:

• Variables and clauses are horizontal line segments.
• Vertical line segments connect variables to clauses.
• Variable line segments are on the same horizontal

line called the variable line.
• Positive clauses are above the variable line, and

negative clauses are below.

Rectilinear embeddings are drawn with their horizontal
line segments vertically extended as in Figure 5.

The decision problem planar monotone rectilin-
ear 3sat (pmr3sat) takes a rectilinear embedding of
a planar monotone 3CNF formula φ as input. A ‘yes’
instance occurs when the variables can be assigned so
that φ evaluates to True. In this case, φ is satisfiable.
Otherwise, φ is a ‘no’ instance and is unsatisfiable. For
brevity, we often refer to the input of pmr3sat as the
Boolean formula φ as opposed to a rectilinear embed-
ding of it. Theorem 1 is by de Berg and Khosravi [4].

x1 x2 x3 x4

x2 ∨ x3 ∨ x4

¬x1 ∨ ¬x2 ∨ ¬x4

¬x2 ∨ ¬x3 ∨ ¬x4

x1 ∨ x4 ∨ x5

x5 x6

¬x4 ∨ ¬x5 ∨ ¬x6

Figure 5: A ‘yes’ instance of pmr3sat with φ = (x1 ∨
x4 ∨ x5) ∧ (x2 ∨ x3 ∨ x4) ∧ (¬x2 ∨ ¬x3 ∨ ¬x4) ∧ (¬x1 ∨
¬x2 ∨ ¬x4) ∧ (¬x4 ∨ ¬x5 ∨ ¬x6).

Theorem 1 ([4]) pmr3sat is NP-complete.

When working with pmr3sat we assume that the
variables are ordered from left-to-right as x1, x2, . . . , xn
in the embedding. We also arrange each clause C as
(xi ∨ xj ∨ xk) or (¬xi ∨¬xj ∨¬xk) with the distinct in-
dices satisfying i < j < k, and we refer to xi, xj , and xj
as the left, middle, and right literals in C, respectively.

2.2 Bent Representation

We will find it helpful to make the following cosmetic
adjustments to the input to the pmr3sat problem:

• Shrink each clause line by moving its left end and
right end closer together by any small amount;
• Connections from clauses to positive left literals are

redrawn as p lines. Similarly, negative left literals,

positive right literals, and negative right literals are
redrawn with x, q, and y lines, respectively.

We refer to this modified embedding as bent rectilinear
representation since two-thirds of the connecting lines
have a 90o bend. Figure 6 shows the result of adjusting
Figure 5 in this way.

x1 x2 x3 x4 x5 x6

x1 ∨ x4 ∨ x5

x2 ∨ x3 ∨ x4

¬x2 ∨ ¬x3 ∨ ¬x4

¬x1 ∨ ¬x2 ∨ ¬x4 ¬x4 ∨ ¬x5 ∨ ¬x6

Figure 6: A bent embedding of Figure 5.

3 Gadgets and Preliminaries

In this section we introduce some conventions and ter-
minology, and then present gadgets for Sto-Silt.

3.1 Grid Parity

A square in location (x,y) of the grid is even or odd
based on the sum x+ y, where the top-left square is in
location (1, 1). In other words, the grid has an under-
lying even/odd checkerboard pattern.

Each room we create will have size at least two, so
it will contain at least one even and one odd square.
Therefore, we can use the following convention to make
our figures more readable: If a room has required weight
w, then w is written in a square whose parity is the same
as w. In other words, odd requirements are written in
odd locations, and even requirements are written in even
locations. This convention extends back to Figure 1.

3.2 Rooms

In a partially shaded board B a room with a require-
ment w is satisfied if it has a stone of weight w, and
otherwise it is unsatisfied. Furthermore, a room is un-
satisfiable if it is impossible to satisfy the room by shad-
ing in additional squares while respecting the rules.

Rooms with size s and requirement w have type s.w.
Our reductions will be primarily restricted to the fol-
lowing special room types.

• A room of type 2.1 is a binary room. A binary room
can be satisfied in two ways.
• A room of type 3.2 is a trinary room. A trinary

room can be satisfied in two ways.

30

30th Canadian Conference on Computational Geometry, 2018

• A room of type 3.1 is a ternary room. A ternary
room can be satisfied in three ways.
• A room with no requirement is a wild-card room.

These rooms do require at least one shaded square.

In the following subsections we will create gadgets
that propagate decisions made at certain binary rooms
to other binary rooms. When discussing these gadgets
we use the following terminology and conventions.

• An input room is a horizontal binary room with
an ‘on’ square to the right of an ‘off’ square. A
positive or negative input room has its ‘on’ square
in an even or odd position, respectively.
• An output room is a horizontal or vertical binary

room with specified ‘on’ and ‘off’ squares.

Input and output rooms are coloured red and blue, re-
spectively. These rooms are ‘on’ if a stone is in their ‘on’
square, and are ‘off’ if a stone is in their ‘off’ square.

To simplify our figures we assume that empty regions
on a board are wild-card rooms which are not drawn.

3.3 Variable Gadget

A variable gadget is designed to be satisfiable in one of
two ways. Furthermore, this choice must be duplicat-
able so that it can be passed to any number of clause
gadgets. To accomplish these goals we create a cycle of
binary rooms. Our variable gadget of width w consists
of a positive row with w positive input rooms, and be-
low it is a negative row with w negative input rooms,
as shown in Figure 7 (a). The top-left square is always
placed on an even grid location.

1 1 ... 1 1

1 1 ... 1 1

off on off on off on off on

off on off on off on off on

(a) Variable gadget.

1 1 ... 1 1

1 1 ... 1 1

off on off on off on off on

off on off on off on off on

(b) Positive state.

1 1 ... 1 1

1 1 ... 1 1

off on off on off on off on

off on off on off on off on

(c) Negative state.

Figure 7: The variable gadget in (a) can be satisfied in
exactly two ways (b)–(c).

Shading a single square anywhere in the gadget forces
the entire gadget to be satisfied in a particular manner.
The precise behavior and state of the gadget is defined
Remark 2 and illustrated in Figure 7 (b)–(c).

Remark 2 In a solved Sto-Silt board, a variable gadget
must be satisfied in one of two ways:

• Its positive state has positive input rooms ‘on’ and
negative input rooms ‘off’.
• Its negative state has positive input rooms ‘off’ and

negative input rooms ‘on’.

3.4 Wire Gadget

A wire gadget propagates the choice made in one binary
room to another binary room. More specifically, the
wire ensures a relationship between two specific squares
on the board. Remark 3 outlines the main property of
the wire gadget that we will construct.

Remark 3 Binary input and output rooms that are
connected by a wire in a solved Stone-Silt board have
the following properties. If the input room is ‘off’, then
the output room is also ‘off’. If the input room is ‘on’,
then the output room can be ‘on’ or ‘off’.

output room output room

1 ... 1 1 output room 1 1 ... 1

1 on off 1 off off on 1

⠇ on ⠇
1

1 1

⠇
1

2 2

1 input room 1 input room input room 1

off on off on off on

(a) Three types of positive wires.
off on off on off on

1 input room 1 input room input room 1

1

2 2

⠇

1

1 1

⠇ 1 on ⠇
output room off output room

1 1 ... 1 1 output room 1 1 ... 1 1

on off off on

(b) Three types of negative wires.

Figure 8: Wire gadgets connect an input room to an
output room, and are paths of binary rooms and at
most one trinary room. Shading the ‘off’ square of an
input room forces the shading of the ‘off’ square in the
connected output room.

Remark 3 is ‘weak’ since it only guarantees one direc-
tion, but this will be sufficient for our reduction. Now
we define our wires with Figure 8 providing illustrations.

• A positive/negative wire is a path of binary and
trinary rooms starting from the ‘off’ square of a
positive/negative input room and ending at the ‘on’
square of a positive/negative output room.

A wire is straight if it travels vertically from an input
room to a vertical output room. The other wires pro-
ceed vertically from an input room, then make a sin-
gle right-turn or left-turn, and travel horizontally to a
horizontal output room. The straight wires only use bi-
nary rooms, whereas the turning wires leave their out-
put room with a single trinary room and then consist

31

CCCG 2018, Winnipeg, Canada, August 8–10, 2018

of binary rooms. As a result, the straight and turn-
ing wires reach their respective input rooms on opposite
parity squares. All wire types are illustrated in Figure
8 and in each case it is easy to verify Remark 3.

3.5 Clause Gadget

We base our clause gadgets on a ternary clause room
and three binary output rooms. Each clause room is
horizontal with output rooms adjacent to its left and
right squares. In the positive clause gadget another out-
put room is adjacent to the bottom of its middle square,
whereas in the negative clause gadget it is adjacent to
the top of its middle. The behavior of the gadget is
given in Remark 4 and shown in Figures 9 and 10.

1 1 1

on off 1 off off on

on

xi

xj

xk(xi ∨ xj ∨ xk)

(a) Positive clause.

1 1 1

1

(b) Unsatisfiable if all ‘off’.

1 1 1

1

(c) Satisfiable if xj is ‘on’.

1 1 1

1

(d) Satisfiable if xi is ‘on’.

Figure 9: The positive clause gadget is satisfiable if and
only if at least one input room is ‘on’.

1 on

on off off off on

1 1 1

¬xi

¬xj

¬xk(¬xi∨¬xj∨¬xk)

(a) Negative clause.

1

1 1 1

(b) Unsatisfiable if all ‘off’.

1

1 1 1

(c) Satisfiable if xj is ‘on’.

1

1 1 1

(d) Satisfiable if xi is ‘on’.

Figure 10: The negative clause gadget is satisfiable if
and only if at least one input room is ‘on’.

Remark 4 In a solved Sto-Silt board, a clause gadget
is satisfiable if and only if at least one of its adjacent
output rooms is ‘on’.

Note: In Theorem 2’s proof we always satisfy clauses by
shading their middle square if their middle wire is ‘on’.

4 NP-Completeness of Sto-Silt

In this section we reduce pmr3sat to silt. An example
of the reduction based on Figure 6 appears in Figure 11.

1 1 1 1 1 1 1 1 1 1

1 1 1

1 1 1 1

1 1

2 2 2 2

1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1

1 1 1

2 2 2 2 2 2

1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

(a) The board S(φ) where wild-card rooms fill the area.

1 1 1 1 1 1 1 1 1 1

1 1 1

1 1 1 1

* 1 * 1

2 2 2 * * 2

1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1

* 1 * * 1 * 1 *

2 2 2 2 2 2

1 1 1 1 1

* *

1 1 1 1 1 1 1 1 1 1 1 1 1 1

(b) A solution to S(φ) via x4 = x5 = False and x1 = x2 =
x3 = x6 = True. The marked square * can be shaded in the
outer wild-card room without violating (S2). Similarly, *’s
and *’s mark all suitable squares along the straight wires.

Figure 11: The reduction of the pmr3sat instance φ
from Figure 6 to silt(φ).

Suppose φ is an instance of pmr3sat with p positive
clauses and z negative clauses. Our reduction creates a
board B = S(φ) whose rows are organized as follows:
• Row 1 is empty.
• Rows 2, 4, . . . , 2p contain positive clause gadgets.
• Rows 2p+ 3 and 2p+ 4 contain variable gadgets.
• Rows 2p+7, 2p+9, . . . , 2p+2z+5 contain negative

clause gadgets.
• Row 2p+ 2z + 6 is empty.

Now suppose that φ has pi clauses with positive literal
xi, and zi clauses with negative literal ¬xi for all i. The
variable gadgets are sized and positioned as follows:
• Column 1 is empty.
• The variable gadgets are placed side-by-side start-

ing from column 2 with two columns between them.
Each xi gadget is max(pi, ni) input rooms wide.

The width of the variable gadgets allow us to connect
wires to distinct input rooms for each literal. In partic-
ular, the wire connected to the middle literal of a clause
travels straight vertically to the middle of the corre-
sponding clause gadget. Similarly, left and right literals
enter the left and right sides of their clause gadgets.

Theorem 2 silt is NP-complete.

Proof. Let φ be an instance of pmr3sat. Remarks 3
and 4 imply that the variable, wire, and clause gadgets

32

30th Canadian Conference on Computational Geometry, 2018

(a) A 7-by-24 board B is extended to 16-by-24 board B′

with 2-by-24 and 9-by-24 wild-card rooms.

(b) If silt(B) is ‘yes’, then fill the added wild-card rooms to
satisfy (S4), so sand(B′) and stone(B′) are ‘yes’.

Figure 12: Reduction from silt to sand to stone.

of B = S(φ) can be satisfied if and only if φ is satisfi-
able. The remaining detail is to show that the wild-card
rooms of S(φ) can also be satisfied when φ is satisfiable.
Since these rooms have no requirement we can satisfy
them by shading any single square subject to (S2). See
Figure 11 (b) for examples of the arguments below.

By the empty rows and column in B there is a wild-
card room surrounding the gadgets. In this outer room
we shade the rightmost column in row 2p+ 2 or 2p+ 5.

All other wild-card rooms border a straight wire.

• If this wire is on, then without loss of generality
we can assume that its clause gadget is satisfied by
shading its middle cell. Therefore, we can shade a
square next to this clause gadget.
• If this wire is off, then we can shade a square next

to its variable gadget.

Therefore, B is solvable if and only if φ is satisfiable.
Theorem 1 and Remark 1 complete the proof. �

5 NP-Completeness of Sto-Sand

Now we prove that sand is NP-complete by a reduction
from silt. Our strategy is to add rows to a given board
so that the sand drop rule (s4) can be satisfied regardless
of how the other squares are shaded. See Figure 12.

Theorem 3 sand is NP-complete.

Proof. Suppose B is an m-by-n board that is an input
to stone. We create board B′ of size (2m+ 2)-by-n by
adding m+ 2 rows to the bottom of B. The additional
rows are organized into two wild-card rooms as follows:
• A room of size 2-by-n is added below B.
• A room of size (m+ 2)-by-n is then added below.
Suppose that silt(B) is a ‘yes’ instance. We now

show that sand(B′) is ‘yes’. We shade the top m rows
of B′ in any way that proves that silt(B) is ‘yes’. Then
we shade the additional wild-card rooms as follows:
• The 2-by-n room has a single shaded square in its

bottom-right corner.
• The bottom row of the larger room is fully shaded.

If there are s shaded squares in kth column of B,
then m− s+ 1 additional squares are shaded in its
kth column from the bottom up. The only excep-
tion is the rightmost column which has one fewer
square shaded.

This satisfies (S1)-(S3) and (s4), so sand(B′) is ‘yes’.
Suppose that silt(B) is a ‘no’ instance. In this case

there is no way to satisfy rules (S1) – (S3) in the top m
rows of B′, hence, sand(B′) is ‘no’.

Theorem 2 and Remark 1 complete the proof. �

6 NP-Completeness of Sto-Stone

Now we prove that stone is NP-complete. We do this
by analyzing the previous two reductions and showing
that they create boards that can be solved using stones
of width 1. In this context (s4) and (S4) are equivalent.

Theorem 4 stone is NP-complete.

Proof. Let φ be an instance of pmr3sat. Let B =
S(φ) and B′ be created as in Sections 4–5. We claim
that φ is satisfiable if and only if stone(B′) is ‘yes’.

Suppose that φ is satisfiable. By the proof of Theo-
rem 2, silt(B) is solvable using stones of width 1. By
the proof of Theorem 3, this is also true for sand(B′),
except for the bottom stone which is already “bottom
justified”. Therefore, stone(B′) is also ‘yes’.

Conversely, if φ is unsatisfiable, then silt(B) is ‘no’
by Theorem 2, and so stone(B′) is also ‘no’. �

7 Final Remarks

A numberless Sto-Stone puzzle is a Sto-Stone puzzle
with no requirements. In other words, (S3) is ignored.
What is the complexity of numberless Sto-Stone?

Jack Lance Puzzles [7] has several numberless exam-
ples. Numberless versions of other Nikoli puzzles have
also been considered. For example, Shakashaka [5] and
its numberless version [3] are both NP-complete. We
note that numberless Sto-Silt is in P since (S1) and (S2)
are satisfied by an empty board.

We thank the referees, one whom suggested parame-
terized Sto-Stone where the bottom k rows must fill.

33

CCCG 2018, Winnipeg, Canada, August 8–10, 2018

References

[1] Puzzle Communication Nikoli Vol. 156. Sto-stone
number 1, September 2016.

[2] Puzzle Communication Nikoli Vol. 162. Sto-stone
number 4, March 2018.

[3] Aviv Adler, Michael Biro, Erik D. Demaine, Mikhail
Rudoy, and Christiane Schmidt. Computational
complexity of numberless Shakashaka. In CCCG,
2015.

[4] Mark de Berg and Amirali Khosravi. Optimal bi-
nary space partitions in the plane. In My T. Thai
and Sartaj Sahni, editors, Computing and Combi-
natorics, pages 216–225, Berlin, Heidelberg, 2010.
Springer Berlin Heidelberg.

[5] Erik Demaine, Yoshio Okamoto, Ryuhei Uehara,
and Yushi Uno. Computational complexity and
an integer programming model of Shakashaka.
IEICE Transactions on Fundamentals of Elec-
tronics, Communications and Computer Sciences,
E97.A(6):1213–1219, 2014.

[6] Robert A. Hearn and Erik D. Demaine. Games, Puz-
zles, and Computation. A. K. Peters, Ltd., Natick,
MA, USA, 2009.

[7] Jacob Lance. Puzzle 143 – stostone.
https://jacoblance.wordpress.com/2016/

09/19/puzzle-143-stostone/, September 2016.

[8] @nikoli official. https://twitter.com/nikoli_

official/status/973516077970767873, March
2018.

[9] @postpostdoc. https://twitter.com/

postpostdoc/status/973539335839469570,
March 2018.

34

CCCG 2018, Winnipeg, Canada, August 8–10, 2018

A Paper on Pencils: A Pencil and Paper Puzzle
Pencils is NP-Complete

Daniel Packer ∗ Sophia White † Aaron Williams ‡

Abstract

Pencils is a paper-and-pencil puzzle created by
Japanese publisher Nikoli. A puzzle is an m-by-n grid
where some squares hold a number or a pencil tip that
is pointed in one of the cardinal directions. The goal is
to draw ‘pencils’ that partition the squares of the grid.
Each pencil occupies 2k + 1 squares for some k ≥ 1. A
k-pencil has a horizontal or vertical body of length k,
a tip pointing away from one end of the body, and a
lead that is a path of k squares starting from the tip.
In addition, any number inside a body must match the
body’s size. We show that Pencils is NP-complete even
when limited to 1-pencils and 2-pencils.

1 Introduction

This article proves the NP-completeness of a new paper-
and-pencil puzzle by Japanese publisher Nikoli. The
puzzle is Pencils (ペンシルズ) and it was introduced
in Puzzle Communication magazine Volume 158 [2].

In this article we use adjacent and connected to mean
orthogonally adjacent and orthogonally connected.

1.1 Rules of the Puzzle

Pencils is played on a board, which is an m-by-n grid
where each square is initially empty or filled with a
number or pencil tip pointed in a cardinal direction.
A player draws pencils which each occupy 2k + 1 con-
nected squares for some k ≥ 1. A k-pencil consists of
the following parts:

(P1) The body is a horizontal or vertical line of k squares.
(P2) The tip is 1 square after one end of the body, and

it is pointed away from the body.
(P3) The lead is a line through the center of k + 1 con-

nected squares starting from and including the tip.
The goal of Pencils is to draw pencils on the given grid
subject to the following rules [3]:

(P4) The pencils partition the m · n squares of the grid.
(P5) If x is a number on the board, then x must be

drawn inside of the body of some x-pencil.

∗Bard College at Simon’s Rock, Massachusetts,
dpacker14@simons-rock.edu
†Bard College at Simon’s Rock, Massachusetts,

swhite15@simons-rock.edu
‡Bard College at Simon’s Rock, Massachusetts,

awilliams@simons-rock.edu

With regard to (P5), an individual x-pencil may have
a single x, multiple x’s, or no x’s inside of it.

(a) Pencils puzzle. (b) Solution.

Figure 1: A 4-by-4 Pencils puzzle that uses 1-pencils
and 2-pencils.

A simple puzzle and its solution (originally published
in Puzzle Communication Nikoli Volume 162 [4]) is dis-
played in Figure 1, and its solution process is shown in
Figure 2. The Pencils decision problem answers ‘yes’
or ‘no’ depending on whether an input board is valid
and is solvable based on rules (P1)-(P5).

(a) The tip above
the 1-pencil forces
a pencil body.
The tip above
the 2-pencil must
be part of the 2-
pencil due to the
2-pencil position.

(b) Placement of
the 1-pencil and 2-
pencil bodies and
tips are forced.

(c) Leads for the
1-pencil and the
left 2-pencil are
drawn in, leaving
only one solution
for the remaining
leads.

Figure 2: Solving the Pencils puzzle in Figure 1.

Notice that a solution to an m-by-n board must fill
each of the m ·n squares with a finite number of possible
symbols. More specifically, a square is covered by a hor-
izontal or vertical body, a tip that points in one of four
directions, or by a lead that proceeds horizontally, ver-
tically, or turns 90o. Therefore, we can guess a possible
solution in non-deterministic polynomial-time. Rules
(P1)–(P5) can then be checked in polynomial-time.

Remark 1 Pencils is in NP.

35

30th Canadian Conference on Computational Geometry, 2018

1.2 Outline

The central proof of this paper will be done by reduc-
tion from a Boolean satisfiability problem. The spe-
cific source problem is included in Section 3 along with
an outline of the reduction. Section 4 introduces our
gadgets, and then Section 5 proves that Pencils is
NP-complete even when restricted to 1-pencils and 2-
pencils. Section 6 concludes with open problems. We
begin by characterizing the rectangular regions that can
be filled with pencils in Section 2.

A preliminary unpublished version of this article was
announced on twitter by @postpostdoc [5].

2 Empty Rectangles

When solving a pencils puzzle, the solver sometimes
faces empty regions of the board that must be com-
pletely filled with new pencils. Similarly, we will need
to understand how empty space can be filled during our
reduction. In this section we provide a full character-
ization of when rectangular regions can be filled. We
formulate this result in terms of solving empty puzzle
boards, but we will use the result to solve rectangular
“sub-puzzles” inside of larger puzzles.

Define an empty board to be an m-by-n grid where
each square is empty.

Lemma 1 Suppose that B is an empty m-by-n board.
The decision problem Pencils(B) is True if and only
if m · n /∈ {1, 2, 4}.

Proof. We begin by considering the negative cases.
Observe that the smallest individual pencil (i.e. a 1-
pencil) covers 3 squares. Thus, if B has area 1 or 2,
then is too small to be filled with a pencil. Similarly,
rectangles of area 4 can only admit a 1-pencil, which
then leaves one unfillable square.

Now we consider the remaining positive cases. Since
the board B can be rotated 90o without changing the
result of Pencils(B), we can assume without loss of
generality that m ≤ n. If the area of B is 3, then it
must be that m = 1 and n = 3, and in this case it can
be filled with a single 1-pencil. In the remaining cases
the area of B is greater than 4, so we can assume that
n ≥ 3.

Figure 3: A 5-by-4 grid with a line moving back-and-
forth along each row though the centers of the squares
in boustrophedon order.

Our strategy is to draw the pencils one after another
from end-to-lead in a single line. This line will proceed
back-and-forth along each row starting from the top-left
square, as illustrated in Figure 31. More specifically, we
will primarily draw 1-pencils along the line, since they
can turn corners. Since 1-pencils occupy 3 squares, we
now proceed in three cases based on the area modulo 3.

• If the area is 3k, then we draw successive 1-pencils
along the line until they fill the entire rectangle.

• If the area 3k + 2, then recall that our previous
assumption that n ≥ 3. Therefore, we can begin
the line with a 2-pencil. This is because the board
is wide enough to contain its body and tip, and its
lead can bend if n = 3 or n = 4. Then we fill the
remainder of the line with 1-pencils.

• If the area is 3k+ 1, then we consider two cases. If
k = 1, then the area is 3k + 1 = 7, and it must be
that n = 1 and m = 7. In this case the rectangle
can be filled with a single 3-pencil. Otherwise, if
k > 1, then the area is 3k+ 1 ≥ 10. In this case we
can draw two 2-pencils along the line, one starting
at the beginning of the line and one starting at the
end of the line, and then fill in the remainder of the
line with 1-pencils.

�

Now we specialize the previous lemma based on 1-
pencils and 2-pencils.

Corollary 1 If B is an empty m-by-n board, then it
can be filled entirely with 1-pencils and 2-pencils if and
only if m · n /∈ {1, 2, 4, 7}.

Proof. Observe that the proof of Lemma 1 uses only 1-
pencils and 2-pencils, except in the case that m · n = 7.
Furthermore, 1-pencils and 2-pencils occupy 3 and 5
squares respectively, so it is impossible for them to fill
a board of area 7. �

3 Source Problem

Our hardness proof reduces from a satisfiability prob-
lem, and in this section we review relevant terminology
and results. Then we give a high-level outline of our
reduction.

3.1 Rectilinear Planar 1-in-3SAT

A (Boolean) variable can be assigned a truth value of
True or False. If xi is a variable, then its positive
literal is xi, and its negative literal is ¬xi. A (Boolean)
formula is in 3 conjunctive normal form (3CNF) if it is

1This back-and-forth order can be described as boustrophedo-
nic which is Greek for “as the ox plows”.

36

CCCG 2018, Winnipeg, Canada, August 8–10, 2018

written φ = C1 ∧ C2 ∧ . . . ∧ Cm where each clause Ci

has the form (`i,1 ∨ `i,2 ∨ `i,3) and each `i,j is a literal.
A clause is positive if every one of its literals is posi-
tive, and a 3CNF formula is positive if every clause is
positive. The 3CNF formula φ is a yes instance of the
3sat decision problem if its variables can be assigned so
that φ evaluates to true; otherwise φ is a no instance.
In other words, 3sat asks if there is an assignment in
which every clause has at least one literal that evalu-
ates to true. The 1-in-3sat decision problem instead
asks if there is a variable assignment in which exactly
one literal evaluates to true. A formula is planar if the
bipartite incidence graph of variables and clauses is pla-
nar. A formula is rectilinear planar if the graph can be
embedded into a grid in such a way that the vertices
can be represented by horizontal line segments and the
edges can be drawn as vertical lines.

Theorem 2 (Mulzer and Röte [1]) rectilinear
positive planar 1-in-3sat is NP-Complete.

We will drop the positive condition from Theorem 2
and instead use rectilinear planar 1-in-3sat as our
source problem. Since every instance of the former prob-
lem is an instance of the latter problem, we can easily
conclude that the latter is also NP-complete.

3.2 Reduction Outline

Our reduction constructs a planar graph that represents
the 1-in-3 satisfiability (or not) of a logical statement
in 3CNF. The graph connects variables to their literals
in the statement, with not gates appearing along the
connections to negative literals. The reduction will use
“variable assignment” gadgets—one for each variable—
where the player will be able to select whether a variable
has a truth value of True or False. Then, wires will
carry these truth values to the corresponding literals in
each clause. Because a variable can appear more than
once in a statement, we include a gadget to duplicate its
truth value onto two different wires, thereby ensuring
that the choice is consistent in each clause it appears
in. Finally, because the statement is in 3CNF, we will
also create a gadget that represents an arbitrary 1-in-3
clause, with wire inputs. Using these gadgets, we will
reduce the decision problem, Planar 1-in-3 sat to
Pencils, by transforming a particular logical statement
to a pencils board.

4 Gadgets

In this section we present the various gadgets used in
our reduction.

Lemma 3 (Wire) The gadget shown in Figure 4a
transmits a truth value from one part of the puzzle to
another as an edge in planar 1-in-3 sat.

Proof. Suppose that we have the left 2-pencil already
filled in, pointing into the wire (the direction is forced
by the variable assignment gadget, shown later). Then
the adjacent 2-pencil must point in the same direction
as its neighbor, since there is not room for it to point in
the opposite direction. Furthermore, the pencil can nei-
ther overlap with its neighbor nor leave a gap of size 1
between itself and its neighbor (as this would be unfill-
able), so the pencil must have the same position relative
to the predrawn 2 as its neighboring 2-pencil. Thus, a
2-pencil/predrawn 2 positioning assigned at the front of
the wire gets precisely transmitted to all other parts of
the wire. �

Using this lemma, we can establish the formalism that
if a wire has its 2-pencils with the number 2 in the square
adjacent to the tip, then it carries False, and if the 2
is in the other square, then it carries True.

Currently, our wires require that all of our gadgets are
a multiple of five squares apart, since the 2’s are spaced
exactly that far apart in our wire gadget. However, we
can deal with this issue with the “modularity switcher”
gadget in Figure 5a.

Lemma 4 (Modularity Switch) The gadget shown
in Figure 5a preserves the truth value that a surrounding
wire gadget is carrying.

Proof. Suppose that the incoming truth value is True.
Then there will be six unfilled squares between the end
of incoming 2’s lead and the pair of 2’s. Since the 2’s
on the right are only one square apart from each other,
they must both be pointing outward. Thus, the left 2
must have a 2-pencil pointing left, which will occupy
either three or four of the empty middle squares. If the
2-pencil fills four middle squares, then there will only
be two unfilled middle squares, which cannot be filled
by any pencil. Thus, the 2-pencil must fill three middle
squares, which must be filled by a 1-pencil. This then
forces play on the last 2-pencil, as seen in Figure 5b.

If the incoming truth value is false, then there will
seven unfilled squares between the end of the incom-
ing 2’s lead and the pair of 2’s on the right. Again,
the left of the pair of 2-pencils must fill either three or
four squares. This 2-pencil cannot occupy three mid-
dle squares, for it would leave four squares unoccupied,
which cannot be filled. Thus, the 2-pencil must occupy
four middle squares, with the remaining three filled by
a 1-pencil. This forces the subsequent 2-pencil to play
as in Figure 5c. Thus, regardless of the incoming truth
value, the modularity switcher does not alter the truth
value carried by the wire. �

Lemma 5 (Variable Assignment) The gadget pre-
sented in Figure 6a allows the player to assign a value to
a variable that will be transmitted out through the wire
on the right.

37

30th Canadian Conference on Computational Geometry, 2018

(a) The initial wire gadget. (b) The board filled in with True. (c) The board filled in with False.

Figure 4: The initial wire gadget and the manners it can be filled in.

(a) The initial modularity switching
gadget.

(b) The modularity gadget filled in
with value True.

(c) The modularity gadget filled in
with value False.

Figure 5: The initial modularity gadget and the manners it can be filled in.

Proof. The area in which new pencils may be added is
limited to a space of size 9 (there are two possible ways
for this to happen, depending on whether the one pencil
in the lower right has an upward or leftward pointing
lead). Next, the first 2 is located such that its tip must
be leftward pointing. If it pointed to the right, there
would not be room for the two squares that the line
would need to occupy. Thus, the other 2-pencil must
be rightward pointing with its body either filling in the
square between the 2’s or not. Figures 6b and 6c de-
scribe how to fill the 3x3 space for True and False
variable assignments.

Since the player is not able to play the right 2-pencil
another way than the two variable assignments, and the
player is able to assign either truth value, our Lemma
is proven. �

Lemma 6 (Not Gate) Figure 7a presents a not gate
for a leftward facing wire.

Proof. First, consider the scenario where the initial
value of the wire is true. Then, the remaining number
of squares up to the next 2 is 7. The next 2 must have
its pencil pointing to the left, so it will occupy either
three or four of the open spaces. This would leave either
three or four consecutive unoccupied spaces. However,
we cannot fill four unoccupied spaces by Lemma 1, so
we must play the second 2 so that it occupies four of
the internal spaces. This forces the last 2 (which must
be played to the right) to occupy the empty space be-
tween the 2’s, making the transmitted value false. On
the other hand, if the initial value is false, then there
will be eight open squares in the middle. The second 2

can be played so that it occupies three or four spaces.
This corresponds to four or five open middle spaces. Of
the two options, we can only fill five consecutive middle
spaces, so the the second 2 must be played to occupy the
empty space between the 2’s. This forces the final 2 to
be played in the true position. Both of these scenarios
are illustrated in Figures 7b and 7c. �

Lemma 7 (Split Gate) For a given input in the wire
on the left, the gadget in Figure 8a assigns truth values
to two wires on the right and bottom each carrying the
opposite of the given input (to make this a true split
gate, we would add a not gate between the input and the
gadget or add two more not gates to the ends).

Proof. Of the 2-pencils on the right and on the bot-
tom, the inner pencils of each must be pointing inward;
there is not room for them to point outward. If the en-
tering wire is true, then there are 8 remaining spaces
within the center of the gadget. The right and bottom
inner 2’s can occupy either 3 or 4 spaces. If they both
occupy 3 squares, then there will be 2 squares unfilled,
which cannot be filled by the addition of another pencil.
If one occupies 3 squares and the other 4, there will be
one square unfilled, which is not fillable by the addition
of another pencil. If they both occupy 4 squares, then
there are no squares left unfilled, and the gadget is sat-
isfied. This case is forced if the input is true, since there
are no other ways to fill the gadget. In this case, the
output 2’s are both forced to be false, so the input was
flipped and placed into two wires, as in the statement
of the lemma.

If the entering wire is false, then there are 9 remaining

38

CCCG 2018, Winnipeg, Canada, August 8–10, 2018

(a) Unfilled assignment. (b) Filled with True. (c) Filled with False.

Figure 6: The assignment gadget unfilled and filled.

(a) An unfilled not gate. (b) Turning True to False. (c) Turning False to True.

Figure 7: A not gate unfilled and filled with both truth values.

open squares. If either of the inward pointing 2-pencils
occupy 4 squares, then the gadget is unfillable, since
there will be either 1 or 2 unfilled squares. Thus, the
2 inward pointing pencils must occupy 3 of the inner
squares, leaving 3 open squares, which can be filled with
a single 1-pencil. This scenario also forces the output
2’s to both be true as desired. �

Lemma 8 (1-in-3 Gate) The gadget of Figure 9
(which takes in input from three wires) is only fillable if
exactly one of the input wires is true.

Proof. Note that each input wire ends its line at either
{RT, LT, BT} if it is true or {RF, LF, BF} if it is
false. If all the statements are false, then there are four
unoccupied squares, so the gadget is unsolvable if all the
wires are carrying false values. If all the the statements
are true, then there is only one unoccupied square, so
the gadget is unsolvable in this case as well. If two of
the statements are true, then there exactly two unfilled
squares, so the gadget is unsolvable if two statements
are true. If only one statement is true, then there are
three connected unoccupied squares, which can be filled
with a 1-pencil, so the gadget is solvable if and only if
exactly one statement is true. Thus, the gadget serves
the purpose of a 1-in-3 Gate. �

5 NP-Completeness of Pencils

Now we are ready to prove our main result.

Theorem 9 (Pencils is NP-Complete) For a given
board, B, the decision problem Pencils(B) is NP-
Complete. Furthermore, this is true when the puzzle
designer and solver are restricted to using 1-pencils and
2-pencils.

Proof. We use Theorem 2 and reduce rectilinear
planar 1-in-3sat(S) to Pencils(B). Starting with
GS , the graph corresponding to S, we will encode this
graph into a pencils game.

We replace each source variable with the variable as-
signment gadget and add sufficiently many split and not
gates such that each source vector has as many outward
going wires as edges leading to literals in the formula.
We can then create each clause by leading in the cor-
responding literals with wires (with not gates if they
appear with a ¬ modifier in the formula). This is pos-
sible since GS was planar and we can line up the wires
to fit in perfectly by inserting modularity switchers suf-
ficiently many times. Call this pencil board BS .

By the lemmas for each gadget, if rectilinear pla-
nar 1-in-3sat(S) is true, then by matching up our vari-
able assignment to that which solves S, we can solve the
corresponding pencil board, BS . Thus, rectilinear

39

30th Canadian Conference on Computational Geometry, 2018

(a) An unfilled split gate. (b) True input. (c) False input.

Figure 8: A split gate unfilled and filled with both truth values.

Figure 9: An unfilled 1-in-3 Gate. The non-numeral
entries exist to refer to potential pencil endings (and
will not affect the actual puzzle).

planar 1-in-3sat(S) = True implies Pencils(BS) =
True.

If Pencils(BS) = True, then there must be some
assignment of the variable assignment gadgets such
that each 1-in-3 gadget was satisfied. However, be-
cause this board was derived directly from the graph,
it provides a variable assignment for S such that S
is true (under 1-in-3 satisfiability rules). Thus, Pen-
cils(BS) = True true implies rectilinear planar
1-in-3sat(S) = True. So, Pencils is NP-Hard.

Membership in NP was given in Remark 1. Thus,
Pencils is both NP-Hard and in NP, so it is NP-
Complete. �

6 Final Remarks and Open Problems

We proved that a restricted form of the Pencils de-
cision problem is NP-complete in which only 1-pencils
and 2-pencils are used. In this section we provide open

problems in several different directions.

Define PencilsS(B) as the decision problem in which
the puzzle designer and solver are restricted to pen-
cils whose lengths appear in the set S. For example,
we proved the NP-completeness of Pencils{1,2}(B), or
simply Pencils1,2(B). This raises the following open
problems:

• Is Pencils1(B) in P? In other words, is there a
polynomial-time algorithm for solving Pencils when
only 1-pencils are allowed?

• Is Pencils2(B) NP-complete?

• More generally, what is the complexity of
Pencils`(B) for single fixed values of `?

Besides pencil sizes, we could also consider other re-
strictions to the pencil bodies and leads. For example,
we can define a straight-line pencil as one in which the
lead is a straight line. Similarly, we can define a horizon-
tal pencil and a vertical pencil based on the orientation
of the pencil’s body.

• What is the complexity of Pencils when restricted
to straight-line pencils?

• What is the complexity of Pencils when restricted
to horizontal pencils?

Nikoli typically designs individual puzzle instances to
have a unique solution. The associated complexity class
is Another Solution Problem (ASP) in which the input
is a problem and a solution and the goal is to deter-
mine if there is a second solution. This complexity class
was popularized by Ueda and Nagao [6]. We pose the
question: is Pencils ASP-hard?

The authors would like to thank the referees whose
comments led to many improvements throughout the
article.

40

CCCG 2018, Winnipeg, Canada, August 8–10, 2018

References

[1] Wolfgang Mulzer and Günter Rote. Minimum-
weight triangulation is NP-hard. J.
ACM, 55(2):Art. 11, 29, 2008. URL:
https://doi.org/10.1145/1346330.1346336,
doi:10.1145/1346330.1346336.

[2] Nikoli. Pencils number 1. Puzzle Communication
Nikoli Vol. 158, March 2017.

[3] Nikoli. Pencils. https://www.nikoli.co.jp/en/

puzzles/pencils.html, May 2018.

[4] Nikoli. Pencils number 4. Puzzle Communication
Nikoli Vol. 162, March 2018.

[5] @postpostdoc. https://twitter.com/

postpostdoc/status/973539335839469570,
March 2018.

[6] Nobuhisa Ueda and Tadaaki Nagao. Np-
completeness results for nonogram via parsimonious
reductions. Technical report, 1996.

41

CCCG 2018, Winnipeg, Canada, August 8–10, 2018

Switches are PSPACE-Complete

Jonathan Gabor ∗ Aaron Williams †

Abstract

Switches is a grid-based puzzle game invented by
Jonathan Gabor and implemented using MIT’s Scratch
programming language in 2014. The puzzle is based on
the ’switch’ mechanism which allows the player to tog-
gle the presence and absence of barriers by walking over
a switch of the same color. At first glance the mech-
anism seems to be similar to previously studied video
game mechanisms including pressure plates and doors,
but it is in fact quite different. We prove that decid-
ing if a Switches puzzle is solvable is PSPACE-complete
and furthermore, this hardness result is true even when
the puzzle is only r = 3 rows in height. On the other
hand, we provide a polynomial-time algorithm for solv-
ing Switches puzzles with r = 1 row. The computational
complexity of the problem with r = 2 is open.

1 Introduction

Switches is a puzzle game that was invented by
Jonathan Gabor in 2014 while he was a high school
student. The puzzle was implemented using MIT’s vi-
sual programming language called Scratch [8]. This
implementation is available online as Switches v2.1
https://scratch.mit.edu/projects/33587070/. A
new implementation containing playable versions of
every level discussed in this paper is available
as Switches Remastered https://scratch.mit.edu/

projects/203220688/.

The puzzle was designed to be played on an r-by-c
grid, and each object is placed inside of a single cell. The
player’s goal on each level is to move their avatar from
the start location to the goal location called the portal.
The core mechanism involves switches and doors. Each
door is independently on or off and a door is only a
barrier to the player’s movement when it is on. When a
player steps on a switch, then the state of all doors of the
same color are toggled. (The player toggles any switch
they touch, and they must move to another before tog-
gling it again.) There can be multiple switches of the
same color, multiple doors of the same color in either
state, and multiple colors that operate independently.

∗Bard College at Simon’s Rock, Massachusetts,
jgabor16@simons-rock.edu
†Bard College at Simon’s Rock, Massachusetts,

awilliams@simons-rock.edu

A sample level and its solution are given in Figure 1,
along with a legend of graphical symbols.

Figure 1: The player solves the 13-by-5 level by walking
over the red switch, followed by the orange switch, and
then by again walking over the red switch. The images
should be read in column-major order.

At first glance, this mechanism may seem to be quite
similar to previously studied video game mechanisms
such the pressure plate mechanism that was examined
by Viglietta [9]. More specifically, a switch behaves like
an ’on’ pressure plate combined with an ’off’ pressure
plate, so one might try to simulate pressure plates us-
ing switches. However, this is far more difficult than it
sounds, because in all but a few cases, levels of switches
are reversible. In other words, the player can return
to any state they were previously in by performing the
previously made moves in reverse1 order. On the other
hand, this is not true for the pressure plate mechanism.
Similarly, the mechanisms and hardness results obtained
by Aloupis, Demaine, Guo, and Viglietta [1] do not seem
to apply to this puzzle. The authors are unaware of any
previous puzzle that uses the switch mechanism, but it
seems possible that such a puzzle could exist given the
mechanism’s simplicity.

The Switches decision problem takes a Switches level
on an r-by-c grid as input, and the output is ’yes’ or ’no’

1There is some subtlety to reversibility in Switches levels. If
the players avatar is on a blank tile or an open door, then they can
return to any previous state by reversing their previous moves.
Furthermore, if they can reach a blank tile, they can return to
any previous state. However, there are also cases where player
can trap themselves.

42

30th Canadian Conference on Computational Geometry, 2018

depending on whether the level is solvable or not. We
prove that this decision problem is PSPACE-complete
by a reduction from True Quantified Boolean Formula
(TQBF). More remarkably, we are able to show that
the decision problem remains PSPACE-complete when
restricted to levels that have at most r = 3 rows. This
differentiates it from other PSPACE puzzle games such
as Sokoban [2] and Rush Hour [3]. We refer the read-
ers to Hearn and Demaine [6] for further results on the
hardness of puzzles and games.

To complement our hardness results, we also prove
that Switches puzzles with 1 row can be solved in
polynomial-time. The complexity of the decision prob-
lem for Switch levels with 2 rows is presently unknown
and is a compelling open problem.

The paper is structured as follows. In Section 2 we
show how to determine if a level with r = 1 rows is
solvable in polynomial-time. In Section 3 we show that
Switches is NP-hard via a standard 3SAT reduction.
In Section 4 we provide a level construction that forces
the player to iterate through the well-known binary re-
flected Gray code. Section 5 then combines the results
of Section 3 and 4 to obtain our main PSPACE-hardness
result. Section 6 concludes with open problems.

To our knowledge our this article marks the first time
that an original Scratch game has been proven to be
NP-hard or PSPACE-hard. According to Wikipedia
[10],“Scratch has influenced many other programming
environments and is now considered a standard for in-
troductory coding experiences for children.” As a re-
sult, this paper shows that the ’fun’ of computational
complexity is not just for adults.

2 Polynomial-Time Algorithm for 1 Row

In this section we provide a polynomial-time algorithm
for solving Switches levels with r = 1 row. Figure 2
gives examples of solvable and unsolvable levels with
r = 1.

(a) This level is solvable by alternately moving left and right
to flip switch 1, switch 2, left switch 4, right switch 4, switch
3, right switch 4, switch 5, switch 2, switch 4, and then
moving to the portal.

(b) This level is unsolvable because the player can never
reach switch 5 since one of the two 3-doors will always be
closed.

Figure 2: Two similar levels with r = 1.

Throughout this section we can assume the portal
appears on the rightmost square of a level without loss of

generality. To understand this assumption, first notice
that we can assume that the portal appears to the right
of the player’s initial position, since otherwise we can
instead consider the mirror image of the level. Next
notice that any squares to the right of the portal cannot
be accessed by the player.

We start this section by considering clusters of adja-
cent switches, and then by showing how to manipulate
their state. Then we consider levels in which the avatar
starts on the leftmost square. Finally, we consider lev-
els in which the avatar does not start on the leftmost
square.

2.1 Clusters, Configurations, and Traversals

We define a cluster of switches (or simply a cluster) to be
a maximal sequence of adjacent switches. In a level with
1 row, membership in a cluster is reflexive, symmetric,
and transitive, so the switches partition uniquely into
clusters. Figure 3 gives an illustration of clusters.

Figure 3: This level has three clusters.

A left-to-right traversal of a cluster is a sequence of
moves in which the player starts at the square imme-
diately to the left of the cluster, ends at the square
immediately to the right of the cluster, and at no time
moves outside of this region. The traversal ends when
the player moves to the next square to the right. We
similarly define a right-to-left, right-to-right, and left-to
left traversal of a cluster.

When playing a Switches level each color is in one of
two states which we call the color’s current parity (or
parity for short). A cluster containing switches with d
distinct colors has 2d different configurations based on
the current parities of these colors. We now show that
the player can set a cluster to any configuration during
a left-to-right traversal.

Lemma 1 Suppose the player is standing to the left of
a cluster, and the square to the right of the cluster is
either open or has the same color as a switch within the
cluster. Then the player can set the cluster to any con-
figuration during a left-to-right traversal. Furthermore,
the number of steps is linear in terms of the length of
the cluster.

Proof. Suppose that the cluster contains k switches.
For convenience let us number the squares from left-to-
right starting at 0 from the player’s position. In other
words, we are focused on the squares numbered 0, 1, 2,
. . . , k+1 where 0 and k+1 are immediately outside of
the cluster. The pseudocode below uses ’L’ and ’R’ to
denote left and right moves, respectively. The basic idea

43

CCCG 2018, Winnipeg, Canada, August 8–10, 2018

is to set the switches to their desired parity from left-to-
right. More specifically, if we are standing on square s
and the switch on square s-1 has the wrong parity, then
we move L then R to correct it, and continue. There are
special cases to handle at the right side of the cluster,
and we discuss those in more detail below.

R

for s = 1, 2, ..., k-1

R

if the switch on square s has the wrong parity

LR

if the switch on square k has the wrong parity

if square k+1 is a door with switch k’s color

LRRLLRR

else

RLR

else

R

After each iteration of the for loop, the avatar will be
one space farther to the right, and the color of switch
to the players left will be in the correct parity. After
completing the for loop, the players avatar will be on
the rightmost switch. If this switch is in the correct
parity, the player can simply exit the cluster by moving
to the right. If it is in the incorrect parity the player will
usually be able to fix this by moving right, and then left.
Then the player can exit the cluster. Doing this will not
affect the parity of any other color because the tile to
the right of the player cannot be a switch. However, it
is possible that there is a door of the last switchs color
directly to the players right. In this case, the player can
move left and then right twice (the first time the player
moves right, they open the door). However, now the
switch on square k−2 will be in the wrong parity. This
can be fixed by moving left twice and then right twice.
This will change the parity of switch k − 2, but leave
the parity of switch k − 1 constant. �

If the player must end on the same side of the cluster
they started on, they can simply move all the way to
the left of the cluster, then follow the above algorithm
ignoring the leftmost switch. Then, if this switch is in
the wrong parity, the player can move all the way to the
left, and all the way to the right to fix it.

Lemma 1 also applies to right-to-left and right-to-
right traversals, respectively, so long as the player starts
on the square to the cluster’s immediate right.

2.2 Left-to-Right Levels

Now we focus on r = 1 levels in which the player starts
on the leftmost square. We refer to these levels as left-
to-right levels; when solving these levels we can prove
that the player never needs to backtrack to a previously
traversed cluster.

For each door, let s(d) be the location of the rightmost
switch of its color to its left.

Lemma 2 A left-to-right level is solvable if and only
if the following conditions both hold: If two doors have
the same s(d), then they have the same parity; If s(d)
is undefined for a door, then that door is initially open.

Proof. We begin by proving the forward direction.
Consider the first point. Obviously, when changing the
parity of a door d, the player must either be to the left
of location s(d) or to the right of that door. To proceed
to the right, they must make that door open. Therefore,
to proceed to the right of two doors with the same s(d),
they must make both of them open when at position
s(d). This is only possible if they have the same parity.

Now consider the second point. If s(d) is undefined,
then there is no switch to the left of that door. Then if
it is initially closed, the player cannot change its parity,
until they go to the right of it, but they cant go to the
right of it until they change its parity.

Now consider the reverse direction. We claim that
any level satisfying the two points above can be solved
using the following linear time algorithm.

Let a clusters ideal configuration be the configuration
such that for each switch in it, if that switch is at lo-
cation s(d) for some door d, the switch is in the parity
such that door d is open.

Moving from left to right, we adjust each cluster to its
ideal configuration. The only way this algorithm could
fail is if the player encounters a closed door which pre-
vents them from traveling farther the right. However,
such a door must have a defined s(d). Then it must
have been made open. Therefore, encountering a closed
door is impossible. �

The algorithms in Lemma 1 runs in linear time in
terms of the length of the cluster. Because each cluster
is only adjusted once, and the total length of all the clus-
ters is capped by the length of the level, this algorithm
runs in linear time.

Theorem 3 Any solvable level with r = 1 row can be
solved in polynomial time.

Proof. Let L0 be the location of the portal. Let Ln+1

be the leftmost location the player must reach before
reaching location Ln if n is even, and the rightmost
such location if n is odd (usually this location will be
a switch of the color of a closed door blocking location
Ln).

The player can travel from Ln+1 to Ln in a linear
amount of time by Lemma 2.

We will now demonstrate that Ln+2 is always in be-
tween Ln+1 and Ln (inclusively). Without loss of gener-
ality assume that n is even. Because Ln+2 is the right-
most location the player must reach before Ln+1, it is to

44

30th Canadian Conference on Computational Geometry, 2018

the right of Ln+1 (inclusively). Since Ln is the rightmost
location the player must reach before reaching location
Ln−1, and the player must visit Ln+2 before visiting
Ln, Ln+2 must to the left of Ln (if it was to the right,
then it would be the rightmost location before visiting
Ln−1).

It follows that if Ln = Ln+1, for all m > n, Lm =
Ln. Then there is some k which is the lowest value
such that Lk = Lk+1. Then, all La with a < k must
be distinct. Because there are only a linear number of
locations in the level, and moving between each requires
a linear amount of time, the level can be solved in O(n2)
time. �

3 NP-Hardness

In this section we prove that the Switches problem is
NP-hard by a reduction from 3SAT.

Suppose that we are given an instance of 3SAT φ with
clauses c1, c2, . . . , cm and variables x1, x2, x3, . . . , xn.
We construct a Switches level S(φ) that has 3 rows and
n + 2m + 4 columns. The level S(φ) uses n colors in
total and there is a single switch of color i. The num-
ber of initially open or closed doors of color i is given
by the number of positive or negative xi literals in φ,
respectively.

The level is organized as follows. The Avatar starts
on the left side of the level and to their right is a variable
corridor of height 1 and width n+1. The variable cor-
ridor contains a variable cluster which is a cluster con-
taining one switch of each color . This corridor leads
into a room of height 3 and width 2m+1 called the
clause room. Every second column in the clause room
is blank, and between these blank columns are columns
associated with each of the clauses. Each clause column
consists of three doors in a vertical line. The colors
of the doors are given by the variable of the literal in
the associated clause, and these doors are initially open
or closed based on whether the said literals are true or
false. The portal is located to the right of the clause
room. Figure 4 illustrates this construction.

Figure 4: S(φ) for φ = (x3 ∨ ¬x4 ∨ x5) ∧

Theorem 4 Switches is NP-hard.

Proof. Given an instance of 3SAT φ we construct the
level S(φ) as described. Suppose that φ is satisfiable
by an assignment A which sets variable xi to ai for all
1 ≤ i ≤ n. By the results of Section 2 the Avatar can

perform a left-to-right traversal of the variable cluster
with the following property: The switch of color i is
switched an even number of times if ai = True and
and odd number of times if ai = False. Now consider
a given clause ci = (`u`v`w) where `u, `v, and `w are
either positive or negative literals of variables xu, xv,
xw, respectively. Observe that the ith clause column is
traversable if and only at least one of its three doors are
open. Also recall that the doors associated with positive
literals start open, and doors associated with negative
literals start closed within S(φ). Since clause ci is sat-
isfied the assignment A, it must be that the Avatar’s
left-to-right traversal of the variable cluster results in
the ith clause column being traversable. Therefore, the
Avatar can traverse the entire clause room and reach
the portal. Therefore, if φ is satisfiable, then S(φ) is
solvable.

Suppose that S(φ) is solvable and consider a partic-
ular solution. When the Avatar reaches the portal let
pi ∈ {0, 1} denote the parity of the number of times
that switch i was switched during this solution. That is,
pi = 0 if switch i was switched an even number of times
during the solution, and pi = 1 if switch i was switched
an odd number of times during the solution. We con-
struct an assignment A for φ as follows: xi = True if
pi = 0, and xi = False if pi = 1. Due to the struc-
ture of the S(φ) level, when the Avatar reaches the por-
tal, it must be that each one of the clause columns is
traversable. Therefore, in each clause in φ there must
be at least one literal that evaluates to true with respect
to assignment A. Therefore, φ is solvable.

The reduction is completed by noting that the size of
S(φ) is polynomially bounded by the size of φ. �

4 Exponentially Long Levels

In this section we construct Switches levels that require
an exponential number of moves to solve. More specif-
ically, the levels contain n distinct colors, and the level
forces the player to iterate over all 2n different states or
parities for these colors.

The binary reflected Gray code was previously used in
a similar manner in a paper by Greenblatt, Kopinsky,
North, Tyrrell, and Williams [5] for the puzzle game
MazezaM. The presentation here closely resembles a
similar section in that paper.

4.1 Binary Reflected Gray Code

Let B(n) be the set of n-bit binary strings. The weight
of b1b2 · · · bn ∈ B(n) is its bitwise sum

∑n
i=1 bi. We use

exponents to denote bitwise concatenation. For exam-
ple, 14 = 1111 is the only string of weight four in B(4).

The binary reflected Gray code (BRGC) is an ordering
of B(n) attributed to Gray [4]. In the order each pair
of consecutive strings have Hamming distance one (i.e.

45

CCCG 2018, Winnipeg, Canada, August 8–10, 2018

they differ in exactly one bit). The order starts with 0n

and ends with 0n−11. The BRGC for n = 4 is below
with overlines showing the bit that changes to create
the next string:

0000, 1000, 1100, 0100, 0110, 1110, 1010, 0010,

0011, 1011, 1111, 0111, 0101, 1101, 1001, 0001.

Now we explain how to create each successive string
in the BRGC starting from the initial string 0n.

Definition 1 Each b1b2 · · · bn ∈ B(n) has up to two ac-
tive bits: (a) its leftmost bit b1, and (b) its bit immedi-
ately to the right of its leftmost 1.

For example, the leftmost 1 in b1b2b3b4b5b6 = 000111
is b4 = 1; therefore, its active bits are b1 and b5. Every
binary string has two active bits except 0n and 0n−11.

The following theorem is well-known (see Knuth [7]).

Theorem 5 If b1b2 · · · bn has even weight, then com-
plementing active bit (a) gives the next string in the
BRGC. Otherwise, if b1b2 · · · bn has odd weight, then
complementing active bit (b) gives the next string.

On the other hand, complementing the ‘other’ active
bit of b1b2 · · · bn gives the previous string in the BRGC.

For example, 000111 has odd weight, so 000101 is the
next string in the BRGC and 100111 is the previous.

4.2 Gray Code Level

Now we construct a level Gray(n) based on the BRGC
for n-bit binary strings. The construction is illustrated
in Figure 5. Remarkably, Gray(n) has only r = 3 rows
c = 2n+ 1 in general.

Figure 5: The level Gray(8) in state b1b2 · · · b8 =
00000000 (top) and b1b2 · · · b8 = 00000100 (bottom).
In the latter case observe that only those columns with
switches 1 and 7 at the top are accessible as per Theo-
rem 5.

The level a corridor along the bottom row, and then
n+1 columns protruding upwards from the bottom row.
The tops of these columns include switches for colors

1, 2, . . . , n and the portal, respectively. The switch for
color 1 is not protected, and the column with switch i
at the top is protected by a door of color i − 1 which
is initially on. Furthermore, the corridor below the col-
umn with switch i at the top is protected by a door of
color i− 2 which is initially off.

We associated a binary string b1b2 · · · bn with the state
of Gray(n)’s switches that is initially 00 · · · 0. Due to
the structure of the level and Theorem 5 we have the
following theorem.

Theorem 6 To complete Gray(n) the player must it-
erate over all 2n states of Gray(n) according to the bi-
nary reflected Gray code.

5 PSPACE Hardness

In this section we prove that Switches is PSPACE-hard.
We do this by combining the results of Sections 3 and
4 to create a level Q(φ) that models a True Quanti-
fied Boolean Formula (TQBF) φ. More specifically, we
model the unquantified Boolean 3SAT formula within
φ as in Section 3, and then we force the player to it-
erate overall all possible 2u states of the u universally
quantified variables according Section 4.

When creating the level we utilize the fact that the
leftmost bit is changed every second time in the binary
reflected Gray code. We leverage this fact by horizon-
tally separating the leftmost bit and the remaining bits
in the level, and placing the 3SAT construction between
them. In other words, we force the player to traverse the
3SAT formula (from left-to-right or right-to-left) every
time they wish to change one of the quantified variable
bits. Thus, the player must ensure that the 3SAT for-
mula is satisfied before they can make progress in the
higher-level problem that is iterating through the binary
reflected Gray code.

A sample construction involving n = 8 variables is
shown in Figure 6. Due to width restrictions we illus-
trate the sample level with 9 rows; the taller rows can
easily be turned (at the expense of making the level
much wider) to create a level with 3 rows.

Theorem 7 The Switches decision problem is
PSPACE-hard even when restricted to levels with
r = 3 rows.

Finally, we prove membership in PSPACE below.

Lemma 8 The Switches decision problem is in
PSPACE.

Proof. Consider an r-by-c level with d distinct colors of
switches. There are at most 2d ·rc possible states for this
level, where 2d counts the number of different states for
the colors, and rc is an upper bound on the number of

46

30th Canadian Conference on Computational Geometry, 2018

Figure 6: Level P (φ) which models the TQBF formula φ
with quantified variables ∃x1∀x2∃x3∀x4∃x5∀x6∃x7∀x8.
The bottom of the level contains clause gadgets includ-
ing the rightmost clause x7 ∨ x4 ∨ x6.

locations for the player’s avatar. Therefore, we can rep-
resent an individual state of the level with d · log2(rc)
bits. Similarly, d · log2(rc) bits bits are sufficient for
counting from 0 to 2d · rc − 1. Therefore, we can now
establish membership in NPSPACE by nondeterministi-
cally moving the avatar in one of the four cardinal direc-
tions, and it keeping a counter for the number of times
we have done this. If the avatar reaches the portal, then
we stop the algorithm and answer yes. Otherwise, once
the counter exceeds the number of possible states then
we terminate the algorithm and answer no. If there is
a solution to the level, then there will be at least one
path through the computation that answers yes. Since
we used only d · log2(rc) bits of storage, this establishes
membership in NPSPACE, and by Savitch’s theorem,
PSPACE. �

Corollary 1 The Switches decision problem is
PSPACE-Complete.

6 Final Remarks

In this paper we investigated the computational com-
plexity of the Switches puzzle game. There are a num-
ber of interesting open problems:

• What is the computational complexity of solving
Switches levels with r = 2 rows?

• Our PSPACE-hardness reduction uses an arbitrar-
ily large number of colors. What is the computa-
tional complexity if the number of colors is a con-
stant?

• Our PSPACE-hardness reduction uses an arbitrar-
ily large number of doors per color. What is the
computational complexity if each doors color can
be used only a constant number of times?

• Our PSPACE-hardness reduction uses up to two
switches per color. What is the computational com-
plexity if no two switches have the same color?

• Are there any other geometric puzzle games created
on Scratch that are NP-hard or PSPACE-hard?

Regarding the 2-row case, there are several reasons
to think that it should be solvable in polynomial time.
First, when there are two rows, if the player’s avatar
is in the same column as a square, then the player can
immediately reach that square. This means that the
player cannot ”pass by” an object while being unable to
interact with it, something essential to constructing ex-
ponential orderings. Second, with only two rows, there
is no obvious way to implement clause gadgets. Third,
if there are no switches between 2 points in a level, de-
termining whether there exists a set of parities to travel
between those points can be done in polynomial time,
since it can be reduced to a 2-sat problem.

We also mention that the original Switches imple-
mentation has an additional dual switch mechanism in
which two switches are toggled simultaneously. We did
not require its use to establish PSPACE-hardness, and
its inclusion does not change the problem’s inclusion in
PSPACE.

References

[1] G. Aloupis, Erik D. Demaine, A. Guo, and G. Vigli-
etta. Classic Nintendo games are (computationally)
hard. Theoretical Computer Science, 586:135–160,
2015.

[2] J. Culbertson. Sokoban is PSPACE-complete. In
Fun With Algorithms (FUN 1998), Lecture Notes
in Computer Science, pages 65–76. Carleton Scien-
tific, 1998.

[3] G. W. Flake and E. B. Baum. Rush hour is
PSPACE-complete, or “why you should generously
tip parking lot attendants”. Theor. Comput. Sci.,
270:895–911, 2002.

[4] F. Gray. Pulse code communication. U.S. Patent
2,632,058, 1947.

[5] A. Greenblatt, J. Kopinsky, B. North, M. Tyrrell,
and A. Williams. MazezaM levels with exponen-
tially long solutions. In 20th Japan Conference
on Discrete and Computational Geometry, Graphs,
and Games (JCDCGGG 2017), page 2 pages, 2017.

[6] Robert A. Hearn and Erik D. Demaine. Games,
Puzzles, and Computation. A. K. Peters, Ltd., Nat-
ick, MA, USA, 2009.

[7] D. E. Knuth. The Art of Computer Programming,
volume 4: Generating All Tuples and Permuta-
tions. Addison-Wesley, 2005.

[8] Scratch. About scratch, 2018. URL: https://

scratch.mit.edu/about.

47

CCCG 2018, Winnipeg, Canada, August 8–10, 2018

[9] G. Viglietta. Gaming is a hard job, but some-
one has to do it! Theory of Computing Systems,
54(4):595–621, 2014.

[10] Wikipedia. Scratch (programming language),
2018. URL: https://en.wikipedia.org/wiki/

Scratch_(programming_language).

48

CCCG 2018, Winnipeg, Canada, August 8–10, 2018

Packing Plane Spanning Trees into a Point Set

Ahmad Biniaz∗ Alfredo Garćıa†

Abstract

Let P be a set of n points in the plane in general posi-
tion. We show that at least bn/3c plane spanning trees
can be packed into the complete geometric graph on
P . This improves the previous best known lower bound
Ω (
√
n). Towards our proof of this lower bound we show

that the center of a set of points, in the d-dimensional
space in general position, is of dimension either 0 or d.

1 Introduction

In the two-dimensional space, a geometric graph G is a
graph whose vertices are points in the plane and whose
edges are straight-line segments connecting the points.
A subgraph S of G is plane if no pair of its edges cross
each other. Two subgraphs S1 and S2 of G are edge-
disjoint if they do not share any edge.

Let P be a set of n points in the plane. The com-
plete geometric graph K(P) is the geometric graph
with vertex set P that has a straight-line edge be-
tween every pair of points in P . We say that a se-
quence S1, S2, S3, . . . of subgraphs of K(P) is packed
into K(P), if the subgraphs in this sequence are pair-
wise edge-disjoint. In a packing problem, we ask for the
largest number of subgraphs of a given type that can be
packed into K(P). Among all subgraphs, plane span-
ning trees, plane Hamiltonian paths, and plane perfect
matchings are of interest. Since K(P) has n(n− 1)/2
edges, at most bn/2c spanning trees, at most bn/2c
Hamiltonian paths, and at most n−1 perfect matchings
can be packed into it.

A long-standing open question is to determine
whether or not it is possible to pack bn/2c plane span-
ning trees into K(P). If P is in convex position, the
answer in the affirmative follows from the result of Bern-
hart and Kanien [3], and a characterization of such plane
spanning trees is given by Bose et al. [5]. In CCCG
2014, Aichholzer et al. [1] showed that if P is in general
position (no three points on a line), then Ω(

√
n) plane

spanning trees can be packed into K(P); this bound
is obtained by a clever combination of crossing family
(a set of pairwise crossing edges) [2] and double-stars

∗University of Waterloo, Canada. Supported by NSERC Post-
doctoral Fellowship. ahmad.biniaz@gmail.com
†Universidad de Zaragoza, Spain. Partially supported by

H2020-MSCA-RISE project 734922 - CONNECT and MINECO
project MTM2015-63791-R. olaverri@unizar.es

(trees with only two interior nodes) [5]. Schnider [12]
showed that it is not always possible to pack bn/2c plane
spanning double stars into K(P), and gave a neces-
sary and sufficient condition for the existence of such a
packing. As for packing other spanning structures into
K(P), Aichholzer et al. [1] and Biniaz et al. [4] showed
a packing of 2 plane Hamiltonian cycles and a packing
of dlog2 ne − 2 plane perfect matchings, respectively.

The problem of packing spanning trees into (ab-
stract) graphs is studied by Nash-Williams [11] and
Tutte [13] who independently obtained necessary and
sufficient conditions to pack k spanning trees into a
graph. Kundu [10] showed that at least d(k − 1)/2e
spanning trees can be packed into any k-edge-connected
graph.

In this paper we show how to pack bn/3c plane span-
ning trees into K(P) when P is in general position. This
improves the previous Ω(

√
n) lower bound.

2 Packing Plane Spanning Trees

In this section we show how to pack bn/3c plane span-
ning tree into K(P), where P is a set of n > 3 points
in the plane in general position (no three points on a
line). If n ∈ {3, 4, 5} then one can easily find a plane
spanning tree on P . Thus, we may assume that n > 6.

The center of P is a subset C of the plane such that
any closed halfplane intersecting C contains at least
dn/3e points of P . A centerpoint of P is a member
of C, which does not necessarily belong to P . Thus,
any halfplane that contains a centerpoint, has at least
dn/3e points of P . It is well known that every point
set in the plane has a centerpoint; see e.g. [7, Chapter
4]. We use the following corollary and lemma in our
proof of the bn/3c lower bound; the corollary follows
from Theorem 4 that we will prove later in Section 3.

Corollary 1 Let P be a set of n > 6 points in the plane
in general position, and let C be the center of P . Then,
C is either 2-dimensional or 0-dimensional. If C is 0-
dimensional, then it consists of one point that belongs
to P , moreover n is of the form 3k+ 1 for some integer
k > 2.

Lemma 1 Let P be a set of n points in the plane in
general position, and let c be a centerpoint of P . Then,
for every point p ∈ P , each of the two closed halfplanes,
that are determined by the line through c and p, contains
at least dn/3e+ 1 points of P .

49

30th Canadian Conference on Computational Geometry, 2018

H

c

p

Figure 1: Illustration of the proof of Lemma 1.

Proof. For the sake of contradiction assume that a
closed halfplane H, that is determined by the line
through c and p, contains less than dn/3e + 1 points
of P . By symmetry assume that H is to the left side
of this line oriented from c to p as depicted in Figure 1.
Since c is a centerpoint and H contains c, the definition
of centerpoint implies that H contains exactly dn/3e
points of P (including p and any other point of P that
may lie on the boundary of H). By slightly rotating
H counterclockwise around c, while keeping c on the
boundary of H, we obtain a new closed halfplane that
contains c but misses p. This new halfplane contains
less than dn/3e points of P ; this contradicts c being a
centerpoint of P . �

Now we proceed with our proof of the lower bound.
We distinguish between two cases depending on whether
the center C of P is 2-dimensional or 0-dimensional.
First suppose that C is 2-dimensional. Then, C con-
tains a centerpoint, say c, that does not belong to P .
Let p1, . . . , pn be a counter-clockwise radial ordering of
points in P around c. For two points p and q in the
plane, we denote by −→pq, the ray emanating from p that
passes through q.

Since every integer n > 3 has one of the forms 3k,
3k + 1, and 3k + 2, for some k > 1, we will consider
three cases. In each case, we show how to construct
k plane spanning directed graphs G1, . . . , Gk that are
edge-disjoint. Then, for every i ∈ {1, . . . , k}, we obtain
a plane spanning tree Ti from Gi. First assume that
n = 3k. To build Gi, connect pi by outgoing edges
to pi+1, pi+2, . . . , pi+k, then connect pi+k by outgoing
edges to pi+k+1, pi+k+2, . . . , pi+2k, and then connect
pi+2k by outgoing edges to pi+2k+1, pi+2k+2, . . . , pi+3k,
where all the indices are modulo n, and thus pi+3k = pi.
The graph Gi, that is obtained this way, has one cycle
(pi, pi+k, pi+2k, pi); see Figure 2. By Lemma 1, every
closed halfplane, that is determined by the line through
c and a point of P , contains at least k + 1 points of P .
Thus, all points pi, pi+1, . . . , pi+k lie in the closed half-
plane to the left of the line through c and pi that is ori-
ented from c to pi. Similarly, the points pi+k, . . . , pi+2k

lie in the closed halfplane to the left of the oriented
line from c to pi+k, and the points pi+2k, . . . , pi+3k lie
in the closed halfplane to the left of the oriented line

from c to pi+2k. Thus, all the k edges outgoing from pi
are in the convex wedge bounded by the rays −→cpi and−−−→cpi+k, all the edges outgoing from pi+k are in the con-
vex wedge bounded by−−−→cpi+k and−−−→ci+2k, and all the edges
from pi+2k are in the convex wedge bounded by −−−−→cpi+2k

and −−−→ci+3k. Therefore, the spanning directed graph Gi

is plane. As depicted in Figure 2, by removing the
edge (pi+2k, pi) from Gi we obtain a plane spanning (di-
rected) tree Ti. This is the end of our construction of k
plane spanning trees.

p1

p1+k

p1+2k

c

p2

p3

p1

p2+k
p2+2k

c

p2

p3

p1+k

p1+2k

Figure 2: The plane spanning trees T1 (the top) and
T2 (the bottom) are obtained by removing the edges
(p1+2k, p1) and (p2+2k, p2) fromG1 andG2, respectively.

To verify that the k spanning trees obtained above are
edge-disjoint, we show that two trees Ti and Tj , with
i 6= j, do not share any edge. Notice that the tail of
every edge in Ti belongs to the set I = {pi, pi+k, pi+2k},
and the tail of every edge in Tj belongs to the set J =
{pj , pj+k, pj+2k}, and I ∩ J = ∅. For contrary, suppose
that some edge (pr, ps) belongs to both Ti and Tj , and
without loss of generality assume that in Ti this edge is
oriented from pr to ps while in Tj it is oriented from ps
to pr. Then pr ∈ I and ps ∈ J . Since (pr, ps) ∈ Ti and
the largest index of the head of every outgoing edge from
pr is r+ k, we have that s 6 (r+ k) mod n. Similarly,
since (ps, pr) ∈ Tj and the largest index of the head
of every outgoing edge from ps is s + k, we have that
r 6 (s + k) mod n. However, these two inequalities
cannot hold together; this contradicts our assumption

50

CCCG 2018, Winnipeg, Canada, August 8–10, 2018

C C C

Figure 3: The dimension of a point set in the plane, that is not in general position, can be any number in {0, 1, 2}.

that (pr, ps) belongs to both trees. Thus, our claim,
that T1, . . . , Tk are edge-disjoint, follows. This finishes
our proof for the case where n = 3k.

If n = 3k+1, then by Lemma 1, every closed halfplane
that is determined by the line through c and a point of
P contains at least k + 2 points of P . In this case,
we construct Gi by connecting pi to its following k + 1
points, i.e., pi+1, . . . , pi+k+1, and then connecting each
of pi+k+1 and pi+2k+1 to their following k points. If
n = 3k+ 2, then we construct Gi by connecting each of
pi and pi+k+1 to their following k + 1 points, and then
connecting pi+2k+2 to its following k points. This is the
end of our proof for the case where C is 2-dimensional.

Now we consider the case where C is 0-dimensional.
By Corollary 1, C consists of one point that belongs to
P , and moreover n = 3k + 1 for some k > 2. Let p ∈ P
be the only point of C, and let p1, . . . , pn−1 be a counter-
clockwise radial ordering of points in P \ {p} around p.
As in our first case (where C was 2-dimensional, c was
not in P , and n was of the form 3k) we construct k edge-
disjoint plane spanning trees T1, . . . , Tk on P \{p} where
p playing the role of c. Then, for every i ∈ {1, . . . , k}, by
connecting p to pi, we obtain a plane spanning tree for
P . These plane spanning trees are edge-disjoint. This
is the end of our proof. In this section we have proved
the following theorem.

Theorem 2 Every complete geometric graph, on a set
of n points in the plane in general position, contains at
least bn/3c edge-disjoint plane spanning trees.

3 The Dimension of the Center of a Point Set

The center of a set P of n > d + 1 points in Rd is a
subset C of Rd such that any closed halfspace intersect-
ing C contains at least α = dn/(d+ 1)e points of P .
Based on this definition, one can characterize C as the
intersection of all closed halfspaces such that their com-
plementary open halfspaces contain less than α points of
P . More precisely (see [7, Chapter 4]) C is the intersec-
tion of a finite set of closed halfspaces H1, H2, . . . ,Hm

such that for each Hi

1. the boundary of Hi contains at least d affinely in-
dependent points of P , and

2. the complementary open halfspace Hi contains at

most α− 1 points of P , and the closure of Hi con-
tains at least α points of P .

Being the intersection of closed halfspaces, C is a con-
vex polyhedron. A centerpoint of P is a member of C,
which does not necessarily belong to P . It follows, from
the definition of the center, that any halfspace contain-
ing a centerpoint has at least α points of P . It is well
known that every point set in the plane has a center-
point [7, Chapter 4]. In dimensions 2 and 3, a center-
point can be computed in O(n) time [9] and in O(n2)
expected time [6], respectively.

A set of points in Rd, with d > 2, is said to be in
general position if no k+2 of them lie in a k-dimensional
flat for every k ∈ {1, . . . , d − 1}.1 Alternatively, for a
set of points in Rd to be in general position, it suffices
that no d + 1 of them lie on the same hyperplane. In
this section we prove that if a point set P in Rd is in
general position, then the center of P is of dimension
either 0 or d. Our proof of this claim uses the following
result of Grünbaum.

Theorem 3 (Grünbaum, 1962 [8]) Let F be a finite
family of convex polyhedra in Rd, let I be their inter-
section, and let s be an integer in {1, . . . , d}. If every
intersection of s members of F is of dimension d, but I
is (d − s)-dimensional, then there exist s + 1 members
of F such that their intersection is (d− s)-dimensional.

Before proceeding to our proof, we note that if P is
not in general position, then the dimension of C can be
any number in {0, 1, . . . , d}; see e.g. Figure 3 for the
case where d = 2.

Observation 1 For every k ∈ {1, . . . , d+1} the dimen-
sion of the intersection of every k closed halfspaces in
Rd is in the range [d− k + 1, d].

Theorem 4 Let P be a set of n > d + 1 points in
Rd, and let C be the center of P . Then, C is either
d-dimensional, or contained in a (d − s)-dimensional
polyhedron that has at least n− (s+ 1)(α− 1) points of
P for some s ∈ {1, . . . , d} and α = dn/(d+ 1)e. In the
latter case if P is in general position and n > d + 3,
then C consists of one point that belongs to P , and n is
of the form k(d+ 1) + 1 for some integer k > 2.

1A flat is a subset of d-dimensional space that is congruent to
a Euclidean space of lower dimension. The flats in 2-dimensional
space are points and lines, which have dimensions 0 and 1.

51

30th Canadian Conference on Computational Geometry, 2018

Proof. The center C is a convex polyhedron that is
the intersection of a finite family H of closed halfspaces
such that each of their complementary open halfspaces
contains at most α−1 points of P [7, Chapter 4]. Since
C is a convex polyhedron in Rd, its dimension is in the
range [0, d]. For the rest of the proof we consider the
following two cases.

(a) The intersection of every d+ 1 members of H is of
dimension d.

(b) The intersection of some d+ 1 members of H is of
dimension less than d.

First assume that we are in case (a). We prove that
C is d-dimensional. Our proof follows from Theorem 3
and a contrary argument. Assume that C is not d-
dimensional. Then, C is (d − s)-dimensional for some
s ∈ {1, . . . , d}. Since the intersection of every s mem-
bers of H is d-dimensional, by Theorem 3 there ex-
ist s + 1 members of H whose intersection is (d − s)-
dimensional. This contradicts the assumption of case
(a) that the intersection of every d + 1 members of H
is d-dimensional. Therefore, C is d-dimensional in this
case.

Now assume that we are in case (b). Let s be the
largest integer in {1, . . . , d} such that every intersection
of s members of H is d-dimensional; notice that such
an integer exists because every single halfspace in H is
d-dimensional. Our choice of s implies the existence of a
subfamilyH′ of s+1 members ofH whose intersection is
d′-dimensional for some d′ < d. Let s′ be an integer such
that d′ = d − s′. By Observation 1, we have that d′ >
d−s, and equivalently d−s′ > d−s; this implies s′ 6 s.
To this end we have a family H′ with s+ 1 members for
which every intersection of s′ members is d-dimensional
(because s′ 6 s and H′ ⊆ H), but the intersection of
all members of H′ is (d − s′)-dimensional. Applying
Theorem 3 on H′ implies the existence of s′+1 members
of H′ whose intersection is (d− s′)-dimensional. If s′ <
s, then this implies the existence of s′ + 1 6 s members
of H′ ⊆ H, whose intersection is of dimension d − s′ <
d. This contradicts the fact that the intersection of
every s members of H is d-dimensional. Thus, s′ = s,
and consequently, d′ = d − s′ = d − s. Therefore C is
contained in a (d−s)-dimensional polyhedron I which is
the intersection of the s+ 1 closed halfspaces of H′. Let
H1, . . . ,Hs+1 be the complementary open halfspaces of
members ofH′, and recall that each Hi contains at most
α−1 points of P . Let I be the complement of I. Then,

n = |I ∪ I| = |I ∪H1 ∪ · · · ∪Hs+1|
6 |I|+ |H1|+ · · ·+ |Hs+1| 6 |I|+ (s+ 1)(α− 1),

where we abuse the notations I, I, and Hi to refer to the
subset of points of P that they contain. This inequality
implies that I contains at least n− (s+ 1)(α−1) points

of P . This finishes the proof of the theorem except for
the part that P is in general position.

Now, assume that P is in general position and n >
d+ 3. By the definition of general position, the number
of points of P in a (d− s)-dimensional flat is not more
than d−s+1. Since I is (d−s)-dimensional, this implies
that

n− (s+ 1)(α− 1) 6 d− s+ 1.

Notice that n is of the form k(d + 1) + i for some
integer k > 1 and some i ∈ {0, 1, . . . , d}. Moreover, if
i is 0 or 1, then k > 2 because n > d + 3. Now we
consider two cases depending on whether or not i is 0.
If i = 0, then α = k. In this case, the above inequality
simplifies to k(d − s) 6 d − 2s, which is not possible
because k > 2 and d > s > 1. If i ∈ {1, . . . , d}, then
α = k + 1. In this case, the above inequality simplifies
to (k − 1)(d − s) + i 6 1, which is not possible unless
d = s and i = 1. Thus, for the above inequality to hold
we should have d = s and i = 1. These two assertions
imply that n = k(d+1)+1, and that I is 0-dimensional
and consists of one point of P . Since C ⊆ I and C is
not empty, C also consists of one point of P . �

References

[1] O. Aichholzer, T. Hackl, M. Korman, M. J. van Krev-
eld, M. Löffler, A. Pilz, B. Speckmann, and E. Welzl.
Packing plane spanning trees and paths in complete
geometric graphs. Information Processing Letters,
124:35–41, 2017. Also in CCCG’14, pages 233–238.

[2] B. Aronov, P. Erdös, W. Goddard, D. J. Kleitman,
M. Klugerman, J. Pach, and L. J. Schulman. Cross-
ing families. Combinatorica, 14(2):127–134, 1994. Also
in SoCG’91, pages 351–356.

[3] F. Bernhart and P. C. Kainen. The book thickness of
a graph. Journal of Combinatorial Theory, Series B,
27(3):320–331, 1979.

[4] A. Biniaz, P. Bose, A. Maheshwari, and M. H. M.
Smid. Packing plane perfect matchings into a point set.
Discrete Mathematics & Theoretical Computer Science,
17(2):119–142, 2015.

[5] P. Bose, F. Hurtado, E. Rivera-Campo, and D. R.
Wood. Partitions of complete geometric graphs into
plane trees. Computational Geometry: Theory and Ap-
plications, 34(2):116–125, 2006.

[6] T. M. Chan. An optimal randomized algorithm for
maximum tukey depth. In Proceedings of the 15th An-
nual ACM-SIAM Symposium on Discrete Algorithms,
SODA, pages 430–436, 2004.

[7] H. Edelsbrunner. Algorithms in Combinatorial Geome-
try. Springer, 1987.

[8] B. Grünbaum. The dimension of intersections of convex
sets. Pacific Journal of Mathematics, 12(1):197–202,
1962.

52

CCCG 2018, Winnipeg, Canada, August 8–10, 2018

[9] S. Jadhav and A. Mukhopadhyay. Computing a cen-
terpoint of a finite planar set of points in linear time.
Discrete & Computational Geometry, 12:291–312, 1994.

[10] S. Kundu. Bounds on the number of disjoint span-
ning trees. Journal of Combinatorial Theory, Series
B, 17(2):199–203, 1974.

[11] C. St. J. A. Nash-Williams. Edge-disjoint spanning
trees of finite graphs. Journal of the London Mathe-
matical Society, 36(1):445–450, 1961.

[12] P. Schnider. Packing plane spanning double stars into
complete geometric graphs. In Proceedings of the 32nd
European Workshop on Computational Geometry, Eu-
roCG, pages 91–94, 2016.

[13] W. T. Tutte. On the problem of decomposing a graph
into n connected factors. Journal of the London Math-
ematical Society, 36(1):221–230, 1961.

53

CCCG 2018, Winnipeg, Canada, August 8–10, 2018

Compatible Paths on Labelled Point Sets

Elena Arseneva∗ Yeganeh Bahoo† Ahmad Biniaz‡ Pilar Cano§ Farah Chanchary§ John Iacono¶

Kshitij Jain‡ Anna Lubiw‡ Debajyoti Mondal‖ Khadijeh Sheikhan∗∗ Csaba D. Tóth††

Abstract

Let P and Q be finite point sets of the same cardinal-
ity in R2, each labelled from 1 to n. Two noncrossing
geometric graphs GP and GQ spanning P and Q, re-
spectively, are called compatible if for every face f in
GP , there exists a corresponding face in GQ with the
same clockwise ordering of the vertices on its boundary
as in f . In particular, GP and GQ must be straight-
line embeddings of the same connected n-vertex graph
G. No polynomial-time algorithm is known for deciding
whether two labelled point sets admit compatible geo-
metric graphs. The complexity of the problem is open,
even when the graphs are constrained to be triangula-
tions, trees, or simple paths.

We give polynomial-time algorithms to find compat-
ible paths or report that none exist in three scenarios:
O(n) time for points in convex position; O(n2) time for
two simple polygons, where the paths are restricted to
remain inside the closed polygons; and O(n2 log n) time
for points in general position if the paths are restricted
to be monotone.

1 Introduction

Computing noncrossing geometric graphs on finite point
sets that are in some sense ‘compatible’ is an active area
of research in computational geometry. The study of
compatible graphs is motivated by applications to shape
animation and simultaneous graph drawing [4, 12].

Let P and Q be finite point sets, each containing n
points in the plane labelled from 1 to n. Let GP and GQ

∗Université libre de Bruxelles (ULB), Belgium.
ea.arseneva@gmail.com
†Department of Computer Science, University of Manitoba,

Canada. bahoo@cs.umanitoba.ca
‡Cheriton School of Computer Science, Univer-

sity of Waterloo, Canada. ahmad.biniaz@gmail.com,

{k22jain,alubiw}@uwaterloo.ca
§Department of Computer Science, Carleton University,

Canada. pilukno@gmail.com, farah.chanchary@carleton.ca
¶Université libre de Bruxelles, Belgium & NYU, USA.

jiacono@ac.ulb.be
‖Department of Computer Science, University of

Saskatchewan, Canada. dmondal@cs.usask.ca
∗∗NYU Tandon School of Engineering, Brooklyn, USA.

khadijeh@nyu.edu
††Department of Mathematics, California State University

Northridge, Los Angeles, CA, USA. csaba.toth@csun.edu

be two noncrossing geometric graphs spanning P and Q,
respectively. GP and GQ are called compatible, if for ev-
ery face f in GP , there exists a corresponding face in
GQ with the same clockwise ordering of the vertices on
its boundary as in f . It is necessary, but not sufficient,
that GP and GQ represent the same connected n-vertex
graph G. Given a pair of labelled point sets, it is nat-
ural to ask whether they have compatible graphs, and
if so, to produce one such pair, GP , GQ. The question
can also be restricted to specific graph classes such as
paths, trees, triangulations, and so on; previous work
(described below) has concentrated on compatible tri-
angulations. Compatible triangulations of polygons are
also of interest, which motivated us to examine compat-
ible paths inside simple polygons.

In this paper we examine the problem of computing
compatible paths on labelled point sets. Equivalently,
we seek a permutation of the labels 1, 2, . . . , n that cor-
responds to a noncrossing (plane) path in P and in Q.
Figures 1(a)–(b) show a positive instance of this prob-
lem, and Figures 1(c)–(d) depict an affirmative answer.

Our results. We describe a quadratic-time dynamic
programming algorithm that either finds compatible
paths for two simple polygons, where the paths are re-
stricted to remain inside the closed polygons, or reports
that no such path exists. For the more limited case of
two point sets in convex position, we give a linear time
algorithm to find compatible paths (if they exist). For
two general point sets, we give an O(n2 log n)-time al-
gorithm to find compatible monotone paths (if they ex-
ist). Finding (unrestricted) compatible paths of point
sets remains open.

1.1 Background

Saalfeld [11] first introduced compatible triangulations
of labelled point sets, which he called “joint” triangula-
tions. In Saalfeld’s problem, each point set is enclosed
inside an axis-aligned rectangle, and the goal is to com-
pute compatible triangulations (possibly using Steiner
points). Although not every pair of labelled point sets
admit compatible triangulations, Saalfeld showed that
one can always construct compatible triangulations us-
ing (possibly an exponential number of) Steiner points.

Aronov et al. [2] proved that O(n2) Steiner points are
always sufficient and sometimes necessary to compatibly

54

30th Canadian Conference on Computational Geometry, 2018

v1

v2

v5

v4

v6

v7
v1

v2

v3
v3

v4

v5

v6

v7

(a) (b)

v1

v2

v5

v4

v6

v7
v1

v2

v3
v3

v4

v5

v6

v7

(c) (d)

P Q

Figure 1: (a)–(b) A pair of labelled point sets P and Q. (c)–(d) A pair of compatible paths.

triangulate two polygons when the vertices of the poly-
gons are labelled 1, 2, . . . , n in clockwise order. Babikov
et al. [3] extended the O(n2) bound to polygonal regions
(i.e., polygons with holes), where the holes are also la-
belled ‘compatibly’ (with the same clockwise ordering
of labels). The holes may be single points, so this in-
cludes Saalfeld’s “joint triangulation” problem. Pach et
al. [10] gave an Ω(n2) lower bound on the number of
Steiner points in such scenarios.

Lubiw and Mondal [9] proved that finding the mini-
mum number of Steiner points is NP-hard for the case
of polygonal regions. The complexity status is open
for the case of polygons, and also for point sets. Test-
ing for compatible triangulations without Steiner points
may be an easier problem. Aronov et al. [2] gave
a polynomial-time dynamic programming algorithm to
test whether two polygons admit compatible triangula-
tions without Steiner points. But testing whether there
are compatible triangulations without Steiner points is
open for polygonal regions, as well as for point sets.

The compatible triangulation problem seems chal-
lenging even for unlabelled point sets (i.e., when a bi-
jection between P and Q can be chosen arbitrarily).
Aichholzer et al. [1] conjectured that every pair of unla-
belled point sets (with the same number of points on the
convex hull) admit compatible triangulations without
Steiner points. So far, the conjecture has been verified
only for point sets with at most three interior points.

Let GS be a complete geometric graph on a point
set S. Let H(S) be the intersection graph of the edges
of GS , i.e., each edge of GS corresponds to a vertex in
H(S), and two vertices are adjacent in H(S) if and only
if the corresponding edges in GS properly cross (i.e., the
open line segments intersect). Every plane triangulation
on S has 3n−3−h edges, where h is the number of points
on the convex hull of S, and thus corresponds to a max-
imum independent set in H(S). In fact, H(S) belongs
to the class of well-covered graphs. (A graph is well cov-
ered if every maximal independent set of the graph has
the same cardinality). A rich body of research attempts
to characterize well-covered graphs [6, 13]. Deciding
whether two point sets, P and Q, admit compatible tri-
angulations is equivalent to testing whether H(P) and
H(Q) have a common independent set of size 3n−3−h.

2 Paths in Polygons and Convex Point Sets

In this section we describe algorithms to find compat-
ible paths on simple polygons and convex point sets.
By compatible paths on polygons, we mean: given two
polygons, find two compatible paths on the vertices of
the polygons that are constrained to be non-exterior to
the polygons. (See Figures 2(a)–(b).) Note that convex
point sets correspond to a special case, where the poly-
gons are the convex hulls. Not every two convex point
sets admit compatible paths, e.g., 5-point sets where the
points are labelled (1,2,3,4,5) and (1,3,5,2,4), resp., in
counterclockwise order (Appendix A).

We first give a quadratic-time dynamic programming
algorithm for simple polygons, and then a linear time
algorithm for convex point sets.

We begin with two properties of any noncrossing path
that visits all vertices of a simple polygon. Let P be a
simple polygon with vertices p1, p2, . . . , pn in some or-
der (so the vertices have labels 1, 2, . . . , n). Let σ be
a label sequence corresponding to a noncrossing path
that lies inside P and visits all vertices of P . Define
an interval on P to be a sequence of labels that appear
consecutively around the boundary of P (in clockwise
or counterclockwise order). For example, in Figure 2(a),
one interval is (2, 1, 7, 6). Define an interval set on P to
be the unordered set of elements of an interval.

Claim 1 The set of labels of every prefix of σ is an
interval set on P . Furthermore, if the prefix does not
contain all the labels, then the last label of the prefix
corresponds to an endpoint of the interval.

Proof. We proceed by induction on t, the length of
the prefix, with the base case t = 1 being obvious. So
assume the first t − 1 labels form an interval set corre-
sponding to interval I. Let ` be the t-th element of σ.
Suppose vertex p` is not contiguous with the interval I
on P . Let u and v be the two neighbors of p` around
the polygon P . Then u and v do not belong to I, and so
the path must visit both of them after p`. But then the
subpath between u and v crosses the edge of the path
that arrives at p`, contradicting the assumption that the
path is noncrossing. Thus vertex p` must appear just

55

CCCG 2018, Winnipeg, Canada, August 8–10, 2018

p7

p1

p2 p3

p4

p5

p6

(a)

q7

q1q1

q6

q2

q3

q5

q4

(b)

p4

pj = p5

p6

(c)

pi = p7

pk = p3

qk

qi

(e)

pi

pi+1

pi+t

(d)

qj

p`

Figure 2: (a)–(b) Compatible paths on a pair of labelled polygons. The paths are drawn with dotted lines. (c)
Illustration for Claim 2, where I = (p7, p6, p5, p4, p3). (d)–(e) Illustration for the dynamic programming algorithm.

before or after I, forming a longer interval with p` as an
endpoint of the interval. �

Claim 2 If I is an interval on P and σ does not start or
end in I, then the labels of I appear in the same order in
σ and in I (either clockwise or counterclockwise). Note
that the labels need not appear consecutively in σ.

Proof. Consider three labels i, j, k that appear in this
order in I. Assume, for a contradiction, that these labels
appear in a different order in σ and suppose, without
loss of generality, that they appear in the order i, k, j
in σ. Let ` be the last label of σ. Because ` does not
lie in I, the order of vertices around P is pi, pj , pk, p`.
See, e.g., Figure 2(c) where i, j, k = 7, 5, 3. Then the
subpath of σ from pi to pk crosses the subpath from pk
to p`, a contradiction. �

2.1 An O(n2)-time dynamic programming algorithm

Let P , Q be two n-vertex simple polygons with labelled
vertices. Let pi (resp., qi) be the vertex of P (resp., Q)
with the label i.

Two vertices of a polygon are visible if the straight
line segment connecting the vertices lies entirely inside
the polygon. We precompute the visibility graph of each
polygon in O(n2) time [8] such that later we can answer
any visibility query in constant time.

Notation for our dynamic programming algorithm
will be eased if we relabel so that polygon P has labels
1, 2, . . . , n in clockwise order. For each label i = 1, . . . , n
and each length t = 1, . . . , n let IQ(i, t, cw) denote the
interval on Q of t vertices that starts at qi and pro-
ceeds clockwise. Define IQ(i, t, ccw) similarly, but pro-
ceed counterclockwise from qi. Define IP (i, t, cw) and
IP (i, t, ccw) similarly. Note that IP (i, t, cw) goes from
pi to pi+t−1 (index addition modulo n).

We say that a path traverses interval IQ(i, t, d) (where
d = cw or ccw), if the path is noncrossing, lies inside
Q, visits exactly the vertices of IQ(i, t, d) and ends at
qi. We make a similar definition for a path to traverse
an interval IP (i, t, d).

Our algorithm will solve subproblems A(i, t, dP , dQ)
where i is a label from 1 to n, t is a length from 1 to n,

and dP and dQ take on the values cw or ccw . This sub-
problem records whether there is a path that traverses
IQ(i, t, dQ) and a path with the same sequence of labels
that traverses IP (i, t, dP). If this is the case, we say that
the two intervals are compatible. Observe that P and
Q have compatible paths if and only if A(i, n, dP , dQ) is
true for some i, dP , dQ.

We initialize by setting A(i, 1, dP , dQ) to TRUE for
all i, dP , dQ, and then solve subproblems in order of in-
creasing t. In order for intervals IQ(i, t + 1, dQ) and
IP (i, t+ 1, dP) to be compatible, the intervals of length
t formed by deleting the last label, i, must also be com-
patible, with an appropriate choice of direction (cw or
ccw) on those intervals. There are two choices in P and
two in Q. We try all four combinations. For a partic-
ular combination to ‘work’ (i.e., yield compatible paths
for the original length t+ 1 intervals), we need the last
labels of the length t intervals to match, and we need
appropriate visibility edges in the polygons for the last
edge of the paths.

We give complete details for A(i, t + 1, cw , cw). See
Figure 2(d)-(e). (The other four possibilities are simi-
lar.) Deleting label i from IP (i, t + 1, cw) gives IP (i +
1, t, cw) and IP (i + t, t, ccw). Let qj be the vertex fol-
lowing qi in clockwise order around Q and let qk be the
other endpoint of IQ(i, t + 1, cw) (in practice, for effi-
ciency, we would store k with the subproblem). Delet-
ing label i from IQ(i, t + 1, cw) gives IQ(j, t, cw) and
IQ(k, t, ccw). The two possibilities for P and Q are
shown by blue dash-dotted and red dotted lines in Fig-
ures 2(d) and (e), respectively. We set A(i, t+1, cw , cw)
TRUE if any of the following four sets of conditions
hold:

1. Conditions for IP (i+ 1, t, cw) and IQ(j, t, cw): i+
1 = j and A(i+ 1, t, cw , cw).

2. Conditions for IP (i + 1, t, cw) and IQ(k, t, ccw):
i+1 = k and qk sees qi in Q and A(i+1, t, cw , ccw).
Note that the last edge of the path in Q must be
(qk, qi) which is why we impose the visibility con-
dition.

3. Conditions for IP (i+ t, t, ccw) and IQ(j, t, cw): i+
t = j and pi+t sees pi in P and A(i+ t, t, ccw , cw).

56

30th Canadian Conference on Computational Geometry, 2018

4. Conditions for IP (i+t, t, ccw) and IQ(k, t, ccw): i+
t = k and pi+t sees pi in P and qk sees qi in Q and
A(i+ t, t, ccw , ccw).

Since there are a quadratic number of subproblems,
each taking constant time to solve, this algorithm runs
in time O(n2), which proves:

Theorem 1 Given two n-vertex polygons, each with
points labelled from 1 to n in some order, one can find
a pair of compatible paths or determine that none exist
in O(n2) time.

2.2 A linear-time algorithm for convex point sets

In this section we assume that the input is a pair of
convex point sets P,Q, along with their convex hulls.

Given a label x, we first define a greedy construction
to compute compatible paths starting at x. The output
of the construction is an ordered sequence σx of labels.
Using Claim 1 we keep track of the intervals in P and
Q corresponding to σx. Initially σx contains the label
x. Each subsequent step attempts to add a new label
to σx, maintaining intervals in P and Q. Suppose the
intervals corresponding to the current σx are IP and
IQ in P and Q respectively. Let a and b be the labels
of the vertices just before and just after interval IP on
the boundary of P . Similarly, let c and d be the labels
of the vertices just before and just after interval IQ on
the boundary of Q. If {a, b} = {c, d}, then we add a
and b to σx in arbitrary order. Otherwise, if there is
one label in common between the two sets, we add that
label to σx. Finally, if there are no common labels, then
the construction ends. Let σx be a maximal sequence
constructed as above.

Lemma 2 P and Q have compatible paths starting at
label x if and only if σx includes all n labels.

Proof. If P and Q have compatible paths with label
sequence σ starting at label x then by Claim 1 every
prefix of σ corresponds to an interval in P and in Q,
and we can build σx in exactly the same order as σ.

For the other direction, we claim to construct non-
crossing paths in P and Q corresponding to σx. Ob-
serve that when we add one or two labels to σx, we can
add the corresponding vertices to our paths because the
point sets are convex, so every edge is allowable. Fur-
thermore, the paths constructed in this way are non-
crossing because the greedy construction of σx always
maintains intervals in P and Q. Hence the new edges
are outside the convex hull of the paths so far. �

Lemma 2 allows us to find compatible paths (if they
exist) in O(n2) time by trying each label x as the initial
label of the path. In order to improve this to linear time,
we first argue that when σx does not provide compatible

paths, then we need not try any of its other labels as
the initial label.

Lemma 3 If σx has length less than n, then no label
in σx can be the starting label for compatible paths of P
and Q.

Proof. Suppose that there are compatible paths with
label sequence sy starting at a label y in σx. Let z be
the first label that appears in sy but not in σx. Let
IP and IQ be the intervals corresponding to σx in P
and Q respectively. By Claim 1 the prefix of sy before
z corresponds to intervals, say I ′P and I ′Q on P and
Q, respectively. Then I ′P ⊆ IP and I ′Q ⊆ IQ (by our
assumption that z is the first label of sy not in σx).
Since the vertex with label z must be adjacent to I ′P on
the boundary of P and to I ′Q on the boundary of Q, and
z does not appear in σx, therefore the vertex with label
z must be adjacent to IP on the boundary of P and to
IQ on the boundary of Q. But then our construction
would add label z to σx. �

We will use Lemma 3 to show that we can eliminate
some labels entirely when σx is found to have length
less than n. Suppose σx does not include all labels. Let
IP and IQ be the intervals on P and Q, respectively,
corresponding to the set of labels of σx. Let a and b be
the labels that appear at the endpoints of IP .

Suppose P and Q have compatible paths (of length
n) with label sequence σ. Then by Lemma 2 the initial
and final label of σ lie outside of σx. Furthermore, by
Claim 2, the set of labels of σx must appear consecu-
tively and in the same order around P and around Q
(either clockwise or counterclockwise). Our algorithm
checks whether IP and IQ have the same ordered lists
of labels. If not, then there are no compatible paths.

So suppose that IP and IQ have the same ordered lists
of labels. Then the endpoints of IQ must have labels
a and b. We will now reduce to a smaller problem by
discarding all internal vertices of IP and IQ. Let P ′ and
Q′ be the point sets formed from P and Q, respectively,
by deleting the vertices with labels in σx − {a, b}.

Lemma 4 Suppose z is a label appearing in P ′. P and
Q have compatible paths with initial label z if and only
if P ′ and Q′ have compatible paths with initial label z.

Proof. If P and Q have compatible paths (of length n)
with initial label z, then we claim that deleting from
those paths the vertices with labels in σx−{a, b} yields
compatible paths of P ′ and Q′ with initial label z. It
suffices to show that if we delete one vertex from a non-
crossing path on points in convex position then the re-
sulting path is still noncrossing. The two edges incident
to the point to be deleted form a triangle, and the new
path will use the third side of the triangle. Since the
points are in convex position, the triangle is empty of

57

CCCG 2018, Winnipeg, Canada, August 8–10, 2018

pi
pa

pb

pc

pd

qi
qa

qb

qc

qd

qj

pi
pa

pb

pc

pd

qi
qa

qb

qc

qd

pj
qjpj

(a) (b) (c) (d)

Figure 3: (a)–(b) Compatible paths on the point sets P \ {pa, pb, pc, pd} and Q \ {qa, qb, qc, qd}. (c)–(d) Insertion of
the deleted points keeps the paths compatible.

other points, and so the new edge does not cross any
other edge of the path.

For the other direction, suppose that σ′ is a label
sequence of compatible paths of P ′ and Q′ with initial
label z. Suppose without loss of generality that label
a comes before label b in σ′. Construct a sequence σ
by adding the labels of σx − {a, b} after a in σ′ in the
order that they appear in IP . It remains to show that
the corresponding paths in P and Q are noncrossing.
This follows from the fact that in both P and Q the
added points appear consecutively around the convex
hull following the point with label a. �

We can now prove the main result of this section.

Theorem 5 Given two sets of n points in convex po-
sition (along with their convex hulls) each with points
labelled from 1 to n, one can find a pair of compatible
paths or determine that none exist in linear time.

Proof. The algorithm is as described above. At each
stage we try some label x to be the initial label of com-
patible paths, by computing σx using the greedy con-
struction. If σx has length n we are done. Otherwise if
σx has length 1 or 2, then we have ruled out the labels
in σx as initial labels. Finally, if σx has length less than
n and at least 3 then we test whether the intervals cor-
responding to σx in P and Q have the same ordering,
and if they do, then we apply the reduction described
above and recurse on the smaller instance as justified
by Lemma 4.

The running time of the algorithm is determined by
the length of all the σ-sequences we compute. Define a
σ-sequence to be ‘long’ or ‘short’ depending on whether
it contains at least three labels or not. Every long se-
quence of length ` reduces the number of points by (`−2)
and requires O(`) time. Thus, long sequences take O(n)
time in total. Computing any short sequence takes O(1)
time. Since for each label, we compute σ at most once,
the short sequences also take O(n) time in total. �

3 Monotone Paths in General Point Sets

In this section we examine arbitrary point sets in general
position, but we restrict the type of path.

Let P be a point set in general position. An ordering
σ of the points of P is called monotone if there exists
some line ` such that the orthogonal projection of the
points on ` yields the order σ. A monotone path is a
path that corresponds to a monotone ordering. Note
that every monotone path is noncrossing.

Two points sets P and Q each labelled 1, 2, . . . , n have
compatible monotone paths if there is an ordering of the
labels that corresponds to a monotone path in P and
a monotone path in Q. To decide whether compatible
monotone paths exist, we can enumerate all the mono-
tone orderings of P , and for each of them check in linear
time whether it determines a monotone path in Q.

A method for enumerating all the monotone orderings
of a point set P was developed by Goodman and Pollack:

Theorem 6 (Goodman and Pollack [7]) Let `0 be
a line not orthogonal to any line determined by two
points of P . Starting with ` = `0, rotate the line `
through 360◦ counter-clockwise about a fixed point. Pro-
jecting the points onto ` as it rotates gives all the possible
monotone orderings of P . There are 2

(
n
2

)
= n(n − 1)

orderings, and each successive ordering differs from the
previous one by a swap of two elements adjacent in the
ordering.

Furthermore, the sequence of swaps that change each
ordering to the next one can be found in O(n2 log n)
time by sorting the O(n2) lines (determined by all pairs
of points) by their slopes.

This gives a straight-forward O(n3) time algorithm to
find compatible monotone paths, since we can generate
the O(n2) monotone orderings of P in constant time per
ordering, and check each one for monotonicity in Q in
linear time.

We now present a more efficient O(n2 log n) time al-
gorithm. For ease of notation, relabel the points so that
the order of points P along `0 is 1, 2, . . . , n. As the line
` rotates, let LP

0 , L
P
1 , . . . L

P
t−1, where t = n(n − 1), be

the monotone orderings of P , and let SP be the corre-
sponding swap sequence. Similarly, let LQ

0 , L
Q
1 , . . . L

Q
t−1

be the monotone orderings of Q and let SQ be the cor-
responding swap sequence (Figure 4). We need to find

whether there exist some i and j such that LP
i = LQ

j .

58

30th Canadian Conference on Computational Geometry, 2018

1

2
3

4

23

1

4

(a)

1234
1243
1423
1432
4132
4312
4321
3421

LP

3 421

(b)

3124
1324
1234
2134
2143
2413
4213
4231

LQP Q

1 2 3 4

Figure 4: Illustration for computing compatible mono-
tone paths.

As noted above, SP and SQ have size O(n2) and can be
computed in time O(n2 log n).

Recall that the inversion number, I(L) of a permu-
tation L is the number of pairs that are out of order.
It is easy to see that the inversion numbers of the LP

i ’s
progress from 0 to

(
n
2

)
and back again. In particular,

I(LP
i) = i for 0 ≤ i ≤

(
n
2

)
. Our algorithm will compute

the inversion numbers of the LQ
j ’s, which also have some

structure. Let Ij be the inversion number of LQ
j . Note

that we can compute I0 in O(n log n) time—sorting al-
gorithms can be modified to do this [5].

Claim 3 For all j, 1≤j≤n(n− 1), Ij differs from Ij−1
by ±1, and can be computed from Ij−1 in constant time.

Proof. LQ
j is formed by swapping one pair of adjacent

elements in LQ
j−1. If this swap moves a smaller ele-

ment after a larger one then Ij=Ij−1+1. Otherwise, it
is Ij−1−1. �

The main idea of our algorithm is as follows. If LQ
j =

LP
i , then they must have the same inversion number,

Ij . There is one value of i in the range 0 ≤ i <
(
n
2

)

that gives this inversion number, namely i = Ij . There
is also one value of i in the second half of the range
that gives this inversion number, but we can ignore the
second half of the range based on the following:

Remark 1 If there exist i, j such that LP
i = LQ

j , then
there is such a pair with i in the first half of the index
range, i.e., 0 ≤ i <

(
n
2

)
.

Proof. The second half of each list of orderings con-
tains the reversals of the orderings in the first half [7].

Thus if there is a match LP
i = LQ

j then the rever-
sals of the two orderings also provide a match, say
LP
i′ = LQ

j′ , and either i or i′ is in the first half of the
index range. �

Our plan is to iterate through the orderings LQ
j for

0 ≤ j < n(n − 1). Since each ordering differs from the
previous one by a single swap, we can update from one
to the next in constant time. For each j, we will check

if LQ
j is equal to LP

Ij
, i.e., for each j, 0 ≤ j < n(n − 1)

we will compute the following four things:

• LQ
j , Ij , L

P
Ij

, and

• Hj , which is the Hamming distance—i.e., the num-

ber of mismatches—between LQ
j and LP

Ij

If we find a j with Hj = 0 then we output LQ
j and LP

Ij
as compatible monotone paths. Otherwise, we declare
that no compatible monotone paths exist. Correctness
of this algorithm follows from Remark 1 and the discus-
sion above:

Claim 4 P and Q have compatible monotone paths if
and only if Hj = 0 for some j, 0 ≤ j < n(n− 1).

We now give the details of how to perform the above
computations. For j = 0 we will compute everything
directly, and for each successive j, we will show how to
update efficiently. We initialize the algorithm at j =
0 by computing LQ

0 and Ij in O(n log n) time, LP
Ij

in

O(n2) time, and Hj in linear time.
Now consider an update from j − 1 to j. As already

mentioned, LQ
j differs from LQ

j−1 by one swap of adja-
cent elements, so we can update in constant time. By
Lemma 3, Ij differs from Ij−1 by ±1 and we can com-
pute it in constant time. This also means that LP

Ij
differs

from LP
Ij−1

by one swap of adjacent elements, so we can
update it in constant time.

Finally, we can update the Hamming distance in a
two-step process as the two orderings change. When
we update from LQ

j−1 to LQ
j , two positions in the list

change, and we can compare them to the same positions
in LP

Ij−1
to update from Hj−1 to obtain the number of

mismatches between LQ
j and LP

Ij−1
. When we update

to LP
Ij

, two positions in this list change, and we can

compare them to the same positions in LQ
Ij

to update
to Hj . This two-step process takes constant time.

In total, we spend O(n2) time on initialization and
constant time on each of O(n2) updates, for a total of
O(n2) time. We thus obtain the following theorem.

Theorem 7 Given two point sets, each containing n
points labelled from 1 to n, one can find a pair of com-
patible monotone paths or determine that none exist in
O(n2 log n) time.

Acknowledgement: We thank the organizers of the
Fields Workshop on Discrete and Computational Geom-
etry, held in July 2017 at Carleton University. E. Ar-
seneva is supported in part by the SNF Early Postdoc
Mobility grant P2TIP2-168563 and by F.R.S.-FNRS;
A. Biniaz, K. Jain, A. Lubiw, and D. Mondal are sup-
ported in part by NSERC.

59

CCCG 2018, Winnipeg, Canada, August 8–10, 2018

References

[1] O. Aichholzer, F. Aurenhammer, F. Hurtado, and
H. Krasser. Towards compatible triangulations. Theo-
retical Computer Science, 296(1):3–13, 2003.

[2] B. Aronov, R. Seidel, and D. L. Souvaine. On compat-
ible triangulations of simple polygons. Computational
Geometry, 3:27–35, 1993.

[3] M. Babikov, D. L. Souvaine, and R. Wenger. Construct-
ing piecewise linear homeomorphisms of polygons with
holes. In Proceedings of the 9th Canadian Conference
on Computational Geometry (CCCG), 1997.

[4] W. V. Baxter III, P. Barla, and K. Anjyo. Compatible
embedding for 2D shape animation. IEEE Transactions
on Visualization and Computer Graphics, 15(5):867–
879, 2009.

[5] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and
C. Stein. Introduction to Algorithms, 3rd Edition. MIT
Press, 2009.

[6] A. S. Finbow, B. L. Hartnell, and M. D. Plummer. On
well-covered pentagonalizations of the plane. Discrete
Applied Mathematics, 224:91–105, 2017.

[7] J. E. Goodman and R. Pollack. On the combinato-
rial classification of nondegenerate configurations in the
plane. Journal of Combinatorial Theory, Series A,
29(2):220–235, 1980.

[8] J. Hershberger. An optimal visibility graph algorithm
for triangulated simple polygons. Algorithmica, 4(1-
4):141–155, 1989.

[9] A. Lubiw and D. Mondal. On compatible tri-
angulations with a minimum number of Steiner
points. In Proceedings Canadian Conference on Com-
putational Geometry (CCCG), pages 101–106, 2017.
http://arxiv.org/abs/1706.09086.

[10] J. Pach, F. Shahrokhi, and M. Szegedy. Applications
of the crossing number. Algorithmica, 16(1):111–117,
1996.

[11] A. Saalfeld. Joint triangulations and triangulation
maps. In Proceedings of the Third Annual Symposium
on Computational Geometry (SoCG), pages 195–204.
ACM, 1987.

[12] V. Surazhsky and C. Gotsman. High quality compatible
triangulations. Engineering with Computers, 20(2):147–
156, 2004.

[13] D. Tankus and M. Tarsi. The structure of well-covered
graphs and the complexity of their recognition prob-
lems. J. Comb. Theory, Ser. B, 69(2):230–233, 1997.

Appendix A

In this section we show that for every n ≥ 5, there exist two
convex labelled point sets, each containing n points, that do
not admit compatible trees. Note that this also rules out the
existence of compatible paths.

Claim 5 Let P and Q be point sets in convex position, each
containing n ≥ 2 points labelled by {1, 2, . . . , n}. If they

admit a compatible tree that is not a star, then there exists
a partition {1, 2, . . . , n} = A ∪ B such that 2 ≤ |A| ≤ |B| ≤
n− 2 such that A and B are interval sets for both P and Q.

Proof. Suppose that P and Q admit a compatible tree T ,
which is not a star. Then T has an edge e between two ver-
tices of degree two or higher. The deletion of e decomposes
T into two subtrees, say T1 and T2, each with at least two
vertices. The vertex sets of T1 and T2, resp., correspond to
an interval set in P and Q. �

(a) (b)

v1

v2

v3v4

v5

v1

v3

v5v2

v4

Figure 5: Illustration for Lemma 8.

Theorem 8 For every integer n ≥ 5, there exist two sets,
Pn and Qn, each of n labelled points in convex position, such
that Pn and Qn do not admit any compatible tree.

Proof. For n = 5, let P5 and Q5 be point sets labelled
(1, 2, 3, 4, 5) and (1, 3, 5, 2, 4), respectively, in counterclock-
wise order (Figure 5). If a compatible star exists, then the
four leaves would appear in the same counterclockwise or-
der in both P5 and Q5 (by the definition of compatibility).
However, the two convex sets have distinct counterclockwise
4-tuples. If there is a compatible tree that is not a star,
then by Claim 5, a 2-element set A ⊂ {1, 2, 3, 4, 5} is an in-
terval set for both P5 and Q5. However, all five consecutive
pairs along the convex hull of P5 are nonconsecutive in the
convex hull of Q5. Therefore, P5 and Q5 do not admit any
compatible tree.

For n > 5, we can construct Pn and Qn analogously.
Let Pn be labelled (1, 2 . . . , n) in counterclockwise order.
For i = 0, 1, 2, 3, 4, let Ni be the sequence of labels in
{1, 2, . . . , n} congruent to i modulo 5 in increasing order.
Now let Qn be labelled by the concatenation of the sequences
N1, N3, N0, N2, N4 in counterclockwise order.

If a compatible star exists, then the n − 1 leaves would
appear in the same counterclockwise order in both Pn and
Qn (by the definition of compatibility). However, the both
neighbors of a vertex in Pn are different from the two neigh-
bors in Qn, consequently Pn and Qn do not share any coun-
terclockwise (n − 1)-tuple. If there is a compatible tree
that is not a star, then by Claim 5, there is a partition
{1, 2, . . . , n} = A ∪ B into interval sets, where |A|, |B| ≥ 2.
However, A and B cannot partition any subset of 5 consec-
utive elements in sequence (1, 2, . . . , n), similarly to the case
when n = 5. Consequently, Pn and Qn do not admit any
compatible tree. �

60

CCCG 2018, Winnipeg, Canada, August 8–10, 2018

Ladder-Lottery Realization

Katsuhisa Yamanaka∗ Takashi Horiyama† Takeaki Uno‡ Kunihiro Wasa§

Abstract

A ladder lottery of a permutation π = (p1, p2, . . . , pn) is
a network with n vertical lines and zero or more hori-
zontal lines each of which connects exactly two consecu-
tive vertical lines. The top ends and the bottom ends of
the vertical lines correspond to the identity permutation
and π, respectively. Each horizontal line corresponds to
an intersection of two vertical lines. Suppose that we
are given a permutation π of [n] = {1, 2, . . . , n} and a
multi-set S of intersections each of which is a pair of el-
ements in [n]. Then Ladder-Lottery Realization
problem asks whether or not there is a ladder-lottery
of π in which each intersection in S appears exactly
once. We show that Ladder-Lottery Realization
problem is NP-complete. We also present some posi-
tive results of Ladder-Lottery Realization and its
variant.

1 Introduction

A ladder lottery, known as the “Amidakuji” in Japan, is
a very common way to obtain a “random” assignment.
Japanese kids often use ladder lotteries to determine an
assignment in a group. Let us show an example of how
to use ladder lotteries. Suppose that, in an elementary
school, we have to determine a group leader among n
classmates. First, a teacher draws n vertical lines in a
notebook and ticks off one of the bottom ends of the
vertical lines so that any student cannot predict where
the tick-mark is. See Figure 1(a). Second, the teacher
covers the bottom ends of all vertical lines, then the
teacher draws some horizontal lines connecting adjacent
vertical lines (Figure 1(b)). Third, each student chooses
the top end of a vertical line (Figure 1(c)). Finally, the
teacher takes off the cover. The obtained figure gives
an assignment (Figure 1(d)).

Formally, for a permutation π = (p1, p2, . . . , pn) of
[n] = {1, 2, . . . , n}, a ladder lottery is a network with n
vertical lines (lines for short) and zero or more horizon-
tal lines (bars for short) each of which connects exactly
two consecutive vertical lines. The top ends of lines cor-
respond to the identity permutation (1, 2, . . . , n). The
bottom ends of lines correspond to π. See Figure 2(a).

∗Iwate University, Japan. yamanaka@cis.iwate-u.ac.jp
†Saitama University, Japan. horiyama@al.ics.saitama-u.ac.jp
‡National Institute of Informatics, Japan. uno@nii.ac.jp
§National Institute of Informatics, Japan. wasa@nii.ac.jp

C B D A

(d)(a) (b)

C B D A

(c)

Figure 1: An example of how to use a ladder lottery.
Imagine the situation that we choose a leader among
four students A, B, C, and D. (a) four vertical lines
and a tick-mark. (b) The tick-mark is hided and six
horizontal lines are drawn by a teacher according to his
or her intuition. (c) Each student chooses a top end of a
vertical line. (d) The result of the obtained assignment.
In this assignment, D is a leader.

2 641 53

4 1 6 3 5 2

2 641 53

(a) (b)

4 1 6 3 5 2

Figure 2: (a) A ladder lottery of (4,1,6,3,5,2) and (b)
its pseudoline drawing.

Each element i in [n] starts from the top end of ith
line from the left, and goes down along the line, then
whenever i comes to an end of a bar, i goes horizontally
along the bar to the other end, then goes down again.
Finally, i reaches the bottom end of jth line from the
left such that i = pj . We can regard a bar as a mod-
ification of the current permutation, and a sequence of
such modifications in a ladder lottery always results in
the identity permutation.

Ladder lotteries of the reverse permutations have
a one-to-one correspondence to pseudoline arrange-
ments [12]. The route of an element from a top end
to a bottom end corresponds to a pseudoline and a bar
corresponds to an intersection of two pseudolines. To
calculate the number of pseudoline arrangements, some
enumeration and counting algorithms of ladder lotteries

61

30th Canadian Conference on Computational Geometry, 2018

were presented in [5, 12]. The history of the counting
results is shown in the Online Encyclopedia of Integer
Sequences [7]. In the area of algebra, a ladder lottery is
regarded as a decomposition of a permutation into adja-
cent transpositions. The top ends of lines correspond to
the identity permutation. The bottom ends of lines cor-
respond to a permutation. Each bar corresponds to an
adjacent transposition. From these viewpoints, ladder
lotteries have been studied as mathematically attractive
objects. In recent years, from the viewpoint of theoreti-
cal computer science, some problems on ladder lotteries
are considered: counting [11], random generation [11],
enumeration [5, 12, 10, 11], reconfiguration [3].

A few years ago, Yamanaka et al. [8] proposed the
puzzle, called Token Swapping problem: We are
given a permutation and a set of allowable transpo-
sitions. The Token Swapping problem asks to find
a minimum-length decomposition using only transposi-
tions in the set.1 Recently, this puzzle and its variants
have been actively studied [1, 4, 6, 9].

In this paper, we propose a new puzzle regarding lad-
der lotteries. The purpose of Token Swapping prob-
lem is to find a shortest decomposition of a permuta-
tion. On the other hand, we consider the problem,
called Ladder-Lottery Realization, of construct-
ing a target permutation using compositions of desig-
nated transpositions. Let us describe our problem more
formally. We are given a target permutation π of and a
multi-set S of transpositions. The problem asks whether
one can construct the target permutation by compos-
ing each transposition in the set exactly once. In this
paper, we investigate the computational complexity of
Ladder-Lottery Realization problem. We show
the NP-completeness of the problem and give some pos-
itive results for the problem and its variant.

Due to page limitation, all proofs are omitted.

2 Preliminaries

A ladder lottery of a permutation π = (p1, p2, . . . , pn) is
a network with n vertical lines (lines for short) and zero
or more horizontal lines (bars for short) each of which
connects two consecutive vertical lines. The top ends
of the n lines correspond to the identity permutation.
The bottom ends of the n lines correspond to π. See
Figure 2(a). Each element i in the identity permutation
starts the top end of ith line from the left, and goes
down along the line, then whenever i comes to an end
of a bar, i goes to the other end and goes down again,
then finally i reaches the bottom end of jth line such

1Actually, the Token Swapping problem is defined as a puzzle
consisting of n tokens on n-vertex graph where each token has a
distinct starting vertex and a distinct target vertex it wants to
reach, and the only allowed transformation is to swap the tokens
on adjacent vertices [8].

that i = pj . By representing the route for each ele-
ment i as a pseudoline and each bar as an intersection
of two pseudolines, one can represent a ladder lottery as
a drawing of pseudolines. In this paper, for convenience
of descriptions, we use the pseudoline drawing to rep-
resent a ladder lottery. For example, Figure 2(b) is the
pseudoline drawing of the ladder lottery in Figure 2(a).
From now on, if it is clear from the context, we call the
route of an element as a pseudoline. Clearly, we can
regard that a pseudoline in the pseudoline drawing of a
ladder lottery forms a y-monotone curve. Hence, in the
following, we assume that any pseudoline is y-monotone.

Now, let us define Ladder-Lottery Realization
problem. Suppose that we are given a permutation π =
(p1, p2, . . . , pn) of [n] and a multi-set S of intersections
each of which is a pair of elements in [n]. Then Ladder-
Lottery Realization asks whether or not there is
a ladder-lottery of π in which each intersection in S
appears exactly once. For example, suppose that we are
given the permutation (4,1,6,3,5,2) and the multi-set

{{1, 3}2, {1, 4}, {2, 3}, {2, 4}3, {2, 5}3, {2, 6}, {3, 4},
{3, 6}, {5, 6}3}

of intersections, where {i, j}k means k {i, j}s. Then,
the answer is yes, since the ladder lottery in Figure 2(a)
is a solution.

3 Hardness of ladder-lottery realization

We give a reduction from a well-known NP-complete
problem One-in-Three 3SAT:

Problem: One-in-Three 3SAT [2]
Instance: Set X of variables, collection C of clauses
over X such that each clause in C contains exactly three
literals.
Question: Is there a truth assignment for X such that
each clause in C has exactly one true literal?

Let IS = (X,C) be an instance of One-in-Three
3SAT, where X = {x1, x2, . . . , xn} is a set of variables
and C = {C1, C2, . . . , Cm} is a collection of clauses. We
may assume without loss of generality that any clause
Ci ∈ C does not contain both the positive and the neg-
ative literals of any variable in X. We denote by n and
m the numbers of variables and clauses, respectively.
We are going to construct an instance IR = (π, S) of
Ladder-Lottery Realization from IS , where π is a
permutation and S is a multi-set of intersections.

To reduce IS to IR, we prepare the gadgets: a room
gadget, a drawer gadget, a variable gadget, a clause
gadget, and an assignment gadget. Let us explain these
gadgets one by one.

62

CCCG 2018, Winnipeg, Canada, August 8–10, 2018

sl sr

slsr

Figure 3: Room gadget with 4 rooms.

Room gadget

First, we define a room gadget. The room gadget con-
sists of two pseudolines s`, sr and a multi-set SR(IS) of
intersections. The top ends of the two pseudolines ap-
pear in the order s`, sr and their bottom ends appear
in the reverse order. We define the multi-set of inter-
sections so that the two pseudolines form 4n regions:

SR(IS) := {sl, sr}4n−1.

Then the two pseudolines intersect 4n−2 closed regions
and the top and bottom regions enclosed by s` and sr.
See Figure 3. We call the ith region from the top the
ith room.

Later, we use two rooms to represent an assignment
of each variable. More precisely, we use the (4i − 3)rd
and (4i− 1)th rooms to represent the assignment of the
variable xi for i = 1, 2, . . . , n.

Drawer gadget

We next define a drawer gadget, which consists
of 4n pseudolines d1, d

′
1, d2, d

′
2, . . . , d2n, d

′
2n and a

multi-set SD(IS) of intersections. The top ends
of the pseudolines are arranged in the order
d′2n, d2n, d

′
2n−1, d2n−1, . . . , d

′
1, d1 in the left region of

the pseudolines of the room gadget and their bot-
tom ends are arranged in the reverse order, namely
d1, d

′
1, d2, d

′
2, . . . , d2n, d

′
2n (see Figure 4).

We define SD(IS) such that di and d′i for each i =
1, 2, . . . , 2n come to the (2i−1)th and (2i)th rooms and
leave the rooms, respectively. Besides, every pseudoline
in the drawer gadget crosses with all other pseudolines
except itself in the gadget exactly once. The formal
definition of SD(IS) is as follows:

SD(IS) :=

{{di, di′}, {di, d′i′} | i, i′ = 1, 2, . . . , 2n and i < i′}
∪ {{di, d′i} | i = 1, 2, . . . , 2n}
∪ {{d′i, di′}, {d′i, d′i′} | i, i′ = 1, 2, . . . , 2n and i < i′}
∪ {{di, s`}2 | i = 1, 2, . . . , 2n}.
∪ {{d′i, sr}2 | i = 1, 2, . . . , 2n}.

sl srd1d2d3d4 d’d’d’

d1 d2 d3 d4
slsr

234 d’1

d’1 d’2 d’3 d’4

Figure 4: Drawer gadget.

Figure 4 shows an example of pseudolines of a drawer
gadget and a room gadget. From the definition of
SD(IS), one can observe the form of a pseudoline in
the drawer gadget, as follows. First, di for each i =
1, 2, . . . , 2n crosses with every di′ and d′i′ with i′ < i.
Then di crosses with s` two times. That is, di comes
to (2i − 1)th room and leaves it. Then di crosses with
every di′ with i′ > i and every d′i′′ with i′′ ≥ i. As a
result, the bottom end of di is (2i − 1)th one from the
left among the pseudolines of the drawer gadget. The
shape of d′i for each i = 1, 2, . . . , 2n is similar.

Now, we explain why di and d′i for i = 1, 2, . . . , 2n
form the above shape more formally. For any y-
coordinate, a pseudoline di (and d′i) is rightmost if, in
the y-coordinate, the x-coordinate of di (and d′i) is the
largest among all the pseudolines in a drawer gadget.
The rightmost y-coordinate set of di (and d′i) is the set
of the y-coordinates in which di (and d′i) is rightmost.
From the definition of a drawer gadget, the pseudolines
in the drawer gadget cross each other exactly once and
the order of the bottom ends of the pseudolines is the
reverse order of their top ends. Hence, it can be ob-
served that a rightmost y-coordinate set of a pseudoline
always forms an open interval. Since s` crosses with
d1, d2, . . . , d2n and does not cross with d′1, d

′
2, . . . , d

′
2n,

s` crosses with di in a y-coordinate in the rightmost
y-coordinate set of di. Similarly, sr crosses with d′i in
a y-coordinate in the rightmost y-coordinate set of d′i.
Therefore, the drawing of the pseudolines of a drawer
gadget and a room gadget is unique, as shown in Fig-
ure 4.

63

30th Canadian Conference on Computational Geometry, 2018

Variable gadget

Here, let us define a variable gadget consisting of n pseu-
dolines and a multi-set SX(IS) of intersections. We cre-
ate a pseudoline p(xi) for each variable xi, and arrange
their top ends in the order p(x1), p(x2), . . . , p(xn), and
all the top ends appear in the right of sr. We also define
the order of their bottom ends as the same one.

Let us explain the outline of the form of p(xi) (Fig-
ure 5). p(xi) crosses with d2i−1 and d2i but does not
cross with s`. Hence, p(xi) crosses the two pseudolines
in only the coresponding rooms. First, the pseudo-
line p(xi) crosses with other pseudolines to approach
the room gadget. Then, p(xi) comes to and leaves two
rooms one by one. In the rooms, p(xi) crosses with d2i−1
and d2i. Finally, p(xi) crosses with other pseudolines to
go back to its the original position. Now, we define the
multi-set S(p(xi)) of intersections for p(xi) as follows:

S(p(xi)) :={p(xi), sr}4 ∪ {p(xi), d2i−1}2 ∪ {p(xi), d2i}2

∪
i−1⋃

i′=1

{p(xi), p(xi′)}2.

Let us explain the shape of p(xi) more carefully. The
multi-set S(p(xi)) does not include {p(xi), s`}, and
hence p(xi) cannot enter the left region of s`. However,
S(p(xi)) includes both {p(xi), d2i−1}2 and {p(xi), d2i}2.
Hence, p(xi) comes to the (4i − 3)rd and (4i − 1)th
rooms to cross with d2i−1 and d2i, respectively. To ap-
proach the rooms, p(xi) crosses with p(xi−1), p(xi−2),
. . . , p(x1). Then, p(xi) arrives at the region next to the
target rooms. First, p(xi) comes to the (4i−3)rd room,
crosses with d2i−1 two times in the room, and leaves the
room. Next, p(xi) comes to the (4i−1)th room, crosses
with d2i two times in the room, and leaves the room.
Then, to go back to the original position, p(xi) crosses
with p(x1), p(x2), . . . , p(xi−1) again.

We show an example in Figure 5. Note that, since
p(xi) does not cross with s`, it has to cross with pseu-
dolines of a drawer gadget only in the rooms to which
the pseudolines come.

Now, let us define the multi-set of intersections of a
variable gadget:

SX(IS) :=

n⋃

i=1

S(p(xi)).

Clause gadget

A clause gadget consists of m pseudolines correspond-
ing to the clauses in C and a multi-set SC(IS) of inter-
sections. We create a pseudoline p(Cj) for each clause
Cj ∈ C. The order of the top ends of the pseudolines is
p(C1), p(C2), . . . , p(Cm) between the top ends of sr and
p(x1) (See Figure 6). The order of the bottom ends of

p(x2)p(x1)sl srd1d2d3d4 d’1d’2d’3d’4

d1 d2 d3 d4d’1 d’2 d’3 d’4 slsr p(x2)p(x1)

Figure 5: An example of a variable gadget for n = 2.

the pseudolines is the same as the top ends. The bot-
tom ends are arranged between the bottom ends of sr
and p(x1) (See Figure 6).

We design a multi-set of intersections for p(Cj) for
j = 1, 2, . . . ,m so that p(Cj) forms the shape below. If
Cj includes a positive literal of xi, then p(Cj) comes
to and leaves the (4i − 3)rd room. If Cj includes a
negative literal of xi, p(Cj) comes to and leaves the
(4i − 1)th room. Otherwise, Cj includes neither the
positive nor negative literals of xi, p(Cj) comes to nei-
ther the (4i− 3)rd nor (4i− 1)th rooms. To force p(Cj)
to be such a shape, we define a multi-set of intersec-
tions, as follows. We denote by L(Cj) the set of literals
in Cj . Let L(Cj) = {`j,1, `j,2, `j,3}. For each literal
`j,p, p ∈ {1, 2, 3}, we define the following multi-set of
intersections.

S(`j,p, Cj) :={{p(Cj), p(Cj′)}2 | j′ < j ∧ `j,p /∈ L(Cj′)}
∪ {{p(Cj), d2i−1}2 | `j,p = xi}
∪ {{p(Cj), d2i}2 | `j,p = xi}
∪ {{p(Cj), sr}2}

The intersections in the first set of S(`j,p, Cj) are used
to approach the room gadget corresponding to `j,p. If
`j,p ∈ L(Cj′) holds, p(Cj) and p(Cj′) has no intersec-
tion. The intersections in the second and third sets are
used to force p(Cj) to come to the rooms corresponding
to the literals of xi.

Besides, we define the following multi-set of intersec-
tions for p(Cj) and p(xi):

S(`j,p, Cj , xi) :=

{{p(Cj), p(xi)}4 | `j,p 6= xi ∧ `j,p 6= xi}
∪ {{p(Cj), p(xi)}2 | `j,p = xi ∨ `j,p = xi}

64

CCCG 2018, Winnipeg, Canada, August 8–10, 2018

The intersections above are used so that p(xi) comes to
the corresponding the room gadget.

Now we define the set of intersections for clauses, as
follows:

SC(IS) :=



m⋃

j=1

3⋃

p=1

S(`j,p, Cj)


 ∪




n⋃

i=1

m⋃

j=1

3⋃

p=1

S(`j,p, Cj , xi)


 .

We give an example shown in Figure 6. The exam-
ple shows an reduced instance from the One-in-Three
3SAT instance (X,C), where X = {x1, x2, x3, x4}, C =
{C1, C2}, C1 = (x1 ∨x2 ∨x3), and C2 = (x2 ∨x3 ∨x4).

Assignment gadget

The last gadget is the one for representing a truth-false
assignment of variables. We define an assignment gad-
get consisting of a pseudoline a and a set of intersections
for a. The top and bottom ends of a are respectively lo-
cated in the left of d′2n and d1 (see Figure 6). We define
that a crosses with each p(xi) twice for i = 1, 2, . . . , n
and a crosses with s` 2n times but does not cross with
sr to make a cross with each p(xi) in either (4i − 3)th
or (4i− 1)th room. If a crosses with p(xi) in (4i− 3)rd
room, then it means that xi is assigned true. Other-
wise, if a crosses with p(xi) in (4i− 1)th room, then it
means that xi is assigned false. Besides, we force that a
crosses with each p(Cj) two times. This corresponds to
make the clause Cj true. The pseudoline a touches each
Cj exactly once, and hence this assignment corresponds
to a solution of an instance of One-in-Three 3SAT.
We can define the multi-set of intersections which im-
plements such shape of a:

SA(IS) :=

(
n⋃

i=1

{a, p(xi)}2
)
∪
(

2n⋃

i=1

({a, di}2n, {a, d′i}2n)

)

∪




m⋃

j=1

{a,Cj}2

 ∪ {a, s`}2n.

The first term is for the intersections with p(xi) for
each i = 1, 2, . . . , n. The second term is the intersections
with the pseudolines in the drawer gadget to approach
the rooms and to go back to the original position. Note
that a does not have to go back to the leftmost region
for each entrance to a room. In Figure 6, a goes back to
the leftmost region immediately after each entrance to
a room. This is just an example of the form of a. The
third term is for the intersections with the pseudolines in
the clause gadget. The last term is for the intersections
with s` to come to rooms. The pseudoline a cannot go
inside the right region of s` since there is no intersection

{a, s`}. Hence, a has to cross with the pseudolines of
the variables and the clauses in the rooms.

Now, we are ready to describe a reduced instance of
Ladder-Lottery Realization. Given an instance
IS = (X,C) of One-in-Three 3SAT, we construct an
instance IR = (π(IS), S(IS)), where

π(IS) = (a, d1, d
′
1, d2, d

′
2, . . . , d

′
2n, d2n, sr, s`,

p(C1), p(C2), . . . , p(Cm),

p(x1), p(x2), . . . , p(xn))

and

S(IS) = SR(IS) ∪ SD(IS) ∪ SX(IS) ∪ SC(IS) ∪ SA(IS).

Using the reduction above, one can show NP-
completeness of Ladder-Lottery Realization.

Theorem 1 Ladder-Lottery Realization is NP-
complete.

4 Positive results

In this section, we give positive results. Let IR = (π, S)
be an instance of Ladder-Lottery Realization,
where π is a permutation of [n] and S is a multi-set of
intersections. If {i, j}k ∈ S, we say that the multiplicity
of {i, j} in S is k.

Theorem 2 Let IR = (π, S) be an instance of
Ladder-Lottery Realization. If the multiplicity of
every intersection in S is 1, one can determine whether
or not IR is a yes-instance in polynomial time.

Now, let us consider a variant of Ladder-Lottery
Realization problem. Suppose that we are given only
a multi-set S of intersections each of which is a pair of
elements in [n]. Then, AnyPerm-Ladder-Lottery
Realization asks whether or not there is a ladder-
lottery of a permutation in which each intersection in
S appears exactly once. Note that, in this problem, we
have no permutation as an input. The problem simply
asks whether or not there is a ladder-lottery of “some
permutation” for S.

Theorem 3 Let S be a multi-set of intersections. If
the multiplicity of every intersection in S is 1, one can
solve AnyPerm-Ladder-Lottery Realization for
S in polynomial time.

In the case that the multiplicity of every intersection
is odd, we can solve Ladder-Lottery Realization
in polynomial time.

Theorem 4 Let IR = (π, S) be an instance of
Ladder-Lottery Realization. If the multiplicity
of every intersection in S is odd, one can determine
whether IR is a yes-instance in polynomial time.

65

30th Canadian Conference on Computational Geometry, 2018

sl srd5d6d7d8 p(x2)p(x1)d1d2d3d4 p(x4)p(x3)a p(C1)
p(C2)

d5 d6 d7 d8d1 d2 d3 d4a sl sr p(C1)
p(C2)

p(x1) p(x2) p(x3) p(x4)

d’d’d’d’d’d’d’d’

d’ d’ d’ d’ d’ d’ d’ d’

12345678

2 3 4 5 6 7 81

Figure 6: Reduced instance from (X,C) of a One-in-Three 3SAT instance, where X = {x1, x2, x3, x4}, C =
{C1, C2}, C1 = (x1∨x2∨x3), and C2 = (x2∨x3∨x4). The assignment gadget represents (x1, x2, x3, x4) = (0, 0, 1, 0).

66

CCCG 2018, Winnipeg, Canada, August 8–10, 2018

References

[1] É. Bonnet, T. Miltzow, and P. Rza̧żewski. Complexity
of token swapping and its variants. Algorithmica, pages
1–27, Oct 2017.

[2] M. Garey and D. Johnson. Computers and Intractabil-
ity: A Guide to the Theory of NP-Completeness. Free-
man, 1979.

[3] T. Horiyama, K. Wasa, and K. Yamanaka. Recon-
figuring optimal ladder lotteries. In Proceedings of
the 10th Japanese-Hungarian Symposium on Discrete
Mathematics and Its Applications, pages 217–224, May
2017.

[4] J. Kawahara, T. Saitoh, and R. Yoshinaka. The time
complexity of the token swapping problem and its par-
allel variants. In Proceeding of The 11th International
Conference and Workshops on Algorithms and Com-
putation, volume 10167 of Lecture Notes in Computer
Science, pages 448–459, 2017.

[5] J. Kawahara, T. Saitoh, R. Yoshinaka, and S. Minato.
Counting primitive sorting networks by πdds. Hokkaido
University, Division of Computer Science, TCS Tech-
nical Reports, TCS-TR-A-11-54, 2011.

[6] T. Miltzow, L. Narins, Y. Okamoto, G. Rote,
A. Thomas, and T. Uno. Approximation and hard-
ness of token swapping. In Proceeding of 24th Annual
European Symposium on Algorithms, ESA 2016, pages
66:1–66:15, 2016.

[7] N. Sloane. The on-line encyclopedia of integer se-
quences. Published electronically at https://oeis.

org/A006245. Accessed: 2018-05-02.

[8] K. Yamanaka, E. D. Demaine, T. Ito, J. Kawa-
hara, M. Kiyomi, Y. Okamoto, T. Saitoh, A. Suzuki,
K. Uchizawa, and T. Uno. Swapping labeled tokens on
graphs. Theoretical Computer Science, 586:81–94, 2015.

[9] K. Yamanaka, T. Horiyama, D. Kirkpatrick, Y. Otachi,
T. Saitoh, R. Uehara, and Y. Uno. Swapping colored
tokens on graphs. Theoretical Computer Science, 729:1–
10, 2018.

[10] K. Yamanaka and S. Nakano. Efficient enumeration of
all ladder lotteries with k bars. IEICE Transactions
on Fundamentals of Electronics, Communications and
Computer Sciences, 97-A(6):1163–1170, 2014.

[11] K. Yamanaka and S. Nakano. Enumeration, count-
ing, and random generation of ladder lotteries. IEICE
Transactions Information and Systems, 100-D(3):444–
451, 2017.

[12] K. Yamanaka, S. Nakano, Y. Matsui, R. Uehara, and
K. Nakada. Efficient enumeration of all ladder lotter-
ies and its application. Theoretical Computer Science,
411:1714–1722, 2010.

67

CCCG 2018, Winnipeg, Canada, August 8–10, 2018

Away from Rivals

Kazuyuki Amano ∗ Shin-ichi Nakano †

Abstract

Let P be a set of n points, and d(p, q) be the distance
between a pair of points p, q in P . We assume the dis-
tance is symmetric and satisfies the triangle inequality.
For a point p ∈ P and a subset S ⊂ P with |S| ≥ 3, the
2-dispersion cost cost2(p, S) of p with respect to S is
the sum of (1) the distance from p to the nearest point
in S \ {p} and (2) the distance from p to the second
nearest point in S \ {p}. The 2-dispersion cost cost2(S)
of S ⊂ P with |S| ≥ 3 is minp∈S{cost2(p, S)}.

In this paper we give a simple 1/8−approximation
algorithm for the 2-dispersion problem.

1 Introduction

Many facility location problems compute locations min-
imizing some cost or distance [4, 5]. While in this paper
we consider a dispersion problem which computes loca-
tions maximizing some cost or distance [1, 2, 3, 6, 9, 10,
11].

Dispersion problems has an important application for
information retrieval. It is desirable to find a small sub-
set of a large data set, so that the small subset have a
certain diversity. Such a small subset may be a good
sample to overview the large data set [2], and diver-
sity maximization has became an important concept in
information retrieval.

A typical dispersion problem is as follows. Given a
set P of points and an integer k, find k points subset
S of P maximizing a designated cost. If the cost is
the minimum distance between a pair of points in S
then it is called the max-min dispersion problem, and
if the cost is the sum of the distances between all pair
of points in S then it is called the max-sum dispersion
problem. Unfortunately both problems are NP-hard,
even the distance satisfies the triangle inequality [9].

In this paper we consider a recently proposed related
problem called the 2-dispersion problem [7, 8]. We give
a simple approximation algorithm for the 2-dispersion
problem, where the cost of a point in S is the sum of the
distances to the nearest two points in S, and the cost of
S is the minimum among the cost of points in S. Intu-
itively we wish to locate our k chain stores so that each

∗Department of Computer Science, Gunma University,
amano@cs.gunma-u.ac.jp

†Department of Computer Science, Gunma University,
nakano@cs.gunma-u.ac.jp

store is located far away from the nearest two “rival”
stores to avoid self-competition. We call the problem
2-dispersion problem. In [7, 8] more general variants,
including max-min and max-sum dispersion problems
are studied.

In this paper we give a simple approximation algo-
rithm for the 2-dispersion problem defined above. Our
algorithm computes a 1/8-approximate solution for the
2-dispersion problem. This is the first approximation
algorithm for the 2-dispersion problem.

The remainder of the paper is organized as follows.
Section 2 gives some definitions. Section 3 gives our sim-
ple approximation algorithm for the 2-dispersion prob-
lem. In Section 4 we consider more general problem
called c-dispersion problem. Finally Section 4 is a con-
clusion.

2 Definitions

Let P be a set of n points, and d(p, q) be the distance be-
tween a pair of points p, q in P . We assume that the dis-
tance is symmetric and satisfies the triangle inequality,
meaning d(p, q) = d(q, p) and d(p, q) + d(q, r) ≥ d(p, r).

For a point p ∈ P and a subset S ⊂ P with |S| ≥ 3,
the 2-dispersion cost cost2(p, S) of p with respect to S is
the sum of (1) the distance from p to the nearest point
in S \ {p} and (2) the distance from p to the second
nearest point in S \ {p}. The 2-dispersion cost cost2(S)
of S ⊂ P with |S| ≥ 3 is minp∈S{cost2(p, S)}.

Given P, d and an integer k ≥ 3, the 2-dispersion
problem is the problem to find the subset S of P with
|S| = k such that the 2-dispersion cost cost2(S) is max-
imized.

3 Greedy Algorithm

Now we give an approximation algorithm to solve the 2-
dispersion problem. See Algorithm 1. The algorithm
is a simple greedy algorithm.

Now we consider the approximation ratio of the solu-
tion obtained by the algorithm.

Let S∗ ⊂ P be the optimal solution for a given
2-dispersion problem, and S ⊂ P the solution ob-
tained by the algorithm above. We are going to show
cost2(S) ≥ cost2(S

∗)/8, namely the approximation ra-
tio of our algorithm is at least 1/8.

68

30th Canadian Conference on Computational Geometry, 2018

Algorithm 1 greedy(P, d, k)

compute S3 ⊂ P consisting of the three points
p1, p2, p3 with maximum cost cost2(S3)
for i = 4 to k do

find a point pi ∈ P \ Si−1 such that cost2(pi, Si−1)
is maximized
Si = Si−1 ∪ {pi}

end for
output S

Let Dp be the disk with center at p and the radius
r∗ = cost2(S

∗)/4. Let D∗ = {Dp|p ∈ S∗}. We have the
following three lemmas.

Lemma 1 For any p ∈ P , Dp properly contains at
most two points in S∗.

Proof. Assume for a contradiction that Dp properly
contains three points p1, p2, p3 ∈ S∗. Now d(p1, p2) <
2r∗ and d(p1, p3) < 2r∗ hold, then cost2(p1, S

∗) <
d(p1, p2) + d(p1, p3) < 4r∗ = cost2(S

∗), a contradic-
tion. �

Lemma 2 For each i = 3, 4, . . . , k, cost2(pi, Si−1) ≥ r∗

holds.

Proof. Clearly the claim holds for i = 3. Assume j −
1 < k and the claim holds for each i = 3, 4, . . . , j − 1.
Now we consider for i = j. We have the following two
cases.
Case 1: There is a point p∗ in S∗ such that Dp∗

properly contains at most one point in Sj−1. Note
that Dp∗ is the disk with center at p∗ and the radius
r∗ = cost2(S

∗)/4.
Then the distance from p∗ to the 2nd nearest point

in Sj−1 is at least r∗ so cost2(p
∗, Sj−1) ≥ r∗. Since the

algorithm choose pj in a greedy manner, cost2(pj , Sj−1)
is also at least r∗. Thus cost2(pj , Sj−1) ≥ r∗ holds.
Case 2: Otherwise. (For each point p∗ in S∗, Dp∗

contains at least two points in Sj−1.)
We now count the number N of distinct pairs (p∗, q)

with (1) p∗ ∈ S∗, (2) q ∈ Sj−1 and (3) d(p∗, q) < r∗.
By Lemma 1 each Dq with q ∈ Sj−1 contains at most

two points in S∗. Thus N ≤ 2(j − 1) < 2k. Since Case
1 does not occur, each Dp∗ with p∗ ∈ S∗ contains two
or more points in Sj−1, so N ≥ 2k. A contradiction.

Thus Case 2 never occurs. �

Lemma 3 For each i = 3, 4, . . . , k, cost2(Si) ≥ r∗/2
holds.

Proof. Clearly the claim holds for i = 3. Assume that
j−1 < k and the claim holds for each i = 3, 4, . . . , j−1.
Now we consider for i = j.

To prove cost2(Sj) ≥ r∗/2 we only need to show for
any three points u, v, w in Sj , d(u, v) + d(u,w) ≥ r∗/2.
We have the following four cases.

If none of u, v, w is pj , then d(u, v) + d(u,w) ≥ r∗/2
is clearly held as it was held in Sj−1.

If u is pj , then by Lemma 2 d(pj , v) + d(pj , w) ≥
cost2(pj , Sj−1) ≥ r∗. Thus d(u, v) + d(u,w) ≥ r∗/2
holds.

If v is pj , assume for a contradiction that d(u, pj) +
d(u,w) < r∗/2. Then clearly d(u, pj) = d(pj , u) <
r∗/2 and by the triangle inequality d(pj , w) ≤
d(pj , u) + d(u,w) = d(u, pj) + d(u,w) < r∗/2. Then
cost2(pj , Sj−1) ≤ d(pj , u)+ d(pj , w) < r∗, contradiction
to Lemma 2. Thus if v is pj then d(u, pj) + d(u,w) ≥
r∗/2 holds.

If w is pj , then we can prove the claim in a similar
manner to the case v is pj . �

Since Sk = S, we have the following theorem.

Theorem 4 cost2(S) ≥ cost2(S
∗)/8.

Thus the approximation ratio of Algorithm 1 is at
least 1/8.

Is the approximation ratio above best possible? We
now provide an example for which our algorithm com-
putes a solution with approximation ratio asymp-
totically 1/4. See an example in Fig.1. P =
{q1, q2, q3, q4, q5, q6, r, s} and k = 6 for which our algo-
rithm computes a solution S = {q1, q2, . . . , q6}, where
the points are chosen in this order. The distances be-
tween points are as follows. d(q1, q2) = d(q2, q3) =
d(q3, q1) = 1. q5 is the midpoint between q1 and
q2. q6 is on the line segment between q1 and q3 and
d(q1, q6) = 0.75 and d(q3, q6) = 0.25. Finally we set
d(q1, r) = d(q2, s) = d(q3, q4) = ǫ, where ǫ is small
enough.

Note that cost2(S) = cost2(q3, S) ≤ 0.25 + ǫ while
cost2(S

∗) = 1 for S∗ = {q1, q2, q3, q4, r, s}. Thus the
approximation ratio is 1/4.

Thus we still have a chance to improve the approxi-
mation ratio of our simple greedy algorithm, or we can
find an example of P for which our algorithm generates
a solution with approximation ratio smaller than 1/4.

4 Generalization

The 2-dispersion problem can be naturally generalized
to the c-dispersion problem as follows.

For a point p ∈ P and a subset S ⊂ P with |S| ≥ c+1,
the c-dispersion cost costc(p, S) of p ∈ S with respect
to S is the sum of the distances from p to the nearest
c points in S \ {p}. The c-dispersion cost costc(S) of
S ⊂ P with |S| ≥ c + 1 is minp∈S{costc(p, S)}. Given
P, d and an integer k ≥ c+ 1, the c-dispersion problem
is the problem to find the subset S of P with |S| = k
such that the c-dispersion cost costc(S) is maximized.

We can naturally generalize our greedy algorithm in
Section 3 to the algorithm to solve the c-dispersion prob-
lem. See Algorithm 2.

69

CCCG 2018, Winnipeg, Canada, August 8–10, 2018

q
1

q
2q

5

q
3

q

r s

6

q
4

Figure 1: An example of a solution S = {q1, q2, . . . , q6}
with approximation ratio 1/4.

Algorithm 2 greedy-c(P, d, k)

compute Sc+1 ⊂ P consisting of the c + 1 points
p1, p2, . . . , pc+1 with maximum cost costc(Sc)
for i = c+ 2 to k do

find a point pi ∈ P \ Si−1 such that costc(pi, Si−1)
is maximized
Si = Si−1 ∪ {pi}

end for
output S

Let S∗ be the optimal solution for a given c-dispersion
problem, and S ⊂ P the solution obtained by the greedy
algorithm above. We now consider the approximation
ratio of the solution obtained by the greedy algorithm.

Let Dp be the disk with center at p and the radius
r∗∗ = costc(S

∗)/(2c). Let D∗∗ = {Dp|p ∈ S∗}. We
have the following three lemmas.

Lemma 5 For any p ∈ P , Dp properly contains at
most c points in S∗.

Proof. Assume for a contradiction that Dp properly
contains c + 1 points, say q1, q2, . . . , qc+1 ∈ S∗. Now
d(qc+1, qt) < 2r∗∗ holds for each t = 1, 2, . . . , c.
Then cost2(qc+1, S

∗) < d(qc+1, q1) + d(qc+1, q2) + · · ·+
d(qc+1, qc) < 2cr∗∗ = costc(S

∗), a contradiction. �

Lemma 6 For each i = c + 1, c + 2, . . . , k,
costc(pi, Si−1) ≥ r∗∗ holds.

Proof. Clearly the claim holds for i = c + 1. Assume
j − 1 < k and the claim holds for each i = c + 1, c +
2, . . . , j − 1. Now we consider for i = j. We have the
following two cases.
Case 1: There is a point p∗ in S∗ such that Dp∗ prop-
erly contains at most c− 1 point in Sj−1.

Then the distance from p∗ to the c-th nearest point in
Sj−1 is at least r∗∗ so costc(p

∗, Sj−1) ≥ r∗∗. Since the

algorithm choose pj in a greedy manner, costc(pj , Sj−1)
is also at least r∗∗. Thus costc(pj , Sj−1) ≥ r∗∗ holds.
Case 2: Otherwise.

We now count the number N of distinct pairs (p∗, q)
with (1) p∗ ∈ S∗, (2) q ∈ Sj−1 and (3) d(p∗, q) < r∗∗.

By Lemma 5 each Dq with q ∈ Sj−1 contains at most
c points in S∗. Thus N ≤ c(j − 1) < ck. Since Case
1 does not occur, each Dp∗ with p∗ ∈ S∗ contains c or
more points in Sj−1, so N ≥ ck. A contradiction.

Thus Case 2 never occurs. �

Lemma 7 For each i = c+ 1, c+ 2, . . . , k, costc(Si) ≥
r∗∗/c holds.

Proof. Clearly the claim holds for i = c + 1. Assume
that j−1 < k and the claim holds for each i = c+1, c+
2, . . . , j − 1. Now we consider for i = j.

For any point u in Sj we show costc(u, Sj) ≥ r∗∗/c
holds. We have three cases. Let S(u) be the set of point
in Sj \ {u} consisting of the nearest c points to u.

If pj /∈ {u} ∪ S(u), then clearly costc(u, Sj) ≥ r∗∗/c
holds, since costc(u, Sj−1) ≥ r∗∗/c holds.

If pj = u, then by Lemma 6 costc(u, Sj) ≥ r∗∗ holds,
so costc(u, Sj) ≥ r∗∗/c holds.

If pj ∈ S(u), then assume for a contradiction that
costc(u, Sj) < r∗∗/c. Let S(u) = {q1, q2, . . . , qc} and
qx = pj . Then clearly d(u, pj) < costc(u, Sj) <
r∗∗/c and by the triangle inequality for each t 6= x
d(pj , qt) ≤ d(pj , u) + d(u, qt) = costc(u, Sj) < r∗∗/c.
Then costc(pj , Sj) ≤ d(pj , q1)+d(pj , q2)+ · · ·+d(pj , qc)
< r∗∗, contradiction to Lemma 6. �

Since Sk = S, we have the following theorem.

Theorem 8 costc(S) ≥ costc(S
∗)/(2c2).

5 Conclusion

In this paper we have presented a simple
1/8−approximation algorithm to solve the 2-dispersion
problem. The running time of the algorithm is
O(n3). Similarly we have presented a simple
1/(2c2)−approximation algorithm to solve the c-
dispersion problem. The running time of the algorithm
is O(nc+1).

References

[1] C. Baur and S.P. Fekete, Approximation of Geo-
metric Dispersion Problems, Pro. of APPROX ’98,
Pages 63-75 (1998).

[2] A. Cevallos, F. Eisenbrand and R. Zenklusen, Local
search for max-sum diversification, Proc. of SODA
’17, pp.130-142 (2017).

70

30th Canadian Conference on Computational Geometry, 2018

[3] B. Chandra and M. M. Halldorsson, Approxima-
tion Algorithms for Dispersion Problems, J. of Al-
gorithms, 38, pp.438-465 (2001).

[4] Z. Drezner, Facility Location: A Survey of Applica-
tions and Methods, Springer (1995).

[5] Z. Drezner and H.W. Hamacher, Facility Location:
Applications and Theory, Springer (2004).

[6] R. Hassin, S. Rubinstein and A. Tamir, Approxi-
mation Algorithms for Maximum Dispersion, Oper-
ation Research Letters, 21, pp.133-137 (1997).

[7] T. L. Lei, R. L. Church, A unified model for dispers-
ing facilities, Geographical Analysis, 45, pp.401-418
(2013).

[8] T. L. Lei, R. L. Church, On the unified disper-
sion problem: Efficient formulations and exact algo-
rithms, European Journal of Operational Research,
241, pp.622-630 (2015).

[9] S. S. Ravi, D. J. Rosenkrantz and G. K. Tayi,
Heuristic and Special Case Algorithms for Disper-
sion Problems, Operations Research, 42, pp.299-310
(1994).

[10] M. Sydow, Approximation Guarantees for Max
Sum and Max Min Facility Dispersion with Param-
eterised Triangle Inequality and Applications in Re-
sult Diversification, Mathematica Applicanda, 42,
pp.241-257 (2014).

[11] D. W. Wang and Yue-Sun Kuo, A study on Two
Geometric Location Problems, Information Process-
ing Letters, 28, pp.281-286 (1988).

71

CCCG 2018, Winnipeg, Canada, August 8–10, 2018

An efficient approximation for point-set diameter in higher dimensions

Mahdi Imanparast∗ Seyed Naser Hashemi∗ Ali Mohades∗†

Abstract

In this paper, we study the problem of computing the
diameter of a set of n points in d-dimensional Euclidean
space for a fixed dimension d, and propose a new (1+ε)-
approximation algorithm with O(n+ 1/εd−2) time and
O(n) space, where 0 < ε 6 1. We also show that the
proposed algorithm can be modified to a (1 + O(ε))-

approximation algorithm with O(n+ 1/ε
2d
3 − 1

2) running
time. These results provide some improvements in com-
parison with existing algorithms in terms of simplicity,
and data structure.

1 Introduction

Given a finite set S of n points, the diameter of S, de-
noted by D(S) is the maximum distance between two
points of S. Namely, we want to find a diametrical pair
p and q such that D(S) = maxp,q∈S(||p− q||). Comput-
ing the diameter of a set of points has a large history,
and it may be required in various fields such as database,
data mining, and vision. A trivial brute-force algorithm
for this problem takes O(dn2) time, but this is too slow
for large-scale data sets that occur in the fields. Hence,
we need a faster algorithm which may be exact or is an
approximation.

By reducing from the set disjointness problem, it
can be shown that computing the diameter of n points
in Rd requires Ω(n log n) operations in the algebraic
computation-tree model [1]. It is shown by Yao that
it is possible to compute the diameter in sub-quadratic
time in each dimension [2]. There are well-known so-
lutions in two and three dimensions. In the plane, this
problem can be computed in optimal time O(n log n),
but in three dimensions, it is more difficult. Clarkson
and Shor [3] present an O(n log n)-time randomized al-
gorithm. Their algorithm needs to compute the inter-
section of n balls (with the same radius) in R3. It may
be slower than the brute-force algorithm for the most
practical data sets, and it is not an efficient method for
higher dimensions because the intersection of n balls
with the same radius has a large size. Some deter-

∗Department of Mathematics and Computer Sci-
ence, Amirkabir University of Technology, Tehran, Iran,
m.imanparast@aut.ac.ir, nhashemi@aut.ac.ir
†Laboratory of Algorithms and Computational Geom-

etry, Amirkabir University of Technology, Tehran, Iran,
mohades@aut.ac.ir

ministic algorithms with running time O(n log3 n) and
O(n log2 n) are found for this problem in three dimen-
sions. Finally, Ramos [4] introduced an optimal deter-
ministic O(n log n)-time algorithm in R3.

In the absence of fast algorithms, many attempts
have been made to approximate the diameter in low
and high dimensions. A 2-approximation algorithm in
O(dn) time can be found easily by selecting a point of
S and then finding the farthest point of it by brute-
force manner for the dimension d. The first non-
trivial approximation algorithm for the diameter is pre-
sented by Egecioglu and Kalantari [5] that approxi-
mates the diameter with factor

√
3 and operations cost

O(dn). They also present an iterative algorithm with
t ≤ n iterations and the cost O(dn) for each itera-

tion that has approximate factor
√

5− 2
√

3. Agar-
wal et al. [6] present a (1 + ε)-approximation algorithm
in Rd with O(n/ε(d−1)/2) running time by projection
to directions. Barequet and Har Peled [7] present a√
d-approximation diameter method with O(dn) time.

They also describe a (1 + ε)-approximation approach
with O(n + 1/ε2d) time. They show that the running
time can be improved to O(n + 1/ε2(d−1)). Similarly,
Har Peled [8] presents an approach which for the most
inputs is able to compute very fast the exact diame-
ter, or an approximation with O((n + 1/ε2d) log 1/ε)
running time. Although, in the worst case, the algo-
rithm running time is still quadratic, and it is sensitive
to the hardness of the input. Chan [9] observes that
a combination of two approaches in [6] and [7] yields
a (1 + ε)-approximation with O(n + 1/ε3(d−1)/2) time

and a (1 + O(ε))-approximation with O(n + 1/εd−
1
2)

time. He also introduces a core-set theorem, and shows
that using this theorem, a (1 + O(ε))-approximation

in O(n + 1/εd−
3
2) time can be found [10]. Recently,

Chan [11] has proposed an approximation algorithm

with O((n/
√
ε + 1/ε

d
2+1)(log 1

ε)O(1)) time by applying
the Chebyshev polynomials in low constant dimensions,
and Arya et al. [12] show that by applying an efficient
decomposition of a convex body using a hierarchy of
Macbeath regions, it is possible to compute an approx-

imation in O(n log 1
ε + 1/ε

(d−1)
2 +α) time, where α is an

arbitrarily small positive constant.

1.1 Our results

In this paper, we propose a new (1 + ε)-approximation
algorithm for computing the diameter of a set S of

72

30th Canadian Conference on Computational Geometry, 2018

Table 1: A summary on the complexity of some non-
constant approximation algorithm for the diameter of a
point set. Our results are denoted by +.

Ref. Approx. Factor Running Time

[6] 1 + ε O(
n

ε(d−1)/2
)

[7] 1 + ε O(n+ 1/ε2(d−1))
[8] 1 + ε O((n+ 1/ε2d) log 1

ε)

[9] 1 + ε O(n+ 1/ε
3(d−1)

2)
+ 1 + ε O(n+ 1/εd−2)

[9] 1 +O(ε) O(n+ 1/εd−
1
2)

[10] 1 +O(ε) O(n+ 1/εd−
3
2)

[11] 1 +O(ε) O((
n√
ε

+ 1/ε
d
2+1)(log 1

ε)O(1))

[12] 1 +O(ε) O(n log 1
ε + 1/ε

(d−1)
2 +α)

+ 1 +O(ε) O(n+ 1/ε
2d
3 − 1

2)

n points in Rd with O(n + 1/εd−2) time and O(n)
space, where 0 < ε 6 1. Moreover, we show that the
proposed algorithm can be modified to a (1 + O(ε))-

approximation algorithm with O(n+1/ε
2d
3 − 1

2) time and
O(n) space. As stated above, two new results have been
recently presented for this problem in [11] and [12]. It
should be noted that our algorithms are completely dif-
ferent in terms of computational technique. The poly-
nomial technique provided by Chan [11] is based on us-
ing Chebyshev polynomials and discrete upper envelope
subroutine [10], and the method presented by Arya et
al. [12] requires the use of complex data structures to
approximately answer queries for polytope membership,
directional width, and nearest-neighbor. While our al-
gorithms in comparison with these algorithms are sim-
pler in terms of understanding and data structure. We
have provided a summary on the non-constant approx-
imation algorithms for the diameter in Table 1.

2 The proposed algorithm

In this section, we describe our new approximation al-
gorithm to compute the diameter of a point set. In our
algorithm, we first find the extreme points in each co-
ordinate and compute the axis-parallel bounding box of
S, which is denoted by B(S). We use the largest length
side ` of B(S) to impose grids on the point set. In
fact, we first decompose B(S) to a grid of regular hy-
percubes with side length ξ, where ξ = ε`/2

√
d. We call

each hypercube a cell. Then, each point of S is rounded
to its corresponding central cell-point. See Figure 1.
In the following, we impose again an ξ1-grid to B(S)
for ξ1 =

√
ε`/2
√
d. We round each point of the rounded

point set Ŝ to its nearest grid-point in this new grid that

(a)

ξ

ξ

`

(b)

`

Figure 1: (a) A set of points in R2 and an ξ-grid. Initial
points are shown by blue points and their correspond-
ing central cell-points are shown by circle points. (b)
Rounded point set Ŝ.

results in a point set Ŝ1. Let, Bδ(p) be a hypercube with
side length δ and central-point p. We restrict our search
domain for finding diametrical pairs of the first rounded
point set Ŝ into two hypercubes B2ξ1(p̂1) and B2ξ1(q̂1)
corresponding to two diametrical pair points p̂1 and q̂1
in the point set Ŝ1. Let us use two point sets B1 and
B2 for maintaining points of the rounded point set Ŝ,
which are inside two hypercubes B2ξ1(p̂1) and B2ξ1(q̂1),
respectively (see Figure 2). Then, it is sufficient to find
a diameter between points of Ŝ, which are inside two
point sets B1 and B2. We use notation Diam(B1,B2)
for the process of computing the diameter of the point
set B1 ∪ B2. Altogether, we can present the following
algorithm.

Algorithm 1: APPROXIMATE DIAMETER (S, ε)
Input: a set S of n points in Rd and an error parameter ε.

Output: Approximate diameter D̃.
1: Compute the axis-parallel bounding box B(S) for

the point set S.
2: `← Find the length of the largest side in B(S).
3: Set ξ ← ε`/2

√
d and ξ1 ←

√
ε`/2
√
d.

4: Ŝ ← Round each point of S to its central-cell point
in a ξ-grid.

5: Ŝ1 ← Round each point of Ŝ to its nearest grid-point
in a ξ1-grid.

6: D̂1 ← Compute the diameter of the point set Ŝ1 by brute-
force manner, and simultaneously, a list of the diam-
etrical pairs (p̂1, q̂1), such that D̂1 = ||p̂1 − q̂1||.

7: Find points of Ŝ which are in two hypercubes B1 = B2ξ1 (p̂1)
and B2 = B2ξ1 (q̂1), for each diametrical pair (p̂1, q̂1).

8: D̂ ← Compute Diam(B1,B2), corresponding to each diamet-
rical pair (p̂1, q̂1) by brute-force manner and return the
maximum value between them.

9: D̃ ← D̂ + ε`/2.
10: Output D̃.

2.1 Analysis

In this subsection, we analyze the proposed algorithm.

Theorem 1 Algorithm 1 computes an approximate di-
ameter for a set S of n points in Rd in O(n + 1/εd−2)
time and O(n) space, where 0 < ε 6 1.

73

CCCG 2018, Winnipeg, Canada, August 8–10, 2018

`

ξ1

ξ1

B1

q̂1

p̂1

B2

D̂1

Figure 2: Points of the set Ŝ are shown by circle points
and their corresponding nearest grid-points in set Ŝ1 are
shown by blue square points.

Proof. Finding the extreme points in all coordinates
and finding the largest side of B(S) can be done in
O(dn) time. The rounding step takes O(d) time for
each point, and for all of them takes O(dn) time. But
for computing the diameter over the rounded point set
Ŝ1 we need to know the number of points in the set Ŝ1.
We know that the largest side of the bounding box B(S)
has length ` and the side length of each cell in ξ1-grid
is ξ1 =

√
ε`/2
√
d. On the other hand, the volume of

a hypercube of side length L in d-dimensional space is
Ld. Since, corresponding to each point in the point set
Ŝ1, we can take a hypercube of side length ξ1. There-
fore, in order to count the maximum number of points
inside the set Ŝ1, it is sufficient to calculate the number
of hypercubes of length ξ1 in a hypercube (bounding
box) with length `+ ξ1. See Figure 2. This means that
the number of grid-points in an imposed ξ1-grid to the
bounding box B(S) is at most

(`+ ξ1)d

(ξ1)d
=

(
2
√
d√
ε

+ 1

)d
= O

(
(2
√
d)d

ε
d
2

)
. (1)

So, the number of points in Ŝ1 is at most O((2
√
d)d/ε

d
2).

Hence, by the brute-force quadratic algorithm, we need
O((2

√
d)d/ε

d
2)2) = O((2

√
d)2d/εd) time for computing

all distances between grid-points of the set Ŝ1, and
its diametrical pair list. Then, for a diametrical pair
(p̂1, q̂1) in the point set Ŝ1, we compute two sets B1 and
B2. This work takes O(dn) time. In addition, for com-
puting the diameter of point set B1 ∪ B2, we need to
know the number of points in each of them. On the
other hand, the number of points in two sets B1 or B2
is at most

V ol(B2ξ1)

V ol(Bξ)
=

(2
√
ε`/2
√
d)d

(ε`/2
√
d)d

=
(2
√
ε)d

εd
=

(2)d

ε
d
2

. (2)

Hence, for computing Diam(B1,B2), we need

O(((2)d/ε
d
2)2) = O((2)2d/εd) time by brute-force

manner, but we might have more than one diamet-
rical pair (B1,B2). Since the point set Ŝ1 is a set

of grid-points, so we could have in the worst-case
O(2d) different diametrical pairs (B1,B2) in the point
set Ŝ1. This means that this step takes at most
O(2d · (2)2d/εd) = O((2

√
2)2d/εd) time. Now, we can

present the complexity of our algorithm as follows:

Td(n) = O(dn)+O

(
(2
√
d)2d

εd

)
+O(2ddn)+O

(
(2
√

2)2d

εd

)
,

6 O
(

2ddn+
(2
√
d)2d

εd

)
. (3)

Since d is fixed, we have: Td(n) = O(n+
1

εd
).

We can also reduce the running time of the Algorithm
1 by discarding some internal points which do not have
any potential to be the diametrical pairs in rounded
point set Ŝ1, and similarly, in two point sets B1 and B2.
By considering all the points which are same in their
(d−1) coordinates and keep only highest and lowest [7].
Then, the number of points in Ŝ1, and two point sets
B1 and B2 can be reduced to O(1/ε

d
2−1). So, using the

brute-force quadratic algorithm, we need O((1/ε
d
2−1)2)

time to find the diametrical pairs. Hence, this gives
us the total running time O(n + 1/εd−2). About the
required space, we only need O(n) space for storing re-
quired point sets. So, this completes the proof. �

Now, we explain the details of the approximation factor.

Theorem 2 Algorithm 1 computes an approximate di-
ameter D̃ such that: D 6 D̃ 6 (1 + ε)D, where
0 < ε 6 1.

Proof. In line 7 of the Algorithm 1, we compute two
point sets B1 and B2, for each diametrical pair (p̂1, q̂1)
in the point set Ŝ1. We know that a grid-point p̂1 in
point set Ŝ1 is formed from points of the set Ŝ which
are inside hypercube Bξ1(p̂1). We use a hypercube B1
of side length 2ξ1 to make sure that we do not lose any
candidate diametrical pair of the first rounded point set
Ŝ around a diametrical point p̂1 (see Figure 2). In the
next step, we should find the diametrical pair (p̂, q̂) ∈
Ŝ for points which are inside two point sets B1 and
B2. Hence, it is remained to show that the diameter,
which is computed by two points p̂ and q̂, is a (1 + ε)-
approximation of the true diameter. Let p̂ and q̂ are two
central-cell points of the first rounded point set Ŝ which
are used in line 8 of the Algorithm 1 for computing
the approximate diameter D̂. Then, we have two cases,
either two true points p and q are in far distance from
each other in their corresponding cells (Figure 3 (a)), or
they are in near distance from each other (Figure 3 (b)).
It is obvious that the other cases are between these two
cases.

For first case (Figure 3 (a)), let for two projected
points p̂′ and q̂′, we set d1 = ||p− p̂′|| and d2 = ||q− q̂′||.

74

30th Canadian Conference on Computational Geometry, 2018

p̂

q̂

D̂

D

p

q

ξ
p

d

ξ
p

d=2(a)

p̂0

q̂0

d1

d2

ξ

p̂

q̂

D̂

D

p

q

ξ
p

d

ξ
p

d=2(b)

ξ

p0

q0

Figure 3: Two cases in proof of the Theorem 2.

We know that the side length of each cell in a grid which
is used for Ŝ is ξ. So, the hypercube (cell) diagonal is
ξ
√
d. From Figure 3 (a) it can be found that d1 < ξ

√
d/2

and d2 < ξ
√
d/2. Therefore, we have

D = D̂ + d1 + d2,

D 6 D̂ + ξ
√
d,

D − ξ
√
d 6 D̂. (4)

Similarly, for the second case (Figure 3 (b)), we know
that c1 = ||p̂−p′|| < ξ

√
d/2 and c2 = ||q̂−q′|| < ξ

√
d/2.

So,
D̂ = D + c1 + c2,

D̂ 6 D + ξ
√
d. (5)

Then, from (4) and (5) we can result:

D − ξ
√
d 6 D̂ 6 D + ξ

√
d. (6)

Since we know that ξ = ε`/2
√
d, we have:

D − ε`/2 6 D̂ 6 D + ε`/2,

D 6 D̂ + ε`/2 6 D + ε`. (7)

We know that ` 6 D. For this reason we can result:

D 6 D̂ + ε`/2 6 (1 + ε)D. (8)

Finally, if we assume that D̃ = D̂ + ε`/2, we have:

D 6 D̃ 6 (1 + ε)D. (9)

Therefore, the theorem is proven. �

2.2 The modified algorithm

In this subsection, we present a modified version of our
proposed algorithm by combining it with a recursive ap-
proach due to Chan [9]. Hence, we first explain Chan’s
recursive approach. As mentioned before, Agarwal et
al. [6] proposed a (1 + ε)-approximation algorithm for

computing the diameter of a set of points in Rd. Their
result is based on the following simple fact that we can
find O(1/ε(d−1)/2) numbers of directions in Rd, for ex-
ample by constructing a uniform grid on a unit sphere,
such that for each vector x ∈ Rd, there is a direction
that the angle between this direction and x be at most√
ε. In fact, they found a small set of directions which

can approximate well all directions. This can be done
by forming unit vectors which start from origin to grid-
points of a uniform grid on a unit sphere [6], or to grid-
points on the boundary of a box [10]. These sets of di-
rections have cardinality O(1/ε(d−1)/2). The following
observation explains how we can find these directions
on the boundary of a box.

Observation 1 ([10]) Consider a box B which includes
origin o such that the boundary of this box (∂B) be in
the distance at least 1 from the origin. For a

√
ε/2-grid

on ∂B and for each vector ~x, there is a grid point a on
∂B such that the angle between two vectors ~a and ~x is
at most arccos(1− ε/8) 6 √ε.

This observation explains that grid-points on the
boundary of a box (∂B) form a set Vd of O(1/ε(d−1)/2)
numbers of unit vectors in Rd such that for each x ∈ Rd,
there is a vector a ∈ Vd from the origin o to a grid-point
a on ∂B, where the angle between two vectors x and a
is at most

√
ε. On the other hand, according to observa-

tion 1, there is a vector a ∈ Vd such that if α be the angle
between two vectors x and a, then, α 6 arccos(1−ε/8),
and so cosα > (1 − ε/8). If x′ is the projection of the
vector x on the vector a, then:

||x|| = ||x
′||

cosα
6 ||x′|| 1

(1− ε
8)

6 ||x′||(1 +
ε

8
+
ε2

82
+
ε3

83
+ · · ·)

6 ||x′||(1 + ε). (10)

So, we have:

||x′|| 6 ||x|| 6 (1 + ε)||x′||. (11)

This means that if pair (p, q) be the diametrical pair of
a point set, then there is a vector a ∈ Vd such that the
angle between two vectors pq and a is at most

√
ε. See

Figure 4. Then, pair (p′, q′) which is the projection of
the pair (p, q) on the vector a, is a (1+ε)-approximation
of the true diametrical pair (p, q), and we have:

||p′ − q′|| 6 ||p− q|| 6 (1 + ε)||p′ − q′||. (12)

In other words, we can project point set S on
O(1/ε(d−1)/2) directions for all a ∈ Vd, and compute a
(1 + ε)-approximation of the diameter by finding max-
imum diameter between all directions. We project n

75

CCCG 2018, Winnipeg, Canada, August 8–10, 2018

p

q

p
0

q
0 a

p

"≤

Figure 4: Projecting a point set on a direction a.

points on |Vd| = O(1/ε(d−1)/2) directions. Since, com-
puting the extreme points on each direction a ∈ Vd
takes O(n) time. Consequently, Agarwal et al. [6] al-
gorithm computes a (1 + ε)-approximation of the diam-
eter in O(n/ε(d−1)/2) time. Chan [9] proposes that if
we reduce the number of points from n to O(1/εd−1)
by rounding to a grid and then apply Agarwal et
al. [6] method on this rounded point set, we need
O((1/εd−1)/ε(d−1)/2) = O(1/ε3(d−1)/2) time to com-
pute the maximum diameter over all O(1/ε(d−1)/2) di-
rections. Taking into account O(n) time for rounding
to a grid, this new approach takes O(n + 1/ε3(d−1)/2)
time. Moreover, Chan [9] observed that the bottleneck
of this approach is the large number of projection opera-
tions. Hence, he proposes that we can project points on
a set of O(1/

√
ε) 2-dimensional unit vectors instead of

O(1/ε(d−1)/2) d-dimensional unit vectors to reduce the
problem toO(1/

√
ε) numbers of (d−1)-dimensional sub-

problems which can be solved recursively. In fact, ac-
cording to the relation (11), for a vector x ∈ R2, there
is a vector a such that:

||x′|| 6 ||x|| 6 (1 + ε)||x′||, x ∈ R2. (13)

where x′ is the projection of the vector x on vector a.
Since a is a unit vector (||a|| = 1), therefore, ||x′|| =
(a · x)/||a|| = a · x. Hence, we can rewrite the previous
relation as follows:

(a · x)2 6 ||x||2 6 (1 + ε)2(a · x)2, x ∈ R2, a ∈ V2, (14)

or

(a1x1+a2x2)2 6 (x21+x22) 6 (1+ε)2(a1x1+a2x2)2, a ∈ V2.
(15)

where xi be the ith coordinate for a point x ∈ Rd.
We can expand (15) to:

(a1x1 + a2x2)2 + · · ·+ x2d 6 (x21 + x22 + · · ·+ x2d) 6
(1 + ε)2((a1x1 + a2x2)2 + · · ·+ x2d). (16)

Now, define the projection πa : Rd → Rd−1 : πa(x) =
(a1x1 + a2x2, x3, · · · , xd) ∈ Rd−1. Then, we can rewrite
relation (16) for each vector x ∈ Rd as follows:

||πa(x)||2 6 ||x||2 6 (1 + ε)2||πa(x)||2, a ∈ V2. (17)

So, since ||πa(p− q)|| = ||πa(p)|| − ||πa(q)|| we have for
diametrical pair (p, q):

||πa(p− q)|| 6 ||p− q|| 6 (1 + ε)||πa(p− q)||, a ∈ V2.
(18)

Therefore, for finding a (1 + O(ε))-approximation for
the diameter of point set P ⊆ Rd, it is sufficient that
we approximate recursively the diameter of a projected
point set πa(P) ⊂ Rd−1 over each of the vectors a ∈ V2.
Then, the maximum diametrical pair computed in the
recursive calls is a (1 + O(ε))-approximation to the
diametrical pair. Now, let us reduce the number of
points from n to m = O(1/εd−1) by rounding to a
grid, and we denote the required time for computing
the diameter of m points in d-dimensional space with
td(m). Then, for m = O(1/εd−1) grid points, this ap-
proach breaks the problem into O(1/

√
ε) subproblems

in a (d − 1) dimension. Hence, we have a recurrence
td(m) = O(m + 1/

√
εtd−1(O(1/εd−1))). By assuming

E = 1/ε, we can rewrite the recurrence as:

td(m) = O(m+ E
1
2 td−1(O(Ed−1))). (19)

This can be solved to: td(m) = O(m + Ed−
1
2). In this

case, m = O(1/εd−1), so, this recursive takes O(1/εd−
1
2)

time. Taking into account O(n) time, we spent for
rounding to a grid at the first, Chan’s recursive ap-
proach computes a (1 + O(ε))-approximation for the

diameter of a set of n points in O(n+ 1/εd−
1
2) time [9].

In the following, we use Chan’s recursive approach in
a phase of our proposed algorithm.

Algorithm 2: APPROXIMATE DIAMETER 2 (S, ε)
Input: a set S of n points in Rd and an error parameter ε.

Output: Approximate diameter D̃.
1: Compute the axis-parallel bounding box B(S) for

the point set S.
2: `← Find the length of the largest side in B(S).
3: Set ξ ← ε`/2

√
d and ξ2 ← ε

1
3 `/2

√
d.

4: Ŝ ← Round each point of S to its central-cell point
in a ξ-grid.

5: Ŝ1 ← Round each point of Ŝ to its nearest grid-point
in a ξ2-grid.

6: D̂1 ← Compute the diameter of the point set Ŝ1 by
brute-force, and simultaneously, a list of the diam-
etrical pairs (p̂1, q̂1), such that D̂1 = ||p̂1 − q̂1||.

7: Find points of Ŝ which are in two hypercubes B1 = B2ξ2 (p̂1)
and B2 = B2ξ2 (q̂1) for each diametrical pair (p̂1, q̂1).

8: D̃ ← Compute Diam(B1,B2), corresponding to each diame-
trical pair (p̂1, q̂1) using Chan’s [9] recursive approach
and return the maximum value ||p′−q′|| over all of them.

9: Output D̃.

Now, we will analyze the Algorithm 2.

Theorem 3 A (1 +O(ε))-approximation for the diam-
eter of a set of n points in d-dimensional Euclidean
space can be computed in O(n+1/ε

2d
3 − 1

2) time and O(n)
space, where 0 < ε 6 1.

Proof. As it can be seen, lines 1 to 6 of the Algorithm
2 are the same as the Algorithm 1. In this case, the
number of points in rounded points set Ŝ1 is at most:

(`+ ξ2)d

(ξ2)d
=

(
2
√
d

ε
1
3

+ 1

)d
= O

(
(2
√
d)d

ε
d
3

)
. (20)

76

30th Canadian Conference on Computational Geometry, 2018

This can be reduced to O((2
√
d)d/ε

d
3−1), by keeping

only highest and lowest points which are the same in
their (d− 1) coordinates. So, for finding all diametrical

pairs of the point set Ŝ1, we need O((2
√
d)d/ε

d
3−1)2) =

O((2
√
d)2d/ε

2d
3 −2) time. Moreover, the number of

points in two sets B1 or B2 is at most

V ol(B2ξ2)

V ol(Bξ)
=

(2ε
1
3 `/2
√
d)d

(ε`/2
√
d)d

=
(2ε

1
3)d

εd
=

(2)d

ε
2d
3

. (21)

This can be reduced to O((2)d/ε
2d
3 −1). Now, for com-

puting Diam(B1,B2), we use Chan’s [9] recursive ap-
proach instead of using the quadratic brute-force algo-
rithm on the point set B1 ∪ B2. On the other hand,
computing the diameter on a set of O(1/ε

2d
3 −1) points

using Chan’s recursive approach takes the following re-
currence based on the relation (19): td(m) = O(m +

1/
√
εtd−1(O(1/ε

2d
3 −1))). By assuming E = 1/ε, we can

rewrite the recurrence as:

td(m) = O(m+ E
1
2 td−1(O(E

2d
3 −1))). (22)

This can be solved to: td(m) = O(m + E
2d
3 − 1

2). In

this case, m = O(E
2d
3 −1), so, this recursive takes

O(E
2d
3 − 1

2) = O(1/ε
2d
3 − 1

2) time. Moreover, if we have
more than one diametrical pair (p̂1, q̂1) in point set

Ŝ1, then this step takes at most O((2d)(2)d/ε
2d
3 − 1

2) =

O(22d/ε
2d
3 − 1

2) time. So, we have total time:

Td(n) = O(dn)+O

(
(2
√
d)2d

ε
2d
3 −2

)
+O(2ddn)+O

(
22d

ε
2d
3 − 1

2

)
,

6 O
(

2ddn+
(2
√
d)2d

ε
2d
3 − 1

2

)
. (23)

Since d is fixed, we have: Td(n) = O(n+
1

ε
2d
3 − 1

2

).

In addition, Chan’s recursive approach in line 8 of
the Algorithm 2 returns a diametrical pair (p′, q′) which
is a (1 + O(ε))-approximation for the diametrical pair
(p̂, q̂) ∈ Ŝ. So, according to relation (12), we have:

||p′ − q′|| 6 ||p̂− q̂|| 6 (1 +O(ε))||p′ − q′||. (24)

Moreover, the diametrical pair (p̂, q̂) is an approxima-
tion of the true diametrical pair (p, q) ∈ S, and accord-
ing to the relation (8), we have:

||p− q|| 6 ||p̂− q̂||+ ε`/2 6 (1 + ε)||p− q||. (25)

Hence, from (24) and (25) we can result:

||p− q|| 6 ||p̂− q̂||+ ε`/2,

6 ||p̂− q̂||+ ε||p̂− q̂||,
6 (1 + ε)||p̂− q̂||,
6 (1 + ε)((1 +O(ε))||p′ − q′||),
6 (1 +O(ε))||p′ − q′||. (26)

So, Algorithm 2 finds a (1 + O(ε))-approximation in

O(n+ 1/ε
2d
3 − 1

2) time and O(n) space. �

3 Conclusion

We have presented two new non-constant approxima-
tion algorithms to compute the diameter of a point set
S of n points in Rd for a fixed dimension d, which pro-
vide some improvements in terms of simplicity, and data
structure.

References

[1] F. P. Preparata, and M. I. Shamos. Computational Ge-
ometry: an Introduction. New York, Springer-Verlag,
pages 176–182, 1985.

[2] A. C. Yao. On constructing minimum spanning trees
in k-dimensional spaces and related problems. SIAM
Journal on Computing, 11:721–736, 1982.

[3] K. L. Clarkson, and P. W. Shor. Applications of ran-
dom sampling in computational geometry. Discrete and
Computational Geometry, 4:387–421, 1989.

[4] E. A. Ramos. An optimal deterministic algorithm for
computing the diameter of a three-dimensional point
set. Discrete and Computational Geometry, 26:245–265,
2001.

[5] O. Egecioglu, and B. Kalantari. Approximating the
diameter of a set of points in the Euclidean space. In-
formation Processing Letters, 32(4):205–211, 1989.

[6] P. K. Agarwal, J. Matousek, and S. Suri. Farthest
neighbors maximum spanning trees and related prob-
lems in higher dimensions. Computational Geometry:
Theory and Applications, 1:189–201, 1992.

[7] G. Barequet, and S. Har-Peled. Efficiently approximat-
ing the minimum-volume bounding box of a point set
in three dimensions. Journal of Algorithms, 38:91–109,
2001.

[8] S. Har-Peled. A practical approach for computing
the diameter of a point set. In Proceedings of the
17th annual Symposium on Computational Geometry
(SoCG’01), pages 177–186, 2001.

[9] T. M. Chan. Approximating the diameter, width, small-
est enclosing cylinder, and minimum-width annulus.
International Journal of Computational Geometry and
Applications, 12:67–85, 2002.

[10] T. M. Chan. Faster core-set constructions and data
stream algorithms in fixed dimensions. Computational
Geometry: Theory and Applications, 35:20–35, 2006.

[11] T. M. Chan. Applications of Chebyshev polynomials to
low-dimensional computational geometry. In Proceed-
ings of the 33rd International Symposium on Computa-
tional Geometry (SoCG’17), 26:1–15, 2017.

[12] S. Arya, G. D. da Fonseca, and D. M. Mount. Near-
optimal ε-kernel construction and related problems. In
Proceedings of the 33rd International Symposium on
Computational Geometry (SoCG’17), 10:1–15, 2017.

77

CCCG 2018, Winnipeg, Canada, August 8–10, 2018

Computing the Shift-Invariant Bottleneck Distance for Persistence Diagrams

Don Sheehy∗ Oliver Kisielius† Nicholas Cavanna‡

Abstract

We define an algorithm that can compute the minimum
of the bottleneck distance between two persistence dia-
grams over all diagonal shifts, in O(n3.5) time. When
applied to log-scale persistence diagrams, this is a scale-
invariant version of bottleneck distance.

1 Introduction

A persistence diagram is a set of points in the plane that
describes the changes in topology of the sublevel sets of
a function. Each point’s coordinates represent the birth
and death of a topological feature. Often, persistence
diagrams are generated from other geometric data sets
and can serve as data summaries. They have risen to
prominence in topological data analysis for their ability
to capture multi-scale structure in a way that is invari-
ant to distance-preserving transformations.

The stability theory of persistence diagrams implies
that for small changes in the inputs, the persistence
diagrams will have correspondingly small changes with
respect to the bottleneck distance. This distance is de-
fined in terms of a minimal matching between two di-
agrams that allows points to be matched with the di-
agonal. This distance is used as the foundation of all
approximation results in persistent homology.

Persistence diagrams from metric inputs are sensitive
to scaling of the input data. One way to combat this is
to use log-scale persistence diagrams, as in [5]. In such
a diagram, the prominence of a feature—its distance to
the diagonal—is determined by the ratio of the death
and birth times of the original diagram. This eliminates
the artificial inflation of prominence that would result
from a change in units.

Even log-scale persistence diagrams cannot recognize
that two diagrams are generated by the same metric
input measured in different units. Although the promi-
nence of the features will remain the same, the two dia-
grams will differ by a shift along the diagonal. To resolve
this, we introduce a new pseudometric, the shifted bot-
tleneck distance on persistence diagrams that minimizes

∗Computer Science Department, University of Connecticut,
don.r.sheehy@gmail.com
†Computer Science Department, University of Connecticut,

oliver.kisielius@uconn.edu
‡Computer Science Department, University of Connecticut,

nicholas.j.cavanna@uconn.edu

over all possible shifts, thus adding scale-invariance to
the resulting metric space of diagrams. In the language
of Euclidean geometry, this makes persistent homology
useful not only for congruence but also similarity.

We give the formal definition of the shifted bottle-
neck distance and the proof of its metric properties. It
is stable in the sense proven for bottleneck distance in
[2]. Then, we show how to compute the distance in
polynomial time.

1.1 Persistent Homology—A Quick Example

The results in this paper do not depend on a deep un-
derstanding of persistent homology, and we refer the
reader to the accessible survey by Edelsbrunner and
Morozov [3] for more background. We give a simple
example here to show a common way that geometric
points are turned into persistence diagrams that cap-
ture multiscale structure.

For the point set P shown in Figure 1, we will com-
pute the persistent homology of the sublevel sets of the
function rP : R2 → R, which is the distance to the set
P :

rP (x) = min
p∈P
‖x− p‖. (1)

The sublevel sets of rP are topologically equivalent to
subcomplexes of the Delaunay triangulation of P . As
one considers larger scales (i.e. sublevels of rP for larger
thresholds), one obtains larger and larger subcomplexes
of Del (P). The persistence algorithm will convert this
growing sequence of complexes into a persistence dia-
gram, Dgm(rP), as shown in Figure 2. Each point in
Dgm(rP) is a pair (b, d) representing the birth and death
of a topological feature. In general, for a filtration based
on distance from a finite point set, one can use log-scale
diagrams for features of any dimension except 0. The
eye-catching features of P—two cycles—appear at dif-
ferent scales, and in the original persistence diagram,
the inside of the big cycle dwarfs the other features. In
the log-scale diagram, both cycles are prominent. Both
diagrams are shown in Figure 2.

2 Defining Shifted Bottleneck Distance

The only distance we consider between points in the
plane is the infinity metric, d∞.

d∞ ((x, y), (x′, y′)) = max{|x− x′|, |y − y′|} (2)

78

30th Canadian Conference on Computational Geometry, 2018

Figure 1: A point set P with its Delaunay triangulation
Del (P)

Figure 2: Persistence diagram from the filtration of P .
Each point is a (birth, death) pair. On the left is the
original persistence diagram. On the right is the log-
scale diagram. The two cycles look similarly prominent
on the log-scale.

2.1 Shifted Points and Shifted Bottleneck Distance

Fix p = (x, y), a point in the plane, and fix s ∈ R.
Define the image of p under shift s as

ps = (x+ s, y + s). (3a)

Define the image of an entire multiset A of points in R2

under shift s as the multiset

As = {ps | p ∈ A}. (3b)

If p is an off-diagonal point, then δ(p) denotes the or-
thogonal projection of p onto the diagonal.

δ((x, y)) = (
x+ y

2
,
x+ y

2
) (4)

Define ∆, the diagonal, to be the multiset containing
each point (x, x) in R2 with infinite multiplicity.

Let A be a finite multiset in the plane, with x < y
for all (x, y) in A. Denote by Â the infinite persistence
diagram A ∪ ∆. We assume all persistence diagrams
have finitely many off-diagonal points.

For two multisets of points A and B in Rd, the bot-
tleneck distance dB (A,B) is defined as follows:

dB (A,B) = min
M

max
〈a,b〉∈M

d∞ (a, b) (5)

where M ranges over all perfect matchings between A
and B.

For multisets A and B of points in the plane, define
the shifted bottleneck distance of A and B:

dSB (A,B) = min
s∈R

dB (As, B) (6)

Given finite multisets A and B, our algorithm com-
putes dSB (Â, B̂).

Lemma 1 If A and B are finite multisets of points,
then dSB (A,B) is well-defined.

If A and B are finite multisets of points with x < y
for all (x, y) in A ∪B, then dSB (Â, B̂) is well-defined.

Proof. Let r = infs∈R dB (As, B). We need to show
dB (As, B) = r for some real shift s.

It’s clear that dB (As, B) is a continuous function of
s. This means it is sufficient to demonstrate a closed,
bounded set S such that r = infs∈S dB (As, B). The set

S =
⋃

〈a,b〉∈A×B
{s ∈ R | d∞ (as, b) ≤ r} (7)

will suffice. S is closed and bounded because it is a
finite union of closed intervals.

We show that dSB (Â, B̂) is well-defined by a similar
argument. Let r̂ = infs∈R dB (Âs, B̂).

We can assume that A and B are nonempty and that
r̂ < maxp∈A∪B d∞ (p, δ(p)), because otherwise there is
nothing to show. With that assumption, we use the
same argument as before, with the same set S. �

If (6) used inf instead of min, then dSB might be well-
defined for more inputs. However, it is useful to know
that there always exists some s such that

dSB (Â, B̂) = dB (Âs, B̂).

Lemma 2 Let X, Y , and Z be persistence diagrams or
finite sets of points.

dSB (X,Z) ≤ dSB (X,Y) + dSB (Y, Z) (8)

In other words, shifted bottleneck distance satisfies the
triangle inequality.

Proof. Let s0 and s1 be shifts such that

dSB (X,Y) = dB (Xs0 , Y) (9)

dSB (Y, Z) = dB (Ys1 , Z) (10)

Since dB is a metric, we have

dB (Xs0+s1 , Z) ≤ dB (Xs0+s1 , Ys1) + dB (Ys1 , Z) (11)

= dB (Xs0 , Y) + dB (Ys1 , Z) (12)

= dSB (X,Y) + dSB (Y,Z) (13)

(We reach (12) by applying (3a), and we get (13) by
applying (9) and (10).) Now we apply (6) to get (14).

dSB (X,Z) ≤ dB (Xs0+s1 , Z) (14)

Combining (13) and (14) yields (8). �

79

CCCG 2018, Winnipeg, Canada, August 8–10, 2018

It’s typical to compare two persistence diagrams us-
ing bottleneck distance, thanks to the following stability
result proven in [2].

Let Dgm(f) denote the persistence diagram of sub-
level sets of f . The main theorem of [2] states that,
assuming some conditions on the topological space X
and the continuous functions f, g : X → R, we have

dB (Dgm(f),Dgm(g)) ≤ ‖f − g‖∞ (15)

Since it’s obvious that in general dSB (Â, B̂) ≤
dB (Â, B̂), the stability result by [2] must hold for dSB

as well:

Theorem 3 Let X be a topological space X, and let
f, g : X → R be functions. If X, f , and g satisfy the
conditions for the main stability result of [2], then we
have the same result for shifted bottleneck distance.

dSB (Dgm(f),Dgm(g)) ≤ ‖f − g‖∞ (16)

2.2 Related Work

We make use of some ideas from prior work concerning a
different pseudo-metric, which we’ll call general shifted
bottleneck distance, or dGSB.

dGSB (X,Y) = min
t∈R2

dB ({x+ t | x ∈ X}, Y) (17)

Here X and Y are finite sets of points in the plane.
The earliest relevant algorithm for dGSB is by Alt

et al. in [1]. They compute dGSB in time O(n6 log n).
To do this, they first make an O(n6) time decision
algorithm that, given X, Y , and r, tests whether
dGSB (X,Y) ≤ r. Then they generate and sort all O(n6)
possible answers and find the correct answer with a bi-
nary search.

One idea of theirs that we adopt is their subroutine
in which a bipartite matching is repeatedly maximized
(and pruned) while the set of available edges changes
incrementally. This involves O(n4) invocations of the
Hopcroft-Karp augmenting paths algorithm at a cost of
O(n2) time per augmenting path. That’s lower than the
cost of computing a matching from scratch O(n4) times.

Efrat et al. improved this result by using geometry
to optimize the augmenting-path routine [4]. They use
near-neighbor structure to represent edges implicitly
during the graph searches of the Hopcroft-Karp, which
results in running time of log n per node of the graph,
and thus O(n log n) per augmenting path. Like Alt et
al., they find O(n4) total augmenting paths, so their
algorithm runs in O(n5 log n) time.

Efrat et al. also use the optimized Hopcroft-Karp al-
gorithm to compute bottleneck distance between finite
point sets [4], and Kerber et al. use the same technique
to compute bottleneck distance between persistence di-
agrams in O(n1.5 log n) time [6].

To minimize dB over all two-dimensional shifts, Alt
et al. pay quadratic time just to reduce the problem to
a one-dimensional problem in polar coordinates. Their
key idea is to guess (O(n2) times) which edge is the
bottleneck. Knowing that 〈x, y〉 ∈ X × Y is the bot-
tleneck, you can test whether dGSB (X,Y) ≤ r by test-
ing only shifts t such that d∞ (x+ t− y) = r. (This
works for Euclidean distance as well.) Then only a one-
dimensional value, the angle from y to x+t, is unknown.
And so they compute O(n2) critical angles at which an-
other edge has value exactly r, and they check for a
matching at each critical angle.

Our algorithm is faster. Since we compute dSB, we
have a one-dimensional parameter from the beginning,
the shift, so we need not spend O(n2) immediately. Fur-
thermore, in our setting we can process the critical shifts
only once, reducing the radius and reordering the crit-
ical shifts on the fly. Because we needn’t perform a
binary search, our full algorithm resembles the decision-
only version of the other algorithms.

3 Background

Throughout the remaining discussion we refer to A and
B, the finite input multisets to our algorithm. These
are to be distinguished from the infinite sets Â and B̂.

3.1 Diagonal-Perfect Matchings

Edges with at least one end on the diagonal are called
diagonal edges. Edges in A×B are non-diagonal edges.

A finite matching M between Â and B̂ is diagonal-
perfect if the degree in M of each point in AtB equals
the multiplicity of that point. For such a matching M ,
the value of M is the minimum, over all shifts, of the
greatest edge length in M .

value (M) = min
s∈R

max
〈a,b〉∈M

d∞ (as, b)

An r-matching is a diagonal-perfect matching M be-
tween Â and B̂ with value (M) = r. Clearly such a
matching is a certificate that dSB (Â, B̂) ≤ r. A less-
than-r-matching is an r′-matching for some r′ < r.

If M is a diagonal-perfect matching between Â and B̂,
then the union of M with any perfect matching from ∆
to ∆ is a perfect matching. In particular, if you extend
M by adding edges of the form 〈x, xs〉 ∈ ∆, where s is
the optimal shift for M , then the value of the resulting
perfect matching is value (M).

As proven in [6], if an r-matching exists, then one
exists that contains no “skew” diagonal edges. A non-
skew diagonal edge is an edge 〈p, δ(p)〉 or 〈δ(p), p〉. This
includes 〈p, p〉 where p = δ(p).

80

30th Canadian Conference on Computational Geometry, 2018

3.2 Working with the Diagonal

The addition of points on the diagonal in the definition
of persistence diagrams is useful for stability results, but
requires special consideration in our algorithm. Bot-
tleneck distance between diagrams can be reduced to
bottleneck distance between finite sets using (18).

dB (Â, B̂) = dB (A ∪ δ(B), B ∪ δ(A)) (18)

However, this does not work for shifted bottle-
neck distance. It is not true that dSB (Â, B̂) =
dSB (A ∪ δ(B), B ∪ δ(A)), because you can’t match B
to the shifted image δ(B)s or match As to δ(A). In-
stead, we must handle the diagonal as a special case.
As noted in [6], it is faster to give the diagonal spe-
cial treatment, because all but O(n) edges involving the
diagonal can be ignored.

Diagonal-to-Diagonal Edges Augmenting paths dis-
covered by the Hopcroft-Karp algorithm can include
diagonal-to-diagonal (∆-to-∆) edges. Because Â and
B̂ include every point of the diagonal with infinite mul-
tiplicity, the length of the longest ∆-to-∆ edge in any
matching can be made arbitrarily small via augment-
ing paths in ∆ × ∆. This lets us consider the length
of ∆-to-∆ edges to be zero. The diagonal parts of Â
and B̂ form a complete bipartite graph on zero-length
edges. As a result, we represent Â∩∆ and B̂∩∆ as two
nodes ∆A and ∆B , both with infinite multiplicity. We
identify any edge 〈a, δ(a)〉 with 〈a,∆B〉, and similarly
we identify 〈δ(b), b〉 with 〈∆A, b〉.

As noted in [6], the near-neighbor search structure
(used in the optimized Hopcroft-Karp algorithm) can
be adapted to handle ∆A and ∆B .

4 A Kinetic Data Structure Approach

The main algorithm will look at an increasing sequence
of shifts. At different shifts, edges will appear or disap-
pear. These are the events we want to track. Moreover,
as we discover better matchings, our upper bound on
the radius r decreases. Changing the radius reorders
future events, i.e. the partition Pr. In this section, we
will define the events and introduce an event queue that
provides access to the events in the correct order.

4.1 Searching for a Better Matching

Let r be an upper bound on dSB (Â, B̂). The left shift λ
of a non-diagonal edge 〈(ax, ay), (bx, by)〉 at radius r is

λ(〈(ax, ay), (bx, by)〉, r) = max{bx− r− ax, by − r− ay}.

Similarly, the right shift ρ is

ρ (〈(ax, ay), (bx, by)〉, r) = min{bx + r− ax, by + r− ay}.

For any edge e = 〈a, b〉 and shift s such that d∞(as, b) <
r, we have λ(e, r) < s < ρ (e, r). Let Pr denote the set
of all left and right shifts, i.e.

Pr = {λ(e, r) | e ∈ A×B} ∪ {ρ (e, r) | e ∈ A×B}

If s0, . . . , sk are the shifts of Pr, where s0 < · · · < sk,
then intvlPr is the set of open intervals {(si, si+1) |
i ∈ {0, . . . , k − 1}}.

The set of available non-diagonal edges for a shift s
and radius r is:

E(r, s) = {〈a, b〉 ∈ A×B | d∞ (as, b) < r}

At radius r, the set of available non-skew diagonal edges,
which includes 〈∆A,∆B〉 when r > 0, is:

D(r) = {e ∈ A× {∆B} ∪ {∆A} ×B ∪ {〈∆A,∆B〉}
| d∞(e) < r}

For each interval (si, si+1) in intvlPr, we have a
graph

G(r, si) = E(r,
si + si+1

2
) ∪ D(r).

The graph contains the diagonal edges and the avail-
able non-diagonal edges at a shift inside the interval
(si, si+1). The choice of the midpoint is arbitrary, and
indeed, G(r, si) = E(r, s) ∪ D(r) for any si < s < si+1.
This implies the following lemma. (Proofs of these facts
can be found in the appendix.)

Lemma 4 If M is a less-than-r-matching, then M ⊆
G(r, λ(e, r)) for some e in A×B.

Lemma 5 For any edge e and radii r′ < r, we have
G(r′, λ(e, r′)) ⊆ G(r, λ(e, r)).

4.2 The Event Queue

In this section, we will describe the event queue data
structure. The events provided by this structure are L-
events and R-events. An event e of either type stores
an edge e.edge. An L-event also stores a shift e.shift
such that G(r, λ(e.edge, r)) = E(r, e.shift) ∪ D(r).

The event queue Q holds three stacks of edges. The
stack Q.D contains all non-skew diagonal edges, including
〈∆A,∆B〉, in decreasing order by length. (Longer edges
are popped first.) The stacks Q.L and Q.R contain the
edges of A×B sorted increasing by λ and ρ respectively
(at radius 0). The order within those stacks does not
depend on the radius, because for any x, r ∈ R, λ(e, r+
x)− λ(e, r) = x and ρ (e, r − x)− ρ (e, r) = x.

The method Q.nextevent(r) goes like this: If the top
of Q.D has length r or greater, return an R-event for
Q.D.pop(). If ρ (Q.R, r) ≤ λ(Q.L, r), return an R-event for
Q.R.pop(). Otherwise, return an L-event for Q.L.pop().
Also remove from Q.L any edges with the same left shift
as the edge popped.

81

CCCG 2018, Winnipeg, Canada, August 8–10, 2018

Input: Event queue Q, radius r
1 if |Q.D| > 0 and d∞ (Q.D.top()) ≥ r then
2 return RightEvent(edge← Q.D.pop())

3 if ρ (Q.R.top(), r) ≤ λ(Q.L.top(), r) then
4 return RightEvent(edge← Q.R.pop())

5 Let e← Q.L.pop()
6 while |Q.L| > 0 and λ(e, 0) = λ(Q.L.top(), 0) do
7 Q.L.pop()

8 Let t← ρ (Q.R.top(), r)
9 if |Q.L| > 0 then

10 Set t← min{t, λ(Q.L.top(), r)}
11 return

LeftEvent(edge← e, shift← (λ(e, r) + t)÷ 2)

Algorithm 1: Q.nextevent(r)

Theorem 6 Let Q be the event queue, and let r1 ≥ r2 ≥
· · · ≥ rn be a nonincreasing sequence of radii. Say that
Q.nextevent(ri) is called for i from 1 to n in order, and
suppose the call to Q.nextevent(rn) returns an L-event
whose shift is s. Then after the sequence of calls, we
have the following.

D(rn) = Q.D (19)

E(rn, s) = Q.R \ Q.L (20)

Here, Q.L, Q.R, and Q.D are treated as sets.

The proof is in the appendix.

Corollary 7 A modified version of Theorem 6
holds, where in the sequence of operations,
e ← Q.nextevent(r) may be followed immediately
by Q.L.push(e.edge), provided e is an L-event.

Proof. Reinserting the edge undoes the previous oper-
ation and has no other side effects. �

4.3 Reducing the Radius

To reduce the radius after we find a perfect matching,
we use the method Q.newradius(), which returns

max{d∞(Q.D.top()),
1

2
(λ(Q.L.top(), 0)−ρ (Q.R.top(), 0))}.

Lemma 8 The invocation Q.nextevent(r) returns an
R-event if and only if r ≤ Q.newradius().

Proof. Consider Algorithm 1. Q.nextevent(r) re-
turns an R-event from line 2 if and only if r ≤
d∞(Q.D.top()). Otherwise, Q.nextevent() returns an
R-event if and only if ρ (Q.R.top(), r) ≤ λ(Q.L.top(), r).
In fact ρ (Q.R.top(), r) ≤ λ(Q.L.top(), r) exactly when
r ≤ 1

2 (λ(Q.L.top(), 0) − ρ (Q.R.top(), 0)), with equal-
ity only when r = 1

2 (λ(Q.L.top(), 0) − ρ (Q.R.top(), 0)).
Thus r.nextevent() an L-event is returned, by line 11,
if and only if r > Q.newradius(). �

Lemma 9 Suppose the event queue Q is in a state such
that Q.nextevent(r) would return an L-event with shift
s, and there is a less-than-r-matching M in G(r, s).
Then

r > Q.newradius() ≥ value (M) ≥ dSB (Â, B̂).

Proof. Lemma 8 gives us r > Q.newradius(), since
Q.nextevent(r) would return an L-event. For any r >
r′ > Q.newradius(), call s′ the shift of the L-event re-
sulting from Q.nextevent(r′). Because Q.nextevent(r)
and Q.nextevent(r′) have equivalent effects on the
state of Q, Theorem 6 says G(r′, s′) = G(r, s). Thus
r′ > value (M) for any r′ > Q.newradius(), and
so Q.newradius() ≥ value (M). The last inequality,
value (M) ≥ dSB (Â, B̂), holds for any diagonal-perfect
M . �

5 The Algorithm

Here we state the main algorithm and prove its correct-
ness and running time in the real RAM model.

5.1 Algorithm for Shifted Bottleneck Distance

Algorithm 2 computes the shifted bottleneck distance
as follows. Let Q be the event queue. Set the radius r to
be an upper bound on dSB (Â, B̂), say the length of the
longest non-skew diagonal edge. Maintain a bipartite
matching M, initially empty, between Â and B̂. While
Q is not empty, get the next event e from Q. If e is
an R-event, remove e.edge from M. Otherwise, e is an
L-event: Augment M using the geometrically-optimized
version of Hopcroft-Karp (as in [4] and [6]), and if M is
now diagonal-perfect, then reinsert e.edge into Q.L and
reduce r to Q.newradius(). Finally, return r, which now
equals dSB (Â, B̂).

Input: Multisets A and B representing
diagrams Â and B̂

1 Let r ← max {d∞ (x, δ(x)) | x ∈ A ∪B}
2 Let Q be the event queue
3 Let M be an empty matching
4 while Q.L, Q.R and Q.D are nonempty do
5 Let e← Q.nextevent(r)
6 if e is an R-event then
7 Remove e.edge from M

8 else
9 Use augmenting paths to maximize M at

shift e.shift and radius r
10 if M is diagonal-perfect then
11 Q.L.push(e.edge)
12 r ← Q.newradius()

13 return r

Algorithm 2: dSB (Â, B̂)

82

30th Canadian Conference on Computational Geometry, 2018

5.2 Correctness in the Real RAM Model

Lemma 10 After line 9 executes, M is a maximum
matching in G(r, λ(e.edge, r)).

Proof. If M ⊆ G(r, λ(e.edge, r)) before line 9, then M is
a maximum matching in G(r, λ(e.edge, r)) after line 9
because the augmenting path algorithm .

It will suffice to show that M ⊆ G(r, λ(e.edge, r))
whenever the execution reaches line 9. We proceed by
induction. For the base case, in the first execution of
line 9, the matching M is initially empty.

In the inductive case, we have M ⊆ G(r, λ(e.edge, r))
after line 9. By Corollary 7, this is equivalent to M ⊆
Q.D ∪ Q.R \ Q.L. This still holds just before line 9 next
executes, because Q.L has not increased and every edge
popped from Q.D or Q.R has been removed from M. �

Theorem 11 Given persistence diagrams A and B, Al-
gorithm 2 outputs dSB (Â, B̂) in time O(n3.5) where
n = |A|+ |B|.

Proof. Each iteration makes progress toward termina-
tion. For iterations where we reinsert an edge into Q.L,
we set r to Q.newradius(), guaranteeing an R-event will
be processed next (Lemma 8). In all other cases, we
shrink Q.L, Q.R, or Q.D. Thus the outer loop executes at
most 2|A||B| + |A| + |B| times. As in [6], line 9 takes
time O((|A| + |B|)1.5) per augmenting path. We find
at most |A| + |B| paths the first time we augment the
matching, and subsequently we find at most one path
per event, as in [4]. Thus the total running time is
O((|A|+ 1)(|B|+ 1)(|A|+ |B|)1.5), i.e. O(n3.5).

Initially, r = value (D(∞)) ≥ dSB (Â, B̂). (Note
D(∞) is diagonal-perfect.) Because M is diagonal-
perfect at line 12, Lemma 9 tells us that r ≥ dSB (Â, B̂)
always and that r always decreases at line 12.

We reinsert an edge e in Q.L unless G(r, λ(e, r))
contains no diagonal-perfect matching. When the ra-
dius decreases from r to r′, we get G(r′, λ(e, r′)) ⊆
G(r, λ(e, r)) for each edge e by Lemma 5. So by in-
duction, there is never a diagonal-perfect matching in
G(r, λ(e, r)) for any edge e in A × B \ Q.L at the start
of the loop. The base case is vacuous.

When we exit the loop, we have G(r, λ(e, r)) = D(r)
for every edge e in Q.L. (This is vacuous if Q.L is
empty; if Q.D is empty, then r = 0; otherwise, Q.R is
empty, and Theorem 6 applies.) So we know there is no
diagonal-perfect matching in G(r, λ(e, r)) for any edge
e in A × B. Thus r ≤ dSB (Â, B̂) by Lemma 4. Now
r ≤ dSB (Â, B̂) ≤ r, and so r = dSB (Â, B̂). �

5.3 A Constant-Factor Improvement

At line 6 of Algorithm 1, whenever several edges in
Q.L have the same left shift, we discard all but one of
them. With negligible extra effort, we set e to be the

edge maximizing ρ (e, 0). Then before line 9 of Algo-
rithm 2, we test, for the event e, whether λ(e.edge, r) ≥
ρ (e.edge, r), and if so we skip the rest of the iteration.
(In particular, we skip the expensive line 9.)

If λ(e.edge, r) ≥ ρ (e.edge, r), then e.edge is not
in G(r, λ(e.edge, r)), and neither are any other edges
with the same left shift as e.edge. This means
G(r, λ(e.edge, r)) ⊆ G(r, λ(e′, r)), where e′ is the pre-
vious edge popped from Q.L. Since we have no hope of
finding a diagonal-perfect matching, it is sound to skip
the rest of the iteration.

6 Implementation

We have implemented Algorithm 2 with Python 3. Our
near-neighbor structure uses a kd-tree. Our implemen-
tation is slow for even small point sets. (This is consis-
tent with the O(n3.5) running time.) For inputs of sizes
32 (i.e. |A| = |B| = 32), 64, and 128, the computation
takes about two seconds, 15 seconds, and two minutes.
To compute shifted bottleneck distance for medium or
large point sets, we will need a faster algorithm.

Our implementation needed some tweaking to ac-
count for floating point errors. The research-grade code
is available on request.

References

[1] H. Alt, K. Mehlhorn, H. Wagener, and E. Welzl. Congru-
ence, similarity, and symmetries of geometric objects. In
Proceedings of the Third Annual Symposium on Compu-
tational Geometry, SCG ’87, pages 308–315, New York,
NY, USA, 1987. ACM.

[2] D. Cohen-Steiner, H. Edelsbrunner, and J. Harer. Stabil-
ity of persistence diagrams. Comput. Geom, 37:103–120,
2007.

[3] H. Edelsbrunner and D. Morozov. Persistent homology:
Theory and practice. In European Congress of Mathe-
matics Kraków, 2 - 7 July, 2012, pages 31 – 50. European
Mathematical Society Publishing House, 2012.

[4] A. Efrat, A. Itai, and M. Katz. Geometry helps in bot-
tleneck matching and related problems. Algorithmica,
31(1):1–28, 2001.

[5] B. Hudson, G. L. Miller, S. Y. Oudot, and D. R. Sheehy.
Topological inference via meshing. In Proceedings of
the 26th ACM Symposium on Computational Geometry,
pages 277–286, 2010.

[6] M. Kerber, D. Morozov, and A. Nigmetov. Geom-
etry helps to compare persistence diagrams. CoRR,
abs/1606.03357, 2016.

83

CCCG 2018, Winnipeg, Canada, August 8–10, 2018

Appendix

Lemma 12 If two shifts s0 and s1 lie in the same (open)
interval of intvl (Pr), then E(r, s0) = E(r, s1).

Proof. Suppose (WLOG) that s0 < s1 and that we have
some edge e = 〈a, b〉 ∈ E(r, s0) \ E(r, s1). Then, since
d∞ (as, b) is a continuous function of s, the intermediate
value theorem tells us there is a shift s0 < s′ < s1 such that
d∞ (as′ , b) = r.

This s′ must be either λ(e, r) or ρ (e, r), and so s0 and s1
do not lie in the same interval of intvl (Pr). �

There are a few prerequisites to Lemma 4.

Lemma 13 Let si−1 < s < si < s′ < si+1 ∈ R, where
si−1, si, si+1 are consecutive elements of Pr. Then E(r, si) ⊆
E(r, s) ∩ E(r, s′).

Proof. Suppose for contradiction there is an edge e = 〈a, b〉
in E(r, si) \ E(r, s). Lemma 12 tells us e /∈ E(r, t) whenever
si−1 < t < si. Thus for the continuous function f(t) =
d∞(at, b), we have f(t) ≥ r for si−1 < t < si but f(si) < r,
which is impossible. Therefore E(r, si) ⊆ E(r, s).

A similar argument shows E(r, si) ⊆ E(r, s′). �

Lemma 14 Let si < si+1 < si+2 be consecutive elements
of Pr such that si+1 is not the left shift of any edge. If
si < s < si+1 < s′ < si+2, then E(r, s′) ⊆ E(r, s).

Consequently, if there is no diagonal-perfect matching in
G(r, si), then there is no such matching in G(r, si+1).

Proof. The statement E(r, s′) ⊆ E(r, s) holds because if we
have an edge e ∈ E(r, s′)−E(r, s), then λ(e, r) = si+1, which
violates the premise.

The second statement is immediate. �

Proof. [Lemma 4] Let M be a less-than-r-matching. We
know M ⊆ E(r, s) ∪ D(r) for some shift s. Consider two
cases:

1. minPr < s < maxPr. Lemma 13 lets us assume
WLOG that si < s < si+1 for consecutive elements
si, si+1 of Pr. Then Lemma 12 tells us E(r, s)∪D(r) =
G(r, si).

If si is not a left shift, we can apply Lemma 14 to
show that M ⊆ G(r, si−1). We iterate this until we
reach a left shift. (If we never reach a left shift, then
M ⊆ D(r).)

2. s ≤ minPr or s > maxPr. This means E(r, s) = ∅, so
M ⊆ D(r) ⊆ G(r, t) for any t in Pr.

�

Proof. [Lemma 5] Pick some small offset t such that
G(r′, λ(e, r′)) = E(r′, λ(e, r′) + t)∪D(r′) and G(r, λ(e, r)) =
E(r, λ(e, r) + t) ∪ D(r). It is clear that D(r′) ⊆ D(r).

Let e′ be an edge in E(r′, λ(e, r′) + t). This means

λ(e′, r′) < λ(e, r′) + t < ρ (e′, r′).

Subtracting (r − r′) from all three sides yields

λ(e′, r) < λ(e, r) + t < ρ (e′, r)− 2(r − r′).
This means e′ ∈ E(r, λ(e, r) + t) ⊆ G(r, λ(e, r)), since r −
r′ > 0. Thus G(r′, λ(e, r′)) ⊆ G(r, λ(e, r)). �

Proof. [Theorem 6] Let {ei}1≤i≤n be the results of the n
successive calls Q.nextevent(ri).

Since en is an L-event, we know the condition at line 1 is
false during the call Q.nextevent(rn). Therefore, there are
no edges in Q.D of length rn or less, and so Q.D ⊆ D(rn).
Because ri ≥ rn for all i < n, we have only popped edges
longer than rn from Q.D. Thus D(rn) ⊆ Q.D, and (19) follows.

Because the order of Q.L is independent of the radius, and
because we pop all edges with the same left shift as en.edge,
we have

Q.L = {e ∈ A×B | λ(e, rn) > λ(en.edge, rn)}.

If Q.L is nonempty, then en.shift < λ(Q.L.top(), rn). Thus

Q.L = {e ∈ A×B | λ(e, rn) > en.shift}. (21)

Let

S = {e ∈ A×B | λ(en.edge, rn) < ρ (e, rn)}.

We will prove Q.R = S, which implies

Q.R = {e ∈ A×B | en.shift < ρ (e, rn)}. (22)

Because the call Q.nextevent(rn) returns an L-event, we
know Q.R ⊆ S because of line 3. Fix an edge e in A×B \Q.R.
Let ei be the R-event such that e = ei.edge. At the
time when Q.nextevent(ri) returns ei, we have ρ (e, ri) ≤
λ(Q.L.top(), ri) ≤ λ(en.edge, ri). Because ri ≤ rn, we get
ρ (e, rn) ≤ λ(en.edge, rn), which means e is not in S. This
means S ⊆ Q.R, and so S = Q.R.

From (21) and (22), we get

Q.R \ Q.L = {e ∈ A×B | λ(e, rn) < en.shift < ρ (e, rn)}
= E(rn, en.shift).

�

84

Hitting a Set of Line Segments with One or Two Discrete Centers

Xiaozhou He∗ Zhihui Liu† Bing Su‡ Yinfeng Xu§ Feifeng Zheng¶ Binhai Zhu‖

Abstract

Given the scheduling model of bike-sharing, we con-
sider the problem of hitting a set of n axis-parallel line
segments in R2 by a square (and two squares) whose
center(s) must lie on some line segment(s) such that
the (maximum) edge length of the square(s) is mini-
mized. Under a different model, we also consider the
cases when one needs to compute one (and two) centers
on some edge(s) of a tree of size m, where n labeled seg-
ments must be hit, and the objective is to minimize the
maximum path length from the labeled segments to the
nearer center(s). We give three linear-time algorithms
and an O(n2 logn) algorithm for the four problems in
consideration.

1 Introduction

In recent years, the (private) bike-sharing business are
booming in China (and in Singapore). To use a shared-
bike, a user can use his/her smartphone to scan and
unlock the bike. A small amount of fee, about US$0.16
currently, is charged for any use/transaction during that
day. It is estimated that there are at least 30 million
such transactions in major cities of China alone. Dif-
ferent from the traditional public bike-sharing services,
wherein a user must return the bike to specified bike
racks at fixed locations, in this bike-sharing service a
user can lock and drop a bike anywhere after finishing
using it. Of course, a lot of these bikes are dropped
on some streets typically near bus/subway stations. In
fact, right before and after rush hours, it is not un-
common to notice hundreds of bikes near some major
subway stations in big cities like Beijing and Shanghai.
This also holds when there is a major event near some
site, like an open music show.

∗Business School, Sichuan University, Chengdu, Sichuan,
China, xiaozhouhe126@qq.com

†School of Computer Science and Technology, Shandong
Technology and Business University, Yantai, Shandong, China,
dane.zhihui.liu@gmail.com

‡School of Economics and Management, Xi’an Technological
University, Xi’an, China, subing684@sohu.com

§School of Management, Xi’an Jiaotong University, Xi’an,
China, yfxu@mail.xjtu.edu.cn

¶Glorious Sun School of Business and Management, Donghua
University, Shanghai, China, ffzheng@dhu.edu.cn

‖Gianforte School of Computing, Montana State University,
Bozeman, MT, 59717, USA, bhz@montana.edu

For the bike-sharing company, the objective is cer-
tainly to maximize the profit (i.e., the number of use
of the bikes) and minimize the cost (i.e., collecting the
scattered bikes quickly, and manually, to re-distribute
them in bulk). Our research is motivated by this: given
a set of roads (segments) scattered with shared-bikes,
distribute these bikes in bulk from a center (or several
centers) and transport them to these streets. Hence the
problem is to find a center (resp. several centers) on
these roads as the stations to store the bikes so that
the distance to the farthest target road from the near-
est station is minimal. Note that these centers change
when the target roads are changed.
In this paper, we give two model of the streets in the

cities. One is the classic grid network that is widely
used in the urban streets model. In this model, we de-
scribe all the n target roads as some axis-parallel line
segments and we use the ℓ∞-norm to measure the dis-
tance. Here we also consider a practical restriction: the
center (station) is exactly on one line segment (road) for
the convenience of storage and scheduling, and we only
need to touch every line segment (target road) at any
point (position) to manually distribute the bikes. Also,
note that a ℓ∞ circle is an axis-parallel square.
Thus, follow this model the one-hitting-square prob-

lem is to find the minimum axis-parallel square whose
center is on a line segment, to hit all the line segments,
such that the edge length of the square is minimized.
Analogously, the two-hitting-square problem can be de-
fined.
In addition to the grid networks, we also consider

the geometric tree network, with size m, to model the
streets. The target roads are n segments/edges on the
tree and the distance between any two points on the
tree is the shortest distance between them along the
tree edges. In this case we consider the one-center and
two-center problems such that the centers must lie on
some tree edges and the maximum distance between the
target segments to the nearer centers is minimized. We
next review some previous works.
When the target are n points and the distance is ℓ2,

the corresponding one-center [9, 12], two-center [2, 6, 11]
(and discrete two-center [1]) problems have been well
studied. In fact, even under ℓ∞, the two-center and
three-center problem can be solved in O(n) time [4, 7]
and a variation of the discrete two-center problem
(where the centers of the congruent axis-parallel squares
must be on some input points and the area of the squares

85

is minimized) can be solved in O(n log2 n) time [8].
(There are other variations of these problems, like the
target to cover is a convex polygon. We refer the read-
ers to [5] for the references.) The research which is the
closest to this one is by Sadhu et al., where the prob-
lem is to cover/hit a set of line segments using one or
two (congruent) axis-parallel squares with the smallest
size (edge length) [10]. Linear time algorithms are given
for these problems. Our problems can be considered as
the discrete version of these problems, where the centers
must line on some input segments. We give O(n) and
O(n2 logn) algorithms respectively. On the tree model,
little is known for the corresponding two-center problem
when the target is a set of edges, though the one-center
solution (for edges) can be adapted to some forklore al-
gorithm on computing the diameter of a tree in linear
time.
This paper is organized as follows: In Section 2, we

present some definitions and formally describe the four
problems. Then, in Section 3-4 we give details for our
solutions for the four problems. We conclude the paper
in Section 5.

2 Preliminaries

2.1 Notations and Definitions

Coordinates: For every point p ∈ R2, we use x(p)
and y(p) to denote its x-coordinate and y-coordinate,
respectively.
Endpoints: We use L(li), R(li), T (li) and B(li) to
denote the left endpoint, right endpoint, top endpoint
and bottom endpoint of the line segment li (1 ≤ i ≤ n)
where x(L(li)) < x(R(li)) and y(T (li)) > y(B(li)).
Remark: A horizontal line segment has only a

left endpoint and a right endpoint with the same y-
coordinate, this is similar for a vertical line segment.
Distance: (I) In the first model, we use d∞(p, li) to
denote the distance between a point p ∈ R2 and a line
segment li (1 ≤ i ≤ n), and it is defined to be the min-
imum ℓ∞-distance between p and some point q on li,
where d∞(p, q) = max{|x(p) − x(q)|, |y(p) − y(q)|} and
|x(p)−x(q)|, |y(p)−y(q)| are the horizontal and vertical
components respectively (also denoted as dh(p, li) and
dv(p, li) as shown red in Fig. 1, where p = s′).

(II) In the tree network T , the distance between
two points p, q (denoted as d(p, q)) is the length of the
(unique) path between p and q along tree edges. And
we denote the distance between a point p on an edge of
T and a target edge (line segment) li by d(p, li), which
is the minimum distance between p and any point in
li; formally, d(p, li) = min

q∈lj
d(p, q). Hence, d(p, li) must

be the shortest distance between p and an endpoint of
li. Also, we use d(li, lj) to denote the distance between
two line segments li and lj as d(li, lj) = min

p∈li,q∈lj
d(p, q),

lL

lRlT

lB

li dv(p, li)

dh(p, li)
s′

S′
L

H

l rt

b

Figure 1: A minimum (unrestricted) rectangle S′ hitting
all segments.

li

lj
lx

ly

c t

p

q

Figure 2: Distance on a tree T : d(p, q) = d(p, t)+d(t, q),
and d(p, lj) = d(li, lj) = d(p, q).

which is the shortest distance between the endpoints of
li, lj . (See Fig. 2)

Diameter and radius: The diameter D and radius R
of a set of line segments in a tree network T is defined as
follows. For n line segments U = {l1, l2, ..., ln} on T , its
diameter is the longest of the (shortest) path between
any two line segments (in Fig. 2 the red path denotes the
diameter). And the diameter D is also used to denote
the length of this path, i.e., D = max

1≤i,j≤n
d(li, lj). And

naturally the radius is half of diameter R = D/2.

2.2 Problems

Throughout this paper, all squares are axis-parallel.
Let S be an axis-parallel square with center s and its
edge length (or size) is ℓ, then S can be defined as
S = {p|d∞(p, s) ≤ ℓ/2}. We say a square S hits a seg-
ment li if there is a point p ∈ S such that d∞(p, li) = 0.
We now define the first two problems on finding one and
two hitting squares.

Problem 1 (Discrete One-Hitting-Square):
Given a set of axis-parallel line segments U =
{l1, l2, ..., ln} in R2, the problem is to find a square S
of minimum size such that S hits all the line segments
in U and its center s is on a line segment in U . (See
Fig. 3)

Problem 2 (Discrete Two-Hitting-Square):
Given a set of axis-parallel line segments U =
{l1, l2, ..., ln} in R2, the problem is to find two congru-
ent squares S1 and S2 of minimum size such that each
line segment in U is hit by at least one square and the
center s1 (resp. s2) of S1 (resp. S2) is on a line segment
in U .

86

Figure 3: An example for the one hitting-square prob-
lem.

We next define the problems on a tree network. Note
that in this case a hitting ‘square’ is virtual.
Problem 3 (One-tree-center): Given a set of

edges (line segments) U = {l1, l2, ..., ln} on a geomet-
ric tree T in R2, the problem is to find a center c on an
edge of T such that the maximum distance from a line
segment in U to c is minimized. (See Fig. 2)
Problem 4 (Two-tree-center): Given a set of

edges (line segments) U = {l1, l2, ..., ln} on a geometric
tree T in R2, the problem is to find two centers c1 and
c2 on some edges of T such that the maximum distance
from a segment in U to the nearer center is minimized.

3 Solutions for Discrete Hitting-Square Problems

3.1 Discrete One-Hitting-Square

We first compute the minimum axis-parallel rectangle
S′ (with no restriction on its center s′) such that all the
line segments are hit by S′ as in [10]. We then adjust
this rectangle by moving s′ to s and expanding the edge
length to obtain the required square S whose center s
must lie on a line segment in U .
To obtain the rectangle S′, we present the definition

of boundary line segments and boundary points at first.
As shown in Fig. 1, we define four boundary line seg-
ments: the leftmost segment lL, the rightmost segment
lR, the topmost segment lT and the bottommost seg-
ment lB to be the line segments that have boundary
points l, r, t and b at one of their endpoints, respectively,
where l, r, t and b are defined as follows:

l = min
∀li∈U

x(R(li)), r = max
∀li∈U

x(L(li))

t = max
∀li∈U

y(B(li)), b = min
∀li∈U

y(T (li))

Remark: If a boundary line segment is parallel to the
boundary, then any point on it can be recognized as the
boundary point since it is fine to hit any point on this
line segment.
And we can then construct the rectangle S′ by com-

puting its four sides. This is based on the fact that S′

hits all the line segments is equivalent to hitting the four
boundary line segments lL, lR, lT and lB.

Now, we focus on how to adjust the rectangle to ob-
tain the desired square. For every line segment li, we
compute the distance d∞(s′, li), and record the verti-
cal and horizontal components of the distance. Then
we compute the expanding lengths γi’s, i.e., the length
that the longer side of the rectangle must be expanded
into a square which hits all the segments and whose
center lies on li. Finally, we choose the minimum γ∗ to
obtain the target square S.
Without loss of generality, we assume that the hori-

zontal and vertical edge length of the rectangle S′ are
L and H (L > H) respectively, as shown in Fig. 1.

Lemma 1 To obtain a feasible square S(i) which hits
all the segments in U and whose center lies on some seg-
ment li, we need to expand the (horizontal) edge length
of the minimum hitting rectangle S′ by at least γi, where

γi = 2 ∗max{max{dv −
L−H

2
, 0}, dh}, (1)

and dh = dh(s
′, li), dv = dv(s

′, li) are the horizontal
and vertical components of d∞(s′, li) respectively, with
s′ being the center of S′.

Proof. As we need to move the center s′ of S′ horizon-
tally by a value dh to obtain S(i), the edge length of S(i)
would be expanded by at least 2dh. (In this proof, imag-
ine that S′ is expanded smoothly in both directions, at
the same pace.) At the vertical direction, the height of
S(i) would not be influenced by dv if dv < L−H

2 . This is
because after an expansion by 2dv the height of S

′ is still
shorter than the length. If dv > L−H

2 , the edge length

of S′ would have to be expanded by at least 2(dv− L−H
2)

to have a feasible S(i) (due to the vertical move of s′).
Hence, γi = 2 ∗max{max{dv − L−H

2 , 0}, dh}. �

Theorem 2 The edge length of the smallest discrete
hitting square S is L+ γ∗, where γ∗ = min

∀li∈U
{γi}; more-

over, S can be computed in O(n) time.

Proof. We first compute γ∗. Then, S can be computed
from S′ by finding the segment l∗ which is γ∗ distance
away from s′, i.e., d∞(s′, l∗) = γ∗/2. The point s on l∗

realizing d∞(s′, l∗) = d∞(s′, s) = γ∗/2 is the center of
S, and the edge length of S is L+ γ∗. �

3.2 Discrete Two-Hitting-Square

It seems hard to solve this ‘two-hitting-square’ version
in the same way because simultaneously moving the two
centers of the two hitting rectangles (presumably con-
structed as in [10]) to the destination is hard, and a
brute-force method trying all the O(n2) combinations
of the locations of the two centers s1, s2 (which must lie
on some segments) would result in a high running time.
Hence we use a different method. We try to fix one tar-
get square S1 and then find the other square S2. And

87

[Configuration 1]

[Configuration 2]

Figure 4: Two configurations for the two centers.

in order to fix S1, it is natural to consider the corre-
sponding decision problem and then obtain the optimal
solution.
For the decision problem, the question is to determine

whether there are two congruent (axis-parallel) squares
S1(α) and S2(α) such that every line segments in U is hit
by at least one of them, the center s1(α) (resp. s2(α))
is on some line segment in U , and the edge length of
S1(α) and S2(α) is 2α.
As the previous subsection, we find the smallest axis-

parallel rectangle S′ that hits all the segments in U .
We assume that we also have the four boundary line
segments and the four boundary points. Besides, we also
assume that the two edge lengths of S′ satisfy L > H .
Then, there are two configurations of S1(α) and S2(α)
similar to [10], see Fig. 4. Here we only discuss the
configuration that S1(α) (resp. S2(α)) hits l and b (resp.
r and t), and the other configuration can be handled
symmetrically.
We know that the coordinates of the center s1(α)

must satisfy x(s1(α)) ≤ x(l)+α and y(s1(α)) ≤ y(b)+α
since the edge length of S1(α) is 2α. Then, for every line
segment li(1 ≤ i ≤ n), we determine whether s1(α) can
lie on it (to constitute a feasible solution) following Ob-
servation 1.

Observation 1 If s1(α) is on a horizontal segment li,
then the left endpoint u of li satisfies that x(s1(α)) ≥
x(u). Similarly, if s1(α) is on a vertical segment lj,
then the bottom endpoint v of lj satisfies that y(s1(α)) ≥
y(v).

In fact, Observation 1 implies that, when li is hor-
izontal, we could locate s1(α) on it such that (A)
x(s1(α)) = min{x(l)+α, x(R(li))} and y(s1(α)) = y(li),
where the y-coordinate of li is y(li). Similarly, when lj
is vertical, we could locate s1(α) on it such that (B)
y(s1(α)) = min{y(b)+α, y(T (li))} and x(s1(α)) = x(li),
where the x-coordinate of li is x(li).
Then, the decision procedure is straightforward: we

locate s1(α) (consequently S1(α)) on a candidate seg-
ment li according to (A) and (B), and for all the seg-
ments not covered by S1(α) we use Theorem 2 to decide

whether they can be covered by S2(α) in O(n) time. As
there are n candidate segments li’s, the decision proce-
dure takes O(n2) time.
For the optimization problem, notice that the opti-

mal solution value α∗ must be in the form d∞(li, lj)
or d∞(li, lj)/2 (the corresponding optimal squares have
an edge length 2d∞(li, lj) or d∞(li, lj) respectively).
Hence we can compute and sort this list of distances
in O(n2 logn) time. Then, we just use the decision
procedure to perform a binary search to find α∗ in
O(n2 log(n2)) = O(n2 logn) time. Consequently, S1 ←
S1(α

∗), S2 ← S2(α
∗).

Theorem 3 The Discrete Two-Hitting-Square problem
can be solved in O(n2 logn) time.

4 Solution for Hitting the Line Segments on a Tree

In this section, we consider the problems on hitting a set
of n segments on a tree T . We assume that T containsm
edges, with m > n. Here a segment li is hit by a center
c on T if d(c, li) is bounded from above by some value
β. Our problems are to hit all target segments with
either one or two centers such that the corresponding β
is minimized (Fig. 2).

4.1 One-tree-center

We present the algorithm to find c in the following al-
gorithm. This algorithm is adapted from a folklore al-
gorithm on computing the diameter of a tree.

1. Arbitrarily choose a node r1 in the tree T as the
root and find the line segment lx that is the far-
thest from r1 by breadth-first-search on T . Let
d(r1, lx) = d(r1, x), where x is an endpoint of lx.

2. Find the farthest line segment ly from x by breadth-
first-search on T . Let d(x, ly) = d(x, y), where y is
an endpoint of ly.

3. Compute the path between x and y as the diameter.
The center c is the midpoint on the path between
x and y (e.g., lx and ly).

Theorem 4 The One-Tree-Center problem can be
solved in O(m + n) time; in fact, the optimal center
c is just the midpoint of the diameter D; formally,
D = d(lx, ly) = max

1≤i,j≤n
d(li, lj) and c is on the path

between lx and ly such that d(c, lx) = d(c, ly).

Proof. The correctness can be proved by contradiction.
The details will be given in the full paper. The running
time of the algorithm is obviously O(m+n) as the main
cost is two runs of the breadth-first-search algorithm
[3]. �

88

4.2 Two-Tree-Center

In this problem, the objective is to find two centers c1
and c2 on the tree T such that

f
def
= max

li∈U
min{d(c1, li), d(c2, li)}

is minimized for any line segment li on the tree T .
To make our analysis more clean, we initially take c

as a virtual root of the tree T and then perform some
preprocessing, i.e., remove all the subtrees that do not
contain target line segments and denote the position of
every line segment by its endpoint (node) that is closer
to c. Thus, every leaf node is the endpoint of a line
segment in the transformed tree (we still call it T), and
we abuse the terminology by calling these line segments
as leaves.
For the sake of brevity, we use the notation f1 (resp.

f2) to denote the distance between c1 (resp. c2) and the
farthest line segment it hits. Thus, f = max{f1, f2}.
In this subsection, we propose the algorithm first and

sketch its correctness a bit later. We first implement
the same algorithm as we did in the last subsection to
obtain lx, ly ∈ U and c. (Recall that d(lx, ly) gives the
diameter of the segments in U on T .) Then, we discuss
the next steps in the following two cases:
(1) c is not a node of T , i.e., c is between two

adjacent nodes in T . Cut T into two parts T ′ and
T ′′ at c such that lx, ly are contained in T ′, T ′′ re-
spectively. We can find the center c′ (resp. c′′) of T ′

(resp. T ′′) as done in Section 4.1. In Section 4.2.1
we give details to show that c′ and c′′ are just the
two centers c1 and c2 of T ′ and T ′′, respectively, and
f = max{d(c′, lx), d(c′′, ly)}.
(2) c is exactly a node of T . In this case, there

are two subcases to be discussed:

(2.1) There are exactly two subtrees (also denoted
by T ′ and T ′′) of c: One contains lx while the other
contains ly. Without loss of generality, it is assumed
that c is contained in T ′ but not in T ′′. We can also
compute c′ and c′′ similar to (1) and they are also
the two centers of T ′, T ′′. And in this case it can be
computed that f = D/4 = d(lx, ly)/4.

(2.2) There are more than two subtrees of c, denoted
by T 1, T 2, ..., T k, respectively. (Suppose c does not be-
long to any subtree.) Let the two subtrees that contains
lx and ly be T 1 and T 2 respectively. Compute the cen-
ters c1, c2, c−1, c−2 and radii R1, R2, R−1, R−2 of T 1,
T 2, T−1, T−2, where T−1 = T 2 ∪ T 3 ∪ ... ∪ T k ∪ c
and T−2 = T 1 ∪ T 3 ∪ ... ∪ T k ∪ c. In this case,
f = min{max{R1, R−1},max{R2, R−2}}. We obtain c1
and c2 respectively as c1 and c−1, if max{R1, R−1} ≤
max{R2, R−2}; and vice versa. In summary we have
the following theorem.

lx

ly

lw

c1 c2

c

z

w

x
y

Figure 5: Illustration for the proof of Lemma 9, under
the assumption that lw can be hit by c1 but cannot be
hit c2.

Theorem 5 The Two-Tree-Center problem can be
solved in O(m + n) time.

We next give some details for the above theorem, due
to space constraints, we leave out some details for the
final version of this paper.

4.2.1 Case 1. c is not a node of the tree T

For this case, we have the following properties which are
intuitively obvious. Due to space limit, the proofs are
omitted in this version.

Observation 2 lx and ly must be two leaf nodes of T
and are the farthest nodes from c.

Lemma 6 The two centers c1 and c2 of T must be in
T ′ and T ′′ respectively.

Observation 3 lx and ly in T are hit by c1 and c2
respectively.

Lemma 7 lx and ly are the farthest line segments hit by
c1 and c2 respectively, i.e., d(c1, lx) = f1 and d(c2, ly) =
f2.

Lemma 8 c1 (resp. c2) is on the path between c and lx
(resp. ly).

Lemma 9 In an optimal solution, even if there is a line
segment lw in T ′′ which is hit by c1, i.e., d(c1, lw) ≤ f1,
we can make a swap to use c2 to hit it without making
the solution worse. Similarly, even if there is a line
segment lv in T ′ which is hit by c2, we can make a swap
to hit lv with c1.

Proof. Due to space limit, we only give a sketch of
the proof, see Fig. 5. Assume that lw in T ′′ is hit by
c1, i.e., d(c1, lw) ≤ f1, but cannot be hit by c2, i.e.,
d(c2, lw) > f2. We have f = f2 ≥ f1, but we can show
f1 > f2 to lead the needed contradiction. �

Corollary 1 In an optimal solution of the Two-Tree-
Center problem, c1 hits all the line segments in T ′ and
c2 hits all the line segments in T ′′. Thus we can find c1
(resp. c2) by solving the One-Tree-Center problem on
T ′ (resp. T ′′).

89

4.2.2 Case 2. c is a node of the tree T

(2.1) There are exactly two subtrees T ′ and T ′′ of c.
It is easy to see that c1, c2 are in T ′, T ′′ and hit lx,
ly respectively, similar to Lemma 6 and Observation 3.
Moreover, at least one of c1 and c2 hits lx and c (or,
ly and c) simultaneously. (Otherwise the solution is
not optimal.) Assume that c1 hits both lx and c, then
f1 = d(lx, ly)/4 = D/4 and f2 cannot be greater, be-
cause lx and ly are the two line segments farthest from
c. Hence, f = max{f1, f2} = max{d(c1, lx), d(c2, ly)} =
d(c1, lx) = D/4 = d(lx, ly)/4.

(2.2) There are more than two subtrees of c:
T 1, T 2, ..., T k. Assume that lx and ly are in T 1 and
T 2, respectively. We first claim that c1 and c2 must
be in T 1 and T 2, respectively. (Otherwise, one of T 1

and T 2, say it is T 1, does not contain any center; thus
f = max{d(c1, lx), d(c2, lx)} > d(c, lx) = D/2 which is
even worse than the corresponding one-center solution.
A contradiction.)

In this case we can also prove that d(c1, lx) = f1,
d(c2, ly) = f2, and c1 (resp. c2) is on the path between
c and lx (resp. ly) similar to Lemma 7 and Lemma 8.
Thus we can also obtain the conclusion that all the line
segments in T 1 (resp. T 2) are hit by c1 and c2, respec-
tively, as in Lemma 9 and Corollary 1. Now we only
need to consider the line segments in T 3, ..., T k: As-
sume that the tree containing the farthest line segment
from c other than T 1 and T 2 is T 3, and suppose that
c1 hits all the line segments in T 3. When we compute
f1 for c1 to hit all the line segments in T 1 and T 3, it is
obvious that all the line segments in T 4, ..., T k can also
be hit by c1 without increasing f1. That is to say, the
line segments in T 1, T 3, ..., T k are all hit by c1. Simi-
larly, if all the line segments in T 3 are hit by c2, then all
the line segments in T 2, T 3, ..., T k are hit by c2. Hence
we obtain the conclusion that either (a) c1 hits all the
line segments in T 1 and c2 hits all the line segments
in T 2, T 3, ..., T k, or (b) c1 hits all the line segments in
T 1, T 3, ..., T k and c2 hits all the line segments in T 2.
Thus, f = min{max{R1, R−1},max{R2, R−2}}, and c1
and c2 can be computed accordingly. This concludes
the correctness proof of Case 2.

5 Concluding Remarks

An extension of this research is to use a more realistic
model, i.e., an irregular grid network (a grid network
with some edges randomly deleted, e.g., something sim-
ilar to a wall graph). It seems to take some effort to
solve the discrete two-center problem in roughly O(m2)
time or even better, where m is size of the network and
there are n(n < m) streets/segments to cover.

Acknowledgments

This research is partially supported by NNSF of China
under project 61628207. XH is supported by China
Scholarship Council under program 201706240214 and
by the Fundamental Research Funds for the Central
Universities under project 2012017yjsy219. ZL is sup-
ported by a Shandong Government Scholarship.

References

[1] P. Agarwal, M. Sharir and E. Welzl. The discrete
2-center problem, Discrete and Computational Ge-
ometry, 20(3):287-305, 1998.

[2] T. Chan. More planar two-center algorithms, Com-
putational Geometry: Theory and Applications,
13(3):189-198, 1999.

[3] T. Cormen, C. Leiserson, R. Rivest and C. Stein.
Introduction to Algorithms, second edition, MIT
Press, 2001.

[4] Z. Drezner. On the rectangular p-center problem,
Naval Research Logistics, 34(2):229-234, 1987.

[5] H. Du and Y. Xu. An approximation algorithm for
k-center problem on a convex polygon, J. Combi-
natorial Optimization, 27(3):504-518, 2014.

[6] D. Eppstein. Faster construction of planar two-
centers, In Proc. 8th Annual ACM-SIAM Sym-
posium on Discrete Algorithms (SODA’97), pages
131-138, 1997.

[7] M. Hoffman. A simple linear algorithm for comput-
ing rectilinear 3-centers, Computational Geometry:
Theory and Applications, 31(3):150-165, 2005.

[8] M. Katz, K. Kedem and M. Segal. Discrete recti-
linear 2-center problem, Computational Geometry:
Theory and Applications, 15(4):203-214, 2000.

[9] N. Megiddo. Linear-time algorithms for linear pro-
gramming in R3 and related problems, SIAM J.
Computing, 12(4):759-776, 1983.

[10] S. Sadhu, S. Roy, S. Nandy and S. Roy. Opti-
mal covering and hitting of line segments by two
axis-parallel squares, In Proc. 23rd International
Computing and Combinatorics Conference (CO-
COON’17), LNCS 10392, pages 459-468, 2017.

[11] M. Sharir. A near-linear algorithm for the planar
2-center problem, Discrete and Computational Ge-
ometry, 18(2):125-134, 1997.

[12] E. Welzl. Smallest enclosing disks (balls and ellip-
soids), In New Results and New Trends in Com-
puter Science (Ed. H. Maurer), LNCS 555, pages
359-370, 1991.

90

CCCG 2018, Winnipeg, Canada, August 8–10, 2018

Finding Intersections of Algebraic Curves in a Convex Region using
Encasement

Joseph Masterjohn∗ Victor Milenkovic† Elisha Sacks‡

Abstract

We present a subdivision based technique for finding the
intersections of two algebraic curves inside a convex re-
gion. Even though it avoids computing resultants, the
technique is guaranteed to find all intersections with
bounded backwards error. The subdivision, called an
encasement, also encodes the arrangement structure of
the curves. We implement the encasement algorithm
using adaptive precision interval arithmetic. We com-
pare its performance to the CGAL library implemen-
tation of resultant based curve intersection techniques.
We provide CPU and CPU/GPU versions of the algo-
rithm and implementation. On the CPU, encasement
generates all curve intersections, to accuracy 10−8, 10
to 30 times faster than CGAL for degrees 8 to 18, and
it handles degrees up to 20 that CGAL cannot handle.
The GPU speeds up the calculation by a factor of 3 to
4.

1 Introduction

An algebraic curve f is the zero set of a bivariate poly-
nomial f(x, y). Given a convex polygon B, we find all
intersections of curves f and g inside B. Curve inter-
section is a core geometric calculation. It is a key step
in calculating the arrangement of n curves f1, . . . , fn:
a partition of B into intersection vertices, open curve
segments, and open regions. We have in mind scien-
tific or industrial applications, which provide the poly-
nomial coefficients as floating-point numbers. Broadly
speaking, numerical programs use double-float for calcu-
lations and aim for single-float accuracy in the output.
An arrangement with accuracy δ = 10−8 would more
than satisfy the latter. Nevertheless, exact arrangement
computation is required to support CG algorithms that
manipulate arrangements. These algorithms require the
signs of predicates evaluated on the vertices of the ar-
rangement. An incorrect sign can lead to program fail-
ure or to nonsensical output. This is the robustness
problem of Computational Geometry.

∗Department of Computer Science, University of Miami,
joe@cs.miami.edu
†Department of Computer Science, University of Miami,

vjm@cs.miami.edu
‡Computer Science Department, Purdue University,

eps@cs.purdue.edu

Exact Computational Geometry (ECG) uses ex-
tended precision and algebraic algorithms to determine
the signs of primitives. This approach can be numeri-
cally expensive even when heuristics are used, such as
floating point filtering. In the case of curve arrange-
ments, an exact algorithm requires construction of resul-
tant polynomials. These have high degree and bignum
coefficients.

Numerical methods, such as subdivision and curve
tracing, are often stymied by ill-conditioned inputs.
Usually, the subdivision is by axis-parallel lines, which
can require a large number of cuts to separate features.
Curve tracing is faster but is even less reliable.

1.1 Prior Work

Algebraic methods compute the turning points and the
intersection points of bivariate polynomial curves via
resultants and other algebraic computation. For exam-
ple, the CGAL arrangement package [5, 15] implements
a sweep algorithm for plane algebraic curves using Ex-
acus [4].

Subdivision methods [7, 1] provide a faster means to
isolate the intersection points of algebraic curves and
to trace algebraic curves, but they cannot guarantee
correctness and are prone to failure on ill-conditioned
inputs. They use convex bounding polyhedra during
intersection isolation, but the outputs are axis-parallel
enclosures. They typically operate on polynomials given
in the Bernstein-Bézier basis and involve a non-robust
numerical subdivision phase followed by a robust (no
false positive) certification phase on candidate intersec-
tions [9]. They can isolate the vertices and edges of
an arrangement, but an axis-parallel enclosure requires
Ω(1/ε) cells for ε-separated curves (ε distant under the
Hausdorff metric). Other work focuses on improving
the efficiency rather than reliability of the subdivision
phase through the use of low degree approximations [3],
blending schemes for quick elimination of regions con-
taining no roots [2], and deflation techniques [13].

Wang, Chiang, and Yap [14] formalize resolution-
exact subdivision methods for motion planning, but this
work is also limited to axis-parallel enclosures.

91

30th Canadian Conference on Computational Geometry, 2018

Figure 1: Encasement of f (red) with respect to g
(green) and their intersections (yellow) in B (bounding
square).

1.2 Encasement-Based Intersection Construction

We present an algebraic curve intersection algorithm
based on convex encasement. The algorithm combines
subdivision methods with exact computational geome-
try to achieve both efficiency and guaranteed accuracy.

Algebraic curves f and g are generic (in general po-
sition) if they are nonsingular (i.e. no solution to
f(x, y) = fx(x, y) = fy(x, y) = 0) and have no tangent
intersections. A convex encasement of f with respect
to g in a convex polygonal region B is a partition of
B into convex polygonal cells such that 1) no cell con-
tains a loop of f or g or more than one segment of f ,
2) if a cell intersects both f and g, it contains a single
intersection point of f and g (Fig. 1).

An encasement isolates the components of f and the
intersections of f and g. The arrangement in B of a set
of curves F can be reduced to the encasement in B of
each pair f, g from F (Sec. 7.1).

1.2.1 Intersection Algorithm Summary

The curve intersection algorithm (Sec. 7) takes two bi-
variate polynomials as inputs, perturbs the coefficients
by δ = 2−26 ≈ 10−8, and constructs an encasement of
the corresponding generic algebraic curves f and g by
recursive subdivision of B by straight lines. If a cell
C violates the definition of encasement, for example by
containing a loop of f , the algorithm splits C by a line
L. The following summarizes the selection of L with
details in the indicated sections.

Loop splitting (Sec. 2) Construct a critical set S
for f in B: S does not intersect f and contains all local
extrema of f(x, y). Since a loop of f must surround an
extremum, it must surround a connected component of
S. If a cell C contains a connected component of S,
L is selected to intersect it and hence splits any loop
surrounding it (Fig. 2). Likewise g.

(a) (b) (c)

Figure 2: Curves f (red) and g (green) with undetected
loop not shown (a). Critical regions (b) (colors match
curves). Splitting lower middle f -region with vertical
line reveals and splits missing loop (c).

(a) (b)

Figure 3: Cell with two segments (red) of f and one
segment (green) of g (a). Segments of f separated by
splitting line (b).

(a) (b)

Figure 4: Cell (center) with non-intersecting segments
of f and g (a). Separated by splitting line (b).

Self-separation (Sec. 3) If C contains more than one
segment of f , L is selected to separate one segment from
another (Fig. 3).

Curve separation (Sec. 4) If f has a single segment
ab in C and no intersections with g, L separates f from
g (Fig. 4).

Intersection separation (Sec. 4) If ab intersects g
an even number of times inside C, L splits C between
two of the intersections (Fig. 5).

Intersection isolation and encasement (Secs. 5
and 6) If ab intersects g an odd number of times in C, we
construct an axis-parallel rectangle R ⊂ C containing a

92

CCCG 2018, Winnipeg, Canada, August 8–10, 2018

(a) (b)

Figure 5: Cell with two intersections (a). Separated by
splitting line through p ∈ f in direction of ∇f(p) at a
local minimum of g(p) on f (red) (b).

(a) (b)

Figure 6: Segment g (red) blocks the intersection’s
“view” of boundary along angle bisector (a). Angle bi-
sectors reach boundary of smaller cell proving intersec-
tion is unique (b).

single intersection. This is standard zero isolation using
a 2D interval: R is not a cell. Split C by up to four
lines to encase that intersection in a cell that excludes
all other intersections (Fig. 6).

Self-separation and curve separation might not be
possible using a single split if the two segments are close
and curved. In that case, multiple splits are required.

1.2.2 Contribution

Encasement based curve intersection improves on prior
work in several ways. We ensure correctness, with ac-
curacy δ, for all inputs by perturbing polynomials to re-
move singular points and tangent intersections then em-
ploying adaptive precision interval arithmetic. Replac-
ing boxes with convex polygons reduces the space com-
plexity for ε-separated curves to Ω(1/

√
ε). The number

of splits, other than for self-separation or curve separa-
tion, is in O(d2), for d the maximum degree of f and
g. We introduce a stronger criterion for showing that a
cell contains a single intersection.

On the CPU, encasement generates all curve intersec-
tions, to accuracy δ, 10 to 30 times faster than CGAL
for degrees 8 to 18, and it handles degrees up to 20 that
CGAL cannot handle. The GPU speeds up the calcula-

i

∆

f

∆

f

∆

f

f< 0

f

p+ut
f

p

u

vi+1v

 >0

∆

f

∆f

∆

f

f

f f

u

p

q+tv

q+twq

v

w

(a) (b)

Figure 7: p minimizes f(p) on vivi+1, f(p) < 0, and di-
rection u decreases f(x, y). Split by p+ ut (a). p max-
imizes f(x, y) and f(p) > 0 but direction u decreases
f(x, y). If this happens for every edge, C must contain
a saddle point q. Split by q + tv and q + tw, where v
and w are the eigenvectors of the Hessian of f(x, y) at
q (b).

tion by a factor of 3 to 4.

2 Critical sets

A region S is a critical set of a curve f with respect to B
if it does not intersect f and it contains all local extrema
of f(x, y) in B. To construct a critical set, let R be the
bounding rectangle of B. If we can show that f(x, y)
is nonzero in R, return R. If we can show that one
of the partial derivatives fx(x, y) or fy(x, y) is nonzero
in R (hence R does not contain an extremum), return
∅. Otherwise, bisect R across its longer dimension, re-
curse on the two halves, and return the the union of
the results. Since f(x, y) is nonsingular, the algorithm
terminates.

We test if a polynomial is nonzero on a rectan-
gle with a generalization of Descartes’ rule of signs.
If R = [a, b] × [c, d], the rational function g(x, y) =
f(1/(x + 1/(b − a)) + a, 1/(y + 1/(d − c)) + c), takes
on the same set of values on [0,∞] × [0,∞] as f(x, y)
on R, and g(x, y) is nonzero on [0,∞] × [0,∞] (hence
f(x, y) on R) if all the coefficients of xmyng have the
same sign, where m and n are the degrees of f(x, y) in
x and y.

3 Self-separation

We can find the intersections of a curve f with the
boundary of a cell C by substituting the parametric
form vi + t(vi+1 − vi) of each edge vivi+1 into f(x, y)
and solving for the zeros of the univariate in t ∈ [0, 1]
[11]. Since f has no loops in C after loop splitting, the
number of segments of f inside C is half the number of
intersections with the boundary. If there are more than
two intersections, we split C in a manner that partially
or completely separates at least one pair of segments.

For each clockwise oriented edge vivi+1 of the bound-
ary, solve for all p such that (vi − vi+1) · ∇f(p) = 0

93

30th Canadian Conference on Computational Geometry, 2018

r
bf

g

a
p

p

q

p’
mf

g

a

p
b

(a) (b)

Figure 8: Chain from a (initial p) to q to r to p separates
ap from g (a). g(x, y) is decreasing at p and p′ (= b)
towards b and a, so we split at minimum m of g(x, y)
on f , separating two intersections with g (b).

(Fig. 7(a)). The vector u = s∇f(p) with s = sign((vi −
vi+1) × ∇f(p)) points inward. If sign(f(p)) = s,
|f(p + tu)|, t > 0, increases at t = 0. We split by the
line p+ tu. If there is more than one such p, we choose
the one between the closest pair of boundary intersec-
tions. If no such p exists on any edge, we claim that
∇f(p) makes at least one full counterclockwise turn as
p traverses the boundary clockwise. This claim is a spe-
cialization of the generalized Poincaré-Hopf index theo-
rem [8]. We isolate an intersection q of fx (fx(x, y) = 0)
and fy in a rectangle with the same property (Sec. 5),
which implies that q is a saddle point (Fig. 7(b)). Let v
and w be principle directions of f at q. We split by the
lines q + tv and q + tw.

4 Curve or intersection separation

If a cell C contains a single segment ab of f and
sign(g(a)) = sign(g(b)), f crosses g an even number of
times inside C. If there is a local minimum m of g(x, y)
on f , we expect that it separates two intersections, so
we split at m. Some minima may not separate pairs of
intersections, but there are at most O(d2) minima for d
the maximum total degree of f(x, y) and g(x, y). Other-
wise, we try to certify zero intersections by constructing
a splitting line that separates f from g. The details of
curve/intersection separation are complicated. We pro-
vide a summary here. Details are in a forthcoming full
paper. We discuss separating f from g in terms of con-
structing a polygonal chain, but actually we split along
the lines of the segments in the chain.

Suppose we are at a point p ∈ f , initially p = a.
We have separated ap from g. Specifically, ap does not
intersect a segment of g with both endpoints to the right
of ab. (The left has to be handled similarly.) The sign of
∇f(p)×∇g(p) tells us that g(x, y) is increasing at p in
the direction of b. We move away from f in the direction
of ∇f(p) to q halfway to g, meaning g(q) = g(p)/2.
Next we move in a direction perpendicular to ∇f(q),
“parallel” to f . If we hit f first, that is the new position
of p. If we hit g or the boundary of C at r, we drop back
to f in the direction opposite of its gradient to the new
p on f , with ap separated from g (Fig. 8(a)). Since the

b

∆

g∆

fg

>0

g<0

ff

a

d

>0

f >0g

g<0

a
b

c

f

d
g∆

f

g<0

>0ff

b

a

g

f

c

∆

(a) (b) (c)

Figure 9: a is a positive tail of f but b is a negative
head (a), so i = −1 = sign(∇f(p) ×∇g(p)) (a). a and
d are positive tails and b and d are positive heads i = 0
(b). a and c are positive tails, b is negative head, and d
is positive head so i = −1 (c).

parallel move is off f and parallel to it, it goes far before
hitting f . Since g(x, y) is increasing in the direction of
b, g is getting farther from f in that direction so the
parallel move goes far before hitting g.

If g(x, y) is decreasing on f at p in the direction of
b, we try to work from the opposite direction, starting
with p′ = b. If g(x, y) is decreasing at both p and p′ in
the direction of b and a, g(x, y) has a local minimum on
f between p and p′. We isolate the minimum m, which
is an intersection between f and∇f(x, y)×∇g(x, y) = 0
(Sec. 5). Then we split f by a line through m in the
direction ∇f(m) (Fig. 8(b)). If there is a pair of inter-
sections with g between p and p′ and only one minimum,
this will put the two intersections in different cells. If
not, m becomes a new starting point for separations be-
cause g(x, y) is increasing on f in both directions away
from m.

5 Intersection isolation

If sign(g(a)) = −sign(g(b)), f intersects g an odd num-
ber of times inside C, and we isolate one of these inter-
sections to a rectangle R ⊂ C. Let P be the precision
of the arithmetic: initially double-float (P = 53). Iso-
lation uses two operations: subdivide(D) subdivides a
convex region D containing an intersection by the bi-
sector of its longer dimension and returns the half D′

containing an intersection (Sec. 5); and Newton(R) it-
erates 2D Interval Newton’s method [12] on a rectangle
R until it stops shrinking.

While 0 ∈ ∇f(bbox(D)) × ∇g(bbox(D)) or
Newton(bbox(D)) = bbox(D), D ← subdivide(D). Re-
turn Newton(bbox(D)). Isolation does not alter C: the
subdivisions are temporary. The output R can be made
smaller by doubling the P used to create it and return-
ing Newton(R). We speed up the method by running
ordinary Newton’s method on each cell centroid. If it
converges to a point inside the cell, we expand it to a
rectangle based on its condition.

Subdivision might result in one or both halves con-
taining more than one segment of f . We can tell which
half contains the intersection by examining the inter-

94

CCCG 2018, Winnipeg, Canada, August 8–10, 2018

p

f

∆

g
f

g
4

1

23

∆

g

g
4

1

23
f

p

∆

p+rv

f

∆

(a) (b)

Figure 10: Each angle bisector of the gradient vectors
can “see” the boundary (a). Split the cell 90% of the
way to the nearest intersection (b) or boundary. Bound-
ary splits are dropped if not needed.

sections of f . A tail is a point a ∈ f ∩ ∂C such that
f > 0 in a neighborhood counterclockwise from a. If
a is on edge vivi+1 of the boundary, the condition is
equivalent to (vi+1 − vi) · ∇f(a) < 0. A head has the
opposite sign. We say a ∈ f ∩∂C is positive if g(a) > 0,
otherwise negative. A cell contains an intersection if the
intersection number i of positive heads minus positive
tails is nonzero (Fig. 9(a)). This number also equals the
winding number of (f(p), g(p)) around the origin as p
travels around the boundary: (f(p), g(p)) sweeps coun-
terclockwise through the first quadrant for each positive
head and clockwise for each positive tail. For at least
one p ∈ f ∩ g ∩C, sign(∇f(p)×∇g(p)) = sign(i). Sub-
division calculates the intersection number for each half
and selects the one whose sign is the same as the original
cell (Fig. 9(c)).

6 Intersection encasement

The output R of intersection isolation is an adaptive-
precision 2D interval representation of an intersection
point p of f and g inside a cell C. However, C can
contain an even number of additional intersections. In-
tersection encasement uses up to four splits to isolate p
within a cell that excludes all other intersections.

Let v1, v2, v3, v4 be vectors that bisect the angle be-
tween ±∇f(p) and ±∇g(p). If g also intersects C in a
single segment and if the four rays p+ tvi, t > 0, reach
the boundary of C without intersecting f or g, the four
curve segments connecting p to the boundary of C via f
or g are isolated, and f and g have no other intersection
in C (Fig. 10(a)).

Otherwise, for each 1 ≤ i ≤ 4, compute t = ri > 0 the
minimum value at which p + tvi intersects f , g, or the
boundary of C, and split C by the line perpendicular
to vi through the point p + 0.9rivi (Fig. 10(b)). While
f or g intersects the boundary of the cell containing p
more than twice, halve each ri and split again.

7 Encasement based intersection algorithm

The encasement based algebraic curve intersection al-
gorithm takes two bivariate polynomials, f(x, y) and

g(x, y), and a desired accuracy δ as input and perturbs
their coefficients by η uniform in [−δ, δ]. When generat-
ing a splitting line, it rounds its coefficients to double-
float and perturbs them. However, if perturbation puts
the line on the wrong side of a vertex, it expresses each
coefficient as the sum of two double-floats and perturbs
the smaller one, and so forth as necessary. It uses inter-
val arithmetic, increasing precision [6] as necessary to
correctly determine signs of predicate expressions.

Separation of curves might require multiple splits, but
the separation algorithms are correct for linear curves,
and each split shrinks the. Since the curves are generic,
their deviation from linear also shrinks, ensuring termi-
nation [10].

7.1 Encasement implies arrangement

Using encasement of pairs of curves, we can construct
an arrangement of n curves inside B. Given curves
F = {f1, f2, . . . , fn}, calculate intersections of all pairs.
For each f ∈ F , calculate its intersections with the par-
tial derivatives fx and fy. Starting with B, add inter-
sections of f with other curves sequentially. First add
intersections with fx and fy. If a cell contains two in-
tersections, split it with a horizontal or vertical line.
After adding the intersections with fx and fy, apply
self-separation of f . Each cell now contains an x or
y-monotonic segment of f and hence the cell can be
split with a vertical or horizontal line without creating
a cell with more than one segment. Add the remain-
ing intersections of f with other curves, splitting ver-
tically/horizontally as appropriate. The result is the
intersection encasement I(f) of f in B with respect to
F .

An arrangement segment is a segment of f connecting
two cell boundary intersections, in a cell C ∈ I(f) not
containing an intersection, or a segment ap connecting
a boundary intersection a to a curve intersection p ∈ C
with g. To trace the boundary of an arrangement cell,
we need to take a “left turn” at p to the segment pc or
pd of g in its encasement. The choice is determined by
the the sign sign(∇f(p) × ∇g(p)), a byproduct of iso-
lating the intersection (Sec. 5). Hence the arrangement
cells can be traced using only information stored in the
intersection encasements.

7.2 GPU speedup

The GPU version subdivides B (or its bounding box if
it is not a rectangle), into rectangular cells and assigns
the task of showing f or g has no zeros on a cell C to a
thread. Cells which fail this test are subdivided. This
process stops when the number of failing cells stabilizes.
CPU based encasement is run on each resulting cell.
Details in full paper.

95

30th Canadian Conference on Computational Geometry, 2018

8 Results

The first set of experiments uses random curves of de-
gree d from 3 to 20. We use B = [−1, 1] × [−1, 1].
To generate a curve, we select d(d+ 1)/2− 1 points at
random in B and interpolate through them. For each
degree d, we generate a set Fd of 16 curves. The test is
to generate all the intersections of every pair of curves
in F . We compare the CGAL curve arrangement library
with the CPU and CPU/GPU versions of encasement.
For CGAL, we monotonize each curve once, compute
the arrangement of every pair, and then calculate each
vertex in double-float. For CPU encasement, we gen-
erate the critical regions for each curve once, calculate
the encasement for each pair of curves, and increase
the precision P until the interval contains at most one
double-float point. For the GPU algorithm, we use an
initial subdivision small enough to ensure that 90% of
subcells are eliminated. The CPU results use an Intel
Core i5-3570K over-clocked at 4.2GHz and 8GB RAM.
The GPU results in addition use an Nvidia GTX 780
with 4GB DRAM. Results are in Table 8.

For d > 10, the CPU version of encasement is about
30 times faster than CGAL. CGAL times out for degrees
greater than 18. For degrees up to 13, using the GPU
speeds up encasement by a factor of 3. At degree 20,
there is no benefit.

The three right columns of Table 8 help to analyze
the number of splits required for encasement. Isolating
i intersections requires at least i splits. The number of
splits is almost proportional, rising slowly from 5i up to
7.74i for d = 3 to d = 22.

For the second experiment, we tested the robustness
of encasement and the cost of encasing near degener-
ate cases. We generated pairs of curves with a tangent
intersection, which is perturbed to a near-tangency. Ta-
ble 8 shows the effect of the tangent intersection. Since
i ordinary intersections require about 5i to 7i faces to
encase, it appears that a tangency requires about 50 to
60 faces to encase. Since the perturbation is 2−26, this
is proportional to the number of bits of accuracy, which
is still a very reasonable number.

9 Conclusion

Although it uses perturbation, encasement is an exact
algorithm, hence correct. The perturbation adds a con-
trollable backwards error. The choice δ = 2−26 ≈ 10−8

randomizes half the bits of the input, which makes it
generic with high probability. For most applications, a
10−8 error is an acceptable price for a 10 to 30 times
improvement in running time. The GPU is consumer
grade, and so it has an acceptable price for an addi-
tional factor of 3 in running time.

We were hoping for more speed up from using a GPU,
but the current version uses a quadratic approximation

d CGAL CPU GPU I S S/I

3 0.05 0.01 0.14 5 25 5.0

4 0.16 0.03 0.15 11 49 4.4

5 0.33 0.07 0.17 15 65 4.3

6 0.67 0.16 0.18 16 99 6.1

7 1.56 0.38 0.23 23 179 7.7

8 8.29 0.74 0.30 30 200 6.6

9 17.06 1.56 0.41 35 267 7.6

10 32.65 1.99 0.48 47 291 6.1

11 54.62 2.68 0.89 57 432 7.5

12 119.53 3.28 1.09 59 440 7.4

13 161.72 5.01 1.66 74 542 7.3

14 178.71 8.76 2.40 76 509 6.6

15 367.97 9.35 3.72 95 727 7.6

16 418.51 13.22 5.87 100 743 7.4

17 597.84 19.76 9.00 114 951 8.3

18 881.81 28.89 15.72 135 1062 7.8

19 ∞ 33.09 17.81 130 1010 7.7

20 ∞ 43.28 38.86 151 1168 7.7

Table 1: Degree d, CGAL, CPU encasement, and
GPU/CPU encasement running times in seconds, num-
ber of intersections I, number of cell/line splits in the
resulting encasement S, and ratio of S/I.

to f(x, y), at a cost of d2, instead of expanding f(1/(x+
1/(b − a)) + a, 1/(y + 1/(d − c)) + c) (Sec. 2), which
has d3 complexity. Also, it is limited to axis-parallel
subdivision.

Another goal of this research is 3D surface intersec-
tions and arrangement. We believe subdivision by non-
axis-parallel planes will be similarly beneficial.

Acknowledgments

Masterjohn and Milenkovic are supported by NSF grant
CCF-1526335. Sacks is supported by NSF grant CCF-
1524455.

96

CCCG 2018, Winnipeg, Canada, August 8–10, 2018

d time I S S/I

3 0.02 3 67 22.3

4 0.03 4 70 17.5

5 0.05 4 61 15.3

6 0.09 1 51 51.0

7 0.16 2 54 27.0

8 0.31 3 84 28.0

9 0.48 2 73 36.5

10 0.86 6 82 13.7

11 1.47 7 118 16.9

12 1.75 8 152 19.0

13 2.23 2 81 40.5

14 2.84 8 161 20.1

15 4.64 6 127 21.2

16 5.26 6 133 22.2

17 6.85 4 143 35.8

18 9.36 6 127 21.2

19 11.7 10 93 9.3

20 16.2 9 128 14.2

Table 2: Degree d, encasement running time for tangen-
tially intersecting curves.

References

[1] M. Barton, G. Elber, and I. Hanniel. Topolog-
ically guaranteed univariate solutions of under-
constrained polynomial systems via no-loop and
single component tests. Computer-Aided Design,
43(8):10351044, 2011.

[2] Michael Bartoň. Solving polynomial systems using
no-root elimination blending schemes. Computer-
Aided Design, 43(12):1870–1878, 2011.

[3] Michael Bartoň and Bert Jüttler. Computing roots
of polynomials by quadratic clipping. Computer
Aided Geometric Design, 24(3):125–141, 2007.

[4] Eric Berberich, Arno Eigenwillig, Michael Hem-
mer, Susan Hert, Lutz Kettner, Kurt Mehlhorn,
Joachim Reichel, Susanne Schmitt, Elmar
Schömer, and Nicola Wolpert. Exacus: Efficient
and exact algorithms for curves and surfaces.
In European Symposium on Algorithms, pages
155–166. Springer, 2005.

[5] Efi Fogel, Dan Halperin, and Ron Wein. CGAL
Arrangements and Their Applications: A Step-by-
Step Guide. Springer, 2012.

[6] Laurent Fousse, Guillaume Hanrot, Vincent
Lefèvre, Patrick Pélissier, and Paul Zimmermann.
MPFR: A multiple precision binary floating point
library with correct rounding. ACM Transactions
on Mathematical Software, 33:13, 2007.

[7] I. Hanniel and G. Elber. Subdivision termination
criteria in subdivision multivariate solvers using
dual hyperplanes representations. Computer Aided
Design, 39:36978, 2007.

[8] Benoit Jubin. A generalized Poincare-Hopf in-
dex theorem. http://arxiv.org/abs/0903.0697,
2009.

[9] Bert Jüttler and Brian Moore. A quadratic clip-
ping step with superquadratic convergence for bi-
variate polynomial systems. Mathematics in Com-
puter Science, 5(2):223–235, 2011.

[10] Joseph Masterjohn. Encasement: A ro-
bust method for finding intersections of semi-
algebraic curves. Open Access Theses, 699,
2017. https://scholarlyrepository.miami.

edu/oa_theses/699.

[11] Kurt Mehlhorn and Michael Sagraloff. A deter-
ministic algorithm for isolating the real roots of a
real polynomial. Journal of Symbolic Computation,
46:70–90, 2011.

[12] Ramon E. Moore. Methods and Applications of In-
terval Analysis. SIAM Studies in Applied Mathe-
matics. SIAM, Philadelphia, 1979.

[13] Bernard Mourrain and Jean Pascal Pavone. Sub-
division methods for solving polynomial equations.
Journal of Symbolic Computation, 44(3):292–306,
2009.

[14] Cong Wang, Yi-Jen Chiang, and Chee Yap. On soft
predicates in subdivision motion planning. Com-
putational Geometry: Theory and Applications,
48(8):589–605, 2015.

[15] Ron Wein, Eric Berberich, Efi Fogel, Dan Halperin,
Michael Hemmer, Oren Salzman, and Baruch Zuk-
erman. 2D arrangements. In CGAL User and Ref-
erence Manual. CGAL Editorial Board, 4.11 edi-
tion, 2017.

97

CCCG 2018, Winnipeg, Canada, August 8–10, 2018

Geometric Fingerprint Recognition via Oriented Point-Set Pattern Matching

David Eppstein ∗ Michael T. Goodrich∗ Jordan Jorgensen∗ Manuel R. Torres †

Abstract

Motivated by the problem of fingerprint matching, we
present geometric approximation algorithms for match-
ing a pattern point set against a background point set,
where the points have angular orientations in addition
to their positions.

1 Introduction

Fingerprint recognition typically involves a three-step
process: (1) digitizing fingerprint images, (2) identifying
minutiae, which are points where ridges begin, end,
split, or join, and (3) matching corresponding minutiae
points between the two images. An important con-
sideration is that the minutiae are not pure geometric
points: besides having geometric positions, defined
by (x, y) coordinates in the respective images, each
minutiae point also has an orientation (the direction
of the associated ridges), and these orientations should
be taken into consideration in the comparison, e.g.,
see [13, 9, 16, 19, 10, 11, 17, 15, 12] and Figure 1.

Figure 1: Screenshot of the display of fingerprint minu-
tiae in NIST’s Fingerprint Minutiae Viewer (FpMV).

In this paper, we consider computational geometry
problems inspired by this fingerprint matching problem.
The problems we consider are all instances of point-
set pattern matching problems, where we are given a
“pattern” set, P , of m points in R2 and a “background”
set, B, of n points in R2, and we are asked to find a
transformation of P that best aligns the points of P
with a subset of the points in B, e.g., see [3, 4, 5, 6, 7].

∗University of California, Irvine
†University of Illinois

A natural choice of a distance measure to use in this
case, between a transformed copy, P ′, of the pattern,
P , against the background, B, is the directed Hausdorff
distance, defined as h(P ′, B) = maxp∈P ′ minq∈B ρ(p, q),
where ρ is an underlying distance metric for points, such
as the Euclidean metric. In other words, the problem is
to find a transformation of P that minimizes the farthest
any point in P is from its nearest neighbor in B. Rather
than only considering the positions of the points in P
and B, however, in this paper we consider instances in
which each point in P and B also has an associated
orientation defined by an angle, as in the fingerprint
matching application.

It is important in such oriented point-set pattern
matching problems to use an underlying distance that
combines information about both the locations and the
orientations of the points, and to use this distance in
finding a good transformation. Our goal is to design
efficient algorithms that can find a transformation that
is a good match between P and B taking both positions
and orientations into consideration.

Previous Work. In the domain of fingerprint match-
ing, past work tends to focus on matching fingerprints
heuristically or as pixelated images, taking into con-
sideration both the positions and orientation of the
minutiae or other features, e.g., see [13, 9, 16, 19,
10, 11, 17, 15, 12]. We are not aware of past work
on studying fingerprint matching as a computational
geometry problem, however.

Geometric pattern matching for point sets without
orientations, on the other hand, has been well studied
from a computational geometry viewpoint, e.g., see [1,
4, 6, 18]. For such unoriented point sets, existing
algorithms can find an optimal solution minimizing
Hausdorff distance, but they generally have high poly-
nomial running times. Several existing algorithms give
approximate solutions to geometric pattern matching
problems [3, 5, 7, 8], but we are not aware of previous
approximation algorithms for oriented point-set pattern
matching. Goodrich et al. [7] present approximation
algorithms for geometric pattern matching in multiple
spaces under different types of motion, achieving ap-
proximation ratios ranging from 2 to 8 + ε, for constant
ε > 0. Cho and Mount [5] show how to achieve improved
approximation ratios for such matching problems, at
the expense of making the analysis more complicated.

98

30th Canadian Conference on Computational Geometry, 2018

Other algorithms give approximation ratios of 1 + ε,
allowing the user to define the degree of certainty they
want. Indyk et al. [8] give a (1 + ε)-approximation
algorithm whose running time is defined in terms of both
the number of points in the set as well as ∆, which is
defined as the the distance between the farthest and the
closest pair of points. Cardoze and Schulman [3] offer
a randomized (1 + ε)-approximation algorithm for Rd
whose running time is also defined in terms of ∆. These
algorithms are fast when ∆ is relatively small, which is
true on average for many application areas, but these
algorithms are much less efficient in domains where ∆
is likely to be arbitrarily large.

Our Results. In this paper, we present a family
of simple algorithms for approximate oriented point-
set pattern matching problems, that is, computational
geometry problems motivated by fingerprint matching.
Each of our algorithms uses as a subroutine a base algo-
rithm that selects certain points of the pattern, P , and
“pins” them into certain positions with respect to the
background, B. This choice determines a transformed
copy P ′ of the whole point set P . We then compute
the directed Hausdorff distance for this transform by
querying the nearest neighbor in B for each point of
P ′. To find nearest neighbors for a suitably-defined
metric on oriented points that combines straight-line
distance with rotation amounts, we adapt balanced box
decomposition (BBD) trees [2] to oriented point sets,
which may be of independent interest. The general idea
of this adaptation is to insert two copies of each point
such that, for any query point, if we find its nearest
neighbor using the L1/L2-norm, we will either find the
nearest neighbor based on µ1/µ2 or we will find one of
its copies. The full details of this approach are described
in Appendix B. The output of the base algorithm is the
transformed copy P ′ that minimizes this distance. We
refer to our base algorithms as pin-and-query methods.

These base algorithms are all simple and effective, but
their approximation factors are larger than 2, whereas
we seek (1 + ε)-approximation schemes for any constant
ε > 0. To achieve such results, our approximation
schemes call the base algorithm twice. The first
call determines an approximate scale of the solution.
Next, our schemes apply a grid-refinement strategy that
expands the set of background points by convolving it
with a fine grid at that scale, in order to provide more
candidate motions. Finally, they call the base algorithm
a second time on the expanded input. This allows us to
leverage the speed and simplicity of the base algorithms,
gaining greater accuracy while losing only a constant
factor in our running times.

The resulting approximation algorithms run in the
same asymptotic time bound as the base algorithm
(with some dependence on ε in the constants) and

achieve approximations that are a (1 + ε) factor close
to optimal, for any constant ε > 0. For instance, one
of our approximation schemes, designed in this way,
guarantees a worst case running time of O(n2m log n)
for rigid motions defined by translations and rotations.
Thus, our approach results in polynomial-time approx-
imation schemes (PTASs), where their running times
depend only on combinatorial parameters. Specifically,
we give the runtimes and approximations ratios for our
algorithms in Table 1.

Algorithm Running Time Approx. Ratio

T O(nm log n) 1 + ε
TR O(n2m log n) 1 + ε
TRS O(n2m log n) 1 + ε

Table 1: Running times and approximation ratios for
our approximation algorithms.

The primary challenge in the design of our algo-
rithms is to come up with methods that achieve an
approximation factor of 1 + ε, for any small constant
ε > 0, without resulting in a running time that is
dependent on a geometric parameter like ∆. The main
idea that we use to overcome this challenge is for our
base algorithms in some cases to use two different
pinning schemes, one for large diameters and one for
small diameters, We show that one of these pinning
schemes always finds a good match, so choosing the
best transformation found by either of them allows us
to avoid a dependence on geometric parameters in our
running times. As mentioned above, all of our base
algorithms are simple, as are our (1 + ε)-approximation
algorithms. Moreover, proving each of our algorithms
achieves a good approximation ratio is also simple,
involving no more than “high school” geometry. Still,
for the sake of our presentation, we postpone some
proofs and simple cases to appendices.

2 Formal Problem Definition

Let us formally define the oriented point-set pattern
matching problem. We define an oriented point set in
R2 to be a finite subset of the set O of all oriented points,
defined as

O =
{

(x, y, a) | x, y, a ∈ R, a ∈ [0, 2π)
}
.

We consider three sets of transformations on oriented
point sets, corresponding to the usual translations,
rotations, and scalings on R2. In particular, we define
the set of translations, T , as the set of functions Tv :
O → O of the form

Tv(x, y, a) = (x+ vx, y + vy, a),

99

CCCG 2018, Winnipeg, Canada, August 8–10, 2018

where v = (vx, vy) ∈ R2 is referred to as the translation
vector.

Let Rp,θ be a rotation in R2 where p and θ are the
center and angle of rotation, respectively. We extend
the action of Rp,θ from unoriented points to oriented
points by defining

Rp,θ(x, y, a) =
(
Rp,θ(x, y), (a+ θ) mod 2π

)
,

and we let R denote the set of rotation transformations
from O to O defined in this way.

Finally, we define the set of scaling operations on
an oriented point set. Each such operation Sp,s is
determined by a point p = (xp, yp, ap) at the center
of the scaling and by a scale factor, s. If a point q
is Euclidean distance d away from p before scaling, the
distance between q and p should become sd after scaling.
In particular, this determines Sp,s : O → O to be the
function

Sp,s(x, y, a) =
(
xp + s(x− xp), yp + s(y − yp), a

)
.

We let S denote the set of scaling functions defined in
this way.

As in the unoriented point-set pattern matching prob-
lems, we use a directed Hausdorff distance to measure
how well a transformed patten set of points, P , matches
a background set of points, B. That is, we use

h(P,B) = max
p∈P

min
q∈B

µ(p, q),

where µ(p, q) is a distance metric for oriented points in
R2. Our approach works for various types of metrics,
µ, for pairs of points, but, for the sake of concreteness,
we focus on two specific distance measures for elements
of O, which are based on the L1-norm and L2-norm,
respectively. In particular, for (x1, y1, a1), (x2, y2, a2) ∈
O, let

µ1((x1, y1, a1), (x2, y2, a2)) =

|x1 − x2|+ |y1 − y2|+ min(|a1 − a2|, 2π − |a1 − a2|),
and let

µ2((x1, y1, a1), (x2, y2, a2)) =
√

(x1 − x2)2 + (y1 − y2)2 + min(|a1 − a2|, 2π − |a1 − a2|)2.
Intuitively, one can interpret these distance metrics to
be analogous to the L1-norm and L2-norm in a cylin-
drical 3-dimensional space where the third dimension
wraps back around to 0 at 2π. Thus, for i ∈ {1, 2},
and B,P ⊆ O, we use the following directed Hausdorff
distance:

hi(P,B) = max
p∈P

min
b∈B

µi(p, b).

Therefore, for some subset E of T ∪ R ∪ S, the
oriented point-set pattern matching problem is to find
a composition E of one or more functions in E that
minimizes hi(E(P), B).

3 Translations and Rotations

In this section, we present our base algorithm and
approximation algorithm for approximately solving the
oriented point-set pattern matching problem where we
allow translations and rotations. Given two subsets of
O, P and B, with |P | = m and |B| = n, our goal here
is to minimize hi(E(P), B) where E is a composition of
functions in T ∪ R. In the case of translations and
rotations, we actually give two sets of algorithms—
one set that works for point sets with large diameter
and one that works for point sets with small diameter.
Deciding which of these to use is based on a simple
calculation (which we postpone to the analysis below),
which amounts to a normalization decision to determine
how much influence orientations have on matches versus
coordinates.

Base Algorithm Under Translation and Rotation
with Large Diameter. In this subsection, we present
an algorithm for solving the approximate oriented point-
set pattern matching problem where we allow transla-
tions and rotations. This algorithm provides a good
approximation ratio when the diameter of our pattern
set is large. Given two subsets P and B of O, with
|P | = m and |B| = n, we wish to minimize hi(E(P), B)
over all compositions E of one or more functions in
T ∪ R. Our algorithm is as follows (see Figure 2).

Algorithm BaseTranslateRotateLarge(P,B):

Find p and q in P having the maximum value of
‖(xp, yp)− (xq, yq)‖2.
for every pair of points b, b′ ∈ B do

Pin step: Apply the translation, Tv ∈ T , that takes
p to b, and apply the rotation, Rp,θ, that makes p,
b′, and q collinear.
Let P ′ denote the transformed pattern set, P .
for every q ∈ P ′ do

Query step: Find a nearest-neighbor of q in B
using the µi metric, and update a candidate
Hausdorff distance accordingly.

end for
return the smallest candidate Hausdorff distance
found as the smallest distance, hi(Rp,θ(Tv(P)), B).

end for

The points p and q can be found in O(m logm)
time [14]. The pin step iterates over O(n2) translations
and rotations, respectively, and, for each one of these
transformations, we perform m BBD queries, each of
which takes O(log n) time. Therefore, our total running
time is O(n2m log n). Our analysis for this algorithm’s
approximation factor uses the following simple lemma.

100

30th Canadian Conference on Computational Geometry, 2018

pb

q

b′

p
b

q
b′

p
b

q

b′

Translate Rotate

Result

Figure 2: Illustration of the translation and rotation
steps of the base approximation algorithm for transla-
tion and rotation in O when diameter is large.

Lemma 1 Let P be a finite subset of O. Consider the
rotation Rc,θ in R. Let q = (xq, yq, aq) be the element
in P such that ‖(xq, yq)− (xc, yc)‖2 = D is maximized.
For any p = (xp, yp, ap) ∈ P , denote Rc,θ(xp, yp, ap)
as p′ = (xp′ , yp′ , ap′). Let i ∈ {1, 2}. Then for all
p ∈ P , µi(p, p

′) ≤ ‖(xq, yq) − (xq′ , yq′)‖i + π‖(xq, yq) −
(xq′ , yq′)‖2/(2D).

Theorem 2 Let hopt be hi(E(P), B) where E is the
composition of functions in T ∪ R that attains the
minimum of hi, for i ∈ {1, 2}. The algorithm above runs
in time O(n2m log n) and produces an approximation to
hopt that is at most (A1 + ε)hopt for h1 and at most
(A2 + ε)hopt for h2, where ε > is a fixed constant,
A1 = 6 +

√
2π/D, and A2 = 2 +

√
2(2 + π/D).

Grid Refinement. In this subsection, we describe
our grid refinement process, which allows us to use
a base algorithm to obtain an approximation ratio
of 1 + ε. To achieve this result, we take advantage
of an important property of the fact that we are
approximating a Hausdorff distance by a pin-and-query
algorithm. Our base algorithm approximates hopt by
pinning a reference pattern point, p, to a background
point, b. Reasoning backwards, if we have a pattern in
an optimal position, where every pattern point, p, is at
distance d ≤ hopt from its associated nearest neighbor in
the background, then one of the transformations tested
by the base pin-and-query algorithm moves each pattern
point by a distance of at most (Ai− 1)d away from this
optimal location when it performs its pinning operation.

Suppose we could define a constant-sized “cloud” of
points with respect to each background point, such that
one of these points is guaranteed to be very close to the
optimal pinning location, much closer than the distance
d from the above argument. Then, if we use these
cloud points to define the transformations checked by
the base algorithm, one of these transformations will
move each point from its optimal position by a much
smaller distance.

To aid us in defining such a cloud of points, consider
the set of points G(p, l, k) ⊂ R2 (where p = (xp, yp) is
some point in R2, l is some positive real value, and k is
some positive integer) defined by the following formula:

G(p, l, k) =
{
q ∈ R2 |

q = (xp + il, yp + jl), i, j ∈ Z,−k ≤ i, j ≤ k
}
.

Then G(p, l, k) is a grid of (2k + 1)2 points within
a square of side length 2kl centered at p, where the
coordinates of each point are offset from the coordinates
of p by a multiple of l. An example is shown in Figure 3.

p

l

3l

Figure 3: An example of G(p, l, 3).

Now consider any point q whose Euclidean distance
is no more than kl from p. This small distance forces
point q to lie within the square convex hull of G(p, l, k).
This implies that there is a point of G(p, l, k) that is
even closer to q:

Lemma 3 Let i ∈ {1, 2}. Given two points p, q ∈ R2,
if ‖p− q‖i ≤ kl, then ‖q− s‖1 ≤ l and ‖q− s‖2 ≤ l/

√
2,

where s is q’s closest neighbor in G(p, l, k).

A (1+ε)-Approximation Algorithm Under Trans-
lation and Rotation with Large Diameter. Here,
achieve a (1 + ε)-approximation ratio when we allow
translations and rotations. Again, given two subsets of
O, P and B, with |P | = m and |B| = n, our goal is
to minimize hi(E(P), B) over all compositions E of one
or more functions in T ∪ R. We perform the following
steps.

1. Run algorithm, BaseTranslateRotateLarge(P,B),
from Section 3 to obtain an approximation hapr ≤
A · hopt, where A = A1 + ε or A = A2 + ε, for a
constant ε > 0.

2. For every b ∈ B, generate the grid of points

Gb = G(b,
haprε
A2−A , dA

2−A
ε e) for h1 or the grid Gb =

G(b,
√
2haprε
A2−A , dA2−A√

2ε
e) for h2. Let B′ denote the

resulting point set, which is of size O(A4n), i.e.,
|B′| is O(n) when A is a constant.

3. Run algorithm, BaseTranslateRotateLarge(P,B′),
except use the original set, B, for nearest-neighbor
queries in the query step.

101

CCCG 2018, Winnipeg, Canada, August 8–10, 2018

It is easy to see that this simple algorithm runs in
O(A8n2m log n), which is O(n2m log n) when A is a
constant (i.e., when the points in P have a large enough
diameter).

Theorem 4 Let hopt be hi(E(P), B) where E is the
composition of functions in T ∪ R that attains the
minimum of hi. The algorithm above runs in time
O(A8n2m log n) and produces an approximation to hopt
that is at most (1 + ε)hopt for both h1 and h2.

Base Algorithm Under Translation and Rotation
with Small Diameter. In this subsection, we present
an alternative algorithm for solving the approximate
oriented point-set pattern matching problem where we
allow translations and rotations. Compared to the
algorithm given in Section 3, this algorithm instead
provides a good approximation ratio when the diameter
of our pattern set is small. Once again, given two
subsets of O, P and B, with |P | = m and |B| = n,
we wish to minimize hi(E(P), B) over all compositions
E of one or more functions in T ∪ R. We perform the
following algorithm (see Figure 4).

Algorithm BaseTranslateRotateSmall(P,B):

Choose some p ∈ P arbitrarily.
for every points b ∈ B do

Pin step: Apply the translation, Tv ∈ T , that
takes p to b, and then apply the rotation, Rp,θ,
that makes p and b have the same orientation.
Let P ′ denote the transformed pattern set, P .
for every q ∈ P ′ do

Query step: Find a nearest-neighbor of q in B
using the µi metric, and update a candidate
Hausdorff distance accordingly.

end for
return the smallest candidate Hausdorff distance
found as the smallest distance, hi(Rp,θ(Tv(P)), B).

end for

Theorem 5 Let hopt be hi(E(P), B) where E is the
composition of functions in T ∪ R that attains the
minimum of hi. The algorithm above runs in time
O(nm log n) and produces an approximation to hopt that
is at most (Ai + ε)hopt for hi, where i = {1, 2}, ε > 0 is
a fixed constant, A1 = 2 +

√
2D, and A2 = 2 +D.

A (1+ε)-Approximation Algorithm Under Trans-
lation and Rotation with Small Diameter. In
this subsection, we utilize the algorithm from Section 3
to achieve a (1 + ε)-approximation ratio when we allow
translations and rotations. Again, given two subsets of

p

b
p

b

p
b

Translate Rotate

Result

Figure 4: Illustration of the translation and rotation
steps of the base approximation algorithm for transla-
tion and rotation in O when diameter is small.

O, P and B, with |P | = m and |B| = n, our goal is
to minimize hi(E(P), B) over all compositions E of one
or more functions in T ∪ R. We begin by describing
another type of grid refinement we use in this case.

In particular, let us consider a set of points C(p, k) ⊂
O where p = (xp, yp, ap) is some point inO and k is some
positive integer. We define the set in the following way
(see Figure 5):

C(p, k) = {q ∈ O|
q = (xp, yp, a+ 2πi/k mod 2π), i ∈ Z, 1 ≤ i ≤ k}.

2π
k

p

Figure 5: An example of C(p, 8).

From this definition, we can see that C(p, k) is a set
of points that share the same position as p but have
different orientations that are equally spaced out, with
each point’s orientation being an angle of 2π

k away from
the previous point. Therefore, it is easy to see that,
for any point q ∈ O, there is a point in C(p, k) whose
orientation is at most an angle of π

k away from the
orientation of q. Given this definition, our algorithm
is as follows.

1. Run algorithm, BaseTranslateRotateSmall(P,B),
from Section 3, to obtain hapr ≤ A · hopt.

2. For every b ∈ B, generate the point set

Gb = G

(
b,

haprε

2(A2 −A)
,

⌈
2(A2 −A)

ε

⌉)

102

30th Canadian Conference on Computational Geometry, 2018

for h1 or

Gb = G

(
b,

haprε

A2 −A,
⌈
A2 −A

ε

⌉)

for h2. Let B′ denote the resulting set of points,
i.e., B′ =

⋃
b∈B Gb.

3. For every b′ ∈ B′, generate the point set

Cb′ = C

(
b′,

2(A2 −A)

πhaprε

)

for h1 or

Cb′ = C

(
b′,

√
2(A2 −A)

πhaprε

)

for h2. Let B′′ denote the resulting set of points.

4. Run algorithm, BaseTranslateRotateSmall(P,B′′),
but continue to use the points in B for nearest-
neighbor queries.

Intuitively, this algorithm uses the base algorithm to
give us an indication of what the optimal solution might
be. We then use this approximation to generate a larger
set of points from which to derive transformations to
test, but this time we also generate a number of different
orientations for those points as well. We then use this
point set in the base algorithm when deciding which
transformations to iterate over, while still using B to
compute nearest neighbors.

The first step of this algorithm runs in time
O(nm log n), as we showed. The second step takes time
proportional to the number of points which have to be
generated, which is determined by n, our choice of the
constant ε, and the approximation ratio, A, of our base
algorithm. The time needed to complete the second
step is O(A4n). The third step generates even more
points based on points generated in step two, which
increases the size of B′′ to be O(A6n). The last step
runs in time O(A6nm log n), which is also the running
time for the full algorithm.

Theorem 6 Let hopt be hi(E(P), B) where E is the
composition of functions in T ∪ R that attains the
minimum of hi. The algorithm above runs in time
O(A6nm log n) and produces an approximation to hopt
that is at most (1 + ε)hopt for both h1 and h2.

Combining the Algorithms for Large and Small
Diameters. For the two cases above, we provided two
base algorithms that each had a corresponding (1 + ε)-
approximation algorithm. As mentioned above, we clas-
sified the two by whether the algorithm achieved a good
approximation when the diameter of the pattern set
was large or small. This is because the large diameter

base algorithm has an approximation ratio with terms
that are inversely proportional to the diameter, and the
small diameter base algorithm has an approximation
ratio with terms that are directly proportional to the
diameter.

Both of the resulting (1+ε)-approximation algorithms
have running times which are affected by the approxi-
mation ratio of their base algorithm, meaning their run
times are dependent upon the diameter of the pattern
set. We can easily see, however, that the approximation
ratios of the large and small diameter base algorithms
intersect at some fixed constant diameter, D∗. For
h1, if we compare the expressions 6 +

√
2π/D and

2 +
√

2D, we find that the two expressions are equal
at D∗ =

√
2 +
√

2 + π ≈ 3.68. For h2, we compare
2 +
√

2(2 + π/D) and 2 +D to find that they are equal

at D∗ =
√

2 +
√

2 +
√

2π ≈ 3.95. For diameters larger
than D∗, the approximation ratio of the large diameter
algorithm is smaller than at D∗, and for diameters
smaller than D∗, the approximation ratio of the small
diameter algorithm is smaller than at D∗. Thus, if we
choose to use the small diameter algorithms when the
diameter is less than D∗ and we use the large diameter
algorithms when the diameter is greater or equal to D∗,
we ensure that the approximation ratio is no more than
the constant value that depends on the constant D∗.
Thus, based on the diameter of the pattern set, we
can decide a priori if we should use our algorithms for
large diameters or small diameters and just go with that
set of algorithms. This implies that we are guaranteed
that our approximation factor, A, in our base algorithm
is always bounded above by a constant; hence, our
running time for the translation-and-rotation case is
O(n2m log n).

4 Conclusion

We present distance metrics that can be used to measure
the similarity between two point sets with orientations
and we also provided fast algorithms that guarantee
close approximations of an optimal transformation. In
the appendices, we provide additional algorithms for
other types of transformations and we also provide
results of experiments.

Acknowledgments

This work was supported in by the NSF under grants
1526631, 1618301, and 1616248, and by DARPA under
agreement no. AFRL FA8750-15-2-0092. The views
expressed are those of the authors and do not reflect the
official policy or position of the Department of Defense
or the U.S. Government.

103

CCCG 2018, Winnipeg, Canada, August 8–10, 2018

References

[1] H. Alt and L. J. Guibas. Discrete geometric
shapes: Matching, interpolation, and approxima-
tion. Handbook of computational geometry, 1:121–
153, 1999.

[2] S. Arya, D. M. Mount, N. S. Netanyahu, R. Sil-
verman, and A. Y. Wu. An optimal algorithm for
approximate nearest neighbor searching fixed di-
mensions. Journal of the ACM (JACM), 45(6):891–
923, 1998.

[3] D. E. Cardoze and L. J. Schulman. Pattern
matching for spatial point sets. In Foundations of
Computer Science, 1998. Proceedings. 39th Annual
Symposium on, pages 156–165. IEEE, 1998.

[4] L. P. Chew, M. T. Goodrich, D. P. Huttenlocher,
K. Kedem, J. M. Kleinberg, and D. Kravets. Ge-
ometric pattern matching under euclidean motion.
Computational Geometry, 7(1):113–124, 1997.

[5] M. Cho and D. M. Mount. Improved approximation
bounds for planar point pattern matching. Algo-
rithmica, 50(2):175–207, 2008.

[6] M. Gavrilov, P. Indyk, R. Motwani, and
S. Venkatasubramanian. Geometric pattern match-
ing: A performance study. In Proceedings of
the fifteenth annual symposium on Computational
geometry, pages 79–85. ACM, 1999.

[7] M. T. Goodrich, J. S. Mitchell, and M. W. Orlet-
sky. Approximate geometric pattern matching un-
der rigid motions. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 21(4):371–379,
1999.

[8] P. Indyk, R. Motwani, and S. Venkatasubramanian.
Geometric matching under noise: Combinatorial
bounds and algorithms. In SODA, pages 457–465,
1999.

[9] A. K. Jain, L. Hong, S. Pankanti, and R. Bolle. An
identity-authentication system using fingerprints.
Proceedings of the IEEE, 85(9):1365–1388, 1997.

[10] T.-Y. Jea and V. Govindaraju. A minutia-based
partial fingerprint recognition system. Pattern
Recognition, 38(10):1672–1684, 2005.

[11] X. Jiang and W.-Y. Yau. Fingerprint minutiae
matching based on the local and global structures.
In Proceedings 15th International Conference on
Pattern Recognition. ICPR-2000, volume 2, pages
1038–1041, 2000.

[12] J. V. Kulkarni, B. D. Patil, and R. S. Holambe.
Orientation feature for fingerprint matching. Pat-
tern Recognition, 39(8):1551–1554, 2006.

[13] D. Maltoni, D. Maio, A. Jain, and S. Prabhakar.
Handbook of Fingerprint Recognition. Springer
Science & Business Media, 2009.

[14] F. P. Preparata and M. I. Shamos. Computational
geometry: an introduction. Springer-Verlag, New
York, NY, 1985.

[15] J. Qi, S. Yang, and Y. Wang. Fingerprint matching
combining the global orientation field with minu-
tia. Pattern Recognition Letters, 26(15):2424–2430,
2005.

[16] N. Ratha and R. Bolle. Automatic Fingerprint
Recognition Systems. Springer Science & Business
Media, 2007.

[17] M. Tico and P. Kuosmanen. Fingerprint match-
ing using an orientation-based minutia descriptor.
IEEE Transactions on Pattern Analysis and Ma-
chine Intelligence, 25(8):1009–1014, 2003.

[18] R. C. Veltkamp. Shape matching: similarity
measures and algorithms. In Shape Modeling and
Applications, SMI 2001 International Conference
on., pages 188–197. IEEE, 2001.

[19] H. Xu, R. N. J. Veldhuis, T. A. M. Kevenaar, and
T. A. H. M. Akkermans. A fast minutiae-based
fingerprint recognition system. IEEE Systems
Journal, 3(4):418–427, Dec 2009.

104

30th Canadian Conference on Computational Geometry, 2018

A Postponed Proofs

In this appendix, we present proofs that were postponed
from the body of our paper.

Lemma 3. Let i ∈ {1, 2}. Given two points p, q ∈ R2, if
‖p − q‖i ≤ kl, then ‖q − s‖1 ≤ l and ‖q − s‖2 ≤ l/

√
2,

where s is q’s closest neighbor in G(p, l, k).

Proof. Because ‖p − q‖i ≤ kl, we know that q exists
within the square of side length 2kl which encompasses
G(p, l, k) (which we will refer to as G for the remainder
of this proof). This square can be divided into (2k)2

non-overlapping squares of side length l. It is easy to
see that the vertices of these squares are all points in
G and that q exists within (or on the edge of) at least
one of these squares. The point inside of a square that
maximizes the distance to the square’s closest vertex
is the exact center of the square. If the side length
is l, simple geometry shows us that at this point, the
distance to any vertex is l with respect to the L1-norm
and l/

√
2 with respect to the L2-norm. Thus, because q

exists within a square of side length l whose vertices are
points in G, the furthest that q can be from its nearest
neighbor in G is l for the L1-norm and l/

√
2 for the

L2-norm. �

Lemma 1. Let P be a finite subset of O. Consider the
rotation Rc,θ in R. Let q = (xq, yq, aq) be the element
in P such that ‖(xq, yq)− (xc, yc)‖2 = D is maximized.
For any p = (xp, yp, ap) ∈ P , denote Rc,θ(xp, yp, ap)
as p′ = (xp′ , yp′ , ap′). Let i ∈ {1, 2}. Then for all
p ∈ P , µi(p, p

′) ≤ ‖(xq, yq) − (xq′ , yq′)‖i + π‖(xq, yq) −
(xq′ , yq′)‖2/(2D).

D

D

c
q

q′

2D sin θ
2

θ

Figure 6: The rotation of q to q′ about c

Proof. After applying the rotation Rc,θ, we know q has
moved at least as far than any other point because it is
the farthest from the center of rotation. Without loss
of generality, 0 ≤ θ ≤ π. Then it is easily verifiable
that θ/π ≤ sin(θ/2). As 2D sin(θ/2) is the Euclidean
distance q moves under Rc,θ, it follows that

2Dθ

π
≤ 2D sin(θ/2) = ‖(xq, yq)− (xq′ , yq′)‖2.

This scenario is illustrated in Figure 6. Thus, θ ≤
(π‖(xq, yq)− (xq′ , yq′)‖2)/(2D), which implies that Rc,θ
moves the position of q by at most ‖(xq, yq)−(xq′ , yq′)‖i

and changes the orientation of q by at most π‖(xq, yq)−
(xq′ , yq′)‖2/(2D). Therefore, because q moves farther
than any other point in P , any point p ∈ P has moved
a distance of at most ‖(xq, yq)−(xq′ , yq′)‖i+π‖(xq, yq)−
(xq′ , yq′)‖2/(2D) with respect to the distance function
µi. �

Theorem 2. Let hopt be hi(E(P), B) where E is the
composition of functions in T ∪ R that attains the
minimum of hi, for i ∈ {1, 2}. The algorithm above runs
in time O(n2m log n) and produces an approximation to
hopt that is at most (A1 + ε)hopt for h1 and at most
(A2 + ε)hopt for h2, where ε > 0 is a fixed constant,
A1 = 6 +

√
2π/D, and A2 = 2 +

√
2(2 + π/D).

Proof. The additional ε terms come entirely from using
approximate nearest neighbor queries (defining BBD
trees so they return (1 + ε/Ai)-approximate nearest
neighbors, for i ∈ {1, 2}). So it is sufficient for us to
prove approximation bounds that are Ai · hopt.

The first step is argued similarly to that of the proof
of Theorem 8. Let E be the composition of functions
in T ∪ R that attains the minimum of h(E(P), B) and
let P ′ be E(P). Then for all p in P ′, there exists b
in B such that µi(p, b) ≤ hopt. Let p′, q′ ∈ B be the
closest background points to optimal positions of p and
q respectively, where p and q are the diametric points
we choose in the first step of the algorithm. Thus,

‖(xp, yp)− (xp′ , yp′)‖i ≤ µi(p, p′) ≤ hopt.

Apply the translation Tv on P ′ so that p coincides with
p′, which is equivalent to moving every point ‖(xp, yp)−
(xp′ , yp′)‖i with respect to position. Lemma 7, then,
implies that all points have moved at most hopt.

Next, apply the rotation Rp,θ to P ′ that makes p, q,
and q′ co-linear. With respect to position, q moves at
most a Euclidean distance of 2D sin(θ/2) away from q′

where D is the Euclidean distance between p and q.
As all points were already at most 2hopt away from
their original background point in B, this implies that
2D sin(θ/2) ≤ 2

√
2hopt. Thus, ‖(xq, yq) − (xq′ , yq′)‖2

is at most 2
√

2hopt. Then by Lemma 1, as q is the
furthest point from p, the rotation moves all points at
most 2

√
2hopt +

√
2πhopt/D with respect to h2 and at

most 4hopt +
√

2πhopt/D for h1.
Since each point in the pattern set started out at

most hopt away from a point in the background set,
we combine this with the translation and rotation
movements to find that every point ends up at most
(6 +

√
2π/D)hopt away from a background point for

h1 and at most (2 +
√

2(2 + π/D))hopt away from a
background point for h2. As our algorithm checks this
combination of Tv and Rp,θ, our algorithm guarantees
at least this solution. Note that we assume p′ and q′

are not the same point. However if this is the case, then

105

CCCG 2018, Winnipeg, Canada, August 8–10, 2018

we know that D ≤ 2hopt thus when we translate p to p′

every point is within (
√

5 + 2π/D)hopt of p′, which is a
better approximation than the case where p′ 6= q′ under
our assumption that D is large. �

Theorem 4. Let hopt be hi(E(P), B) where E is the
composition of functions in T ∪ R that attains the
minimum of hi. The algorithm above runs in time
O(A8n2m log n) and produces an approximation to hopt
that is at most (1 + ε)hopt for both h1 and h2.

Proof. Let E be the composition of functions in T ∪R
that attains the minimum of h(E(P), B). Let P ′ be
E(P). Then every point q ∈ P ′ is at most hopt from
the closest background point in B. By running the base
algorithm, we find hapr ≤ A · hopt, where A is the ap-
proximation ratio of the base algorithm. Now consider
the point b′ ∈ B which is the closest background to some
pattern point p ∈ P . The square which encompasses Gb′
has a side length of 2hapr. This guarantees that p, which
is at most hopt away from b′, lies within this square. As
we saw from Lemma 3, this means that p is at most
εhapr

A2−A away from its nearest neighbor in Gb′ . Thus, if a
transformation defined by the nearest points in B would
move our pattern points at most (A− 1)hopt from their
optimal position, then using the nearest points in Gb′
to define our transformation will move our points at
most (A− 1)

εhapr

A2−A =
εhapr

A ≤ εhopt. Thus, the modified
algorithm gives a solution that is at most (1+ε)hopt. �

Theorem 5. Let hopt be hi(E(P), B) where E is the
composition of functions in T ∪ R that attains the
minimum of hi. The algorithm above runs in time
O(nm log n) and produces an approximation to hopt that
is at most (Ai + ε)hopt for hi, where i = {1, 2}, ε > 0 is
a fixed constant, A1 = 2 +

√
2D, and A2 = 2 +D.

Proof. The additional ε terms come entirely from using
approximate nearest neighbor queries, so it is sufficient
to prove approximations which do not include the ε
term using exact nearest neighbor queries (defining the
BBD tree so that it returns points that are (1 + ε/Ai)-
approximate nearest neighbors). Particularly, we will
prove a bound of (2 +

√
2D)hopt for h1 and a bound of

(2 +D)hopt for h2.
Let E be the composition of functions in T ∪R that

attains the minimum of h(E(P), B). Let P ′ be E(P).
Then every point p ∈ P ′ is at most hopt from the closest
background point in B. That is, for all p in P ′, there
exists b in B such that µi(p, b) ≤ hopt. Let p′ ∈ B be
the closest background point to the optimal position of
p where p is the point we chose in the first step of the
algorithm. Thus,

µi(p, p
′) ≤ hopt.

Apply the translation Tv and rotation Rp,θ on P ′ so
that p coincides with p′ and both points have the same
orientation. It is easy to see that p has moved from
its optimal position by exactly µi(p, p

′) ≤ hopt. Using
Lemma 7 and the fact that a rotation on P causes the
orientation of each point in P to change by the same
amount, we find that every point q ∈ P has moved at
most µi(p, p

′) + d from its original position, where d is
the change in the position of q caused by the rotation.

We know that the angle rotated, θ, must be less than
hopt and, without loss of generality, we assume 0 ≤ θ ≤
π. Therefore it is easily verifiable that sin(θ/2) ≤ θ/2.
If D is the diameter of P , then regardless of our choice
of p, each point in P is displaced at most 2D sin(θ/2)
by the rotation. Thus each point is displaced at most
Dθ ≤ Dhopt.

Since each point in the pattern set started out at
most hopt away from a point in the background set,
we combine this with the translation and rotation
movements to find that every point ends up at most
(2+
√

2D)hopt away from a background point for h1 and
at most (2 +D)hopt away from a background point for
h2. As our algorithm checks this combination of Tv and
Rp,θ, our algorithm guarantees at least this solution. �

Theorem 6. Let hopt be hi(E(P), B) where E is the
composition of functions in T ∪ R that attains the
minimum of hi. The algorithm above runs in time
O(A6nm log n) and produces an approximation to hopt
that is at most (1 + ε)hopt for both h1 and h2.

Proof. Let E be the composition of functions in T ∪R
that attains the minimum of hi(E(P), B). Let P ′

be E(P). Then every point q ∈ P ′ is at most hopt
from the closest background point in B. By running
the base algorithm, we find hapr ≤ A · hopt where
A is the approximation ratio of the base algorithm.
Now consider the point b′ ∈ B which is the closest
background to some pattern point p ∈ P . The square
which encompasses Gb′ has a side length of 2hapr. This
guarantees that p, which is at most hopt away from
b′, lies within this square. As we saw from Lemma 3,
this means that p is at most

εhapr

2(A2−A) away from its

nearest neighbor g in Gb′ with respect to the L1-norm,
and at most

εhapr√
2(A2−A)

with respect to the L2-norm.

For this point, g, there are a number of points in
Cg which are at the same position but with different
orientation. For some point c in Cg, the orientation of

point p is within an angle of at most
haprε

2(A2−A) for h1

and at most
haprε√
2(A2−A)

for h2. If we combine together

the maximum difference in position between p and c,
and the maximum difference in orientation between
p and c, then we see that for both µ1 and µ2, the
distance between p and c is at most

haprε
A2−A . Thus, if a

transformation defined by the nearest point in B would

106

30th Canadian Conference on Computational Geometry, 2018

move our pattern points at most (A− 1)hopt from their
optimal position, then using the nearest point in Cg
to define our transformation will move our points at
most (A− 1)

εhapr

A2−A =
εhapr

A ≤ εhopt. Thus, the modified
algorithm gives a solution that is at most (1+ε)hopt. �

B Translations Only

In this section, we present our base algorithm and
approximation algorithm for approximately solving the
oriented point-set pattern matching problem where we
allow only translations. In this way, we present the basic
template and data structures that we will also use for
the more interesting case of translations and rotations
(T ∪ R).

Our methods for handling translations, rotations, and
scaling is an adaptation of our methods for T ∪R; hence,
we give our methods for T ∪ R ∪ S in an appendix.

Given two subsets of O, P and B, with |P | = m and
|B| = n, our goal here is to minimize hi(E(P), B) where
E is a transformation function in T .

Base Algorithm Under Translation Only. Our
base pin-and-query algorithm is as follows.

Algorithm BaseTranslate(P,B):

Choose some p ∈ P arbitrarily.
for every b ∈ B do

Pin step: Apply the translation, Tv ∈ T , that takes
p to b.
for every q ∈ Tv(P) do

Query step: Find a nearest-neighbor of q in B
using the µi metric, and update a candidate
Hausdorff distance for Tv accordingly.

end for
return the smallest candidate Hausdorff distance
found as the smallest distance, hi(Tv(P), B).

end for

This algorithm uses a similar approach to an algo-
rithm of Goodrich et al. [7], but it is, of course, different
in how it computes nearest neighbors, since we must
use an oriented distance metric rather than unoriented
distance metric. One additional difference is that rather
than find an exact nearest neighbor, as described above,
we instead find an approximate nearest neighbor of
each point, q, since we are ultimately designing an
approximation algorithm anyway. This allows us to
achieve a faster running time.

In particular, in the query step of the algorithm, for
any point q ∈ Tv(P), we find a neighbor, b ∈ B, whose
distance to q is at most a (1 + ε)-factor more than the
distance from q to its true nearest neighbor. To achieve

this result, we adapt the balanced box-decomposition
(BBD) tree of Arya et al. [2] to oriented point sets.
Specifically, we insert into the BBD tree the following
set of 3n points in R3:

{
b, b′, b′′ |b ∈ B,

b′ = (xp, yb, ab + 2π),

b′′ = (xb, yb, ab − 2π)
}
.

This takes O(n log n) preprocessing and it allows the
BBD tree to respond to nearest neighbor queries with
an approximation factor of (1 + ε) while using the L1-
norm or L2-norm as the distance metric, since the BBD
is effective as an approximate nearest-neighbor data
structure for these metrics. Indeed, this is the main
reason why we are using these norms as our concrete
examples of µi metrics. Each query takes O(log n)
time, so computing a candidate Hausdorff distance for a
given transformation takes O(m log n) time. Therefore,
since we perform the pin step over n translations, the
algorithm overall takes time O(nm log n). To analyze
the correctness of this algorithm, we start with a simple
observation that if we translate a point using a vector
whose Li-norm is d, then the distance between the
translated point and its old position is d.

Lemma 7 Let (x, y, a) be an element of O. Consider a
transformation Tv in T where v is a translation vector.
Let Tv(x, y, a) = (x′, y′, a). If the Li-norm of v is ‖v‖i =
d, then µi

(
(x, y, a), (x′, y′, a)

)
= d, where i ∈ {1, 2}.

Proof. First consider the case where i = 1. By
definition of µ1 and Tv,

µ1

(
(x, y, a), (x′, y′, a)

)

= |x− x′|+ |y − y′|+ min(|a− a|, 2π − |a− a|)
= |vx|+ |vy|
= d.

Now consider the case where i = 2:

µ2

(
(x, y, a), (x′, y′, a)

)

=
√

(x− x′)2 + (y − y′)2 + min(a− a, 2π − |a− a|)2

=
√
v2x + v2y

= d.

Thus, for either case, the lemma holds. �

Theorem 8 Let hopt be hi(E(P), B) where E is the
translation in T that attains the minimum of hi. The
algorithm above runs in time O(nm log n) and produces
an approximation to hopt that is at most (2+ ε)hopt, for
either h1 and h2, for any fixed constant ε > 0.

107

CCCG 2018, Winnipeg, Canada, August 8–10, 2018

Proof. The ε term comes from the approximate nearest
neighbor queries using the BBD tree, and expanding
B to a set of size 3n by making a copy of each point
in B to have an angle that is 2π greater and less
than its original value. So it is sufficient to prove a
2-approximation using exact nearest neighbor queries
(while building the BBD tree to return (1 + ε/2)-
approximate nearest neighbors). We prove this claim by
a type of “backwards” analysis. Let E be a translation
in T that attains the minimum of hi(E(P), B), and let
P ′ = E(P). Then every point q ∈ P ′ is at most hopt
from its closest background point in B. That is, for all
q in P ′, there exists b in B such that µi(q, b) ≤ hopt. Let
b′ ∈ B be the closest background point to the optimal
position of p, where p is the point we choose in the first
step of the algorithm. Thus,

‖(xp, yp)− (xb′ , yb′)‖i ≤ µi(p, b′) ≤ hopt.
Apply the translation Tv on P ′ so that p coincides with
b′, which is equivalent to moving every point’s position
by ‖(xp, yp)−(xb′ , yb′)‖i. Hence, by Lemma 7, all points
have moved at most hopt.

As all points in the pattern started at most hopt away
from a point in the background set and the translation
Tv moves all points at most hopt, all points in Tv(P

′)
are at most 2hopt from a point in the background set B.
Since our algorithm checks Tv as one of the translations
in the second step of the algorithm, it will find a
translation that is at least as good as Tv. Therefore,
our algorithm guarantees an approximation of at most
2hopt, for either h1 and h2. �

A (1 + ε)-Approximation Algorithm Under
Translations Only. In this subsection, we utilize
the algorithm from Appendix B to achieve a (1 + ε)-
approximation when we only allow translations.
Suppose, then, that we are given two subsets of O, P
and B, with |P | = m and |B| = n, and our goal is to
minimize hi(E(P), B) over translations E in T . Our
algorithm is as follows:

1. Run the base algorithm, BaseTranslate(P,B), from
Appendix B, to obtain an approximation, hapr ≤
A · hopt.

2. For every b ∈ B, generate the point set

Gb = G

(
b,

ε hapr
A2 −A,

⌈
A2 −A

ε

⌉)

for h1 or

Gb = G

(
b,
ε
√

2hapr
A2 −A ,

⌈
A2 −A
ε
√

2

⌉)

for h2. Let B′ denote this expanded set of back-
ground points, i.e., B′ =

⋃
b∈B Gb, and note that if

A is a constant, then |B′| is O(n).

3. Return the result from calling BaseTranslate(P,B′),
but restricting the query step to finding nearest
neighbors in B rather than in B′.

Intuitively, this algorithm uses the base algorithm to
give us a first approximation for the optimal solution.
We then use this approximation to generate a larger set
of points from which to derive transformations to test.
We then use this point set again in the base algorithm
when deciding which transformations to iterate over,
while still using B to compute nearest neighbors. The
first step of this algorithm runs in time O(nm log n), as
we showed. The second step takes time proportional
to the number of points which have to be generated,
which is determined by n, our choice of the constant ε,
and the approximation ratio of our base algorithm A,
which we proved is the constant 2 + ε. The time needed
to complete the second step is O(n). In the last step,
we essentially call the base algorithm again on sets of
size m and O(n), respectively; hence, this step requires
O(nm log n) time.

Theorem 9 Let hopt be hi(E(P), B) where E is the
translation in T that attains the minimum of hi, for i ∈
{1, 2}. The algorithm above runs in time O(nm log n)
and produces an approximation to hopt that is at most
(1 + ε)hopt, for either h1 and h2.

Proof. Let E be the translation in T that attains the
minimum of hi(E(P), B). Let P ′ be E(P). Then every
point q ∈ P ′ is at most hopt from the closest background
point inB. By running the base algorithm the first time,
we find hapr ≤ A · hopt, where A is the approximation
ratio of the base algorithm. Now consider the point,
b′ ∈ B, that is the closest background to some pattern
point p ∈ P . The square which encompasses Gb′ has a
side length of 2hapr. This guarantees that p, which is
at most hopt away from b′, lies within this square. As
we saw from Lemma 3, this means that p is at most
εhapr

A2−A away from its nearest neighbor in Gb′ . Thus, if a
transformation defined by the nearest point in B would
move our pattern points at most (A− 1)hopt from their
optimal position, then using the nearest point in Gb′
to define our transformation will move our points at
most (A − 1)

εhapr

A2−A =
εhapr

A ≤ εhopt. Therefore, our
algorithm gives a solution that is at most (1 + ε)hopt
from optimal. �

C Translation, Rotation, and Scaling

In this appendix, we show how to adapt our algorithm
for translations and rotations so that it works for
translations, rotations, and scaling. The running times
are the same as for the translation-and-rotation cases.

108

30th Canadian Conference on Computational Geometry, 2018

Base Algorithm Under Translation, Rotation
and Scaling with Large Diameter. In this section
we present an algorithm for solving the approximate
oriented point-set pattern matching problem where we
allow translations, rotations and scaling. This algo-
rithm is an extension of the algorithm from Section 3
and similarly provides a good approximation ratio when
the diameter of our pattern set is large. Given two
subsets P and B of O, with |P | = m and |B| = n,
we wish to minimize hi(E(P), B) over all compositions
E of one or more functions in T ∪ R ∪ S. We perform
the following algorithm:

Algorithm BaseTranslateRotateScaleLarge(P,B):

Find p and q in P having the maximum value of
‖(xp, yp)− (xq, yq)‖2.
for every pair of points b, b′ ∈ B do

Pin step: Apply the translation, Tv ∈ T , that takes
p to b, and apply the rotation, Rp,θ, that makes p,
b′, and q collinear. Then apply the scaling, Sp,s,
that makes q and b′ share the same position.
Let P ′ denote the transformed pattern set, P .
for every q ∈ P ′ do

Query step: Find a nearest-neighbor of q in B
using the µi metric, and update a candidate
Hausdorff distance accordingly.

end for
return the smallest candidate Hausdorff distance
found as the smallest Hausdorff distance,
hi(Sp,s(Rp,θ(Tv(P))), B).

end for

This algorithm extends the algorithm presented in
Section 3 so that after translating and rotating, we
also scale the point set such that, after scaling, p and
b have the same x and y coordinates, and q and b′

have the same x and y coordinates. As with the
algorithm presented in Section 3, this algorithm runs
in O(n2m log n) time.

Theorem 10 Let hopt be hi(E(P), B) where E is the
composition of functions in T ∪ R ∪ S that attains the
minimum of hi. The algorithm above runs in time
O(n2m log n) and produces an approximation to hopt
that is at most (6 +

√
2(2 + π/D) + ε)hopt for h1 and at

most (4 +
√

2(2 + π/D) + ε)hopt for h2.

Proof. The additional ε terms come entirely from using
approximate nearest neighbor queries, so it is sufficient
to prove approximations which do not include the ε term
using exact nearest neighbor queries. Particularly, we
will prove a bound of (6 +

√
2(2 +π/D))hopt for h1 and

a bound of (4 +
√

2(2 + π/D))hopt for h2.

pb

q

b′

p
b

q
b′

p
b

q

b′

p
b

q b′

Translate Rotate

Scale Result

Figure 7: Illustration of the translation, rotation and
scaling steps of the base approximation algorithm for
translation, rotation and scaling in O when diameter is
large.

Let E be the composition of functions in T ∪ R ∪
S that attains the minimum of hi(E(P), B). Let P ′

be E(P). Because this algorithm is only an extension
of the algorithm in Section 3 we can follow the same
logic as the proof of Theorem 2 to see that after the
translation and rotation steps, each point p ∈ P ′ is at
most Ahopt away from a background point b ∈ B where
A = 6+

√
2π/D for h1 and A = 2+

√
2(2+π/D) for h2.

Now we need only look at how much scaling increases
the distance our points have moved.

If p, q ∈ P ′ are our diametric points after translation
and rotation, and p′, q′ ∈ B are the closest background
points to the optimal position of p and q respectively,
then let us define the point qt as the position of q after
translation, but prior to the rotation step. Now it is
important to see that the points q, q′ and qt are three
vertices of an isosceles trapezoid where the line segment
qtq
′ is a diagonal of the trapezoid and the line segment

qqt is a base of the trapezoid. This situation is depicted
in Figure 8. The length of the line segment qq′ is equal
to the distance that q will move when we scale P ′ so
that q and q′ share the same position. Because qq′ is
a leg of the trapezoid, the length of that leg can be no
more than the length of the diagonal qtq

′. In the proof
of Theorem 2, we showed that qt is at most 2hopt away
from q′ so this implies that the distance q moves from
scaling is at most 2hopt.

Point q is the farthest point away from the point p
that is the center for scaling. Thus, no point moved
farther as a result of the scaling than q did, with respect
to µ2. For µ1 it is possible that, if q moved a distance d,
another point could have moved up to a distance

√
2d.

Thus, we find that after scaling, any point in P ′ is at
most (A + 2

√
2)hopt and (A + 2)hopt from its nearest

background point for µ1 and µ2 respectively. Because

109

CCCG 2018, Winnipeg, Canada, August 8–10, 2018

this is a transformation that the algorithm checks, we
are guaranteed at least this solution. Note that we
assume p′ and q′ are not the same point. However if
this is the case, then we know that D ≤ 2hopt thus
when we translate p to p′ and scale q down to p′ every
point is within (2π/D)hopt of p′, which is a better
approximation than the case where p′ 6= q′ under our
assumption that D is large. �

p qt

q q′

≤ 2hopt

Figure 8: Illustration of the points q, q′, and qt
forming three of the corners of an isosceles trapezoid,
as described in the proof of Theorem 10

A (1+ε)-Approximation Algorithm Under Trans-
lation, Rotation and Scaling with Large Di-
ameter. In this subsection, we utilize the algorithm
from Appendix C to achieve a (1 + ε)-approximation
ratio when we allow translations, rotations, and scaling.
Again, given two subsets of O, P and B, with |P | = m
and |B| = n, our goal is to minimize hi(E(P), B) over
all compositions E of one or more functions in T ∪R∪S.
We perform the following steps.

1. Run BaseTranslateRotateScaleLarge(P,B), from
Appendix C, to obtain an approximation hapr ≤
A · hopt.

2. For every b ∈ B, generate the point

set Gb = G(b,
haprε
A2−A , dA

2−A
ε e) for h1 or

Gb = G(b,
√
2haprε
A2−A , dA2−A√

2ε
e) for h2. Let B′

denote the resulting set.

3. Run BaseTranslateRotateScaleLarge(P,B′), from
Appendix C, but use the set B for the nearest-
neighbor queries.

This algorithm uses the base algorithm to give us
an indication of what the optimal solution might be.
We then use this approximation to generate a larger
set of points from which to derive transformations to
test. We next use this point set in the base algorithm
when deciding which transformations to iterate over,
while still using B to compute nearest neighbors. The
running time is O(A8n2m log n), which is O(n2m log n)
for constant A.

Theorem 11 Let hopt be hi(E(P), B) where E is the
composition of functions in T ∪ R ∪ S that attains the

minimum of hi. The algorithm above runs in time
O(A8n2m log n) and produces an approximation to hopt
that is at most (1 + ε)hopt for both h1 and h2.

Proof. Let E be the composition of functions in T ∪
R ∪ S that attains the minimum of hi(E(P), B). Let
P ′ be E(P). Then every point q ∈ P ′ is at most
hopt from the closest background point in B. By
running the base algorithm, we find hapr ≤ Ahopt where
A is the approximation ratio of the base algorithm.
Now consider the point b′ ∈ B which is the closest
background to some pattern point p ∈ P . The square
which encompasses Gb′ has a side length of 2hapr. This
guarantees that p, which is at most hopt away from b′,
lies within this square. As we saw from Lemma 3,
this means that p is at most

εhapr

A2−A away from its
nearest neighbor in Gb′ . Thus, if a transformation
defined by the nearest points in B would move our
pattern points at most (A − 1)hopt from their optimal
position, then using the nearest points in Gb′ to define
our transformation will move our points at most

(A− 1)
εhapr
A2 −A =

εhapr
A
≤ εhopt.

Thus, the modified algorithm gives a solution that is at
most (1 + ε)hopt. �

Base Algorithm Under Translation, Rotation
and Scaling with Small Diameter. In this subsec-
tion, we present an alternative algorithm for solving the
approximate oriented point-set pattern matching prob-
lem where we allow translations, rotations and scaling.
This algorithm is an extension of the algorithm from
Section 3 and similarly provides a good approximation
ratio when the diameter of our pattern set is small.
Once again, given two subsets of O, P and B, with
|P | = m and |B| = n, we wish to minimize hi(E(P), B)
over all compositions E of one or more functions in
T ∪ R. We perform the following algorithm:

Algorithm BaseTranslateRotateSmall(P,B):

Find p and q in P having the maximum value of
‖(xp, yp)− (xq, yq)‖2.
for every point b ∈ B do

1st Pin: Apply the translation, Tv ∈ T , that takes
p to b, and then apply the rotation, Rp,θ, that
makes p, b have the same orientation.
Let P ′ denote the transformed pattern set, P .
for each point p in P ′ and each b′ ∈ B do

2nd pin: Apply the scaling, Sp,s, so that
‖(xp, yp)− (xq, yq)‖2 = ‖(xb, yb)− (xb′ , yb′)‖2
Let P ′′ denote the transformed pattern set.
for every q ∈ P ′′ do

110

30th Canadian Conference on Computational Geometry, 2018

Query step: Find a nearest-neighbor of q in B
using the µi metric, and update a candidate
Hausdorff distance accordingly.

end for
end for
return the smallest candidate Hausdorff distance
found as the smallest Hausdorff distance,
hi(Sp,s(Rp,θ(Tv(P))), B).

end for

This algorithm extends the algorithm from Section 3
by scaling the point set for so that p, q, and b′ form the
vertices of an isosceles triangle. This requires a factor
of n more transformations to be computed. Thus, the
running time of this algorithm is O(n2m log n).

p

b
p

b

p
b

q
q

q

b′ b′

b′
p

b

q

b′

Translate Rotate

Scale Result

Figure 9: Illustration of the translation, rotation and
scaling steps of the base approximation algorithm for
translation, rotation and scaling in O when diameter is
small.

Theorem 12 Let hopt be hi(E(P), B) where E is the
composition of functions in T ∪ R ∪ S that attains the
minimum of hi. The algorithm above runs in time
O(n2m log n) and produces an approximation to hopt
that is at most ((2 + 2

√
2)(1 +D) + ε)hopt for h1 and at

most (4 + 2D + ε)hopt for h2.

Proof. The additional ε terms come entirely from using
approximate nearest neighbor queries, so it is sufficient
to prove approximations which do not include the ε term
using exact nearest neighbor queries. Particularly, we
will prove a bound of (6 +

√
2(2 +π/D))hopt for h1 and

a bound of (4 +
√

2(2 + π/D))hopt for h2.
Let E be the composition of functions in T ∪ R ∪

S that attains the minimum of hi(E(P), B). Let P ′

be E(P). Because this algorithm is only an extension

of the algorithm in Section 3 we can follow the same
logic as the proof of Theorem 5 to see that after the
translation and rotation steps, each point p ∈ P ′ is at
most Ahopt away from a background point b ∈ B where
A = 2+

√
2D for h1 and A = 2+D for h2. Now we need

only look at how much scaling increases the distance our
points have moved.

If p, q ∈ P ′ are our diametric points after translation
and rotation, and p′, q′ ∈ B are the closest background
points to the optimal position of p and q respectively,
then let us define the point qs as the position of q after
scaling. The points q, q′ and qs are three vertices of
an isosceles trapezoid where the line segment qq′ is a
diagonal of the trapezoid and the line segment qsq

′ is a
base of the trapezoid. The length of the line segment qqs
is equal to the distance that q will move when we scale
P ′. Because qqs is a leg of the trapezoid, the length of
that leg can be no more than the length of the diagonal
qq′. In the proof of Theorem 5, we showed that q is
at most Ahopt away from q′ so this implies that the
distance q moves from scaling is at most Ahopt.

Point q is the farthest point away from the point
p which is the center of our scaling. Thus, no point
moves farther as a result of the scaling than q does,
with respect to µ2. For µ1 it is possible that, if q moved
a distance d, another point could have moved up to
a distance

√
2d. Thus we find that after scaling, any

point in P ′ is at most (1 +
√

2)Ahopt and 2Ahopt from
its nearest background point for µ1 and µ2 respectively.
Because this is a transformation that the algorithm
checks, we are guaranteed at least this solution. �

A (1+ε)-Approximation Algorithm Under Trans-
lation, Rotation and Scaling with Small Diame-
ter. In this subsection, we utilize the algorithm from
Appendix C to achieve a (1 + ε)-approximation ratio
when we allow translations, rotations, and scalings.
Again, given two subsets of O, P and B, with |P | = m
and |B| = n, our goal is to minimize hi(E(P), B) over
all compositions E of one or more functions in T ∪R∪S.
We perform the following steps.

1. Run BaseTranslateRotateScaleSmall(P,B), from
Appendix C to obtain an approximation hapr ≤
A · hopt.

2. For every b ∈ B, generate the point set

Gb = G(b,
haprε

2(A2−A) , d
2(A2−A)

ε e) for h1 or

Gb = G(b,
haprε
A2−A , dA

2−A
ε e) for h2. Let

B′ =
⋃
b∈B Gb denote the resulting set of

points.

3. For every b′ ∈ B′, generate the point set Cb′ =

C(b′, 2(A
2−A)

πhaprε
) for h1 or Cb′ = C(b′,

√
2(A2−A)
πhaprε

) for

h2. Let B′′ denote the resulting set of points.

111

CCCG 2018, Winnipeg, Canada, August 8–10, 2018

4. Run BaseTranslateRotateScaleSmall(P,B′′), but
use the points in B for nearest-neighbor queries.

This algorithm uses the base algorithm to give us
an indication of what the optimal solution might be.
We use this approximation to generate a larger set of
points from which to derive transformations to test,
but this time we also generate a number of different
orientations for those points as well. We then use this
point set in the base algorithm when deciding which
transformations to iterate over, while still using B to
compute nearest neighbors. The running time of this
algorithm is O(A12n2m log n).

Theorem 13 Let hopt be hi(E(P), B) where E is the
composition of functions in T ∪ R that attains the
minimum of hi. The algorithm above runs in time
O(A12n2m log n) and produces an approximation to hopt
that is at most (1 + ε)hopt for both h1 and h2.

Proof. Let E be the composition of functions in T ∪
R∪S that attains the minimum of hi(E(P), B). Let P ′

be E(P). Then every point q ∈ P ′ is at most hopt from
the closest background point in B. By running the base
algorithm, we find hapr ≤ Ahopt where A is the approx-
imation ratio of the base algorithm. Now consider the
point b′ ∈ B which is the closest background to some
pattern point p ∈ P . The square which encompasses
Gb′ has a side length of 2hapr. This guarantees that
p, which is at most hopt away from b′, lies within this
square. As we saw from Lemma 3, this means that p
is at most

εhapr

2(A2−A) away from its nearest neighbor g in

Gb′ with respect to the L1-norm, and at most
εhapr√
2(A2−A)

with respect to the L2-norm. For this point g, there
are a number of points in Cg which are at the same
position but with different orientation. For some point
c in Cg, the orientation of point p is within an angle

of at most
haprε

2(A2−A) for h1 and at most
haprε√
2(A2−A)

for

h2. If we combine together the maximum difference in
position between p and c, and the maximum difference
in orientation between p and c, then we see that for
both µ1 and µ2, the distance between p and c is at most
haprε
A2−A . As we explain at the beginning of this section,
if a transformation defined by the nearest points in B
would move our pattern points at most (A−1)hopt from
their optimal position, then using the nearest points in
Cg to define our transformation will move our points at

most (A− 1)
εhapr

A2−A =
εhapr

A ≤ εhopt. Thus the modified
algorithm gives a solution that is at most (1+ε)hopt. �

As with our methods for translation and rotation,
we can compute in advance whether we should run our
algorithm for large diameter point sets or our algorithm
for small diameter point sets. For h1, we compare the
expressions 6 +

√
2(2 +π/D) and (2 + 2

√
2)(1 +D), and

we find that the two expressions are equal at D∗ ≈ 1.46.

For h2, we compare 4+
√

2(2+π/D) and 4+2D to find
that they are equal at D∗ ≈ 2.36. Using D∗ as the
deciding value allows us to then find a transformation
in T ∪R∪ S that achieves a (1 + ε)-approximation, for
any constant ε > 0, in O(n2m log n) time.

D Experiments

In reporting the results of our experiements, we use the
following labels for the algorithms:

• GR: the non-oriented translation and rotation al-
gorithm from Goodrich et al. [7],

• LDh1/h2
: the base version of the large diameter

algorithm using either the h1 or h2 distance metric,

• SDh1/h2
: the base version of the small diameter

algorithm using either the h1 or h2 distance metric.

These algorithms were implemented in C++ (g++
version 4.8.5) and run on a Quad-core Intel Xeon
3.0GHz CPU E5450 with 32GB of RAM on 64-bit
CentOS Linux 6.6.

Accuracy Comparison. We tested the ability of
each algorithm to identify the orginal point set after
it had been slightly perturbed. From set of randomly
generated oriented background point sets, one was se-
lected and a random subset of the points in the set were
shifted and rotated by a small amount. Each algorithm
was used to match this modified pattern against each
of the background point sets and it was considered a
success if the background set from which the pattern
was derived had the smallest distance (as determined
by each algorithm’s distance metric). Figure 10 shows
the results of this experiment under two variables: the
number of background sets from which the algorithms
could choose, and the size of the background sets. Each
data point is the percentage of successes across 1000
different pattern sets.

In every case, the oriented algorithms are more
successful at identifying the origin of the pattern than
GR. LD was also more successful for each distance
metric than SD.

Performance Comparison. We also compared the
performance of the LD and SD algorithms against GR
as we increased the pattern size and the background
size. The most significant impact of increasing the
background size is that the number of nearest neighbor
queries increase, and thus the performance in this case
is dictated by quality of the nearest neighbor data
structure used. Therefore in Figure 11 we use the
number of nearest neighbor queries as the basis for
comparing performance. As the FD and GR algorithms
only differ in how the nearest neighbor is calculated,

112

30th Canadian Conference on Computational Geometry, 2018

%
 C

or
re

ct
ly

 M
at

ch
ed

0

0.2

0.4

0.6

0.8

1

Number of Points per Set
0 20 40 60 80 100

LDh2

LDh1

SDh2

SDh1

GR

%
 C

or
re

ct
ly

 M
at

ch
ed

40

50

60

70

80

90

100

Number of Point Sets
0 20 40 60 80 100

Figure 10: Results of Accuracy Comparison

they both perform the same number of queries while
the SD algorithm performs significantly fewer nearest
neighbor queries.

For pattern size, we compared running time and the
results are shown in Figure 12. In this case, LD is slower
than GR, while SD is signifcantly faster than either of
the others.

LD/GR
SD

N
ea

re
st

 N
ei

gh
bo

r Q
ue

rie
s

100

1000

104

105

106

107

Size of Background Set
0 200 400 600 800 1000

Figure 11: Comparison of nearest neighbor queries as
function of background size

LD
SD
GR

Ti
m

e
(m

s)

1

10

100

1000

Size of Pattern Set
0 200 400 600 800 1000

Figure 12: Comparison of running time as a function of
pattern size

113

CCCG 2018, Winnipeg, Canada, August 8–10, 2018

The Computational Complexity of Finding Hamiltonian Cycles in Grid
Graphs of Semiregular Tessellations

Kaiying Hou∗ Jayson Lynch†

Abstract

Finding Hamitonian cycles in square grid graphs is
a well studied and important question. Recent work
has extended these results to triangular and hexagonal
grids, as well as further restricted versions such as solid
or thin grids [7, 8, 4]. In this paper, we examine a class
of more complex grids, as well as investigate the prob-
lem with restricted types of paths. We investigate the
hardness of Hamiltonian cycle problem in grid graphs of
semiregular tessellations. We give NP-hardness reduc-
tions for finding Hamiltonian paths in grid graphs based
on all eight of the semiregular tessellations. Next, we
investigate variations on the problem of finding Hamil-
tonian Paths in grid graphs when the path is forced to
turn at every vertex. Related problems were considered
in[6]. We show deciding if 3D square grid graphs admit
a Hamiltonian cycle is NP-complete, even if the height
of the grid is restricted to 2 vertices. We give a polyno-
mial time algorithm for deciding if a solid square grid
graph admits a Hamiltonian cycle which visits vertices
at most twice and turns at every vertex.

1 Introduction

The Hamiltonian cycle problem (HCP) in grid graphs
has been well studied and has led to application in nu-
merous NP-hardness proofs for problems such as the
milling problem [2], Pac-Man [10], finding optimal so-
lutions to a Rubik’s Cube [3], and routing in wireless
mesh networks [11]. The problem has been of inter-
est to computer scientists for many years and recently
a number of variations on the problem have been in-
vestigated. Itai, Papadimitriou, and Szwarcfiter proved
that the HCP in square grid is NP-complete by reducing
from the HCP in planar max-degree-3 bipartite graphs
[7]. More recently, the HCPs in triangular and hexago-
nal grid were shown to be NP-complete[8]. This paper
also introduced several new constrains on grid graphs,
such as being thin or polygonal. Several of those open
problems were solved by Demaine and Rudoy [4] by re-
ducing from 6-Regular Tree-Residue Vertex Breaking
problem (TRVB) [5]. These papers also show results

∗Phillips Academy Andover, khou@andover.edu
†MIT Computer Science and Artificial Intelligence Laboratory,

jaysonl@mit.edu

on grid graphs with restrictions such as thin, polygonal,
and solid. With all the interest in the computational
complexity of the HCP in grid graphs, it is reasonable
to ask whether we can generalize or adapt these results
to different types of grids. In addition, we investigate
the notion of angle-restricted tours, studied in [6], in
the context of grid graphs. We give both algorithms
and hardness proofs for finding Hamiltonian paths with
this ‘always-turning’ constraint.

Although the hardness of the HCP in semiregular
grids seems like an abstract question, it has many pos-
sible applications. Grids are natural structures that
things may be formatted into. For example, the layout
of buildings or modular structures used in space may
form a network that follow the patterns of semiregu-
lar, or more general, grids. If certain locations in such
networks need to be visited for maintenance, and one
wants an optimal route, then this is well-modeled by
the Hamiltonian path problem. Our reductions both
give insight into what sorts of regular structures will
be difficult to find optimal paths for, as well as ways
of potentially transferring other efficient algorithms to
these new problems. Finally, the results and techniques
in this paper may be useful in proving hardness of other
problems by reducing from HCPs in semiregular grids.

The always-turning Hamiltonian path problems also
has some relation to more concrete questions. First, one
can see the always-turning constraint as path planning
in a world with reflections at fixed angles and locations.
One may be routing optics to various locations on an
optics table. Reflections of 45 degrees in a grid-based
world are also a common element in puzzles and games.
In addition, there has been study of problems which try
to minimize the number of turns taken in a covering
tour [1]. In many ways this can be seen as the oppo-
site, modeling a case where turning is significantly easier
than continuing straight.

A full version of this paper is available on the arXiv1.

Results In Section 3 we extend the class of grid graphs
studied to those based on semiregular tessellations.
There are a total of eight semiregular tessellations [12],
which are shown in Figure 1. For all eight semiregular
tessellations we show the corresponding Hamiltonian cy-
cle problem in the induced grid graph is NP-complete.

1arXiv:1805.03192

114

30th Canadian Conference on Computational Geometry, 2018

We show hardness by reducing from three NP-complete
problems: HCP in planar max-degree-3 bipartite graphs
[7], HCP in hexagonal grids [8], and TRVB [4].

In Section 4 we examine the question of Hamiltonian
paths which turn at every vertex. We show this problem
is hard in 3D square grid graphs. We also show it is easy
in triangular grids with only 60 degree turns but hard
in triangular grids when 120 degree turns are allowed.
Finally, we examine a problem in square grids where a
path must visit every vertex at least once, must turn at
every vertex, and cannot reuse edges. We give a linear
time algorithm for solving this double turning problem
in solid square grid graphs.

2 Definitions

A tessellation is a tiling of a plane with polygons with-
out overlapping. A semiregular tessellation is a tessel-
lation which is formed by two or more kinds regular
polygons of side length 1 and in which the corners of
polygons are identically arranged. Figure 1 depicts part
of each of the eight semiregular tessellations.

An infinite lattice of a semiregular tessellation is a
lattice formed by taking the vertices of the regular
polygons in the tessellation as the points of the lattice.
A graph G is induced by the point set S if the vertices
of G are the points in S and its edges connect vertices
that are distance 1 apart. A grid graph of a semiregular
tessellation, or a semiregular grid, is a graph induced
by a subset of the infinite lattice formed by that
tessellation. Call the infinite graph induced by the full
lattice a full grid.

A pixel is the simple cycle bounding a face in a grid
graph that contains the same bounding edges and ver-
tices as the corresponding face in the full grid. Thus
a pixel can be thought of as a cycle in a graph which
bounds precisely one tile in the original tessellation. We
may use pixel interchangeably to refer to the bounding
cycle, the face bound by the cycle, or the set of vertices
around that face. A solid grid graph is one in which
every bounded face is a pixel.

A Hamiltonian cycle is a cycle that passes through
each vertex of a graph exactly once. The Hamilto-
nian cycle problem, sometimes abbreviated as HCP, asks
that given a graph, whether or not that graph admits
a Hamiltonian cycle. The HCP in a semiregular tes-
sellation asks, given a grid graph of that tessellation,
whether it admits a Hamiltonian cycle.

3 Finding Hamiltonian Paths in Semi-Regular Tes-
sellations is NP-Complete

This section shows the NP-completeness of HCPs in all
eight semiregular tessellations. There are three NP-

complete problems that we reduce from: the HCP in
hexagonal grid, the HCP in planar max-degree-3 bi-
partite graphs, and the TRVB problem. We give some
representative reductions and leave the rest of the con-
structions to Appendix A.

Theorem 1 The HCP in grid graphs of the 3.4.6.4
tessellation is NP-complete.

Proof. We will reduce from the HCP in hexagonal
grids. Given a hexagonal grid graph G′, we will
construct a grid graph G of the 3.4.6.4. tessellation
in this way: for every edge in G′ we add the edge
gadget shown in Figure 2 to G and for every vertex
in G′ we add the vertex gadgets shown in Figure 3
to G. Since the 3.4.6.4 tesselation has scaled versions
of the translational symmetries of the hexagonal
grid, picking an embedding for our construction is
straightforward. An example can be seen in Figure 4.
Since the hexagonal grid G′ is bipartite, we can de-
sign different vertex gadgets for each end of the edges.
We call the two classes of vertices even and odd vertices.

Figure 2: Edge gadget

Figure 3: Vertex gadgets

Figure 4: A simulated graph

Now, we will show that the original graph G′ has
a Hamiltonian cycle C ′ if and only if the simulated
graph G has a Hamiltonian cycle C. If the G′ has a
Hamiltonian cycle C ′, for any taken edge in it, we go
through the corresponded edge gadget in G with the
cross path in Figure 5; for any untaken edge, we go
through the corresponded edge gadget with the return
path. Because the simulated vertices in G are triangles
(K3), there is always a path to take the simulated
vertex by entering from one point and leaving at the
other. Therefore, if there is a Hamiltonian cycle C ′ in
the original graph G′, then there is a Hamiltonian cycle

115

CCCG 2018, Winnipeg, Canada, August 8–10, 2018

3.12.123.6.3.63.3.3.3.63.4.6.4

3.3.4.3.4 3.3.3.4.4 4.8.8 4.6.12

Figure 1: The eight semiregular tessellations. It is common to refer to them by the size of the faces while walking
around a vertex.

C in the simulated graph G.

Figure 5: Two kinds of paths in the 3.4.6.4 edge gadget

The essential difference between the cross path and
the return path is that a cross path starts and finishes
at different ends of an edge while the return path starts
and finishes in the same end. Note that the return and
cross paths are the only two paths which go through
the edge gadget and visit all of its vertices. The odd
vertex gadget is connected to the edge gadget through
a single edge connection which prevents the return path
from entering the odd vertex gadget. If a Hamiltonian
cycle C exists in the simulated graph G, each odd vertex
gadget in G must be connected to two cross paths and
the even vertex gadgets can either be connected to two
cross paths or two cross paths and a return path. Then,
we can find a cycle C ′ in the original graphG′ by making
each edge gadget with a cross path in C a taken edge in
C ′. Thus, if there is a cycle C in the simulated graph G,
there is a cycle C ′ in the original graph G′. This way, we
showed the original graph G′ has a Hamiltonian cycle C ′

if and only if the simulated graph G has a Hamiltonian
cycle C.

�
Theorem 2 The HCP in grid graphs of the 3.3.3.3.6
tessellation is NP-complete.

Proof. Similar to the 3.4.6.4 tessellation in Theorem 1,
see Appendix A for details. �

Theorem 3 The HCP in grid graphs of the 3.6.3.6
tessellation is NP-complete.

Proof. Similar to the 3.4.6.4 tessellation in Theorem 1,
see Appendix A for details. �

Theorem 4 The HCP in grid graphs of the 3.12.12
tessellation is NP-complete.

Proof. See Appendix A for the proof. �

Theorem 5 The HCP in grid graphs of the 3.3.4.3.4
tessellation is NP-complete.

Proof. We will reduce from HCP in planar max-
degree-3 bipartite graphs. First observe that this
tessellation can be viewed as a square grid with some
extra diagonals. We directly use the gadgets of the
square grid proof in the 1982 paper for constructing
G [7]. The edge, even vertex and odd vertex gadgets
are shown below. Note that these gadgets are identical
to the square grid gadgets except they have some
extra edges. In creating the simulated graph G based
on a planar max-degree-3 bipartite graph G′, we go
through the same process as that in the square grid
reduction: first create a parity-preserving embedding
of the max-degree-3 bipartite graph; then replace the
edges and vertices of the embedding with respective
gadgets [7].

There are only two kinds of traversals for the edge
gadget: cross paths and a return paths. Although
there is more than one kind of cross path due to the
extra edges, they have the essential characteristic of
starting from one end of the gadgets and finishing
at the other end (unlike the return path that begins
and finishes at the same end). Another difference
from the square grid reduction is that the odd vertex

116

30th Canadian Conference on Computational Geometry, 2018

Figure 6: Edge gadget for 3.3.4.3.4

Figure 7: Vertex gadgets for 3.3.4.3.4

gadgets connect to the bottom edge gadget through
a single point rather than a single edge as the other
edge gadgets. This single point connection also pre-
vents a return path from entering the odd vertex
gadget. We call the single edge and single point
connections that the path only enters and exits odd
vertices once. Since the graph is bipartite, this forces
the other two edges to be return paths, ensuring our
simulated path can only enter and exit each vertex once.

�

Theorem 6 The HCP in grid graphs of the 3.3.3.4.4
tessellation is NP-complete.

Proof. See Appendix A. �

We now show the HCPs in the 4.8.8 tessellation and
the 4.6.12 tessellation are NP-complete by reducing
from the Tree-Residue Vertex Breaking (TRVB) Prob-
lem studied in [5]. Here, breaking a degree-n vertex
means turning the vertex into n degree-1 vertices that
are at the ends of the n edges. The TRVB problem asks
that given a planar multigraph M and with some of its
vertices marked breakable, is it possible to break some
of the breakable vertices so that the resulting graph
is a single connected tree. N-Regular Breakable Pla-
nar TRVB problem asks that given a planar multigraph
with all the vertices degree-n and breakable, is it possi-
ble to produce a tree from breaking some vertices. The
HCPs in these section reduce from 4-Regular Breakable
Planar TRVB problem and 6-Regular Breakable Planar
TRVB problem, both of which are NP-complete [5]. The
reduction works in this fashion: for any graph M , we
will construct a grid graph G of the tessellation so that
G has a Hamiltonian cycle if and only if M is breakable.

Theorem 7 The HCP in grid graphs of the 4.8.8
tessellation is NP-complete.

Proof. We reduce from the 4-Regular Breakable Pla-
nar TRVB problem. When constructing a grid graph
G of the 4.8.8 tessellation based on M , we first make a
square grid embedding of M , using a method such as
the one described in [9]. Then, for each vertex of M ,
we use the vertex gadget in Figure 9. For the edges
in the embedding, we use the edge gadget formed by
the boundary vertices of a three-octagon wide strip, as
shown in Figure 8. Notice that the edge gadget can shift
and turn easily. Due to this flexibility, we can form a
graph G based on the embedding using the gadgets.

Now, we will show the constructed graph G has a

Figure 8: Edge gadget with a turn for 4.8.8. Only edges
in bold are present in the gadget.

Figure 9: Solutions for the 4.8.8 vertex gadget. The
valid paths are shown in bold.

Hamiltonian cycle if and only if M is breakable. No-
ticed that if G has a cycle C, both sides of the edge
gadgets must be in C and the freedom is only in how to
traverse the vertex gadgets. Figure 9 shows two solution
to the vertex gadget. The four edge gadgets connect to
the vertex on its four sides. Each edge gadgets has two
separate paths of vertices that go into the vertex gad-
get. We call each of these a strand. Note that there are
eight single connection edges in the vertex gadgets, each
of which is in between a pair of adjacent series. If a cycle
exists and a path comes in from a strand, the path must
enter one of the two adjacent single edge connections
and then connect with the path coming in from another
strand. Thus, for a vertex gadget, there are only two
kinds of solution: one that has two strands of the same
edge connected or one that has two strands of two ad-
jacent edges connected. The first kind is illustrated by
the solution on the left, which correspond to a broken
vertex in M while the second kind is illustrated by the
solution on the right side, which correspond to a unbro-

117

CCCG 2018, Winnipeg, Canada, August 8–10, 2018

ken vertex in M . To show that G has a Hamiltonian
cycle if and only if M is breakable, we apply the reason-
ing used in the 2017 paper [4]. If M is breakable, then
for every broken vertex in M , we traverse through the
corresponding vertex gadget using the broken solution;
for every unbroken vertex, we traverse through the cor-
responding vertex gadget using the unbroken solution.
Note that after this procedure, the graph produced by
breaking M is the same as the region inside the edge
gadgets in G. If the graph produced by breaking M
is indeed a tree, which is connected and acyclic, then
the region inside the edges must also be connected and
hole-free, which shows that there is a Hamiltonian cycle.
If there is a Hamiltonian cycle in G, the region inside
must by connected and hole-free, which then show that
the graph M can be broken down to a tree. �

Theorem 8 The HCP in grid graphs of the 4.6.12
tessellation is NP-complete.

Proof. We prove that the HCP in 4.6.12 Tessellation is
NP-complete by reducing from the 6-Regular Breakable
Planar TRVB problem. When constructing a grid graph
G in 4.8.8 tessellation based on the multigraph M , we
first embed the multigraph in the triangular grid. Then,
we use the vertex gadget shown in Figure 11 for every
vertex in M and the edge gadget shown in Figure 10
for the edges in M . The edge gadget only includes the
boundary vertices of the shape depicted in Figure 10.
Because the turning demonstrated in 10 can have turn-
ing of 60 and 120 degrees, we can construct the induced
subgraph G based on the triangular grid embedding.

Figure 10: Edge gadget with a turn for 4.6.12

Now, we will show why the constructed graph G has
a Hamiltonian cycle if and only if M is breakable. The
traversals of the edge gadgets of 4.6.12 tessellation are
already set and the only freedom is in how to traverse
the vertex gadgets. The six edge gadgets connect to
the vertex gadget on the six sides and each edge gadget
consists of two strands of vertices. As mentioned in the
4.8.8 tessellation, because of the single edge connections
between each pair of adjacent strands, there are only
two kinds of traversals for a vertex gadget: the one that
has two strands of the same edge connected or the one

Figure 11: Vertex gadget for 4.6.12

that has two strands of two adjacent edges connected.
The first kind is illustrated by the solution in Figure 20,
which corresponds to a broken vertex in M . The second
kind is illustrated by the solution in Figure 21, which
corresponds to an unbroken vertex in M . Just as the
argument in 4.8.8 tessellation proof states, the region
inside the edge gadgets represents the produced graph
after breaking M . �

4 Hamiltonian Cycles with Turns

In this section we explore whether grid graphs contain
Hamiltonian cycles which turn at every vertex. In [6],
Fekete and Woeginger give a near linear algorithm for
finding Hamiltonian paths among a set of points in the
plane when the path must turn by 90◦ at every ver-
tex. We show that this angle-restricted tour problem be-
comes NP-complete when generalized to 3D, even when
we restrict to 3D square grid graphs whose height is
only two vertices. We also characterize the complexity
of finding always-turning Hamiltonian cycles in triangu-
lar grids. See Appendix C and D for these results.

We also investigate a version where each vertex can
be visited at most twice, as long as no edges in the cy-
cle overlap. We give linear time algorithms for finding
always-turning cycles, as well as double visiting cycles in
solid square grid graphs. This question initially came to
our attention as special cases of finding Hamiltonian cy-
cles in the 4.8.8 tessellation. There are clear reductions
between various problems in this section and restricted
versions of that problem in which all vertices around
a square pixel are included if any one is included. Al-
though this did not lead to our eventual hardness proof
we found the problem to be interesting and well mo-
tivated on its own. One can look at this problem as
mirroring a problem laid out in a grid where movement
is reflected by barriers at 45 degree angles. One can
also think of this as counterpart to the discrete milling
problem, where our cost function makes turns much less

118

30th Canadian Conference on Computational Geometry, 2018

expensive than straight paths.

Theorem 9 There is a polynomial time algorithm for
determining whether a square grid graph admits a
Hamiltonian Path which turns at every vertex.

Proof. See Appendix B for the proof. �

Theorem 10 The Always-Turning Hamiltonian Path
problem in 3D square grid graphs is NP-complete even
if the height of the grid is restricted to be 2 vertices.

Proof. The proof is by reduction from from planar
max-degree-3 graphs and follows the structure of the
original square gird proof. See Appendix C for de-
tails. �

4.1 Double Turning in Solid Graphs

Initially inspired by the HCP in the 4.8.8 tessellation
grid we consider the following problem. We define the
Double Turning Hamiltonian Cycle Problem to be the
following: Given a square grid graph, does there exist
a cycle in that graph which visits every vertex at least
once, never traverses an edge more than once, and turns
at every vertex? In particular, this allows the path to
visit degree-4 vertices twice, taking a different turn each
time. If we consider the square and octagon tessellation
in which we have every vertex around a square pixel if
any vertex is present around that pixel, then one can
see these are equivalent problems.

This section will begin by observing some useful prop-
erties of the Hamiltonian path. Then we will connect
those to properties of the graph to show that these
graphs have a property we call a checkering. Next, we
demonstrate that spanning trees of the checkering cor-
respond to Hamiltonian cycles in our graph. Finally,
we argue that all of these properties can be checked in
polynomial time.

Lemma 11 If a solid graph admits a double turning
Hamiltonian cycle, it also admits such a cycle where all
degree-4 vertices are visited twice.

Proof. If a degree-4 vertex has only one visit then two
adjacent edges must be in the path and two adjacent
edges must not be in the path. Let us consider some
properties of the empty edges. Since each edge must
have a partner in the vertex, then each ‘path’ of empty
edges must either connect to degree-3 vertices or be in
a cycle. Degree-3 vertices only occur on the boundary
since this grid is solid. Thus if we have a path from
one degree-3 vertex to another, then the path has gone
from one boundary to another and has thus separated
two parts of our graph unless those boundary edges were
adjacent. This means the empty edges must form a cy-
cle. If this cycle contains any vertices on its interior,

then those vertices are disconnected and the cycle can-
not be part of a valid solution. Finally a vertex cannot
be visited by an empty path more than once, otherwise
it is never visited in the actual path. The only cycles in
a grid which obey these constraints are single pixels. If
there is a pixel without edges, then we pick one vertex
arbitrarily to extend the cycle into the pixel. �

With this lemma we can now restrict our examination
to the case where all degree-4 vertices are visited twice.

First, we notice that the graph must have even par-
ity on all external boundaries. Given this parity con-
straint and that the graph is solid, we know that if the
graph contains a Hamiltonian cycle then it is composed
of some number of full pixels, possibly connected at the
corners2. We now wish to consider an alternate view of
this grid graph. Call the checkerboard of this graph the
set of alternating pixels in the graph starting with the
upper left. We call the other pixels the odd checkering.

Now we will imagine connecting the pixels in the
checkerboard and show that the existence of a Hamil-
tonian cycle depends on its properties. Consider the
degree-4 vertices, all of which are visited twice by our
prior lemma. There are two configurations of paths,
each one connects two diagonally adjacent pixels and
separates the other two. We can now think of every
degree-4 vertex of our graph as either connecting two
adjacent checkered pixels or two adjacent odd checkered
pixels. We call this connection a checkering graph.

Lemma 12 The Double Turning Hamiltonian Cycle
Problem in solid grid graphs admits a Hamiltonian cycle
if and only if it has a valid checkering and it admits a
checkering graph which is a single connected tree.

Proof. First, we will prove that we can construct a
Hamiltonian cycle from a spanning tree of a checkering
of the graph. To do so, we will simply visit each of the
vertices in an Euler tour order around the spanning tree.
Each vertex in the original graph corresponds to a po-
tential edge location in the checkering. We use this term
loosely as there may not be vertices in the checkering
to connect to. Around each pixel we give the vertices
a clockwise ordering. From a vertex we check if that
vertex corresponds to an edge in the checkering span-
ning tree. If not we move clockwise around our current
pixel. If it is an edge, we instead consider the pixel we
connect to to be our current pixel and move clockwise
around that one. We know that every vertex is adja-
cent to exactly one or two pixels in the checkering and
accordingly is visited either once or twice. This process
creates a path which never crosses the spanning tree and
is free to continue around the entire spanning tree, thus

2These corner connections are local cuts and what prevent this
graph from being categorized as polygonal.

119

CCCG 2018, Winnipeg, Canada, August 8–10, 2018

resulting in a single cycle as desired. An example can
be seen in the Appendix.

Now we will argue that if no spanning tree exists then
no Hamiltonian cycle exists. If there are two discon-
nected components of the checkering then this means
either there are disconnected pixels in which case either
the graph itself is disconnected, the graph is not checker-
able, or along all connecting vertices their checkerboard
edges were assigned to the odd checkering. The graph
must obviously be connected and by the prior parity ar-
gument it must be checkerable for it to admit a double
turning Hamiltonian cycle. This leaves the case where
we have assigned edges in our checkering graph such
that it is disconnected. To do so means we would have
a path through the odd checkering which separates the
two parts of our checkering graph. In the same way that
a Hamiltonian path cannot cross edges in the checker-
board graph, it also cannot cross edges in the odd check-
ering. Thus we have a vertex cut with no paths passing
through it, meaning we either have more than one cycle
or miss some vertices in our path. �

Now we merely need to show that the checkering and
its spanning tree can be found in linear time.

Theorem 13 The Double Turning Hamiltonian Cycle
Problem in solid grid graphs can be solved in linear time.

Proof. By Lemma 12 we see that deciding if the graph
is checkerable and finding a spanning tree of the check-
ering suffices. See Appendix E for analysis. �

5 Conclusion

In this paper, we have shown that the HCPs in all of
the eight semiregular tessellations are NP-complete and
shown new upper and lower bounds on finding Hamil-
tonian paths which always turn in various grids. These
generalizations we investigated lead to a large variety of
open questions. Most of the restrictions from [8] also ap-
ply to the semi-regular tessellation graphs and it would
be interesting to know whether solid or super-thin ver-
sions of these graphs also admit polynomial time algo-
rithms. We also leave open the questions of the com-
plexity of double turning paths in square grid graphs. In
addition, the dual graphs of the tessellation graphs are
an obvious next target because of their regular structure
and connection to discrete motion planning. One could
also look at other general classes of tessellation graphs
allowing more general shapes, including higher dimen-
sional structures. We are also rather curious whether
anything can be shown about finding Hamiltonian paths
in aperiodic tessellation graphs.

There are also other interesting extensions of the al-
ways turning paths. The polynomial time proofs only
hold for grids in the plane, however the arguments seem

like they might lead to algorithms for grids on surfaces
of bounded genus. It would be interesting to explore
the question on square grids on a torus or other topo-
logically distinct surfaces. In addition, the algorithm
for finding double turning Hamiltonian cycles in solid
square grids looks related to the number of spanning
trees of certain types of graphs, as well as the poten-
tial removal of squares of edges. It would be interesting
to know if it is computationally tractable to count the
number of distinct double turning Hamiltonian cycles
and whether it bears nice relation to other combina-
torial problems. Finally, this notion of restricted turn
paths can be applied to other grids or graphs with ap-
propriate geometry.

Acknowledgments. We want to thank Professor
Erik Demaine for useful discussion and feedback on this
research.

References

[1] Esther M. Arkin, Michael A. Bender, Erik D.
Demaine, Sándor P. Fekete, Joseph S. B.
Mitchell, and Saurabh Sethia. Optimal cover-
ing tours with turn costs. SIAM Journal on
Computing, 35(3):531–566, 2005. URL: https:

//doi.org/10.1137/S0097539703434267, arXiv:

https://doi.org/10.1137/S0097539703434267,
doi:10.1137/S0097539703434267.

[2] Esther M Arkin, Sándor P Fekete, and Joseph SB
Mitchell. The lawnmower problem. In CCCG, pages
461–466, 1993.

[3] Erik D Demaine, Sarah Eisenstat, and Mikhail Rudoy.
Solving the rubik’s cube optimally is np-complete.
arXiv preprint arXiv:1706.06708, 2017.

[4] Erik D. Demaine and Mikhail Rudoy. Hamiltonicity is
hard in thin or polygonal grid graphs, but easy in thin
polygonal grid graphs. CoRR, abs/1706.10046, 2017.
URL: http://arxiv.org/abs/1706.10046.

[5] Erik D. Demaine and Mikhail Rudoy. Tree-residue
vertex-breaking: a new tool for proving hardness.
CoRR, abs/1706.07900, 2017. URL: http://arxiv.

org/abs/1706.07900.

[6] Sándor P Fekete and Gerhard J Woeginger. Angle-
restricted tours in the plane. Computational Geometry,
8(4):195–218, 1997.

[7] Alon Itai, Christos H. Papadimitriou, and Jayme Luiz
Szwarcfiter. Hamilton paths in grid graphs. SIAM Jour-
nal on Computing, 11(4):676–686, 1982. URL: http:

//dx.doi.org/10.1137/0211056, arXiv:http://dx.

doi.org/10.1137/0211056, doi:10.1137/0211056.

[8] Esther M. Arkin, Sándor P. Fekete, Kamrul Islam,
Henk Meijer, Joseph Mitchell, Yurai Núñez Rodŕıguez,
Valentin Polishchuk, David Rappaport, and Henry
Xiao. Not being (super)thin or solid is hard: A study
of grid hamiltonicity. 42:582–605, 08 2009.

120

30th Canadian Conference on Computational Geometry, 2018

[9] Markus Schäffter. Drawing graphs on rectangu-
lar grids. Discrete Applied Mathematics, 63(1):75–
89, 1995. URL: http://www.sciencedirect.com/

science/article/pii/0166218X9400020E, doi:http:

//dx.doi.org/10.1016/0166-218X(94)00020-E.

[10] Giovanni Viglietta. Gaming is a hard job, but someone
has to do it! Theory of Computing Systems, 54(4):595–
621, 2014.

[11] S. Waharte, A. Golynski, and R. Boutaba. On the com-
plexity of routing in wireless multihop network. In 2012
8th International Wireless Communications and Mobile
Computing Conference (IWCMC), pages 431–436, Aug
2012. doi:10.1109/IWCMC.2012.6314243.

[12] Robert Williams. The geometrical foundation of natural
structure. Dover New York, 1979.

121

CCCG 2018, Winnipeg, Canada, August 8–10, 2018

A Appendix: Semiregular Tessilation NP-
Completeness Proofs

Theorem 14 The HCP in the grid graphs of the 3.3.3.3.6
tessellation is NP-complete.

Proof. Similar to the 3.4.6.4 tessellation in Section 3, the
NP-completeness of the HCP tessellation can also be proven
by reducing from the HCP in hexagonal grid. We use the
gadgets shown in Figure 12 to simulate the vertices and edges
of the hexagonal grid. Now, we can construct a simulated
graph G for any hexagonal grid G′. For example, the graph
formed by two hexagons can be simulated by the grid in
Figure 13.

Figure 12: Gadgets for the 3.3.3.3.4 reduction

Figure 13: An example of a simulated graph in the
3.3.3.3.4 tessellation

Similar to the gadgets used in Section 3, there are two
kinds of traversals for the edge gadget: a cross path that
goes from one end to the other end and the return path
that begins and finishes on the same end. The following
reasoning on why G has a Hamiltonian cycle if and only G′

has a Hamiltonian cycle is identical to that of the previous
section. If a hexagonal grid G′ has a Hamiltonian cycle, we
can create a Hamiltonian cycle in G by going through the
edge gadgets of the taken edges with cross paths and and
the edge gadgets of the untaken edges with return paths.
If there is a Hamiltonian cycle in G, each vertex gadget of
G must be connected to exactly two cross paths, indicating
that there exists a Hamiltonian cycle in G. The reduction is
then complete.

�

Theorem 15 The HCP in the grid graphs of the 3.6.3.6
tessellation is NP-complete.

Proof. We prove that the HCP in this tessellation is NP-
complete by reducing from HCP in hexagonal grid. Using
the following vertex gadgets and edge gadget, shown in Fig-
ures 14 and Figure 15, for any hexagonal grid G′ we can
construct a simulated graph G in the tessellation.
Each edge gadget has two kinds of traversals: return paths

Figure 14: Vertex gadgets for 6.3.6.3

Figure 15: Edge gadgets for 6.3.6.3

and cross paths. Return paths begin and end on the same
end of the edge while cross paths start and finish on different
ends. With some inspection, it is clear that return paths and
cross paths are the only two kinds of traversals allowed in the
edge gadget. Figure 16 shows a possible return path. Dif-
ferent from those of previous tessellations, the edge gadget
here has two kinds of cross paths as shown in Figure 17. Al-
though the two kinds of cross paths start out the same from
the odd vertex gadget on the right, they finish in the even
vertex on the left differently. The way a cross path connects
to an even vertex gadgets dictates which direction it can go
next. The upper cross path must turns clockwise when going
through the even vertex, allowing it to connect to an upper
cross path while the lower one must turn counter-clockwise,
allowing it to connect to a lower cross path. By choosing the
correct kind of cross paths, any pair of the three edges of the
even vertex gadget can be taken by compatible cross paths.
By inspection, we can easily see that odd vertex gadget can
connect to any pair of the three edges in two cross paths as
well.
Now, we will show that the simulated graph G has a Hamil-

Figure 16: Return path for 6.3.6.3 edge gadget

tonian cycle if and only if the original graph G′ has a cycle.

122

30th Canadian Conference on Computational Geometry, 2018

Figure 17: Two Kinds of Cross Paths for 6.3.6.3 edge
gadget

If the original hexagonal grid G′ has a cycle C′, then we go
through the edges gadgets representing taken edges in C′

with a cross path and those representing untaken edges with
a return path. Note that we need to use the correct kind
of cross paths so that the choice matches the turning at the
vertex. If so, then there is a also a Hamiltonian cycle in
G. If the simulated graph G has a Hamiltonian cycle, each
vertex gadget must be connected to exactly two cross paths,
which indicate that there is a Hamiltonian cycle in G′.

�

Theorem 16 The HCP in the grid graphs of the 3.12.12
tessellation is NP-complete.

Proof. This tessellation is composed of dodecagons and tri-
angles. For a hexagonal grid G′, we construct a simulated
graph G in the tessellation by using the triangles as vertex
of G′ and the edges in between triangles as the edges of G′.
If a Hamiltonian cycle exists in G, each triangle must be
connected to two paths that form a 120o angle. Then, there
must also be a Hamiltonian cycle in the hexagonal grid G′.
If there is a Hamiltonian path in the hexagonal grid G′, then
there exist one in G.

�

Theorem 17 The HCP in the grid graphs of the 3.3.3.4.4
tessellation is NP-complete.

Proof. Similar to the 3.3.4.3.4 tessellation, this tessellation
can also be considered as a square grid with extra diagonals.
Because its resemblance to square grid, we again use the
square grid gadgets. However, if we use the same reduction
as in [7], an extra diagonal may disable a pin connection,
being an extra edge that connects the odd vertex gadget
with the edge gadget. Then, a return path can enter into
the odd vertices through this extra edge, causing the former
pin connection to no longer function. The connection to
the upper edge gadget in an odd vertex gadget shown in
Figure 18 is an example of a disabled pin connection. Thus,
we will need to modify the reduction.

Figure 18: An odd vertex gadget

Although one pin connection may be disabled in a odd
vertex gadget, there remains three other functioning pin con-
nections. Because the reduction only requires max degree-3
vertices, there are still ways to make the reduction work. We
construct the simulated grid G in the following way. Given
a parity preserving square grid embedding of the original
max degree-3 bipartite graph G′ as mentioned in the 1982
paper [7], we enlarge the embedding by a factor of 3 so that
any single segment is at least three segments long and the
parities of the vertices are preserved. We then adjust the
embedding by replacing every disabled pin connection with
a functioning pin connection. Figure 19 shows that if the
upper connection is disabled, we use the left or right con-
nection to replace it (the upper row represents embedding
before adjustment while the lower row represents embed-
ding after adjustment). Based on the adjusted embedding,
we can then construct a simulated graph G using the square
grid gadgets. Since the pin connections are all functioning
in G, the reduction works.

�

Figure 19: Embedding adjustment

123

CCCG 2018, Winnipeg, Canada, August 8–10, 2018

Figure 20: A broken 4.6.12
vertex

Figure 21: An unbroken
4.6.12 vertex

B Appendix: Turning in Square Grids is Easy

We start with a proof for max-degree-3 square grid graphs
because of it’s simplicity, and then extend those arguments
to handle all square grid graphs.

Theorem 18 There is a polynomial time algorithm for de-
termining whether a max-degree-3 square grid graph admits
a Hamiltonian Path which turns at every vertex.

Proof. First we notice that any degree-1 vertices, and any
degree-2 vertices without a turn make it impossible to have
a Hamiltonian cycle. Next, all other degree-2 vertices must
have both edges in the cycle. Finally, degree-3 vertices form
T intersections. If the path must turn then the middle edge
of the T must be included in the cycle.

The only choice remaining is which of the two straight
edges in each T intersection is included in the cycle. If one
of these two edges lies next to a forced edge, then we know
which of the two edges must be included and further that
the opposite edge cannot be in the cycle. Now we consider
a line of T intersections as in Figure 22. At some point this
line must terminate, implying the edge directly opposite the
last in the chain does not exist. This implies the last edge
must be in the path, which forces the second to last edge to
not be in the path and so forth. Thus all T intersections are
also forced leading to the following algorithm.

1. If the graph contains any degree-1 vertices, return false.

2. If the graph contains any degree-2 vertices without a
turn, return false.

3. Find all degree-2 vertices and mark all edges as being in
the path. When you mark an edge as being in a path,
follow it to the next vertex and mark the opposite edge
as not in the graph. Repeat the process of alternating
marking edges as in or not in the cycle until an already
marked edge is reached. If the marks disagree, return
false, otherwise continue.

4. Find all degree-3 vertices and marks all middle edges
as being in the path.When you mark an edge as being
in a path, follow it to the next vertex and mark the
opposite edge as not in the graph. Repeat the process
of alternating marking edges as in or not in the cycle
until an already marked edge is reached. If the marks
disagree, return false, otherwise continue.

Figure 22: An example row of connected vertices.
Forced edges are in bold and forbidden edges are in
dashed red.

5. At this point we have marked all edges. Pick a start and
check if the edges marked as being in the cycle in fact
form a Hamiltonian cycle. If so, return true, otherwise
return false.

�

Now we present the main theorem.

Theorem 19 There is a polynomial time algorithm for de-
termining whether a square grid graph admits a Hamiltonian
Path which turns at every vertex.

Proof. A Hamiltonian Path which turns at every vertex
in a grid graph imposes the following constraint: for every
vertex except the start and end, precisely one vertical and
one horizontal edge must be in the path. This quickly leads
to the conclusion that degree-1 and degree-2 vertices either
make a Hamiltonian path impossible or forces the edges to be
in the path. First, guess the first and last vertex and edge in
the path and remove the unused edges next to those vertices
from the graph. Now consider a row or column in the graph.
In that row we have some number of groups of contiguous
vertices which we will consider one at a time. Take the
farthest left vertex in this group, it cannot have a left edge.
This forces the right edge to be in the Hamiltonian path.
Now look at the next vertex. We’ve already determined
it’s left edge is in the Hamiltonian path, forcing its right
edge to not be in the path. Continuing the next vertex
must have its right edge in the path and so on. If there are
an even number of vertices, this is consistent, if there are
an odd number of vertices then we’ll reach a contradiction,
declaring a non-existent edge to be in the path. We repeat
this process for every group in every horizontal row, and then
similarly for every group in every column (starting with the
top vertex of each group rather than the left one). We have
now assigned every single edge to be either in the path or not.
We simply walk the graph to ensure the path is Hamiltonian
(aka checking connectivity of our assigned edges) and return
the result. �

C Appendix: Turning in 3D Square Grids is Hard

Theorem 20 The Always-Turning Hamiltonian Path prob-
lem in 3D square grid graphs is NP-complete even if the
height of the grid is restricted to be 2 vertices.

124

30th Canadian Conference on Computational Geometry, 2018

Proof. We closely follow the proof that deciding if square
grid graphs admit a Hamiltonian path is NP-complete. We
reduce from deciding whether planar max-degree-3 graphs
admit a Hamiltonian path. We also construct edge gadgets
and even and odd vertex gadgets. In this subsection, all fig-
ures are two vertices high with paths on the bottom layer
represented by black lines and paths on the top layer repre-
sented by dotted blue lines.

Edge gadgets are sequences of 2×2×2 cubes. They admit
a forward path, representing an edge taken in the graph,
shown in Figure 23. They also admit a return path, shown
in Figure 24, representing an edge not taken in the graph.
The edges can be turned, as shown in Figures 25 and 26.

Vertex gadgets are represented by 4 × 8 × 2 rectangles.
Edges attach across the marked edges e1 to e4. Figures 27,
28, and 29 show three different paths through a vertex which
will connect any three of the four target edges. Unlike the
original grid proof, it is critical that the problem we are
reducing from is max-degree-3. Even vertex gadgets attach
to the edge gadgets by a 1× 2× 1 pair of vertices. If a path
enters this pair of vertices, it is then forced to take the edge
connecting them. Thus in an even vertex the path can only
pass from the vertex to each edge a single time. Since it is
max-degree-3, this means precisely two of the adjacent edge
gadgets are taken and one is not. Since every odd vertex
is connected to an even vertex, this means the odd vertex
gadgets must also have precisely two of their adjacent edge
gadgets have a taken path. Thus there is only a Hamiltonian
cycle if the original graph admits a Hamiltonian cycle.

�

D Appendix: Turning in Triangular Grid Graphs

We now examine the question of Hamiltonian Paths in tri-
angular grid graphs which must turn at every vertex. First,
notice that there are now two types of turns: 60◦ and 120◦.
It is simple to show the turning Hamiltonian Path prob-
lem in triangular grids with 60◦ is easy and with 120◦ is
NP-complete. For the 120◦ turns, first notice that we can
remove alternating vertices from a triangular grid to leave a
hexagonal grid. Further, all remaining edges are 120◦ turns
from each other. Thus we have a very simple reduction from
finding Hamiltonian Paths in Hexagonal grid graphs to find-
ing Hamiltonain Paths which always turn 120◦ in Triangular
Grids.

For the case of 60◦ turns, the answer becomes simple.
With out loss of generality, pick two adjacent edges to be in
the Hamiltonain Path, such as the two in Figure 30. Now
consider the next edge (options show as dotted edges), ei-
ther it turns to the right and completes the triangle (red
edge) or it turns left (blue edge). If it turns left then we
once again have two edges of a triangle in our path, only
allowing one legal option as seen in Figure 31. Thus, the
only Hamiltonian paths which always turn 60 are subsets of
a straight zig-zag. Similarly, the only allowed Hamiltonian
cycle is a triangle. We’ve now characterized turning Hamil-
tonian paths in triangular grid with both polynomial time
algorithms and NP-completeness depending on what turns
are allowed.

Figure 23: An edge taken in the simulated
graph. The path here starts on one side and
ends on the other

Figure 24: An edge not taken in the simulated
graph. The path starts and ends both on the
left side.

Figure 25: A taken edge being turned.

Figure 26: A non-taken edge being turned.

125

CCCG 2018, Winnipeg, Canada, August 8–10, 2018

a b

d c

Figure 27: Enters a, crosses c,
leaves b.

a b

d c

Figure 28: Enters a, crosses b,
leaves c

a b

d c

Figure 29: Enters b, crosses a,
leaves c.

Figure 30: Turns in a triangular grid with
forced 60◦ turns.

Figure 31: After another step the edges are still
forced.

E Appendix: Double Turning in Solid Square Grids

Theorem 21 The Double Turning Hamiltonian Cycle
Problem in solid grid graphs can be solved in linear time.

Proof. By Lemma 12 we see that deciding if the graph is
checkerable and finding a spanning tree of the checkering
suffices. We assume we are given the graph embedding.
First, we pick the left-most, top-most vertex in the graph
and check for the 4-cycle defining the only pixel it is a part
of. We construct a vertex in our checkerboard graph for
this vertex and associate all four of the vertices around the
pixel with it. Now we will perform a breath-first search over
the checkered pixels in our graph. From each vertex of our
current pixel, look at their exterior edges. If there are two,
check whether it has been considered before and if not put
that in a queue as a candidate checkerable pixel. If there is
only one edge, we maintain a separate list of such degree-3
external edges. First, we check if that edge is in our list, if
so we remove the edge and if not we add the edge to the list.
Next, pop a candidate pixel off of the queue, verify that all
four vertices are there, making it a valid pixel, and recur-
sively check for its neighbors as before. If we ever discover
a candidate pixel which is missing a vertex, then one of our
properties is violated and we respond that there is no Hamil-
tonian cycle. Otherwise, we will have constructed a partial
checkering and the bfs ordering will give us a spanning tree.
Now, we need to take all edges from degree-3 vertices which
need to be verified and check that both ends of the edge are
vertices which belong to pixels in our checkering. We do the
latter simply by checking whether our external degree-3 list

126

30th Canadian Conference on Computational Geometry, 2018

is empty because every such edge will be added and then
removed the two times it touches a valid pixel. If this is
true, return that there exists a Hamiltonian cycle, and if not
return false. Verifying each pixel and constructing a new
vertex in our checkering takes constant time. Running our
bfs touches each pixel, and thus each vertex in our graph a
constant number of times. Each extra edge is touched twice.
Thus the whole algorithm can be constructed to run in linear
time. �

Figure 32: A pixel with all four edges not included
in the path.

Figure 33: We can augment the path to visit each
vertex twice..

127

CCCG 2018, Winnipeg, Canada, August 8–10, 2018

Figure 34: An example solid grid graph with its checkering in purple.

Figure 35: The solution to the example with the spanning tree of its checkering in purple.

128

CCCG 2018, Winnipeg, Canada, August 8–10, 2018

Improved Bounds for the Traveling Salesman Problem with Neighborhoods
on Uniform Disks

Ioana Oriana Bercea∗

Abstract

Given a set of n disks of radius R in the Euclidean plane,
the Traveling Salesman Problem With Neighborhoods
(TSPN) on uniform disks asks for the shortest tour that
visits all of the disks. The problem is a generalization
of the classical Traveling Salesman Problem(TSP) on
points and has been widely studied in the literature.
For the case of disjoint uniform disks of radius R, Du-
mitrescu and Mitchell [14] give a PTAS and also show
that the optimal TSP tour on the centers of the disks is a
3.547-approximation to the TSPN version. The core of
the latter analysis is based on bounding the detour that
the optimal TSPN tour has to make in order to visit
the centers of each disk and shows that it is at most
2Rn in the worst case. Häme, Hyytiä and Hakula [21]
asked whether this bound is tight when R is small and
conjectured that it is at most

√
3Rn.

We further investigate this question and derive struc-
tural properties of the optimal TSPN tour to describe
the cases in which the bound is smaller than 2Rn.
Specifically, we show that if the optimal TSPN tour is
not a straight line, at least one of the following is guar-
anteed to be true: the bound is smaller than 1.999Rn
or the TSP on the centers is a 2-approximation. The
latter bound of 2 is the best that we can get in gen-
eral. Our framework is based on using the optimality
of the TSPN tour to identify local structures for which
the detour is large and then using their geometry to
derive better lower bounds on the length of the TSPN
tour. This leads to an improved approximation factor
of 3.53 for disjoint uniform disks and 6.728 for the gen-
eral case. We further show that the Häme, Hyytiä and
Hakula conjecture is true for the case of three disks and
discuss the method used to obtain it.

1 Introduction

We study the Traveling Salesman Problem with Neigh-
borhoods (TSPN) when each neighborhood is a disk of
fixed radius R. The problem is a generalization of the
classical Euclidean Traveling Salesman Problem (TSP),
when each point to be visited is replaced with a region
(interchangeably, a neighborhood) and the objective is

∗Department of Computer Science, University of Maryland,
College Park, ioana@cs.umd.edu

to compute a tour of minimum length that visits at
least one point from each of these regions. While it is
known that Euclidean TSP admits a Polynomial Time
Approximation Scheme (PTAS) due to the celebrated
results of Arora [3] and Mitchell [25], Euclidean TSPN
has been shown in fact to be APX-hard [29, 13] even
for line segments of comparable length [17]. The geo-
metric version of TSPN was first studied by Arkin and
Hassin [2] who gave constant factor approximations for
a variety of cases. Since then, there has been a wide
ranging study of TSPN for different types of regions. In
the case of connected regions, there is a series ofO(log n)
approximations [24, 17, 20]. Better approximations are
known for cases that consider various restrictions on the
regions such as comparable sizes (i.e. diameter), fatness
(ratio between the smallest circumscribing radius and
largest inscribing radius, or how well can a disk approx-
imate the region) and pairwise disjointness or limited
intersection [14, 13, 17, 27, 8, 15, 6, 26, 9]. We refer the
reader to [19] for a comprehensive survey of the results.

We study the disk version which models the situation
in which each customer is willing to travel a distance R
to meet the salesperson. This is considered an impor-
tant special case of the general TSPN [15] and is espe-
cially relevant since it has found applicability in other
areas such as path planning algorithms for coverage with
a circular field of view [1, 18] and most recently for data
collection in wireless sensor networks [33, 23, 12]. Var-
ious heuristics [33, 7, 10, 22] and variations [4, 23, 30]
have been considered, all of which have as their basis
the TSPN on uniform disks problem.

Dumitrescu and Mitchell [14] were the first to specif-
ically address the case of uniform disks in 2001. They
showed a PTAS for disjoint unit disks and simpler con-
stant factor approximations for the disjoint and overlap-
ping cases. The specific factor of 3.547 for disjoint disks
is relative to using a routine for TSP on points (i.e.
the actual constant depends on the subroutine used).
The PTAS and the 3.547-approximation are the best
known factors for the disjoint case. Later, Dumitrescu
and Tóth [15] improved the constant factor in [14] for
the overlapping case from 7.62 to 6.75 and extended
it to unit balls in Rd, giving a O(7.73d)-approximation.
When the balls are disjoint, Elbassioni et al. [17] showed
a O(2d/

√
d)-approximation. Most recently, Dumitrescu

and Tóth [16] gave a randomized constant factor for (po-

129

30th Canadian Conference on Computational Geometry, 2018

tentially overlapping) disks of arbitrary radii (the actual
constant is not mentioned and seems large). As noted
by the authors in [15], while the complexity of the disk
case is well understood generally, the question of obtain-
ing practical and better constant factor approximations
remains of high interest.

In this paper, we aim for an improved constant fac-
tor algorithm for the case of uniform radius disks and
note that the algorithm proposed by Dumitrescu and
Mitchell [14] for the disjoint case outputs an approxi-
mate TSP tour on the centers of each disk. The core of
their analysis is a bound that compares the length of the
optimal TSP on the centers of each disk(|TSP ∗|) with
the length of the optimal TSPN on the disks (|TSPN∗|)
and says that

|TSP ∗| ≤ |TSPN∗|+ 2Rn, (1)

where n ≥ 2 is the number of disks in the instance.
In addition, the authors use a packing argument to
lower bound the length of the optimal TSPN tour in
terms of R and n and get that π

4Rn− πR ≤ |TSPN∗|.
Overall, this gives a 3.547- approximation and in addi-
tion, the authors show that the algorithm cannot give
better than a factor 2 approximation. While other
methods for choosing representative points can be em-
ployed [16, 2, 14], this approach is appealing both in its
elegance and because it does not depend on R. More-
over, other existing constant factors approximations for
TSPN often hide large constants [13, 17, 16] that are in-
curred as a consequence of using general bounds on the
length of the optimal tour that do not directly exploit
the structure of the regions or of the optimal TSPN
tour (bounding rectangle argument and Combination
Lemma in [2]). In order to improve on them, the chal-
lenge then becomes to develop bounds that exploit the
difference in behavior between a TSP tour (on points)
and the TSPN tour on the regions and furthermore,
avoid using general purpose techniques that add on to
the overall approximation factor.

In this context, one way to improve the approxima-
tion factor for disjoint disks is to better understand the
relationship between the optimal TSP tour on the cen-
ters and the optimal TSPN on the disks. Specifically, is
the 2Rn term in (1) tight or can it be improved by us-
ing specific structural properties of the optimal TSPN?
A similar question was asked in 2011 by Häme, Hyytiä
and Hakula [21] for the case when R is very small (and
hence, TSP ∗ and TSPN∗ respect the same order and
the disks are pairwise disjoint). They conjectured that
the true detour term should be

√
3nR and constructed

arbitrarily large instances of disjoint disks that converge
to this case. We refer to this as the Häme, Hyytiä
and Hakula conjecture. Subsequent experiments by
Müller [28], however, suggest that this might be true
only for tours up to five disks and higher otherwise. No

further progress has been made towards the conjecture
since then.

Contributions. We make the first progress on the con-
jecture and develop a twofold method that either im-
proves the bound in (1) or shows that the TSP on the
centers is a good approximation for the TSPN on the
disks. Formally, we get that

Theorem 1 For any n ≥ 4 disjoint disks of radius R
at least one of the following is true:

• TSPN∗ is supported by a straight line,

• |TSP ∗| ≤ |TSPN∗|+ 1.999Rn,

• |TSP ∗| ≤ 2 · |TSPN∗|.

Our framework also gives an overall 3.53-approximation
for the case of uniform disjoint disks and a 6.728-
approximation for the overlapping case.

While the improvement in the overall approximation
factor is small, our framework strives to provide new
insight into the problem that can be explored further.
Specifically, the 2-approximation (optimal with respect
to the method of computing a TSP on the centers [14])
comes from the case in which the TSPN tour takes a
lot of sharp turns. Furthermore, it is based on a lower
bound that does not rely on packing arguments. To
the best of our knowledge, this is the first such bound
specifically for TSPN out of all arguments for general
fat regions [27]. As such, it might be of independent
interest and it could, for example, lead to improved ap-
proximation factors for balls in Rd that do not depend
exponentially on the dimension. Moreover, the fatness
of the disks is used in showing that short sharp turns
lead to a disk being visited multiple times and can con-
ceivably be used to show similar properties for other fat
regions.

We start by fixing an order σ and comparing the
TSPN tour that visits the disks in that order to the
TSP tour that visits their respective centers in the same
order. The 2Rn term in (1) comes from considering the
points at which the TSPN touches the boundary of each
disk and charging each such vertex with a 2R detour for
going to its respective center and coming back. In this
view, the 2Rn term cannot be improved since the charge
on each vertex will always be 2R. Instead, we reinter-
pret the bound as charging the edges of the TSPN tour
instead of its vertices and notice that the charge for
each edge can now be anywhere between −2R and 2R,
depending on how close the tour is to (locally) visit-
ing pairs of disks optimally. In this context, we define
a “bad” edge to be one that incurs a large charge (i.e.
> (2−ε)R for some ε > 0). We show that such bad edges
lead to the TSPN tour exhibiting sharp turns (i.e. with

130

CCCG 2018, Winnipeg, Canada, August 8–10, 2018

small interior angle). When the edges of the sharp turn
are long, we use that to derive a better lower bound on
the overall TSPN tour length. On the other hand, when
one of them is short, we show that the tour must then
visit a disk twice (i.e. visit it once, then touch another
disk and return back to it). The crux of the argument is
in understanding how these short sharp turns that visit
a disk multiple times influence the global detour term.

When a tour visits a disk more than once, two sce-
narios follow naturally from the classical TSP case of
just visiting points: either the order σ is not optimal
or the tour must follow a straight line. Surprisingly, we
show that a third alternative scenario is also possible,
whose local structure we call a β-triad. The main tech-
nical contribution of the paper is in describing struc-
tural properties of such β-triads and showing that they
actually have a low average detour. Specifically, we con-
struct an additional order σ′ and use an averaging ar-
gument to show that β-triads have low detour when
compared to the TSP tours that visit the centers in the
order σ and σ′. This then allows us to conclude that
they have a low detour with respect to the optimal TSP
on the centers.

Along the way, we also show that the Häme, Hyytiä
and Hakula conjecture is true for n = 3 and use it to
bound the average detour of β-triads. We include a
discussion of the method used to derive it, involving
Fermat-Weber points, which might be useful for the case
of n ≥ 4. We also discuss how our approach can be used
within the framework of Dumitrescu and Tóth [15] to
yield improved approximation factors for the overlap-
ping disks case.

Preliminaries. We consider n ≥ 3 disjoint disks of ra-
dius R in the Euclidean plane. We denote an optimal
TSP tour on the centers of the disks as TSP ∗. Similarly,
TSPN∗ will denote an optimal TSPN tour on the disks.
Our results will be with respect to a fixed TSPN tour
(which we call simply TSPN) described by a sequence
of ordered points P1, P2, . . . , Pn on the boundary of the
disks such that the tour is a polygonal cycle with edges
(Pi, Pi+1). Furthermore, we have that for each of the
input disks, there exists some i ∈ [1, n] such that point
Pi is on the boundary of the disk.

Notice that the points Pi induce a natural order σ
on the disks with centers O1, O2, . . . On, i.e. σ corre-
sponds to the identity permutation on P1, . . . , Pn. For
the majority of our theorems, we will assume that TSP
always refers to a tour on the centers and in the order
σ on the disks. When we need to make a difference, we
will further use TSP (σ′) to be the tour which visits the
centers in the order given by the permutation σ′. Given
two such permutations σ and σ′, we say that σ∩σ′ refers
to the maximal set of points on which σ and σ′ agree.
In this context, TSPN(σ ∩ σ′) refers to the collection

of paths we get from visiting the points Pi according
to σ ∩ σ′. Similarly, TSP (σ ∩ σ′) corresponds to the
collection of paths that we get from visiting the points
Oi according to σ ∩ σ′.

Finally, we denote the length of a tour T as |T |.
When T is a collection of paths, we have that |T | rep-
resents the total length of each of the paths. When
A and B are points, we have that |AB| denotes the
length of the segment AB. We therefore have that
|TSPN | = ∑n

i=1 |PiPi+1| and |TSP | = ∑n
i=1 |OiOi+1|,

where Pn+1 = P1 and On+1 = O1.

2 β-Triads and a Structural Theorem

Before we formally define what a “bad” edge is, we will
describe how to interpret the 2Rn detour bound from
[14] as charging edges instead of vertices. We fix an
order σ and consider the points Pi and Oi as previously
defined. The argument in [14] then says that we must
have:

∑
i |OiOi+1| ≤

∑
i |PiPi+1|+ 2Rn.

In this context, the term
∑
i PiPi+1 + 2Rn is the

length of a tour that follows the TSPN tour and ad-
ditionally, at each point Pi, takes a detour of 2R to
visit the center Oi and come back. Choosing σ to be
the optimal order in which TSPN∗ visits the disks gives
us (1). In this view, the detour term 2Rn is obtained
by charging 2R to each point Pi of the TSPN tour. In-
stead, we can also think of it as coming from charging
each edge PiPi+1 of the tour with a local detour of 2R
in the following sense:

|OiOi+1| ≤ |PiPi+1|+ 2R.

This new perspective is quite natural since it cap-
tures the observation that the shortest edge which vis-
its the disks centered at Oi and Oi+1 has length exactly
|OiOi+1| − 2R and hence the TSPN tour has to pay
at least that for each pair of consecutive disks it visits.
In this sense, we decompose the global detour term of
2Rn into n local detour terms |OiOi+1| − |PiPi+1| that
essentially quantify how efficient the TSPN on the disks
is locally.

In this context, saying a TSPN edge has a high lo-
cal detour is equivalent to saying that it is close to be-
ing locally optimal or shortest possible: when the edge
is exactly of length |OiOi+1| − 2R, its local detour is
2R (the maximum). If, on the other hand, we know
that the edge is bounded away from |OiOi+1| − 2R, i.e.
|PiPi+1| > |OiOi+1| − 2R + εR, for some ε > 0, this
translates into a local detour of at most (2− ε)R. Intu-
itively, such an edge is “good” for us because it allows
us to lower the overall detour term. In contrast, “bad”
PiPi+1 edges are the ones for which the local detour
term is large and consequently, their length is closer to

131

30th Canadian Conference on Computational Geometry, 2018

O1 O2

β

β
P1

P2

A

B

C

Figure 1: Bad edges are guaranteed to have both end-
points in the blue arcs. Furthermore, if |P1P2| ≤ |AC|,
then P1P2 is bad. In contrast, the dashed edges are
guaranteed to be good edges.

|OiOi+1|−2R. Our technique is motivated by trying to
describe the behavior of such bad edges.

Formally, we consider a fixed angle parameter β ∈
[0, π/12] that we instantiate later when we derive the
overall bounds. We define the function:

f(O1O2, β) =
√
|O1O2|2 +R2 − 2R|O1O2| cosβ,

which is |O1O2| −R when β = 0 and |O1O2|+R when
β = π. Intuitively, the quantity f(O1O2, β) − R will
control how close we are to |O1O2| − 2R. We then say
that the edge P1P2 is bad if |P1P2| ≤ f(O1O2, β) − R
and good otherwise (we abstract away the dependency
on β for simplicity). Bad edges are close to |O1O2|−2R
and will incur a large local detour. In contrast, using
straightforward algebra, one can show that a good edge
P1P2 is guaranteed to have a small detour: |O1O2| ≤
|P1P2|+ (1 + cosβ)R.

Consecutive bad edges. The idea behind defining bad
edges in terms of f(O1O2, β)−R is that it allows us to
restrict the location of P1 and P2 on the boundary of
their respective disks as seen in Figure 1. Specifically,
there are exactly two points A and B on the boundary
of the first disk with the property that the shortest dis-
tance from A or B to the boundary of the second disk is
exactly f(O1O2, β) − R. Not coincidentally, they form
an angle of β with O1O2 : ∠AO1O2 = ∠BO1O2 = β. In
general, P1 (and in a similar fashion P2) is guaranteed
to lie in the short arc between A and B whenever P1P2

is upper bounded by f(O1O2, β)−R (Lemma 5).
When a second bad edge P2P3 is considered, we can

conclude that the angle O1O2O3 has to be at most 2β
and hence the TSP on the centers must make a sharp
turn after it visitsO2 (Corollary 6). If that happens and
the disks are close to each other, we have that one of the
edges of the TSP must actually intersect a disk twice.
Specifically, if |O1O2| ≤ R/ sin(2β), then the support
line for O2O3 must pass through the disk centered at
O1. Theorem 7 shows that if this happens, then the
corresponding TSPN edge P2P3 must also cross this disk
(Appendix A).

The fact that the disk centered at O1 is crossed by
both P1P2 and P2P3 suggests that the TSPN might not
be optimal because it could be shortcut. Our structural
theorem identifies when that is the case and isolates the
remainder as having a specialized local structure which
we call a β-triad. Formally, we say that a specific TSPN
subpath Pn−P1−P2−P3 is a β-triad if it satisfies all
of the following properties (Figure 2):

• P1P2 and P2P3 are bad edges and O1O2 ≤
R/ sin(2β),

• P1, P2, P3 are not collinear but Pn, P1, P2 are
collinear with P1 between Pn and P2.

P3

Pn

P1

P2

O3

On

O1 O2

Q1

Figure 2: The path Pn − P1 − P2 − P3 forms a β-triad.

We state the structural theorem here and refer the
reader to Appendix A for a complete argument. The
case in which the TSPN tour follows a straight line that
stabs all the disks is discussed separately in Appendix C
and is of separate interest.

Theorem 2 For n ≥ 4, if P1P2 and P2P3 are bad
edges and O1O2 ≤ R/ sin(2β) then at least one of the
following is true: the TSPN tour is not optimal, the
TSPN tour is supported by a straight line or the path
Pn − P1 − P2 − P3 forms a β-triad.

β-triads. The case of β-triads is interesting because it
arises naturally as a consequence of dealing with regions
instead of points. Given any optimal tour that exhibits
internal angles ≤ π/6, we can always add an extra disk
at each sharp turn that will maintain optimality, pair-
wise disjointness and be intersected twice by this tour,
giving rise to a β-triad. It is therefore important that
we understand their behaviour.

Because of the fact that P1P2 and P2P3 are bad edges,
the β-triad is likely to have a high detour with re-
spect to TSP (σ). Nevertheless, we show that there
exists an alternate ordering σ′ such that the average
detour of the three edges in the β-triad with respect to
(|TSP (σ)|+ |TSP (σ′)|)/2 is 3

√
3R. The order σ′ takes

advantage of the fact that the disk centered at O1 is
crossed twice and inverts the order in which it is vis-
ited without changing the cost of the underlying TSPN

132

CCCG 2018, Winnipeg, Canada, August 8–10, 2018

tour. The 3
√

3R bound comes from proving the Häme,
Hyytiä and Hakula conjecture for n = 3 (Appendix F).
In order to be able to construct σ′ consistently across
multiple β-triads, we also show that β-triads are iso-
lated events and specifically that they are edge-disjoint
(Lemma 8 in Appendix B).

Theorem 3 If the TSPN in the order σ has k β-triads
that together cover a set of edges of total length LT , then
we can construct another order σ′ that agrees with σ on
everything except the order inside the β-triads such that:

|TSP (σ)|+ |TSP (σ′)|
2

≤ |TSP (σ ∩ σ′)|+ LT + 3
√

3Rk.

Proof. We discuss the case for k = 1 and show how
to modify the argument for k > 1. Suppose that
Pn − P1 − P2 − P3 form a β-triad. We know that
TSP (σ) visits the centers of each disk in the order
O1, O2, O3, . . . On. We consider an additional order
σ′ such that TSP (σ′) visits the centers in the order
O2, O1, O3, . . . On. Notice that both σ ad σ′ agree
on the order O3, O4, . . . , On and that they differ in
the fact that σ visits O1 after On and before O2 and
σ′ visits O1 after O2 and before O3. Therefore, for
T ′ = TSP (σ ∩ σ′), we have that |T ′| = |O3O4| + . . . +
|On−1On|, |TSP (σ)| = |T ′|+ |OnO1|+ |O1O2|+ |O2O3|
and |TSP (σ′)| = |T ′|+ |OnO2|+ |O2O1|+ |O1O3|.

On the other hand, the length of the TSPN with
respect to the orders σ and σ′ stays the same. The
local cost of visiting Pn − P1 − P2 − P3 is LT =
|PnP1|+ |P1P2|+ |P2P3| = |PnP2|+ |P2P3|, since Pn, P1

and P2 are collinear and P1 is between Pn and P2. We
also know that P2P3 intersects the disk centered at O1

at some point Q1 that is different from P1 (Theorem
7). In other words, the TSPN that visits the points
Pn−P1−P2−P3 can be reimagined as visiting the points
Pn−P2−Q1−P3 and therefore respecting the order σ′.
The local cost of crossing these edges is the same as be-
fore: |PnP2|+ |P2Q1|+ |Q1P3| = |PnP2|+ |P2P3| = LT .

We now apply Theorem 10 (the 3
√

3R bound for n =
3) on the TSP tour On −O1 −O2 with the TSPN tour
Pn − P1 − P2 and get that:

|OnO1|+ |O1O2|+ |OnO2| ≤ |PnP1|+ |P1P2|+ |PnP2|+
+ 3
√

3R

≤ 2|P2Pn|+ 3
√

3R.

On the other hand, if we consider the tour O1−O2−O3

with the TSPN tour P2 −Q1 − P3, we get that:

|O1O2|+ |O2O3|+ |O1O3| ≤ |Q1P2|+ |P2P3|+ |P3Q1|+
+ 3
√

3R

≤ 2|P2P3|+ 3
√

3R.

Combining the two inequalities and rearranging some
terms gives us that:

|TSP (σ)|+ |TSP (σ′)| =2|T ′|+ |OnO1|+ |O1O2|+ |O2O3|+
+ |OnO2|+ |O2O1|+ |O1O3|

=2|T ′|+ |OnO1|+ |O1O2|+ |OnO2|+
+ |O1O2|+ |O1O3|+ |O2O3|

≤2|T ′|+ 2|P2Pn|+ 2|P2P3|+ 6
√

3R.

Since LT = |P2Pn|+ |P2P3|, we get our conclusion.
When k > 1, we construct the order σ′ by switching

the order in which we visit the centers in each β-triad
in the same way as before. Since all the β-triads are
edge disjoint (Lemma 8), we can construct σ′ without
any conflicts because any reordering that happens in
one β-triad will not affect another β-triad. �

3 Improved Bounds on the TSPN Tour

Our main strategy will be a careful balancing of good
and bad edges, in which the detour of good edges will be
upper bounded by (1+cosβ)R and that of bad edges by
2R. While the bad edges will have the highest detour
possible, we will use the fact that they must also be large
in order to lower bound the TSPN tour more efficiently
than Lemma 4 from [14] and [15], which we quote here
for completeness.

Lemma 4 [14, 15] For n disjoint disks of radius R, we
have that any TSPN tour T on them satisfies:

π
4Rn− πR ≤ |T |.

We will now show the proof of Theorem 1.

Proof. Assume the TSPN∗ is not a straight line. We
start by singling out the β-triads and considering the
two orderings σ and σ′ from Theorem 3. If there are k1
β-triads T1, . . . , Tk1 spanning edges of total length LT ,
we get that:

|TSP ∗| ≤ |TSP (σ)|+ |TSP (σ′)|
2

≤ |TSP (σ ∩ σ′)|+ LT + 3
√

3R · k1.

Observe that TSPN(σ∩σ′) is a collection of disjoint
paths. From all of these paths, we further extract each
from these a total of k2 subpaths G1, . . . ,Gk2 consisting
of good edges. Notice that the remaining subpaths left
in σ ∩ σ′ consist of bad edges which do not form a β-
triad. Suppose we obtain l such remaining subpaths
paths B1, . . . ,Bl. In other words, we have decomposed
the TSPN into three categories of subpaths:

• k1 β-triads T1, . . . , Tk1 ,

• k2 paths G1, . . . ,Gk2 that cover the remaining good
edges, and

133

30th Canadian Conference on Computational Geometry, 2018

• l paths B1, . . . ,Bl that consist only of bad edges
which do not form β-triads.

We are now ready to evaluate the detour that each of
these paths takes. For each i ∈ [1, k2] let ψi the natural
order on the disks associated with Gi and let ni be the
number of edges in Gi. We have that:

|TSP (ψi)| ≤ |TSPN(ψi)|+ (1 + cosβ)R · ni.

When it comes to the paths Bj , with j ∈ [1, l], let
σj be their natural associated orders and let mj be the
number of edges it contains. We have that |TSP (σj)| ≤
|TSPN(σj)|+ 2R ·mj .

Let N =
∑k2
i=1 ni be the total number of edges in

G1, . . . ,Gk2 and M =
∑l
j=1mj the total number of

edges in B1, . . . ,Bl. By construction, we decomposed
TSPN(σ ∩ σ′) into these two groups of edge disjoint
paths and we therefore get that:

|TSP (σ ∩ σ′)| =
k2∑

i=1

|TSP (ψi)|+
l∑

j=1

|TSP (σj)|

≤
k2∑

i=1

(
|TSPN(ψi)|+ (1 + cosβ)R · ni

)

+
l∑

j=1

(
|TSPN(σj)|+ 2R ·mj

)

≤ |TSPN(σ ∩ σ′)|+ (1 + cosβ)RN + 2RM.

Including the β-triads back into our bound, we get
that:

|TSP ∗| ≤ |TSP (σ)|+ |TSP (σ′)|
2

≤ |TSP (σ ∩ σ′)|+ LT + 3
√

3R · k1
≤ |TSPN(σ ∩ σ′)|+ LT + 3

√
3R · k1+

+ (1 + cosβ)RN + 2RM

≤ |TSPN |+ 3
√

3R · k1 + (1 + cosβ)RN + 2RM.

In other words, we’ve expressed the total detour of
the TSPN according to edges that participate in β-
triads, edges in G1, . . . ,Gk2 and edges in B1, . . . ,Bl. By
construction, none of these paths share edges and so
3k1 + N + M = n. Let K = 3k1 + N be the total
number of edges either in a β-triad or in G1, . . . ,Gk2
and since

√
3 ≤ 1 + cosβ, we have that:

|TSP ∗| ≤ |TSPN |+ (1 + cosβ)R ·K + 2R · (n−K).

Case 1: when K ≥ n
2 . In this situation, we have

that:

|TSP ∗| ≤ |TSPN∗|+ 3 + cosβ

2
·R · n.

The average detour per edge 3+cos β
2 is better than

the 2R bound, but it is constrained by the choice of
β ∈ [0, π/12], which means that the best we could hope
for is an average detour of 1

2 (3+cos π
12)R < 1.983R. We

note that the average detour in the Häme, Hyytiä and
Hakula conjecture is

√
3R ≈ 1.732R. Using Lemma 4

gives us that

|TSP ∗| ≤
(

1 +
2

π
· (3 + cosβ)

)
· |TSPN∗|+

+ 2 · (3 + cosβ)R .

For large n, the 1 + 2
π · (3 + cosβ) term will dominate

our approximation factor and is at most 3.525 when
β = π/12.

Case 2: when K < n
2 . In this situation, even the

overall detour might be large, we will show that in fact,
in this case, TSP ∗ is a 2-approximation and therefore,
the best that it can be in general. We know that each
path Bj consists of bad edges which do not form any
β-triads. In other words, if P1P2 is an edge in it, then
we know that |O1O2| > R/ sin(2β) which in turn means
that |P1P2| > (1/ sin(2β)−2) ·R. Overall we have that:

|TSPN | ≥
l∑

j=1

|Bj | ≥
(1

sin (2β)
− 2
)
R · (n−K)

≥
(1

2 sin (2β)
− 1
)
R · n.

Since the total detour could be at most 2R per edge,
we get that:

|TSP ∗| ≤
(

1 +
2

1
2 sin (2β) − 1

)
· |TSPN |.

When β = 1
2 arcsin 1

6 , the detour from Case 1 becomes
3+cos β

2 ≈ 1.998 and the approximation factor from Case
2 becomes exactly 2. We note that the machinery de-
scribed can be used to obtain more nuanced results. In
particular, lower choices for β will drive the approxima-
tion factor in Case 2 even lower than 2, at the expense
of a higher detour bound for Case 1.

�

In Appendix D, we perform a similar analysis for a
more general threshold of N

α for some α > 1 (rather

than N
2). We give there the specific values of α and β

that give us a factor 2.53-approximation. The case for
overlapping disks follows from the same analysis when
we use the algorithm of Dumitrescu and Tóth [15]. We
include the details for it in Appendix E.

Acknowledgements. The author would like to
thank Prof. Samir Khuller for suggesting the problem
and for inspiring conversations on the topic, as well as
the reviewers for helpful comments on the paper.

134

CCCG 2018, Winnipeg, Canada, August 8–10, 2018

References

[1] E. M. Arkin, S. P. Fekete, and J. S. Mitchell. Approxi-
mation algorithms for lawn mowing and milling. Com-
putational Geometry, 17(1-2):25–50, 2000.

[2] E. M. Arkin and R. Hassin. Approximation algorithms
for the geometric covering salesman problem. Discrete
Applied Mathematics, 55(3):197–218, 1994.

[3] S. Arora. Polynomial time approximation schemes for
Euclidean traveling salesman and other geometric prob-
lems. Journal of the ACM (JACM), 45(5):753–782,
1998.

[4] D. Bhadauria, O. Tekdas, and V. Isler. Robotic data
mules for collecting data over sparse sensor fields. Jour-
nal of Field Robotics, 28(3):388–404, 2011.

[5] B. Bhattacharya, J. Czyzowicz, P. Egyed, G. Toussaint,
I. Stojmenovic, and J. Urrutia. Computing shortest
transversals of sets. International Journal of Computa-
tional Geometry & Applications, 2(04):417–435, 1992.

[6] H. L. Bodlaender, C. Feremans, A. Grigoriev, E. Pen-
ninkx, R. Sitters, and T. Wolle. On the minimum corri-
dor connection problem and other generalized geomet-
ric problems. Computational Geometry, 42(9):939–951,
2009.

[7] F. Carrabs, C. Cerrone, R. Cerulli, and M. Gaudioso.
A novel discretization scheme for the close enough trav-
eling salesman problem. Computers & Operations Re-
search, 78:163–171, 2017.

[8] T.-H. H. Chan and K. Elbassioni. A QPTAS for TSP
with fat weakly disjoint neighborhoods in doubling met-
rics. Discrete & Computational Geometry, 46(4):704–
723, 2011.

[9] T.-H. H. Chan and S. H.-C. Jiang. Reducing curse of
dimensionality: Improved PTAS for TSP (with neigh-
borhoods) in doubling metrics. ACM Transactions on
Algorithms (TALG), 14(1):9, 2018.

[10] W.-L. Chang, D. Zeng, R.-C. Chen, and S. Guo. An
artificial bee colony algorithm for data collection path
planning in sparse wireless sensor networks. Interna-
tional Journal of Machine Learning and Cybernetics,
6(3):375–383, 2015.

[11] N. Christofides. Worst-case analysis of a new heuris-
tic for the travelling salesman problem. Technical Re-
port 388, Graduate School of Industrial Administration,
Carnegie Mellon University, 1976.

[12] G. Citovsky, J. Gao, J. S. Mitchell, and J. Zeng. Exact
and approximation algorithms for data mule schedul-
ing in a sensor network. In International Symposium on
Algorithms and Experiments for Sensor Systems, Wire-
less Networks and Distributed Robotics, pages 57–70.
Springer, 2015.

[13] M. de Berg, J. Gudmundsson, M. J. Katz, C. Levcopou-
los, M. H. Overmars, and A. F. van der Stappen. Tsp
with neighborhoods of varying size. Journal of Algo-
rithms, 57(1):22–36, 2005.

[14] A. Dumitrescu and J. S. Mitchell. Approximation algo-
rithms for TSP with neighborhoods in the plane. Jour-
nal of Algorithms, 48(1):135–159, 2003.

[15] A. Dumitrescu and C. D. Tóth. The traveling salesman
problem for lines, balls, and planes. ACM Transactions
on Algorithms (TALG), 12(3):43, 2016.

[16] A. Dumitrescu and C. D. Tóth. Constant-factor ap-
proximation for TSP with disks. In A Journey Through
Discrete Mathematics, pages 375–390. Springer, 2017.

[17] K. Elbassioni, A. V. Fishkin, and R. Sitters. Approxi-
mation algorithms for the Euclidean traveling salesman
problem with discrete and continuous neighborhoods.
International Journal of Computational Geometry &
Applications, 19(02):173–193, 2009.

[18] E. Galceran and M. Carreras. A survey on coverage
path planning for robotics. Robotics and Autonomous
systems, 61(12):1258–1276, 2013.

[19] J. E. Goodman, J. O’Rourke, and C. D. Tóth, edi-
tors. Handbook of Discrete and Computational Geome-
try, Third Edition. CRC Press, 2017.

[20] J. Gudmundsson and C. Levcopoulos. A fast approxi-
mation algorithm for TSP with neighborhoods. Nord.
J. Comput., 6(4):469, 1999.

[21] L. Häme, E. Hyytiä, and H. Hakula. The Traveling
Salesman Problem with Differential Neighborhoods. In
European Workshop on Computational Geometry (Eu-
roCG), Morschach, Switzerland, Mar. 2011.

[22] J.-S. Liu, S.-Y. Wu, and K.-M. Chiu. Path planning
of a data mule in wireless sensor network using an im-
proved implementation of clustering-based genetic al-
gorithm. In Computational Intelligence in Control and
Automation (CICA), 2013 IEEE Symposium on, pages
30–37. IEEE, 2013.

[23] M. Ma, Y. Yang, and M. Zhao. Tour planning for mo-
bile data-gathering mechanisms in wireless sensor net-
works. IEEE Transactions on Vehicular Technology,
62(4):1472–1483, 2013.

[24] C. S. Mata and J. S. Mitchell. Approximation algo-
rithms for geometric tour and network design problems.
In Proceedings of the eleventh annual symposium on
Computational geometry, pages 360–369. ACM, 1995.

[25] J. S. Mitchell. Guillotine subdivisions approximate
polygonal subdivisions: A simple polynomial-time
approximation scheme for geometric TSP, k-MST,
and related problems. SIAM Journal on computing,
28(4):1298–1309, 1999.

[26] J. S. Mitchell. A PTAS for TSP with neighborhoods
among fat regions in the plane. In Proceedings of the
eighteenth annual ACM-SIAM symposium on Discrete
algorithms, pages 11–18. Society for Industrial and Ap-
plied Mathematics, 2007.

[27] J. S. Mitchell. A constant-factor approximation algo-
rithm for TSP with pairwise-disjoint connected neigh-
borhoods in the plane. In Proceedings of the twenty-
sixth annual symposium on Computational geometry,
pages 183–191. ACM, 2010.

[28] C. L. Müller. Finding maximizing Euclidean TSP tours
for the Häme-Hyytiä-Hakula conjecture. Technical re-
port, Technical Report CGL-TR-13, ETHZ, 2011.

135

30th Canadian Conference on Computational Geometry, 2018

[29] S. Safra and O. Schwartz. On the complexity of approx-
imating TSP with neighborhoods and related problems.
Computational Complexity, 14(4):281–307, 2006.

[30] O. Tekdas, D. Bhadauria, and V. Isler. Efficient
data collection from wireless nodes under the two-ring
communication model. The International Journal of
Robotics Research, 31(6):774–784, 2012.

[31] A. Weber. Ueber den standort der industrien, volume 2.
1909.

[32] G. O. Wesolowsky. The Weber problem: History and
perspectives. Computers & Operations Research, 1993.

[33] B. Yuan, M. Orlowska, and S. Sadiq. On the opti-
mal robot routing problem in wireless sensor networks.
IEEE Transactions on Knowledge and Data Engineer-
ing, 19(9):1252–1261, 2007.

Appendix

A Proof of Theorem 2 : Introducing β-triads

We begin by getting some intuition as to where on the
boundary must the TSPN hit the disks in order to visit
them within a short distance (depending on the parameter
β). Specifically, we show that if a segment P1P2 is bad, then
the possible locations for P1 and P2 are limited to a small
interval on the boundary.

Lemma 5 If P1P2 is bad, then the angles ∠O1O2P2 and
∠O2O1P1 are ≤ β.

Proof. Let γ = ∠O1O2P2 ≤ π and notice that O1P2 =
f(O1O2, γ). Consider the point Q where O1P2 intersects the
first disk and note that the shortest distance from P2 to the
first disk is exactly P2Q = f(O1O2, γ) − R. We therefore
get that P1P2 ≥ P2Q. Now notice that, if γ > β, then
f(O1O2, γ) > f(O1O2, β) and so P2Q > f(O1O2, β) − R,
which would lead to a contradiction. The same argument
can be applied for P2 and we get our conclusion. �

We now consider the scenario in which there is a sec-
ond bad edge P2P3 and further explore the local struc-
ture of the associated TSP on the centers. Specifically,
let O3 be the center of the disk visited next at P3 and
assume that the edge P2P3 is also bad. Notice that the
angle ∠O1O2O3 formed by the TSP is either ∠O1O2P2 +
∠P2O2O3 or |∠O1O2P2 − ∠P2O2O3|. Regardless, we have
that ∠O1O2O3 ≤ ∠O1O2P2 + ∠P2O2O3 and get the follow-
ing corollary:

Corollary 6 If both P1P2 and P2P3 are bad edges, then the
angle ∠O1O2O3 is ≤ 2β.

We now have that if P1P2 and P2P3 are bad edges and
O1O2 is small, then the TSP edge O2O3 edge must itersect
the disk centered at O1. In general, it is not true that if
O2O3 intersects the first disk, we immediately get that the
associated TSPN edge P2P3 must also intersect it. In our
case, however, we have that the slope of P2P3 is very close
to the one of O2O3 due to the fact that it is a bad edge. We
use this information to show that if O2O3 does not intersect
the first disk, then P2P3 cannot be a bad edge.

Theorem 7 If P1P2 and P2P3 are bad edges and O1O2 ≤
R/ sin(2β), then the segment P2P3 intersects the disk cen-
tered at O1.

Proof. We consider the case in which ∠O1O2O3 =
∠O1O2P2 + ∠P2O2O3 and note that all the other cases are
similar. We denote the two lines originating at O2 that are
tangent to the first circle as `1 and `2 such that the line
O2O3 is in between `1 and O2O1. Note that this is possible
because the angle that `1 forms with O2O1 is at least 2β
(since O1O2 ≤ R/ sin(2β)) but the angle that O2O3 forms
with O2O1 is at most 2β (Corollary 6).

Our strategy will be to first show that the segment P2P3

is contained in the wedge defined by `1 and `2 (Figure 3).
Notice that, since the wedge defines a convex space, it is
enough to show that P2 and P3 are contained in it.

136

CCCG 2018, Winnipeg, Canada, August 8–10, 2018

We first show that the point P2 has to be in the wedge.
Let S1 and S2 be the points in which the segment O1O2

intersects the first and second disk. Similarly, let T2 and T3

be the points in which O2O3 intersects the second and third
disk. We then have that P2 is between T2 and S2.

Now we only need to show that P3 is in between `1 and
`2. We will do that by arguing that any choice of P3 outside
of the wedge will contradict the fact that P2P3 is a bad edge.

O3

O1 O2

P3

P2

P
`1

`3

`2

Figure 3: When O2O3 crosses the disk centered at O1,
we must also have that the segment P2P3 also crosses
it. We show this by arguing that P2P3 is contained
between the two lines `1 and `3 and that P2 and P3 are
on separate sides of the first disk.

Let α1 = ∠O1O2P2 and α2 = ∠P2O2O3, and so α1, α2 ≤
β (Lemma 5). First notice that if neither `1 nor `2 in-
tersect the third disk, then we are done because we have
that the entire boundary is contained in the convex space
(since O3 is already in between `1 and `2). Assume then
that `1 intersects the third disk at a point P above the line
O2O3, since ∠O3O2O1 ≤ 2β ≤ ∠PO2O1. Moreover, since
∠PO2O1 ≥ 2β, we have that ∠PO2P2 ≥ 2β − α1 ≥ β
and so PP2 ≥ f(PO2, β) (because |P2O2| = R). Since
|PO2| ≥ |T3O2| and |T3O2| ≥ R, this implies that |PP2| ≥
f(T3O2, β). Using the fact that f(x, β) ≥ x−R cosβ for any
x and β 6= 0, one can verify that:

f(T3O2, β) = f(O2O3 −R, β)

=
√

(|O2O3| −R)2 +R2 − 2R(|O2O3| −R) cosβ

>
√
|O2O3|2 +R2 − 2R|O2O3| cosβ −R

> f(O2O3, β)−R.

This means that P cannot be a possible position for P3 be-
cause then P2P3 would be too big. Moreover, any point Q
”above” P (i.e. such that ∠O3O2Q > ∠O3O2P) would also
not work as a possible position for the same reason. In other
words, P3 has to be underneath the line PO2 = `1.

In order to prove that P3 is also above the line `2, we
will consider an additional line `3 originating at O2 that
makes an angle of β with O2P2 and is underneath it. This
new line makes an angle of β + α2 with O2O3 and since
`2 makes an angle of ≥ 2β + α1 + α2 with O2O3, we get
that `3 is in between O2O3 and `2. In other words, if we
show that P3 is above `3, then we also get that P3 is above
`2. If `3 does not intersect the third disk, then we are done
as before, so assume that it intersects it at a point Q on

the boundary. Similarly as before, we have that P2Q =
f(O2Q, β) ≥ f(O2T3, β) > f(O2O3, β) − R. This in turn
implies that P3 has to be above Q, otherwise P2P3 would be
too big. Therefore P3 must be above the line `3.

At this point, we have that the segment P2P3 is contained
in the wedge defined by `1 and `2. We know that the first
disk is tangent on both sides to `1 and `2 but this does not
directly imply that P2P3 must actually intersect it. In order
to have that, we must also ensure that P2 and P3 lie on
different sides of the first disk. We argue this by showing
that O3 itself must be on the other side of the first disk as
O2. Since the disks do not intersect, this implies that P3 is
on a different side from P2. In order to show this, notice
that we can assume, without loss of generality, that O1O2 ≤
O2O3. Let T be the point on O2O3 such that O1T ⊥ O2O3.
Since ∠O1O2O3 ≤ 2β and O1O2 ≤ R/ sin(2β), this means
that T is contained in the first disk. Suppose that O3 is
on the segment O2T (effectively in between O1 and O2).
Then O2O3 < O2T but, since O2T = O1O2 cos(∠O1O2T) ≤
O1O2, this would lead to a contradiction. We therefore get
that O2 and O3 are on different sides of the first disk and
that the same is true for P2 and P3. This shows that the
segment P2P3 must intersect the first disk. �

We are now ready to prove Theorem 2: For n ≥ 4, if
P1P2 and P2P3 are bad edges and O1O2 ≤ R/ sin(2β) then
at least one of the following is true:

• the TSPN tour is not optimal,

• the TSPN tour is supported by a straight line or

• the path Pn − P1 − P2 − P3 forms a β-triad.

Proof. We distinguish between the case in which P2P3 in-
tersects the first disk at P1 and otherwise. In the first case,
we will show that either the TSPN is not optimal or all the
disks are stabbed by it. The second case is more involved
and reduces to describing what the local structure of the
TSPN must be such that it does not necessarily fall in the
previous two cases.

P3

Pn

P1

P2

O3

On

O1 O2

Q1

Figure 4: The path Pn − P1 − P2 − P3 forms a β-triad.

Case 1: P1, P2, P3 are collinear. Then consider the
point Pn that connects to P1. The cost that the TSPN
pays for visiting the four disks is |PnP1| + |P1P2| + |P2P3|
but by triangle inequality, we know that |PnP2| ≤ |PnP1|+
|P1P2|, so the TSPN would visit P2 directly and pass through
P1 on its way to P3. If the inequality is strict, then this

137

30th Canadian Conference on Computational Geometry, 2018

directly implies that the TSPN is not optimal. When we
have equality, however, this implies that Pn, P1 and P2 are
now also collinear and furthermore, that P1 lies between P2

and Pn. In other words, we have that on the line from P2

to Pn, we have both P3 and Pn to the left of P1. Now look
at how point P4 connects to P3 and notice that the portion
of TSPN for the five disks is now |P4P3|+ |P3P2|+ |P1P2|+
|P1Pn| and again, we can ask the question of why wouldn’t
the TSPN go straight to P2 instead and visit P3 along the
line P2P3. Specifically, we have |P4P2| ≤ |P4P3| + |P3P2|
with the TSPN not being optimal whenever this inequality
is strict. We therefore consider the case in which |P4P2| =
|P4P3|+ |P3P2| and get that now P4 has to also be collinear
with the other points and furthermore, P3 has to be between
P4 and P2. Continuing this process, we get that all the
TSPN points would have to be collinear and in the order
P2, P1, P3, P4, . . . , Pn−1 with Pn potentially being anywhere
past P1. In this case, we have that the TSPN is a supported
by a straight line that stabs all of the disks.

�

Case 2: P1, P2, P3 are not collinear. Let the line
P1P2 intersect the first disk for the first time at Q1. By the
argument from before, we know that if |PnP2| < |PnP1| +
|P1P2|, then the TSPN cannot be optimal since another tour
could go from Pn straight to visiting P2 and then visit P1

on the way to P3, at a lesser cost. When Pn, P1 and P2 are
collinear, in that order, we say that Pn −P1 −P2 −P3 form
a β-triad.

B Proof of Lemma 8 : β-triads are Edge Disjoint

As a reminder, we defined a bad triad to be a subpath of
the tour Pn − P1 − P2 − P3 that visits the disks centered at
On, O1, O2 and O3 and has all the following properties:

• P1P2 is a bad edge, i.e. |P1P2| ≤ f(O1, O2, β)−R,

• P2P3 is a bad edge, i.e. |P2P3| ≤ f(O2, O3, β)−R,

• O1O2 is short, i.e. |O1O2| ≤ R/ sin(2β),

• P1, P2, P3 are not collinear and

• Pn, P1, P2 are collinear with P1 between Pn and P2.

Theorem 2 says that if |TSPN∗| is not a straight line,
then the triad has a local detour of at most 3

√
3R. Lemma

8 further states that all the bad triads are also edge disjoint.
In order to prove that, we go back to the proof of Theorem 2.
Note that we distinguished between the case in which P1, P2

and P3 are collinear (Case 1) and when they are not(Case
2). The first case leads to the TSPN being a straight line,
which is ruled out by our assumptions. In the second case,
the optimality of TSN∗ implies that Pn, P1 and P2 are also
collinear, with P1 between P2 and Pn.

Lemma 8 All the β-triads in a given TSPN tour are edge
disjoint.

Proof. Assume there is another bad triad that shares edges
with Pn−P1−P2−P3. We distinguish four cases, based on
the type of edges they have in common.

Case 1: Pn−1 − Pn − P1 − P2 is a bad triad. This
case cannot happen since Pn, P1, P2 are collinear.

Case 2: Pn−2−Pn−1−Pn−P1 is a bad triad. Then,
by definition, we must have that PnP1 is also a bad edge.
We will show, however, than this cannot be. For this, we
will use an additional lemma:

Oi+1 Oi

Oi+2

Oi+2

Pi+1
Pi+2

Pi+2

Pi

Figure 5: A potential TSPN path is drawn in blue. Be-
cause the angle ∠OiOi+1Oi+2 ≤ π/2, we have that Oi
and Oi+1 are on the same side of the hyperplane de-
scribed by the red line. That, in turns, give two options
for the disk centered at Oi+2 to intersect the (extended)
convex hulls of the other two diskss, drawn in green. In
each case, the points are visited in the wrong order.

Lemma 9 If PiPi+2 is a straight line that passes through
point Pi+1 such that Pi+1 is between Pi and Pi+2, then it
cannot be that both PiPi+1 and Pi+2Pi+1 are bad edges.

Proof. Assume that both PiPi+1 and Pi+2Pi+1 are bad
edges. Then Corollary 6 implies that the angle
∠OiOi+1Oi+2 ≤ 2β. Now consider the convex hull of the
two disks centered at Oi and Oi+1 (Figure 5). If the
disk centered at Oi+2 intersects the convex hull, then Pi+2

must be contained in that convex hull, otherwise the line
Pi − Pi+1 − Pi+2 would not exist. But in that case, the
points would be visited out of order. Specifically, Pi+2 would
be between Pi and Pi+1.

Now assume that the disk centered at Oi+2 does not in-
tersect the convex hull. Since the angle ∠OiOi+1Oi+2 ≤
2β ≤ π/6, this implies that Oi+2 is in the same halfspace as
Oi with respect to the line perpendicular to OiOi+1 passing
through Oi+1. We extend the convex hull infinitely in that
halfspace by allowing the tangent lines to be infinite on that
side. By the same argument as before, we know that the disk
centered at Oi+2 must intersect this extended region. But
then we would get again that the points are out of order: Pi
would be between Pi+1 and Pi+2. �

When Pi = Pn, Pi+1 = P1 and Pi+2 = P2, Lemma 9 tells
us that it cannot be that P1 is between Pn and P2 and both
edges P1Pn and P1P2 are bad. Therefore we are done with
this case.

Case 3: P1 − P2 − P3 − P4 is a bad triad. This case
is similar to Case 1 and cannot happen, since P1, P2 and P3

cannot be collinear.

138

CCCG 2018, Winnipeg, Canada, August 8–10, 2018

Case 4: P2 − P3 − P4 − P5 is a bad triad. This case
is similar to Case 2 because we have that P2, P3 and P4

are collinear with P3 between P2 and P4 and both P2P3 and
P3P4 being bad edges.

�

C The TSPN that follows a straight line

Here we focus on the second possibility in Theorem 2 in
which the optimal TSPN is supported by a straight line that
stabs all the disks. We show that in this case, we can return
in polynomial time a solution that is within an additive fac-
tor of 4R from the optimal TSPN∗. We note that when the
TSPN might not be a line but the disks themselves admit a
line transversal, a

√
2-approximation follows from the work

of Dumitrescu and Mitchell [14]. We explain the result for
completeness.

We start by identifying the centers that are the farthest
apart and considering the direction orthogonal to the line go-
ing through them. This direction induces parallel segments
of length 2R in each of the disks (that each go through the
centers). It is easy to check that any line transversal through
the disks is a line transversal through the segments except
for the first and last disk in the associated geometric per-
mutation (for those two disks, the TSPN will stop at the
boundary of the disk and never cross the entire circle). Con-
versely, any line transversal through the segments will auto-
matically also stab the disks. Now compute a shortest line
segment that stabs all of these segments in time O(n logn)
using the algorithm of Bhattacharya et al. [5]. We note that
this is optimal up to an additive factor of 4R that comes
from the fact that the optimal TSPN∗ might have to travel
4R to hit the first and the last two segments in the geometric
permutation.

In general, when we know that the disks admit a
line transversal, we can output a solution that is a

√
2-

approximation [14]. This follows indirectly from an algo-
rithm used for connected regions of the same diameter, when
there is a line that stabs all of the diameters. Given the par-
allel segments of length 2R that we constructed earlier, we
know that they can also be stabbed by a line. Now consider
the smallest perimeter axis-aligned rectangle that intersects
all of the segments, of width w and height h. This will be the
solution that we return. Arkin and Hassin [2] argued that
any tour which touches all four sides of the rectangle must
have length at least 2

√
h2 + w2. Since h+w ≤

√
2·
√
h2 + w2,

we get that the rectangle is a
√

2-approximation.

D Using different thresholds

In this section, we give a more general analysis of the general
approximation factor with a parameter α > 1 that we will
set later in the proof. We include here only the aspects
that change. Depending on whether K ≤ n

α
or not, we

will employ different lower bounds on |TSPN |, in a similar
fashion as before.

Case 1: when K ≥ n
α . In this situation, we have that:

|TSP ∗| ≤ |TSPN∗|+ 1 + cosβ + 2(α− 1)

α
·R · n.

Using Lemma 4 gives us that

|TSP ∗| ≤
(

1 +
4

π
· 1 + cosβ + 2(α− 1)

α

)
· |TSPN∗|+

+ 4 · 1 + cosβ + 2(α− 1)

α
R

≤
(

1 +
4

π
· 1 + cosβ + 2(α− 1)

α

)
· |TSPN∗|+ 8R

≤
(

1 +
8

π
− 4

π
· 1− cosβ

α

)
· |TSPN∗|+ 8R.

Case 2: when K < n
α . Similarly as before, we get

that:

|TSPN | ≥
l∑

j=1

|Bj |

≥
(1

sin (2β)
− 2
)
R · (n−K)

≥ α− 1

α
·
(1

sin (2β)
− 2
)
R · n.

Since the total detour could be at most 2R per edge, we get
that:

|TSP ∗| ≤
(

1 +
α

α− 1
· 2

1
sin (2β)

− 2

)
· |TSPN |.

Setting α = 1 + 2/(c/sin(2β) − 2c − 2) for c = 2.53 and
β = 0.1831 gives us that both of these cases lead to a 2.53-
approximation.

E Algorithm for overlapping disks

We discuss how the analysis from the disjoint case carries
over to the case of overlapping disks. As we mentioned be-
fore, the best known approximation for this case is by Du-
mitrescu and Tóth [15]. In general, approaches for this case
take advantage of known analyses for the disjoint case and
adapt them in a smart way to the overlapping case. We be-
gin by roughly describing the technique of Dumitrescu and
Tóth [15] and the show how the analysis changes when we
use our framework.

Specifically, Dumitrescu and Tóth [15] start by comput-
ing a monotone maximal set of disjoint disks I by greedily
selecting the leftmost disk and deleting all of the other in-
put disks that intersect it. Let k be the size of the set we
end up wth. They then compute an approximate TSP tour
on the centers of the disks in I, either using the available
schemes [3, 25] or Christofides [11]. We call this tour TI .
They then augment this tour in such a way that we visit all
the input disks, not just the ones in I. Before we discuss
the augmentation part, we first define some notation and
mention some bounds that follow naturally.

Let the optimal TSP tour on the centers in I be TSP ∗I .
The eventual tour TI that we compute will be an a-
approximation to TSPN∗I so we have that:

|TI | ≤ a · |TSP ∗I |. (2)

On the other hand, we know that this set of disks also has
an associated optimal TSPN tour, which we call TSPN∗I .

139

30th Canadian Conference on Computational Geometry, 2018

Finally, we denote the optimal TSPN tour on all the disks
by TSPN∗. We know that the tour on I is a lower bound:

|TSPN∗I | ≤ |TSPN∗|. (3)

The size of our final solution will be compared to |TSPN∗|
and to that end, we use lower bounds on |TSPN∗I | in con-
junction with (3) to get lower bounds on |TSPN∗|. This
is the part where our new framework will come in, because
|TSPN∗I | is a tour on disjoint disks by definition.

The next step is to augment TI with detours of length
O(R) along the disks in I such that it touches every other
disk not in I. The total length of the solution would then
become |TI | + O(1) · |I| · R. Specifically, Dumitrescu and
Tóth [15] consider short curves around each disk in I that
are guaranteed to cross any of the disks to its right that
intersect it. Because the maximal set was chosen from left
to right, that covers all the disks that could possibly intersect
it. We refer the reader to [15] for the detailed construction.
The authors show that the length of the resulting tour T is
within O(1) · |I| ·R of |TI |:

|T | ≤ |TI |+ (A · k +B) ·R, (4)

where A = 2 · (π
6

+
√

3− 1) and B = 4−
√

3.
Combining 2 and 4, we upper bound the length of the

solution |T | in terms of |TSP ∗I | as such:

|T | ≤ |TI |+ (A · k +B) ·R
≤ a · |TSP ∗I |+ (A · k +B) ·R

In order to complete the analysis, we would need to
bound |TSP ∗I | in terms of |TSPN∗| and we do that through
|TSPN∗I |. The analysis from Dumitrescu and Tóth [15] uses
the bounds from Dumitrescu and Mitchell [14] for the case
of disjoint disks. Specifically, they apply Lemma 4 to get
that:

kR ≤ 4

π
· |TSPN∗I |+ 4R.

This, together with the bound |TSP ∗I | ≤ |TSPN∗I | + 2Rk
and (3) yields:

|T | ≤ a · |TSP ∗I |+ (Ak +B) ·R
≤ a · (|TSPN∗I |+ 2Rk) + (Ak +B) ·R
≤ a · |TSPN∗I |+ (2a+A) · kR+BR

≤ a · |TSPN∗I |+ (2a+A) ·
(4

π
|TSPN∗I |+ 4R

)
+BR

≤
(
a+ (2a+A)

4

π

)
· |TSPN∗I |+ (8a+ 4A+B)R

≤
(

(1 +
8

π
)a+

4A

π

)
· |TSPN∗I |+ (8a+ 4A+B)R

≤
(

(1 +
8

π
)a+

4A

π

)
· |TSPN∗|+ (8a+ 4A+B)R

Plugging in the values for A and B gives an overall ap-
proximation term of:

(1 +
8

π
)a+

4A

π
≤
(7

3
+

8
√

3

π

)
· (1 + ε) ≤ 6.75 · (1 + ε).

Our framework changes the last stage in which we com-
pare |TSP ∗I | with |TSPN∗I |. We do a similar analysis as in

the disjoint case, except for the tour on I. We get that Case
1 would therefore correspond to getting that:

|TSP ∗I | ≤ |TSPN∗I |+X ·R · k,

where X = 2− 1− cosβ

α
(instead of 2R). We can then

replace it in the analysis and get:

|T | ≤ a · (|TSPN∗I |+XRk) + (Ak +B) ·R

≤
(
a+ (Xa+A)

4

π

)
· |TSPN∗I |+ (8a+ 4A+B)R

≤
(

(1 +
4X

π
)a+

4A

π

)
· |TSPN∗|+ (4Xa+ 4A+B)R

In Case 2, we have that the overall detour is 2Rk, but
there is a different lower bound on |TSPN∗I |:

|TSPN∗〉 | ≥ Y ·Rk,

where Y = α−1
α
·
(

1/(2 sin (2β)) − 1
)

. Using the fact that

Rk ≤ 1/Y · |TSPN∗I |, the analysis then becomes:

|T | ≤ α · |TSPN∗I |+ (2α+A) · kR+BR

≤ α · |TSPN∗I |+
2α+A

Y
· |TSPN∗I |+BR

≤
(
α+

2α+A

Y

)
· |TSPN∗I |+BR.

If we set α and β like in the previous section, we get that
both of the approximation factors are upper bounded by
6.728.

F The Fermat-Weber Point Approach for n = 3

In this section, we prove that the Häme, Hyytiä and Hakula
conjecture is true for n = 3 and discuss a different way
of looking at the TSPN tour that we believe might be of
independent interest. We start with the observation that
the shortest tour on the centers is equivalent to the shortest
tour on translates of those centers, as long as all those centers
are translated according to the same vector. In other words,
if we fix a direction and translate each center along that
direction until it reaches its boundary, the shortest tour on
the newly obtained points will be exactly the same as the
shortest tour on the centers themselves.

Formally, let Bi be the point we obtain by translating the
center Oi along a fixed vector of length R. Then the TSP
on the points B1, B2, . . . , Bn (in that order) has the same
length as the TSP tour on O1, O2, . . . On (Figure 6). One
advantage of visiting the first set of points (instead of the
center points) is that it might be more similar geometrically
to what the TSPN actually does. In terms of the following
analysis, we would get that:

|TSP ∗| ≤ |TSPN∗|+ 2

n∑

i=1

|PiBi|.

In this context, a natural question arises about the choice for
the points Bi that minimizes the term

∑n
i=1 |PiBi|. In order

to see what this best choice would be, we transform this
input instance into another one by essentially superimposing
all the disks on top of each other (Figure 7). Specifically, our

140

CCCG 2018, Winnipeg, Canada, August 8–10, 2018

O1

O2

O3

O4

P1

P2

P3
P4

B4

B3

B2

B1

Figure 6: The translated view, when the tour visits the
same point on the boundary of each disk.

new instance will consist of one disk of radius R centered at
a point O such that the points Bi map to a single point B
(corresponding to O translated by the same fixed vector).
We then map each point Pi of the TSPN to a corresponding
point Qi on the boundary of this disk such the vector OQi
is a translate of the vector OiPi. We then get that:

n∑

i=1

|PiBi| =
n∑

i=1

|QiB|,

and so the best choice for B is the one that minimizes the
sum

∑n
i=1 |QiB|, otherwise know as the Fermat-Weber point

or 1-median of the points Q1, Q2, . . . , Qn [32, 31]. We note,
however, that while the average distance to the Fermat-
Weber point will never be greater than 2R, there are in-
stances in which this is tight. Consider, for example, the
points Qi to be the vertices of a convex 2n-gon and notice
by triangle inequality that the center of the disk is exactly
their Fermat-Weber point (any other point will incur dis-
tances greater than the sum of the diagonals).

We can therefore say that when the points Bi are evenly
spaced on the boundary of the disk the Fermat-Weber point
is exactly the center and so we gain no improvement by
moving the centers Oi towards the points Bi. It turns out,
however, that the location of the points on the boundary
is not as restrictive as the order in which the TSPN visits
them. To see that, consider a different transformation in
which we only move the centers Oi and Oi+1 along a fixed
vector. In other words, we choose a new vector for each
pair of consecutive centers and only compare |PiPi+1| locally
against the newly obtained segment. This does not give us
an overall valid tour on the centers, but it allows us to tailor
the choice of B for each two points Pi and Pi+1. Specifically,
we would get that:

|OiOi+1| ≤ |PiPi + 1|+ |QiB|+ |Qi+1B|.

In this case, we know that any point on the segment
QiQi+1 minimizes the distances in question and so we get
that:

|OiOi+1| ≤ |PiPi + 1|+ |QiQi+1| and

|TSP ∗| ≤ |TSPN∗|+
n∑

i=1

|QiQi+1|.

Q1

Q4

Q3

Q2

O

B

Figure 7: In red, the unified view when we translate
each Oi to the same point B on the boundary. In green,
the detour when we pick a different B for each pair of
points Oi and Oi+1.

In other words, the largest detour obtained in this way is
when the TSPN visits the points Pi in the order of the Max-
imum TSP on the associated points Qi (Figure 7). The
case in which all the points are evenly distributed along
the boundary no longer becomes that restrictive. We can
still construct, however, instances for which the Max TSP
is exactly 2Rn and that is when the points visited are ex-
actly diametrically opposite each other. Nevertheless, we
are able to show that for n = 3, the detour is bounded by
3
√

3R. Let A,B,C be any three points on the boundary of
a circle of disk R centered at O. We then have that that
|AB| + |AC| + |BC| ≤ 3

√
3R and the Häme, Hyytiä and

Hakula conjecture for n = 3 follows:

Theorem 10 For n = 3, we have that any tour which visits
the disks in an order σ satisfies the bound

|TSP (σ)| ≤ |TSPN(σ)|+ 3
√

3R.

141

CCCG 2018, Winnipeg, Canada, August 8–10, 2018

Width and Bounding Box of Imprecise Points

Vahideh Keikha∗ Maarten Löffler† Ali Mohades∗ Zahed Rahmati∗

Abstract

In this paper we study the following problem: we are
given a set L = {l1, ..., ln} of parallel line segments, and
we wish to find a set P = {p1, ..., pn}, where pi ∈ li such
that we maximize/minimize the width of P or the area
of the bounding box of P among all possible choices for
P . We design an O(n2ε−4.5) approximation algorithm
for computing the largest width. We also show that the
smallest width and the smallest bounding box can be
computed in O(n2) time. We then proceed to present an
O(n6) time dynamic programming algorithm for com-
puting the largest-area bounding box. We also present
an FPTAS for this problem which runs in O(n2ε−5)
time.

1 Introduction

Shape fitting is a fundamental problem in computational
geometry, computer vision, clustering, data mining and
many other areas, which asks the following question:
suppose we are given a set P of points in the plane, find
a shape that best fits P under some fitting criterion.
In computational geometry, many problems fit into the
class of shape fitting, e.g., computing the bounding box,
the width, the smallest enclosing circle, etc. However,
in the real-world, the input is subject to be imprecise.
Then the question is finding tight bounds on the size of
the objective shape.

Imprecise data. Let P = {p1, ..., pn} be a set of
fixed points in the plane. In many applications, each
element of P is subject to be computed with some errors,
such that we do not know e.g., the exact coordinates of
each pi, or even the existence of pi. In this situation we
call P a set of imprecise/uncertain points.

Many studies have focused on solving geometric prob-
lems in the presence of imprecise input. Depending on
the information we have about the input, different mod-
els of imprecision are introduced. Here we briefly men-
tion related models: the Epsilon-geometry model, the
Region-based model, the Locational and the Existential
model, where in these models, it is assumed that there
exists a set Pi of points instead of each pi, but the exact
location of pi in Pi is unknown. See e.g., [3, 5].

∗Department of Mathematic and Computer Science, Amirkabir
University, [va.keikha,mohades,zrahmati]@aut.ac.ir
†Department of Information and Computing Sciences, Utrecht

University, Utrecht, The Netherlands, m.loffler@uu.nl

a

a

b

c

b

c

(b) (c) (d) (e)(a)

Figure 1: An example. (a) A given set of parallel line
segments. (b) The Largest possible width determined
by 3 pairs simultaneously. If we move any of a, b or
c among their line segments, we reduce at least one of
the computed width. (c) The smallest possible width.
(d) The largest possible area bounding box. (e) The
smallest possible bounding box.

In this paper, we study our problems in the Region-
based model. Let R be a set of imprecise points. An
instance of R is a set P of points selected from distinct
regions of R. Then each instance P of R will have dif-
ferent convex hull, width, bounding box, etc. Löffler
and van Kreveld introduced a framework for computing
some tight lower and upper bounds on the size of such
measures, where they modeled the uncertainty of the
input by line segments, squares or disks [3].

Contribution. In this paper, we study the follow-
ing problems: given a set L = {l1, ..., ln} of parallel line
segments, choose a set P = {p1, ..., pn} of points, where
pi ∈ li, such that the size of width or the area of the
bounding box of P is as small/large as possible among
all possible choices for P (see Figure 1(b-e)). These
problems can be interpreted as finding the optimal fa-
cilities in the form of a box or a strip which intersects
each line-segment-customer.

Preliminaries. Löffler and van Kreveld firstly stud-
ied the problem of computing the largest/smallest axis-
aligned bounding box of a set of imprecise points mod-
eled as a set of disks or squares in the plane, where
their algorithms varied from O(n log n) to O(n2) [2]. In
the same paper, they proved that computing the largest
possible width of a set of imprecise points modeled as
a set of arbitrary line segments is NP-hard. The same
problem for parallel line segments, squares or disks was
posed as open question.

The axis-aligned bounding box of a set P of fixed
points in the plane is the minimum area bounding box
containing P , subject to the constraint that the edges

142

30th Canadian Conference on Computational Geometry, 2018

x

y

θ

d

θ∗

θ∗

0

Figure 2: An example. The A(θ, d) diagrams of the end-
points of three line segments and two determined widths
in direction θ∗. Both the smallest and largest possible
width occur in direction θ∗. When we select the lower
endpoints of the blue and green line segments, the loca-
tion of the point on the red line segment determines the
width: the lower endpoint of the red segment realizes
the smallest possible width, while the upper endpoint
realizes the maximum possible width.

of the bounding box are parallel to the x−y coordinate
axes. The smallest oriented bounding box of P is the
minimum area rectangle containing P . From now on,
we simply call it bounding box. The width of a set of
points is the narrowest strip containing P . These prob-
lems are extensively studied and efficient algorithms are
known for them. Once the convex hull of P is known,
all these problems can be solved in linear time based
on the rotating calipers method [6]. While the convex
hull of P is unknown there is an Ω(n log n) lower bound
for both problems of computing the bounding box and
width of P in 2-D.

Results. Let L = {l1, ..., ln} be a set of parallel line
segments. We obtain the following results.

• We show that the largest possible width of L can be
approximated within a factor (1−2ε) in O(n2ε−4.5)
time (Section 2.1).1

• We show that the smallest bounding box of L can
be computed in O(n2) time (Section 3.1).

• We present a more involved O(n6) time dynamic
programming algorithm for computing the largest
bounding box of L. We also present an FPTAS
for this problem which runs in O(n2ε−5) time (Sec-
tion 3.2).

We also note that all missing proofs are in Ap-
pendix A.1.

2 Width

We start with the width problem. Two problems can
be considered: finding an instance P on L, so that P
maximizes/minimizes the width of P . The minimum

1Our method solves the smallest width problem in O(n2) time,
however, there exists an O(n logn) time algorithm for this prob-
lem [4].

width of a set of imprecise points modeled as line seg-
ments (or any other convex regions), can be computed
in O(n log n) time [4], in which the problem is so-called
strip transversal, and the authors studied the problem of
computing the thinnest strip that intersects a given set
of convex objects. The maximum width problem looks
more difficult, because we should find an instance so
that our instance maximizes the width of the resulting
point set. Since width can be determined by multiple
triples of points, and each point can take part in differ-
ent triples, it looks difficult to find the optimal position
of the points (see Figure 1(b)).

Let L = {l1, ..., ln} be a set of parallel line segments
in the plane. Let l−i and l+i , respectively, denote the
lower and upper endpoints of li. Let E denote the set
of all the endpoints of segments in L. For a point p, let
lp denote the segment that includes p. For each point
p = (x, y), we define a A(θ, d) diagram to be the plot of
the function dθ = x sin θ + y cos θ (1). It is the (signed)
distance of p to a line through the origin perpendicular
to the ray with angle θ.

pθ =
[
xθ
yθ

]
=
[

cos θ − sin θ
sin θ cos θ

] [
x
y

]
=
[
x cos θ − y sin θ
x sin θ + y cos θ

]

In Figure 2, the A(θ, d) diagram of the endpoints of
a set of segments is depicted, the region between same
color diagrams denotes the A(θ, d) diagrams of the re-
maining points of the segment. From now on, we use
T (P) to address the set of A(θ, d) diagrams of a set P
of points. An example is depicted in Figure 2, where
each T ({l+i , l−i }) for i = 1, ..., n is assigned a unique
color. Note that the T ({l+i , l−i }) of a segment li in-
tersects any other T ({l+j , l−j }) for j 6= i, j = 1, ..., n in
a constant number of intersections. Thus there are a
quadratic number of intersection points. We call I the
set of intersection points, where each element of I is an
intersection point between two diagrams with distinct
colors.

Notice the smallest possible width of L equals the
vertical shortest distance between a point p ∈ I and a
point fp on another diagram with distinct color, so that
at least one color from each diagram is intersected by
vertical line segment pfp. Since we want to minimize
the length of segment |pfp| among all directions θ, it
will have one endpoint on an intersection point. Notice
that the instances determined in this way will introduce
a larger width among all other directions in A(θ, d) di-
agrams of L. Thus this gives a valid width, and further
the smallest possible width. But computing the smallest
width by this method will cost O(n2) time.

2.1 Largest width

Let s be a set of A(θ, d) diagrams of distinct colors. If
s includes exactly one instance of each color, we call s a
complete set. For a complete set s of diagrams, we define

143

CCCG 2018, Winnipeg, Canada, August 8–10, 2018

a

b

c

optimal solution A(θ, d)

b

a

c

0 1 2 3-3 -2 -1

(a)

(b) (c)

diagram

0

00

Figure 3: (a) An example. The maximal width is deter-
mined by a, b and c. (b) The optimal solution. (c) The
A(θ, d) diagrams of the endpoints is denoted by solid
curves, and the optimal solution is shown in dashed-
dotted. The green dashed-dotted is not visible because
it is the same as a solid green curve. For better visibility
this figure is shown wider.

ws as the shortest vertical distance between the topmost
and bottommost diagrams in s among all values of θ.
Obviously ws determines the width of instances in s.

Observation 1 Let P be a set of n points from distinct
line segments, then wT (P) determines the width of P .

Proof. The correctness comes from the fact that wT (P)

is computed among all values of θ. �

Let P ∗ denote the set of points which maximizes the
width. In the A(θ, d) diagram of L, the solution to the
largest width problem is equivalent to a complete set
T (P ∗) of A(θ, d) diagrams, so that the value of wT (P∗)

is as large as possible among all possible choices of s. In
other words, for any other complete set s, wT (P∗) ≥ ws.
See Figure 3 as an example. As can be seen in Figure 3,
the problem probably has algebraic issues. We design
an approximation algorithm to solve it. We start stating
our results with some observations.

Lemma 1 Let L be a given set of parallel line segments
in the plane, and let E denote the set of all endpoints
of L. There exists a solution to the largest width prob-
lem so that one of the elements of E is involved in the
optimal solution.

Proof. It is easy to observe that we can translate the
set of points realizing the largest width in up or down
direction until one of the points determining the strip
of width (indeed, the point which has the smallest dis-
tance to one of the endpoints of its segment) reaches to

D

ε

Figure 4: The crosses
denote the points ap-
proximating the line
segments.

the closest endpoint of its segment, or the width misses
covering another segment l, which this happens at an
endpoint of l again, then the new set realizes the same
width, but one element of E is involved in the optimal
solution. �

Lemma 2 There exists an ε-kernel of size O(
√
ε−1) for

the maximum width problem.

Proof. Agarwal et al. [1] proved that for any point
set in d-dimensional space, there is an ε-kernel of size
O(1/εd−1/2) and it is also worst case optimal. Let
opt(L) denote the optimal solution to the maximum
width problem of L. Then there exists an ε-kernel
Qopt for opt(L), that is opt(L) < (1 + ε)widt(Qopt).
Let S(Qopt) denote the set of segments which share a
point on Qopt. Then obviously opt(S(Qopt)) ≤ opt(L).
Also we have width(Qopt) ≤ opt(S(Qopt)). Then
opt(S(Qopt)) ≤ opt(L) ≤ (1 + ε)opt(S(Qopt)). �

Although we do not know what is our ε-kernel, we
still can use its size to design a more efficient algorithm.

Let D denote the vertical distance between the high-
est and smallest y-coordinates of any two endpoints of
segments of L, as illustrated in Figure 4. Then we em-
anate a set ρ of horizontal parallel rays, where the verti-
cal distance between any two consecutive rays is ε. For
any li ∈ L, the intersection points ρ ∩ li approximate
li. We will compute the A(θ, d) diagrams of V = ρ∩L.
Obviously V ∈ O(nε−1). We postpone the discussions
of why this gives us the desired (1− ε) factor, and first
discuss the solution on the approximated points.2

From Lemma 2 and considering any triple of
points which are potentially involved in the maxi-
mum width, a naive approach solves the problem in

O(nε
−1/2

(ε−1/2ε−1)3) time.

Corollary 3 There exists a PTAS for the maximum

width problem which runs in O(nε
−1/2

ε−4.5) time.

Observation 2 If for each li ∈ L, T ({l+i , l−i }) is al-
ways entirely located between two other A(θ, d) diagrams
in T (E) among all values of θ (shown in yellow in Fig-
ure 3(c)), then li does not have a role in the constitution
of the optimal solution.

2We have supposedD = 1, since we are considering the relative
error.

144

30th Canadian Conference on Computational Geometry, 2018

The above observation does not necessarily reduce the
complexity of the algorithm, but still can reduce the
total running time.

2.2 Dynamic programming algorithm

As a consequence of Observation 1 and since we look
for the shortest vertical distance between a set of di-
agrams, the shortest vertical distance will at least use
one intersection point of two diagrams with distinct col-
ors. Suppose we have fixed one endpoint b of a segment,
and we have computed the A(θ, d) diagram of b, T ({b})
(for simplicity we denote it by T (b)). Now the ques-
tion is how to find a complete set s of diagrams, so that
T (b) ∈ s and other elements of s maximize their vertical
distances (ws) from T (b).

First notice that the number of points in V is in
O(nε−1). By considering any triple of points in V which
are potentially involved in the optimal solution, obvi-
ously the problem can be solved in O(n4ε−3). In the
extra O(n) we check whether the strip of triple includes
one instance from each segment or not. We will design
a DP algorithm which runs in O(n2ε−4.5) time.

For a fix endpoint b, let w(b) denote the length of the
shortest vertical segment which is intersected by all the
transformations of

√
ε−1 − 1 other instances (in the ε-

kernel) among all directions θ. Let w∗ denote the max-
imum possible width of L. We should maximize the
value w(b) for each b. Obviously w(b) in a direction θ
can be defined by

w(b) = Max∀pi,dθ(T (pi))≤dθ(T (b)) |dθ(T (b))− dθ(T (pi))|+

Max∀pj ,dθ(T (pj))≥dθ(T (b)) |dθ(T (b))− dθ(T (pj))|,

with i 6= j, in which T (pi) and T (pj) has the smallest
and largest vertical distances from T (b) in direction θ.

W (b) = Max
[
w(b)], w∗ = Maxb∈E W (b),

whereW (b) is the maximum over all possible ε-kernels

on b. There only exist O(
√
ε−1) candidates for each of

pi and pj , since they belong to an ε-kernel of this size.
Also we only need to consider the directions θ which
is determined by the intersection points of the A(θ, d)
diagrams of elements in the ε-kernel, since the minimum
value of w(b) that needs to be maximized happens there.
Thus there exist O((ε−1/2ε−1)2) directions θ in total.
Also there exist O(nε−1/2) different ε-kernels (of size
O(ε−1/2)) to be defined on b. Consequently the dynamic
program runs in (n2ε−4.5) time.

Theorem 4 Let L be a given set of parallel line seg-
ments in the plane. The largest possible width of L can
be approximated within factor (1 − 2ε) in O(n2ε−4.5)
time.

3 Bounding box

Similarly, for computing the bounding box of L two
problems can be considered, neither of these has been
studied yet: the smallest area bounding box and the
largest area bounding box. Let B∗ denote the optimal
solution to any of these problems.

3.1 Smallest bounding box

Now we extend our approach for the minimum width
problem to design an algorithm for the smallest-area
bounding box.

Lemma 5 Let L be a set of parallel line segments, and
let E be set of the endpoints of segments in L. There ex-
ists an optimal solution B to the smallest bounding box
of L, where each edge of B passes through at least one
point of E, and these points belong to distinct segments.

Proof. Suppose the lemma is false. Then the minimal
bounding box B still has an edge e which is determined
by a point pi somewhere on the middle of li. Consider a
line ` through pi and parallel to e. If we sweep ` toward
the opposite side of e on B, it will intersect li, until it
leaves it at an endpoint p′i (or B misses covering another
segment lj , which happens at an endpoint pj). Then p′i
(or pj) can be substituted for pi to give us a smaller
area bounding box. Contradiction. �

Now we have discretized the problem on the end-
points. For any set of fixed points, the smallest bound-
ing box can be determined by five points. Consequently,
there exists a naive O(n6) time algorithm for the small-
est bounding box problem, where in the extra O(n) time
we should check whether an instance of any segment is
included in the solution.3

Lemma 6 Let L be a set of n parallel line segments.
Only the directions determined by the intersection points
of the elements of T (E) in the A(θ, d) diagram of L can
be candidates to determine the direction of two parallel
edges of B∗.

Proof. Only the intersection points of T (E) in the
A(θ, d) diagram of L denote the directions in which
a minimum width may exist. Suppose the lemma is
false. Then there exists a solution B to the minimum
bounding box problem, so that none of the two direc-
tions determined by edges of B, are determined by a
direction in which a minimal width happens (in an in-
tersection point). Then we find the closest direction θl′

(to the directions of any of two edges of B) which is a
candidate for the smallest width (which happens at an
intersection point) (see Figure 5). Let θl denote the di-
rection of two parallel edges of B which is closer to θl′ .

3Notice that a rotating caliper technique does not look appli-
cable here, since we do not exactly know the convex hull.

145

CCCG 2018, Winnipeg, Canada, August 8–10, 2018

θl

θdiff

B′ B θ′l

Figure 5: The smallest-
area bounding box will be
constructed in a direction
in which a minimal width
exists; if not we still can
reduce its area.

Also first suppose the segments determined by direction
θl′ are distinct from the segments involved in the other
edges of B′. We define θdiff = |θl′ − θl|. We substi-
tute the determined width in direction θl′ for the one
in direction θl. We then rotate the two other edges of
B with θdiff through the previously determined points.
Obviously the achieved box B′ has a smaller area than
B. Contradiction.

Now suppose the determined segments by the width
in direction θl′ are not distinct from the segments in-
volved in the other edges of B′. Then the shared point
would be located at a corner of the new box B′, while
the area of the B′ is smaller than B. Contradiction. �

In each intersection point p ∈ I in direction θ, there
may exist a strip with minimal size which includes at
least one point from each line segment. The other sides
of the potential optimal solution can be determined in
direction θ+π/2. Since |I| ∈ O(n2), the minimum area
determined box among the intersection points realizes
B∗, and the algorithm works in O(n2) time.

Theorem 7 Let L be a set of n parallel line segments.
The optimal solution to the smallest bounding box prob-
lem of L can be computed in O(n2) time.

3.2 Largest bounding box

This problem looks difficult. Even a brute-force algo-
rithm is not straightforward, since we cannot simply
expand the edges of a possible box (by using the end-
points of the segments), since collinearity of the points
may reduce the size of the optimal box. See Figure 6(a).
Let θ∗ denote the direction of the largest bounding box.
Also notice that at least six points are involved in the
optimal solution, since the determined widths in both
direction θ∗ and θ∗ + π/2 have the smallest size among
all possible directions in which a width can be deter-
mined, if not we still can reduce its size, and it is not a
valid bounding box. Also as can be seen in Figure 1(d),
the largest area bounding box does not necessarily use
the orientation of the maximum width.

Lemma 8 Let L be a set of n parallel line segments,
and let E be the set of the endpoints of segments in L.
There exists a solution to the largest-area bounding box
that uses two points (from distinct segments) of E on
its two opposite sides, so that each edge includes one of
them.

et

eb

`

t

r

b2

l+t

b1

(a) (b)

Figure 6: (a) Expanding the edges of a box B to the
endpoints of the segments determining the edges of B
does not necessarily increase the area of B. (b) The
largest-area bounding box at least uses two elements of
E on its two parallel sides.

From the A(θ, d) diagram of L, the number of different
configurations of having two distinct endpoints on two op-
posite sides of a rectangle is bounded by O(n2), since in the
intersection points the vertical order of two A(θ, d) diagrams
changes, and there only exists a quadratic number of inter-
section points. Let t and b denote such endpoints. Also an
instance of any other line segment is included in the deter-
mined strip by these two endpoints. Notice that four sub-
problems need to be considered, since we do not know which
of the upper or lower endpoints of lt and lb are the right
ones. With the same argument we had in Lemma 2, there
exists an ε-kernel of size O(ε−1/2) for the largest bounding
box. By approximating the set of line segments with a set of
parallel rays with ε difference between consecutive rays, as
discusses in Section 2.1, for any pair of endpoints we need
to find a triple of other points to construct a bounding box,
where there are O(ε−1/2) candidates for each point of triple
and O(ε−3) possible directions for the optimal box. Thus a
DP similar to the one presented in Section 2.2 can solve the
problem in O(n2ε−5) time. In the following we try to solve
it exactly.

Corollary 9 Let L be a set of n parallel line segments.
There exists an FPTAS for the largest bounding box of L
that runs in O(n2ε−5) time.

Algorithm. Let L be a given set of n parallel line seg-
ments. Recall that from A(θ, d) diagrams of L we can com-
pute all possible directions which there is a strip S = d(L, θ),
such that S includes at least one instance from each element
of L in direction θ. From Lemma 8 we know two distinct
segments determine two opposite sides of B∗. As said before,
from the A(θ, d) diagram of L we understand at most O(n2)
candidates can determine two opposite sides of B∗, since
there are O(n2) intersection points and thus the number
of configurations in which all other diagrams are resides be-
tween two different diagrams is bounded by O(n2). Then we
should find a valid width with these two points. Let θ denote
a direction of such valid width. Notice that there may exist
O(n) possible directions for θ. We will consider computing a
valid solution from a specific θ, and of course we will repeat it
for the remaining possible directions. Then a bounding box
B in direction θ can be defined by B = d(L, θ). d(L, θ + π

2
)

(2), where B is the smallest box which bounds S in θ + π
2

direction, so that B is a rectangle. With a bit abusing of the

146

30th Canadian Conference on Computational Geometry, 2018

a3

a4

a6

a5

a1

a2

a′3

a1

a′3

a1vbl

li

e′l

et

er

eb

el

(a) (b) (c)

a′2

Figure 7: (a) A non-valid bounding box, where it is
determined by a1 and a5. (b) The maximum inner angle
at vbl is determined at a′3. (c) The corrected edge el is
denoted by e′l. a1a

′
2a
′
3a5a6 denote the computed valid

box after one step of the DP, which is not completely
valid yet. Notice that the hidden set of er need to be
updated for the next step.

notation, let S and B also denote size of the width and area
of the bounding box, respectively.

The above definition of a bounding box B does not nec-
essarily give us a valid box, since some segments may share
more than one vertex on the boundary of B, or B may not
be the smallest possible box with these instances, so that we
still can reduce its area. But correcting this should be done
in such away that the removed area from B is minimized.
This procedure is called correcting B. Also we should do
such correction for all possible sub-problems in which a non-
valid bounding box is determined by any pair of endpoints.
Finally, the largest-area bounding box among all determines
the largest-area bounding box of L. Obviously correcting
a bounding box B (first computed in direction θ) may also
change the direction of B. In the following we show that we
still can compute the exact possible rotation of B.

When looking for the largest smallest possible box B, we
consider all sets of six points which may define a bounding
box in Equation(2), where two of them already determine
a valid width and also the first direction of box B, but not
necessarily a valid bounding box in that direction. And the
other four points are computed accordingly. In other words,
for two fixed points, we first determine a valid width through
them in a direction θ, and then we compute a valid width in
direction θ+π/2. Notice that the computed box is a superset
for the optimal solution with these instances. Finally in the
DP algorithm we try to make the biggest valid box which
is determined by these instances. See Figure 7(a) for an
example. Let A denote a set consisting of six such points
on the boundary of box B. Let eb, el, et and er denote the
edges of B in clockwise direction, and let ai for i = 1, ..., 6
denote such a set A. Also let a1 be located on edge eb, a2, a3

be located on edge el, a4, a5 be located on edge et, etc. Also
let vbl denote the common endpoint of edges eb and el, as
can be seen in Figure 7. W.l.o.g suppose B is defined on two
endpoints a1 and a5.

For each non-distinct element of A, e.g., a3, a distinct line
segment li (which is already intersected by B) will share a
vertex a′3 on el, so that a′3 can be substituted for a3 to give
us a smaller (but a bit more valid) bounding box B′. We

call a′3 the hidden line segment by el. Let H(A) denote all
the line segments hidden by the elements of A. In the worst
case, correction of B needs to find five hidden vertices by
the elements of A, but such substitution should be done in
such a way that removed area from B is as small as possi-
ble, and the resulting valid B has the largest possible area.
(Notice that since H(A) has constant complexity, comput-
ing the best configuration can be done in constant time.)
Also a hidden line segment li might simultaneously be hid-
den by the points on two edges of B, e.g., in Figure 7, li
is hidden by both el and et. We will check both cases in
different sub-problems, of which there are constantly many.
First suppose li should share a vertex on el. To do so, we
should select a′3 such that the inner angle a1vbla

′
3 has the

maximum possible value among all possible choices for a′3.
Further the hidden elements H(A) determine the exact value
of the possible rotation of B.

Let Θ denote all possible directions in which a valid possi-
ble box B is determined by two points a1 and a5, as discussed
before, and let α(A) denote the maximum angle of rotation
for correcting elements of A. Let A′ denote set A, where one
distinct element is substituted for one non-distinct element
of A. Then we can write our DP as follows:

d(L, θ) = width of L in direction of θ

b(L, θ) = d(L, θ).d(L, θ +
π

2
), b(L,Θ) = Min ∀θ∈Θ b(L, θ)

Then we have:

V (A) = Max (Min b(A ∪A′, [α(A), α(A′)]), V (A′))

where V (A) denotes the largest bounding box on a possible
set A in direction θ. Then the maximum value among all
possible V (A) denotes the optimal solution.

The correctness of the algorithm comes from the fact that
we consider all possible pairs that can define a bounding
box, and then we find the largest possible bounding box on
this pair by our dynamic program. Finally, the largest-area
corrected box determines the optimal solution. Notice that
we may need to rework on a corrected set A′, since several
elements may need to be corrected. We will correct them
clockwise. They only increase a constant number of sub-
problems, which at most equals 4 × 5. Notice that there
are constant possible directions in Θ to make a valid box,
and it is needed to consider O(n2) pairs, and for each pair
we need to consider O(n) directions, and for each direction
θ we should find the width in direction θ + π/2. Then we
compute the hidden elements of the edges in O(n) time, and
we repeat it for any pairs between any two intersection points
in A(θ, d) of L. Thus the algorithm runs in O(n6) time and
space.

Theorem 10 Let L be a given set of parallel line segments.
The largest bounding box of L can be computed in O(n6) time
and space.

4 Concluding remarks and open questions

In this paper we present several algorithms for computing
an instance P on a set of line segments, so that P maxi-
mizes/minimizes the width or the area of the bounding box
of P . Solving maximum width problem on a set of squares
remained open. We wish to extend our presented algorithms
to solve these problems on a set of squares.

147

CCCG 2018, Winnipeg, Canada, August 8–10, 2018

References

[1] P. K. Agarwal, S. Har-Peled, and K. R. Varadarajan.
Approximating extent measures of points. Journal of
the ACM (JACM), 51(4):606–635, 2004.

[2] M. Löffler and M. van Kreveld. Largest bounding box,
smallest diameter, and related problems on imprecise
points. Computational Geometry, 43(4):419 – 433, 2010.

[3] M. Löffler. Data imprecision in computational geometry.
PhD thesis, Utrecht Univesity, 2009.

[4] J.-M. Robert and G. Toussaint. Computational geome-
try and facility location. In Proc. International Confer-
ence on Operations Research and Management Science,
pages B1–B19, 1990.

[5] D. Salesin, J. Stolfi, and L. Guibas. Epsilon geome-
try: Building robust algorithms from imprecise computa-
tions. In Proc. 5th Annual Symposium on Computational
Geometry, pages 208–217, 1989.

[6] G. T. Toussaint. Solving geometric problems with the
rotating calipers. In IEEE Melecon, volume 83, page
A10, 1983.

A Appendix

A.1 Omitted proofs

Theorem 4 Let L be a given set of parallel line segments
in the plane. The largest possible width of L can be approx-
imated within factor (1− 2ε) in O(n2ε−4.5) time.

Proof. The only remaining unproved part is the (1 − 2ε)
ratio of approximation. Let T (Papp) denote a complete set
of diagrams which maximizes size of width. Let θapp de-
note the direction in which T (Papp) gives the optimal so-
lution. Then on the A(θ, d) diagrams, using Equation (1)
we have |w∗| ≤ wT (Papp) + 2ε cos θapp, since wT (Papp) has
the largest value among other complete sets. Obviously
|w∗| ≥ sin θapp. But then if θapp ≥ π/4, sin θapp ≥ cosθapp
and then, |w∗|(1 − 2ε) ≤ wT (Papp). In the case where
θapp < π/4 we obviously have the same width in direction
θapp + π. The lemma follows. �

Lemma 8 Let L be a set of n parallel line segments, and
let E be the set of the endpoints of segments in L. There
exists a solution to the largest-area bounding box that uses
two points (from distinct segments) of E on its two opposite
sides, so that each edge includes one of them.

Proof. Like in the case of Lemma 1, there always exists
an optimal solution B so that at least one element of E is
involved on determining some edge of B. Let eb denote such
edge. In the following, we discuss the existence of another
element of E on the opposite side of eb. Let b1 denote the
endpoint which has determined the edge eb. W.l.o.g suppose
b1 is located on the bottom side of B.

Suppose the lemma is false. Then there exists a maxi-
mal bounding box B for L which is passing through some
points `, t, r, b1 and b2, so that B has maximal area and B
only uses one element of E. Let et and eb denote the top
and bottom edges of B. And let t and b1, b2, respectively,

denote the points that et and eb are passing through them,
as illustrated in Figure 6(b). Consider a line l through t and
parallel to et. If we sweep l away from et, it will intersect the
segment lt, so that it leaves it at an endpoint l+t . Then obvi-
ously the pentagon `l+t rb1b2 includes the pentagon `trb1b2.
Since with a fixed length, the new bounding box should now
include some new point which previously where located out-
side the bounding box, it must be expanded from the width.
But then the changes of the area of four boxes should be
considered, if we substitute l+t for t, the box with an edge
through b1, b2 will increase its size, and the same argument
holds for the boxes with an edge through b1, r and b2, l. Thus
the collinearity of l+t with existing vertices cannot make a
smaller area box. All together, we do not reduce the size of
any other possible bounding box of L, and thus any bound-
ing box which is passing through `l+t rb1 and b2 will have a
larger area than B. Thus B could not be the largest area
bounding box. Contradiction. �

148

CCCG 2018, Winnipeg, Canada, August 8–10, 2018

Open Problems from CCCG 2017

Joseph O’Rourke∗

The following is a description of the problems pre-
sented on July 26th, 2017 at the open-problem session of
the 29th Canad. Conf. Computational Geometry held
at Carleton University, in Ottawa.

Near-Delaunay Triangulations
Joseph O’Rourke
Smith College
jorourke@smith.edu

Let T be a triangulation of a finite point set in the
plane. Say that a triangulation is near-Delaunay if
the opposite angles α and β of each pair of trian-
gles that share an edge sum to at most π + ε, for
ε > 0. Note that, if ε = 0, then T is Delaunay;
see Figure 1. Near-Delaunay triangulations can be
constructed by an edge-flipping algorithm.

Figure 1: Left: Delaunay triangles. Right: Near-
Delaunay triangles.

Have these triangulations been defined previ-
ously? Do they have any nice properties?

Update. Scott Mitchell suggested “measuring the
signed distance between circumcenters of triangles
sharing an edge; for Delaunay triangulations this
is simply the dual edge length and non-negative,
but for non-DT the circumcenters can be in the
wrong order and hence have a negative distance
between them. So one could look at the ratio of the
dual edge signed-length to the primal edge length
(for 2D triangulations) as a continuous measure of
how close it is to non-Delaunay.” This concept has
appeared in the literature on Hodge-optimized

∗Department of Computer Science, Smith College, Northamp-
ton, MA 01063, USA. jorourke@smith.edu

triangulations, e.g., [MM+11].

References

[MM+11] P. Mullen, P. Memari, F. de Goes, and
M. Desbrun. HOT: Hodge-optimized trian-
gulations. ACM Transactions on Graphics
(TOG), 30(4):103, 2011.

Counting Closed Billiard Paths
Joseph O’Rourke
Smith College
jorourke@smith.edu

Let a collection of rectangles, all axis-aligned, all
enclosed in one rectangle, have a total of n edges.
A simple, closed billiard path is a path that is
(a) closed, (b) non-self-intersecting, and so forms a
simple polygon, (c) never touches a rectangle cor-
ner, and (d) all reflections are mirror reflections.
Label all rectangle edges, and define the signature
of a billiard path by the labels of the edges from
which it reflects, reducing repeated edge reflections
(ab)k to ab. Thus in Figure 2, the path 12373(56)24

Figure 2: A billiard path of signature length 8.

has signature 12373564, reducing (56)2 to 56.

For simple, closed billiard paths, for any arrange-
ment of rectangles of a total of n edges:

1. What is the maximum length of such a signa-
ture?

149

30th Canadian Conference on Computational Geometry, 2018

2. What is the largest number of distinct signa-
tures achievable for one fixed reflection angle
(45◦ in the figure).

3. What is the largest number of distinct signa-
tures achievable for paths at arbitrary reflec-
tion angles?

Tubes in Space
Joseph O’Rourke
Smith College
jorourke@smith.edu

Let S be a unit-radius sphere in R3. Place n lines
intersecting S to minimize the maximum distance
between any two points in S, where distance is mea-
sured as follows. Distance off the lines is Euclidean
distance, but the distance between any two points
on one line is zero. The lines are like very fast trans-
portation tubes. See Figure 3. One line L (n = 1)

Figure 3: n = 2 skew transport tubes.

is useless for pairs of points on antipoldal on the
equator formed by the plane perpendicular to L:
their distance remains 2. It was observed at the
presentation that two lines are also useless: antipo-
dal points on a great circle orthogonal to the two
lines are still 2 apart. Three x, y, z-axis lines seem
best, apparently reducing the maximum distance

to 2
√

2
3 ≈ 1.63. In two dimensions, it seems that

equi-angular lines through the center of a circle is
the optimal arrangement. All these are conjectures.

Variations:

• Within a unit cube rather than a sphere.

• Assign off-tube speeds 1, and in-tube speeds
s > 1.

• The same questions in Rd.

General-position subconfigurations
David Eppstein
University of California, Irvine
eppstein@uci.edu

For the purposes of this problem, a set of points is
in general position if no line contains three or more
of its points. This problem’s first two parts concern
the d-dimensional point set {−1, 0, 1}d (a grid of
size three in each dimension), shown in Figure 4 in
projection to the plane.

Figure 4: {−1, 0, 1}d for d = 4, from [E17].

(a) These points can be partitioned into d + 1
subsets, each in general position, by group-
ing points according to how many coordinates
are zero. (The figure’s colors show this parti-
tion.) The Hales–Jewett theorem [HJ63, S88]
implies that any general-position partition has
ω(1) subsets. (This holds even for the weaker
condition that no three points form a mono-
tonic line, one in which the three points can be
ordered so that all coordinates are increasing
or constant.) Can these points be partitioned
into fewer than d+1 general-position subsets?

(b) The largest subset in this partition (for which
the number of zero coordinates of each point is
approximately d/3) has size Θ(3d/

√
d). The

density version of the Hales–Jewett theorem
implies that all general-position subsets have
size o(3d) [FK89, F91]. Is there a general-
position subset with size ω(3d/

√
d)?

(c) How well can the largest general-position sub-
set and the partition into the fewest general-
position subsets be approximated? Is it
achievable in polynomial time for arbitrary
planar point sets? Both problems are NP-
complete and APX-hard, and can be approx-
imated within a factor of O(

√
n) by a sim-

ple greedy algorithm that adds each point
(in arbitrary order) to the first subset in
which it is in general position [E17]. Re-
sults of Füredi, Payne and Wood, relating

150

CCCG 2018, Winnipeg, Canada, August 8–10, 2018

general-position subsets to lines with many
points [F91, PW13], suggest that it may be
possible to shave a logarithmic factor from this
approximation ratio. But is O(n1/2−ε) possi-
ble, for some ε > 0? (It is safe to consider
only two dimensions, because points in higher
dimensions can be projected to the plane with-
out changing collinearity.)

References

[E17] D. Eppstein. Forbidden Configurations in
Discrete Geometry. Manuscript.

[FK89] H. Furstenberg and Y. Katznelson. A den-
sity version of the Hales–Jewett theorem for
k = 3. Discrete Math. 75:227–241, 1989.

[F91] Z. Füredi. Maximal independent subsets in
Steiner systems and in planar sets. SIAM J.
DIscrete Math. 4:196–199, 1991.

[HJ63] A.W. Hales and R.I. Jewett. Regularity and
positional games. Proc. Amer. Math. Soc.
106:222–229, 1963.

[PW13] M.S. Payne and D.R. Wood. On the gen-
eral position subset selection problem. SIAM
J. Discrete Math. 27:1727–1733, 2013.

[S88] S. Shelah. Primitive recursive bounds for van
der Waerden numbers. J. Amer. Math. Soc.
1:683–697, 1988.

Constructing separators for Geometric Graphs
Stefan Langerman
Université Libre de Bruxelles (ULB)
stefan.langerman@ulb.ac.be

Given a planar graph G = (V,E), |V | = n, the Pla-
nar Separator theorem of Lipton and Tarjan [LT79]
states that there always exists a set of O(

√
n) ver-

tices in V whose removal partitions the graph G
into disjoint connected subgraphs, each of size at
most 2n/3. Such a separator can be constructed in
O(n) time when the graph is provided.

There are many situations however when a graph
is defined implicitly, by a collection of points or
of geometric objects, such as for example, the De-
launay triangulation of a set of n points, the edge
structure of the convex hull of n points in R3, or
the intersection graph of a collection of disks in the
plane where no point is covered by more than two
disks. The explicit construction of, e.g., a Delau-
nay triangulation for n points in the plane requires
O(n log n) time, however it might be possible to
construct a separator without having to construct
the graph explicitly.

Question 1: Given a set S of n points in R2,
is it possible to find a separator of the Delaunay
triangulation of P in time O(n)?

Question 2: Given a set S of n points in R3, is
it possible to find a separator of the convex hull of
P in time O(n)?

For some geometric graphs, e.g., the disk-
intersection graph mentioned above, a separator
can be found in O(n) time [MTTV97].

References

[LT79] R.J. Lipton and R.E. Tarjan. A separator
theorem for planar graphs. SIAM Journal on
Applied Mathematics, 36(2):177–189, 1979.

[MTTV97] G.L. Miller, S.-H. Teng, W. Thurston,
and S.A. Vavasis. Separators for sphere-
packings and nearest neighbor graphs. J.
ACM, 44(1):1–29, January 1997.

[SW] W.D. Smith and N. Wormald. Ge-
ometric separator theorems and appli-
cations. https://www.math.uwaterloo.ca/
∼nwormald/papers/geomsep.ps.gz.

Optimizing Sum of Products
Bereg et. al. (posed by Lily Li)
Simon Fraser University
xyl9@sfu.ca

Given sequences A = 〈a0, a1, ..., an−1〉 and B =
〈b0, b1, ..., bn−1〉 of real numbers, find a permutation
π of A which maximizes

n−1∑

i=0

aπ(i)aπ(i+1)bi

where the indices are taken modulo n. If bi = 1
for all i, then the solution is any cyclic shift of the
sequence 〈a′0, a′2, ..., a′3, a′1〉 where a′0 ≥ a′1 ≥ a′2 ≥
a′3 ≥ · · · .

This problem is a modified version of an open
problem presented in [BD+16]. The paper showed
that a variant of the problem allowing the permu-
tation of both A and B can be solved optimally
in O(n log n) time. It is not known if the posed
problem is NP−Hard.

References

[BD+16] S. Bereg, J.M. Dı́az-Báñez, D. Flores-
Peñaloza, S. Langerman, P. Pérez-Lantero,
and J. Urrutia. Optimizing some construc-
tions with bars: New geometric knapsack
problems. J. Combinatorial Optimization,
31(3):1160–1173, 2016.

151

30th Canadian Conference on Computational Geometry, 2018

Compatible Triangulations of Labeled Point Sets
Debajyoti Mondal and Anna Lubiw
University of Waterloo, Canada
dmondal@uwaterloo.ca, alubiw@uwaterloo.ca

Let P1, P2 be a pair of point sets, each containing
n points that are labeled from 1 to n. A pair of
triangulations T1 and T2 of P1 and P2 are called
compatible triangulations or joint triangulations if
for every face, the clockwise cyclic order of vertices
on the boundary is the same, e.g., see Fig. 5(a).

v2

v1

v5 v6

v4

T 1

v3

v2

v1

v5 v6

v4

v3 v2

v1

v6

v5

v4 v3

v2

v1

v6

v4
v5

T 2

v3

(a)

(b)
P 1 P 2

Figure 5: (a) A pair of point sets and their compatible
triangulations. (b) A pair of point sets that do not admit
compatible triangulations. Any triangulation of P1 would
contain the edges (v1, v4), (v2, v5), (v3, v6), and they in-
tersect in P2.

Not all pairs of point sets admit compatible tri-
angulations, even when they have the same num-
ber of points on the convex-hulls, e.g., see Fig 5(b).
Saalfeld in 1987 [S87] proved that, using Steiner
points, any pair of point sets with rectangular
convex-hull can be triangulated compatibly. In
fact, O(n2) Steiner points suffice for every point
set [BSW97], and Ω(n2) Steiner points are some-
times necessary [PSS96]. If we are allowed to
choose the labels, then such compatible triangula-
tions are conjectured to exist without Steiner points
(when P1 and P2 have the same number of points
on the convex hull) [AAHK03].

In this context we ask the following question:
Does there exist an algorithm that, given a pair
of labeled point sets, can decide in polynomial
time whether they admit compatible triangulations

without Steiner points?

The analogous question for compatible trian-
gulations of polygons is solvable in polynomial
time [ASS93]. The more general question of min-
imizing the number of Steiner points required for
compatible triangulations of polygonal regions is
NP-hard [LM17].

References

[AAHK03] O. Aichholzer, F. Aurenhammer,
F. Hurtado, and H. Krasser. Towards com-
patible triangulations. Theoretical Comput.
Sc., Elsevier, 296(1):3–13,2003.

[ASS93] B. Aronov, R. Seidel, and D.L. Sou-
vaine. On Compatible Triangulations of Sim-
ple Polygons. Comput. Geom., 3:27–35, 1993.

[BSW97] M. Babikov, D.L. Souvaine, and
R. Wenger. Constructing piecewise linear
homeomorphisms of polygons with holes.
Proc. 9th Canad. Conf. Comput. Geom.
(CCCG), 1997.

[LM17] A. Lubiw and D. Mondal. On Compati-
ble Triangulations with a Minimum Number
of Steiner Points. Proc. 29th Canad. Conf.
Comput. Geom. (CCCG), 101–106, 2017.

[PSS96] J. Pach, F. Shahrokhi, and M. Szegedy.
Applications of the crossing number. Algo-
rithmica, Springer, 16(1):111-117, 1996.

[S87] A. Saalfeld. Joint Triangulations and Tri-
angulation Maps. Proc. 3rd Symp. Comput.
Geom. (SoCG), ACM, 195–204, 1987.

Binary trees in the {�,�,—}-grid
Therese Biedl
University of Waterloo
biedl@uwaterloo.ca

The {�,�,—}-grid consists of the points with in-
teger coordinates, and all horizontal or diagonal
lines through such points. Given a binary tree T ,
we want an embedding of T in the {�,�,—}-grid,
i.e., vertices are mapped to distinct grid-points,
and edges are mapped to straight-line segments
along the grid in such a way that no two edges
cross. The width of such a drawing is the maxi-
mal x-coordinate (presuming that the minimal x-
coordinate is 1). The main question is:

How much width (relative to the number
of vertices n) is sufficient to embed any
binary tree in the {�,�,—}-grid?

The question could also be asked for variations
where we want an upward drawing (i.e., the tree
is rooted and the y-coordinate of the parent of a

152

CCCG 2018, Winnipeg, Canada, August 8–10, 2018

node v is no smaller than the y-coordinate of v)
and/or an order-preserving drawing (i.e., the order
of edges around each node is fixed and must be
respected in the drawing).

Figure 6: The {�,�,—}-grid, and embedding a com-
plete binary tree in it.

It is known that for the complete binary tree
we need width Ω(

√
n/ log n) [B17]. In the same

paper, it was also argued that width O(
√
n) can

be achieved for the complete binary tree, by tak-
ing an orthogonal construction due to Creszenci et
al. [CDP92] and rotating it by 45◦. Can we achieve
width O(

√
n) for all binary trees?

References

[B17] T. Biedl. Upward Order-Preserving 8-Grid-
Drawings of Binary Trees Proc. 29th Canad.
Conf. Comput. Geom. (CCCG), 232–237,
2017.

[CDP92] P. Crescenzi, G. Di Battista, and
A. Piperno. A note on optimal area algo-
rithms for upward drawings of binary trees.
Comput. Geom., 2(4):187–200, 1992.

Gabriel Circle Range Counting
Rasoul Shahsavarifar
University New Brunswick
Ra.Shahsavari@unb.ca

Suppose that S = {x1, x2,, xn} ⊆ R2 and
q ∈ R2. Can we answer the following question
with O(n) storage, O(n log n) expected preprocess-
ing time, and sub-O(n1/2+ε) (optimally O(log n))
query time?
Question: How many xi fall inside the Gabriel
circle GC(q, xk) for some 1 ≤ k ≤ n? See Figure 7.

The Gabriel circle GC(a, b) is the circle with di-
ameter ab. The characteristic of having a com-
mon point q among all Gabriel circles may help
to answer the question. A query time O(n1/2+ε) is
achieved in [AMM13] for general circle range count-
ing.

Figure 7: Point q is shared among all Gabriel circles
GC(q, xk).

References

[AMM13] P.K. Agarwal, J. Matousek, and
M. Sharir. On range searching with semi-
algebraic sets. II. SIAM J. Computing, V.42,
No. 6, 2039–2062, 2013.

Hamiltonian Order-k Delaunay Graphs
Prosenjit Bose
Carleton University
jit@scs.carleton.ca

Given a set P of n points in the plane, a pair of
points x, y ∈ P has order k if there exists a disk
with x and y on its boundary containing at most
k points of P . The edges of a standard Delaunay
triangulation have order 0. A graph whose edges
consist of every pair of points with order at most k
will be referred to as the order-k Delaunay graph.
The order-k Gabriel graph, which is a subgraph of
the order-k Delaunay graph, is the graph whose
edges consist of every pair of points whose Gabriel
disk has contains at most k points.

Dillencourt [Dil87] showed that there exist point
sets whose Delaunay triangulation is not Hamilto-
nian. Dillencourt [Dil90] also showed that the De-
launay triangulation is 1-tough, which when n is
even implies that it contains a perfect matching.
Abellanas et al. [ABG+09] showed that the order-
15 Gabriel graph is Hamiltonian. Subsequently,
Kaiser et al. [KSC15] showed that the order-10
Gabriel graph is Hamiltonian.

Conjecture: The order-1 Delaunay graph is
Hamiltonian.

153

30th Canadian Conference on Computational Geometry, 2018

References

[ABG+09] M. Abellanas, P. Bose, J. Garćıa-López,
F. Hurtado, C.M. Nicolás, and P. Ramos. On
structural and graph theoretic properties of
higher order Delaunay graphs. Int. J. Com-
put. Geom. Appl., 19(6):595–615, 2009.

[Dil87] M.B. Dillencourt. A non-Hamiltonian, non-
degenerate Delaunay triangulation. Inf. Pro-
cess. Lett., 25(3):149–151, 1987.

[Dil90] M.B. Dillencourt. Toughness and Delaunay
triangulations. Discrete & Comput. Geom.,
5:575–601, 1990.

[KSC15] T. Kaiser, M. Saumell, and N. Van
Cleemput. 10-Gabriel graphs are Hamilto-
nian. Inf. Process. Lett., 115(11):877–881,
2015.

154

CCCG 2018, Winnipeg, Canada, August 8–10, 2018

On Map Construction, Map Comparison, and Trajectory Clustering

Carola Wenk∗

Geo-referenced trajectory data is collected in a wide
range of applications, such as for a variety of location-
based services on street maps, hiking trail logging, and
the study of social behavior in animals. There has
been a recent surge of algorithms for aggregating tra-
jectory data, in particular by constructing road maps,
e.g., [1–3, 8–36]. Road map construction is a type of
geometric reconstruction problem in which the task is
to extract the underlying geometric graph structure de-
scribed by a set of movement-constrained trajectories,
or in other words reconstruct a geometric domain that
has been sampled with continuous curves that are sub-
ject to noise. See Figures 1 and 2 for an example tra-
jectory data set and different constructed road maps.

(a) Trajectories

Figure 1: Chicago dataset of shuttle bus trajecto-
ries [9, 10]. The data and figure are available on
mapconstruction.org.

A related problem is map comparison, which can be
used to assess the quality of map construction algo-
rithms or two compare road maps from different sources.
Different approaches for map comparison include signa-
tures and distance measures, e.g., [4,5,9]. Comparisons
of map construction algorithms, including experimental
quality assessments, can be found in [6, 7, 9].

∗Department of Computer Science, Tulane University,
cwenk@tulane.edu. CW acknowledges the generous support of
the National Science Foundation under grants CCF-1618469 and
CCF-1637576.

(a) Reconstruction by Ahmed et al. [8]

(b) Reconstruction by Biagioni et al. [9]

(c) Reconstruction by Davies et al. [17]

(d) Reconstruction by Karagiorgou et al. [27]

Figure 2: Constructed maps (in black) overlayed on
ground-truth map (in gray) for the Chicago dataset of
shuttle bus trajectories [9,10]. The data and figures are
available on mapconstruction.org.

155

30th Canadian Conference on Computational Geometry, 2018

References

[1] M. Aanjaneya, F. Chazal, D. Chen, M. Glisse, L. J.
Guibas, and D. Morozov. Metric graph reconstruction
from noisy data. In Proc. 27th ACM Symp. on Comp.
Geometry, pages 37–46, 2011.

[2] G. Agamennoni, J. I. Nieto, and E. M. Nebot. Robust
inference of principal road paths for intelligent trans-
portation systems. IEEE Trans. on Intelligent Trans-
portation Systems, 12(1):298–308, Mar. 2011.

[3] M. Ahmed, B. T. Fasy, M. Gibson, and C. Wenk.
Choosing thresholds for density-based map construc-
tion algorithms. In Proceedings of the 23rd ACM
SIGSPATIAL International Conference on Advances in
Geographic Information Systems, 2015.

[4] M. Ahmed, B. T. Fasy, K. S. Hickmann, and C. Wenk.
A path-based distance for street map comparison. ACM
Trans. Spatial Algorithms Syst., 1(1):3:1–3:28, 2015.

[5] M. Ahmed, B. T. Fasy, and C. Wenk. Local persistent
homology based distance between maps. In Proceedings
of the 22Nd ACM SIGSPATIAL International Confer-
ence on Advances in Geographic Information Systems,
pages 43–52, 2014.

[6] M. Ahmed, S. Karagiorgou, D. Pfoser, and C. Wenk.
A comparison and evaluation of map construction al-
gorithms using vehicle tracking data. GeoInformatica,
19(3):601–632, 2015.

[7] M. Ahmed, S. Karagiorgou, D. Pfoser, and C. Wenk.
Map Construction Algorithms. Springer, 2015.

[8] M. Ahmed and C. Wenk. Constructing street networks
from GPS trajectories. In Proc. 20th Ann. European
Symp. on Algorithms, pages 60–71, 2012.

[9] J. Biagioni and J. Eriksson. Inferring road maps from
global positioning system traces: Survey and compara-
tive evaluation. Transportation Research Record: Jour-
nal of the Transportation Research Board, 2291:61–71,
2012.

[10] J. Biagioni and J. Eriksson. Map inference in the face of
noise and disparity. In Proc. 20th ACM SIGSPATIAL
Int. Conf. on Advances in Geographic Information Sys-
tems, pages 79–88, 2012.

[11] R. Bruntrup, S. Edelkamp, S. Jabbar, and B. Scholz.
Incremental map generation with GPS traces. In Proc.
IEEE Intelligent Transportation Systems, pages 574 –
579, 2005.

[12] K. Buchin, M. Buchin, D. Duran, B. Fasy, R. Jacobs,
V. Sacristán, R. Silveira, F. Staals, and C. Wenk. Clus-
tering trajectories for constructing maps. In Proceedings
of the 25th ACM SIGSPATIAL International Confer-
ence on Advances in Geographic Information Systems,
page 10 pages, 2017.

[13] L. Cao and J. Krumm. From GPS traces to a routable
road map. In Proc. 17th ACM SIGSPATIAL Int. Conf.
on Advances in Geographic Information Systems, pages
3–12, 2009.

[14] F. Chazal and J. Sun. Gromov-Hausdorff approxima-
tion of metric spaces with linear structure. CoRR,
abs/1305.1172, 2013.

[15] C. Chen and Y. Cheng. Roads digital map generation
with multi-track GPS data. In Proc. Workshops on
Education Technology and Training, and on Geoscience
and Remote Sensing, pages 508–511. IEEE, 2008.

[16] D. Chen, L. J. Guibas, J. E. Hershberger, and J. Sun.
Road network reconstruction for organizing paths. In
Proc. 21st ACM-SIAM Symp. on Discrete Algorithms,
pages 1309–1320, 2010.

[17] J. J. Davies, A. R. Beresford, and A. Hopper. Scalable,
distributed, real-time map generation. IEEE Pervasive
Computing, 5(4):47–54, Oct. 2006.

[18] T. K. Dey, J. Wang, and Y. Wang. Improved road
network reconstruction using discrete morse theory. In
Proceedings of the 25th ACM SIGSPATIAL Interna-
tional Conference on Advances in Geographic Informa-
tion Systems, pages 58:1–58:4, 2017.

[19] T. K. Dey, J. Wang, and Y. Wang. Graph reconstruc-
tion by discrete morse theory. In Symposium on Com-
putational Geometry, pages 31:1–31:15, 2018.

[20] D. Duran, V. Sacristán, and R. Silveira. Map construc-
tion algorithms: an evaluation through hiking data. In
Proc. 5th Int. Workshop on Mobile Geographic Infor-
mation Systems, pages 74–83, 2016.

[21] S. Edelkamp and S. Schrödl. Route planning and map
inference with global positioning traces. In Computer
Science in Perspective, pages 128–151. Springer, 2003.

[22] B. T. Fasy, R. Komendarczyk, S. Majhi, and C. Wenk.
Topological and geometric reconstruction of geodesic
subspaces of the euclidean space. Manuscript, 2018.

[23] A. Fathi and J. Krumm. Detecting road intersections
from GPS traces. In Proc. 6th Int. Conf. on Geographic
Information Science, pages 56–69, 2010.

[24] X. Ge, I. Safa, M. Belkin, and Y. Wang. Data skele-
tonization via Reeb graphs. In Proc. 25th Ann. Conf.
on Neural Information Processing Systems, pages 837–
845, 2011.

[25] T. Guo, K. Iwamura, and M. Koga. Towards high ac-
curacy road maps generation from massive GPS traces
data. In Proc. IEEE Int. Geoscience and Remote Sens-
ing Symp., pages 667–670, 2007.

[26] S. Jang, T. Kim, and E. Lee. Map generation system
with lightweight GPS trace data. In Proc. 12th Int.
Conf. on Advanced Communication Technology, pages
1489–1493, 2010.

[27] S. Karagiorgou and D. Pfoser. On vehicle tracking data-
based road network generation. In Proc. 20th ACM
SIGSPATIAL Int. Conf. on Advances in Geographic In-
formation Systems, pages 89–98, 2012.

[28] S. Karagiorgou, D. Pfoser, and D. Skoutas.
Segmentation-based road network construction.
In Proc. 21st ACM SIGSPATIAL Int. Conf. on
Advances in Geographic Information Systems, pages
450–453, 2013.

[29] F. Lecci, A. Rinaldo, and L. A. Wasserman. Statisti-
cal analysis of metric graph reconstruction. Journal of
Machine Learning Research, 15(1):3425–3446, 2014.

156

CCCG 2018, Winnipeg, Canada, August 8–10, 2018

[30] X. Liu, J. Biagioni, J. Eriksson, Y. Wang, G. Forman,
and Y. Zhu. Mining large-scale, sparse GPS traces for
map inference: comparison of approaches. In Proc. 18th
ACM SIGKDD Int. Conf. on Knowledge Discovery and
Data Mining, pages 669–677, 2012.

[31] S. Schroedl, K. Wagstaff, S. Rogers, P. Langley, and
C. Wilson. Mining GPS traces for map refinement. Data
Mining and Knowledge Discovery, 9:59–87, 2004.

[32] W. Shi, S. Shen, and Y. Liu. Automatic generation
of road network map from massive GPS vehicle trajec-
tories. In Proc. 12th Int. IEEE Conf. on Intelligent
Transportation Systems, pages 48–53, 2009.

[33] A. Steiner and A. Leonhardt. Map generation algo-
rithm using low frequency vehicle position data. In
Proc. 90th Ann. Meeting of the Transportation Research
Board, pages 1–17, January 2011.

[34] S. Wang, Y. Wang, and Y. Li. Efficient map recon-
struction and augmentation via topological methods.
In Proceedings of the 23rd ACM SIGSPATIAL Inter-
national Conference on Advances in Geographic Infor-
mation Systems, 2015.

[35] S. Worrall and E. Nebot. Automated process for gener-
ating digitised maps through GPS data compression. In
Proc. Australasian Conf. on Robotics and Automation,
2007.

[36] L. Zhang, F. Thiemann, and M. Sester. Integration of
GPS traces with road map. In Proc. 3rd ACM SIGSPA-
TIAL Int. Workshop on Computational Transportation
Science, pages 17–22, 2010.

157

CCCG 2018, Winnipeg, Canada, August 8–10, 2018

On the Coverage of Points in the Plane by Disks Centered at a Line

Logan Pedersen∗ Haitao Wang†

Abstract

Given a set P of n points and a line L in the plane,
we consider the problem of computing a set S of disks
centered at L such that their union covers all points of
P . The cost of a disk is defined as a function f(r) = rα,
where α ≥ 1 is a constant and r is the radius of the disk.
The objective is to minimize the total sum of the cost
of all disks of S. Previously [Alt et al., SoCG 2006], the
problem was solved in O(n4 log n) time in any fixed Lp

metric (and in O(n2 log n) time if α = 1). In this paper,
we present a new algorithm that runs in O(n2) time for
any α ≥ 1 in any fixed Lp metric. In addition, we also
give algorithms for two variations of the 1D problem
where all points of P are in L: (1) there is an upper
bound k on |S|, and (2) the disk centers must be chosen
from another given set of potential locations on L.

1 Introduction

In this paper, we consider the following disk coverage
problem. Given a set P of n points and a line L in the
plane, we want to find a set S of disks centered at L such
that each point of P is covered by at least one disk and
the total sum of the cost of all disks of S is minimized.
Here, the cost of a disk of S is defined to be f(r) = rα for
a given constant α ≥ 1, where r is the radius of the disk.
Note that if α = 1 (resp., α = 2), we are minimizing the
total sum of the radii (resp., areas) of all disks. The
problem is motivated by power consumption models in
wireless network design, where α is often larger than or
equal to 2 [3, 13, 21]. We consider the general metric
Lp for any p ≥ 1, where a point q is said to be covered
by a disk centered at a point c with radius r if the Lp

distance between q and c is at most r. We refer to the
problem as the disk coverage problem.

Previously, Alt et al. [3] gave an algorithm that solves
the problem in O(n4 log n) time in any Lp metric and
for any α ≥ 1. Better algorithms for some special cases
of the problem were also presented in [3]. If α = 1, then
they solved the problem in O(n2 log n) time in any Lp

metric. In the L∞ metric, they gave an O(n3 log n) time
algorithm for any α ≥ 1.

∗Department of Computer Science, Utah State University, Lo-
gan, UT 84341, USA, logan.pedersen@aggiemail.usu.edu

†Department of Computer Science, Utah State University, Lo-
gan, UT 84341, USA, haitao.wang@usu.edu

In this paper, we propose a new algorithm of O(n2)
time for any Lp metric and any α ≥ 1, which improves
the O(n4 log n) time algorithm in [3] by a more than
quadratic factor. Our algorithm first reduces the prob-
lem to finding a shortest path in a directly acyclic graph
(DAG) G, with n + 1 vertices and Θ(n2) edges. One
difficulty is to compute the weights of the edges of G.
We propose an algorithm that can compute each edge
weight in O(1) amortized time. Consequently, a short-
est path in G can be found in O(n2) time by a textbook
dynamic programming algorithm [12].

In addition, we consider the one-dimensional version
of the problem where the points of P are all on L (in
contrast, we may consider the above more general prob-
lem as a “1.5D” problem). Note that if there are no
constraints on the disks, then one could obtain an opti-
mal solution by placing a disk with zero radius at each
point of P . Thus, we consider two variations with con-
straints on the disks.

In the first problem, we are allowed to place at most
k disks, for a given k ∈ [1, n]. To our best knowl-
edge, we have not seen any previous work on this prob-
lem before. We reduce the problem to computing a
k-link shortest path in a DAG of n + 1 vertices and
O(n2) edges, which can then be solved in O(kn2) time
by an easy dynamic programming algorithm. Further,
we show that the edge weights of the graph obey the
concave Monge condition, and consequently, we can
solve it in O(nk) [1], O(n

√
k log n + n log n) [2], or

n2O(
√
log k log logn) time [22], after the points of P are

sorted on L. We refer to this problem as the k-interval
coverage problem because a disk in 1D becomes an in-
terval on L.

In the second problem, in addition to P , we are given
another set Q ofm points on L as the potential locations
for the centers of the disks (i.e., the center of each disk of
S must be in Q). This problem has been studied before.
Bilò et al. [6] first showed that the problem is solvable
in polynomial time. Lev-Tov and Peleg [17] gave an
algorithm of O((n + m)3) time for any α ≥ 1. Some
progress has been made recently by Biniaz et al. [7],
who proposed an O((n + m)2) time algorithm for the
case α = 1. In this paper, we solve the problem in
O(n(n + m) + m logm) time for any α ≥ 1, again by
reducing it to finding a shortest path in a DAG. We
refer to this problem as the discrete interval coverage
problem.

158

30th Canadian Conference on Computational Geometry, 2018

1.1 Related Work

Some faster approximation algorithms are also known
for these problems. For the discrete interval coverage
problem, Lev-Tov and Peleg [17] derived a linear time
algorithm with approximation ratio 4 for the case α = 1,
and the ratio was reduced to 3 by Alt et al. [3] with the
same running time. Alt et al. [3] also proposed a 2-
approximation algorithm with O(m+ n logm) time for
the case α = 1. Efficient approximation algorithms were
also given by Alt et al. [3] for the 1.5D disk coverage
problem in the L∞ metric for any α ≥ 1. In addition,
Alt et al. [3] considered a variation of the 1.5D disk
coverage problem where we are given the slope of L
but its location may be chosen freely to minimize the
total cost. The problem was shown not computable by
radicals when α = 1, but FPTAS were given for α = 1
and α > 1 [3].

The discrete case of the 2D disk coverage problem
where both P and Q are points in the Euclidean plane
is shown to be NP-hard for any α > 1 [3]. For the case
α = 1, Lev-Tov and Peleg [17] gave a PTAS, and later,
Gibson et al. [14] showed that the problem is solvable
in polynomial time1. A variant of the problem in which
P = Q but there is an upper bound k on the number of
disks is also solved in polynomial time [14]. Other varia-
tions of the problem are considered elsewhere, e.g., [5, 6]

The traditional k-center and k-median problems are
closely related to the disk coverage problem. Roughly
speaking, the k-center problem is to minimize the
largest radius of the disks and the k-median problem
is to minimize the total sum of distances from all points
to their closest disk centers. Both problems have an up-
per bound k on the number of disks that can be used.
These problems are in general NP-hard [19], but have
polynomial time solutions in some special cases, e.g.,
the 1D case [4, 10, 11, 15, 20], the 1.5D case [8, 16, 23],
1 or 2-center in the Euclidean plane [9, 18], etc.

Paper Outline. The rest of the paper is organized as
follows. Section 2 defines some notation. In Section 3,
we present our algorithm for the 1.5D disk coverage
problem. The algorithms for the 1D problems are given
in Section 4. Section 5 concludes the paper with remarks
on possible extensions of our results to other more gen-
eral cost functions f(r) and possible improvements on
our results.

2 Preliminaries

For ease of exposition, for all three problems studied
in the paper, we make a general position assumption

1The result is based on the assumption that the two sums
of square roots of integers can be compared in polynomial time.
The algorithm can be extended to L1 and L∞ cases without the
assumption [14].

that no two points of P have the same x-coordinate.
Without loss of generality, we assume that the line L
is the x-axis. These assumptions can be easily lifted
without affecting the performance of our algorithms.

In each problem, we first sort all points of P by their
x-coordinates from left to right, and let the sorted list
be p1, p2, . . . pn. For any i, j with 1 ≤ i ≤ j ≤ n, let
P [i, j] denote the sublist pi, pi+1, . . . , pj .

For any point q in the plane, let x(q) and y(q) denote
the x- and y-coordinates of q, respectively.

For any two points q and q′ in the plane, we use
dp(q, q

′) to denote their Lp distance. We say that q
is to the left of q′ if x(q) ≤ x(q′), and q is to the right of
q′ if x(q) ≥ x(q′).

In any solution of each problem, if a point pi is covered
by a disk centered at c, then we call c a server and we
say that pi is “served” or “covered” by c.

3 The 1.5D Disk Coverage Problem

In this section, we present our O(n2) time algorithm for
the 1.5D disk coverage problem. In this problem, the
points of P are in the plane. Recall that L is the x-axis.

We assume that all points of P are above or on the
x-axis (since otherwise if a point p ∈ P was below the
x-axis, we could replace p by its symmetrical point with
the x-axis without affecting the optimal solution).

Recall that P = {p1, p2, . . . pn}, already sorted on
L from left to right. We first model the problem to a
shortest path problem in a directly acyclic graph (DAG)
G. To this end, the following lemma is critical (the
lemma is also applicable to the two 1D problems).

Lemma 1 In any fixed Lp metric, for any α ≥ 1,
there exists an optimal solution in which the points of P
served by the same server are consecutive in their index
order.

Proof. Consider an optimal solution in which the
lemma statement does not hold. Then, there must exist
two consecutive points pi and pi+1 (we call them a con-
flict pair) and two servers c1 and c2 with x(c1) < x(c2)
such that pi is served by c2 and pi+1 is served by c1 in
the solution (e.g., see Fig. 1). In the following, we show
that we can switch the service of pi and/or pi+1 so that
either they are served by the same server, or we can use
c1 to serve pi and use c2 to serve pi+1, without affecting
the total cost of the solution.

Let r1 be the radius of the disk centered at c1, and r2
the radius of the disk centered at c2. Since pi+1 is served
by c1 and pi is served by c2, we have dp(c1, pi+1) ≤
r1 and dp(c2, pi) ≤ r2. Without loss of generality, we
assume that y(pi) ≥ y(pi+1). Depending on whether
x(pi+1) ≤ x(c2), there are two cases.

If x(pi+1) ≤ x(c2), then since y(pi) ≥ y(pi+1) and
x(pi) < x(pi+1), it holds that dp(c2, pi+1) ≤ dp(c2, pi) ≤

159

CCCG 2018, Winnipeg, Canada, August 8–10, 2018

x
c1 c2

pi

pi+1

Figure 1: Illustrating the case where pi is served by c2
and pi+1 is served by c1.

r2. Hence, we can use c2 to serve pi+1 without increasing
the total cost of the solution.

If x(pi+1) > x(c2), since y(pi) ≥ y(pi+1) and x(pi) <
x(pi+1), the two line segments pic2 and pi+1c1 cross
each other (e.g., see Fig. 2). By triangle inequality of
the metric space, we have the following

dp(c1, pi) + dp(c2, pi+1) ≤ dp(c2, pi) + dp(c1, pi+1). (1)

If dp(c2, pi+1) ≤ dp(c2, pi), then since dp(c2, pi) ≤ r2,
we obtain dp(c2, pi+1) ≤ r2. Thus, we can use c2 to serve
pi+1 without increasing the total cost of the solution.
Otherwise, by Equation (1), we can derive dp(c1, pi) <
dp(c1, pi+1), which implies that we can use c1 to serve
pi without increasing the total cost of the solution.

x
c1 c2

pi
pi+1

Figure 2: The two segments pic2 and pi+1c1 cross each
other. By triangle inequality, the sum of the lengths
of the two solid segments is larger than or equal to the
sum of the lengths of the two dotted segments.

The above shows that our switch operation “fixed”
a conflict pair without increasing the total cost of the
solution. If after the switch operation the new opti-
mal solution still does not satisfy the lemma statement,
then there must exist another conflict pair and we can
continue applying the switch operation on them. Note
that this procedure will be finite and thus eventually
we will obtain an optimal solution without any conflict
pairs, which implies that the optimal solution satisfies
the lemma statement. �

Based on Lemma 1, we define a DAG G as follows.
The vertex set consists of n+1 vertices v0, ...vn so that
each vertex vi corresponds to an imaginary point be-
tween pi and pi+1 (v0 is to the left of p1 and vn is to
the right of pn). For all 0 ≤ i < j ≤ n, we create a di-
rected edge e(i, j) from vi to vj , and the weight w(i, j)
of the edge is defined as f(r), where r is the radius of
the smallest disk centered at L that can cover all points
of P [i + 1, j] (which is {pi+1, pi+2, . . . , pj}). Lemma 1
immediately leads to the following result.

Corollary 2 A shortest path π from v0 to vn in G
corresponds to an optimal solution to the disk cover-
age problem, i.e., the length of π is equal to the total
cost and each edge e(i, j) corresponds to a smallest disk
centered at L covering all points of P [i+ 1, j].

Since G is a DAG and has O(n2) edges, a shortest
path from v0 to vn can be computed in O(n2) time by
a dynamic programming algorithm [12] if the weights of
all graph edges are known. In the following, we show
that the weights of all edges of G can be computed in
O(n2) time. In particular, we have the following lemma.

Lemma 3 For each vertex vi, the weights of all its out-
going edges, i.e., w(i, j) for all j ∈ [i + 1, n], can be
computed in O(n− i) time.

Proof. To simplify the notation, we only consider the
case i = 0. The algorithm can be generalized to any
other index i in a straightforward manner. Our goal is
to compute w(0, j) for all j ∈ [1, n] in O(n) time.

For each j ∈ [1, n], define cj and rj respectively as
the center and the radius of the smallest disk centered
at L that covers all points of P [1, j]. By definition,
w(0, j) = f(rj). Below, we will give an incremental
algorithm to compute cj and rj for all j = 1, 2, . . . , n in
a total of O(n) time.

Note that since x(p1) < x(p2) < · · · < x(pn), we have
x(c1) ≤ x(c2) ≤ · · · ≤ x(cn). This implies that when
computing cj from j = 1 to j = n, we only need to
consider the locations of L from left to right.

For any two points pi and pj of P with i < j, there is
a point, denoted by q(i, j), on L such that for any point
c ∈ L, dp(c, pi) ≤ dp(c, pj) if c is to the left of q(i, j) and
dp(c, pi) ≥ dp(c, pj) otherwise. We assume that given pi
and pj , q(i, j) can be computed in O(1) time.

For any point pi, we use p′i to denote the point on
L with the same x-coordinate as pi. Clearly, for each
j ∈ [1, n], rj ≥ dp(p

′
j , pj).

As a warm-up and for better understanding the ra-
tionale of our algorithm, we first show how to process
the first two points p1 and p2 (to compute cj and rj for
j = 1, 2).

Initially, when j = 1, c1 is p′1 and r1 = dp(c1, p1).
Next, consider j = 2. We first compute the point q(1, 2).
The two points p′1 (which is also c1) and p′2 divide L
into three parts, and depending on which part contains
q(1, 2), there are three cases.

If x(q(1, 2)) ≤ x(c1), then dp(c1, p2) ≤ dp(c1, p1) =
r1. Thus, c2 = c1 and r2 = r1. Further, the point
p2 can be ignored in the future algorithm. Indeed,
for any point c ∈ L to the right of c1, it holds that
dp(c, p1) ≥ dp(c, p2). Since x(cj) ≥ x(c2) for all j ≥ 3,
when computing cj for any j ≥ 3, p1 “dominates” p2,
and thus p2 can be ignored.

160

30th Canadian Conference on Computational Geometry, 2018

x

i1

i2

i3

q(i2; i1)q(i3; i2)

Figure 3: Illustrating a canonical list of three points in
the L2 metric. Each dotted segment is a perpendicu-
lar bisector of the segment connecting two consecutive
points in the canonical list.

If x(c1) < x(q(1, 2)) ≤ x(p2), then c2 = q(1, 2) and
r2 = dp(c2, p1) = dp(c2, p2). Further, as the above ar-
gument, p2 can be ignored in the future algorithm.

If x(q(1, 2)) > x(p2), then dp(p
′
2, p1) ≤ dp(p

′
2, p2).

Thus, c2 = p′2 and r2 = dp(p
′
2, p2). However, in this

case, neither p1 nor p2 should be ignored because we
do not know whether cj is to the left or right of q(1, 2),
e.g., for j = 3.

The above discusses our algorithm for processing p1
and p2. In the following, we describe our general algo-
rithm. The pseudocode is given in Algorithm 1.

Suppose our algorithm has processed the points
p1, p2, . . . , pj (and thus ci and ri for all i ∈ [1, j] have
been computed) and is about to preprocess pj+1. Then,
our algorithm maintains a canonical list of h points
pi1 , pi2 , . . . , pih for h ≤ j with the following invariants
(e.g., see Fig. 3).

1. i1 < i2 < · · · < ih.

2. x(q(ih, ih−1)) < x(q(ih−1, ih−2)) < · · · <
x(q(i2, i1)).

3. x(pih) ≤ x(cj) < x(q(ih, ih−1)).

4. rj = dp(cj , pih).

5. To simplify the discussion, let q(ih+1, ih) = cj
and q(i1, i0) be the point on L with x-coordinate
+∞. For each t ∈ [1, h], with respect to any
point c between q(it+1, it) and q(it, it−1) on L, the
point pit dominates all other points of P [1, j], i.e.,
dp(c, pit) ≥ dp(c, pi) for all i ∈ [1, j].

Initially, after p1 is processed, our canonical list con-
sists of a single point p1, and all algorithm invariants
hold (as an exercise, one can check that after p2 is
processed as discussed above the invariants also hold).
Next, we discuss a general step of our algorithm for pro-
cessing pj+1.

We first compute the point q(ih, j + 1) on L, and
depending on its location with respect to cj and

x

i1

i2

i3 j + 1

q(i2; i1)q(i3; i2)

q(i3; j + 1)

cj+1

Figure 4: Update the canonical list of Fig. 3 by adding
pj+1 to the end (i.e., setting i4 = j + 1).

q(ih, ih−1), there are three cases. Note that accord-
ing to our algorithm invariants, x(pih) ≤ x(cj) <
x(q(ih, ih−1)).

If x(q(ih, j + 1)) ≤ x(cj), then dp(cj , pj+1) ≤
dp(cj , pih) = rj . By definition, the disk centered at
cj with radius rj is the smallest one covering all points
of P [1, j]. As dp(cj , pj+1) ≤ rj , the disk also covers
pj+1 and thus is the smallest one covering all points of
P [1, j + 1]. Hence, cj+1 = cj and rj+1 = rj . Further,
for any point c on L to the right of cj+1, dp(c, pih) ≥
dp(c, pj+1), and thus pj+1 is dominated by pih and can
be ignored in the future algorithm. Therefore, in this
case the canonical list pi1 , pi2 , . . . , pih does not change,
and all algorithm invariants hold since cj+1 = cj .

If x(cj) < x(q(ih, j + 1)) < x(q(ih, ih−1)) (this in-
cludes the case h = 1; recall that we have assumed
x(q(i1, i0)) = +∞), depending on whether q(ih, j + 1)
is to the left of p′j+1, there are two subcases.

1. If x(q(ih, j+1)) ≤ x(pj+1), then cj+1 = q(ih, j+1)
and rj+1 = dp(cj+1, pih). Indeed, by our algorithm
invariants, since x(cj) < x(cj+1) < x(q(ih, ih−1)),
cj+1 covers all points of P [1, j] with distance rj+1.
On the other hand, by the definition of cj+1 and
rj+1, the disk centered at cj+1 with radius rj+1 is
the smallest one covering pih and pj+1.

Further, for any point c to the right of cj+1,
dp(c, pih) ≥ dp(c, pj+1), and thus pj+1 is dominated
by pih and can be ignored in the future algorithm.
Therefore, in this case the canonical list does not
change, and all algorithm variants still hold since
x(cj) < x(cj+1) < x(q(ih, ih−1)).

2. If x(q(ih, j + 1)) > x(pj+1), then again by our
algorithm invariants, cj+1 = p′j+1 and rj+1 =
dp(cj+1, pj+1). In this case, we add pj+1 to the
end of our canonical list by setting ih+1 = j + 1
and incrementing h by one (e.g., see Fig. 4). Due
to x(cj+1) < x(q(ih, j + 1)) < x(q(ih, ih−1)), one
can verify that all our algorithm invariants hold.

161

CCCG 2018, Winnipeg, Canada, August 8–10, 2018

If x(q(ih, j + 1)) ≥ x(q(ih, ih−1)), then observe that
pih is dominated by pj+1 with respect to any location
c ∈ L to the left of q(ih, ih−1). Further, according to our
algorithm invariants, pih is dominated by at least one
point of pit for t ∈ [1, h−1] with respect to any location
c ∈ L to the right of q(ih, ih−1). Hence, in this case we
remove pih from the canonical list, by decrementing h by
one. In the following discussion, we assume h has been
decremented and thus use pih+1

to denote the removed
point. We consider the location of q(ih, j + 1) (again,
this h has been decremented) and proceed as follows. As
x(q(ih+1, j+1)) ≥ x(q(ih+1, ih)), dp(q(ih+1, ih), pj+1) ≥
dp(q(ih+1, ih), pih+1

) = dp(q(ih+1, ih), pih). Hence,
q(ih, j + 1) is to the right of q(ih+1, ih). Since
x(q(ih+1, ih)) > x(cj) (by algorithm invariants), we ob-
tain x(q(ih, j + 1)) > x(cj). If h > 1 and x(q(ih, j +
1)) ≥ x(q(ih, ih−1)), then we repeat the same pro-
cedure as above. Otherwise, depending on whether
x(q(ih, j+1)) ≤ x(pj+1), there are two subcases, whose
processing is the same as above for the case x(cj) <
x(q(ih, j+1)) < x(q(ih, ih−1)), and we omit the details.

The above describes a general step of our algorithm
for processing pj+1. The algorithm stops once pn is
processed. For the running time, processing pj+1 takes
O(1 + t) time, where t is the number of points removed
from the canonical list. Observe that each point of P
will be added to the list and removed from the list at
most once in the entire algorithm. Therefore, the total
time of the algorithm is O(n). �

Algorithm 1: Computing cj and rj for all j ∈ [1, n]

1 c1 ← p′1, r1 ← dp(p1, p
′
1), i1 ← 1, h← 1;

2 for j ← 1 to n− 1 do
3 compute q(ih, j + 1);
4 if x(q(ih, j + 1)) ≤ x(cj) then
5 cj+1 ← cj , rj+1 ← rj ;
6 else /* The following combines the

second and third cases in the algorithm

description */

7 while h > 1 and
x(q(ih, j + 1)) ≥ x(q(ih, ih−1)) do

8 h← h− 1, compute q(ih, j + 1);

9 if x(q(ih, j + 1)) ≤ x(pj+1) then
10 cj+1 ← q(ih, j + 1), rj+1 ← dp(cj+1, pih);
11 else
12 cj+1 ← p′j+1, rj+1 ← dp(cj+1, pj+1),

ih+1 ← j + 1, h← h+ 1;

By Lemma 3, we can compute a shortest path from
v0 to vn in G in O(n2) time, after which an optimal so-
lution for our original problem can be readily obtained
according to Corollary 2. Note that the shortest path

algorithm can be implemented in O(n) space. Indeed,
whenever a vertex vi is processed, it is sufficient to know
the weights of the outgoing edges of vi by applying
Lemma 3, and the weights of other edges of the graph
can be ignored. Thus, we have the following theorem.

Theorem 4 In any fixed Lp metric, for any α ≥ 1, the
1.5D disk coverage problem can be solved in O(n2) time
and O(n) space.

4 The One-Dimensional Problem

In this section, we consider the two variations of the
1D problem. Note that in the 1D problem, for any two
points q and q′ on the x-axis, dp(q, q

′) = |x(q)−x(q′)| in
any Lp metric. Therefore, we will use d(q, q′) to denote
the value |x(q) − x(q′)|. We begin with the k-interval
coverage problem.

4.1 The k-Interval Coverage Problem

In this problem, we are given a set P of n points on
L (the x-axis), an integer k ∈ [1, n], and α ≥ 1. The
goal is to compute a set of at most k disks centered at
L covering all points of P such that the total cost of all
disks is minimized.

We follow the same notation as before and use
p1, p2, . . . , pn as the sorted list of P from left to right.
Observe that Lemma 1 still holds for this problem.
Thus, we build the same DAG G as before. The weights
of the edges of G are also defined in the same way as
before. Consequently, our problem is equivalent to com-
puting a shortest path from v0 to vn in G with at most k
edges (this is usually called a k-link shortest path). Fur-
ther, we have a simple algorithm to compute the edge
weights of the graph, as shown in the following lemma.

Lemma 5 For any edge e(i, j) with 0 ≤ i < j ≤ n, the
weight w(i, j) can be computed in constant time.

Proof. According to the definition, w(i, j) = f(r) =
rα, where r is the radius of the smallest disk centered
at L covering all points of P [i + 1, j]. Observe that
r = |x(pj)−x(pi+1)|/2. Hence, w(i, j) can be computed
in constant time. �

Using Lemma 5, we can find a k-link shortest path
from v0 to vn in G in O(kn2) time by a straightforward
dynamic programming algorithm. However, we can do
better due to that the edge weights of the graph obey
the concave Monge condition [1, 2], which is proved in
the following lemma.

Lemma 6 The graph G has the concave Monge prop-
erty, i.e., for any i and j with 0 < i+1 < j < n, it holds
that w(i, j) + w(i+ 1, j + 1) ≤ w(i, j + 1) + w(i+ 1, j).

162

30th Canadian Conference on Computational Geometry, 2018

Proof. For any i′, j′ with 1 ≤ i′ ≤ j′ ≤ n, define
r(i′, j′) = |x(pj′)− x(pi′)|/2.

As discussed in the proof of Lemma 5, we have
w(i, j) = (r(i+1, j))α, w(i+1, j+1) = (r(i+2, j+1))α,
w(i, j + 1) = (r(i + 1, j + 1))α, and w(i + 1, j) =
(r(i+2, j))α. Observe that r(i+1, j)+ r(i+2, j+1) =
r(i+1, j+1)+r(i+2, j). Since r(i+1, j+1) > r(i+1, j),
r(i + 1, j + 1) > r(i + 2, j + 1), and α ≥ 1, we can ob-
tain that (r(i+1, j))α+(r(i+2, j+1))α ≤ (r(i+1, j+
1))α+(r(i+2, j))α. Therefore, w(i, j)+w(i+1, j+1) ≤
w(i, j + 1) + w(i+ 1, j) holds. �

Due to the concave Monge property, we can resort
to faster algorithms for computing a k-link shortest
path from v0 to vn in G in O(nk) [1], O(n

√
k log n +

n log n) [2], or n2O(
√
log k log logn) time [22]. Note that

when applying these algorithms, we will not compute
the graph G explicitly; rather, whenever the algorithm
needs an edge weight, we use the algorithm in Lemma 5
to compute it in O(1) time. Therefore, we have the
following result.

Theorem 7 For any α ≥ 1, after the points of
P are sorted on L, the k-interval coverage prob-
lem can be solved in min{O(nk), O(n

√
k log n +

n log n), n2O(
√
log k log logn)} time.

4.2 The Discrete Interval Coverage Problem

In this problem, we are given a set P of n points and
another set Q of m points on L (the x-axis), as well as
α ≥ 1. The goal is to compute a set of disks centered
at the points of Q to cover all points of P such that the
total cost of the disks is minimized.

Again, let p1, p2, . . . , pn be the sorted list of P from
left to right. We also sort all points of Q from left to
right on L, and let q1, q2, . . . , qm be the sorted list. One
can verify that Lemma 1 still applies. With respect
to the sorted list of P , we define the same DAG G as
before. Here, the weight w(i, j) of each edge e(i, j) is
defined as the smallest disk centered at a point in Q
covering all points of P [i+ 1, j]. Hence, our problem is
equivalent to finding a shortest path from v0 to vn in G.
The following lemma gives an algorithm for computing
the weights of the edges of G.

Lemma 8 For each vertex vi, the weights of all its out-
going edges, i.e., w(i, j) for all j ∈ [i + 1, n], can be
computed in O(m+ n− i) time.

Proof. For any j ∈ [i+1, n], let D be the smallest disk
covering all points of P [i+1, j] such that the center is a
point in Q. Let q(i+1, j) be the middle point of the line
segment pi+1pj on L. Let c a point of Q that is closest to
q(i+1, j), and r = max{|x(c)−x(pi+1)|, |x(c)−x(pj)|}.
Observe that c must be a center of D and r must be
the radius. Therefore, to compute the weight w(i, j),

it is sufficient to determine the point of Q closest to
q(i+ 1, j).

We first compute the points q(i + 1, j) for all j ∈
[i+1, n] in O(n− i) time. Then the points of Q closest
to q(i + 1, j)’s for all j ∈ [i + 1, n] can be found in
O(m + n − i) time by a linear scan simultaneously on
both the sorted list of Q and the list q(i+1, i+1), q(i+
1, i + 2), . . . , q(i + 1, n), which is also sorted on L from
left to right. Consequently, the weights w(i, j) for all
j ∈ [i+1, n] can be computed in O(m+n− i) time. �

By Lemma 8, we can compute a shortest path from
v0 to vn in G in O(n(m + n)) time, after which an op-
timal solution for our original problem can be readily
obtained. As in Section 3, with Lemma 8, the algorithm
can be implemented in O(n +m) space. Therefore, we
have the following theorem, where the O(m logm) fac-
tor is due to the sorting of Q.

Theorem 9 For any α ≥ 1, the discrete interval cov-
erage problem can be solved in O(n(m + n) +m logm)
time and O(m+ n) space.

5 Concluding Remarks

In this paper, we present new algorithms for covering
points by disks. We have been considering the cost
function f(r) = rα for a constant α ≥ 1. In fact,
our algorithms for the 1.5D case and for the discrete
1D case also work with the same complexities for any
non-decreasing function f(r) as long as the following as-
sumption holds: given any r, f(r) can be computed in
constant time. Our algorithm for the k-interval coverage
problem, however, may not work for all non-decreasing
functions, because the Monge property in Lemma 6 may
not hold any more (in which case we can still use the
straightforward O(kn2) time dynamic programming al-
gorithm to solve the problem).

In addition, for the 1.5D case and the discrete 1D
case, if there is an upper bound k on the number of disks
that are allowed to be used, then the problem is equiv-
alent to computing a k-link shortest path from v0 to vn
in the DAG G, which can be done in O(kn2) time by
dynamic programming after the graph G is computed.

It would be interesting to see whether the algorithms
can be further improved, especially for the 1.5D prob-
lem and the discrete 1D problem. One might wonder
whether the DAGs for these two problems also have
Monge properties (either convex or concave). Unfortu-
nately, we have found examples showing that the DAG
for each problem does not have either convex or con-
cave Monge property. Therefore, new techniques may
be needed for further improvement.

163

CCCG 2018, Winnipeg, Canada, August 8–10, 2018

References

[1] A. Aggarwal, M. Klawe, S. Moran, P. Shor, and
R. Wilbur. Geometric applications of a matrix-
searching algorithm. Algorithmica, 2:195–208, 1987.

[2] A. Aggarwal, B. Schieber, and T. Tokuyama. Finding
a minimum weight k-link path in graphs with concave
monge property and applications. Discrete & Compu-
tational Geometry, 12:263–280, 1994.

[3] H. Alt, E. Arkin, H. Brönnimann, J. Erickson,
S. Fekete, C. Knauer, J. Lenchner, J. Mitchell, and
K. Whittlesey. Minimum-cost coverage of point sets
by disks. In Proc. of the 22nd Annual Symposium on
Computational Geometry, pages 449–458, 2006.

[4] V. Auletta, D. Parente, and G. Persiano. Placing
resources on a growing line. Journal of Algorithms,
26(1):87–100, 1998.

[5] B. Behsaz and M. Salavatipour. On minimum sum of
radii and diameters clustering. Algorithmica, 73:143–
165, 2015.

[6] V. Bilò, I. Caragiannis, C. Kaklamanis, and P. Kanel-
lopoulos. Geometric clustering to minimize the sum of
cluster sizes. In Proc. of the 13th European Symposium
on Algorithms, pages 460–471, 2005.

[7] A. Biniaz, P. Bose, P. Carmi, A. Maheshwari, I. Munro,
and M. Smid. Faster algorithms for some optimization
problems on collinear points. 2018. To appear in the
34th International Symposium on Computational Ge-
ometry, full version at arXiv:1802.09505.

[8] P. Brass, C. Knauer, H.-S. Na, C.-S. Shin, and A. Vi-
gneron. The aligned k-center problem. International
Journal of Computational Geometry and Applications,
21:157–178, 2011.

[9] T. Chan. More planar two-center algorithms. Computa-
tional Geometry: Theory and Applications, 13(3):189–
198, 1999.

[10] D. Chen, J. Li, and H. Wang. Efficient algorithms
for the one-dimensional k-center problem. Theoretical
Computer Science, 592:135–142, 2015.

[11] D. Chen and H. Wang. New algorithms for facility lo-
cation problems on the real line. Algorithmica, 69:370–
383, 2014.

[12] T. Cormen, C. Leiserson, R. Rivest, and C. Stein. In-
troduction to Algorithms. MIT Press, 3nd edition, 2009.

[13] H. Fan, M. Li, X. Sun, P. Wan, and Y. Zhao. Bar-
rier coverage by sensors with adjustable ranges. ACM
Transactions on Sensor Networks, 11:14:1–14:20, 2014.

[14] M. Gibson, G. Kanade, E. Krohn, I. Pirwani, and
K. Varadarajan. On clustering to minimize the sum
of radii. SIAM Journal on Computing, 41:47–60, 2012.

[15] R. Hassin and A. Tamir. Improved complexity bounds
for location problems on the real line. Operations Re-
search Letters, 10:395–402, 1991.

[16] A. Karmakar, S. Das, S. Nandy, and B. Bhattacharya.
Some variations on constrained minimum enclosing cir-
cle problem. Journal of Combinatorial Optimization,
25(2):176–190, 2013.

[17] N. Lev-Tov and D. Peleg. Polynomial time approxima-
tion schemes for base station coverage with minimum
total radii. Computer Networks, 47:489–501, 2005.

[18] N. Megiddo. Linear-time algorithms for linear program-
ming in R3 and related problems. SIAM Journal on
Computing, 12(4):759–776, 1983.

[19] N. Megiddo and K. Supowit. On the complexity of some
common geometric location problems. SIAM Journal
on Computing, 13:182–196, 1984.

[20] N. Megiddo and A. Tamir. New results on the complex-
ity of p-centre problems. SIAM Journal on Computing,
12(4):751–758, 1983.

[21] K. Pahlavan and A. Levesque. Wireless Information
Networks. Wiley, New York, NY, 2nd edition, 2005.

[22] B. Schieber. Computing a minimum weight k-link path
in graphs with the concave monge property. Journal of
Algorithms, 29(2):204–222, 1998.

[23] H. Wang and J. Zhang. Line-constrained k-median, k-
means, and k-center problems in the plane. Interna-
tional Journal of Computational Geometry and Appli-
cations,, 26:185–210, 2016.

164

CCCG 2018, Winnipeg, Canada, August 8–10, 2018

A Composable Coreset for k-Center in Doubling Metrics

Sepideh Aghamolaei∗ Mohammad Ghodsi†

Abstract

A set of points P in a metric space and a constant inte-
ger k are given. The k-center problem finds k points as
centers among P , such that the maximum distance of
any point of P to their closest centers (r) is minimized.

Doubling metrics are metric spaces in which for any r,
a ball of radius r can be covered using a constant num-
ber of balls of radius r/2. Fixed dimensional Euclidean
spaces are doubling metrics. The lower bound on the
approximation factor of k-center is 1.822 in Euclidean
spaces, however, (1 + ε)-approximation algorithms with
exponential dependency on 1

ε and k exist.

For a given set of sets P1, . . . , PL, a composable coreset
independently computes subsets C1 ⊂ P1, . . . , CL ⊂ PL,
such that ∪Li=1Ci contains an approximation of a mea-
sure of the set ∪Li=1Pi.

We introduce a (1 + ε)-approximation composable
coreset for k-center, which in doubling metrics has size
sublinear in P . This results in a (2 + ε)-approximation
algorithm for k-center in MapReduce with a constant
number of rounds and sublinear communications, which
improves upon the previous 4-approximation algorithm.
We also prove a trade-off between the size and the ap-
proximation factor of our coreset, and give a composable
coreset for a related problem called dual clustering.

1 Introduction

Coresets are subsets of points that approximate a mea-
sure of the point set. A method of computing core-
sets on big data sets is composable coresets. Com-
posable coresets [20] provide a framework for adapting
constant factor approximation algorithms to streaming
and MapReduce models. Composable coresets summa-
rize distributed data so that the scalability is increased,
while keeping the desirable approximation factor and
time complexity.

There is a general algorithm for solving problems us-
ing coresets which known by different names in different
settings: mergeable summaries [1] and merging in a tree-
like structure [2] for streaming (1 + ε)-approximation

∗Department of Computer Engineering, Sharif University of
Technology, aghamolaei@ce.sharif.edu
†Department of Computer Engineering, Sharif University of

Technology, School of Computer Science, Institute for Research
in Fundamental Sciences (IPM), ghodsi@sharif.edu

algorithms, small space (divide and conquer) for con-
stant factor approximations in streaming [15], and com-
posable coresets in MapReduce [20]. A consequence of
using constant factor approximations instead of (1 + ε)-
approximations with the same merging method is that
it can add a O(log n) factor to the approximation factor
of the algorithm on an input of size n.

Composable coresets [20] require only a single round
and sublinear communications in the MapReduce
model, and the partitioning is done arbitrarily.

Definition 1 (Composable Coreset) A composable
coreset on a set of sets {Si}Li=1 is a set of subsets
C(Si) ⊂ Si whose union gives an approximation solu-
tion for an objective function f : (∪Li=1Si) → R. For-
mally, a composable coreset of a minimization problem
is an α-approximation if

f(∪iSi) ≤ f(∪iC(Si)) ≤ α.f(∪iSi),

for a minimization problem. The maximization version
is similarly defined.

A partitioned composable coreset is a composable core-
set in which the initial sets are a partitioning, i.e. sets
{Si}Li=1 are disjoint. Using Gonzalez’s algorithm for k-
center [14], Indyk, et al. designed a composable coreset
for a similar problem known as the diversity maximiza-
tion problem [20]. Other variations of composable core-
sets are randomized composable coresets and mapping
coresets. Randomized composable coresets [26] share
the same divide and conquer approach as other compos-
able coresets and differ from composable coresets only
in the way they partition the data. More specifically,
randomized composable coresets, randomly partition-
ing the input, as opposed to other composable core-
sets which make use of arbitrary partitioning. Map-
ping coresets [5] extend composable coresets by adding
a mapping between coreset points and other points to
their coresets and keep almost the same amount of data
in all machines. Algorithms for clustering in `p norms
using mapping coresets are known [5]. Further improve-
ments of composable coresets for diversity maximization
[20] include lower bounds [3] and multi-round compos-
able coresets in metrics with bounded doubling dimen-
sion [6].

Metric k-center is a NP-hard problem for which 2-
approximation algorithms that match the lower bound
for the approximation factor of this problem are

165

30th Canadian Conference on Computational Geometry, 2018

known [28, 14]. Among approximation algorithms for
k-center is a parametric pruning algorithm, based on
the minimum dominating set [28]. In this algorithm,
an approximate dominating set is computed on the disk
graph of the input points. The running time of the al-
gorithm is O(n3). The greedy algorithm for k-center
requires only O(nk) time [14] and unlike the algorithm
based on the minimum dominating set[28], uses r-nets
[17]. A (1 + ε)-approximation coreset exists for k-center
[4] with size exponentially dependent on 1

ε .
Let the optimal radius of k-center for a point set P be

r. The problem of finding the smallest set of points that
cover P using radius r is known as the dual clustering
problem [7].

Metric dual clustering (of k-center) has an unbounded
approximation factor [7]. In Euclidean metric, there ex-
ists a streaming O(2dd log d)-approximation algorithm
for this problem [7]. Also, any α-approximation algo-
rithm for the minimum disk/ball cover problem gives
a 2-approximation coreset of size αk for k-center, so
2-approximation coresets of size (1 + ε)k exist for this
problem [23]. A greedy algorithm for dual clustering of
k-center has also been used as a preprocessing step of
density-based clustering (DBSCAN) [11]. Implement-
ing DBSCAN efficiently in MapReduce is an important
problem [18, 9, 13, 27, 21].

Randomized algorithms for metric k-center and k-
median in MapReduce [10] exist. These algorithms take
α-approximation offline algorithms and return (4α+2)-
approximation and (10α+ 3)-approximation algorithms
for k-center and k-median in MapReduce, respectively.
The round complexity of these algorithms depends on
the probability of the algorithm for finding a good ap-
proximation.

Current best results on metric k-center in MapRe-
duce have 2 rounds and give the approximation factor
4 [24]. However, a 2-approximation algorithm exists if
the cost of the optimal solution is known [19]. Experi-
ments in [25] suggest that running Gonzalez’s algorithm
on a random partitioning and an arbitrary partitioning
results in the same approximation factor.

Warm-Up

Increasing the size of coresets in the first step of comput-
ing composable coresets can improve the approximation
factor of some problems. The approximation factor of k-
median algorithm of [15] is 2c(1+2b)+2b, where b and c
are the approximation factors of k-median and weighted
k-median, respectively. This algorithm computes a com-
posable coreset, where a coreset for k-median is the set
of k medians weighted by the number of points assigned
to each median.

A pseudo-approximation for k-median finds k+O(1)
median and has approximation factor 1 +

√
3 + ε [22].

Using a pseudo-approximation algorithm in place of k-

median algorithms in the first step of [15], it is pos-
sible to achieve a better approximation factor for k-
median using the same proof as [15]. Since any pseudo-
approximation has a cost less than or equal to the opti-
mal solution; replacing them will not increase the cost
of clustering.

The approximation factor using [8] as weighted k-
median coresets is 91.66, while the best k-median al-
gorithm would give a 99.33 factor using the same algo-
rithm (b = 1 +

√
3). The lower bound on the approxi-

mation factor of this algorithm using the same weighted
k-median algorithm but without pseudo-approximation
is 63.09 (b = 1 + 2

e).

Contributions

We give a (1+ε)-approximation coreset of size (4
ε)1+2bk

for k-center in metric spaces with doubling dimension
b. Using composable coresets, our algorithm general-
izes to MapReduce setting, where it becomes a (1 + ε)-
approximation coreset of size (4

ε)1+2b n
mk, given memory

m, which is sublinear in the input size n.

Conditions Approx. Reference
Metric k-center:
O(1)-rounds 4 [24]

O(log∆
1+ε) rounds 2 + ε [19]

Lower bound 2 offline [28]
Doubling metrics:
O(1)-rounds 2 + ε Theorem 7
Lower bound 1.822 [12]

Dual clustering:
General metrics O(log n) min dominating set

[28], composable
coreset [20]

Doubling metrics O(1) Theorem 3

Table 1: Summary of results for k-center and dual clus-
tering in MapReduce. ∆ is the diameter of the point-set.

Using the composable coreset for dual clustering, we
find a (2 + ε)-approximation composable coreset for k-
center, which has a sublinear size in metric spaces with
constant doubling dimension. More specifically, if an
α-approximation exists for doubling metrics, our algo-
rithm provides (α + ε)-approximation factor. It im-
proves the previous 4-approximation algorithm [24, 25]
in MapReduce. A summary of results on k-center is
shown in Table 1. Note that for MapReduce model,
each round can take a polynomial amount of time, how-
ever, the space available to each machine is sublinear.

Our algorithm achieves a trade-off between the ap-
proximation factor and the size of coreset (see fig. 1).
The approximation factor of our algorithm and the size
of the resulting composable coreset for L input sets are

166

CCCG 2018, Winnipeg, Canada, August 8–10, 2018

α = 2 + ε and kLβ, respectively. This trade-off is the
main idea of our algorithm.

2 2.25 2.5 3 4

7

13

20

27

33

40

46

53

α = 2 + ε

lo
g
2
β

=
(2
b

+
1
)

lo
g
2
(
4 ε
)

Figure 1: Space-approximation factor trade-off of our
α-approx. coreset of size βkL for k-center in Euclidean
plane.

Our composable coresets give single pass streaming
algorithms and 1-round approximation algorithms in
MapReduce with sublinear communication, since each
coreset is communicated once, and the size of the coreset
is constant.

2 Preliminaries

First we review some basic definitions, models and al-
gorithms in computational geometry and MapReduce.

2.1 Definitions

Some geometric definitions and notations are reviewed
here, which have been used in the rest of the paper.

Definition 2 (Metric Space) A (possibly infinite)
set of points P and a distance function d(., .) create a
metric space if the following three conditions hold:

• ∀p, q ∈ P d(p, q) = 0⇔ p = q

• ∀p, q ∈ P d(p, q) = d(q, p)

• ∀p, q, t ∈ P d(p, q) + d(q, t) ≥ d(p, t), known as
triangle inequality

Metrics with bounded doubling dimension are called
doubling metrics. Constant dimension Euclidean spaces
under `p norms and Manhattan distance are examples
of doubling metrics.

Doubling constant [16] of a metric space is the num-
ber of balls of radius r that lie inside a ball of radius 2r.
The logarithm of doubling constant in base 2 is called
doubling dimension. Many algorithms have better ap-
proximation factors in doubling metrics compared to
general metric spaces. The doubling dimension of Eu-
clidean plane is log2 7.

Definition 3 (Doubling Dimension [16]) For any
point x in a metric space and any r ≥ 0, if the ball
of radius 2r centered at x can be covered with at most
2b balls of radius r, we say the doubling dimension of
the metric space is b.

k-Center is a NP-hard clustering problem with clus-
ters in shapes of d-dimensional balls.

Definition 4 (Metric k-Center [28]) Given a set P
of points in a metric space, find a subset of k points as
cluster centers C such that

∀p ∈ P,min
c∈C

d(p, c) ≤ r

and r is minimized.

The best possible approximation factor of metric k-
center is 2 [28].

Geometric intersection graphs represent intersections
between a set of shapes. For a set of disks, their inter-
section graph is called a disk graph.

Definition 5 (Disk Graph) For a set of points P in
a metric space with distance function d(., .) and a radius
r, the disk graph of P is a graph whose vertices are P ,
and whose edges connect points with distance at most
2r.

Definition 6 (Dominating Set) Given a graph G =
(V,E), the smallest subset Q ⊂ V is a minimum domi-
nating set, if ∀v ∈ V, v ∈ Q ∨ ∃u ∈ Q : (v, u) ∈ E.

We define the following problem as a generalization
of the dual clustering of [7] by removing the following
two conditions: the radius of balls is 1, and the set of
points are in Rd.

Definition 7 (Dual Clustering) Given a set of
points P and a radius r, the dual clustering problem
finds the smallest subset of points as centers (C), C ⊂ P
such that the distance from each point to its closest
center is at most r.

2.2 An Approximation Algorithm for Metric k-
Center

Here, we review the parametric pruning algorithm
of [28] for metric k-center.

Algorithm 1 Parametric Pruning for k-Center [28]

Input: A metric graph G = (V,E), an integer k
Output: A subset C ⊂ V, |C| ≤ k

Sort E such that e1 ≤ e2 ≤ · · · ≤ e|E|.
G′ = (V,E′)← (V, ∅)
for i = 1, . . . , |E| do

E′ ← E′ ∪ {ei}
Run algorithm 2 on G′.
if |IS| ≤ k then return IS

167

30th Canadian Conference on Computational Geometry, 2018

Using this algorithm on a metric graph G, a 2-
approximation for the optimal radius r can be deter-
mined. In algorithm 1, edges are added by increasing
order of their length until reaching r. Given this radius,
another graph (G′) is built, where edges exist between
points within distance at most r of each other.

Algorithm 2 Approximate dominating set of G [28]

Input: A metric graph G′ = (V,E)
Output: A subset C ⊂ V
G′2 ← G′

for ∀(u, t), (t, v) ∈ E do
Add (u, v) to G′2.

Find a maximal independent set IS of G′2

return IS

Hence, by definition, a minimum dominating set of G′

is an optimal k-center of G. Every cluster is a star in G′

which turns into a clique in G′2. Therefore, a maximal
independent set of G′2 chooses at most one point from
each cluster. Algorithm 2 computes G′2 and returns a
maximal independent set of G′2.

Computing a maximal independent set takes O(|E|)
time. The graph G′2 in Algorithm 2 only changes in
each iteration of Algorithm 1 around the newly added
edge, so, updating the previous graph and IS takesO(n)
time. Therefore, the time complexity of Algorithm 1 is
O(|E| · n) = O(n3).

3 A Coreset for Dual Clustering in Doubling Metrics

In this section, we prove a better approximation offline
coreset for the dual clustering problem. Our method is
based on Algorithm 1 which first builds the disk graph
with radius r, then covers this graph using a set of stars.
We prove the maximum degree of those stars is D2,
where D is the doubling constant. The result is an ap-
proximation algorithm for dual clustering in doubling
metrics.

3.1 Algorithm

We add a preprocessing step to Algorithm 1 to find a
better approximation factor for k-center and dual clus-
tering problems.

Algorithm 3 A Coreset for k-Center

Input: A set of points P , an integer k or a radius r
Output: A subset C ⊂ P, |C| ≤ k

if k is given in the input then
Compute a 2-approximation solution for k-center

(radius r).

E ← all pairs of points with distance at most r/2.
Run algorithm 2 on G = (P,E) to compute IS.
return IS

3.2 Analysis

Unlike in general metric spaces, k-center in doubling
metrics admits a space-approximation factor trade-off.
More specifically, doubling or halving the radius of k-
center changes the number of points in the coreset by
a constant factor, since the degrees of vertices in the
minimum dominating set are bounded in those metric
spaces.

Lemma 1 For each cluster Ci of Algorithm 3 with ra-
dius r′, the maximum number of points (∆ + 1) from
Ci that are required to cover all points inside Ci with
radius r′/2 is at most D2, i.e.

(∆ + 1) ≤ D2,

where D is the doubling constant of the metric space.

Proof. Assume a point p ∈ IS returned by Algo-
rithm 3. By the definition of doubling metrics, there
are D balls of radius r′/2 centered at b1, . . . , bD called
B1, . . . , BD that cover the ball of radius r′ centered at
p, called B.

∀q ∈ B, ∃Bi, i = 1, . . . , D : d(p, bi) ≤ r′/2

Repeating this process for each ball Bi results in a set of
at most D balls (B′i,1, . . . , B

′
i,D) of radius r′/4 centered

at b′i,1, . . . , b
′
i,D.

∀q ∈ B′i,j , d(b′i,j , q) ≤ r′/4

Choose a point pi,j ∈ P∩B′i,j . Using triangle inequality,

∀q ∈ B′i,j , d(pi,j , q) ≤ d(pi,j , b
′
i,j) + d(b′i,j , q)

≤ r′/4 + r′/4 = r′/2.

We claim any minimal solution needs at most one
point from each ball B′i,j . By contradiction, assume
there are two point pi,j , q

′ in the minimal solution that
lie inside a ball B′i,j . After removing q′, the ball with
radius r′/2 centered at pi,j still covers B′i,j , since:

∀q ∈ P,∃Bi, B′i,j 3 q, pi,j
d(q, pi,j) ≤ d(q, b′i,j) + d(b′i,j , pi,j)

≤ r′/4 + r′/4 = r/2′.

Then we have found a point (q′) whose removal de-
creases the size of the solution, which means the so-
lution was not minimal. So the size of any minimal set
of points covering B is at most D2. �

Lemma 2 In a metric space with doubling constant D,
if a dual clustering with radius r has k points, then a
dual clustering with radius r/2 exists which has D2k
points.

168

CCCG 2018, Winnipeg, Canada, August 8–10, 2018

r
r
2

r
4

Figure 2: Applying the doubling dimension bound twice
(Lemma 1).

Proof. Let p be a center in the k-center problem.
Based on the proof of Lemma 1, there are ∆ vertices
adjacent to p that cover the points inside the ball of ra-
dius r centered at p, using balls of radius r/2 and a ball
of radius r/2 centered at p. By choosing all these ver-
tices as centers, it is possible to cover all input points
P with radius r/2. Using the same reasoning for all
clusters, it is possible to cover all points using (∆ + 1)k
centers. Using the bound in Lemma 1, these are D2k
centers. �

Theorem 3 The approximation factor of Algorithm 3
is D2 for the dual clustering.

Proof. Since the radius of balls in Lemma 2 is at most
the optimal radius for k-center, the approximation fac-
tor of dual clustering is the number of points chosen as
centers divided by k, which is D2. �

Theorem 4 The approximation factor of the coreset
for k-center in Algorithm 3 is 2−R and its size is
D2(R+1)k.

Proof. Applying Lemma 2 halves the radius and mul-
tiplies the number of points by D2. So, applying this
lemma R times gives (D2)R+1k points, since it might
be the case that in the first step of the algorithm the
optimal radius was found, and we divided it by 2. The
radius remains r

2R
because of the case where we had

found a 2-approximation. �

Theorem 5 Algorithm 3 given (4
ε)2 log2Dk as input, is

a (1 + ε)-approximation coreset of size (4
ε)2 log2Dk for

the k-center problem.

Proof. For R = dlog2
2
ε e, the proof of Theorem 4 gives

(4
ε)2 log2D points and radius rε. Assume O is the set of k

centers returned by the optimal algorithm for point-set
P , and C is the set of centers returned by running the
optimal algorithm on the coreset of P . For any point
p ∈ P , let o be the center that covers p and c be the

point that represents o in the coreset. Using triangle
inequality:

d(p, c) ≤ d(p, o) + d(o, c) ≤ r + rε = (1 + ε)r

So, computing a k-center on this coreset gives a (1 + ε)-
approximation. �

4 A Composable Core-Set for k-Center in Doubling
Metrics

Our general algorithm for constructing coresets based
on dual clustering has the following steps:

• Compute the cost of an approximate solution (X).

• Find a composable coreset for dual clustering with
cost X.

• Compute a clustering on the coreset.

In this section, we use this general algorithm for solving
k-center.

4.1 Algorithm

Knowing the exact or approximate value of r, we can
find a single-round (2 + ε)-approximation for metric k-
center in MapReduce. Although the algorithm achieves
the aforementioned approximation factor, the size of the
coreset and the communication complexity of the algo-
rithm depend highly on the doubling dimension.

Algorithm 4 k-Center

Input: A set of sets of points ∪Li=1Si, a k-center algo-
rithm

Output: A set of k centers
1: Run a k-center algorithm on each Si to find the

radius ri.
2: Run Algorithm 2 on the disk graph of each set Si

with radius εri
2 locally to find C(Si).

3: Send C(Si) to set 1 to find the union ∪iC(Si).
4: Run a 2-approximation k-center algorithm on
∪Li=1C(Si) to find the set of centers C.

5: return C.

Based on the running time of Algorithm 2 and Gon-
zalez’s algorithm, the running time of Algorithm 4 is∑
i[O(k · |Si|) + O(|Si|2)] + O(k

∑
i |C(Si)|) = O(kn).

Since the sum of running times of machines is of the
same order as the best sequential algorithm, Algo-
rithm 4 is a work-efficient parallel algorithm.

We review the following well-known lemma:

Lemma 6 For a subset S ⊂ P , the optimal radius of
the k-center of S is at most twice the radius of the k-
center of P .

169

30th Canadian Conference on Computational Geometry, 2018

s

p

c
≤ rε ≤ 2r

≤ (2 + ε)r

Figure 3: The dominating set on ∪iC(Si) covers ∪iSi
with radius (2 + ε)(Theorem 7).

Proof. Consider the set of clusters Oi in the optimal
k-center of P centered at ci, i = 1, . . . , k with radius r.
If ci ∈ S, then the points of Oi ∩ S are covered by ci
with radius r, as before. Otherwise, select an arbitrary
point in Oi ∩ S as the new center c′i. Using the triangle
inequality on ci, c

′
i and any point p ∈ Oi ∩ S:

d(p, c′i) ≤ d(p, ci) + d(ci, c
′
i) ≤ r + r = 2r

Since c′i was covered using ci with radius r. So the set
S ∩ Oi can be covered with radius 2r. Note that since
we choose at most one point from each set, the number
of new centers is at most k. �

Theorem 7 The approximation factor of Algorithm 4
is 2 + ε for metric k-center.

Proof. Let r be the optimal radius of k-center for ∪iSi.
Since ∪iC(Si) ⊂ ∪iSi, using Lemma 6, the radius of
k-center for ∪iC(Si) is at most 2r. The radius of k-
center inside each set Si is at most 2r for the same
reason. The algorithm computes a covering Si with
balls of radius riε/2. Based on the fact that offline
k-center has 2-approximation algorithms and the tri-
angle inequality, the approximation factor of the algo-
rithm proves to be (2+ε)-approximation (Figure 3). Let
p = arg minp∈∪iC(Si) dist(s, p), then

∀s ∈ Si∃c ∈ C, d(s, c) ≤ d(s, p) + d(p, c) ≤ r′ + riε/2

≤ 2r + 2rε/2 = (2 + ε)r

where r′ is the radius of the offline k-center algorithm
on C. �

4.2 Analysis

Lemma 8 In a metric space with doubling constant D,
the union of dual clusterings of radius r computed on
sets S1, . . . , SL is a (L×D2 log2

8
ε)-approximation for the

dual clustering of radius r(1+ε) of their union (∪Li=1Si).

Proof. Each center in the dual clustering with radius r
of P = (∪Li=1Si) has at most ∆ adjacent vertices covered
by this center. Consider a point p ∈ P covered by center
c in a solution for P . If p and c belong to the same set
Si, assign p to c. Otherwise, pick any point that was
previously covered by c as the center that covers p.

While this might increase the radius by a factor 2,
it does not increase the number of centers in each set.
Since the algorithm uses radius ε.r/2, it increases the

number of centers to D2 log2
8
ε k (based on Theorem 4

for R = 4r
εr/2) but keeps the approximation factor of the

radius to 1 + ε. There are L such sets, so the size of the
coreset is L×D2 log2

8
ε k. �

Theorem 9 Algorithm 4 returns a coreset of size
O(kL) for k-center in metric spaces with fixed doubling
dimension.

Proof. The coreset of each set Si has a radius ri vary-
ing from the optimal radius (r = ri) to 2β.r, where β
is the approximation factor of the offline algorithm for
k-center. Clearly, the lower bound holds because any
radius is at least as much as the optimal (minimum) ra-
dius, which means r ≤ ri; and Lemma 6 when applied
to Si ⊂ ∪iSi, yields the upper bound.

r ≤ ri ≤ 2β.r ⇒ rε

4β
≤ riε

4β
≤ εr

2

Reaching value rε requires applying Theorem 7 at most
log2

4β
ε times.

The size of the resulting coreset is therefore at most

(4log2D)log2
4β
ε kL = (

4β

ε
)2(log2D)kL.

Here, we use the best approximation factor for met-
ric k-center (β = 2), which gives a coreset of size
(8
ε)2(log2D)kL = O(kL) for fixed ε. �

5 Conclusions

We proved a trade-off between the approximation factor
and the number of centers for the k-center problem in
doubling metrics. To improve the trade-off in MapRe-
duce, local partitioning methods such as grid-based or
locality sensitive hashing, or degree based partitioning
of disk graph with lower radius might be effective.

Gonzalez’s algorithm [14] is a version of parametric
pruning algorithm [28] in which the greedy maximal in-
dependent set computation prioritizes the points with
maximum distance from the currently chosen points.
Our algorithm and trade-off partially answers the open
question of [25] about comparing and improving these
two algorithms in MapReduce.

Our composable coreset for dual clustering gives con-
stant factor approximation for minimizing the size of
DBSCAN cluster representatives if half the input radius
is used, and the dominating set subroutine is replaced
with the connected dominating set.

References

[1] P. K. Agarwal, G. Cormode, Z. Huang, J. M. Phillips,
Z. Wei, and K. Yi. Mergeable summaries. ACM Trans-
actions on Database Systems (TODS), 38(4):26, 2013.

170

CCCG 2018, Winnipeg, Canada, August 8–10, 2018

[2] P. K. Agarwal, S. Har-Peled, and K. R. Varadarajan.
Approximating extent measures of points. Journal of
the ACM (JACM), 51(4):606–635, 2004.

[3] S. Aghamolaei, M. Farhadi, and H. Zarrabi-Zadeh. Di-
versity maximization via composable coresets. In Cana-
dian Conference on Computational Geometry (CCCG),
2015.

[4] M. Bādoiu, S. Har-Peled, and P. Indyk. Approximate
clustering via core-sets. In Proceedings of the thiry-
fourth annual ACM symposium on Theory of comput-
ing, pages 250–257. ACM, 2002.

[5] M. Bateni, A. Bhaskara, S. Lattanzi, and V. Mirrokni.
Distributed balanced clustering via mapping coresets.
In Advances in Neural Information Processing Systems
(NIPS), pages 2591–2599, 2014.

[6] M. Ceccarello, A. Pietracaprina, G. Pucci, and E. Up-
fal. Mapreduce and streaming algorithms for diver-
sity maximization in metric spaces of bounded dou-
bling dimension. Proceedings of the VLDB Endowment,
10(5):469–480, 2017.

[7] M. Charikar, C. Chekuri, T. Feder, and R. Motwani. In-
cremental clustering and dynamic information retrieval.
SIAM Journal on Computing, 33(6):1417–1440, 2004.

[8] M. Charikar, S. Guha, E. Tardos, and D. B. Shmoys.
A constant-factor approximation algorithm for the k-
median problem (extended abstract). In Proceedings
of the Thirty-first Annual ACM Symposium on Theory
of Computing, STOC ’99, pages 1–10, New York, NY,
USA, 1999. ACM.

[9] B.-R. Dai and I.-C. Lin. Efficient map/reduce-based db-
scan algorithm with optimized data partition. In 2012
IEEE 5th International Conference on Cloud Comput-
ing (CLOUD), pages 59–66. IEEE, 2012.

[10] A. Ene, S. Im, and B. Moseley. Fast clustering using
mapreduce. In Proceedings of the 17th ACM SIGKDD
international conference on Knowledge discovery and
data mining (KDD), pages 681–689. ACM, 2011.

[11] M. Ester, H.-P. Kriegel, J. Sander, X. Xu, et al. A
density-based algorithm for discovering clusters in large
spatial databases with noise. In Proceedings of the Sec-
ond International Conference on Knowledge Discovery
and Data Mining (KDD), volume 96, pages 226–231,
1996.

[12] T. Feder and D. Greene. Optimal algorithms for ap-
proximate clustering. In Proceedings of the twentieth
annual ACM symposium on Theory of computing, pages
434–444. ACM, 1988.

[13] Y. X. Fu, W. Z. Zhao, and H. F. Ma. Research on par-
allel dbscan algorithm design based on mapreduce. In
Advanced Materials Research, volume 301, pages 1133–
1138. Trans Tech Publ, 2011.

[14] T. F. Gonzalez. Clustering to minimize the maximum
intercluster distance. Theoretical Computer Science
(TCS), 38:293–306, 1985.

[15] S. Guha, A. Meyerson, N. Mishra, R. Motwani, and
L. O’Callaghan. Clustering data streams: Theory and
practice. IEEE Transactions on Knowledge and Data
Engineering (TKDE), 15(3):515–528, 2003.

[16] A. Gupta, R. Krauthgamer, and J. R. Lee. Bounded
geometries, fractals, and low-distortion embeddings.
In Foundations of Computer Science, 2003. Proceed-
ings. 44th Annual IEEE Symposium on, pages 534–543.
IEEE, 2003.

[17] S. Har-Peled and M. Mendel. Fast construction of
nets in low-dimensional metrics and their applications.
SIAM Journal on Computing, 35(5):1148–1184, 2006.

[18] Y. He, H. Tan, W. Luo, S. Feng, and J. Fan. Mr-
dbscan: a scalable mapreduce-based dbscan algorithm
for heavily skewed data. Frontiers of Computer Science,
8(1):83–99, 2014.

[19] S. Im and B. Moseley. Brief announcement: Fast and
better distributed mapreduce algorithms for k-center
clustering. In Proceedings of the 27th ACM symposium
on Parallelism in Algorithms and Architectures, pages
65–67. ACM, 2015.

[20] P. Indyk, S. Mahabadi, M. Mahdian, and V. S. Mir-
rokni. Composable core-sets for diversity and cover-
age maximization. In Proceedings of the 33rd ACM
SIGMOD-SIGACT-SIGART Symposium on Principles
of Database Systems (PODS), pages 100–108. ACM,
2014.

[21] Y. Kim, K. Shim, M.-S. Kim, and J. S. Lee. Dbcure-mr:
an efficient density-based clustering algorithm for large
data using mapreduce. Information Systems, 42:15–35,
2014.

[22] S. Li and O. Svensson. Approximating k-median via
pseudo-approximation. SIAM Journal on Computing,
45(2):530–547, 2016.

[23] C. Liao and S. Hu. Polynomial time approximation
schemes for minimum disk cover problems. Journal of
combinatorial optimization, 20(4):399–412, 2010.

[24] G. Malkomes, M. J. Kusner, W. Chen, K. Q. Wein-
berger, and B. Moseley. Fast distributed k-center clus-
tering with outliers on massive data. In Advances in
Neural Information Processing Systems (NIPS), pages
1063–1071, 2015.

[25] J. McClintock and A. Wirth. Efficient parallel algo-
rithms for k-center clustering. In Parallel Processing
(ICPP), 2016 45th International Conference on, pages
133–138. IEEE, 2016.

[26] V. Mirrokni and M. Zadimoghaddam. Randomized
composable core-sets for distributed submodular max-
imization. In Proceedings of the Forty-Seventh Annual
ACM on Symposium on Theory of Computing (STOC),
pages 153–162. ACM, 2015.

[27] M. Noticewala and D. Vaghela. Mr-idbscan: Efficient
parallel incremental dbscan algorithm using mapre-
duce. International Journal of Computer Applications
(IJCA), 93(4), 2014.

[28] V. V. Vazirani. Approximation algorithms. Springer
Science & Business Media, 2013.

171

CCCG 2018, Winnipeg, Canada, August 8–10, 2018

Approximation Schemes for Covering and Packing in the Streaming Model

Christopher Liaw∗ Paul Liu† Robert Reiss‡

Abstract

The shifting strategy, introduced by Hochbaum and
Maass [10], and independently by Baker [1], is a uni-
fied framework for devising polynomial approximation
schemes to NP-Hard problems. This strategy has been
used to great success within the computational geom-
etry community in a plethora of different applications;
most notably covering, packing, and clustering prob-
lems [2, 5, 7, 8, 9]. In this paper, we revisit the shift-
ing strategy in the context of the streaming model and
develop a streaming-friendly shifting strategy. When
combined with the shifting coreset method introduced
by Fonseca et al. [6], we obtain streaming algorithms
for various graph properties of unit disc graphs. As a
further application, we present the first approximation
algorithms and lower bounds for the unit disc cover
(UDC) problem in the streaming model.

1 Introduction

The shifting strategy is a unified framework for devising
polynomial-time approximation schemes (PTASes) to
NP-Hard problems. Originally used by Baker [1] for
maximum independent set in planar graphs, the shifting
strategy was modified to solve several geometric covering
problems in the widely-cited paper of Hochbaum and
Maass [10]. Since then, this strategy has found applica-
tions in an incredibly diverse set of domains; including
facility location, motion planning, image processing, and
VLSI design.

For geometric problems, the shifting strategy is based
on partitioning the possible input space into disjoint
regions (or windows), solving each disjoint region (either
exactly or approximately), and then joining the par-
tial solutions from each window into a candidate global
solution. By choosing several partitions, and minimiz-
ing over the candidate solutions from each one, a good
approximation to the problem is formed. The main ob-
servation of the shifting strategy is that the analysis of
the approximation factor can be done in two independent
portions; the error accumulated from dividing the space

∗Department of Computer Science, University of British
Columbia, Vancouver, Canada. cvliaw@cs.ubc.ca
†Department of Computer Science, Stanford University, Stan-

ford, USA. paul.liu@stanford.edu
‡Department of Computer Science, University of British

Columbia, Vancouver, Canada. rreiss@cs.ubc.ca

into windows, and the error from the within-window
algorithm. The within-window algorithm is typically
easier to design; in many problems the optimal solution
size within a window is bounded by a small constant.
Thus by specifying good within-window algorithms, the
algorithm designer can get a global solution with only a
small overhead in complexity. One of the original prob-
lems addressed by Hochbaum and Maass is the unit disc
cover (UDC) problem: given a point set P in the plane,
the problem asks for the size of the smallest set of radius
r (or equivalently, unit) discs that cover P completely.1

In this case, the partition of the input space is a tiling of
the plane by identical `× ` squares. Within each square,
the optimal UDC is found by brute force, as the solu-
tion size is at most O(`2). By iterating over translates
(or shifts) of this tiling, Hochbaum and Maass obtain

a
(
1 + 1

`

)2
-approximation with running time nO(`2) for

UDC in 2D.
Recently, there has been renewed interest in making

shifting strategy algorithms practical, as the PTASes ob-
tained by the shifting strategy are too slow to be applied
in practice. In recent work by Fonseca et al. [6], the
technique of shifting coresets is introduced, giving linear
time approximations for various problems on unit disc
graphs. They observe that within-window algorithms
used in the shifting technique often iterate over mpoly(`)

candidate solutions, where m is the number of points
inside the window and ` is the size of the window. By us-
ing coresets to approximate and sparsify point set inside
the window, they mitigate the high memory and com-
putational cost of the within-window algorithm. Their
algorithms are no longer PTASes, but run in linear time
and produce constant factor approximations.

Although the shifting strategy is widely used, scarce
attention has been given to it in the streaming model.
In the streaming model, the complexity of an algorithm
is measured mainly by the number of passes it makes
over the input data, and the amount of memory used
over the duration of the algorithm. In common settings,
the requirements are that the algorithm makes only one
pass over the input data and uses sublinear (usually
polylogarithmic) memory in the size of the input. This
is difficult in the context of the shifting strategy as
partitioning the input often requires the practitioner to

1Actually, Hochbaum and Maass consider the problem of finding
the smallest of discs that cover a set of points. Our problem is
slightly different in that we only care about the size of such a
cover.

172

30th Canadian Conference on Computational Geometry, 2018

keep a mapping of input points to windows within the
partition, necessitating at least linear space.

In this paper, we revisit the shifting strategy in the
context of the streaming model, and develop a streaming-
friendly variant. Our streaming shifting strategy only re-
lies on the algorithm designer to design a within-window
streaming algorithm A. Provided that the optimal so-
lution within each window is bounded, the streaming
shifting strategy then gives a global algorithm that only
introduces a polylogarithmic overhead to the memory
use of A, with the same number of passes over the
input data. The analysis is inspired by a recent algo-
rithm of Cabello and Pérez-Lantero [4], who presents
a (3/2 + ε) approximation for cardinality estimation of
maximum independent sets (MIS) of interval graphs in
O (poly(1/ε) log n) memory with only one pass over the
input data.

When the memory use of a within-window algorithm
for a problem is small (i.e. polylogarithmic), our stream-
ing shifting strategy gives a streaming algorithm for
solving the problem globally. Due to this, our results
are complementary to those given by Fonseca et al. [6],
where O(1) memory within-window algorithms are de-
veloped for various problems on unit disc graphs. In
particular, when their results are combined with our
shifting strategy, we obtain streaming algorithms with
polylogarithmic memory for independent set, dominating
set, and minimum vertex cover on unit disc graphs.

In Section 3, we describe and analyze our stream-
ing shifting strategy. As an application, we present in
Section 4 novel approximation algorithms for the UDC
problem in the streaming model. Our UDC algorithms
use O (poly(1/ε) log n) memory, and operate in only one
pass over the input data. We remark that the results of
Cabello and Pérez-Lantero imply a (3/2 + ε) approxima-
tion for the 1D UDC problem. This is due to the fact
that for unit disc (i.e. unit interval) graphs in 1D, the
cardinality of a maximum independent set is equal to
the cardinality of a minimum disc cover. However, to
the best of our knowledge, UDC has not been considered
in the streaming model for 2D and above. In Section 5,
we show that any one pass streaming algorithm for 2D
UDC in L2 must have approximation factor at least 2.

2 Preliminaries

We use the standard notation [r] = {1, . . . , r} where
r ∈ N. For positive numbers y, ε, δ, we use the notation
x = y(1± ε)± δ to mean x ∈ [y(1− ε)− δ, y(1 + ε) + δ].
For simplicity, we make the minor assumption that the
coordinates of the input points are bounded above by
poly(n) and can be represented using O(log n) bits where
n is the number of points.

2.1 ε-min-wise hashing

One of the key primitives in our algorithms is the ability
to (approximately) sample an element from a set. To do
this, we will use ε-min-wise hash functions which were
introduced by Broder et al. [3]. We remark that a similar
idea was also used in [4].

Let U = V = {0, 1, . . . , k−1} and H be a collection of
functions h : U → V . We will assume that k is a prime
power.

Definition 1 A family of hash functions H is said to
be r-wise independent if for any distinct x1, . . . , xr ∈ U
and any y1, . . . , yr ∈ V we have

Pr
h∈H

[h(x1) = y1 ∧ . . . ∧ h(xr) = yr] =
1

kr
.

Here, we use Prh∈H to denote the probability measure
where each h is drawn uniformly at random from H. It
is well-known that an r-wise independent hash family
can be constructed as follows (see [14]). Let F be a finite
field of size k (such a field exists because k is assumed
to be a prime power). Let H = {ha0,a1,...,ar−1 : ai ∈ F}
where ha0,a1,...,ar−1(x) = ar−1x

r−1 + . . .+ a0. Then H
is an `-wise independent hash family. Moreover, any
element in H can be represented using O(r log k) bits.

Definition 2 A family of hash functions H is said to
be (ε, s)-min-wise independent if for any X ⊆ [k] with
|X| ≤ s and x ∈ X we have

Pr
h∈H

[
h(x) < min

y∈X\{x}
h(y)

]
=

1± ε
|X| .

There is a simple way to obtain (ε, s)-min-wise indepen-
dent hash functions due to Indyk [11].

Theorem 1 There are fixed constants c, c′ > 1 such
that the following holds. Let ε > 0 and s ≤ εk/c. Then
any c′ log(1/ε)-wise independent hash family H is (s, ε)-
min-wise independent.

For our applications, we will have s = n and
k = max(n/ε, poly(n)d). In particular, the hash
functions can be represented using O(log2(1/ε) +
d log(1/ε) log(n)) bits. If ε−1 ≤ n then this quantity
is O(d log(1/ε) log(n)).

3 Shifting lemma

We begin by reviewing the shifting strategy of Hochbaum
and Maass [10] using the UDC problem in Rd as an ex-
ample. For simplicity, we describe the shifting strategy
in the planar case d = 2. In the shifting strategy, we
partition the plane into windows of size 2`× 2` where
` is the “shifting parameter”.2 The windows are closed

2Hochbaum and Maass [10] actually partition the plane into
strip of width ` but small variants, such as replacing strips with
windows, also work for identical reasons.

173

CCCG 2018, Winnipeg, Canada, August 8–10, 2018

on the top and left while open on the right and bottom.
We further impose that the coordinates of the top left
boundary point are even integers. Due to these restric-
tions, there are exactly `2 different ways to partition R2.
Let S1, . . . , S`2 the be the `2 different partitions of the
plane.

Suppose that A is a within-window algorithm, i.e. it
(approximately) solves the covering problem within a
window of size 2`× 2`. Hochbaum and Maass [10] pro-
posed the following algorithm to extend A to a “global
algorithm” AS . For each partition Si, we use A on each
of windows to compute a disc cover. Then we take the
union of the disc cover on each window to produce a
global solution Di. Having computed `2 disc covers, we
output the smallest cardinality disc cover of the Di. The
following lemma states that the approximation ratio of
this scheme is not much worse than the approximation
ratio of the within-window algorithm. Hence, to design
a global algorithm, one only needs to design a “local
algorithm”.

Lemma 2 (Shifting lemma [10])

rAS
≤
(

1 +
1

`

)2

rA.

where rA, rAS
are the approximation ratios of A,AS,

respectively.

In general, let A be an algorithm that approximately
solves the disc cover problem in Rd but restricted to
“windows” of size 2`× . . .× 2`︸ ︷︷ ︸

d times

. Define AS to be the algo-

rithm that partitions Rd into these windows, uses A on
each window to find a cover, then takes the smallest cover

over all partitions. Then we have rAS
≤
(
1 + 1

`

)d
rA.

This is particularly elegant since one can focus on ob-
taining an approximation algorithm assuming bounded
input. Once such an algorithm is developed, it can then
be extended to an algorithm on the whole space.

To improve the space complexity of some of our stream-
ing algorithms, we can use the following randomized ver-
sion of the shifting lemma which we prove in Appendix A.
Let AS be the algorithm which randomly picks one of
the `d partitions of the Rd as defined above, say Si, uses
A to compute a disc cover on each window, then outputs
the union as a global disc cover.

Lemma 3 Suppose ` ≥ 2d. Then with probability at
least 1/2

rAS
≤
(

1 +
4d

`

)
rA ≤

(
1 +

4

`

)d
rA

where rA, rAS
are the approximation ratios of A,AS,

respectively.

3.1 The shifting lemma in the streaming setting

In this section, we describe the streaming shifting strat-
egy. For concreteness, we focus on giving a streaming
variant of Lemma 3. Let A be a streaming algorithm
which approximately solves UDC restricted to a window
of size 2`× 2`.

We begin with a high level description of how to
use the shifting strategy in the streaming setting. For
now, let us fix a partition of R2 into windows of size
2` × 2`. The first issue that arrives is that one is no
longer allowed to run A on all windows as the space
would be prohibitive. To get around this, we use the
following trick from [4]. Set T = 4`2. Let γt be the
number of windows for which A outputs a disc cover of
size at least t. Since there is a trivial cover of size T ,
we can assume that γt = 0 for t > T . Then the cover
obtained by running A on all windows is exactly

∑T
t=1 γt.

The first key observation is that γ1 can be interpreted as
the number of windows that contain at least one point.
In the language of streaming algorithm, this is exactly
the distinct elements problem and can be approximated
in very little space.3 The second key observation is that,
if we are able to get a random sample of the windows
that contain at least one point then we can get a very
good estimate of the quantity ηt := γt/γ1. We can do
this approximately using min-wise hashing.

We now commence with a more formal treatment
of the above ideas. Again, let us fix a partitioning of
R2 into windows of size 2` × 2`. First, we can use an
algorithm due to Kane, Nelson, and Woodruff [12] for
distinct elements to obtain the following result.

Lemma 4 Using O(ε−2 + log(n)) bits of space, we can
obtain an estimate γ̂1 = (1±ε)γ1 with probability at least
0.99.

Next, we use min-wise hashing to estimate ηt for 2 ≤
t ≤ T . This is formalized in the next lemma, whose
proof is given in Appendix B.

Lemma 5 Let A be a streaming algorithm for the disc
cover problem restricted to a window of size 2` × 2`.
Suppose that A uses s bits of space and let sh =
O(log(1/ε) log(n)). Then using O(ε−2`4 log(`)(s+ sh))
bits of space, we can obtain an estimate η̂t = (1± ε)ηt ±
ε/T for all t ∈ {2, . . . , T} with probability at least 0.99.

We now prove our main theorem in this section.

Theorem 6 (Streaming shifting lemma) Let A be
a streaming algorithm for the disc cover problem re-
stricted to a window of size 2`× 2` with approximation
ratio rA. Suppose that A uses s bits of space and let
sh = O(log(1/ε) log(n)). Then there is a streaming al-
gorithm for the disc cover problem with approximation

3Given a stream a1, . . . , am ∈ [n], the distinct elements problem
is to estimate |{a1, . . . , am}|.

174

30th Canadian Conference on Computational Geometry, 2018

ratio (1+ε)(1+4/`)2rA that uses O(ε−2`4 log(`)(s+sh))
bits of space and has success probability at least 0.99.

Proof. Fix a partition of R2 into 2`× 2` windows. By
Lemma 4, with probability at least 0.99 we obtain an
estimate γ̂1 = (1± ε)γ1. By Lemma 5, with probability
at least 0.99 we obtain an estimate η̂t = (1± ε)ηt ± ε/T .
Hence,

γ̂t = η̂tγ̂1

= [(1± ε)ηt ± ε/T] (1± ε)γ1

= (1± 3ε)γt ± 2εγ1/T.

So

T∑

t=1

γ̂t = (1± 3ε)

T∑

t=1

γt ± 2εγ1 = (1± 5ε)

T∑

t=1

γt.

If ε < 1/10 then
∑T
t=1 γt ≤ (1 − 5ε)−1

∑T
t=1 γ̂t ≤ (1 +

20ε)
∑T
t=1 γt. Replacing ε with ε/20, we have a (1 + ε)-

approximation to the disc cover computed by running
A on all windows in the partition.

Finally, by Lemma 3, using algorithm A on all win-
dows gives a (1 + 4/`)2rA-approximation algorithm with
success probability 0.48. This can be amplified to 0.99
by running O(1) copies of the algorithm in parallel and
taking the median.

The space complexity comes from Lemma 4 and
Lemma 5. �

We remark that our strategy is very general. In fact,
a straightforward extension of our strategy yields the
following general theorem for unit disc covers in Rd.

Theorem 7 Let A be a streaming algorithm for the
disc cover problem restricted to a window of size 2` ×
. . . × 2` with approximation ratio rA. Suppose that A
uses s bits of space and let sh = O(d log(1/ε) log(n)).
Then there is a streaming algorithm for the disc cover
problem with approximation ratio (1 + ε)(1 + 4/`)drA
that uses O(ε−2d2d+2`2d log(`d)(s + sh)) bits of space
and has success probability at least 0.99.

In addition, we do not need to restrict ourselves to
single-pass streaming algorithms. Theorem 6 holds
whether we consider single-pass streaming algorithms or
multi-pass streaming algorithms; one simply needs to
use the correct streaming algorithm for A restricted to
each window.

Using a bit more space will allow us to improve slightly
on the approximation ratio in Theorem 7. This is useful
when ` is a small constant.

Theorem 8 Let A be a streaming algorithm for the
disc cover problem restricted to a window of size 2` ×
. . . × 2` with approximation ratio rA. Suppose that A
uses s bits of space and let sh = O(d log(1/ε) log(n)).

Then there is a streaming algorithm for the disc cover
problem with approximation ratio (1 + ε)(1 + 1/`)drA
that uses O(ε−2d2d+2`3d log(`d)(s + sh)) bits of space
and has success probability at least 0.99.

The proof of Theorem 8 is nearly identical to the proof
of Theorem 7. The only difference is that instead of
sampling a random partition, we maintain all partitions.
Thus, the space increases by a factor of O(`d) but for
the approximation ratio, we can apply Lemma 2 instead
of Lemma 3.

4 Applications of the streaming shifting lemma

In this section, we present within-window algorithms for
unit disc cover and various problems on unit disc graphs.
When combined with the streaming shifting strategy,
these within-window algorithms give global streaming
algorithms.

4.1 Unit disc cover in 2D with L2 balls

It suffices to give an approximation algorithm for the
UDC in 2D restricted to a 2`×2` window and then apply

Theorem 6. Let δ < 2/
√

3−1√
2

be a fixed positive constant

and partition the window into a uniform grid of side
length δ × δ. For each square in the grid, we keep the
first point in the stream that lies in the square. Thus,
we only require storing O(`2) points and O(`2 log(n))
bits of space for the window. We then solve the UDC
problem optimally given only the points we maintain,
giving us a candidate disc cover C.Although C may not
cover all the input points, any uncovered point is at most
distance δ

√
2 from a disc in C. Hence by increasing the

radius of each disc in C by δ
√

2, we fully cover all the
points in the window. By our choice of δ, each disc of
radius 1+δ

√
2 can be completely covered by 3 unit discs

(see Figure 1), giving a 3-approximation to the within-
window UDC problem. Choosing ` = O(1/ε) gives the
following theorem.

Theorem 9 There is a streaming algorithm that uses
O(ε−8 log(1/ε) log(n)) bits of space and gives a (3 + ε)-
approximation to the L2 UDC problem in 2D.

We note that the algorithm above can be trivially
extended to higher dimensions, though we do not have
a good bound on the approximation factor.

4.2 Unit disc cover in 2D with L∞ balls

Consider as before a 2` × 2` window. Recall that an
L∞ ball of unit radius corresponds to a 2× 2 square in
R2. Consider a partition of the window into ` horizontal
strips of unit height. Then this reduces to ` copies of
the standard 1D UDC problem. We can now use the
(3/2 + ε)-approximation for UDC in 1D (due to [4]),

175

CCCG 2018, Winnipeg, Canada, August 8–10, 2018

Figure 1: A covering of a radius 2/
√

3 disc by 3 discs of
radius 1.

using O(ε−2 log(1/ε) log(n)) bits of space for each strip.
Noting that any square in the optimal covering of a
2` × 2` window touches at most 2 strips, this gives a
(3 + ε)-approximation to the UDC. Choosing ` = O(1/ε)
gives a space complexity of O(ε−3 log(1/ε) log(n)) bits
as we require ` runs of the 1D UDC approximation.
Applying Theorem 6 gives the following theorem.

Theorem 10 There is a streaming algorithm that uses
O(ε−9 log2(1/ε) log(n)) bits of space and gives a (3 + ε)-
approximation to the L∞ UDC problem in 2D.

4.3 Streaming algorithms for unit disc graphs

Using the shifting coresets developed in Fonseca et al. [6],
we obtain several streaming algorithms for unit disc
graphs. In their work, they develop various O(1) memory
within-window algorithms by computing a coreset for
each window. Their coresets are similar to our within-
window algorithm for UDC, in that they partition the
window into squares of size δ × δ where δ is a fixed
constant. A constant number of points is then stored
in each square, and the problem is solved on the stored
points. In the offline model, this gives rise to constant
factor approximations for maximum weight independent
set, dominating set, and minimum vertex cover on unit
disc graphs.

Using the streaming shifting lemma, we obtain stream-
ing algorithms for dominating set, minimum vertex cover,
and unweighted maximum independent set. This is sim-
ply from using their within-window algorithms as a black
box. The restriction to unweighted problems is due to
our technique of subsampling windows, as subsampling
may miss a small number of windows that contain large
weights of the optimal solution.

5 Lower bounds

In this section, we prove lower bounds on the UDC
problem via a reduction to the Index problem in com-

Figure 2: The lower bound construction for UDC in
2D. Alice streams in the points on the unit circle on the
right. Bob streams in the point on the left to determine
whether or not the rightmost point is present.

munication complexity which is defined as follows. Let
n ∈ N. Alice has a vector x ∈ {0, 1}n and Bob has an
index i ∈ [n]. In the one-way communication model,
Alice is allowed to send a single message to Bob and
Bob must then compute the answer. Note that there is
a trivial protocol that communicates n bits; Alice could
send the whole vector x to Bob. The following theorem
asserts that, up to constant factors, there is no better
protocol even if it is randomized.

Theorem 11 ([13]) Any one-way randomized commu-
nication protocol which solves Index with probability at
least 0.51 requires Ω(n) bits of communication.

Using this theorem [4] was able to show that
any streaming algorithm that computes a (1.5 − ε)-
approximation to the maximum independent intervals
problem in one dimension requires Ω(n) space. This
essentially implies the same lower bound for UDC in any
dimension.

Theorem 12 ([4]) Fix ε ∈ (0, 0.5). In all dimensions
and for any Lp norm, if a streaming algorithm computes
a (1.5−ε)-approximation to UDC with success probability
at least 0.51 then it uses Ω(n) space.

5.1 A (2− ε) lower bound for L2 UDC in 2D

Theorem 13 Fix ε ∈ (0, 1). In dimensions two and
higher, if a streaming algorithm computes a (2 − ε)-
approximation to UDC using L2 balls with success prob-
ability at least 0.51 then it uses Ω(n) space.

Proof. We will reduce from Index. Let A be a stream-
ing algorithm, using S bits, which computes a (2− ε)-
approximation to UDC in 2D with L2 balls of radius
2. Let z ∈ {0, 1}n be Alice’s input and i ∈ [n] be
Bob’s input. For simplicity, we assume that Bob’s
input is i = n; it will be apparent how to general-
ize to any i. If zj = 1 then Alice streams the point
(cos(2jπ/n), sin(2jπ/n)) into A. When she is done she

176

30th Canadian Conference on Computational Geometry, 2018

sends the memory contents of A to Bob. Bob now

streams the point
(

1+cos(2π/n)
2 − 4, 0

)
and queries A.

(See also Figure 2.)
Suppose first that zi = 0. Then we claim that placing

a radius 2 ball with center at
(

1+cos(2π/n)
2 − 2, 0

)
covers

all the points. Indeed, it clearly covers Bob’s point. To
show that the ball covers all of Alice’s points, it suffices
to show that the radius 2 ball intersects the unit ball for
some coordinate in

(
cos(2π/n), 1+cos(2π/n)

2

)
. Indeed,

at x = cos(2π/n), the y-coordinates of the radius 2

ball is at ±
√

4−
(

3−cos(2π/n)
2

)2

. It can be verified that

the absolute value of this quantity is at least sin(2π/n).
Indeed, for any θ ∈ R

4−
(

3− cos(θ)

2

)2

− sin2(θ)

=
3

4
cos2(x)− 3

2
cos(θ) + 3/4

= 3

(
cos(θ)− 1

2

)2

= 3 sin4(θ/2) > 0,

where in the last equality we used the identity
sin2(θ/2) = (1 − cos(θ))/2. Hence, the radius 2 ball
covers all of Alice’s points so A will report a quantity
≤ 2− ε.

On the other hand, if zi = 1 then at least two points

are required just to cover (1, 0) and
(

1+cos(2π/n)
2 − 4, 0

)

so A will report ≥ 2. �

6 Practical algorithms for UDC

Although the algorithms of the previous section have low
approximation ratios, they involve high constant factors
in their running times or memory that may make them
unsuitable for practical use. In this section, we develop
several streaming algorithms for unit disc cover that we
believe are suitable in practice. To achieve good per-
formance in practice, we either relax the approximation
factor, or use multiple passes.

Our first algorithm for UDC is also the simplest. We
cover Rd with an appropriate lattice of unit balls, and
then apply the distinct elements algorithm of Kane,
Woodruff, and Nelson [12] to count the number of balls
of the lattice containing at least one input point. In the
case of L∞ in 2D, this lattice is simply a uniform grid
where each square has width 2. In the case of L2 in 2D,
the lattice takes the uniform grid of L∞ and places a
unit circle on each grid point, as well as a unit circle in
the center of each grid square. When a point is streamed,
we compute the unit ball it belongs to and add that ball
to the distinct elements data structure. If the point
belongs to multiple balls (as in the L2 case), choose any

of the balls it belongs to and add it to the data structure.
By choosing randomly from a family of shifted versions
of such lattices, we obtain the result below whose proof
is deferred to Appendix C.

Theorem 14 There is a one pass streaming algorithm
for L2 UDC in 2D that uses O(ε−2 + log(n)) space with
approximation factor 2π(1 + ε) and succeeds with proba-
bility at least 0.99.

Theorem 15 There is a one pass streaming algorithm
for L∞ and L1 UDC in 2D that uses O(ε−2 + log(n))
space with approximation factor 4 and succeeds with
probability at least 0.99.

Proof. The proof of this is exactly analogous to the
proof of Theorem 14 but in this case it is not necessary
to randomly shift the lattice. In L∞ and L1, we use
squares instead of L2 discs. �

6.1 Using multiple passes

By using multiple passes over the input data, we can
give alternate algorithms that both improve the approx-
imation factor and the memory of Theorems 14 and 15.
One example is the following theorem, whose proof can
be found in Appendix D.

Theorem 16 There is a two pass streaming algorithm
for L∞ and L1 UDC in 2D that uses O(ε−2 log n) space
with approximation factor 3 and succeeds with probability
at least 0.99.

Finally, we give one additional algorithm for L1 and
L∞ UDC in R2. Observe that for the 1-dimensional
UDC problem, if we allow around 1/ε passes through
the data then O(ε−1 log n) memory suffices to solve the
problem with approximation factor 1 + ε. Within each
1D window, we simply cover the leftmost uncovered
point with an interval that begins at that point. By the
end of a pass over the input data, we should be able
to determine another leftmost uncovered point in the
window or if we have covered all of the points. Since all
the intervals used are disjoint, we use at most ` passes for
a window size of `. This effectively simulates the greedy
offline interval covering algorithm using multiple passes.
Combining this with our streaming strategy gives the
following result for L∞ UDC.

Theorem 17 There is a 1/ε pass streaming al-
gorithm for L∞ and L1 UDC in 2D that uses
O(ε−7 log(1/ε) log(n)) space with approximation factor
2 + ε.

Proof. We simply divide each 2` × 2` window into `
horizontal strips, and use the 1D UDC algorithm with
approximation factor 1+1/` on each strip for the within-
window algorithm. Since each disc of the optimal solu-
tion can touch at most two strips, we get approximation
factor 2 + ε by choosing ` = O(1/ε). �

177

CCCG 2018, Winnipeg, Canada, August 8–10, 2018

References

[1] B. S. Baker. Approximation algorithms for NP-
complete problems on planar graphs. In 24th Annual
Symposium on Foundations of Computer Science,
pages 265–273, Nov 1983.

[2] Y. Bejerano. Efficient integration of multihop
wireless and wired networks with QoS constraints.
IEEE/ACM Transactions on Networking (TON),
12(6):1064–1078, 2004.

[3] A. Z. Broder, M. Charikar, A. M. Frieze, and
M. Mitzenmacher. Min-wise independent permuta-
tions. J. Comput. Syst. Sci., 60(3):630–659, 2000.

[4] S. Cabello and P. Pérez-Lantero. Interval selec-
tion in the streaming model. In Algorithms and
Data Structures - 14th International Symposium,
WADS 2015, Victoria, BC, Canada, August 5-7,
2015. Proceedings, pages 127–139, 2015.

[5] T. M. Chan. A note on maximum independent
sets in rectangle intersection graphs. Information
Processing Letters, 89(1):19–23, 2004.

[6] G. D. da Fonseca, V. G. P. de Sá, and C. M. H.
de Figueiredo. Linear-time approximation algo-
rithms for unit disk graphs. In Approximation and
Online Algorithms - 12th International Workshop,
WAOA 2014, Wroc law, Poland, September 11-12,
2014, Revised Selected Papers, pages 132–143, 2014.

[7] D. Eppstein. Subgraph isomorphism in planar
graphs and related problems. In Proceedings of the
Sixth Annual ACM-SIAM Symposium on Discrete
Algorithms, SODA ’95, pages 632–640, Philadelphia,
PA, USA, 1995. Society for Industrial and Applied
Mathematics.

[8] T. Erlebach, K. Jansen, and E. Seidel. Polynomial-
time approximation schemes for geometric graphs.
In Proceedings of the Twelfth Annual ACM-SIAM
Symposium on Discrete Algorithms, SODA ’01,
pages 671–679, Philadelphia, PA, USA, 2001. Soci-
ety for Industrial and Applied Mathematics.

[9] T. Erlebach and E. J. van Leeuwen. PTAS for
Weighted Set Cover on Unit Squares, pages 166–
177. Springer Berlin Heidelberg, Berlin, Heidelberg,
2010.

[10] D. S. Hochbaum and W. Maass. Approximation
schemes for covering and packing problems in image
processing and VLSI. J. ACM, 32(1):130–136, 1985.

[11] P. Indyk. A small approximately min-wise inde-
pendent family of hash functions. J. Algorithms,
38(1):84–90, 2001.

[12] D. M. Kane, J. Nelson, and D. P. Woodruff. An
optimal algorithm for the distinct elements prob-
lem. In Proceedings of the Twenty-Ninth ACM
SIGMOD-SIGACT-SIGART Symposium on Prin-
ciples of Database Systems, PODS 2010, June 6-
11, 2010, Indianapolis, Indiana, USA, pages 41–52,
2010.

[13] I. Kremer, N. Nisan, and D. Ron. On Randomized
one-round communication complexity. Computa-
tional Complexity, 8(1):21–49, 1999.

[14] S. P. Vadhan. Pseudorandomness. Foundations and
Trends in Theoretical Computer Science, 7(1-3):1–
336, 2012.

Appendix

A Proof of Lemma 3

Proof. Let S be a random partition of Rd into windows
of size 2`× . . .× 2`. Consider an optimal disc cover and
construct a new disc cover as follows. If a disc is in k
windows then the new disc cover will have k copies of
the disc, each associated with one of the windows. Note
that this gives a disc cover for each of the windows.

Let us number the discs in the optimal cover,
1, . . . , OPT, and let Xi be the number of windows which
contain a portion of disc i. Since S is a random par-
tition, we have that for each coordinate j ∈ [d], disc i
intersects a closed boundary of a window along coor-
dinate j with probability 1/`. If this intersection hap-
pens along k coordinates then Xi ≤ 2k. Hence, EXi ≤∑
k≥0

(
d
k

) (
1
`

)k (`−1
`

)d−k
2k = (1 + 1/`)d ≤ 1 + 2d/`

where the last inequality is because ` ≥ 2d.
Let Y =

∑OPT
i=1 Xi. Then Y is an upper bound on the

number of disc covers obtained by solving each window
optimally. Moreover, E[Y − OPT] ≤ OPT ·2d/`, so
by Markov’s Inequality, Y − OPT ≤ 4d/` · OPT with
probability at least 1/2. The lemma now follows since
A is an rA-approximate algorithm for each window. �

B Proof of Lemma 5

Proof. Let H be a O(log(1/ε))-wise independent family
of hash functions. The input to the hash functions is
a window (there are poly(n) possible windows) and the
output is a number of [poly(n)]. By Theorem 1, the
family H is a (n, ε)-min-wise family of hash functions.

To estimate ηt we do the following. Let r ∈ N be a
parameter to be chosen later and h1, . . . , hr be drawn
from H uniformly and independently at random. For
each j ∈ [r], we maintain a window Wj for hj and a copy
of A (denoted Aj) as follows. We initialize Wj to be
a dummy window with hj(Wj) =∞. Now suppose we
receive a point p in the input and let W be the window

178

30th Canadian Conference on Computational Geometry, 2018

that p belongs to. If W = Wj then we stream p into Aj .
On the other hand, if W 6= Wj then we have two cases.
If hj(W) < hj(Wj) then we replace Wj with the new
window W , reset Aj , and stream p into Aj . Otherwise,
if hj(W) > hj(Wj) then we ignore p.

Fix t ∈ {2, . . . , T} and j ∈ [r]. Let Xj be the random
variable which is 1 if Aj reports that the window mini-
mizing hj has a disc cover of size at least t. Otherwise,
Xj = 0. Since H is an (n, ε)-min-wise family, it follows
that EXj = (1 ± 2ε)ηt. Now let η̂t = 1

r

∑r
j=1Xj . By

Hoeffding’s Inequality, we have

Pr[|η̂t − EXj | ≥ ε/T] ≤ 2 exp(−2rε2/T 2).

By choosing r ≥ O(T 2 log(T)/ε2), the above probability
is at most 1/(100T). Hence, by a union bound, we have
η̂t = (1± 2ε)ηt ± ε/T for all t with probability at least
0.99.

Finally, it remains to analyze the space requirement
of this scheme. Storing each hash function requires sh
bits of space. Hence, storing all r hash function requires
O(ε−2`4 log(`)sh) bits of space. Next, we have a copy of
A for each of the r windows we maintain. So this uses
an additional O(ε−2`4 log(`)s) bits of space. Hence, the
total space usage is O(ε−2`4 log(`)(s+ sh)) bits. �

C Proof of Theorem 14

Proof. Let SOPT be the set of discs in an optimal solu-
tion. Let Γ be the lattice of unit discs described above,
and let nΓ be the maximum number of lattice discs inter-
secting a disc in SOPT. In the worst case, the algorithm
above counts nΓ discs for each disc of SOPT.

To compute the expectation from choosing a random
shift of the lattice, we can view each disc of SOPT as
radius 2 and the discs on the lattice as having radius
0 with lattice points on a uniform grid of side length√

2. Thus nΓ is equivalent to the expected number of
lattice points that fall within a randomly placed radius
2 disc on the plane. In expectation, this is equal to the
area of the disc scaled by the area of a lattice square.
Hence we get that EnΓ = 2π. For each disc in SOPT,
the number of discs it intersects within the lattice is
a probability distribution supported on {1, 2, . . . , 16}.
Since the mean of the distribution is 2π, running the
algorithm with a randomly shifted lattice will produce at
most 2π ·OPT discs with at least a constant probability.
By running multiple copies of the algorithm and taking
the minimum, we get the result of Theorem 14. �

D Proof of Theorem 16

Proof. Consider the following algorithm for UDC in L1

and L∞. First, set the shifting parameter ` of Theorem 8
to be 2. For the analysis, fix a window and consider
the points that fall within the window. In the first

pass, the algorithm goes through the input points and
maintains the smallest bounding rectangle that covers
all the points. Observe that we can cover the points with
0 unit squares if and only if the input is empty and we
can cover the points with 1 unit square if and only if the
bounding rectangle fits inside a unit square. In either
of these two cases, the second pass is not necessary. If
the input points can be covered by 2 unit squares then
this can be done by choosing 2 of the 4 corners of the
bounding rectangle and choosing the unit squares to
lie in the rectangle while covering the 2 corners. There
are 6 possible ways to do this so in the second pass,
we check if one these choices cover all the points. If
not then the point set requires at least 3 squares to
cover so we estimate it as 4. Hence, this gives a 4/3-
approximation for each window. Combining this with
the 9/4-approximation from using Theorem 8 with ` = 2
gives the theorem. �

179

CCCG 2018, Winnipeg, Canada, August 8–10, 2018

Formigrams: Clustering Summaries of Dynamic Data∗

Woojin Kim† Facundo Mémoli‡

Abstract

When studying flocking/swarming behaviors in animals
one is interested in quantifying and comparing the dy-
namics of the clustering induced by the coalescence and
disbanding of animals in different groups.

Motivated by this, we propose a summarization of
time-dependent metric data which captures their time-
dependent clustering features which we call formigrams.
These set-valued functions generalize the notion of den-
drogram, a prevalent object in the context of hierarchi-
cal clustering.

Also, we define a metric on formigrams for quantify-
ing the degree of structural difference between any two
given formigrams. In particular, the restriction of this
metric to the collection of dendrograms recovers twice
the Gromov-Hausdorff distance between the ultrametric
spaces associated to the dendrograms. This fact enables
us to show that constant factor approximations to the
metric on formigrams cannot be obtained in polynomial
time.

Finally, we investigate a sufficient condition for time-
dependent metric spaces to be summarized into formi-
grams. In addition, we prove that this summarization
process is stable under perturbations in the input time-
dependent metric data.

1 Introduction

Given data represented as a static finite metric space
(X, dX), a hierarchical clustering method finds a hier-
archical family of partitions that captures multi-scale
features present in the dataset. These hierarchical fam-
ilies of partitions are called dendrograms and their vi-
sualization is straightforward (see figure on the left).

We now turn our attention to a prob-
lem of characterizing dynamic data.
We model dynamic datasets as time

varying finite metric spaces and study a simple
generalization of the notion of dendrogram which
we call formigram - a combination of the words

∗This work was partially supported by NSF grants IIS-
1422400, CCF-1526513, and DMS-1723003.
†Department of Mathematics, The Ohio State University,

kim.5235@osu.edu
‡Department of Mathematics, The Ohio State University,

memoli@math.osu.edu

formicarium1 and diagram (see figure on the right).

Whereas dendrograms are useful for
modeling situations when data points
aggregate along a certain scale pa-
rameter, formigrams are better suited
for representing phenomena when data points may
also separate or disband and then regroup at differ-
ent parameter values. One motivation for considering
this scenario comes from the study and characteriza-
tion of flocking/swarming/herding behavior of animals
[1, 10, 11, 12, 19, 21, 24, 28], convoys [14], moving clus-
ters [15], or mobile groups [13, 29].

Related work. Let X be a set of points having piece-
wise linear trajectories with time-stamped vertices in
Euclidean space Rd. Buchin and et al. [3] provided ex-
plicit algorithms for studying the grouping structure of
X . This was subsequently enriched in [18, 25, 26, 27].

From the set X , the authors of [3] construct a Reeb
graph-like structure RX which is closely related to the
formigram derived from X that we introduce (Section
3 and Theorem 4). The edges of RX are labeled by
maximal groups, and they call RX together with these
labels the trajectory grouping structure of X , enabling
the visualization of the life span of maximal groups.

Our contributions.

1. We generalize dendrograms to formigrams for the
analysis of clustering features of dynamic data,
such as dynamic metric spaces or dynamic graphs.

2. Any dendrogram over a finite set X induces an ul-
trametric on X [7]. Therefore, one can quantify the
structural difference between any two dendrograms
by computing the Gromov-Hausdorff distance be-
tween their two induced ultrametrics [7]. We pro-
pose a distance dFI between formigrams which gen-
eralizes the method above for comparing two den-
drograms (Theorems 1 and 2). The desire to ob-
tain such a precise quantification of the difference
between two dynamic clusterings was already made
explicit in [3, Section 6]. Also, we show that con-
stant factor approximations to dFI cannot be ob-
tained in polynomial time (Theorem 3).

1A formicarium or ant farm is an enclosure for keeping ants
under semi-natural conditions [30].

180

30th Canadian Conference on Computational Geometry, 2018

3. As an application, we propose a method for turning
any (tame) dynamic metric data into a formigram.
This method is closely related to the construction
of trajectory grouping structures [3]. In particular,
this method turns out to be stable under pertur-
bations in the input dynamic metric data under a
certain notion of distance between DMSs that we
introduce (Theorem 5).

2 Background

2.1 Dendrograms and treegrams

Partitions and sub-partitions. Let X be a non-empty
finite set. We will call any partition P of a subset X ′ of
X a sub-partition of X (in particular, any partition of
the empty set is defined as the empty set). In this case
we call X ′ the underlying set of P .

1. By Psub(X), we denote the set of all sub-partitions
of X, i.e.

Psub(X) := {P : ∃X ′ ⊂ X , P is a partition of X ′} .

2. By P(X), we denote the subcollection of Psub(X)
consisting solely of partitions of the whole X.

Given P,Q ∈ Psub(X), by P ≤ Q we mean “P is finer
than or equal to Q”, i.e. for all B ∈ P , there exists C ∈
Q such that B ⊂ C. For example, let X = {x1, x2, x3}
and consider the sub-partitions P := {{x1, x2}} and
Q := {{x1, x2}, {x3}} of X. Then, it is easy to see that
in this case P ≤ Q.

Dendrograms. A dendrogram over a finite set X is
any function θX : R+ → P(X) such that the follow-
ing properties hold: (1) θX(0) = {{x} : x ∈ X}, (2) if
t1 ≤ t2, then θX(t1) ≤ θX(t2), (3) there exists T > 0
such that and θX(t) = {X} for t ≥ T , (4) for all t
there exists ε > 0 s.t. θX(s) = θX(t) for s ∈ [t, t + ε]
(right-continuity). See Figure 1 for an example.

Figure 1: A dendrogram θX over the set
X = {x1, x2, x3, x4}. Notice that θX(0) =
{{x1}, {x2}, {x3}, {x4}} and θX(t) = {X} for all
t ∈ [T,∞).

Treegrams. Dendrograms can be generalized to tree-
grams, a visual representation for hierarchical clustering
of networks [23]. 2 A treegram over a finite set X is any
function θX : R → Psub(X) such that the following
properties hold: (1) if t1 ≤ t2, then θX(t1) ≤ θX(t2),
(2) (boundedness) there exists T > 0 such that θX(t) =
{X} for t ≥ T and θX(t) is empty for t ≤ −T . (3) for
all t there exists ε > 0 s.t. θX(s) = θX(t) for s ∈ [t, t+ε]
(right-continuity). See Figure 2 for an example.

Figure 2: A treegram θX over the set X =
{x1, x2, x3, x4}. Notice that θX(t) = ∅ for t ∈ (−∞, t0).
Also, θX(t0) = {{x1}}, θX(t2) = {{x1}, {x2, x3}}, and
θX(t) = {X} for all t ∈ [t3,∞).

2.2 A distance between dendrograms

In this section we review the method of [7] for quan-
tifying the structural difference between dendrograms.
In short, we compare two dendrograms over sets X and
Y by comparing their associated ultrametrics on X and
Y , respectively.

Dendrograms and their associated ultrametrics. An
ultrametric space (X,uX) is a metric space satisfying
the strong triangle inequality : for all x, x′, x′′ ∈ X,
uX(x, x′) ≤ max {uX(x, x′′), uX(x′′, x′)}.

Let X be a finite set and let θX : R+ → P(X) be
a dendrogram over X. Recall from [7] that this θX
induces a canonical ultrametric uθX : X ×X → R+ on
X defined by

uθX (x, x′) :=

inf{ε ≥ 0 : x, x′ belong to the same block of θX(ε)}.
For example, for the dendrogram θX depicted in Figure
1, it is easy to observe that uθX (x1, x4) = T .

Reciprocally, any ultrametric space (X,uX) induces
a dendrogram θX over X [7].

The Gromov-Hausdorff distance [4, Ch 7]. The
Gromov-Hausdorff distance quantifies how far two com-
pact metric spaces are from being isometric. This dis-
tance is widely used in applications such as shape com-
parison (for example, see [20]). In order to define the

2In order to regard a dendrogram θX : R+ → P(X) as a
treegram, trivially extend θX to the whole R: for t ∈ (−∞, 0),
let θX(t) := ∅ ∈ Psub(X) by definition.

181

CCCG 2018, Winnipeg, Canada, August 8–10, 2018

Gromov-Hausdorff distance, one needs the notion of cor-
respondence.

For sets X and Y , a subset R ⊂ X × Y is said to be
a correspondence (between X and Y) if and and only
if (1) for every x ∈ X, there exists y ∈ Y such that
(x, y) ∈ R, and (2) for every y ∈ Y , there exists x ∈ X
such that (x, y) ∈ R.

Let (X, dX) and (Y, dY) be any two compact met-
ric spaces. The Gromov-Hausdorff distance between
(X, dX) and (Y, dY) is defined by

dGH ((X, dX), (Y, dY)) :=

1

2
inf
R

sup
(x,y)∈R
(x′,y′)∈R

|dX(x, x′)− dY (y, y′)| ,

where the infimum is taken over all correspondences
between X and Y . Note that in the case where
(X, dX), (Y, dY) are finite metric spaces, the infimum
and the supremum above can be replaced with the min-
imum and the maximum, respectively.

A distance between dendrograms. Let θX and θY be
dendrograms over finite sets X and Y , respectively. One
defines the Gromov-Hausdorff distance [7] between the
dendrograms θX and θY as

dGH(θX , θY) := dGH ((X,uθX), (Y, uθY)) ,

where uθX and uθY are the ultrametrics associated to
the dendrograms θX and θY , respectively.

2.3 Finest common coarsening of (sub-)partitions

For a set X, we know that there exists a canonical
one-to-one correspondence between the collection of all
equivalence relations on X and the collection of all par-
titions P(X) of X. We will extend this correspondence
in a certain way for defining the notion of finest com-
mon coarsening in the collection Psub(X) of all sub-
partitions of X.

Sub-equivalence relations. Let X be a non-empty set.
Let ∼ be any equivalence relation on any subset X ′ ⊂
X.3 We call the relation ∼ a sub-equivalence relation
on X. We also call X ′ the underlying set of ∼, which
is identical to {x ∈ X : (x, x) ∈∼}.

Clearly, any equivalence relation on X is also a sub-
equivalence relation with underlying set X.

There is the canonical one-to-one correspondence be-
tween the collection of all sub-equivalence relations on
X and the collection Psub(X) of all sub-partitions of
X: Any sub-equivalence relation ∼ on X corresponds
to the sub-partition P with underlying set

3In particular, the unique equivalence relation on the empty
set ∅ is ∅.

X ′ = {x ∈ X : (x, x) ∈∼} such that x ∼ y iff x and
y belong to the same block B ∈ P . Reciprocally, to
any sub-partition P of X, one can associate the unique
sub-equivalence relation ∼P on X defined by x ∼P y if
and only if x and y belong to the same block B ∈ P .

Sub-equivalence closure. Let X be a non-empty set.
For an index set I, suppose that {∼i⊂ X×X : i ∈ I} is
a collection of sub-equivalence relations on X. The sub-
equivalence closure of the collection {∼i⊂ X×X : i ∈ I}
is defined to be the transitive closure of the relation
∪i∈I ∼i on X. In other words, by the sub-equivalence
closure of the collection {∼i⊂ X ×X : i ∈ I}, we mean
the minimal sub-equivalence relation containing ∼i for
all i ∈ I.

Finest common coarsening. Let {Pi}i∈I be any sub-
collection of Psub(X). For each i ∈ I, let ∼i be
the sub-equivalence relation on X corresponding to Pi.
By

∨
i∈I Pi, we mean the sub-partition of X corre-

sponding to the sub-equivalence closure of the collection
{∼i⊂ X × X : i ∈ I}. We will refer to

∨
i∈I Pi as the

finest common coarsening of the collection {Pi}i∈I .
For example, let X := {x, y, z, w}. For P1 =

{{x}, {y}}, P2 = {{y, z}}, and P3 = {{x,w}} in
Psub(X), we have:

1.
∨2
i=1 Pi = {{x}, {y, z}} ∈ Psub(X), and

2.
∨3
i=1 Pi = {{x,w}, {y, z}} ∈ P(X).

3 Formigrams

Although the notions of dendrogram or treegram are
useful when representing the output of a hierarchi-
cal clustering method (i.e. when partitions only be-
come coarser with the increase of a parameter), in or-
der to represent the diverse clustering behaviors of dy-
namic datasets we need a more flexible concept allow-
ing for possible refinement of partitions. Here we sug-
gest a “zigzag like” notion of dendrograms that we call
formigram. We allow partitions to become finer some-
times, but require that partitions defined by a formi-
gram change only finitely many times in any finite in-
terval for visualization.

3.1 The definition of a formigram

Formigrams. A formigram over a finite set X is any
function θX : R→ Psub(X) such that:

1. (Tameness) the set crit(θX) of points of discontinu-
ity of θX is locally finite.4 We call the elements of
crit(θX) the critical points of θX .

4To say that crit(θX) is locally finite means that for any
bounded interval I ⊂ R, the cardinality of I ∩ crit(θX) is fi-
nite. The purpose of this condition is twofold: on the one hand,

182

30th Canadian Conference on Computational Geometry, 2018

2. (Interval lifespan) for every x ∈ X, the set Ix :=
{t ∈ R : x ∈ B ∈ θX(t)}, said to be the lifespan of
x, is a non-empty closed interval,

3. (Comparability) for every point c ∈ R it holds that
θX(c − ε) ≤ θX(c) ≥ θX(c + ε) for all sufficiently
small ε > 0.5

Note that the definition of formigrams generalizes those
of dendrograms and treegrams.6 In other words, every
dendrogram and every treegram are formigrams. See
Figure 3 for an example.

θX(t) =





{{x1, x2, x3}}, t ∈ (−∞, t0)

{{x1, x2, x3}, {x4}}, t ∈ [t0, t1)

{{x1, x2, x3, x4}}, t ∈ [t1, t2] ∪ [t5,∞)

{{x1, x2}, {x3, x4}}, t ∈ (t2, t3] ∪ [t4, t5)

{{x1}, {x2}, {x3, x4}}, t ∈ (t3, t4).

Figure 3: Top: The specification of a formigram θX
over the set X = {x1, x2, x3, x4}. Bottom: A graphical
representation of the formigram θX .

3.2 A distance between formigrams

In this section we introduce a (pseudo) metric on the
collection of all formigrams. This metric quantifies the
structural difference between two grouping/disbanding
behaviors over time. In particular, when restricting
this metric to the collection of dendrograms, (twice) the
Gromov-Hausdorff distance between dendrograms is re-
covered (Theorem 2).

Partition morphisms. Before introducing a metric on
formigrams, we first establish a method for intercon-
necting any two partitions with possibly different un-
derlying sets. Recall that for any sets X and Y , a mul-
tivalued map ϕ : X ⇒ Y is a relation between X and Y

we want to guarantee easy visualization, on the other hand this
condition is necessary for the simplification process of formigrams
via zigzag persistence theory [5]. We refer the interested readers
to [16].

5If θX is not continuous at c, then at least one of the relations of
θX(c−ε) ≤ θX(c) ≥ θX(c+ε) would be strict for small ε > 0. But
if c is a continuity point of θX , then θX(c−ε) = θX(c) = θX(c+ε)
for small ε > 0.

6In order to regard a dendrogram θX : R+ → P(X) as a
formigram, trivially extend θX to the whole R: for t ∈ (−∞, 0),
let θX(t) := ∅ ∈ Psub(X) by definition.

such that for all x ∈ X, there exists (a not necessarily
unique) y ∈ Y with (x, y) ∈ ϕ.7 For x ∈ X, the image
ϕ(x) of x is defined to be the set {y ∈ Y : (x, y) ∈ ϕ}.

For any two sets X and Y , let PX ∈ P(X) and PY ∈
P(Y). Any multivalued map ϕ : X ⇒ Y (or map ϕ :
X → Y) is said to be a partition morphism between
PX and PY if for any x, x′ ∈ X belonging to the same
block of PX , their images ϕ(x), ϕ(x′) are included in
the same block of PY (note that ϕ(x), ϕ(x′) can be sets
containing more than one element). In this case, we
write PX ≤ϕ QY .

If PX ≤ϕ QY , then there exists the canonical induced
map ϕ∗ : PX → PY defined by sending each block B ∈
PX to the block C ∈ PY such that ϕ(B) ⊂ C.

A distance between formigrams. Exploiting the fact
that any formigram is a “stack” of (sub-)partitions of a
specific set, we now introduce the interleaving distance
dFI on the collection of all formigrams. The construction
of dFI is inspired by the interleaving distance for Reeb
graphs [9].

Let θX be a formigram over X and let I ⊂ R be an

interval. We define
∨

I

θX to be the finest common coars-

ening of the collection {θX(t) : t ∈ I} of sub-partitions
of X. Also, for any t ∈ R, define [t]ε := [t−ε, t+ε] ⊂ R.

Let θX and θY be any two formigrams over X and
Y , respectively. θX and θY are said to be ε-interleaved
if there exists a correspondence R between X and Y
satisfying the following:

1. For any (x, y) ∈ R and any t ∈ R,

(a) if x is in the underlying set of θX(t), then y is
in the underlying set of

∨
[t]ε θY .8

(b) if y is in the underlying set of θY (t), then x is
in the underlying set of

∨
[t]ε θX .

2. For all t ∈ R,

θX(t) ≤R
∨

[t]ε

θY and θY (t) ≤R−1

∨

[t]ε

θX ,

where R−1 = {(y, x) ∈ Y ×X : (x, y) ∈ R}.
We call any such R an ε-correspondence between θX

and θY .9 The interleaving distance dFI (θX , θY) between
θX and θY is defined by the infimum of ε ≥ 0 for which
there exists an ε-correspondence between θX and θY . If
there is no ε-correspondence between θX and θY for any
ε ≥ 0, then we declare dFI (θX , θY) = +∞.

7In particular, any correspondence R between X and Y is a
multivalued map.

8We remark that this condition is equivalent to saying that if
x is in the underlying set of θX(t), then there exists t0 ∈ [t]ε such
that y is in the underlying set of θY (t0).

9Note that if R is an ε-correspondence between θX and θY ,
then for any ε′ > ε, R is also an ε′-correspondence between θX
and θY .

183

CCCG 2018, Winnipeg, Canada, August 8–10, 2018

Theorem 1 dFI is an extended pseudo-metric on formi-
grams.

See Appendix A for the proof of Theorem 1. For
example, consider any formigram θX over a finite set X
and let τ > 0. Define another formigram θτX as θτX(t) :=
θX(t + τ) for t ∈ R. Then, it is not difficult to verify
that dFI (θX , θ

τ
X) ≤ τ by checking that RX := {(x, x) :

x ∈ X} is a τ -correspondence between θX and θτX .

Theorem 2 dFI generalizes the Gromov-Hausdorff dis-
tance between dendrograms. Namely, for any dendro-
grams θX and θY over X and Y respectively,

dFI (θX , θY) = 2 dGH(θX , θY).

Proof. Recall that by definition

dGH(θX , θY) = dGH ((X,uθX), (Y, uθY))

where uθX and uθY are the ultrametrics associated to
the dendrograms θX and θY , respectively. Therefore, we
will show that dFI (θX , θY) = 2 dGH ((X,uθX), (Y, uθY)).
First we show “≥”. If dFI (θX , θY) = ∞, there is
nothing to prove and hence we assume that dFI (θX , θY)
is finite. Then, there exists an ε-correspondence
R ⊂ X × Y between the two dendrograms θX and
θY for some ε ≥ 0, implying that dFI (θX , θY) ≤ ε.
Pick any (x, y), (x′, y′) ∈ R and let t := uθX (x, x′).
Then, x, x′ belong to the same block of the partition
θX(t). Since θX(t) ≤R

∨
[t]ε θY , y, y′ must belong

to the same block of
∨

[t]ε θY . Also, since θY is

a dendrogram, θY (s1) ≤ θY (s2) for any s1 ≤ s2,
and thus

∨
[t]ε θY = θY (t + ε). Therefore, y, y′ be-

long to the same block of θY (t + ε), and in turn
uθY (y, y′) ≤ t + ε = uθX (x, x′) + ε. By symmetry,
we also have uθX (x, x′) ≤ uθY (y, y′) + ε. Therefore,
by the definition of dGH((X,uθX), (Y, uθY)), we have
dGH((X,uθX), (Y, uθY)) ≤ ε/2.

Next, we prove “≤”. Let R be a correspondence
between X and Y such that for all (x, y), (x′, y′) ∈ R,
|uθX (x, x′)− uθY (y, y′)| ≤ ε, implying that
dGH((X,uθX), (Y, uθY)) ≤ ε/2. We wish to show
that θX(t) ≤R θY (t + ε) for all t ∈ R. For t < 0, since
θX(t) = θY (t) = ∅, we trivially have θX(t) ≤R θY (t+ε).
Now pick any t ≥ 0 and any (x, y), (x′, y′) ∈ R. Assume
that x, x′ belong to the same block of θX(t), implying
that uθX (x, x′) ≤ t. Since |uθX (x, x′)− uθY (y, y′)| ≤ ε,
we know uθY (y, y′) ≤ t+ε, and hence y, y′ belong to the
same block of θY (t+ ε). Therefore, θX(t) ≤R θY (t+ ε)
for all t ∈ R. By symmetry, θY (t) ≤R−1 θX(t + ε) for
all t ∈ R as well, completing the proof. �

Theorem 3 (Complexity of computing dFI) Fix
ρ ∈ (1, 6). It is not possible to obtain a ρ approximation
to the distance dFI

(
(X, θX), (Y, θY)

)
between formigrams

in time polynomial on |X|, |Y |, |crit(θX)|, |crit(θY)|
unless P = NP .

Proof. Pick any two dendrograms θX and θY and in-
voke Theorem 2 to reduce the problem to the computa-
tion of the Gromov-Hausdorff distance

∆ := dGH((X,uθX), (Y, uθY))

between the ultrametric spaces (X,uθX), (Y, uθY) asso-
ciated to the dendrograms. However, according to [22,
Corollary 3.8], ∆ cannot be approximated within any
factor less than 3 in polynomial time, unless P = NP .
The author shows this by observing that any instance of
the 3-partition problem can be reduced to an instance
of the bottleneck ∞-Gromov-Hausdorff distance (∞-
BGHD) problem between ultrametric spaces (see [22,
p.865]). The proof follows. �

4 Application: Visualization of clustering features
of dynamic metric data

In this section we explain how to extract scale de-
pendent clustering features from time-dependent met-
ric spaces in the form of formigrams. Furthermore, we
will show that this summarization process is stable un-
der perturbations in the input time-dependent metric
spaces.

4.1 Dynamic metric spaces (DMSs)

Recall that a pseudo-metric space is a pair (X, dX)
where X is a (non-empty) set and dX : X × X → R+

is a symmetric function which satisfies the triangle in-
equality, and such that dX(x, x) = 0 for all x ∈ X. dX
is called the pseudo-metric. Note that one does not re-
quire that dX(x, x′) = 0 implies that x = x′ like in the
case of standard metric spaces.

Dynamic metric spaces (DMSs). A dynamic metric
space is a pair γX = (X, dX(·)) where X is a non-empty
finite set and dX : R×X ×X → R+ satisfies:

1. For every t ∈ R, γX(t) = (X, dX(t)) is a pseudo-
metric space.

2. There exists t0 ∈ R such that γX(t0) is a (standard)
metric space.

3. For fixed x, x′ ∈ X, dX(·)(x, x′) : R → R+ is con-
tinuous.

We refer to t as the time parameter. Condition 2 above
is assumed since otherwise one could substitute the
DMSs γX by another DMSs γX′ over a set X ′ which
satisfies |X ′| < |X|, and such that γX′ is point-wisely
equivalent to γX .

A family of examples of DMSs is given by n par-
ticles/animals moving continuously inside an environ-
ment Ω ⊂ Rd where particles are allowed to coalesce.
If the n trajectories are p1(t), . . . , pn(t) ∈ Rd, then let

184

30th Canadian Conference on Computational Geometry, 2018

Figure 4: Top: A collection of moving particles (a DMS
γX) is depicted over the time R. In particular, any two
points are connected by an edge if their distance does
not exceed a certain δ > 0. Bottom: The formigram
Cδ(γX) summarizes the clustering features of γX at the
scale δ.

P := {1, . . . , n} and define a DMS γP := (P, dP (·)) as
follows: for t ∈ R and i, j ∈ {1, . . . , n}, let dP (t)(i, j) :=
‖pi(t)− pj(t)‖, where ‖ · ‖ denotes the Euclidean norm.

Tame DMSs. We introduce a notion of tameness of
DMS which will ultimately ensure that one can asso-
ciate formigrams to tame DMSs. We first define tame
functions f : R→ R: a continuous function f : R→ R
is tame, if for any c ∈ R and any finite interval I ⊂ R,
the set f−1(c) ∩ I ⊂ R is empty or has only finitely
many connected components. For instance, polyno-
mial functions (in particular, constant functions) and
piecewise linear functions (with locally finitely many
critical points) on R are tame. We say that a DMS
γX = (X, dX(·)) is tame if for any x, x′ ∈ X the func-
tion dX(·)(x, x′) : R→ R+ is tame.

4.2 δ-clustering method for DMSs

δ-Clustering Method. Let δ ≥ 0. Recall (flat) sin-
gle linkage clustering: Given any finite (pseudo-)metric
space (X, dX), define the partition Cδ(X, dX) := X/ ∼δ
where ∼δ stands for the equivalence relation on X de-
fined by x ∼δ x′ if and only if there exists a sequence
x = x1, x2, . . . , xn = x′ of points in X such that
dX(xi, xi+1) ≤ δ for each i ∈ {1, . . . , n− 1}.

From DMSs to Formigrams. We describe the process
that, given a connectivity parameter δ ≥ 0, associates a
formigram to any tame DMS:

Theorem 4 Let γX be a tame DMS and fix δ ≥ 0.
Then, the function Cδ(γX) : R → P(X) defined by
Cδ(γX)(t) = Cδ(γX(t)) for t ∈ R is a formigram.

See Figure 4 for an illustration. We prove Theorem 4 in
Appendix A.

4.3 Stability of δ-clustering method for DMSs.

It turns out that the construction of formigrams from
DMSs described in Theorem 4 is stable under pertur-
bations in the input DMSs under a certain notion of
distance between DMSs described below. Structurally,
this distance is a hybrid between the Gromov-Hausdorff
distance and the interleaving distance [2, 8] for Reeb
graphs [9].

A distance between DMSs. Let γX , γY be DMSs and
ε ≥ 0. We say that γX and γY are ε-interleaved if there
exists a correspondence R between X and Y such that
(∗) ∀(x, y), (x′, y′) ∈ R, ∀t ∈ R,

1. min
s∈[t]ε

dY (s)(y, y′) ≤ dX(t)(x, x′) and,

2. min
s∈[t]ε

dX(s)(x, x′) ≤ dY (t)(y, y′).

When γX and γY are ε-interleaved we write γX ≈ε
γY . The interleaving distance between γX and γY is de-
fined by ddynI (γX , γY) := inf{ε ≥ 0 : γX ≈ε γY }. If
γX and γY are not ε-interleaved for any ε ≥ 0, declare
ddynI (γX , γY) = +∞. Also, any correspondence R satis-
fying (∗) is called an ε-correspondence between γX and
γY .

In Appendix B, we show that ddynI is indeed an ex-
tended metric on DMSs (Theorem 6).

Theorem 5 (Stability theorem) For any tame
DMSs γX , γY and any δ ≥ 0, let θX := Cδ(γX) and
θY := Cδ(γY) as in Theorem 4. Then,

dFI (θX , θY) ≤ ddynI (γX , γY).

See Appendix B for the proof of Theorem 5.

5 Conclusion and Discussion

We introduced formigrams: a generalization of the no-
tion of dendrograms that is useful for characterizing and
visualizing the clustering features of DMSs. We clarified
a sufficient condition (tameness) for DMSs to admit a
summarization as formigrams.

We also defined the distances dFI and ddynI on formi-
grams and on DMSs, respectively, and showed that the
δ-clustering method for DMSs is stable under perturba-
tions in the input DMSs in terms of dFI and ddynI . Specif-
ically, it is noteworthy that dFI generalizes the Gromov-
Hausdorff distance on dendrograms.

In [17], due to the high cost of computing dFI , we carry
out a classification task for different flocking behaviors
by making use of a tractable lower bound for dFI . The
nature of this lower bound is related to zigzag persis-
tence theory [5, 6]: One can find theoretical details in
[16].

185

CCCG 2018, Winnipeg, Canada, August 8–10, 2018

References

[1] M. Benkert, J. Gudmundsson, F. Hübner, and T. Wolle.
Reporting flock patterns. Computational Geometry,
41(3):111–125, 2008.

[2] P. Bubenik and J. A. Scott. Categorification of persis-
tent homology. Discrete & Computational Geometry,
51(3):600–627, 2014.

[3] K. Buchin, M. Buchin, M. J. van Kreveld, B. Speck-
mann, and F. Staals. Trajectory grouping structure.
JoCG, 6(1):75–98, 2015.

[4] D. Burago, Y. Burago, and S. Ivanov. A Course in
Metric Geometry, volume 33 of AMS Graduate Studies
in Math. American Mathematical Society, 2001.

[5] G. Carlsson and V. De Silva. Zigzag persistence. Foun-
dations of computational mathematics, 10(4):367–405,
2010.

[6] G. Carlsson, V. De Silva, and D. Morozov. Zigzag per-
sistent homology and real-valued functions. In Proceed-
ings of the twenty-fifth annual symposium on Compu-
tational geometry, pages 247–256. ACM, 2009.

[7] G. Carlsson and F. Mémoli. Characterization, stabil-
ity and convergence of hierarchical clustering methods.
Journal of Machine Learning Research, 11:1425–1470,
2010.

[8] F. Chazal, D. Cohen-Steiner, M. Glisse, L. J. Guibas,
and S. Oudot. Proximity of persistence modules and
their diagrams. In Proc. 25th ACM Sympos. on Com-
put. Geom., pages 237–246, 2009.

[9] V. De Silva, E. Munch, and A. Patel. Categorified
reeb graphs. Discrete & Computational Geometry,
55(4):854–906, 2016.

[10] J. Gudmundsson and M. van Kreveld. Computing
longest duration flocks in trajectory data. In Proceed-
ings of the 14th annual ACM international symposium
on Advances in geographic information systems, pages
35–42. ACM, 2006.

[11] J. Gudmundsson, M. van Kreveld, and B. Speckmann.
Efficient detection of patterns in 2d trajectories of mov-
ing points. Geoinformatica, 11(2):195–215, 2007.

[12] Y. Huang, C. Chen, and P. Dong. Modeling herds and
their evolvements from trajectory data. In International
Conference on Geographic Information Science, pages
90–105. Springer, 2008.

[13] S.-Y. Hwang, Y.-H. Liu, J.-K. Chiu, and E.-P. Lim.
Mining mobile group patterns: A trajectory-based ap-
proach. In PAKDD, volume 3518, pages 713–718.
Springer, 2005.

[14] H. Jeung, M. L. Yiu, X. Zhou, C. S. Jensen, and H. T.
Shen. Discovery of convoys in trajectory databases.
Proceedings of the VLDB Endowment, 1(1):1068–1080,
2008.

[15] P. Kalnis, N. Mamoulis, and S. Bakiras. On discover-
ing moving clusters in spatio-temporal data. In SSTD,
volume 3633, pages 364–381. Springer, 2005.

[16] W. Kim and F. Memoli. Stable signatures for dynamic
metric spaces via zigzag persistent homology. arXiv
preprint arXiv:1712.04064, 2017.

[17] W. Kim, F. Mémoli, and Z. Smith.
https://research.math.osu.edu/networks/formigrams.

[18] I. Kostitsyna, M. J. van Kreveld, M. Löffler, B. Speck-
mann, and F. Staals. Trajectory grouping structure
under geodesic distance. In 31st International Sympo-
sium on Computational Geometry, SoCG 2015, June
22-25, 2015, Eindhoven, The Netherlands, pages 674–
688, 2015.

[19] Z. Li, B. Ding, J. Han, and R. Kays. Swarm: Mining
relaxed temporal moving object clusters. Proceedings
of the VLDB Endowment, 3(1-2):723–734, 2010.

[20] F. Mémoli and G. Sapiro. A theoretical and computa-
tional framework for isometry invariant recognition of
point cloud data. Found. Comput. Math., 5(3):313–347,
2005.

[21] J. K. Parrish and W. M. Hamner. Animal groups in
three dimensions: how species aggregate. Cambridge
University Press, 1997.

[22] F. Schmiedl. Computational aspects of the Gromov–
Hausdorff distance and its application in non-rigid
shape matching. Discrete & Computational Geometry,
57(4):854–880, 2017.

[23] Z. Smith, S. Chowdhury, and F. Mémoli. Hierarchical
representations of network data with optimal distortion
bounds. In Signals, Systems and Computers, 2016 50th
Asilomar Conference on, pages 1834–1838. IEEE, 2016.

[24] D. J. Sumpter. Collective animal behavior. Princeton
University Press, 2010.

[25] A. van Goethem, M. J. van Kreveld, M. Löffler,
B. Speckmann, and F. Staals. Grouping time-varying
data for interactive exploration. In 32nd International
Symposium on Computational Geometry, SoCG 2016,
June 14-18, 2016, Boston, MA, USA, pages 61:1–61:16,
2016.

[26] M. J. van Kreveld, M. Löffler, and F. Staals. Cen-
tral trajectories. Journal of Computational Geometry,
8(1):366–386, 2017.

[27] M. J. van Kreveld, M. Löffler, F. Staals, and
L. Wiratma. A refined definition for groups of mov-
ing entities and its computation. In 27th International
Symposium on Algorithms and Computation, ISAAC
2016, December 12-14, 2016, Sydney, Australia, pages
48:1–48:12, 2016.

[28] M. R. Vieira, P. Bakalov, and V. J. Tsotras. On-line dis-
covery of flock patterns in spatio-temporal data. In Pro-
ceedings of the 17th ACM SIGSPATIAL international
conference on advances in geographic information sys-
tems, pages 286–295. ACM, 2009.

[29] Y. Wang, E.-P. Lim, and S.-Y. Hwang. Efficient algo-
rithms for mining maximal valid groups. The VLDB
JournalThe International Journal on Very Large Data
Bases, 17(3):515–535, 2008.

[30] Wikipedia. Formicarium — Wikipedia, the free ency-
clopedia, 2017. [Online; accessed 03-June-2017].

186

30th Canadian Conference on Computational Geometry, 2018

Appendix A

Proof of Theorem 1.

Proof. Symmetry of dFI is clear and thus we only show re-
flexivity of dFI and the triangle inequality. LetX be any finite
set and let θX be a formigram over X. Then, one can easily
check that RX := {(x, x) : x ∈ X} is a 0-correspondence
between two copies of θX , implying that dFI (θX , θX) = 0.

Let Y and Z be some finite sets and let θY and θZ be any
formigrams over Y and Z, respectively. We wish to prove
that dFI (θX , θZ) ≤ dFI (θX , θY) + dFI (θY , θZ). We assume that
dFI (θX , θY) and dFI (θY , θZ) are finite because otherwise there
is nothing to prove. By this assumption, for some 0 <
ε1, ε2 < ∞, there are an ε1-correspondence R1 ⊂ X × Y
between θX and θY and an ε2-correspondence R2 ⊂ Y × Z
between θY and θZ . Define the set R2 ◦R1 ⊂ X × Z by

R2 ◦R1 :=

{(x, z) ∈ X × Z : ∃y ∈ Y s.t.(x, y) ∈ R1 and (y, z) ∈ R2}.

It is not difficult to check that R2 ◦ R1 is a correspondence
between X and Z. Therefore, it suffices to prove that R2◦R1

is an (ε1 + ε2)-correspondence between θX and θZ .
Fix any (x, z) ∈ R2 ◦ R1 and t ∈ R. Suppose that

x belongs to the underlying set of the sub-partition θX(t)
of X. By the definition of R2 ◦ R1, there exists y ∈ Y
such that (x, y) ∈ R1 and (y, z) ∈ R2. Since R1 is an ε1-
correspondence between θX and θY , y must be in the un-
derlying set of

∨
[t]ε θY . This implies that there exists t0 ∈

[t]ε = [t− ε, t+ ε] such that y belongs to the underlying set
of θY (t0). Then, invoking that R2 is an ε2-correspondence
between θY and θZ , there exists t1 ∈ [t0]ε2 ⊂ [t]ε1+ε2 such
that z belongs to the underlying set of θZ(t1). This implies
that z belongs to the underlying set of

∨
[t]ε1+ε2 θZ . Simi-

larly, one can check that if z belongs to the underlying set of
θZ(t), then x belongs to the underlying set of

∨
[t]ε1+ε2 θX .

Now, we wish to show that θX(t) ≤R2◦R1

∨
[t]ε1+ε2 θZ .

To this end, it suffices to show that for any (x, z), (x′, z′) ∈
R2 ◦ R1, if x, x′ belong to the same block of θX(t), then
z, z′ belong to the same block of

∨
[t]ε1+ε2 θZ . Pick any

(x, z), (x′, z′) ∈ R2 ◦R1 and suppose that x, x′ belong to the
same block of θX(t). By the definition of R2 ◦R1, there exist
y, y′ ∈ Y such that (x, y), (x′, y′) ∈ R1 and (y, z), (y′, z′) ∈
R2. Since θX(t) ≤R1

∨
[t]ε1 θY , y, y′ must be in the same

block of
∨

[t]ε1 θY . Recall that the sub-equivalence relation

corresponding to the sub-partition
∨

[t]ε1 θY is the transi-
tive closure of the relation ∪s∈[t]ε1 ∼s ⊂ Y × Y , where
∼s is the sub-equivalence relation (on Y) corresponding
to the sub-partition θY (s) of Y . In particular, the set
{∼s: s ∈ [t]ε1} consists of finitely many relations on Y due
to the tameness of θY . Therefore, there exist (finite) se-
quences y = y0, y1, . . . , yn = y′ in Y and s0, s1, . . . , sn−1 in
[t]ε1 such that yi, yi+1 belong to the same block of θY (si) for
i = 0, . . . , n − 1. Since R2 is a correspondence between Y
and Z, there exists a sequence z = z0, . . . , zn = z′ in Z such
that (yi, zi) ∈ R2 for i = 0, . . . n. Also, since θY (si) ≤R2∨

[si]
ε2 θZ , zi, zi+1 belong to the same block of

∨
[si]

ε2 θZ for

each i. Since si ∈ [t]ε1 , we have [si]
ε2 ⊂ [t]ε1+ε2 , and in turn∨

[si]
ε2 θZ ≤

∨
[t]ε1+ε2 θZ . Therefore, zi, zi+1 belong to the

same block of
∨

[t]ε1+ε2 θZ for each i, and hence z, z′ belong

to the same block of
∨

[t]ε1+ε2 θZ . Similarly, one can verify

that θZ(t) ≤(R2◦R1)−1

∨
[t]ε1+ε2 θX . �

Proof of Theorem 4.

Proof. We show that θX := Cδ(γX) satisfies the three con-
ditions (tameness, interval lifespan, and comparability) to be
a formigram. First, by the definition of Cδ, Cδ(γX) is a func-
tion from R to the set of all partitions P(X)(⊂ Psub(X))
of X. Therefore, every element x ∈ X has the full lifespan
Ix = (−∞,∞), in θX .

Next we show the comparability condition. For simplicity,
assume that X = {1, 2, . . . , n} for some n ∈ N. Fix c ∈ R
and consider the following two subsets of X ×X:

A(c, δ) := {(i, j) : i < j ∈ X, dX(c)(i, j) ≤ δ},

B(c, δ) := {(i, j) : i < j ∈ X, dX(c)(i, j) > δ}.
The continuity of dX(·)(i, j) for each (i, j) ∈ X ×X guaran-
tees that there exists ε > 0 such that

B(t, δ) ⊃ B(c, δ) for all t ∈ (c− ε, c+ ε)

and in turn

A(t, δ) ⊂ A(c, δ) for all t ∈ (c− ε, c+ ε)

since A(t, δ) ∪ B(t, δ) = {(i, j) : i < j ∈ X} for all t ∈ R.
This implies that the partition Cδ(γX(c)) is coarser than or
equal to Cδ(γX(t)) for each t ∈ (c − ε, c + ε), which means
that Cδ(γX) satisfies the comparability condition.

It remains to prove that Cδ(γX) is tame. For i, j ∈ X,
let fi,j := dX(·)(i, j) : R → R+ and let I ⊂ R be any
finite interval. Note that discontinuity points of the func-
tion Cδ(γX) : R → P(X) can occur only at endpoints of
connected components of the set fi,j

−1(δ) for some i, j ∈ X.
Fix any i, j ∈ X. Then, since γX is tame, the set fi,j

−1(δ)∩I
has only finitely many connected components and thus there
are only finitely many endpoints arising from those compo-
nents. Since the set X is finite, this implies that Cδ(γX) can
have only finitely many critical points in I. �

Appendix B

Isomorphic DMSs. We now introduce a notion of equal-
ity between two DMSs. Let γX = (X, dX(·)) and γY =
(Y, dY (·)) be DMSs. We say that γX and γY are isomor-
phic if there exists a bijection ϕ : X → Y such that ϕ is an
isometry between γX(t) and γY (t) across all t ∈ R.

Theorem 6 ddynI is an extended metric modulo isomor-
phisms between DMSs.

We will prove Theorem 6 after showing Theorem 5.

Proof of Theorem 5.

Proof. First, note that for all t ∈ R, X and Y are the
underlying sets of θX(t) and θY (t), respectively.

Let ε ≥ 0 and assume that R ⊂ X × Y is any ε-
correspondence between γX and γY . It suffices to prove that
R is an ε-correspondence between the formigrams θX and θY

187

CCCG 2018, Winnipeg, Canada, August 8–10, 2018

as well. Let (x, y), (x′, y′) ∈ R and fix any t ∈ R. Assume
that x, x′ belong to the same block of θX(t), meaning that
there is a sequence x = x0, x1, . . . , xn = x′ in X such that
dX(t)(xi, xi+1) ≤ δ for 0 ≤ i ≤ n− 1. For each 0 ≤ i ≤ n−1,
pick yi ∈ Y such that (xi, yi) ∈ R where y = y0 and y′ = yn.
Since R is an ε-correspondence between γX , γY , we have
mins∈[t]ε dY (s)(yi, yi+1) ≤ dX(t)(xi, xi+1) ≤ δ. This implies
that, for each i, there is si ∈ [t]ε such that dY (si)(yi, yi+1) ≤
δ and in turn yi, yi+1 are in the same block of θY (si). Also
for each i, since si ∈ [t]ε, one has θY (si) ≤

∨
[t]ε θY and in

turn yi, yi+1 belong to the same block of
∨

[t]ε θY . There-

fore, we conclude that y, y′ belong to the same block of∨
[t]ε θY . We have proved that θX(t) ≤R

∨
[t]ε θY . Sim-

ilarly, θY (t) ≤R−1

∨
[t]ε θX can be shown, completing the

proof. �

Proof of Theorem 6.

Proof. Reflexivity and symmetry of ddynI are clear
so we shall show the triangle inequality only: that
for all DMSs γX , γY , γZ , one has ddynI (γX , γZ) ≤
ddynI (γX , γY) + ddynI (γY , γZ). We assume that ddynI (γX , γY)
and ddynI (γY , γZ) are finite because otherwise there is noth-
ing to prove. Let 0 < ε1, ε2 <∞ ans suppose that there are
an ε1-correspondence R1 ⊂ X × Y between γX and γY and
an ε2-correspondence R2 ⊂ Y × Z between γY and γZ . De-
fine the correspondence R2 ◦R1 between X and Z as follows:

R2 ◦R1 :=

{(x, z) ∈ X × Z : ∃y ∈ Y s.t.(x, y) ∈ R1 and (y, z) ∈ R2}.

Pick any two pairs (x, z) and (x′, z′) in R2 ◦ R1. Then,
there are y, y′ ∈ Y such that (x, y), (x′, y′) ∈ R1 and
(y, z), (y′, z′) ∈ R2. Then for all t ∈ R, it holds that

min
s∈[t]ε1+ε2

dZ(s)(z, z′) ≤ min
s∈[t]ε1

dY (s)(y, y′) ≤ dX(t)(x, x′),

min
s∈[t]ε2+ε1

dX(s)(x, x′) ≤ min
s∈[t]ε2

dY (s)(y, y′) ≤ dZ(t)(z, z′).

Therefore, R2 ◦ R1 is an (ε1 + ε2)-correspondence between
γX , γZ , implying that
ddynI (γX , γZ) ≤ ddynI (γX , γY) + ddynI (γY , γZ), as desired.

Now, we show that ddynI is not just an (extended)
pseudo-metric but an (extended) metric. Assume that
ddynI (γX , γY) = 0 for some DMSs γX , γY . Since there exist
only finitely many correspondences between X and Y , there
must exist a correspondence R ⊂ X × Y such that for any
ε > 0, R is an ε-correspondence between γX and γY . We
claim that this R is a 0-correspondence. To this end, we
need the following:

Claim. Let f : R → R be a continuous map and r, t ∈ R.
Suppose that for every ε > 0, mins∈[t]ε f(s) ≤ r. Then
f(t) ≤ r.

Proof. [Proof of Claim] For each k ∈ N, take any sk ∈
[t]1/k such that f(sk) ≤ r. Then (sk)k∈N is a sequence
in f−1(−∞, r] converging to t. Since f is continuous,
f−1(−∞, r] is a closed set and thus t must belong to
f−1(−∞, r], i.e. f(t) ≤ r, as desired. �

Remember that whenever x, x′ ∈ X, y, y′ ∈ Y are fixed, the
distance functions dX(·)(x, x′), dX(·)(y, y′) : R → R+ are
continuous. Since R is an ε-correspondence for any ε > 0,
it follows that for any (x, y), (x′, y′) ∈ R, for any ε > 0, and
for any t ∈ R,

1. mins∈[t]ε dX(s)(x, x′) ≤ dY (t)(y, y′),

2. mins∈[t]ε dY (s)(y, y′) ≤ dX(t)(x, x′).

Thus by Claim, for all (x, y), (x′, y′) ∈ R and all t ∈ R it
holds that dY (t)(y, y′) = dX(t)(x, x′). In addition, invoking
that there exist t0, t

′
0 ∈ R such that γX(t0) and γY (t′0) are

(standard) metric spaces by the definition of DMSs, the cor-
respondence R must be the graph of a bijection between X
and Y . This implies that γX and γY are isomorphic DMSs,
as desired. �

188

CCCG 2018, Winnipeg, Canada, August 8–10, 2018

Unfolding Low-Degree Orthotrees with Constant Refinement

Mirela Damian∗ Robin Flatland†

Abstract

We show that every orthotree of degree 3 or less can
be unfolded with a 4 × 4 refinement of the grid faces.
This is the first constant refinement unfolding result for
orthotrees that are not required to be well-separated.
Our approach shows promise of extending to arbitrary
degree orthotrees.

1 Introduction

An unfolding of a polyhedron is obtained by cutting
its surface in such a way that it can be flattened in
the plane as a simple non-overlapping polygon called
a net. An edge unfolding allows only cuts along the
polyhedron’s edges, while a general unfolding allows
cuts anywhere on the surface. Edge cuts alone are
not sufficient to guarantee an unfolding for non-convex
polyhedra [BDE+03, BDD+98], however it is unknown
whether all non-convex polyhedra have a general unfold-
ing. In contrast, all convex polyhedra have a general un-
folding [DO07, Sec. 24.1.1], but it is unknown whether
they all have an edge unfolding [DO07, Ch. 22].

Prior work on unfolding algorithms for non-convex
objects has focused on orthogonal polyhedra. This class
consists of polyhedra whose edges and faces all meet
at right angles. Because not all orthogonal polyhe-
dra have edge unfoldings [BDD+98], the unfolding algo-
rithms typically use additional non-edge cuts that fol-
low one of two models. In the grid unfolding model,
the surface is subdivided into rectangular grid faces by
adding edges where axis-perpendicular planes through
each vertex intersect the surface, and cuts along these
added edges are also allowed. In the grid refinement
model, each grid face under the grid unfolding model
is further subdivided by an (a× b) orthogonal grid, for
some positive integers a, b ≥ 1, and cuts are also allowed
along any of these grid lines.

A series of algorithms have been developed for un-
folding arbitrary genus-0 orthogonal polyhedra, with
each successive algorithm requiring less grid refinement.
The first such algorithm [DFO07] required an expo-
nential amount of grid refinement. This was reduced

∗Department of Computer Science, Villanova University, Vil-
lanova, PA, mirela.damian@villanova.edu
†Department of Computer Science, Siena College, Loudonville,

NY, flatland@siena.edu

to quadratic refinement in [DDF14], and then to lin-
ear in [CY15]. These ideas were further extended
in [DDFO17] to unfold arbitrary genus-2 orthogonal
polyhedra with linear refinement.

The only unfolding algorithms for orthogonal poly-
hedra that use sublinear refinement are for specialized
orthogonal shape classes. For example, there exist al-
gorithms for unfolding orthostacks using 1 × 2 refine-
ment [BDD+98] and Manhattan Towers using 4 × 5
refinement [DFO05]. There also exist unfolding algo-
rithms for several classes of polyhedra composed of unit
cubes. For example, orthotubes [BDD+98] and one
layer block structures [LPW14] with an arbitrary num-
ber of unit holes can both be unfolded with cuts re-
stricted to the cube edges.

Figure 1: Orthotree of maximum degree three.

Our focus here is on the class of orthogonal polyhe-
dra known as orthotrees. An orthotree O is composed
of axis-aligned unit cubes (boxes) glued face to face,
whose surface is a 2-manifold and whose dual graph T
is a tree. (See Figure 1 for an example.) In the grid
unfolding model, cuts are allowed along any of the cube
edges. Each node in T is a box in O and two nodes are
connected by an edge if the corresponding boxes are ad-
jacent in O (i.e., if they share a face). In this paper we
will use the terms box and node interchangeably. The
degree of a box b ∈ O is defined as the degree of its
corresponding node in the dual tree T . We select any
node of degree one to be the root of T .

In an orthotree, each box can be classified as either
a leaf, a connector, or a junction. A leaf is a box of
degree one; a connector is a box of degree two whose
two adjacent boxes are attached on opposite faces; all
other boxes are junctions.

Because orthotrees are orthogonal polyhedra, they
can be unfolded using the general algorithm in [CY15]
with linear refinement. It is unknown whether or-
thotrees can be unfolded using sublinear refinement.

189

30th Canadian Conference on Computational Geometry, 2018

Prior algorithms specialized for unfolding orthotrees
have been limited to orthotrees that are well-separated,
meaning that no two junction boxes are adjacent.
In [DFMO05], the authors provide an algorithm for
grid unfolding well-separated orthotrees. Recent work
in [HCY17] shows that the related class of well-
separated orthographs (which allow arbitrary genus)
can be unfolded with a 2× 1 refinement.

In this paper we provide an algorithm for unfolding
orthotrees of degree up to three using a 4 × 4 refine-
ment of the cube faces. For each box b in T , the algo-
rithm unfolds b and the boxes in the subtree rooted at
b recursively. Intuitively, the algorithm unfolds surface
pieces of b along a carefully constructed path. When
the path reaches a child box of b, the child is recursively
unfolded and then the path continues on b again to the
next child (if there is one). The unfolding of b and its
subtree is contained within a rectangular region having
two staircase-like bites taken out of it.

This is the first sublinear refinement unfolding result
for orthotrees that are not required to be well-separated.
Our algorithm can handle trees with adjacent junction
boxes of degrees two or three, which other constant re-
finement algorithms are unable to do. In addition, the
ideas used here show promise of extending to arbitrary
degree orthotrees.

2 Terminology

For any box b ∈ O, Rb and Lb are the right and left
faces of b (orthogonal to the x-axis); Fb and Kb are the
front and back faces of b (orthogonal to the z-axis); and
Tb and Bb are the top and bottom faces of b (orthogonal
to the y-axis). We use a different notation for boxes
adjacent to b, to clearly distinguish them from faces: Eb

and Wb are the east and west neighbors of b (adjacent
to Rb and Lb, resp.); Nb and Sb are the north and south
neighbors of b (adjacent to Tb and Bb, resp.); and Ib
and Jb are the front and back neighbors of b (adjacent
to Fb and Kb, resp.). We omit the subscript whenever
the box b is clear from the context. We use combined
notations to refer to the east neighbor of N as NE, the
back neighbor of NE as NEJ , and so on.

If a face of a box b ∈ O is also a face of O, we call
it an open face; otherwise, we call it a closed face. On
the closed face shared by b with its parent box in T , we
identify a pair of opposite edges, one called the entry
port and the other called the exit port (shown in red
and labeled in Figure 2). The unfolding of b is deter-
mined by an unfolding path that starts on b’s entry port,
recursively visits all boxes in the subtree Tb ⊆ T rooted
at b, and ends on b’s exit port.

To make it easier to visualize the unfolding path, we
use an L-shaped guide (or simply L-guide) with two or-
thogonal pointers, namely a Hand pointer and a Head

pointer, as shown in Figure 2, where the circle is the
Head and the arrow is the Hand. With very few ex-
ceptions, the unfolding path extends in the direction of
one of the two pointers. Whenever the unfolding path
follows the direction of the Hand, we say that it extends
Hand-first ; otherwise, it extends Head-first. Surface
pieces traversed in the direction of the Hand(Head)
will flatten out horizontally (vertically) in the plane. We
denote by Nb the unfolding net produced by a recursive
unfolding of b.

We refer the reader to Figure 2a which shows the
unfolding path for the simple case of a leaf box A. The
L-guide is shown positioned on top of A’s parent box I
at the entry port. The unfolding path extends Head-
first around the top, back, and bottom faces of A, and
ends on the bottom of I at the exit port. The resulting
unfolding net NA consisting of A’s open faces TA, KA,
BA, LA, and RA is shown. In all unfolding illustrations,
the outer surface of O is shown. When describing and
illustrating the unfolding of a box A, we will assume
without loss of generality that the box is in standard
position (as in Figure 2a), with its parent IA attached
to its front face FA and its entry (exit) port on the top
(bottom) edge of FA.

The ring r of a box b includes all the points on the
surface of b (not necessarily on the surface of O) that are
within distance 0 < δ ≤ 1/4 of the closed face shared
with b’s parent. Thus, r consists of four 1/4 × 1 rect-
angular pieces (which we call ring faces) connected in
a cycle. The entry box be of b is the box containing the
open face in T \Tb adjacent to b’s entry port. Note that
be may be b’s parent (as in Figure 4a), but this is not
necessary (see Figure 4b where be is the box on top of
the parent I). The entry ring re of b includes all points
of be that are within distance 1/4 of the closed face of
be adjacent to b’s entry port. (See Figure 4.) The face
e of re adjacent to b’s entry port is the entry ring face.
Similarly, the exit box bx of b is the box containing the
open face in T \ Tb adjacent to b’s exit port. Note that
bx is not necessarily b’s parent (see Figure 4b, where bx
is the box south of the parent I). The exit ring rx of b
includes all points of bx that are within distance 1/4 of
the closed face of bx adjacent to b’s exit port. The face x
of rx adjacent to b’s exit port is the exit ring face. Note
that both e and x are open ring faces (by definition).
When unclear from context, we will use subscripts (i.e.,
eb and xb) to specify box b’s entry and exit faces.

In a Head-first unfolding of a box b, the L-guide be-
gins on the entry ring face with the Head pointing to-
ward the entry port, and it ends on the exit ring face
with the Head pointing away from the exit port; the
Hand has the same orientation at the start and end of
the unfolding. (See Figure 2a.) Similarly, in a Hand-
first unfolding, the L-guide begins on the entry ring face
with the Hand pointing toward the entry port, and it

190

CCCG 2018, Winnipeg, Canada, August 8–10, 2018

RA

(b)(a)

entry

RA

LA
BA

XA?

EA?

EA?

BA

LA XA?

I I

TA

KA

TA KA

A A

x

y

zport

exit
port

entry
port

exit
port

Figure 2: (a) Head-first and (b) Hand-first unfolding of leaf box.

ends on the exit ring face with the Hand pointing away
from the exit port; the Head has the same orientation
at the start and end of the unfolding. (See Figure 2b.)
In standard position, the Hand in a Head-first unfold-
ing will point either east or west. If it points east (west)
we say that the unfolding is a Hand-east (west), Head-
first unfolding. Similarly, in a Hand-first unfolding,
the Head will either point east or west. If it points
east (west), we say the unfolding is a Head-east (west),
Hand-first unfolding.

In a Head-first (Hand-first) unfolding of b with entry

ring face e,
e−→ is the ring face of re encountered imme-

diately after e when cycling around re in the direction
pointed to by the Hand(Head) of the L-guide as po-
sitioned on e at the start of b’s unfolding. Similarly, in
a Head-first (Hand-first) unfolding of b with exit ring

face x,
x←− is the ring face of rx encountered just before

x when cycling around rx in the direction pointed to by
the Hand(Head) of the L-guide as positioned on x at

the end of b’s unfolding path. Figure 4 shows
e−→ and

x←−
labeled. Note that although e and x are open ring faces
by definition,

e−→ and
x←− may not be open, as illustrated

in Figure 4c.

3 Net Connections and Inductive Regions

Let b ∈ T be a box to be unfolded recursively. A Head-
first inductive region for b is an orthogonally convex
polygon shaped as in Figure 3a. Its bounding box is at
least three units wide and at least three units tall. The
lower (upper) convex vertex that lies strictly inside the
bounding box is at unit vertical and horizontal distance
from the lower left (upper right) corner of the bounding
box, one unit away from the clockwise adjacent (reflex)
vertex, and two units away from the counterclockwise
adjacent (reflex) vertex. If the successor

e−→ of the en-
try ring face e is open, then the unit cell labeled Eb
in Figure 3a is not part of the inductive region; oth-
erwise, Eb is included as part of the inductive region.
Similarly, if the predecessor

x←− of the exit ring face x is
open, then the unit cell labeled Xb in Figure 3a is not
part of the inductive region; otherwise, Xb is included

as part of the inductive region. (See Figure 4 for exam-
ples.) The entry (exit) port of the inductive region is
the horizontal unit segment incident to the lower (up-
per) convex corner that lies strictly inside the bounding
box of the region. A Head-first unfolding of b produces
a net Nb that fits within the Head-first inductive region
and whose entry and exit ports coincide with the entry
and exit ports of the inductive region.

(b)(a)

Xb

Eb

Xb

Eb

b b

e

x

e

x

1

1

1

1

1

1 1
1

Figure 3: Inductive region for (a) Head-first unfolding
(b) Hand-first unfolding

A Hand-first inductive region for b is an orthogonally
convex polygon shaped as in Figure 3b. It is isometric
to a Head-first inductive region, and one can be ob-
tained from the other through a clockwise 90◦-rotation,
followed by a vertical reflection.

Lemma 1 Let Nb be the unfolding net produced by a re-
cursive Hand-east (west), Head-first recursive unfold-
ing of b. If Nb is rotated clockwise by 90◦ and then re-
flected vertically, then the result is a Head-east (west),
Hand-first recursive unfolding of b.

Lemma 1 (whose proof is deferred to the appendix)
enables us to focus the rest of our discussion on Head-
first unfoldings only, and assume that the same results
apply to the Hand-first unfoldings. Next we discuss
the type of connections that each net must provide to

191

30th Canadian Conference on Computational Geometry, 2018

ee

x

e

←x
′

←x
′

x′

x←x

e

re, rx

(a)

re
→e

rx

x ←x

→e

(b) (c)

b b

e

x

b

→e

←x

e

←

→e

x x

e′

→e
′

→e
′

e′

x′ ←x
′

→e
′

e′

x′

e′

x′

Xb

EbEb

Xb x

e′

x′Nb Nb Nb

Figure 4: Entry/exit rings (in yellow) and entry/exit connections. (a)
e−→ and

x←− open and adjacent to Tb, type-2

entry and exit connections (type-1 entry connections would also be allowed here); (b)
e−→ and

x←− non-adjacent to Tb,
type-1 entry and exit connections; (c)

e−→ and
x←− closed: type-1 entry and exit connections; the squares labeled Eb

and Xb belong to b’s inductive region.

ensure it connects to the rest of T ’s unfolding. To do
so, we need a few more definitions.

Let e′ (x′) be the open ring face of Tb that is adjacent

to e (x) along the entry (exit) port. If
e−→ (

x←−) is open,

let
e′−→ (

x′
←−) be the open ring face adjacent to it along its

side of unit length (see Figure 4). Note that, although

e and
e−→ are ring faces from the same box by definition,

ring faces e′ and
e′−→ may be from different boxes (as in

Figure 4b), and similarly for x′ and
x′
←−.

If b is not the root of T , to ensure that b’s net connects
to the rest of T ’s unfolding, it must provide type-1 or
type-2 connection pieces placed along the boundary in-
side its inductive region. These connections are defined
as follows:

• A type-1 entry connection consists of the ring face e′

placed alongside the entry port. (See Figure 4(b,c)
for examples.)

• A type-1 exit connection consists of the ring face x′

placed alongside the exit port. (See Figure 4(b,c)
for examples.)

• A type-2 entry connection is used when the ring
face

e−→ is open and adjacent to Tb. It consists

of the ring face
e′−→ placed right of the entry port.

(See Figure 4a for an example.)

• A type-2 exit connection is used when the ring face
x←− is open and adjacent to Tb. It consists of the ring

face
x′
←− placed left of the exit port. (See Figure 4a

for an example.)

Note that the unfolding of b begins on e (by definition)
and is therefore adjacent to the entry port. The entry
box be will provide a piece of e alongside the entry port
of b’s inductive region which connects to e′ in b’s net in a
type-1 entry connection; for a type-2 entry connection,

it places a piece of
e−→ next to e, which connects to

e′−→
in b’s net. Examples of these pieces are shown in yellow

along the boundary of the inductive regions in Figure 4.
Similarly, the unfolding of b ends on x (by definition)
and is therefore adjacent to the exit port. The exit box
bx will provide a piece of x alongside the exit port of
b’s inductive region which connects to x′ in b’s net in a
type-1 exit connection; for a type-2 exit connection, it

places a piece of
x←− next to x, which connects to

x′
←− in

b’s net.

4 Inductive Hypothesis

We will make use of the following inductive hypothesis
for the recursive unfolding of a box b ∈ T other than
the root box:

(I1) The recursive Head-first (Hand-first) unfolding of
b produces an unfolding net Nb that fits within a
Head-first (Hand-first) inductive region and in-
cludes all open faces of Tb, with cuts restricted to
a 4× 4 refinement of the box faces.

(I2) The unfolding net Nb provides the following entry
and exit connections (see Figure 4):

(a) If
e−→ is open and adjacent to a face in Tb, then

Nb provides either a type-1 or type-2 entry
connection. Otherwise, Nb provides a type-1
entry connection.

(b) If
x←− is open and adjacent to a face in Tb,

then Nb provides either a type-1 or type-2 exit
connection. Otherwise, Nb provides a type-1
exit connection.

(I3) Open faces of b’s ring that are not used in Nb’s
entry and exit connections can be removed from
Nb without disconnecting Nb.

5 Unfolding Algorithm

Our unfolding algorithm uses an unfolding path that
begins on the top face of the root box of T , recursively

192

CCCG 2018, Winnipeg, Canada, August 8–10, 2018

visits all nodes in the subtree rooted at the child of
the root box, and ends on the bottom face of the root
box. The following theorem shows how the inductive
hypothesis can be used to derive our main result.

FA

TA

end

start

A

J

RA

BA

LANJ

(a) (b)

Figure 5: Head-first unfolding of root box A with back
child J (a) unfolding path (b) unfolding net.

Theorem 2 Let O be an orthotree of degree at most
three. If the inductive hypothesis is met by all boxes in
T other than the root box, then O can be unfolded into
a net using a 4× 4 refinement.

Proof. Let A ∈ T be the root of T (by definition, A is a
node of degree one in T). Assume A has a back child J
(if this is not the case, reorient O to make this true). A
recursive unfolding of O is depicted in Figure 5a: start-
ing Head-first on the top face of A, the unfolding path
recursively visits J and returns to the bottom face of A.
The resulting net takes the shape depicted in Figure 5b.

Property (I2) applied to J tells us that NJ provides
either type-1 or type-2 entry and exit connections. If of
type-1, the entry (exit) connection attaches to TA (BA);
otherwise, it attaches to RA (LA). In either case, the
surface piece NA depicted in Figure 5b is connected.
Property (I1) applied to J tells us that NJ is a net that
includes all open faces in the subtree TJ rooted at J and
uses a 4 × 4 refinement. This along with the fact that
the open faces of A attach to NJ without overlap shows
that NA is a net that uses a 4× 4 refinement. �

The rest of the paper is devoted to proving that the
inductive hypothesis holds for all boxes A ∈ T other
than the root box. Lemma 1 allows us to restrict our
attention to Head-first unfoldings only.

We discuss several cases depending on the node de-
gree. The Head-first unfolding of a leaf node is de-
picted in Figure 2a, and it can be easily verified that
this unfolding satisfies the inductive hypothesis. In the
appendix we include a proof of this claim, and show
that degree-2 nodes can be handled as degenerate cases
of degree-3 nodes. Our analysis of degree-3 nodes is
split into five different cases, depending on the position
of A’s children:

Case 3.1: E and J are children of A. The case where
W and J are children of A is a vertical mirror plane
reflection of this case.

Case 3.2: E and W are children of A.

Case 3.3: N and S are children of A.

Case 3.4: N and J are children of A. The case where
S and J are children of A is a horizontal mirror plane
reflection of this case, with the unfolding path traversed
in the opposite direction.

Case 3.5: N and E are children of A. The case where
N and W are children of A is a vertical mirror plane
reflection of this case; the case where S and E are chil-
dren of A is a horizontal mirror plane reflection of this
case, with the unfolding path followed in the opposite
direction; the case where S and W are children of A is a
vertical mirror plane reflection of the case where S and
E are children of A.

In this paper we discuss case 3.1 only, and defer the re-
maining cases to the appendix. Case 3.1 is handled by
Lemma 5 and Theorem 6, which make use of the follow-
ing two preliminary lemmas (whose proofs are deferred
to the appendix).

Lemma 3 Let X ∈ {E,W} be a child of A. In a
Head-first unfolding of A, if the Hand points in the
direction of X (opposite to X), then the successor

eA−−→
(predecessor

xA←−−) of the entry (exit) ring face eA (xA)
is open.

Lemma 4 Let ξ be the unfolding path and N the un-
folding net produced by a recursive unfolding of a box

in T . Let
←−
ξ be the unfolding path traversed in reverse,

starting at the exit port of N and ending at the entry
port of N , with the Head and Hand pointing in op-
posite direction. If N satisfies the inductive hypothesis,

then the unfolding net induced by
←−
ξ also satisfies the

inductive hypothesis.

Lemma 5 Let A ∈ T be a degree-3 node with parent I
and children E and J . There is a Hand-east, Head-
first unfolding of A whose net NA satisfies the inductive
hypothesis.

Proof. One such unfolding is depicted in Figure 6a:
starting at A’s entry port, the unfolding path moves
Head-first on TA, then proceeds Hand-first to recur-
sively visit E; from E’s exit face on BA, it proceeds
Head-first to recursively visit J ; from J ’s exit face on
TA, it moves Hand-first to LA and BA and then to A’s
exit port. We now show that, when visited in this order
and laid flat in the plane, the open faces in TA form a
net NA that satisfies the inductive hypothesis.

We start by showing that NA provides the appropri-
ate entry and exit connection pieces. By Lemma 3,

eA−−→
is open, therefore EA does not belong to A’s inductive
region (by definition). If

xA←−− is closed (open), then XA

belongs (doesn’t belong) to A’s inductive region. This

193

30th Canadian Conference on Computational Geometry, 2018

XE
TA

endend

(b)

A
A

BA

BA

TA

(a)

TA

LA

BA
LA

start

J

E

start

TA

J

E

BA

LA

LA

EE

XE

XA?

XJ

EA?

EJ

EE

NE

NJ

NJ

NE

EA

XA

Figure 6: Box A with back and east children, Head-first unfolding (a) Hand pointing east (b) Hand pointing west.

dual case scenario is depicted by the cell labeled XA?
in Figure 6a. Observe that NA provides type-1 entry
and exit connections since e′A ∈ TA and x′A ∈ BA are
positioned alongside the entry and exit ports. Thus NA

satisfies condition (I2) of the inductive hypothesis.

Turning now to condition (I1) of the inductive hy-
pothesis, we begin by showing that the unfolding NA

from Figure 6a is connected. Note that
eE−−→∈ KA and

xE←−−∈ FA are both closed, so EE and XE belong to E’s
inductive region (by definition). The inductive hypothe-
sis applied to NE tells us that NE provides type-1 entry
and exit connections, and thus it connects to the pieces
of eE ∈ TA and xE ∈ BA placed along NE ’s boundary
at the entry and exit ports.

Next we show that the netNJ produced by a recursive
unfolding of J connects to the pieces of BA, LA and TA
placed alongside its boundary. First note that

eJ−→∈ LA

is open and therefore EJ does not belong to J ’s inductive
region. Because

eJ−→ is adjacent to TJ , the inductive hy-
pothesis applied toNJ tells us thatNJ provides a type-1
or type-2 entry connection. If type-1, then it connects
to the piece eJ ∈ BA; if type-2, then it connects to
eJ−→∈ LA. Also note that

xJ←−−∈ RA is closed, so by def-
inition XJ is inside J ’s inductive region. The inductive
hypothesis applied to NJ tells us that NJ provides a
type-1 exit connection, which connects to xJ ∈ TA. It
follows that the net NA is connected.

By the inductive hypothesis, NE covers all faces in
TE and NJ covers all faces in TJ , both using a 4 × 4
refinement. Observe that NA includes all points in TA,
LA and BA (which are A’s open faces) using a 4× 4 re-

finement. Thus we conclude that NA satisfies condition
(I1) of the inductive hypothesis.

Turning to (I3) of the inductive hypothesis, observe
that the only open ring face of A not used in A’s entry or
exit connections is part of LA (this ring face is shown in
dark gray in the unfolding in Figure 6a, left of the exit
port). Its removal does not disconnectNA, and thus NA

satisfies condition (I3) of the inductive hypothesis. �
Theorem 6 Any degree-3 node A ∈ T with children E
and J can be unfolded into a net NA that satisfies the
inductive hypothesis.

Proof. Lemma 1 enables us to restrict our attention to
Head-first unfoldings of A. If the Hand points east,
then by Lemma 5 there is an unfolding net NA that
satisfies the inductive hypothesis. If the Hand points
west, the unfolding follows the same path but in reverse
direction (compare Figure 6a and Figure 6b) This along
with Lemma 4 implies that the unfolding net from Fig-
ure 6b satisfies the inductive hypothesis. �

A complete unfolding example is included in sec-
tion 10 of the appendix.

6 Conclusion

This paper presents the first result on unfolding or-
thotrees of degree 3 or less with a 4 × 4 refinement.
Our preliminary investigations show promise of this ap-
proach extending to arbitrary degree orthotrees. It is
open whether all orthotrees can be grid-unfolded with-
out any refinements.

194

CCCG 2018, Winnipeg, Canada, August 8–10, 2018

References

[BDD+98] Therese Biedl, Erik Demaine, Martin De-
maine, Anna Lubiw, Mark Overmars,
Joseph O’Rourke, Steve Robbins, and Sue
Whitesides. Unfolding some classes of or-
thogonal polyhedra. In Proceedings of the
10th Canadian Conference on Computa-
tional Geometry, Montréal, Canada, Au-
gust 1998.

[BDE+03] Marshall Bern, Erik D. Demaine, David
Eppstein, Eric Kuo, Andrea Mantler, and
Jack Snoeyink. Ununfoldable polyhedra
with convex faces. Computational Geome-
try: Theory and Applications, 24(2):51–62,
February 2003.

[CY15] Yi-Jun Chang and Hsu-Chun Yen. Un-
folding orthogonal polyhedra with linear re-
finement. In Proceedings of the 26th In-
ternational Symposium on Algorithms and
Computation, ISAAC 2015, Nagoya, Japan,
pages 415–425. Springer Berlin Heidelberg,
2015.

[DDF14] Mirela Damian, Erik D. Demaine, and
Robin Flatland. Unfolding orthogonal poly-
hedra with quadratic refinement: the delta-
unfolding algorithm. Graphs and Combina-
torics, 30(1):125–140, 2014.

[DDFO17] Mirela Damian, Erik Demaine, Robin Flat-
land, and Joseph O’Rourke. Unfolding
genus-2 orthogonal polyhedra with linear
refinement. Graph. Comb., 33(5):1357–
1379, September 2017.

[DFMO05] Mirela Damian, Robin Flatland, Henk Mei-
jer, and Joseph O’Rourke. Unfolding well-
separated orthotrees. In Abstracts from the
15th Annual Fall Workshop on Computa-
tional Geometry, Philadelphia, PA, Novem-
ber 2005.

[DFO05] Mirela Damian, Robin Flatland, and Joseph
O’Rourke. Unfolding Manhattan towers.
In Proceedings of the 17th Canadian Con-
ference on Computational Geometry, pages
211–214, Windsor, Canada, August 2005.

[DFO07] Mirela Damian, Robin Flatland, and Joseph
O’Rourke. Epsilon-unfolding orthogonal
polyhedra. Graphs and Combinatorics,
23(1):179–194, 2007.

[DO07] Erik D. Demaine and Joseph O’Rourke.
Geometric Folding Algorithms: Linkages,

Origami, Polyhedra. Cambridge University
Press, July 2007.

[HCY17] Kuan-Yi Ho, Yi-Jun Chang, and Hsu-Chun
Yen. Unfolding some classes of orthogo-
nal polyhedra of arbitrary genus. In The
23th International Computing and Com-
binatorics Conference (COCOON) 2017,
pages 275–287, 2017.

[LPW14] Meng-Huan Liou, Sheung-Hung Poon, and
Yu-Jie Wei. On edge-unfolding one-layer
lattice polyhedra with cubic holes. In The
20th International Computing and Com-
binatorics Conference (COCOON) 2014,
pages 251–262, 2014.

195

30th Canadian Conference on Computational Geometry, 2018

Appendix

7 Proofs of Preliminary Lemmas

Lemma 1 Let Nb be the unfolding net produced by a re-
cursive Hand-east (west), Head-first recursive unfold-
ing of b. If Nb is rotated clockwise by 90◦ and then re-
flected vertically, then the result is a Head-east (west),
Hand-first recursive unfolding of b.

Proof. Note that, when applied to the L-guide, this
combined (90◦-rotation, vertical reflection) transforma-
tion switches the Head and the Hand positions, so a
Head-first orientation at the beginning (end) of the un-
folding becomes Hand-first. This implies that, when
applied to the unfolded net, the same transformation
turns a Hand-east (west), Head-first unfolding into a
Head-east (west), Hand-first unfolding. �

Lemma 3 Let X ∈ {E,W} be a child of A. In a
Head-first unfolding of A, if the Hand points in the
direction of X (opposite to X), then the successor

eA−−→
(predecessor

xA←−−) of the entry (exit) ring face eA (xA)
is open.

Proof. Consider first the case where the Hand points
east and E is a child of A. If TI is open, then eA ∈ TI
and

eA−−→∈ RI ; in this case
eA−−→ is necessarily open, oth-

erwise IE ∈ O would close a cycle (I, A, E, IE), con-
tradicting the fact that O is an orthotree. If TI is not
open, then NI ∈ O, eA ∈ KNI and

eA−−→∈ RNI . As
noted earlier, IE 6∈ O. This along with the fact that
O is a 2-manifold implies that RNI is open (otherwise
NIE ∈ O either meets E at an edge or closes a cy-
cle (NIE,EN ,E,A,I,NI)). It follows that

eA−−→ is open.
Similar arguments hold for the other cases. �

Lemma 4 Let ξ be the unfolding path and N the un-
folding net produced by a recursive unfolding of a box

in T . Let
←−
ξ be the unfolding path traversed in reverse,

starting at the exit port of N and ending at the entry
port of N , with the Head and Hand pointing in op-
posite direction. If N satisfies the inductive hypothesis,

then the unfolding net induced by
←−
ξ also satisfies the

inductive hypothesis.

Proof. The unfolding net
←−N induced by

←−
ξ is a diagonal

flip (180◦-rotation) of N . It can be verified that the
inductive hypothesis is invariant under 180◦-rotations,

therefore it holds for
←−N as well. �

8 Unfolding Degree-3 Nodes

In this section we discuss the unfoldings of cases 3.2
through 3.5 listed in Section 5.

Lemma 7 Let A ∈ T be a degree-3 node with parent I
and children E and W . There is a Hand-east, Head-
first unfolding of A whose net NA satisfies the inductive
hypothesis.

Proof. One such unfolding is depicted in Figure 7a.
The unfolding path is similar to the one from Figure 6a,
with the only difference that the recursive unfolding of
J in Figure 6a is replaced with a straight path across
the back face of A in Figure 7a, and the straight path
across the west face of A in Figure 6a is replaced with
a recursive unfolding of W in Figure 7a. We now show
that, when visited in this order and laid flat in the plane,
the faces in TA form a netNA that satisfies the inductive
hypothesis.

We start by considering the left/right boundaries of
A’s inductive region and show that A provides the ap-
propriate entry and exit connection pieces. By Lemma 3
eA−−→ and

xA←−− are both open, therefore EA and XA are
outside A’s inductive region. Observe that NA provides
type-1 entry and exit connections, since e′A ∈ TA and
x′A ∈ BA are placed alongside the entry and exit ports.
Thus NA satisfies condition (I2) of the inductive hy-
pothesis.

Next we turn to condition (I1) of the inductive hy-
pothesis. We begin by showing that the unfolding NA

from Figure 7a is connected. First note that
eE−−→∈ KA

is open, therefore EE is outside E’s inductive region.
Because

eE−−→ is open and adjacent to TE , the induc-
tive hypothesis applied to NE tells us that NE provides
a type-1 or type-2 entry connection: if a type-1 entry
connection, then it connects to eE ∈ TA; if a type-2
entry connection, then it connects to

eE−−→∈ KA. Also
note that

xE←−−∈ FA is closed, therefore XE is inside E’s
inductive region. The inductive hypothesis applied to
NE tells us that NE provides a type-1 exit connection,
which connects to xE ∈ BA.

Next we show that the net NW produced by a re-
cursive unfolding of W connects to the pieces TA, BA

and KA placed alongside its boundary. First note that
eW−−→∈ FA is closed, therefore EW is inside W ’s inductive
region. The inductive hypothesis applied to NW tells
us that NW provides a type-1 entry connection, which
connects to eW ∈ TA. Also note that

xW←−−∈ KA is open,
therefore XW is outside W ’s inductive region. Because
xW←−− is open and adjacent to TW , the inductive hypoth-

esis applied to NW tells us that NW provides a type-1
or type-2 exit connection: if a type-1 exit connection,
then it connects to xW ∈ BA; if a type-2 exit connec-
tion, then it connects to

xW←−−∈ KA. It follows that the
entire net NA is connected.

By the inductive hypothesis NE covers all faces in
TE and NW covers all faces in TW , both using a 4 × 4
refinement. Observe that NA includes all points in TA,
KA and BA (which are A’s open faces) using a 4 × 4
refinement. Thus we conclude that NA includes all open

196

CCCG 2018, Winnipeg, Canada, August 8–10, 2018

end

(b)

A

BA

TA

(a)

E

start

W

BA

KA

TA

KA

KA

XE

EW

NE

NW

end

start

S

N

LA
KA

RA

EA?

XA?

NN

NS

Figure 7: Box A of degree 3, Head-first unfolding (a) case when A has east and west children (b) case when A has
north and south children.

faces of TA and satisfies condition (I1) of the inductive
hypothesis.

Condition (I3) of the inductive hypothesis is trivially
satisfied, because only two ring faces of A are open, and
they are both used in A’s entry and exit connections.
This concludes the proof. �

Theorem 8 Any degree-3 box A ∈ T with children E
and W can be unfolded into a net NA that satisfies the
inductive hypothesis.

Proof. Lemma 1 enables us to restrict our attention to
Head-first unfoldings of A. If the Hand points east,
then by Lemma 7 there is an unfolding net NA that
satisfies the inductive hypothesis. Observe that the case
when the Hand points west is symmetric, so arguments
analogous to those in Lemma 7 show that its net also
satisfies the inductive hypothesis. �

Lemma 9 Let A ∈ T be a degree-3 node with parent I
and children N and S. There is a Hand-east, Head-
first unfolding of A whose net NA satisfies the inductive
hypothesis.

Proof. One such unfolding is depicted in Figure 7b:
starting at the entry port on A, the unfolding path pro-
ceeds Head-first to recursively visit N , then crosses N ’s
exit faceKA and proceeds Head-first to recursively visit
S, ending at A’s exit port. We now show that, when
visited in this order and laid flat in the plane, the open
faces in TA form a net NA that satisfies the inductive
hypothesis.

We start by considering the left/right boundaries of
A’s inductive region and show that A provides the ap-
propriate entry and exit connection pieces. Note that
the entry ports of A and N coincide, therefore the left
boundaries of their inductive regions also coincide. If
eA−−→=

eN−−→∈ RI is closed (open), then EA = EN belongs
(does not belong) to A and N ’s inductive region. This
dual case scenario is depicted by the free cell labeled
EA in Figure 7b. Because

eN−−→ is not adjacent to TN ,
the inductive hypothesis tells us that N will provide a
type-1 entry connection, which also serves as a type-1
entry connection for A since e′N = e′A. By analogous
arguments, the right boundaries of A and S coincide,
XA = XS may or may not belong to their inductive re-
gions, and S will provide a type-1 exit connection that
also serves as a type-1 exit connection for A. Thus NA

satisfies condition (I2) of the inductive hypothesis.

Next we turn to condition (I1) of the inductive hy-
pothesis. We begin by showing that the unfolding NA

from Figure 7b is connected. First note that
xN←−−∈ LA

is open, therefore XN is outside N ’s inductive region.
Because

xN←−− is open and adjacent to TN , the inductive
hypothesis applied to NN tells us that NN provides a
type-1 or type-2 exit connection: if a type-1 exit con-
nection, then it connects to xN ∈ KA; if a type-2 exit
connection, then it connects to

xN←−−∈ LA.

Similarly,
eS−→∈ RA is open, therefore ES is outside S’s

inductive region. Because
eS−→ is open and adjacent to

TS , the inductive hypothesis applied to NS tells us that
NS provides a type-1 or type-2 entry connection: if a
type-1 entry connection, then it connects to eS ∈ KA; if
a type-2 entry connection, then it connects to

eS−→∈ RA.

197

30th Canadian Conference on Computational Geometry, 2018

It follows that the entire net NA is connected.
By the inductive hypothesis NN covers all faces in

TN and NS covers all faces in TS , both using a 4 × 4
refinement. Observe that NA includes LA, KA and RA

(which are A’s open faces) using a 4 × 4 refinement.
Thus we conclude that NA includes all open faces of TA
and satisfies condition (I1) of the inductive hypothesis.

Finally we turn to condition (I3) of the inductive hy-
pothesis. Note that the open ring faces of A not involved
in A’s entry and exit connections are the dark-shaded
pieces of LA andRA from Figure 7b, whose removal does
not disconnect NA. Thus NA satisfies (I3) as well. �

Theorem 10 Any degree-3 node A ∈ T with children
N and S can be unfolded into a net NA that satisfies
the inductive hypothesis.

Proof. Lemma 1 enables us to restrict our attention to
Head-first unfoldings of A. If the Hand points east,
then by Lemma 9 there is an unfolding net NA that
satisfies the inductive hypothesis. Observe that the case
when the Hand points west is symmetric, so arguments
analogous to those in Lemma 9 show that its net also
satisfies the inductive hypothesis. �

Lemma 11 Let A ∈ T be a degree-3 node with parent I
and children N and J . If RI is open, there is a Hand-
east, Head-first unfolding of A whose net NA satisfies
the inductive hypothesis.

Proof. One such unfolding is depicted in Figure 8a:
starting from the entry face TI , the unfolding path
moves Hand-first to RI , Head-first to RA, then it cy-
cles Hand-first around A to LA; from there it proceeds
Head-first to recursively visit J and then Hand-first
to recursively visit N ; from N ’s exit face LA it moves
Hand-first to BA and then to A’s exit port. We now
show that, when visited in this order and laid flat in the
plane, the open faces in TA form a net NA that satisfies
the inductive hypothesis.

We start by considering the left/right boundaries of
A’s inductive region and show that A provides the ap-
propriate entry and exit connection pieces. By the
lemma statement

eA−−→∈ RI is open, therefore EA is out-
side the inductive region for A. Because

eA−−→∈ RI is
adjacent to TA, the inductive hypothesis allows NA to
provide a type-2 entry connection, which it does in the

form of
e′A−−→∈ RA placed right of NA’s entry port. If

xA←−−∈ LI is open (closed), then XA is outside (inside)
the inductive region for A. This dual case scenario is de-
picted by the free cell labeled XA in Figure 8a. Note that
NA provides a type-1 exit connection, because x′A ∈ BA

is placed alongside its exit port. Thus NA satisfies con-
dition (I2) of the inductive hypothesis.

Next we turn to condition (I1) of the inductive hy-
pothesis. We begin by showing that the unfolding NA

from Figure 8a is connected. First note that
eJ−→∈ TA is

closed, therefore EJ belongs to the inductive region for
J . The inductive hypothesis applied to NJ tells us that
NJ provides a type-1 entry connection, which connects
to eJ ∈ LA. Also note that

xJ←−−∈ BA is open and adja-
cent to TJ . In this case the inductive hypothesis applied
to NJ tells us that NJ provides a type-1 or type-2 exit
connection: if type-1, it connects to xJ ∈ RA; if type-2,
it connects to

xJ←−−∈ BA.
Next we show that the net NN produced by a recur-

sive unfolding of N connects to the pieces of RA and
LA placed alongside its boundary. Since

eN−−→∈ FA and
xN←−−∈ KA are closed, EN and XN are inside the induc-

tive region for N . The inductive hypothesis applied to
N tells us that NN provides type-1 entry and exit con-
nections, therefore it connects to the pieces of eN ∈ RA

and xN ∈ LA placed alongside NN ’s entry and exit
ports. It follows that the entire net NA is connected.

By the inductive hypothesis NJ covers all faces in
TJ and NS covers all faces in TS , both using a 4 × 4
refinement. Observe that NA includes all points in LA,
BA and RA (which are A’s open faces) using a 4 × 4
refinement. Thus we conclude that NA includes all open
faces of TA and satisfies condition (I1) of the inductive
hypothesis.

Finally we turn to condition (I3) of the inductive hy-
pothesis. Note that the only open ring face of A not
involved in A’s entry and exit connections is the dark-
shaded piece of LA from Figure 8a, whose removal does
not disconnect NA. Thus NA satisfied (I3) as well. �

Lemma 12 Let A ∈ T be a degree-3 node with parent I
and children N and J . If RI is closed, there is a Hand-
east, Head-first unfolding of A whose net NA satisfies
the inductive hypothesis.

Proof. One such unfolding is depicted in Figure 8b:
starting at the entry port on A, the unfolding path
moves Head-first to FN and cycles Hand-first around
N to KN ; it then proceeds Head-first to recursively
visit NN , Hand-first to recursively visit NW , and then
Head-first to recursively visit J ; from J ’s exit face BJ it
moves Head-first to A’s exit port. We now show that,
when visited in this order and laid flat in the plane,
the open faces in TA form a net NA that satisfies the
inductive hypothesis.

We start by considering the left/right boundaries of
A’s inductive region and show that A provides the ap-
propriate entry and exit connection pieces. By the
lemma statement

eA−−→∈ RI is closed, therefore EA is in-
side the inductive region for A. If

xA←−−∈ LI is closed
(open), then XA is inside (outside) the inductive region
for A. Note that NA provides a type-1 entry and exit
connection, because e′A ∈ FN and x′A ∈ BA are placed
alongside its entry and exit ports. Thus NA satisfies
condition (I2) of the inductive hypothesis.

198

CCCG 2018, Winnipeg, Canada, August 8–10, 2018

XA?

LA
BA

FN

RA

(a)

end

J

end

start

N
J

(b)

N

start
I

BA

LA

NJ

RA

LA

BA

KN
RN

FN

KN

BA RN

EJ

EN

XN

XA?

RA
ENN

ENW

XNW

NN

NNN

NNW

NJ

Figure 8: Box A of degree 3 with north and back children, Head-first unfolding (a) right face of I open (b) right
face of I closed (so right face of N open).

Next we turn to condition (I1) of the inductive hy-
pothesis. We begin by showing that the unfolding NA

from Figure 8b is connected. Here we assume the sub-
trees rooted at NN and NW are non-degenerate and
thus consist of at least one box. (Handling cases in
which one or both are degenerate requires only minor
modifications.) By the lemma statement

eNN−−−→∈ LN is
closed (and so ENN is inside the inductive region for
NN). The inductive hypothesis applied to NNN tells
us that NNN provides a type-1 entry connection, which
connects to eNN ∈ KN placed alongside its entry port.
Also note that

xNN←−−−∈ RN is open and adjacent to TNN

(and so XNN is outside the inductive region for NN).
In this case the inductive hypothesis applied to NNN

tells us that NNN provides a type-1 or type-2 exit con-
nection: if type-1, it connects to xNN ∈ FN ; if type-2,
it connects to

xNN←−−−∈ RN .

Next we show that the net NNW produced by a re-
cursive unfolding of NW forms a connected compo-
nent with the pieces of FN and KN placed alongside its
boundary. Since

eNW−−−→∈ BN is closed, ENW is inside the
inductive region for NW . The inductive hypothesis ap-
plied to NW tells us that NNW provides a type-1 entry
connection, which connects to the piece of eNW ∈ FN

placed alongside its entry port. By the lemma state-
ment

xNW←−−−∈ TN is closed (and so XNW is inside the
inductive region for NW). In this case the inductive
hypothesis applied to NNW tells us that NNW provides
a type-1 exit connection, which connects to xNW ∈ KN

placed alongside its exit port.
Next we show that the net NJ produced by a recur-

sive unfolding of J connects to pieces of KN , BA, and
LA placed alongside its boundary. Note that

eJ−→∈ RN

is open (and so EJ is outside the inductive region for
J) but not adjacent to TJ . The inductive hypothesis
applied to J tells us that NJ provides a type-1 entry
connection, which connects to eJ ∈ KN placed along-
side its entry port. Also note that

xJ←−−∈ LA is open (and
so XJ is outside J ’s inductive region) and adjacent to
TJ . The inductive hypothesis applied to NJ tells us
that NJ provides a type-1 or type-2 exit connection: if
type-1, it connects to xJ ∈ BA; if type-2, it connects to
xJ←−−∈ LA. It follows that the entire net NA is connected.

By the inductive hypothesis NNN covers all faces in
TNN , NNW covers all faces in TNW , and NJ covers all
faces in TJ , all using a 4 × 4 refinement. Observe that
NA includes all points in FN , RN and KN (which are
N ’s open faces) and in LA, BA and RA (which are A’s
open faces), also using a 4×4 refinement. Thus we con-
clude that NA includes all open faces of TA and satisfies
condition (I1) of the inductive hypothesis.

Finally we turn to condition (I3) of the inductive hy-
pothesis. Note that the only open ring faces of A that
are not involved in A’s entry and exit connections are
the dark-shaded piece of RA and LA from Figure 8b,
whose removal does not disconnect NA. Thus NA sat-
isfied (I3) as well. �
Theorem 13 Any degree-3 node A ∈ T with parent I

199

30th Canadian Conference on Computational Geometry, 2018

and children N and J can be unfolded into a net NA

that satisfies the inductive hypothesis.

Proof. Lemma 1 enables us to restrict our attention
to Head-first unfoldings of A. If the Hand points east
and RI is open, then by Lemma 11 there is an unfolding
net NA that satisfies the inductive hypothesis; if RI is
closed, then by Lemma 12 there is an unfolding net NA

that satisfies the inductive hypothesis. Observe that
the case when the Hand points west is symmetric, so
arguments analogous to those in Lemma 11 (when LI

is open) and Lemma 12 (when LI is closed) show that
the theorem holds for this case as well. �

Lemma 14 Let A ∈ T be a degree-3 node with parent
I and children N and E. If KN is open, there is a
Hand-east, Head-first unfolding of A whose output net
NA satisfies the inductive hypothesis.

Proof. One such unfolding is depicted in Figure 9a:
starting at the entry port on A, the unfolding path pro-
ceeds Head-first to recursively visit N ; from N ’s exit
port on KN it moves Hand-first to RN , then proceeds
Head-first to recursively visit E; from E’s exit face BA

it moves in the direction opposite the Hand to KA, then
Head-first to LA, Hand-first BA and then to A’s exit
port. We now show that, when visited in this order and
laid flat in the plane, the open faces in TA form a net
NA that satisfies the inductive hypothesis.

We start by considering the left/right boundaries of
A’s inductive region and show that A provides the ap-
propriate entry and exit connection pieces. Observe
that the entry ports of A and N coincide, and thus
the left boundaries of their inductive regions also coin-
cide. By Lemma 3,

eN−−→=
eA−−→∈ RI is open, therefore

EN = EA does not belong to the inductive region of
N and A. Because

eN−−→ is not adjacent to TN , the in-
ductive hypothesis tells us that N will provide a type-1
entry connection, which is also a type-1 entry connec-
tion for A (since e′N = e′A). Now consider the right side

of A’s inductive region. Observe that
xA←−− may or may

not be open, therefore XA may or may not belong to
the inductive region of A, as indicated by the free cell
in Figure 9a. As shown in Figure 9a, A places ring
face x′A ∈ BA adjacent to its exit port, and thus pro-
vides a type-1 exit connection. Therefore, NA satisfies
condition (I2) of the inductive hypothesis.

We now show that the net NA is itself connected.
First note that XN is not part of N ’s inductive region
because

xN←−−∈ LA is open. Because
xN←−− is adjacent

to TN , it seems at first that N could provide a type-1
or type-2 exit connection. However, we can argue in
this situation N must provide a type-1 exit connection.
Specifically, if N is of degree 1 or 2, then it has a type-
1 exit connection because all degree 1 and 2 unfoldings

do 1. If N is of degree 3, then it must be Case 3.1. To see
this, orient N in standard position2 and observe that it
can only have a west and back child; its other faces are
either open or attached to its parent. Observe that all
Case 3.1 unfoldings have type-1 exit connections. This
implies that N has a type-1 exit connection which tells
us that x′N ∈ KN is positioned as shown under N ’s
exit port. This attaches to the piece of RN (taken from
N) on the right. By (I3) of the inductive hypothesis
applied to N , it is safe to remove this piece of RN from
NN without disconnecting NN .

Next we show that the net NE connects to RN , KA,
and BA placed around its boundary. First note that
eE−−→∈ FN and

xE←−−∈ KA are open, so EE and XE are
not part of E’s inductive region. Because

eE−−→ is not
adjacent to TE , E has a type-1 entry connection, and
therefore eE ∈ RN placed along E’s entry port is suf-
ficient to make the connection to NE . Now consider
xE←−−. It is adjacent to TE , so E may have a type-1 or a

type-2 exit connection. Therefore to ensure NE is con-
nected to the rest of the unfolding, both xE ∈ BA and
xE←−−∈ KA are placed as shown alongside E’s inductive

region. Thus we have shown that NA is connected.
By the inductive hypothesis, NN covers all faces in TN

(except for the piece of RN used by A) and NE covers
all faces in TE , both using a 4× 4 refinement. Observe
that NA includes all pieces of LA, KA, and BA (which
are A’s open faces), also using a 4× 4 refinement. Thus
we conclude that NA includes all open faces of TA and
satisfies (I1) of the inductive hypothesis.

For I3, observe that the only open ring face of A
not used in A’s entry or exit connections is part of LA,
shown in dark gray in Figure 9a. Its removal does not
disconnect NA so (I3) is satisfied. �

Lemma 15 Let A ∈ T be a degree-3 node with parent
I and children N and E. If KN is closed, there is a
Hand-east, Head-first unfolding of A whose output net
NA satisfies the inductive hypothesis.

Proof. First note that KN closed implies that KE is
open, because otherwise box EJ exists and shares an
edge with NJ and so either box AJ or EJN exists (be-
cause the orthotree is a manifold), which implies a cycle
in the orthotree. The unfolding for this case is depicted
in Figure 9b: from the entry ring face on TI , the un-
folding path moves Hand-first to RI , Head-first to E,
then proceeds Hand-first to recursively visit ES, then
Head-first to recursively visit EE; from EE’s exit face
FE it moves Hand-first to TE , then proceeds Head-first
to recursively visit N ; from N ’s exit face LA it moves
Hand-first to KA, then Head-first to BA, and finally to
A’s exit port. We now show that, when visited in this

1check this
2defined in Section 1: entry and exit ports are the top and

bottom edges of the front face.

200

CCCG 2018, Winnipeg, Canada, August 8–10, 2018

end

KA

A

start

E

N

NN

I

LA

x′N ∈ KN RN

A

start

N

end

I

KA

TE

FE

KE

FE

LA

BA

(a)
(b)

E

BA

BA

TE

XA?

EES

XEE

XES

EA

XA?

XN

EN

EA

XN

EE

NE

NES

NEE

NN

Figure 9: Box A of degree 3 with north and east children, Head-first unfolding, Hand pointing east (a) KN open
(b) KN closed (and so KE open).

order and laid flat in the plane, the open faces in TA
form a net NA that satisfies the inductive hypothesis.

We start by considering the left/right boundaries
of A’s inductive region and show that A provides
the appropriate entry and exit connection pieces. By
Lemma 3,

eA−−→∈ RI is open, therefore EA does not be-
long to A’s inductive region. Because

eA−−→ is adjacent to
TA, the inductive hypothesis tells us that NA can pro-
vide a type-2 entry connection, which it does in the form

of
e′A−−→∈ FE placed just to the right of the entry port.

Now consider the right side of A’s inductive region. Ob-
serve that

xA←−− may or may not be open, therefore XA

may or may not belong to the inductive region of A, as
indicated by the free cell in Figure 9b. Notice that A
places the ring face x′A ∈ BA adjacent to its exit port,
and thus provides a type-1 exit connection. Therefore,
NA satisfies condition (I2) of the inductive hypothesis.

We now show that the net NA is itself connected. We
will assume that the subtrees rooted at ES and EE
are non-degenerate and thus consist of at least one box.
(Handling cases in which one or both are degenerate re-
quires only minor modifications.) First note that EES

and XES are both part of ES’s inductive region because
eES−−→∈ RE and

xES←−−−∈ LE are closed. The inductive hy-
pothesis applied to ES tells us thatNES provides type-1
entry and exit connections, which connect to pieces of
eES ∈ FE and xES ∈ KE .

Next we show that the net NEE connects to KE , TE ,
and FE placed around its boundary. First note that

eEE−−−→∈ TE is open, so EEE is not part of EE’s inductive
region. Because

eEE−−−→ is adjacent to TEE , the inductive
hypothsis tells us that EE provides either a type-1 or
type-2 entry connection, which attaches to eEE ∈ KE

(if type-1) or
eEE−−−→∈ TE (if type-2). Because

xEE←−−−∈ BE

is closed, XEE is part of EE’s inductive region. The
inductive hypothsis tells us that EE provides a type-1
exit connection, which attaches to the piece of xEE ∈
FE .

Next we show that the netNN connects to TE and LA

placed around its boundary. First note that
eN−−→∈ KE is

open, so EN is not part of N ’s inductive region. Because
eN−−→ is not adjacent to TN , the inductive hypothsis tells
us that NN provides a type-1 entry connection, which
attaches to eN ∈ TE . Because

xN←−−∈ FA is closed, XN

is part of N ’s inductive region. The inductive hypoth-
sis tells us that NN provides a type-1 exit connection,
which attaches to xN ∈ LA. Thus we have shown that
NA is connected.

By the inductive hypothesis, NES , NEE , and NN

cover all faces in TES , TEE and TN , all using a 4 × 4
refinement. Observe that NA includes all pieces of LA,
KA, BA, FE , TE , and KE (which are A’s and E’s open
faces), also using a 4× 4 refinement. Thus we conclude
that NA includes all open faces of TA and satisfies (I1)
of the inductive hypothesis.

For condition (I3) of the inductive hypothesis, observe
that the only open ring face of A not used in A’s entry
or exit connections is part of LA, shown in dark gray

201

30th Canadian Conference on Computational Geometry, 2018

in Figure 9b. Its removal does not disconnect NA so
(I3) is satisfied. �

Lemma 16 Let A ∈ T be a degree-3 node with parent
I and children N and E. If BI is open, then there is
a Hand-west, Head-first unfolding of A whose output
NA satisfies the inductive hypothesis.

Proof. One such unfolding is depicted in Figure 10a:
from the entry port on A, the unfolding path proceeds
Head-first to recursively visit N ; from N ’s exit face
KA it moves Hand-first to LA, Head-first to BA, in
the direction opposite the Hand to KA, then proceeds
Head-first to recursively visit E; from E’s exit port it
moves Head-first to RI and then Hand-first to the exit
face BI . We now show that, when visited in this order
and laid flat in the plane, the open faces in TA form a
net NA that satisfies the inductive hypothesis.

We start by considering the left/right boundaries of
A’s inductive region and show that A provides the ap-
propriate entry and exit connection pieces. Observe
that the entry ports of A and N coincide, and thus the
left boundaries of their inductive regions also coincide.
Also note that

eN−−→=
eA−−→∈ LI may be open or closed,

therefore EN = EA may or may not belong to the in-
ductive region of N and A, as indicated by the free cell
in Figure 10a. Because

eN−−→ is not adjacent to TN , the
inductive hypothesis applied to N tells us that N will
provide a type-1 entry connection eN ∈ FN , which is
also a type-1 entry connection for A (since e′N = e′A).

Now consider the right side of A’s inductive region.
Observe that

xA←−−∈ RI is open, therefore XA does not
belong to the inductive region of A. Because

xA←−− is ad-
jacent to TA, A can provide either a type-1 or type-2
exit connection, and in this case A provides a type-2
connection. To see this, observe that the right bound-
aries of E’s and A’s inductive regions overlap along E’s
exit port, which is also where A would place a type-2
connection piece. Because

xE←−−∈ TI is open but not ad-
jacent to TE , the inductive hypothesis tells us that E
provides a type-1 exit connection x′E ∈ FE placed under

its exit port. Because x′E =
x′
A←−−, this piece also serves

as a type-2 connection for A. Therefore, NA satisfies
condition (I2) of the inductive hypothesis.

We now show that the net NA is itself connected.
First note that XN is part of N ’s inductive region be-
cause

xN←−−∈ RA is closed. The inductive hypothesis ap-
plied to N tells us that N provides a type-1 exit con-
nection, which attaches to the piece xN ∈ KA.

Next we show that the net NE connects to KA and
BA placed along its left boundary. First note that

eE−−→∈
BA is open, so EE is not part of E’s inductive region.
Because

eE−−→ is adjacent to TE , NE may have a type-1 or
type-2 entry connection which will connect to eE ∈ KA

(if type-1) or
eE−−→∈ BA (if type-2). Thus we have shown

that NA is connected.
By the inductive hypothesis, NN covers all faces in

TN and NE covers all faces in TE , both using a 4 × 4
refinement. Observe that NA includes all pieces of LA,
KA, and BA (which are A’s open faces), also using a
4 × 4 refinement. Thus we conclude that NA includes
all open faces of TA and satisfies (I1) of the inductive
hypothesis.

For (I3), observe that the only open ring face of A
not used in A’s entry or exit connections is part of LA,
shown in dark gray in Figure 10a. Its removal does not
disconnect NA so (I3) is satisfied. �

Lemma 17 Let A ∈ T be a degree-3 node with parent
I and children N and E. If TN is open, then there is
a Hand-west, Head-first unfolding of A whose output
NA satisfies the inductive hypothesis.

Proof. One such unfolding is depicted in Figure 10b:
from the entry port on A, the unfolding path moves
Head-first across FN to TN and then proceeds Hand-
first to recursively visit NW ; from NW ’s exit face LA

it moves Hand-first to BA and Head-first to KA, then
proceeds Head-first to recursively visit NJ ; from NJ ’s
exit face TN it moves Hand-first to RN and then pro-
ceeds Hand-first to recursively visit E; and from E’s
exit face it reaches directly A’s exit port. We now show
that, when visited in this order and laid flat in the plane,
the faces in TA form a netNA that satisfies the inductive
hypothesis.

We start by considering the left/right boundaries of
A’s inductive region and show that A provides the ap-
propriate entry and exit connection pieces. Because
eA−−→∈ LI may be open or closed, EA may or may not
belong to A’s inductive region, as indicated by the free
cell in Figure 10b. Because

xA←−−∈ RI is open, EA does
not belong to A’s inductive region. Observing that A
provides type-1 entry and exit connections e′A ∈ FN and
x′A ∈ BA, we conclude that NA satisfies condition (I2)
of the inductive hypothesis.

We now show that NA is itself connected. We will
assume that the subtrees rooted at NW and NJ are
non-degenerate and thus consist of at least one box.
(Handling cases in which one or both are degenerate re-
quires only minor modifications.) First note that ENW

and XNW are both part of NW ’s inductive region be-
cause

eNW−−−→∈ KN and
xNW←−−−∈ FA are closed. The in-

ductive hypothesis applied to NNW tells us that it pro-
vides type-1 entry and exit connections, which connect
to pieces eNW ∈ TN and xNW ∈ LA placed alongside
its entry and exit ports.

Next we show that NNJ connects to the pieces of
KA and TN placed along its boundary. First note that
eNJ−−→∈ RA and

xNJ←−−−∈ LN are closed, so ENJ and XNJ

are part of NJ ’s inductive region. By the inductive

202

CCCG 2018, Winnipeg, Canada, August 8–10, 2018

end

A

start

N

I

E

NN
KA

BA
KA

(b)(a)
FN

end

A

N

I

E

start

TN

LA BA

KA

RN

BA

TN
KA

LA

EA?

XN

XAXE

x′E ∈ FE

EA?

XA

ENW

XNW ENJ

EE
NE

NNW

NNJ

NE

XNJ

Figure 10: Box A of degree 3 with north and east children, Head-first unfolding, Hand pointing west. (a) BI open
(b) TN open.

hypothesis, NNJ provides type-1 entry and exit connec-
tions, which connect to eNJ ∈ KA and xNJ ∈ TN .

Next we show that NE connects to the pieces of RN ,
BA, and KA placed along its boundary. First note that
eE−−→∈ FN and

xN←−−∈ KA are open, so EE and XE are
not part of E’s inductive region. Because

eE−−→ is not
adjacent to TE , the inductive hypothesis tells us that E
provides a type-1 entry connection, which connects to
eE ∈ RN . Because

xE←−− is adjacent to TE , the inductive
hypothesis tells us that E provides a type-1 or type 2
exit connection: if type-1 it connects to xE ∈ BA and
if type-2 it connects to

xE←−−∈ KA. Thus we have shown
that NA is connected.

By the inductive hypothesis, NNW , NNJ , and NE

cover all faces in TNW , TNJ and TE , all using a 4 × 4
refinement. Observe that NA includes all pieces of LA,
KA, BA, FN , TN , and RN (which are A’s and N ’s open
faces), also using a 4× 4 refinement. Thus we conclude
that NA includes all open faces of TA and satisfies (I1)
of the inductive hypothesis.

For condition (I3) of the inductive hypothesis, observe
that the only open ring face of A not used in A’s entry
or exit connections is part of LA, shown in dark gray
in Figure 10b. Its removal does not disconnect NA so
(I3) is satisfied. �

Lemma 18 Let A ∈ T be a degree-3 node with parent I

and children N and E. If TN and BI are both closed and
KN is open, there is a Hand-west, Head-first unfolding
of A whose output NA satisfies the inductive hypothesis.

Proof. One such unfolding is depicted in Figure 11a:
from the entry port on A, the unfolding path moves
Head-first to FN , then proceeds Hand-first to recur-
sively visit NW , then Head-first to recursively visit
NN ; fromNN ’s exit face FN it moves Hand-first across
RN to KN , Head-first to KA, Hand-first to LA, Head-
first to BA, in the direction opposite the Hand across
KA to KN , Head-first to RN , Hand-first to TE , then
Head-first across FE to BE ; it then proceeds Hand-
first to recursively visit EE, then Head-first to recur-
sively visit EJ ; finally, from EJ ’s exit face BE , it moves
across BA to the exit port. We now show that, when
visited in this order and laid flat in the plane, the faces
in TA form a net NA that satisfies the inductive hypoth-
esis.

Arguments identical to the ones used in the proof of
Lemma 17 show that A provides the appropriate entry
and exit connection pieces. We now show that the net
NA is itself connected. We will assume that NW is not
degenerate and therefore it consists of at least one box.
(Handling the case where NW is degenerate requires

only minor modifications.) First note that
eNW−−−→∈ TN

203

30th Canadian Conference on Computational Geometry, 2018

and
xNW←−−−∈ BN are closed, so ENW and XNW are part of

NW ’s inductive region. The inductive hypothesis tells
us that NW provides type-1 entry and exit connections,
which connect to pieces of eNW ∈ FN (along the entry
port) and xNW ∈ KN (along the exit port).

Next we show that the netNNN connects to the pieces
of KE , RN , and FN placed along its boundary. First
note that

eNN−−−→∈ RN is open and adjacent to TNN , so
ENN is not part of NN ’s inductive region. The induc-
tive hypothesis applied to NN tells us that NNN pro-
vides either a type-1 or type-2 entry connection. If type-
1, it connects to eNN ∈ KN and if type-2, it connects
to

eNN−−−→∈ RN . Because
xNN←−−−∈ LN is closed, XNN is

part of NN ’s inductive region. The inductive hypothe-
sis tells us that NN provides a type-1 exit connection,
which attaches to xNN ∈ FN .

We now consider NEE and NEJ and show they con-
nect to the pieces of BE , TE , and FE placed along their
boundaries. We will assume that their subtrees are non-
degenerate and thus consist of at least one box. (Han-
dling cases in which one or both are degenerate require
only minor modifications.) First note that EEE and
EEJ are part of their respective inductive regions be-
cause

eEE−−−→∈ KE and
eEJ−−→∈ LE are closed. Similarly,

XEJ is part of EJ ’s inductive region because
xEJ←−−∈ RE

is closed. The inductive hypothesis applied to these two
nets tells us that NEE has a type-1 entry connection
(which attaches to eEE ∈ BE), and NEJ has a type-1
entry and exit connection (which attach to eEJ ∈ TE
and xEJ ∈ BE). Also note that XEE is not part of

EE’s inductive region because
xEE←−−−∈ FE is open. The

inductive hypothesis applied to NEE tells us that it pro-
vides a type-1 or type-2 exit connection, which connects
xEE ∈ TE (if type-1) or

xEE←−−−∈ FE (if type-2). Thus we
have shown that NA is connected.

By the inductive hypothesis, NNW , NNN , NEE , and
NEJ cover all faces in TNW , TNN , TEE and TEJ , all
using a 4× 4 refinement. Observe that NA includes all
open faces of A, N , and E, also using a 4×4 refinement.
Thus we conclude that NA includes all open faces of TA
and satisfies (I1) of the inductive hypothesis.

For condition (I3) of the inductive hypothesis, observe
that the only open ring face of A not used in A’s entry
or exit connections is part of LA, shown in dark gray
in Figure 11a. Its removal does not disconnect NA so
(I3) is satisfied. �

Lemma 19 Let A ∈ T be a degree-3 node with parent I
and children N and E. If TN , BI and KN are all closed,
then there is a Hand-west, Head-first unfolding of A
whose output NA satisfies the inductive hypothesis.

Proof. First note that TNJ is open, because otherwise
boxes {NJN,NN,N,NJ} form a cycle. Also note that
RNJ is open, because otherwise box NJE exists and is

edge-adjacent to E; this implies that box EJ must also
exist (to ensure that the orthotree is a manifold), but
this creates the cycle {NJ,NJE,EJ,E,A,N}.

An unfolding that satisfies the conditions of the
lemma is depicted in Figure 11b: from A’s entry port
the unfolding path moves to FN and proceeds Hand-
first to recursively visit NW , then Hand-first to recur-
sively visit NJ ; from RNJ it moves Head-first to TNJ

and proceeds Hand-first to recursively visit NN ; from
NN ’s exit face FN it moves in the direction opposite
the Head to RN and then proceeds Hand-first to re-
cursively visit E; and from E’s exit face BA it reaches
A’s exit port. We now show that, when visited in this
order and laid flat in the plane, the faces in TA form a
net NA that satisfies the inductive hypothesis.

Arguments identical to the ones used in the proof of
Lemma 17 show that A provides the appropriate en-
try and exit connection pieces. We now show that the
net NA is itself connected. We will assume that NW
is not degenerate and therefore consists of at least one
box. (Handling the case where TNW is empty requires

only minor modifications.) First note that
eNW−−−→∈ TN

is closed, so ENW is part of NW ’s inductive region.
The inductive hypothesis tells us that NNW provides
a type-1 entry connection, which connects to a piece of
eNW ∈ FN placed adjacent to its entry port. Also note
that

xNW←−−−∈ BNJ is open but not adjacent to NW , so
XNW is not part of the inductive region. The inductive
hypothesis applied to NW tells us that NNW provides
a type-1 exit connection.

Now we show that the net NNJ connects to NNW ’s
type-1 exit connection and to the piece of TNJ placed
along its boundary. First note that

eNJ−−→∈ TNW is open
(so ENJ is not part of NJ ’s inductive region) but not
adjacent to TNJ . The inductive hypothesis applied to
NJ tells us that NNJ provides a type-1 entry connec-
tion e′NJ ∈ LNJ , which is adjacent toNNW ’s type-1 exit
connection x′NW ∈ KNW , so the two nets are connected

to each other. Because
xNJ←−−−∈ BN is closed, XNJ is part

of NJ ’s inductive region. The inductive hypothesis ap-
plied to NJ tells us that NNJ provides a type-1 exit
connection x′NJ ∈ RNJ , which attaches along the bot-
tom of the ring face piece of TNJ extracted from NNJ .
Because this ring face piece is not used in the entry or
exit connections of NNJ , removing it from NNJ does
not disconnect NNJ , by the inductive hypothesis (I3)
applied to NJ .

We now consider NNN and NE and show they con-
nect to the pieces of TNJ , FN , RN , BA and KA placed
along their boundaries. First note that ENN and EE are
not part of their respective inductive regions because
eNN−−−→∈ LNJ and

eE−−→∈ FN are open. In addition,
eNN−−−→

is not adjacent to TNN and
eE−−→ is not adjacent to TE .

By the inductive hypothesis, NNN andNE both provide
type-1 entry connections, which connect to the piece of

204

CCCG 2018, Winnipeg, Canada, August 8–10, 2018

LA

end

(a)

RN

BA

A

FN

start I

RNJ

TNJ

(b)

N

I

FN

end

A

I

start

E

FN

NNW

KN

RN

FN

RN

KN

KA

KA
BA

KN

RN

FE

BE

TE

BA
BE

FE

TE

LA

KA

XNW

XEJ

EA?

ENW

XNN

EEE EEJ

EA?

XNJENW

XNW

ENJ

ENN

XA

XA

NNN

NEE

NEJ

NNW

NNJ

NNN
NE

Figure 11: Box A of degree 3 with north and east children, Head-first unfolding, Hand pointing west, BI closed (so
BE open) and TN closed. (a) KN open (b) KN closed (and so TNJ and ENJ open).

eNN ∈ TNJ and eE ∈ RN , respectively. Similarly, XNN

and XE are also not part of their respective inductive re-
gions because

xNN←−−−∈ RN and
xE←−−∈ KA are both open.

In addition,
xNN←−−− is adjacent to TNN and

xE←−− is adja-
cent to TE . By the inductive hypothesis, NNN and NE

provide either type-1 or type-2 exit connections, there-
fore NNN connects to FN (if type-1) and RN (if type-2),
and NE connects to BA (if type-1) and KA (if type-2).
Thus we have shown that NA is connected.

By the inductive hypothesis, NNW , NNJ , NNN , and
NE cover all faces in TNW , TNJ , TNN and TE using a
4 × 4 refinement, except for the piece of TNJ that A
uses. Observe that NA includes all open faces of A and
N , also using a 4×4 refinement. Thus we conclude that
NA includes all open faces of TA and satisfies (I1) of the
inductive hypothesis.

For condition (I3) of the inductive hypothesis, observe
that the only open ring face of A not used in A’s entry
or exit connections is part of LA, shown in dark gray
in Figure 11b. Its removal does not disconnect NA so
(I3) is satisfied. �

Theorem 20 Any degree-3 box A ∈ T with children N
and E can be unfolded into a net NA that satisfies the
inductive hypothesis.

Proof. Lemma 1 enables us to restrict our attention
to Head-first unfoldings of A. Consider first the case
with the Hand pointing east. We discuss two cases,
depending on whether KN is open or closed. If KN is
open, by Lemma 14 there is an unfolding net NA that
satisfies the inductive hypothesis, so the theorem holds.
This unfolding is depicted in Figure 9a. If KN is closed,
by Lemma 15 there is an unfolding net NA that satisfies
the inductive hypothesis, so the theorem holds as well.
This unfolding is depicted in Figure 9b.

Consider now the case with the Hand pointing west.
We discuss four cases, depending on whether BI , TN
and KN are open or closed. If BI is open, the theorem
holds by Lemma 16; the unfolding for this case is de-
picted in Figure 10a. If TN is open, the theorem holds
by Lemma 17; the unfolding for this case is depicted
in Figure 10b. If BI and TN are both closed and KN

205

30th Canadian Conference on Computational Geometry, 2018

is open, the theorem holds by Lemma 18; the unfold-
ing for this case is depicted in Figure 11a. Finally, if
BI and TN are both closed and KN is closed, the the-
orem holds by Lemma 19; the unfolding for this case is
depicted in Figure 11b. �

8.1 Unfolding Degree-2 Nodes

In this section we turn our attention to degree-2 nodes
in T and show that they can be unfolded into nets that
satisfy the inductive hypothesis. We discuss three cases,
depending on whether the degree-2 box has a back child,
a north child or an east child. The cases where A has a
south child or a west child are symmetric.

Theorem 21 Any degree-2 box A ∈ T with back child J
can be unfolded into a net NA that satisfies the inductive
hypothesis.

Proof. Lemma 1 enables us to restrict our attention to
Head-first unfoldings of A. One such unfolding is de-
picted in Figure 12a. Note that this unfolding is very
similar to the unfolding of the root box from Figure 5.
Because

eA−−→ (
xA←−−) may be open or closed, EA (XA) may

or may not belong to A’s inductive region, as indicated
by the free cells from Figure 12a. Since

eJ−→∈ RA is
open, the inductive hypothesis applied to NJ tells us
that NJ provides a type-1 or type-2 entry (exit) con-
nection, which attaches to either TA or RA (BA or LA).
Thus the net NA is connected. By the inductive hy-
pothesis, NJ covers all open faces in TJ using a 4 × 4
refinement. Noting that NA includes the open faces of
A, we conclude that NA includes all open faces of TA
and satisfies (I1) of the inductive hypothesis. Note that
NA provides type-1 entry and exit connections, there-
fore it satisfies (I2) of the inductive hypothesis. Finally,
the open ring faces of A not used in its entry and exit
connections (dark-shaded in Figure 12a) can be removed
from NA without disconnecting NA, therefore NA sat-
isfies (I3) of the inductive hypothesis. �

Theorem 22 Any degree-2 box A ∈ T with north child
N can be unfolded into a net NA that satisfies the in-
ductive hypothesis.

Proof. Lemma 1 enables us to restrict our attention
to Head-first unfoldings of A. One such unfolding is
depicted in Figure 12b. Note that this is a degenerate
case of the unfolding of the box with north and south
children from Figure 7b. The only difference is that
the net NS for the south child from Figure 7b has been
replaced by the south face BA in Figure 12b. Arguments
similar to the ones used in the proof of Theorem 10 show
that NA satisfies the inductive hypothesis. �

Theorem 23 Any degree-2 box A ∈ T with east child E
can be unfolded into a net NA that satisfies the inductive
hypothesis.

Proof. Lemma 1 enables us to restrict our attention to
Head-first unfoldings of A. These unfoldings are de-
picted in Figure 13a for the case with the Hand point-
ing east, and in Figure 13b for the case with the Hand
pointing west. Note that these unfoldings are degen-
erate cases of the unfoldings of the box with east and
back children from Figure 6. One difference is that the
unfolding net NJ for the back child from Figure 6 is
replaced by the back face KA in Figure 13. A few more
minor modifications are necessary to accommodate for
the fact that, in the Hand-east unfolding,

eE−−→∈ KA is
open (and so EE does not belong to the inductive re-
gion for E) and therefore NE may provide a type-1 or
a type-2 entry connection. Similarly, in the Hand-west
unfolding,

xE←−−∈ KA is open (and so XE does not be-
long to the inductive region for E) and thus NE may
provide a type-1 or a type-2 exit connection. These ac-
commodations are reflected in Figure 13. Arguments
similar to the ones used in the proof of Theorem 6 show
that the nets NA from Figure 6 satisfy the inductive
hypothesis. �

9 Unfolding Leaf Nodes

Lemma 24 Let A ∈ T be leaf box with parent I. There
is an unfolding of A whose net NA satisfies the inductive
hypothesis.

Proof. Lemma 1 enables us to restrict our attention
to Head-first unfoldings of A. Consider the unfolding
depicted in Figure 2a: starting at A’s entry port, the
unfolding path simply moves Head-first until it reaches
A’s exit port. We now show that, when laid flat in the
plane, the open faces of A form a net NA that satisfies
the inductive hypothesis.

If
e−→ is closed (open), then EA belongs (doesn’t be-

long) to the inductive region for A. This dual case
scenario is depicted by the free cell labeled EA in Fig-
ure 2a. Similarly, if

x←− is closed (open), then XA belongs
(doesn’t belong) to the inductive region for A. Thus
condition (I1) of the inductive hypothesis is trivially
satisfied.

To check that (I2) is satisfied, note that NA provides
type-1 entry and exit connections since e′ ∈ TA and
x′ ∈ BA are positioned alongside the entry and exit
ports.

Turning to (I3) of the inductive hypothesis, observe
that the open ring faces of A not used in A’s entry or exit
connections are the dark-shaded pieces from Figure 2a,
whose removal does not disconnect NA. Thus NA also
satisfies condition (I3) of the inductive hypothesis. �

10 A Complete Example

Figure 14 illustrates a complete unfolding example for
an orthotree composed of 9 boxes. The root A of the

206

CCCG 2018, Winnipeg, Canada, August 8–10, 2018

end

A

TA

(a)

start

J

RA

LA
BA

E

XA?

EA?

I

NJ

(b)

end

start

N

LA RA

EA?

XA?

BA

KANN

Figure 12: Box A of degree 2 with (a) back child (b) north child.

end

(b)

A

BA

TA

(a)

E

start

TA

KA

XE

LA

XA?

KA
TA

end

A

TA

LA

BA

start

E

EA?

EE

BA

KA

NE

NE

EA

XA

KA

BA

Figure 13: Box A of degree 2 with east child (a) Hand pointing east (b) Hand pointing west.

the unfolding tree is a degree-1 box with back child J ,
which is unfolded recursively. The unfolding of J follows
the pattern depicted in Figure 9b, slightly adjusted to
accommodate for the fact that J does not have a south-
east child. The east-east child of J (labeled C in Fig-
ure 14) follows the unfolding pattern depicted in Fig-
ure 13a. The north child of J (labeled F in Figure 14)
follows the unfolding pattern from Figure 10b, traversed
on reverse (note that the subtree rooted at F is a hori-
zontal mirror plane reflection of the case depicted in Fig-
ure 10b, after a clockwise 90◦-rotation about a vertical
axis followed by a clockwise 90◦-rotation about a hor-
izontal axis, to bring it in standard position). Finally,

the leaves are unfolded as in Figure 2.

207

30th Canadian Conference on Computational Geometry, 2018

end

J

RA

A

KJ

FB

B

D

C

BB KB TB

KC

RC

KD TD FD

FC

KC

RC

BC

FC

FB

ND

NC TB

RF

F

TF

G

RG KG LG

TG

BG

KH

H

I

NG

LH

LI

TI

RI

FI

KI

TF

FH

NI RF

FF

FH LH

BH

LJ

BALA

BJ

TA

NJ

FA

RD

LD

start

NF

Figure 14: A complete unfolding example.

208

CCCG 2018, Winnipeg, Canada, August 8–10, 2018

Dihedral Rigidity and Deformation

Nina Amenta∗ Carlos Rojas†

Abstract

We consider defining the embedding of a triangle mesh
into IR3, up to translation, rotation, and scale, by
its vector of dihedral angles. Theoretically, we show
that locally, almost everywhere, the map from realiz-
able vectors of dihedrals to mesh embeddings is one-
to-one. We experiment with a heuristic method for
mapping straight-line interpolations in dihedral space
to interpolations between mesh embeddings and pro-
duce smooth and intuitively appealing morphs between
three-dimensional shapes.

1 Introduction

Frequently, a polygon mesh is represented by its mesh
combinatorics and a vector of 3D vertex coordinates,
specifying the immersion of the mesh into IR3. A poly-
gon mesh is rigid when the only motions of the vertex
coordinates for which the faces are not deformed in any
way are the rigid motions (rotation and translation).
Non-rigid polyhedra do exist [Bri97, Con77, Con79], al-
though they are rare; a non-rigid polyhedron has some
flexing motion in which the faces move but do not de-
form. That is, the dihedral angles between faces change
continuously while the faces themselves remain rigid. In
1974 Herman Gluck [Glu75] proved

Theorem 1 (Gluck) A generic immersion of any
mesh topology homeomorphic to the sphere is rigid.

By generic we mean all vectors of vertex coordinates,
except some “degenerate” subset of measure zero. So,
for example, if you construct the edge-skeleton of trian-
gulated computer graphics model, with stick edges held
together at flexible joints, it almost certainly would be
rigid.

Mesh deformations, in which, typically, both edge
lengths and dihedrals change, is an important topic in
computer graphics, computer vision and scientific shape
analysis. A deformation defines a path in the space of
discrete metrics - a continuous change in the vector of
edge lengths. This has been quite well studied, espe-
cially for the subset of discrete conformal transforma-
tions, eg. [SA07, BLL15, ZLL+15]. But discrete metrics

∗Department of Computer Science, University of California,
Davis, amenta@cs.ucdavis.edu
†Department of Computer Science, University of California,

Davis, crojas@ucdavis.edu

do not correspond to shape in any precise sense: rigid-
ity theory tells us that a vector of edge lengths typically
has multiple discrete realizations as a rigid mesh, and
that it might even correspond to a flexible polyhedron.

We are interested in the other possibility: character-
izing a deformation by the change in its vector of dihe-
dral angles. The first mathematical question one might
ask is whether there are motions in which all the dihe-
dral angles stay the same, but the edge lengths change.
Indeed, this is trivially possible; consider a cube deform-
ing into an arbitrary box. But notice that during such
a deformation the inner face angles (the plane angles)
remain unchanged. So next we ask if there are defor-
mations in which the dihedral angles remain fixed, but
the inner angles change; we call this a dihedral flex. We
say that a polyhedron which does not allow a dihedral
flex is dihedral-rigid. It is not known if dihedral-flexible
polyhedra exist. Here, we prove the following analog of
Gluck’s theorem:

Theorem 2 A generic immersion of any triangle mesh
homeomorphic to the sphere is dihedral-rigid.

While interesting as a result in rigidity theory, of course
this is only a small step towards a theoretical justifi-
cation of the idea of representing mesh embeddings by
their dihedral vectors. We also give some experimen-
tal evidence that the dihedral representation is useful
and natural. We compute a morphs between two em-
beddings by heuristically mapping the straight line seg-
ment connecting their dihedral vectors in (Euclidean)
dihedral-space onto a path in the space of embeddings.
We find smooth paths connecting very different shapes,
and observe that the resulting morphs seem quite nat-
ural.

2 Related work

In 1968, Stoker [Sto68] conjectured that a convex poly-
hedron is uniquely defined by its combinatorics and di-
hedral angles (and thus that it is dihedral-rigid). This
would be the dihedral version of Cauchy’s theorem on
the rigidity of convex polyhedra [Cau13]. A fairly sim-
ple proof of Stoker’s conjecture for triangulated con-
vex polyhedra was given by Pogorelov [Pog02]; we draw
on his work as well as that of Gluck. Only recently
was a complete proof of Stoker’s conjecture provided by
Mazzeo and Montcouquiol [MM+11], using much more

209

30th Canadian Conference on Computational Geometry, 2018

sophisticated techniques and applying to the interesting
case of ideal hyperbolic polyhedra as well.

In computer graphics, there is an ongoing inter-
est in constructing shape spaces in which geodesic
paths correspond to physically natural-looking morphs,
which can be used for applications such as morphing,
shape exploration, deformation and deformation trans-
fer. These spaces tend to be curved and difficult to
deal with, eg. [KMP07]. A recent series of papers
[HRS+14, HRS+16, ZHRS15] explores the curved shape
space implied by the elastic model of deformation. They
prove that it forms a Riemannian manifold, and pro-
duce shape averages, principal components and splines
in this “shell space”. Each of these operations proves to
be challenging, both mathematically and computation-
ally.

There is a practically successful line of work [BLL15,
KG08, WDAH10] on interpolating mesh embeddings by
interpolating both their dihedral angles and their edge
lengths, and then doing some sort of least-squares re-
construction to produce an interpolating mesh. These
methods cannot realize both the dihedrals and the edge
lengths exactly - there are roughly 6n parameters and
3n degrees of freedom in the embedding, where n is the
number of mesh vertices - but they are fairly simple and
they provide very nice-looking results.

The space of dihedral angles was proposed re-
cently as a representation for deformation by Paille et
al. [PRP+15], albeit for a tetrahedralized volume. Here
again, we find that the number of dihedrals in a tetra-
hedralization is much larger than the dimension of the
space of realizable meshes. Finally, [IGG01] showed that
ignoring edge length and just using connectivity to re-
construct shapes is surprisingly successful.

3 Infinitesimal rigidity

One’s first instinct when considering the possibility of
a dihedral flex is to consider the vertex positions pi as
functions pi(t) of some parameter t, and consider the
derivatives of the inner angles βj,i,j+1 and dihedrals αi,j

with respect to t. At any point along any traditional
(edge length) flex, the length derivatives l′i,j = 0 at ev-
ery edge, while at least some of the α′i,j are non-zero.
Similarly along any dihedral flex (if such a thing ex-
ists!) we expect to find an infinitesimal motion such
that all α′i,j = 0, while there are inner angles for which
the derivatives β′j,i,j+1 are non-zero. We call a poly-
hedron which admits such a motion dihedral infinitesi-
mally non-rigid.

A polyhedron which is dihedral non-rigid must be di-
hedral infinitesimally non-rigid. It may well be possible,
however, for a polyhedron to be dihedral infinitesimally
non-rigid while being rigid; there are many polyhedra
which are (length) infinitesimally non-rigid, but actually

rigid. Following Gluck, we prove that a generic immer-
sion of a mesh forms a polyhedron which is dihedral
infinitesimally rigid, and hence dihedral rigid.

4 Dihedral infinitesimal rigidity as a matrix equation

There is a very nice relationship between the derivatives
of the dihedral angles α′ and the derivatives of the tri-
angle inner angles β′, which Gluck used in his theorem
on length rigidity. We have, going around the one-ring
of any vertex pi,

∑

j

α′ij~eij +
∑

j

β′j,i,j+1~nj,i,j+1 = 0

where ~nj,i,j+1 is the normal to triangle tj,i,j+1, and
~eij = (pi− pj)/||pi − pj || is the unit vector in the direc-
tion of edge eij . This equation expresses the fact that
the instantaneous angular velocities in the one-ring have
to change in a coordinated fashion for the one-ring to
continue to “hold together”. Their derivation appears
in Appendix A. Since the edge and normal vectors have
three coordinates each, we have three equations at each
vertex, for a total of 3V . Let’s call these the vertex
equations.

Gluck considered the case in which we assume that
the change in edge lengths, and hence the inner angle
derivatives β′, are all zero, so that the length infinitesi-
mally non-rigid configurations were those with

∑

j

α′ij~eij = 0

This system has 3V equations in 3V − 6 variables.
We make the opposite assumption, that the dihedral

angles α remain unchanged, so we are interested in non-
zero solutions to

∑

j

β′j,i,j+1~nj,i,j+1 = 0

In our case we have 3V equations in the 6V−12 variables
β′. There are additional constraints on the β′ variables
which determine the validity of the mesh.

One is that the sum of the inner angles of any triangle
add up to π. Taking the derivative of this condition is
gives us

β′i + β′j + β′j+1 = 0

We call these the face equations.
Finally, the Law of Sines implies the following differ-

ential cotangent formula for the triangles around a given
one-ring

∑

j

cotβi,j,j+1β
′
i,j,j+1 − cotβi,j+1,jβ

′
i,j+1,j = 0

The derivation of this equation appears in Appendix B.
We call these the cotangent equations. Together, the

210

CCCG 2018, Winnipeg, Canada, August 8–10, 2018

vertex equations, face equations and cotangent equa-
tions form a system with 3V + 2V − 4 + V = 6V − 4
equations in 6V − 12 variables.

Mβ′ = 0

A mesh is dihedral infinitesimally non-rigid if this sys-
tem M has some non-zero solution for the βs, that is, if
there is an infinitesimal motion of the mesh that leaves
the dihedrals fixed but allows the inner angles to flex
somehow, while maintaining a valid mesh.

5 Condition for a solution

Following Gluck, we observe that there is a non-zero
solution for β if and only if the coefficient matrix M
has rank less than 6V − 12. And for this to be true,
it must be the case that every 6V − 12× 6V − 12 sub-
matrix of M has zero determinant. We can write this
condition on the coefficient matrix itself as a system
of
(
6V−4

8

)
polynomials in the matrix elements; call this

system F . In Gluck’s proof, he dealt with a matrix
whose coefficients were themselves polynomials in the
vertex coordinates of the mesh, and this allowed him to
argue that the resulting variety formed a set of measure
zero.

In our case, the coefficients are the face normals, ones,
and the cotangents of the inner angles. These are not all
polynomials in the vertex coordinates. To get around
this, we treat the normals and cotangents as variables
themselves; for notational clarity, let’s write cj,i,j+1 =
cotβj,i,j+1. The c and n variables are not independent
of each other. The normals must all have length one;
for nj,i,j+1 = (nx, ny, nz), we have

n2x + n2y + n2z = 1 (1)

In addition, the normal and cotangent variables are con-
veniently related to each other, and to the vertex coef-
ficients, by the following formula.

[(pi − pj)× (pi − pj+1)] cj,i,j+1 =

[(pi − pj) · (pi − pj+1)]nj,i,j+1

(2)

This formula relates the cotangent to the scaling of
the cross-product to form the triangle normal; an (easy)
derivation appears in Appendix C. Note that since
the cross-product and dot-product are both polynomial
functions, this is a polynomial as well.

In order for a mesh configuration to be be dihedral
infinitesimally non-rigid, we need Equations 1 and 2 to
be true for every angle, as well as for all of the sub-
determinants of M to be zero. These conditions are all
polynomial, and they define a variety (the intersection
of their zero-sets) in the space of the p, n, c variables.

An arbitrary assignment of values to p, n, c does not
correspond to an immersion of the mesh; the p-variables
are all free, but the n and c will not obey Equations 1
and 2. Given a choice of p variables, the n and c vari-
ables of that embedding uniquely satisfy 1 and 2 (the
normal is indeed the cross-product, scaled as required).
So there is unique lifting of the Euclidean space defined
by the vertex coordinate space p into (p, n, c)-space. Let
P̃ be this lifting of the the vertex coordinate space,
which is Euclidean. The space P̃ is similarly simply
connected and 3n-dimensional.

If we have a connected component of an algebraic va-
riety and we add an additional polynomial constraint to
the system, either the the whole component satisfies the
new equation, or the dimension of the new variety is re-
duced by the intersection with the new equation. Thus,
if there is any point of P̃ which does not also satisfy the
system F saying that all of the sub-determinants have
to be zero, the set of common zeros (the space of di-
hedral infinitesimally non-rigid polyhedra) has smaller
dimension than P̃ , and forms a subset of measure zero.

So all we need to do to show that the dihedral in-
finitesimally non-rigid polyhedra form a set of measure
zero is to display some point in P̃ which is not in F ;
that is, a dihedral infinitesimally rigid polytope. As
it happens, we can do this for every mesh topology;
the results of Pogorelov [Pog02] and Mazzeo and Mont-
couquiol [MM+11] show that every convex polyhedron
is dihedral infinitesimally rigid, and we know that every
mesh topology can be realized as a convex polyhedron
(this is Steinitz’ theorem).

This proves Theorem 2.

6 Experiments with dihedral parameterization

In this section we experiment with treating the dihedral
vector for a given mesh topology as a Euclidean shape
space. First, we consider interpolating between differ-
ent embeddings of the same mesh by interpolating their
dihedral angles. We find that this produces smooth
morphs between quite different shapes. For instance,
in Figure 1, we get a smooth morph from a dinosaur to
a camel.

We morph between the two input embeddings by
connecting their two dihedral vectors with a straight
line segment in dihedral space, and reconstructing a se-
ries of embeddings corresponding to uniformly-spaced
points along the segment. Since the dihedrals are scale-
invariant, we normalize the scale of the embedding as
well as its rotation and translation. This means that
the space of possible embeddings had dimension 3n−7,
where n is the number of mesh vertices (3n possible ver-
tex coordinates, normalized for the seven-dimensional
transformation space). A mesh homeomorphic to the
sphere has 3n−6 dihedral angles, however, so we do not

211

30th Canadian Conference on Computational Geometry, 2018

Figure 1: Three examples of morphs between different shapes. The twisting of the wrench is handeled nicely by
considering dihedrals. The poses of the cat are interpolated naturally, without distortion in the intermediate shapes.
The dinosaur and the camel have the same mesh topology, but are very different embeddings.

expect the intermediate dihedral vectors to exactly cor-
respond to embeddings. Instead, we use a least-squares
algorithm to compute embeddings that lie as close as
possible to the dihedral-space line segment connecting
the input shapes.

At each interpolated point, we use an optimization al-
gorithm to find a mesh embedding that comes as close
as possible to realizing the desired dihedrals. The op-
timization algorithm consists of an initialization step
and a refinement step. The initialization fits an em-
bedding to both interpolated dihedrals and interpolated
edge lengths. Then a refinement step alternates between
computing a set of normal vectors ~nk which realize the
given dihedrals, and a set of mesh vertex positions pi
which realize the ~nk as well as possible. The initial-
ization, and each iteration of the refinement process,
consists of a linear least-squares solve.

The initialization step is similar to the mesh interpo-
lation algorithms of Baek et al. [BLL15] and Kircher and
Garland [KG08]. We first reconstruct the one-ring of
each vertex, given the interpolated edge lengths and di-
hedral, and then we combine the one-rings, using least-
squares, to produce a set of vertex positions. We de-
scribe this in more detail in Appendix D.

The refinement phase is more novel. We define an
energy function E for a mesh, which considers both the
normal vectors ~nk and the vertices pi.

E = α
∑

adjacent triangles k,l

||Mkl~nk − ~nl||2F +

β
∑

edge i,j

triangle k

||Lijk(pi − pj)− ~nk||2 (3)

F indicates the Frobenious norm. Here ~nk is the nor-
mal of triangle k and ~nl is the normal of triangle l,
adjacent across edge i, j. The matrix Mkl is a rotation
by exactly the desired dihedral angle δij between ~nk and
~nl, with the axis of rotation ~eij = (pi − pj)/||pi − pj ||.
Thus the first energy term measures how well the nor-
mals achieve the dihedral angles at every edge. The sec-
ond term measures how well the normals and vertices
agree with each other. The matrix Li,j,k takes edge i, j
into the normal of one of its adjacent triangles k. It is
the product of a rotation by π/2, along with a scaling
to normalize the length. The weights are α = 0.6 and
β = 0.4.

At each step, we recompute M and L from the current
mesh, solve for new ~nk while keeping the pi fixed, and
finally solve for new values of pi.

We see that this algorithm succeeds in reducing the
dihedral error at of the interpolations by about half. We
define the dihedral error simply as the Euclidean differ-
ence between the desired interpolated dihedral vector
and the actual dihedrals achieved by our embedding;
an example appears in Figure 2. As noted above, we do
not expect to be able to achieve a dihedral error of zero.

Videos of these smooth morphs can be seen at https:
//vimeo.com/270302684.

212

CCCG 2018, Winnipeg, Canada, August 8–10, 2018

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100

Time (0=Camel, 100=Dinosaur)

initialization
algorithm
dihedral error

refinement
algorithm
dihedral error

Dihedral Error

Figure 2: Dihedral error reduction due to the refinement
step, for the camel-to-dinosaur morph.

In earlier experiments [RTH+14], we found that at-
tempting to optimize the embedding towards the in-
terpolated edge lengths, rather than the interpolated
dihedrals, produced morphs with discontinuities and
glitches. We believe that this is because there are
many possible embeddings realizing a given set of edge
lengths, while we suspect that at most one embedding
per vector of dihedrals.

7 Shape analysis

We also considered using the space of dihedral angles
as a method for shape analysis. This idea is appealing
because if we treat dihedral space as Euclidean, we can
use off-the-shelf techniques and software.

As an example, we analyze the ground-truth sub-
set of the MPI FAUST dataset. The entire dataset
include 300 human 3D laser scans in a wide range of
poses [BRLB14], and it is intended as a benchmark for
registration methods. Its ground truth subset is given as
a set of embeddings of a single topological mesh, repre-
senting 10 subjects each in 10 different poses, labeled by
subject and pose. Each mesh has approximately 7,000
vertices.

In the dihedral space, we used PCA to reduce the di-
mensions of the ground-truth dataset; a scatterplot on
these first two principal coordinates is shown at the top
in Figure 3. There are two distinct 460 clusters that cor-
respond to gender, demonstrating the fact that in dihe-
dral space the most salient features are those that reflect
body shape rather than pose or size; this is not true, for
example, in the Euclidean space formed by the 3n ver-
tex coordinates. Variation of the body shape along the
first principal component in dihedral space is shown at
the bottom of Figure 3. The meshes in this visualization
were created using the initial approximate least-squares
reconstruction from dihedrals and edge lengths of Ap-
pendix D, without optimization, using in every case the
average edge lengths over the entire corpus of 100 scans
and only varying the input dihedrals along the princi-

pal component. This shows that quite large changes in
shape can be visualized without changing the input edge
lengths.

(a)

(b)

Figure 3: The top principal component in dihedral
shape space for the FAUST human body shape data de-
scribes the fundamental shape difference between male
and female bodies. When we plot the first two principal
components (a) we clearly see the separation between
the group of male and female subjects. In Figure (b)
we warp the average shape in the direction of the first
principal component, by adding multiples of it to the
average shape. All of the figures are reconstructed us-
ing the same edge lengths. Each edge length is averaged
over the whole input set.

8 Discussion

There is a clear gap between the very basic level of our
mathematical understanding of the dihedral vectors of
mesh embeddings and the potential reflected in our ex-
perimental work. This suggests several conjectures, per-
haps the most important being,

Conjecture 1 There is at most one set of inner face
angles consistent with an embedding of a mesh realizing
a given vector of dihedral angles.

References

[BLL15] Seung-Yeob Baek, Jeonghun Lim, and Kun-
woo Lee, Isometric shape interpolation,
Computers & Graphics 46 (2015), 257–263.

[Bri97] Raoul Bricard, Mémoire sur la théorie
de l’octaèdre articulé, Journal de

213

30th Canadian Conference on Computational Geometry, 2018

Mathématiques pures et appliquées 3
(1897), 113–148.

[BRLB14] Federica Bogo, Javier Romero, Matthew
Loper, and Michael J Black, Faust: Dataset
and evaluation for 3d mesh registration,
Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition,
2014, pp. 3794–3801.

[Cau13] Augustin Louis Cauchy, Sur les poly-
gones et polyedres, J. Ec. Polytechnique 16
(1813), 87–99.

[Con77] Robert Connelly, A counterexample to the
rigidity conjecture for polyhedra, Publi-
cations Mathématiques de l’Institut des
Hautes Études Scientifiques 47 (1977),
no. 1, 333–338.

[Con79] , The rigidity of polyhedral surfaces,
Mathematics Magazine 52 (1979), no. 5,
275–283.

[Glu75] Herman Gluck, Almost all simply connected
closed surfaces are rigid, Geometric topol-
ogy, Springer, 1975, pp. 225–239.

[HRS+14] Behrend Heeren, Martin Rumpf, Peter
Schröder, Max Wardetzky, and Benedikt
Wirth, Exploring the geometry of the
space of shells, Computer Graphics Fo-
rum, vol. 33, Wiley Online Library, 2014,
pp. 247–256.

[HRS+16] , Splines in the Space of Shells,
Computer Graphics Forum, vol. 35, Wiley
Online Library, 2016, pp. 111–120.

[IGG01] Martin Isenburg, Stefan Gumhold, and
Craig Gotsman, Connectivity shapes, Pro-
ceedings of the conference on Visualiza-
tion’01, IEEE Computer Society, 2001,
pp. 135–142.

[KG08] Scott Kircher and Michael Garland, Free-
form motion processing, ACM Transactions
on Graphics (TOG) 27 (2008), no. 2, 12.

[KMP07] Martin Kilian, Niloy J Mitra, and Hel-
mut Pottmann, Geometric modeling in
shape space, ACM Transactions on Graph-
ics (TOG), vol. 26, ACM, 2007, p. 64.

[LSLCO05] Yaron Lipman, Olga Sorkine, David Levin,
and Daniel Cohen-Or, Linear rotation-
invariant coordinates for meshes, ACM
Transactions on Graphics (TOG) 24
(2005), no. 3, 479–487.

[Mao86] Jianqin Mao, Optimal orthonormalization
of the strapdown matrix by using singular
value decomposition, Computers & mathe-
matics with applications 12 (1986), no. 3,
353–362.

[MM+11] Rafe Mazzeo, Grégoire Montcouquiol,
et al., Infinitesimal rigidity of cone-
manifolds and the stoker problem for hy-
perbolic and euclidean polyhedra, Journal
of Differential Geometry 87 (2011), no. 3,
525–576.

[Pog02] AV Pogorelov, On a problem of stoker,
Dokl. Akad. Nauk 385 (2002), no. 1, 25–
27.

[PRP+15] Gilles-Philippe Paillé, Nicolas Ray, Pierre
Poulin, Alla Sheffer, and Bruno Lévy,
Dihedral angle-based maps of tetrahedral
meshes, ACM Transactions on Graphics
(TOG) 34 (2015), no. 4, 54.

[RTH+14] Carlos Rojas, Alex Tsui, Stewart He, Lance
Simons, Shengren Li, and Nina Amenta,
Edge length interpolation, ACM Sympo-
sium on Solid and Physical Modeling, 2014,
poster paper.

[SA07] Olga Sorkine and Marc Alexa, As-rigid-as-
possible surface modeling, Symposium on
Geometry processing, vol. 4, 2007, p. 30.

[Sto68] James J Stoker, Geometrical problems con-
cerning polyhedra in the large, Communica-
tions on pure and applied mathematics 21
(1968), no. 2, 119–168.

[WDAH10] Tim Winkler, Jens Drieseberg, Marc Alexa,
and Kai Hormann, Multi-scale geome-
try interpolation, Computer graphics fo-
rum, vol. 29, Wiley Online Library, 2010,
pp. 309–318.

[ZHRS15] Chao Zhang, Behrend Heeren, Martin
Rumpf, and William AP Smith, Shell
PCA: Statistical shape modelling in shell
space, Proceedings of the IEEE Interna-
tional Conference on Computer Vision,
2015, pp. 1671–1679.

[ZLL+15] Zhibang Zhang, Guiqing Li, Huina Lu,
Yaobin Ouyang, Mengxiao Yin, and
Chuhua Xian, Fast as-isometric-as-possible
shape interpolation, Computers & Graphics
46 (2015), 244–256.

214

CCCG 2018, Winnipeg, Canada, August 8–10, 2018

Appendix A Derivation of the vertex equation

First, we need to review some material on the deriva-
tives of the rigid motions. To warm up, let us con-
sider translation. As t goes from zero to one, the co-
ordinate vector P0 changes to P0 + b, meaning the vec-
tor (bx, by, bz) is added to every component of P0. At
time t, we have P (t) = P0 + tb. The derivative then is
dP (t)/dt = b.

Rotations are more interesting. Let the matrix
R(α) represent the rotation through the axis (rx, ry, rz)
(through the origin) by angle α. At time t, we have
P (t) = R(tα)P0, that is, the angle of rotation increases
with t but the axis stays the same. So

dP (t)

dt
=

dR(tα)

dt
P0 +R(tα)

dP0

dt
(4)

=
dR(tα)

dt
P0. (5)

Interestingly, the derivative

dR(tα)

dt
= SR(tα) = (αrx, αry, αrz)×R(αt)

is a 3× 3 matrix, where S is the matrix
∣∣∣∣∣∣

0 −αrz αry
αrz 0 −αrx
−αry −αrx 0

∣∣∣∣∣∣

which performs the cross-product. The vector ω =
(αrx, αry, αrz) is the axis of rotation of R, is known
as the angular velocity vector; the actual angular ve-
locity of a point p at time t undergoing the rotation,
however, is represented by the value of the derivative at
t, (ω ×R(αt))p0.

Notice that (Raωb) × p 6= RaSbp; this is easy to see
since the matrix on the right-hand-side does not have
zero diagonal, and the matrix on the left does. In fact,
the correct transformation is (Raωb) × p = RaSbR

T
a p,

and we can say (Raωb)Ra = RaSb, since RaR
T
a = I.

This property comes in handy when working with the
derivative of a series of rotations, as follows. Say

Rd = RaRbRc

Then

dRd

dt
=

dRa

dt
RbRc +Ra

dRb

dt
Rc +RaRb

dRc

dt
SdRd = SaRaRbRc +RaSbRbRc +RaRbScRc

ωd ×Rd = ωa ×RaRbRc + (Raωb)×RaRbRc +

(RaRbωc)×RaRbRc

and hence

ωd = ωa + (Raωb) + (RaRbωc)

Notice that the vectors ω are given in the local coor-
dinate system, so that the multiplications by the pre-
ceding rotations in the equation above are transforming
them into the global coordinate system.

Appendix B Derivation of the cotangent equation
at a vertex

Let pi be a vertex, and consider the vertices of its one-
ring, pj , pj+1, etc. Using the Law of Sines, we have

sinβi,j,j+1

sinβi,j+1,j
=
li,j+1

li,j

Going around the one-ring,

∏

j

li,j+1

li,j
= 1

and so
∏

j

sinβi,j,j+1

sinβi,j+1,j
= 1

Taking the natural logarithm, we have

∑

j

ln sinβi,j,j+1 − ln sinβi,j+1,j = 0

Next we take the derivative. We have (lnx)′ = 1/x and
(sinx)′ = cosx, so we get

∑

j

cosβi,j,j+1

sinβi,j,j+1
β′i,j,j+1 −

cosβi,j+1,j

sinβi,j+1,j
β′i,j+1,j = 0

or

∑

j

cotβi,j,j+1β
′
i,j,j+1 − cotβi,j+1,jβ

′
i,j+1,j = 0

Appendix C Derivation of Equation 2

We know that

(pi−pj)×(pi−pj+1) = ||pi−pj ||||pi−pj+1|| sinβj,i,j+1nj,i,j+1

We also know that

(pi− pj) · (pi− pj+1) = ||pi− pj ||||pi− pj+1|| cosβj,i,j+1

So we can write

[(pi − pj)× (pi − pj+1)] cosβj,i,j+1 =

[(pi − pj) · (pi − pj+1)] sinβj,i,j+1nj,i,j+1

and hence

[(pi − pj)× (pi − pj+1)] cotβj,i,j+1 =

[(pi − pj) · (pi − pj+1)]nj,i,j+1

215

30th Canadian Conference on Computational Geometry, 2018

Appendix D Initialization algorithm

We can initialize the dihedral angle morph in Section 6
by computing an approximate embedding of the inter-
polated point.

We approximate the embedding by linearly interpo-
lating the dihedral angles and the edge lengths between
the two inputs; we can construct a mesh that satisfies
both in a least-squares sense. The method we use com-
bines the ideas of [BLL15, KG08, LSLCO05, WDAH10].
At each vertex pi, we construct a least-squares approx-
imation to its star (the set of triangles containing pi),
achieving the desired dihedrals but introducing error in
the edge lengths opposite p. We also define an arbitrary
canonical coordinate system Fi at each vertex pi. For
every two stars at pi and pj connected by an edge eij ,
we find the three dimensional rotation Rij that takes Fi

to Fj when the two stars are merged. This gives us a
relative rotation along each edge. We use these to solve
for a global orientation at each vertex:

min
∑

eij

||GiRij −Gj ||2F

where || · ||F indicates the Frobrenious norm. This
is a least-squares solve for the Rij . Because of numer-
ical error and the poor conditioning of the system, we
may end up with “rotations” Rij that are not actually
orthonormal. Following [Mao86], we correct these us-
ing the singular value decomposition. This produces a
set of global rotations aligning the coordinate frames at
every vertex. Given a good set of Gi matrices, we can
then use them to reconstruct vertex positions, using

min
∑

~eij

||(pi − pj) +Gipij ||2

Here pij represents the position of the copy of vertex
pj in the original coordinate frame at pi; as transformed
by the global rotation, it should be equal to pi − pj .
Again, this is a least-squares computation.

216

CCCG 2018, Winnipeg, Canada, August 8–10, 2018

Vertex Unfoldings of Orthogonal Polyhedra:
Positive, Negative, and Inconclusive Results

Luis A. Garcia ∗ Andres Gutierrrez ∗ Isaac Ruiz ∗ Andrew Winslow ∗

Abstract

We obtain results for three questions regarding vertex
unfoldings of orthogonal polyhedra. The (positive) first
result is a simple proof that all genus-0 and genus-1 or-
thogonal polyhedra have grid vertex unfoldings. The
(negative) second result is an orthogonal polyhedron
that is not vertex-unfoldable. The (inconclusive) third
result is a vertex unfolding of an orthogonal polyhedron
that cannot be arranged orthogonally, evidence that de-
ciding whether an orthogonal polyhedron has a vertex
unfolding may not lie in NP.

1 Introduction

The study of unfolding polyhedral surfaces can be
traced to as early as the 1500s when Albrecht Dürer
considered unfoldings of convex polyhedra via cuts only
along edges (called edge unfoldings).

To explore unfoldings of non-convex polyhedra, Biedl
et al. [3] considered orthogonal polyhedra, in which all
faces are perpendicular to one of the three axes, provid-
ing examples of edge ununfoldable orthogonal polyhedra
as well as methods for unfolding some classes of orthog-
onal polyhedra. Subsequent work has further explored
the boundary between unfoldable and ununfoldable or-
thogonal polyhedra by varying both the types of un-
foldings permitted and classes of orthogonal polyhedra
under consideration.

For instance, one line of work has considered broaden-
ing permitted unfoldings via refinement : adding a reg-
ular grid of (potential cut) edges to each face. Damian,
Flatland, and O’Rourke [8] proved that exponential re-
finement was sufficient to unfold any orthogonal polyhe-
dron; this refinement was later reduced to quadratic [7],
and then linear [6].

To unfold the edge ununfoldable examples of Biedl
et al. [3], it is sufficient to add grid edges formed by
the intersection of orthogonal planes intersecting each
vertex of the polyhedron. Such grid edge unfoldings
have been found for several classes of orthogonal poly-
hedra [3, 5, 10, 13].

∗Department of Computer Science, University of Texas Rio
Grande Valley, Edinburg, TX. luis.a.garcia01@utrgv.edu,
andres.a.gutierrez01@utrgv.edu, isaac.ruiz02@utrgv.edu,
andrew.winslow@utrgv.edu

Extending grid unfoldings to allow cuts meeting at
(but excluding) a vertex yields grid vertex unfoldings.
Vertex unfoldings were first introduced for general poly-
hedra [11], and grid vertex unfoldings have been shown
to exist for some classes of orthogonal polyhedra [12],
including all genus-0 orthogonal polyhedra [9].

Here we obtain three new results on grid vertex un-
foldings of orthogonal polyhedra:

• Every genus-0 and genus-1 orthogonal polyhedron
has a grid vertex unfolding (extending a previous
result of Damian, Flatland, and O’Rourke [9] to in-
clude genus 1 and providing an alternative, simpler
proof).

• There exists an orthogonal polyhedron with faces
homeomorphic to disks that does not have a vertex
unfolding (complementing a vertex-ununfoldable
topologically convex polyhedron of Abel, Demaine,
and Demaine [2] and vertex-ununfoldable orthog-
onal polyhedra with faces not homeomorphic to
disks by Biedl et al. [3]).

• There exists a “maximally cut” vertex unfolding of
an orthogonal polyhedron that cannot be made or-
thogonal, raising the question of whether deciding
if an orthogonal polyhedron has a vertex unfolding
is in NP (in contrast with the trivial containment
in NP of deciding whether an orthogonal polyhe-
dron has an edge unfolding [1]).

2 Definitions

This work considers orthogonal polyhedra, i.e. polyhe-
dra where all edges are parallel to the x-, y-, or z-axis.
A gridded polyhedron has edges everywhere that an xy-
, xz-, or yz-plane intersects a vertex of the polyhedron,
resulting in faces that are edge-adjacent rectangles. A
polycube is a special case of gridded orthogonal polyhe-
dra whose faces are unit squares.

An unfolding is a connected planar arrangement of
the surface of a polyhedron by the addition of cuts. If
the cuts are restricted to the polyhedron’s edges, then
the resulting unfolding is an edge unfolding if the sur-
face remains strongly connected, and a vertex unfolding
otherwise. A surface that permits no additional edges
or vertices to be cut without disconnecting the surface
is maximally cut.

217

30th Canadian Conference on Computational Geometry, 2018

Unfoldings that are (possibly weakly connected) or-
thogonal polygons are also called orthogonal. In the
case of vertex unfoldings, point connectivity on the sur-
face yields a “hinge” or “joint” allowing portions of the
surface to rotate relative to each other. Thus vertex un-
foldings are weakly connected polygons that may either
be orthogonal or not.

The flexibility around vertices allows for faces in a
vertex unfolding to (potentially) not appear in the same
clockwise order around a common vertex as they do on
the original surface; here we allow such “rearrangement”
of vertex-adjacent faces (see [11] for further discussion).

3 A Simple Proof that Genus-≤ 1 Orthogonal Poly-
hedra have Grid Vertex Unfoldings

Here we prove the existence of vertex unfoldings for
low-genus polycubes using an approach reminiscent of a
proof of a similar result [11] for polyhedra with (possibly
intersecting) triangular faces. This implies a corollary
(Corollary 2) for grid vertex unfoldings that extends the
previous result by Damian, Flatland, and O’Rourke [9]
on grid vertex unfoldings to include genus-1 polyhedra.

Theorem 1 Every genus-0 and genus-1 polycube has a
vertex unfolding.

Proof. First, we prove that the face dual graph (ob-
tained by creating a vertex for every face of the poly-
cube and connecting pairs of edge-adjacent faces) of ev-
ery such polycube has a Hamiltonian path. Afterwards,
we show how to use a Hamiltonian path through the
faces to obtain a vertex unfolding.

Bodini and Lefranc [4] prove that polycube face dual
graphs are 4-connected. Intuitively, this is due to the
four directions that must be traversed to obtain a dis-
connecting cut of the surface of a polycube (i.e. non-
contractable cycle on the surface). As they observe,
Tutte [15] proves that all genus-0 4-connected graphs
are Hamiltonian, implying that all face dual graphs of
genus-0 polycubes are Hamiltonian. Recently, Thomas,
Yu, and Zang [14] proved that all genus-1 4-connected
graphs have a Hamiltonian path.

The vertex unfolding consists of a path of (vertex)
connected faces appearing in the same order as on the
Hamiltonian path previously proved to exist. These
faces are arranged left to right, and remain either edge-
connected (if the previous face is left of the next face)
or cut to become vertex-connected and rotated by ±90◦

(if the previous face is above or below the next face).
These three cases are seen in Figure 1.

Only these three cases need be considered due to
maintaining the invariant that before the edge connect-
ing the previous (gray) face to the next (green) face is
cut, the next face is above, below, or to the right of the
previous face. �

⇒⇒ ⇒

Figure 1: The three cases for vertex unfolding a se-
quence of consecutive faces along a Hamiltonian path of
the face dual graph. The invariant maintained is that
each subsequent face (in green) begins attached to the
above, below, or right of the previous face (indicated as
arrows). In the right two cases, the face is rotated ±90◦

to maintain the invariant.

Observe that the resulting unfolding is also orthgo-
nal. Moreover, because the resulting unfolding can be
partitioned into vertical strips each containing one face
of the polycube, a similar result holds if the faces are
edge-adjacent rectangles, as they are in all “gridded”
orthogonal polyhedra:

Corollary 2 Every genus-0 or genus-1 orthogonal
polyhedron has an orthogonal grid vertex unfolding.

4 A Vertex-Ununfoldable Orthogonal Polyhedron

Theorem 3 There is an orthogonal polyhedron with
simple faces that cannot be vertex-unfolded.

Proof. The vertex-ununfoldable polyhedron consists of
a box with a thin “ridge” through two adjacent faces of
the box (see Figure 2).

Figure 2: An orthogonal polyhedron that cannot be ver-
tex unfolded.

We prove that the polyhedron is ununfoldable by con-
sidering only a portion of the surface consisting of two
large base faces containing the ridge (green in Figure 2),
and the ell, putt, and bungie faces on the ridge (blue,
pink, and yellow, respectively, in Figure 2).

In the unfolding, at least one of the two (symmetric)
putt faces must be connected to a base face via a se-
quence of faces that excludes the other putt face. For

218

CCCG 2018, Winnipeg, Canada, August 8–10, 2018

the remainder of the proof, we consider only this se-
quence of faces, proving that any such sequence cannot
be arranged without overlap.

Since the boundary of the putt shares no boundary
with the base face on the surface, the sequence must
contain either a bungie or ell face. Regardless of the
sequence of faces connecting the putt to the base face,
the end of the face sequence is either:

1. ell → base, or

2. putt → bungie → base, or

3. ell → bungie → base.

Case 1: ell → base. The first case implies overlap
between the ell face and base face (see Figure 3), as
these two faces are connected by either the unique edge
they share on the surface or a vertex of this edge.

Figure 3: Any attached ell and base face must overlap.

For the other two cases, we simplify the analysis by
considering the bungie faces as a zero-width curve of
length between 0 and the maximum distance between
two locations on a sequence of connected bungie faces
(see Figure 4) of ≈ 7.30 < 8. That is, we suppose they
behave as an elastic “bungie cord”.

≈ 7.30

Figure 4: The maximum length of a connected sequence
of bungie faces is

√
5 +
√

5 +
√

8 ≈ 7.30.

Case 2: putt → bungies → base face. In the unfold-
ing, a bungie face connects to the putt at boundary lo-
cation(s) limited to those drawn in red in Figure 5. Any
non-overlapping arrangement of the putt and base faces
either has the entire notch filled by the putt (leaving no
available location for any bungie face in the unfolding)
or has no portion of the boundary of the putt to which
the bungie faces can attach more than distance 1 from

the entrance of the notch. In the latter case, the mini-
mum distance between the bungie faces’ connection to
the base face and putt’s boundary is at least 8, exceed-
ing the maximum distance that can be spanned by the
bungie faces.

8

Figure 5: The two potential putt placements for Case 2.
The red boundary portions denote where bungie faces
must connect (to both the putt and base faces).

Case 3: ell → bungies → base face. This case is
proved similarly to Case 2. Since ell faces are 2 units
wide, any optimal non-overlapping arrangement of the
ell and base faces forms a right triangle consisting of a
portion of the ell face, with the 90◦ vertex on the ell
and two remaining vertices at the entrance of the notch
(see Figure 6).

1/2

Figure 6: Arranging an ell face as deep in the notch as
possible.

By Thales’s theorem, the 90◦ vertex lies on a circle
whose diameter is the notch entrance. Then since this
circle has radius 1/2, the 90◦ vertex (and all other lo-
cations on the ell) has distance at most 1/2 from the
entrance of the notch. So as in Case 2, the minimum
distance between the bungie faces’ connection to the
base face and putt’s boundary exceeds the maximum
distance that can be spanned by the bungie faces. �

5 Evidence that Vertex Unfolding Orthogonal Poly-
hedra is not in NP

Finally, we consider the complexity of deciding whether
a polycube has a vertex unfolding. Specifically, whether
the problem lies in NP.

As Abel and Demaine [1] observe, the same problem
limited to edge unfoldings is easily seen to be in NP.
One proof uses the following simple algorithm: non-
deterministically select a set of maximal set of polycube

219

30th Canadian Conference on Computational Geometry, 2018

faces to cut that leaves the face dual graph connected
(i.e. a set of cut edges that yields a tree-shaped face
dual graph). Then check whether the resulting surface
is indeed an unfolding, i.e. has no overlaps.

This NP algorithm for edge unfolding relies in part
on the uniqueness of the induced unfolding. However,
in vertex unfoldings, faces may be connected by a single
vertex, allowing infinitely many angles at which these
two faces may be arranged. Thus the same algorithmic
approach for vertex unfoldings requires efficiently de-
termining whether a maximally set of cut edges yields
a surface that can be arranged into a vertex unfolding
(by careful selection of adjacent face angles).

One natural approach to resolving this issue is to
prove that any maximally cut polycube surface has a
vertex unfolding only if there is such an unfolding that
is orthogonal, i.e. where all adjacent face angles from
the set {0◦, 90◦, 180◦, 270◦}. Here, we prove by exam-
ple that this is not the case.

Figure 7: A polycube with a maximally cut vertex un-
folding that cannot be arranged orthogonally.

Theorem 4 There is a maximally cut vertex unfolding
of a polycube with no orthogonal arrangement.

Proof. The maximally cut unfolding with no orthogo-
nal arrangement is seen in Figure 8. The four L-shaped
regions adjacent to face c (colored fushia, eggshell, light
green, and pink in Figure 8) are claws. The two regions
attached by a single vertex to face c consist of face sets
A = {a1, . . . , a5} and B = {b1, . . . , b5}

For the remainder of the proof, we assume face c is
orthogonal. In any orthogonal arrangement of the un-
folding, each of six face adjacent to c lies in one of the
eight orthogonal locations adjacent to c (see Figure 9).
Moreover, faces a1 and b1 must lie in locations 2, 3, or
4.1

Claw arrangements up to symmetry. Observe that
the claws come in symmetric pairs (colored fushia/pink
and eggshell/green in Fig. 8) and each pair is also sym-
metric. Without loss of generality, assume that the

1Recall that we allow vertex-adjacent faces to appear in a dif-
ferent clockwise ordering around the vertex than they appear on
the surface; the proof holds even when such unfolding are permit-
ted.

c
a1

a2
a3

a4

a5

b1
b2

b3
b4

b5
a

b
b6

Figure 8: A maximally cut vertex unfolding of the poly-
cube in Figure 7 that cannot be arranged orthogonally.
The solid black lines represent cuts.

c

1

2

3 4 5

6

78

Figure 9: The eight possible locations for faces adjacent
to c in orthogonal unfolding.

claws appear in the relative order around c seen in Fig-
ure 8 (i.e. in clockwise order, fushia, pink, light green,
eggshell).

Then the fushia and pink claws must have faces in
locations 1 and 8, respectively, since otherwise overlap
occurs between a1, b1, c and two fushia faces sharing
a common vertex (see Figure 10). By symmetry, the
eggshell and light green claws must lie in locations 5
and 6.

Next, consider the arrangement of the fushia claw
faces. Figure 11 enumerates the five possible arrange-
ments. The remainder of the proof is dedicated to prov-
ing that each arrangement leads to overlap.

Arrangements 4 and 5. Both arrangements cause
overlap due to more than four faces sharing a common
vertex location. For arrangement 4, these faces consist
of two fushia faces, c, a1, and b1. For arrangement 5,
these faces consist of four fushia faces, one pink face,
and c.

220

CCCG 2018, Winnipeg, Canada, August 8–10, 2018

c c

Figure 10: Attemping to place the first face of the fushia
claw into location 2 causes overlap.

1 : 2 : 3 :

4 : 5 : 6 :

Figure 11: The five possible arrangements of the fushia
claw faces.

b2

a1

a2

c b1 c

a1

b2

b1

b3

b4
b5

b6

a2a3
a4

a5

Figure 12: Two possible configurations if crossings are
allowed.

Arrangement 3. The faces of A or B may be arranged
so that the first face (a1 or b1) lies in location 2 as seen
in Figure 12. As shown the figure, either option causes
overlap.

Arrangements 1 and 2. Here we consider placing A
and B. Either a1 or b1 must be placed in location 2
or 4. By symmetry (and ignoring the existence of b6),
it suffices to consider two cases:

1. a1 is placed in location 2.

2. b1 is placed in location 2.

c c

Figure 13: Attempting to unfold A and B by placing a1
in location 2.

a3a4

a5 a2

a3 b5

b3

b2

b4 a2

a1

b1

b3 a1

b2

b5b3

b2

b4 a2

b1

a1
a4

a5

b1c c

a3

a4
a5

b5b4

c

Figure 14: Top: required arrangement of faces b1, b2, b3,
a1, a2. Bottom: the two options for arranging b4, b5,
and a3 that further avoid overlap (in both cases, overlap
involving a4 and a5 still occurs).

We consider the cases in order. In the case that a1 is
in location 2, A overlaps with the fushia claw, since due
to the cuts, a2 is left of a1 or overlaps the fushia claw,
and likewise a3 is either left or above a2.

Next, consider the case that b1 is placed in location 2.
In this case, there are unique placements of faces b2,
b3, a1, and a2 that avoid overlap (the top portion of
Figure 14) and only two placements of b4, b5 and a3 that
also avoid overlap (the bottom portion of Figure 14). In
both cases, a4 and a5 overlap with other faces due to a
vertex incident to more than four faces. �

6 Open Problems

Each of our results leads directly to a natural open prob-
lem in the same direction. Since all genus-0 and genus-1
orthogonal polyhedra have grid vertex unfoldings, what
about genus-2?

Open Problem 1 Does every genus-2 orthogonal
polyhedron have a grid vertex unfolding?

Since there is an orthogonal polyhedron with simple
faces and no vertex unfolding, does the same hold for
simple faces that are also edge-incident rectangles?

221

30th Canadian Conference on Computational Geometry, 2018

Open Problem 2 Does every orthogonal polyhedron
(of any genus) have a grid vertex unfolding?

Finally, we provided an example of a maximally cut
polycube with an unfolding, but no orthogonal unfold-
ing,2 demonstrating that the orthogonal unfoldings of
maximally cut grided orthogonal polyhedra do not char-
acterize the (unrestricted) unfoldings of maximally cut
gridded orthogonal polyhedra (eliminating one particu-
larly simple proof that deciding whether an orthogonal
polyhedron has a vertex unfolding is in NP). Thus the
following two related problems remain open:

Open Problem 3 Is deciding if an orthgonal polyhe-
dron is grid vertex-unfoldable in NP? Is the problem
NP-hard?

Additionally, the relationship between orthogonal
grid vertex-unfoldings and (unrestricted) grid vertex-
unfoldings also remain open:

Open Problem 4 Does there exist a grid vertex-
unfoldable orthogonal polyheron with no orthogonal grid
vertex-unfolding?

To our knowledge, the same question also remains
open for non-grid vertex-unfoldings:

Open Problem 5 Does there exist a vertex-unfoldable
orthogonal polyhedron no orthogonal vertex-unfolding?

Acknowledgments

We would like to thank Erik Demaine for discussion of
known results related to vertex unfoldings, and anony-
mous reviewers whose suggestions improved the read-
ability and correctness of the paper.

References

[1] Z. Abel and E. D. Demaine. Edge-unfolding or-
thogonal polyhedra is strongly NP-complete. In
Proceedings of the 23rd Canadian Conference on
Computational Geometry (CCCG), 2011.

[2] Z. Abel, E. D. Demaine, and M. L. Demaine. A
topologically convex vertex-ununfoldable polyhe-
dron. In Proceedings of the 23rd Canadian Confer-
ence on Computational Geometry (CCCG), 2011.

[3] T. Biedl, E. Demaine, M. Demaine, A. Lubiw,
M. Overmars, J. O’Rourke, S. Robbins, and
S. Whitesides. Unfolding some classes of orthogo-
nal polyhedra. In Proceedings of the 10th Canadian
Conference on Computational Geometry (CCCG),
pages 70–71, 1998.

2Note that the polycube from which the example is obtained is
indeed vertex (and also edge) unfoldable, and so is not a potential
counterexample to Open Problem 2.

[4] O. Bodini and S. Lefranc. How to tile by dominoes
the boundary of a polycube. In Proceedings of the
13th International Conference on Discrete Geome-
try for Computer Imagery (DGCI), volume 4245 of
LNCS, pages 630–638. Springer, 2006.

[5] E. W. Chambers, K. A. Sykes, and C. M. Traub.
Unfolding rectangle-faced orthostacks. In Proceed-
ings of the 24th Canadian Conference on Compu-
tational Geometry (CCCG), pages 23–28, 2012.

[6] Y.-J. Chang and H.-C. Yen. Improved algorithms
for grid-unfolding orthogonal polyhedra. Interna-
tional Journal of Computational Geometry & Ap-
plications, 27(1):33–56, 2017.

[7] M. Damian, E. D. Demaine, and R. Flatland. Un-
folding orthogonal polyhedra with quadratic refine-
ment: The delta-unfolding algorithm. Graphs and
Combinatorics, 30(1):25–40, 2014.

[8] M. Damian, R. Flatland, and J. O’Rourke. Epsilon-
unfolding orthogonal polyhedra. Graphs and Com-
binatorics, 23:179–194, 2007.

[9] M. Damian, R. Flatland, and J. O’Rourke. Grid
vertex-unfolding orthogonal polyhedra. Discrete &
Computational Geometry, 39(1–3), 2008.

[10] M. Damian and H. Meijer. Grid edge-unfolding
orthostacks with orthogonally convex slabs. In
Proceedings of the 14th Annual Fall Workshop on
Computational Geometry, pages 20–21, 2004.

[11] E. D. Demaine, D. Eppstein, J. Erickson, G.W.
Hart, and J. O’Rourke. Vertex-unfoldings of sim-
plicial manifolds. In Proceedings of the 18th Sym-
posium on Computational Geometry (SoCG), pages
237–243. ACM Press, 2002.

[12] E. D. Demaine, J. Iacono, and S. Langerman. Grid
vertex-unfolding orthostacks. International Jour-
nal of Computational Geometry & Applications,
20(3):245–254, 2010.

[13] J. O’Rourke. Unfolding orthogonal terrains.
https://arxiv.org/abs/0707.0610, 2007.

[14] R. Thomas, X. Yu, and W. Zang. Hamilton paths
in toroidal graphs. Journal of Combinatorial The-
ory, Series B, 94:214–236, 2005.

[15] W. T. Tutte. A theorem on planar graphs. Transac-
tions of the American Mathematical Society, 82:99–
116, 1956.

222

CCCG 2018, Winnipeg, Canada, August 8–10, 2018

Approximate Free Space Construction and Maximum Clearance Path
Planning for a Four Degree of Freedom Robot

Chloe Arluck∗ Victor Milenkovic† Elisha Sacks‡

Abstract

We present an algorithm for constructing an inner ap-
proximation of the free space for a polyhedral robot with
four degrees of freedom. The robot rotates about a fixed
axis and translates in three dimensions with respect to
a fixed polyhedral obstacle. We approximate the free
space by subdividing the rotation dimension into short
angle ranges, generating a three dimensional free space
for each angle range, and constructing a graph for nav-
igation in the four dimensional space. We also present
an algorithm for path planning that is complete in the
approximated space. The path planning algorithm pro-
duces paths that are guaranteed to be collision free and
approximately maximizes obstacle clearance, ensuring
safe and practical paths.

1 Introduction

We present a method of approximating the free space of
a polyhedron R that rotates around a fixed axis, with-
out loss of generality the z-axis, and translates freely
relative to a polyhedron O. For example, R models a
drone helicopter and O models a warehouse. Further,
we present a path planning algorithm that demonstrates
the benefit of free space construction for fast and effi-
cient navigation: after a one-time computation to con-
struct the free space, we can quickly construct paths
between any two configurations or determine that none
exists.

There are cases where traditional probabilistic road
map planners have poor performance, particularly cases
where the path must traverse through narrow passages.
Additionally, PRM planners test for collision along lo-
cal paths by taking discrete samples, and therefore may
miss collisions when obstacles are very thin. While
many sampling methods have been developed to ad-
dress the narrow passage problem [1] [2] [5], and collision
detection can be guaranteed using adaptive resolution
[15], the challenge of choosing the appropriate variety
of PRM planner for the problem adds additional tuning

∗Department of Computer Science, University of Miami
c.arluck@cs.miami.edu
†Department of Computer Science, University of Miami

vjm@cs.miami.edu
‡Department of Computer Science, Purdue University

elisha.sacks@gmail.com

complexity for the user. We present a path planning al-
gorithm that requires minimal tuning, handles narrow
passages, and produces paths that are always collision
free.

2 Constructing the Free Space

We approximate the four dimensional free space S by
subdividing the rotation dimension into short angle
ranges and generating a three dimensional free space Si
for each angle range. If n is the number of angle ranges,
each Si is an inner approximation of the free space with

rotation [2πin , 2π(i+1)
n]. Meaning, for all θ ∈ [2πin , 2π(i+1)

n]
and for all t ∈ Si, R does not intersect O at (t, θ), where
(t, θ) denotes a rotation of R by θ then a translation of
R by t. To generate Si, we construct R′, a polyhedral
approximation of R swept through the rotation [0, 2πn]

about the z axis. Then Si = O ⊕−R′i where R′i is R′

rotated 2πi
n about the z axis, ⊕ denotes the Minkowski

sum, minus denotes the negation of each vertex, and
over line denotes the complement.

 q

 q'

 p

 p'

Figure 1: The containing polygon of a segment pq ro-
tated in the plane.

To construct the outer approximation of the sweep of
R, we reduce the problem to sweeping segments in the
plane. Let p and q be endpoints of a segment in the
plane where |p| ≤ |q|. If p′ and q′ are p and q rotated
θ about the origin, then an outer approximation of the
sweep for segment pq is the pentagon with endpoints p,
p′, q, q′, and the intersection of tangent lines at q and q′

(Fig. 1). If the nearest point on pq to the origin is not
an endpoint, we split at the nearest point and take the
sweep of the two segments individually. Fig. 2 shows
that not splitting at the nearest point results in a poor
approximation.

223

30th Canadian Conference on Computational Geometry, 2018

p

p'q

q' s' s p

p'q

q'

(a) (b)

Figure 2: (a) The union of polygons containing the
sweep of ps and qs, where s is the point on pq closest
to the origin, and (b) a single polygon containing the
sweep of pq.

(a) (b) (c)

Figure 3: (a) An input face F and the result of splitting
F by (b) its tangent plane and then by (c) xy-planes
passing through each vertex.

This two dimensional method is used to construct the
outer approximation of the sweep of R as follows. Let F
be a face of triangulated polyhedron R. We subdivide
F in order to consider it as a set of segments pq that
lie on planes parallel to the xy-axis. We split F by the
plane containing the nearest point of each segment (Fig.
3(b)) to avoid the poor approximation shown in Fig. 2.
Next, we split by planes parallel to the xy-plane going
through each vertex (Fig. 3(c)). The result is a set of
trapezoids each with their top and bottom edges being
segments parallel to the xy-plane.

The outer approximation of the sweep of a trapezoid
is the union of the 2D sweep approximations for each
z cross section. Sides of this union are ruled but not
necessarily planar. We introduce cross section segments
separated by at most θ in angle and rθ in z, where r is
the radius of the robot, and we connect adjacent seg-
ments by their convex hull. The outer approximation of
the sweep of R is its union with the outer approximation
of each trapezoid sweep.

(a) (b) (c)

Figure 4: (a) A triangulated robot R, (b) its tetrahe-
dralization and (c) its sweep polyhedron R′.

Given the three dimensional free spaces Si, we con-
struct a graph for navigation in the four dimensional
space S. A node represents a connected component of a
space Si. If components of Si and Si+1 intersect, then
their corresponding nodes are neighbors. By providing
the relationship between the inner approximated sub-
spaces Si, this graph defines an inner approximation of
S. After performing the one-time computation to con-
struct the inner approximation of S and the graph, we
can query the graph to quickly construct paths between
any two configurations, or determine that none exists.

3 Error Bound on the Sweep Polyhedron

p

p'

p

p'

(a) (b)

Figure 5: (a) A cap and (b) a cup at point p.

We wish to find an upper bound on the excess gen-
erated by this sweep approximation. For a sweep of a
segment the excess is composed of caps and cups. A
cap at a point p is the region between a circle of radius
|p| and the tangent lines at p and p′, where p′ is p ro-
tated θ about the origin (Fig. 5). The area of a cap
is p2(tan θ

2 − θ
2), which has third degree Taylor series

approximation p2 θ
3

24 . A cup at p is the region between
segment pp′ and a circle of radius |p| (Fig. 5). A cup
at p has area p2 θ−sin θ2 and Taylor series approximation

p2 θ
3

12 .

 p

 p' q

 q'
 m m'

Figure 6: The pseudo area when the midpoint m is the
closest point on pq to the origin. In this case equivalent
to the actual sweep area.

To find an upper bound on the excess area of the
sweep, we consider the worst case. For convenience, we
define the pseudo area, a measure that is always less
than or equal to the actual area swept by segment pq.
If m is the midpoint of segment pq, then the pseudo
area is defined to be

(q2 + p2 − 2m2)
θ

2
−m2 θ

3

24
.

224

CCCG 2018, Winnipeg, Canada, August 8–10, 2018

Intuitively, the pseudo area is the sum of the areas
swept by the two subsegments on either side of m with-
out a cap at m. When m is the closest point on pq to
the origin, the pseudo area is equivalent to the actual
sweep area (Fig. 6) and we will show that it is always
less than or equal to the actual sweep area.

If p is the point on the segment closest to the origin,
then the area swept by pq is

∫ |q|

|p|
θrdr = (q2 − p2)

θ

2
.

Since p is the closest point on pq to the origin, |m| > |p|.
Hence q2 − p2 > q2 + (p2 −m2) −m2 and the pseudo
area must be smaller than the actual area in this case.

If the closest point on pq to the origin is some internal
point s, then the area swept by the segment is the sum
of the areas swept by the two sub-segments without a
cap at s, which is swept by both sub-segments.

(q2 + p2 − 2s2)
θ

2
− s2 θ

3

24

Since, |m| ≥ |s|, this area must be greater than or equal
to the pseudo area.

 p

 p'

 q

 q'
 m m'

 p

 p'

 q

 q' s s'

(a) (b)

Figure 7: The (a) pseudo excess and (b) actual excess
generated when approximating the sweep of segment pq,
where m is the midpoint and s is the point closest to
the origin.

Similar to the pseudo area, we define the pseudo ex-
cess, a measure that is always greater than or equal to
the excess area generated by the outer approximation
of sweeping segment pq. The pseudo excess is a cap at
endpoints p and q and a cup at midpoint m (Fig. 7).

(q2 + p2 + 2m2)
θ3

24

If p is the point closest to the origin, then the excess
is a cap at q and a cup at p.

(q2 + 2p2)
θ3

24
.

Since |m| ≥ |p|, this value must be smaller than the
pseudo excess. If s is the closest point on pq to the
origin, then the excess is a cap at p, a cap at q, and a
cup at s.

(q2 + p2 + 2s2)
θ3

24

Since |m| > |s|, this value is greater than or equal to
the pseudo excess.

Now, given triangulated polyhedron R, consider an
input face. The outer approximation algorithm splits
by a plane parallel to the xy-axis at each vertex, so the
input face is divided into two triangles sharing an edge
pq with length l. We wish to find the vertex positions
that result in the smallest pseudo area and the largest
pseudo excess, while fixing the z-components of each
vertex and the length of segment pq.

Without loss of generality we consider only one of
the two triangles. Let t be the vertex opposite edge pq
and consider an arbitrary segment p̂q̂ where triangle pqt
intersects a plane parallel to the xy-plane. Since the z-
components of p, q, and t and the length of pq are fixed,
the length of p̂q̂ is also fixed. Let m̂ be the midpoint of
p̂q̂. If the distance from the z-axis of every m̂ does not
decrease, then for segment p̂q̂ the pseudo area does not
increase and the pseudo excess does not decrease. We
will perform a series of operations that do not decrease
the distance between m̂ and the z-axis and that fix the
z-components of all vertices and the length of pq.

1. Rotate t about the z-axis until it is aligned with
the midpoint of pq. Since t is moving towards the
midpoint of pq, m̂ is moving away from the z-axis.

2. Rotate p about q and until |p| = |q| while rotating
t about the z-axis to remain aligned with the mid-
point of pq. Since p is moving away from the z-axis
and and t remains aligned with the midpoint, m̂ is
moving away from the origin.

3. Scale the x and y components of t until t is distance
r from the z-axis, where r is radius of the robot.

4. Translate p and q to distance r from the z-axis such
that the distance l between p and q stays the same.

Then m2 = r2 − l2

4 , the pseudo area is l2θ
4 + (l

2

4 −
r2) θ

3

24 , and the pseudo excess is (4r2 − l2

2) θ
3

24 . As r
increases, the pseudo area decreases and the pseudo
excess increases.

The result is a scalene triangle where all vertices are at
the maximum distance from the origin and t is equidis-
tant to p and q. Changing the position of any vertices
either reverses one of the above operations, exceeds the
radius of the robot, or violates the original conditions
that the z-components and length of pq are fixed. Hence
this triangle achieves the minimal allowable pseudo area
and the maximal allowable pseudo excess. Since t is
equidistant to p and q, the midpoint of each segment
is the nearest point, so the pseudo excess and area are
equal to the true excess and area. Since the pseudo ex-
cess and area are always worst than the true area and
excess, this must be the worst case for approximating
a face of R. We will integrate to find the volume of
the swept triangle and its excess. Let H be the differ-
ence in z-component between t and segment pq. The

225

30th Canadian Conference on Computational Geometry, 2018

length of the segment being swept as a function of h,
where h ∈ [0, H] is L(h) = l

H h. Each segment on pqt
has its nearest point on the midpoint. The swept area
of such a segment is the sum of the areas of the two
sub-segments minus a cap at its midpoint. This area
is bounded below by the area swept by one of the sub-
segments Amin(h) = L2(h) θ8 . Then a lower bound on
the swept volume is

Vmin =

∫ H

0

Amin(h)dh =
l2θH

24
.

The excess area generated by each segment is Aex(h) =
θ3

24 (4r2 − L2(h)
2). So the excess volume generated by

triangle pqt is

Vex =

∫ H

0

Aex(h)dh =
θ3

24
H(4r2 − l2

6
).

So, an upper bound on the ratio of excess volume to
sweep volume is

Vex
Vmin

=
24r2 − l2

6l2
θ2

where r is the radius of the robot and l is no smaller
than minimum altitude of all input triangles. Hence,
the error on the polyhedral approximation of the sweep
is O(θ2) and produces a close approximation when θ is
small.

Additional excess is introduced when we approximate
ruled surfaces by a sequence of convex hulls, but because
they are only necessary for cap and cup segments, which
have length O(θ), by construction these have O(θ4) vol-
ume and there are O(1

θ) of them, and so the error they
introduce is also O(θ2).

4 Path Panning

Suppose we want to navigate between configura-
tions (ta, θa) and (tb, θb). Then θa is contained in

[2πin , 2π(i+1)
n] for some i and t lies in some connected

component of Si. This defines a node that contains
(ta, θa) and, similarly, a node that contains (tb, θb).

Given the graph we constructed, we can perform a
breadth first search between these nodes to quickly de-
termine whether such a path exists. Since the graph
defines an inner approximation of S, we may return a
false negative but not a false positive. If a path exists,
our search will return a sequence of free space compo-
nents {C1, C2, ..., Cn} connecting (ta, θa) and (tb, θb) if
one exists.

Given a method of finding paths between two points
in the same component, we can construct a valid path
from (ta, θa) to (tb, θb) as follows: Navigate inside C1

from ta to some point t2 in C1 ∩ C2. Rotate from θa
to some θ2 in the range of C2. Similarly, for each i >

2, navigate inside Ci−1 from ti−1 to some point ti in
Ci−1 ∩ Ci and rotate from θi−1 to some θi in the range
of Ci. Lastly, navigate in Cn from tn to tb and rotate
from θn to θb. The result is a valid path from (ta, θa)
to (tb, θb).

For generating a valid path, the choice of ti is arbi-
trary. However, a more methodical choice of ti can re-
duce path length. Working backwards, we assign tn to
the nearest point in Cn−1∩Cn to tb and, iteratively, as-
sign ti to the nearest point in Ci−1 ∩ Ci to ti+1. While
the problem is symmetrical, working backwards from
the terminal point results in a more intuitive path: the
robot will approach an obstacle and then rotate to ma-
neuver around it.

5 Finding Paths in a Free Space Component

The described path planning algorithm requires a
method of finding a path between two points in a given
component. In general, the problem of finding the short-
est path between two points among polyhedral obstacles
is NP-Hard [3], so instead we seek a valid and reasonable
path. The shortest path can be approximated in poly-
nomial time using a visibility graph [6] [9] [13]. The
more densely the graph is constructed, the closer the
approximation. However, in practice, achieving a good
approximation is expensive.

We instead reduce the problem to finding paths along
the surface of the obstacle. The problem of finding
shortest paths on the surface is much simpler and can be
solved in polynomial time by wavefront propagation [7]
or by partitioning of the obstacle surface [16] [11] [12].
We implement a simpler algorithm for finding paths on
the surface.

We reduce the problem to finding paths on the surface
as follows: To find a path from p to q, which lie in
component C, we find all the points where the segment
pq intersects with a face of C. If any portion of pq lies
outside of C, we replace it with a path on the surface of
C. The result is a path that is fairly intuitive: the robot
will move directly towards its destination and maneuver
around obstacles as it encounters them.

We find a path from s to t on the surface of a triangu-
lated connected component C as follows. First, we use
breadth first search to find a sequence of neighboring
faces {T1, T2, ..., Tn} that connect the containing faces
of s and t (Fig. 8(a)). Let ti be the transformation
that rotates Ti+1 about its shared edge with Ti so that
the two triangles lie in the same plane. By applying
t1 ◦ t2 ◦ ... ◦ ti−1 to each Ti, the faces are ‘unfolded’ to
all lie in the same plane (Fig. 8(b)). Since the common
edges of the triangles are unchanged, the shortest path
through all the common edges is the same in the planar
problem as it is in the original problem.

We use a funnel algorithm to find the shortest path

226

CCCG 2018, Winnipeg, Canada, August 8–10, 2018

(a) (b) (c)

Figure 8: (a) The sequence of triangles returned by
breadth first search for a path from s to t, (b) the se-
quence unfolded into a 2D and the resulting shortest
path, and (c) the 2D shortest path converted back to
3D.

through every common edge of the planar triangles in
linear time [4]. We add each common edge, finding the
convex hull of the right hand vertices by making only
right hand turns and the convex hull of the left hand
vertices by making only left hand turns. Whenever the
right path becomes left of the left path, move elements
from the beginning of the left path to the end of the
output path. Whenever the left path becomes right of
the right path, move elements from the beginning of the
right path to the end of the output path.

Given the shortest path in the planar problem, we find
the intersection of the path with each common edge. For
each intersection point, we find the point that is the
same distance along the equivalent three dimensional
edge. The result is the shortest path from s to t through
{T1, T2, ..., Tn} (Fig. 8(c)).

(a) (b) (c)

Figure 9: (a) The sequence of triangles found by going
the other way around the vertex shown in Fig. 8, (b)
the sequence unfolded into 2D and the resulting shortest
path, and (c) the 2D shortest path converted back to
3D.

Since the resulting path is dependent on a sequence of
faces {T1, T2, ..., Tn}, we iteratively modify the sequence
of faces until we reach a local optimum. For each point
where the path goes through a vertex v, the path may
improve by going the other way around v. We replace
all Ti that are incident on v with faces on the other
side of v and perform the two dimensional shortest path

algorithm again (Fig. 9). The resulting path is either
shorter or unchanged. We repeat this process until the
path remains unchanged for every vertex on the path.
The result is a locally optimal path on the surface of C.

6 Approximate Maximization of Path Clearance

Given a graph of free space components and the de-
scribed method of generating paths within a component,
we can navigate between any two connected points in
the free space. However, the resulting path may con-
tain points on the boundary of the free space, where
the robot would scrape against an obstacle. In practice,
it is preferable to generate paths with sufficient distance
between the robot and any obstacle, for safety and for
the maneuverability of the robot.

We expand the graph to account for path clearance
by structuring it in levels, where deeper nodes represent
free space components with more clearance. The user
selects the unit of clearance d and the number of levels
l. For each level l > 0, Sli is the subset of Si where the
robot has at least d · 2l−1 clearance from O, generated
by taking the Minkowski difference of Si with a sphere
of radius d · 2l−1. As before, each component of Sli
is represented by a node in the graph and edges are
placed between intersecting components belonging to
neighboring angles ranges. So, at each level, the graph
is a representation of the four dimensional free space
with clearance of at least d · 2l−1.

Additionally, each component is connected to its chil-
dren: the components of the succeeding level that are
contained in it. When a component of Sli is narrowed to
produce a space with more clearance, it may be elimi-
nated or split into multiple components of Sl+1

i . Hence
a component may have zero, one, or multiple children.

Given this new graph, we now have the capacity to
search for paths in the free space at multiple clearance
values. Suppose we want to navigate between compo-
nents Ca and Cb. A path that traverses deeper nodes
corresponds to a path with more obstacle clearance, so
we search for a path that maximizes node depth. A sim-
ple algorithm to find the deepest path is to visit each
node, starting at level 0, and remove the node if doing
so does not disconnect Ca and Cb.

A maximal depth search has the advantage of maxi-
mizing the clearance on a local basis. The robot can tra-
verse through high clearance components in parts of the
path where space is available and also squeeze through
tight passages. We choose to increase the clearance unit
exponentially in order to capture multiple resolutions
with relatively few levels. This results in better paths
for problems where the tightness varies greatly at dif-
ferent points in the workspace.

We can further optimize the clearance of the output
path by adjusting the paths between two points within a

227

30th Canadian Conference on Computational Geometry, 2018

c
1

c
2

p

p’ q’

q

P Q

Figure 10: A path from c1 to c2 within a component
that traverses through its nearest children, P and Q.

component. Suppose we need a path between points c1
and c2 within component C, and C has children. Then
the children are contained in C and have more clearance.
So a path through the children of C is preferable to a
path through C. We wish to generate a path though
C that avoids the space outside of its children. We
first find P and Q, the nearest children to c1 and c2,
respectively. Next, we find p and q, the nearest point
in P to c1 and nearest point in Q to c2. If p′ and q′

are the nearest pair of points between P and Q then
{c1, p, p′, q′, q, c2} is a path through C that avoids the
space outside its children (Fig. 10). If P or Q also
have children, we recursively use the same algorithm to
find paths in P or Q. This algorithm minimizes the
distance the robot must travel in components with low
clearance. For faster path finding, we find and store p′

and q′ for each pair of nodes that share a parent during
graph construction.

7 Implementation Details

All computation is implemented using the adaptive pre-
cision controlled perturbation robustness library [14] 1.
The library ensures results are accurate to the user spec-
ified error bound. The Minkowski sums, which are re-
quired to generate each three dimensional subspace, are
computed using a convolution based approach [8].

For convenience, we save each each subspace and
the graph of free space components to files to be used
for future path queries. Doing so requires convert-
ing the polyhedra with high precision coordinates to
meshes with floating point coordinates. The vertices
are rounded using a geometric rounding algorithm that
preserves the topology of the mesh [10].

8 Results

In the problem depicted in Fig. 11, the obstacle is
a box with two inner chambers. There are narrow
paths connecting the first and second chamber and
connecting the second chamber to the outside. The two
narrow paths have opposite orientation and navigating
from the start position inside the first chamber to the

1http://www.cs.miami.edu/home/vjm/robust/

(a) (b)

Figure 11: Start (green) and end (red) positions for
a rectangular robot navigating around a two chamber
obstacle.

end position outside requires the robot to make two 90
degree turns. We generate a path for this problem that
approximately maximizes the robot’s distance from
the walls. An animation of that path is available at:
http://web.cs.miami.edu/home/arluck/tworoom/2.
The animation shows the scene from three different
views: one in each chamber and one outside.

(a) (b)

Figure 12: A cross shaped robot navigating through
(a) a 2D integer lattice and (b) a 3D integer lattice of
narrow poles on an incline.

Next, consider the problem in Figure 12. There is
a cross shaped robot inside a room open on one end.
Between the robot and the exit is an integer lattice of
narrow poles with a radius of 10−5. This case is diffi-
cult for traditional PRM, since it would require a very
small step size in order to detect the collision with each
pole. We generate a path that rotates back and forth to
weave through the lattice while rising to accommodate
the incline. An animation of that path is available at:
http://web.cs.miami.edu/home/arluck/lattice/.

For both problems, we divide the rotation dimension
into 40 angle ranges. On one core of a machine with an
Intel Xeon E7 CPU, we generate the 40 free spaces in
just under 10 minutes for the first problem and 25 for the
second problem. We construct the no-clearance graph
in about 15 and 30 minutes and each addition level of
clearance in 40 minutes and 1 hour. After the one-time
computation of the free space, we can generate paths
between any two configurations in only 5-10 seconds.

2Animation created by Hal Milenkovic

228

CCCG 2018, Winnipeg, Canada, August 8–10, 2018

Acknowledgments

Arluck and Milenkovic are supported by NSF grant
CCF-1526335. Sacks is supported by NSF grant CCF-
1524455.

References

[1] N. M. Amato, O. B. Bayazit, and L. K. Dale. OBPRM:
An obstacle-based PRM for 3D workspaces, 1998.

[2] V. Boor, M. H. Overmars, and A. F. van der Stap-
pen. The Gaussian sampling strategy for probabilistic
roadmap planners. In Proceedings 1999 IEEE Interna-
tional Conference on Robotics and Automation (Cat.
No.99CH36288C), volume 2, pages 1018–1023 vol.2,
1999.

[3] J. Canny and J. Reif. New lower bound techniques
for robot motion planning problems. In 28th Annual
Symposium on Foundations of Computer Science (sfcs
1987), pages 49–60, Oct 1987.

[4] L. Guibas, J. Hershberger, D. Leven, M. Sharir, and
R. E. Tarjan. Linear-time algorithms for visibility and
shortest path problems inside triangulated simple poly-
gons. Algorithmica, 2(1):209–233, Nov 1987.

[5] D. Hsu, L. E. Kavraki, J.-C. Latombe, R. Motwani,
and S. Sorkin. On finding narrow passages with proba-
bilistic roadmap planners. In Proceedings of the Third
Workshop on the Algorithmic Foundations of Robotics
on Robotics : The Algorithmic Perspective: The Algo-
rithmic Perspective, WAFR ’98, pages 141–153, Natick,
MA, USA, 1998. A. K. Peters, Ltd.

[6] K. Jiang, L. S. Seneviratne, and S. W. E. Earles. Find-
ing the 3D shortest path with visibility graph and min-
imum potential energy. In Intelligent Robots and Sys-
tems ’93, IROS ’93. Proceedings of the 1993 IEEE/RSJ
International Conference on, volume 1, pages 679–684
vol.1, Jul 1993.

[7] S. Kapoor. Efficient computation of geodesic shortest
paths. In Proceedings of the Thirty-first Annual ACM
Symposium on Theory of Computing, STOC ’99, pages
770–779, New York, NY, USA, 1999. ACM.

[8] M.-H. Kyung, E. Sacks, and V. Milenkovic. Robust
polyhedral Minkowski sums with GPU implementation.
Computer-Aided Design, 6768:48–57, 2015.

[9] T. Lozano-Pérez and M. A. Wesley. An algorithm for
planning collision-free paths among polyhedral obsta-
cles. Commun. ACM, 22(10):560–570, Oct. 1979.

[10] V. Milenkovic and E. Sacks. Geometric Rounding and
Feature Separation in Meshes. ArXiv e-prints, May
2018.

[11] D. Mount. On finding shortest paths on convex poly-
hedra. page 35, 05 1985.

[12] J. O’Rourke, S. Suri, and H. Booth. Shortest paths on
polyhedral surfaces. In K. Mehlhorn, editor, STACS
85, pages 243–254, Berlin, Heidelberg, 1984. Springer
Berlin Heidelberg.

[13] C. H. Papadimitriou. An algorithm for shortest-path
motion in three dimensions. Information Processing
Letters, 20(5):259 – 263, 1985.

[14] E. Sacks and V. Milenkovic. Robust cascading of oper-
ations on polyhedra. Computer-Aided Design, 46:216–
220, Jan. 2014.

[15] F. Schwarzer, M. Saha, and J.-C. Latombe. Exact Col-
lision Checking of Robot Paths, pages 25–41. Springer
Berlin Heidelberg, Berlin, Heidelberg, 2004.

[16] M. Sharir and A. Schorr. On shortest paths in poly-
hedral spaces. In Proceedings of the Sixteenth Annual
ACM Symposium on Theory of Computing, STOC ’84,
pages 144–153, New York, NY, USA, 1984. ACM.

229

CCCG 2018, Winnipeg, Canada, August 8–10, 2018

Integral Unit Bar-Visibility Graphs

Therese Biedl∗ Ahmad Biniaz∗ Veronika Irvine∗ Philipp Kindermann∗ Anurag Murty Naredla∗

Alexi Turcotte∗

Abstract

In this paper, we take another look at unit bar-visibility
representations, that is bar-visibility representations
where every bar has the same width. Motivated by
some applications in textile construction, we restrict the
graphs further to integral unit bar-visibility represen-
tations (IUBVR), that is a bar-visibility representation
where the bar of every vertex is a horizontal line segment
[i−1, i], for some positive integer i, at some real-value y
position.

We study which graph classes do/don’t have an
IUBVR, both in the weak model and in the strong
model. In the weak model, we show that it is NP-hard
to test whether a graph has an IUBVR. We also present
recursive algorithms to create IUBVRs for some graph
classes, such as 2-connected outerplanar graphs with
maximum degree 4. In the strong model, we provide
a polynomial-time algorithm to test for the existence of
a strong IUBVR. In the event of a positive answer, the
algorithm also generates such a strong IUBVR.

1 Introduction

The topic of bar-visibility representations is well-studied
in the graph drawing community. We want to represent
a graph by assigning a horizontal line segment (bar) to
every vertex in such a way that no two bars share a point
and for every edge (a, b), the two bars assigned to a and b
are visible to each other in the sense that some vertical
segment drawn from a reaches b without crossing any
other vertices—we call this vertical segment a line-of-
sight. There are some variations of this idea. Sometimes
a line-of-sight is required to exist along a positive-width
strip (ε-visibility) [11, 3]. Also, in the strong model, if
a line-of-sight exists between two intervals, then there
must be a corresponding edge in the graph, whereas in
the weak model such edges may or may not exist.

It is well-understood which graphs have a bar-
visibility representation (we give a detailed review be-
low). Researchers have therefore turned their attention
to versions where the bars are further restricted. Of

∗University of Waterloo, Canada. Research of TB, AB and
VI supported by NSERC. This research was initiated at the Al-
gorithmic Problem Session group at the University of Waterloo;
many thanks to Craig Kaplan and Anna Lubiw for helpful input.

particular interest to us are unit bar-visibility represen-
tations, where every bar has unit width. Motivated by
some applications in textile construction, we take this
one step further and study in this paper an integral unit
bar-visibility representation (IUBVR), which is a bar-
visibility representation where the bar of every vertex
has the form [iv−1, iv]×yv for some iv ∈ N and yv ∈ R.

NE

N

S
SESW

NW

i−1 ix-coord.

layer i

slab i

i+1

Figure 1: A strong IUBVR of a tree, and six edge-
directions at a vertex.

Motivation: We first came across the idea of IUBVR
in a problem we studied related to bobbin lace. In bob-
bin lace, and other methods of creating textiles such
as macramé or friendship bracelets, the standard setup
is several strings hanging down in parallel. The artist
picks up a few (typically in multiples of two) consecutive
strings and first braids (or knots) them together, then
releases the strings and creates another braid elsewhere.
A braid can only be executed if the strings involved hang
freely, i.e., the braid must be below all previously exe-
cuted braids involving any of the strings in this subset.
This can be modeled as a graph as follows: Define the
vertical line with x-coordinate i ∈ N to represent one of
the strings. Now draw a horizontal bar [i−1, i] to rep-
resent a braid that involves the strings at i − 1 and i;
the y-coordinate of the bar represents the relative order
of the braid.

Notice that the strong bar-visibility representation
induced by these bars is an IUBVR. If we direct all
edges in the resulting graph downward, then the pos-
sible topological orders of the resulting digraph corre-
spond exactly to the orders in which we can execute
the braids. Because we want to maximize the number
of crossings that can be made using the threads (or a
subset of the threads) already in the artist’s hand, a
function of braiding-order, we became interested in the
types of graphs that could be represented in such a fash-

230

30th Canadian Conference on Computational Geometry, 2018

(a) (b) (c)

Figure 2: Bobbin lace motivation: (a) Drawing of
one repeat, (b) sIUBVR of pattern, (c) several repeats
worked in cotton thread

ion.

Our contributions: In this paper, we study which
graph classes do/don’t have an IUBVR, both in the
weak model and in the strong model. In the weak model,
we show that it is NP-hard to test whether a plane graph
has an IUBVR; we denote a weak IUBVR by wIUBVR.
We also present recursive algorithms to create IUBVRs
for some graph classes, such as 2-connected outerplanar
graphs with maximum degree 4.

We then turn to the strong model. As a warm-up,
we argue exactly which trees have a strong IUBVR, de-
noted by sIUBVR. Then, we turn to the most intricate
result of this paper and provide a polynomial-time al-
gorithm to test for the existence of an sIUBVR. In the
event of a positive answer, the algorithm also generates
such an sIUBVR.

1.1 Related work

The primary application of bar-visibility graphs is to
generate a compact layout for a printed VLSI circuit
board. The research in this area covers two main topics:
1) characterizing all graphs that have a bar-visibility
representation and 2) determining whether a specific
graph supports a bar-visibility representation.

Every planar graph has a weak bar-visibility represen-
tation [4] and that representation can be found in linear
time [8, 9, 11]. Determining whether a 3-connected pla-
nar graph has a strong bar-visibility representation was
shown to be NP-complete by Andreae [1]. However, for
maximal planar and 4-connected planar graphs, there
exist O(|V |) and O(|V |3) algorithms, respectively, for
computing a strong visibility representation [11].

Melnikov introduced the idea of ε-visibility [7] as the
model most germane to VLSI layout. Duchet showed
that every maximal planar graph has an ε-visibility
representation [4] which Thomassen extended to all 3-
connected planar graphs [12]. Wismath [14] as well
as Tamassia and Tollis [11] independently characterized
bar-visibility graphs under the ε-model as planar graphs
having all cutpoints on a single face. This can be tested,
and the representation constructed, in linear time [11].

In addition to bars, axis-aligned rectangles which ad-
mit a horizontal as well as a vertical line-of-sight have

been explored [2].

Unit bar-visibility representations The concept of
bar-visibility graphs with uniform length bars was first
studied by Dean and Veytsel [3] under the ε-model.
They characterized the existence of such representa-
tions for several graph classes including trees, com-
plete bipartite, outerplanar and triangulated graphs.
Wiglesworth [13] characterized graphs with a bar-
visibility representation with reach (maximum distance
between the left and right bar coordinates) less than 2.

Layered drawings IUBVRs turn out to be closely
related to so-called layered drawings, see e.g. Suder-
man [10] and the references therein. A layered drawing
in the most general sense is a planar straight-line draw-
ing where every vertex is assigned to a layer or level, i.e.,
a vertical line with integer x-coordinate.1 There are a
number of different models, depending on what types
of edges are allowed. In this paper, we consider short
layered drawings: every edge (v, w) must satisfy that its
ends are either in the same layer or in adjacent layers.
Any IUBVR naturally gives rise to a short layered draw-
ing, see below. The second type of layered drawing that
we will need is called proper layered drawing in [10] but
we use the term leveled-planar drawing from [6]; here,
for every edge (v, w) the two vertices must be on ad-
jacent layers. Heath and Rosenberg [6] showed that it
is NP-hard to determine whether a planar graph has a
leveled-planar drawing. Suderman [10] studied various
models of layered drawings with the objective of obtain-
ing such drawings with few layers for trees. It is also
known that for various models of layered drawings mini-
mizing the number of layers is fixed-parameter tractable
in the number of layers [5].

2 Preliminaries

Since a bar visibility representation can only exist for a
planar graph, we assume throughout the paper that G
is a planar graph, i.e., can be drawn without crossings
in the plane. We usually assume that G is plane, i.e., we
have fixed the clockwise order of edges at every vertex
(which determines the faces) and the outer-face of G.

Fix an IUBVR D of G where, as before, vertex v has
bar [iv−1, iv] × yv. We can created a drawing Γ from
D by placing vertex v at point (iv − 1

2 , yv) and drawing
edges as straight-line segments. It is straightforward to
verify that Γ is a planar short layered drawing; we call
this the associated layered drawing of D. (Not all short
layered drawings come from an IUBVR.) Based on the
associated layered drawing, the following terminology is
natural: Vertex v is said to reside in layer i of D if iv=i.

1Some references use horizontal lines instead; this is the same
after a rotation.

231

CCCG 2018, Winnipeg, Canada, August 8–10, 2018

An edge e spans slab i of D if the ends of e are in layers
i and i+1. We furthermore need the following crucial
observation (see also Fig. 1):

Observation 1 In an IUBVR D, every vertex v has at
most 6 incident edges which can be classified as follows:
• There can be at most one N-edge connecting v to a

neighbour w with iw=iv and yw>yv.
• There can be at most one NE-edge connecting v to

a neighbour w with iw=iv+1 and yw>yv.
• There can be at most one NW-edge connecting v to

a neighbour w with iw=iv−1 and yw>yv.
• Symmetrically there can be at most one S-edge, SE-

edge and SW-edge in which the condition “yw>yv”
is replaced by “yw<yv”.

Proof. Assume that there are two NE-edges, say (v, w)
and (v, x). So iw = ix = iv + 1 and (say) yv < yw < yx.
But then the bar of w blocks all lines of sight from v
to x. So there is at most one NE-edge. �

Fix some α ∈ {NW,N,NE,SE,S,SW}. In an
IUBVR, we say that a directed edge v → w has orienta-
tion α if it is the α-edge at v. We use the term also for
an undirected edge, meaning that it becomes an α-edge
when directed suitably. We also call edges vertical, di-
agonal, upward-diagonal and downward-diagonal in the
obvious way. A vertex v may or may not have an α-
edge. When creating drawings, we sometimes use the
term α-port for the possibility of adding an edge at v in
that orientation.

We say that two IUBVRs, D and D′, are equivalent
if (possibly after a translation) the layers contain the
same vertices in the same top-to-bottom order, and (af-
ter imposing arbitrary directions) the edges have the
same orientations in D and D′. We say that a graph
has a unique IUBVR if all its IUBVRs are equivalent up
to a rotation by π.

3 Graph classes that admit weak IUBVRs

In this section, we show that all trees and 2-
connected outerplanar graphs of maximum degree 4 ad-
mit wIUBVR.

Theorem 1 Every tree T of maximum degree 4 has a
wIUBVR.

Proof. Created a rooted tree from T by selecting any
leaf of T as the root. We prove the result for any rooted
subtree Tx of T , by induction on the height of Tx. We
created two wIUBVRs for Tx, one where the drawing
resides within Rq(x) and one that resides within Ry(x)
(see Fig. 3a for the definition of these shapes; they are
meant to extend rightward to infinity). We only explain
how to construct the wIUBVR in Rq(x); the other con-
struction is symmetric. If x has no children then the

x

Rq(x)
x

Ry(x)

(a)

(b) (c)

Ry(a)

Rq(b)

Rq(c)

Ta

Tb

Tc

x

c

b

a

Tx

Ta Tb Tc

x

b ca

Figure 3: Illustration of the proof of Theorem 1: (a)
Regions Rq(x) and Ry(x), (b) a rooted tree Tx, and (c)
a wIUBVR of Tx in Rq(x).

bar of x alone gives the representation, so assume that x
has children. Since T has maximum degree 4 and T is
a rooted tree, every vertex has at most 3 children; we
assume here that x has exactly three children a, b, c (we
can pad the tree with some dummy-children if it has
fewer). If the given bar for x is in layer i, then place
unit bars for a and b in layer i+1, with ya<yx<yb. Place
a unit bar for c in layer i with yx<yc. By the inductive
hypothesis we can obtain representations of Ta, Tb, and
Tc in Ry(a), Rq(b), and Rq(c), respectively. Putting
these representations together, we obtain a representa-
tion of Tx in Rq(x) as depicted in Fig. 3c. �

Theorem 2 There are trees of maximum degree 5 with-
out a wIUBVR.

i i+1

v

c

a

b

Proof. Consider a tree T with a
degree-5 vertex v that is adjacent to
five degree-5 vertices. Assume for con-
tradiction that T has a wIUBVR. Of
the 6 ports at v (cf. Observation 1), ex-
actly one is unused. Up to symmetry
we may assume that the unused port is
either the SW-port or the S-port. Let
the NE-edge, SE-edge and N-edge be
(v, a), (v, b) and (v, c). Observe that a
cannot have a NW-edge, because any such neighbour
would need to be below c and hence block the line-of-
sight for (v, c). It also cannot have an S-edge because
such a neighbour, regardless of its position, would either
block the line-of-sight for (v, b) or for (v, a). Therefore
deg(a) ≤ 4, a contradiction. �

The following will be useful later:

Corollary 3 Let G be a graph with an IUBVR D and
an edge (v, a) where deg(v)=6 and deg(a) ≥ 5 and a, v
have no common neighbor. Then (v, a) is vertical in D.

Proof. Assume for contradiction that (v, a) is diagonal,
say it is the NE-edge of v. By deg(v) = 6 it has a SE-

232

30th Canadian Conference on Computational Geometry, 2018

was empty

r

v

w

v

f

w

empty

emptypempty

Figure 4: Creating a representation for max degree 3.

edge (v, b) and a N-edge (v, c). As in the previous proof
then deg(a) ≤ 4, a contradiction. �

Now we turn to 2-connected outer-planar graphs, i.e.,
planar graphs whose outer-face is a simple cycle that
contains all vertices. The weak dual G∗ of such a graph
is obtained by creating a vertex f∗ for every inner face f
and connecting two such vertices (f∗, g∗) with an edge
in G∗ if they share an edge (which is necessarily a chord
of the outer-face cycle). It is well-known that the weak
dual of a 2-connected outer-planar graph is a tree.

Theorem 4 Every 2-connected outerplanar graph of
maximum degree 4 has a wIUBVR.

Proof. For brevity, we prove the case when the max-
imum degree is 3; the proof for maximum degree 4 is
significantly more involved and is given in the appendix.
Root the weak dual tree G∗ at a face r∗ that is a leaf.
We now add the faces of G following their pre-order
in the dual tree. We maintain the invariant that any
chord e is drawn vertically and, as long as only one of
the faces incident to e has been drawn, nothing is drawn
to the right of e.

We start with the root r∗ and let (v, w) be the unique
chord of r (recall that r∗ is a leaf of G∗). Draw r
as a rotated trapezoid, with (v, w) on the long side in
the right layer. Clearly the invariant holds. Now con-
sider some face f and assume that the parent p∗ of f∗

has already been drawn, with the common chord (v, w)
of p and f drawn vertically and without anything to
its right. Draw f as a rotated trapezoid, with (v, w) as
a unique edge on its left and all other vertices in the
layer to the right of (v, w). The created SE-edge of v
cannot be a chord because v already has three incident
edges and therefore no other inner face can be incident
here. Likewise the NE-edge of w cannot be a chord. So
the invariant holds, and repeating for all faces gives a
wIUBVR. �

4 Recognition in the weak model

In this section, we show that testing whether a plane
graph admits a wIUBVR is NP-hard, by reducing from
the NP-hard problem [6] of testing whether a given
plane graph has a leveled-planar drawing.

In this reduction we will represent edges by a rigid
structure. Consider the rigid block B depicted in
Fig. 5a. One can easily show that B has a unique
wIUBVR. Namely, since deg(a) = deg(b) = 6, by Corol-
lary 3, (a, b) must be drawn vertically, say a above b.
All other edge-orientations are then determined by the
planar embedding since all ports at a and b are used.

We now combine M rigid blocks B1, . . . , BM to form
an M -tube, see Fig. 5b. Since each rigid block has a
unique wIUBVR, so does the M -tube. Note that an
M -tube spans exactly 2M+1 layers.

For representing the vertices, we make use of a dif-
ferent structure. Consider the node block L depicted in
Fig. 6a. A node block can be connected to an M -tube
as depicted in Fig. 6b. The wIUBVR of a node block is
not unique; in particular it can be “bent” at the white
squares.

Now fix a plane graph G=(VG, EG) for which we
wish to find a leveled-planar drawing. Create a plane
graph H for which we wish to find a wIUBVR as follows:

Each edge e in G gives rise to an M -tube Me in H,
where M is chosen sufficiently large (M=24n should
do). Each vertex v of G is replaced by a node gadget
Nv that consists of a cycle of d (where d= deg(v)) node
blocks L1, . . . , Ld that are connected by identifying each
vertex bi with the vertex ai+1; see Fig. 6c. Enumerating
the edges around v as e1, . . . , ed, we attach Li to one end
of M -tube Mei as depicted in Fig. 6b.

It is quite easy to see that if G has a leveled-planar
drawing Γ, then H has an wIUBVR D, essentially by
mapping level h of Γ to the layers from h(2M+8) − 1
to h(2M+8) + 5 in D, arguing that the node gadget Nv

can be placed in those layers, and placing the M -tube
of edge (v, w) in the 2M+1 layers that are between the
layers of its endpoints; see Fig. 7 for an example. For
the other direction, we argue that there is in fact no
other way than to lay out the node gadgets in these
layers, so we can obtain a level-assignment that gives a
leveled-planar drawing of G. The appendix has details.
We conclude:

Theorem 5 It is NP-hard to test whether a given plane
graph H has a wIUBVR.

a

b

d
e

f

c

d′

e′

f ′

c′
g

g′

(a) A rigid block

d1
e1

f1

c1

dM
eM

fM

cM

(b) An M -tube

Figure 5: The rigid structures used to represent edges.

233

CCCG 2018, Winnipeg, Canada, August 8–10, 2018

a

b

T

T ′

T ′′
P

(a)

a

b

(b) (c)

Figure 6: (a) A node block (b) connected to an M -tube
and (c) the node gadget of a degree-2 vertex.

v

1 2 3 4

(a) G

M -tube

Nv

(b) H

Figure 7: An example of a drawing of H obtained from
a drawing of G. The node gadgets lie completely inside
the shaded rectangles and the M -tubes lie in between.

5 Strong model

Now we turn to the strong model, where the existence of
a line-of-sight implies that the corresponding edge must
exist in G. As a simple warm-up result, we have:

Theorem 6 A tree T has an sIUBVR if and only if it
is a subdivision of a caterpillar of maximum degree 3.

Proof. If T has an sIUBVR, then it also has a strong
unit bar-visibility representation. As shown by Dean
and Veytsel [3], it then has maximum degree 3 and is
a subdivided caterpillar, i.e., it contains a path S (the
spine) such that T −S consists of paths (the subdivided
legs). Vice versa, for any subdivided caterpillar of max-
imum degree 3 it is easy to create an sIUBVR; Fig. 1
illustrates the construction. �

The rest of this section is devoted to showing that
more generally, we can test for any plane graph G
whether it has an sIUBVR. We may assume that G
is connected, else test each component separately. We
assume for now that G is 2-connected.

It will be convenient to direct outer-face edges so
that the outer-face is to their left. Observe that in any
IUBVR, the topmost diagonal edge that spans a slab is
on the outer-face, with the outer-face above it; with the
above direction therefore its orientation is NE or SE.

Let’s start by outlining the idea. We create an aux-
iliary directed graph H that has a super-source s, a
super-sink t, and a vertex v(e, α) for each configura-
tion (e, α), where e is an edge on the outer-face of

G and α ∈ {SE,NE}. Vertex v(e, α) expresses the
possibility of an sIUBVR where e has orientation α
and e is the topmost edge in the slab that it spans.
Crucially, fixing (e, α) determines the entire drawing
within this slab. We can also define conditions under
which two configurations, (e`, α`) and (er, αr), could
occur in consecutive slabs; if they are met, add an arc
v(e`, α`) → v(er, αr) to H. Likewise we can add arcs
s → v(e, α) or v(e, α) → t if (e, α) could occur in the
leftmost/rightmost slab. Testing whether an sIUBVR
exists then amounts to finding a directed path from s
to t in H.

To explain the details, we need a few observations.

Lemma 7 In any sIUBVR D, any internal face f
spans exactly one slab of D.

Proof. In the strong model, the vertices within one
layer i form an induced path connecting two vertices on
the outer-face. Hence any face is either to the left of i
or to the right of i, and so it cannot span two slabs. �

v0

v1

v2

v3

v5

v4

v6
v7

v5

v6

v7

v0
v1

v4

v3

v2

e er
e`

ere`

b

c

g

h

(a) (b) (c) (d)

e

Figure 8: (a) The sub-drawing D(e, SE). L(e, SE) is
orange (bold), R(e, SE) is blue (dashed). (b and c)
Two examples of slabs that are not compatible: (b)
The combined drawing creates an unwanted edge e. (c)
R(e`,NE)∪L(er,SE) is not an induced path, leading to
parts of G (gray) that are not represented. (d) Example
that has non-unique sIUBVRs.

In fact, as illustrated in Fig. 8a, inner faces in an
sIUBVR have a special form. We say that an in-
ner face f forms a trapezoid (in some sIUBVR) if the
edges of f can be enumerated (in clockwise or counter-
clockwise order) as e1, e2, . . . , ed such that e1 is upward
diagonal, e2 is vertical, e3 is downward diagonal, and
e4, . . . , ed, if they exist, are vertical (Note that we allow
the trapezoid to degenerate to a triangle).

Lemma 8 Fix an arbitrary sIUBVR D. Then any in-
ternal face f forms a trapezoid.

Proof. Assume f spans slab i and let eb, et be the bot-
tommost/topmost edges in slab i that belong to f . One
can easily argue that eb and et must have different orien-
tations, else the face would be split by another diagonal
edge that spans slab i and is between eb and et. Up

234

30th Canadian Conference on Computational Geometry, 2018

to symmetry et is upward-diagonal and eb is downward-
diagonal. The right ends of et and eb are connected to
each other by a path that runs along level i+ 1. If this
path contains any vertices other than the right ends of
et and eb, these additional vertices would necessarily be
below the top end of et and above the bottom end of
eb. At least one of these vertices would be adjacent to a
vertex on the left side of f (the bottom end of et or the
top end of eb or some vertex in-between). This again
would split face f , a contradiction. So there are no ver-
tices in this path, meaning that the right ends of eb and
et are connected by a single vertical edge as desired. �

As a consequence, fixing the topmost edge of a face
and its orientation fixes the orientation for all edges of
that face. We can propagate this to all faces of a slab,
which gives the crucial insight for our algorithm.

Lemma 9 Let D,D′ be two sIUBVRs of a graph G.
Assume that some outer-face edge e has the same ori-
entation α ∈ {NE,SE} in D and D′, and is the topmost
edge in its slab in both D and D′. Then the slab of e
in D and the slab of e in D′ contain exactly the same
faces and edges, in exactly the same order from top to
bottom.

Proof. Set e1=e and let f1 be the unique inner face
adjacent to e. Since e1 is topmost and has orientation
α, we know exactly the trapezoidal shape that f1 must
take, and therefore, the unique other edge e2 that is
diagonal and on f1. Further, e2 has the opposite orien-
tation of e1. Now repeat with e2. Generally, once ei is
fixed, let fi be the face incident to ei that is not fi−1.
If fi is the outer-face then stop. Else the orientation
of ei determines the trapezoidal shape of fi and hence
the unique other diagonal edge ei+1 on fi and its orien-
tation. Repeating the process determines all edges and
faces that intersect the slab. �

We use D(e, α) to denote the subgraph formed by the
inner faces f1, f2, . . . in the above proof, and equip the
edges of D(e, α) with the orientation as they are de-
termined in the process. From the proof of Lemma 9,
it follows that we can determine D(e, α) from the pla-
nar embedding of G alone, without needing to know an
sIUBVR. If there exists some sIUBVR with e in orienta-
tion α as topmost edge of a slab, then D(e, α) expresses
the part of it within that slab. Furthermore, in this case
the edges C(e, α) := {e1, e2, . . . } (see proof of Lemma 9)
span the slab andD(e, α)−C(e, α) is the union of two in-
duced paths (along the sides of the slab). Let L(e, α) be
the path that contains the left end of e and let R(e, α) be
the other one. If anything goes wrong while determining
L(e, α) and R(e, α) (e.g. if some edge obtains two con-
tradictory directions for D(e, α), or if D(e, α)−C(e, α)
is not the union of two paths) then we discard the node
v(e, α) since it cannot lead to an sIUBVR.

Now we add an arc v(e`, α`)→v(er, αr) if (e`, α`)
is compatible with (er, αr). The latter means
that D(e`, α`) and D(er, αr) could occur on two con-
secutive slabs of an sIUBVR of G. It is not hard to
test this in linear time: The two partial representations
fix all the (downward) directions and orientations of all
the involved edges. If this results in contradicting di-
rection for edges, then no such sIUBVR of G can exist.
Otherwise we can uniquely determine the relative posi-
tion of bars for all involved vertices and simply test that
these bars created no unwanted lines-of-sights. Finally
the vertices in R(e`, α`) ∪ L(er, αr) must induce a path
in G, else putting the two partial representations would
skip some inner faces or represent some vertices twice.
See Fig. 8b and the appendix for details.

To finalize H, we add an arc s → v(e, α) if D(e, α)
could be the leftmost slab; this can be read directly from
the planar embedding since then L(e, α) must consist of
outer-face edges. Similarly we add an arc v(e, α) → t
if D(e, α) could be rightmost slab. This finishes the
construction of H.

One can now easily show that G has an sIUBVR D
if and only if H has a directed path s to t. Namely,
given D we can find the vertices v(e, α) for which e is
the topmost edge in some slab and has orientation α
and argue that these form a path in H. Vice versa, if
there is such a path, then each node v(e, α) on it defines
a partial drawing D(e, α), and we can glue these partial
drawings together since the arcs ensure compatibility.
One can then argue that the result exactly represents G.
Details are in the appendix.

Clearly, our approach gives a polynomial-time al-
gorithm to test whether a 2-connected graph has an
sIUBVR. We argue in the appendix how with a bit more
care we can achieve a run-time of O(n2) for 2-connected
graphs. We also discuss how to handle cutvertices in
the appendix by splitting the graph into its 2-connected
components. Overall, we achieve:

Theorem 10 Let G be a plane graph with n vertices.
Then we can test in O(n2) time whether G has an
sIUBVR.

Uniqueness? Our testing algorithm relies strongly
on the fact that once the topmost edge and its orienta-
tion are determined, the representation within one slab
is unique (up to moving bars up or down). Once one
such slab is fixed, often the adjacent slab is fixed as
well. In light of this, it may come as a surprise that an
sIUBVR is not always unique. Indeed, we can construct
an example where for one slab we have fixed the top-
most edge and its orientation, and still at an adjacent
slab we can have choices as to which edges and faces
cross the slab. See Fig. 8d.

235

CCCG 2018, Winnipeg, Canada, August 8–10, 2018

6 Conclusion and open problems

In this paper, we studied IUBVRs. We showed that
recognizing whether a graph has a weak IUBVR is NP-
hard, but in contrast testing whether it has a strong
one is polynomial. We also showed that trees and 2-
connected outer-planar graphs with maximum degree 4
have a weak IUBVR. We leave some open problems:

• In macramé, it is possible to knot more than two
strings together, but typically no more than a small
constant. What graphs are possible if vertex bars
have the form [iv − k, iv]× y for, say, k ≤ 4?

• For some graphs, the existence of an sIUBVR de-
pends on the embedding, e.g. see Fig. 9. Can we
test whether a planar graph (without fixed embed-
ding) has an sIUBVR?

v3

v1 v6 v1 v6

v7 v4

v2 v4 v2 v7 v5

v3

(a) (b)

v5

v1

v6

v2

v7

v5
v4

v3

v1

v6

v2
v3
v4
v5

v7?

Figure 9: (a) Embedding for G that has no sIUBVR (b)
A different embedding of the same G and its sIUBVR

References

[1] T. Andreae. Some results on visibility graphs. Dis-
crete Applied Mathematics, 40(1):5–17, 1992.

[2] P. Bose, A. Dean, J. Hutchinson, and T. Sher-
mer. On rectangle visibility graphs. In Interna-
tional Symposium on Graph Drawing, pages 25–44.
Springer, 1996.

[3] A. M. Dean and N. Veytsel. Unit bar-visibility
graphs. Congressus Numerantium, 160:161–176,
2003.

[4] P. Duchet, Y. Hamidoune, M. Las Vergnas, and
H. Meyniel. Representing a planar graph by ver-
tical lines joining different levels. Discrete Mathe-
matics, 46(3):319–321, 1983.

[5] V. Dujmovic, M. Fellows, M. Kitching, G. Liotta,
C. McCartin, N. Nishimura, P. Ragde, F. Rosa-
mond, S. Whitesides, and D. Wood. On the pa-
rameterized complexity of layered graph drawing.
Algorithmica, 52:267–292, 2008.

[6] L. S. Heath and A. L. Rosenberg. Laying out
graphs using queues. SIAM J. Comput., 21(5):927–
958, 1992.

[7] L. A. Melnikov. Problem at the sixth Hungarian
Colloquium on Combinatorics, 1981.

[8] R. H. J. M. Otten and J. van Wijk. Graph represen-
tations in interactive layout design. In IEEE Inter-
nat. Symp. on Circuits and Systems, 1978, pages
914–918, 1978.

[9] P. Rosenstiehl and R. E. Tarjan. Rectilinear planar
layouts and bipolar orientations of planar graphs.
Discrete & Computational Geometry, 1(4):343–
353, 1986.

[10] M. Suderman. Pathwidth and layered drawings of
trees. International Journal of Computational Ge-
ometry & Applications, 14(3):203–225, 2004.

[11] R. Tamassia and I. G. Tollis. A unified approach to
visibility representations of planar graphs. Discrete
& Computational Geometry, 1(4):321–341, 1986.

[12] C. Thomassen. Plane representations of graphs.
Progress in graph theory, pages 43–69, 1984.

[13] L. W. Wiglesworth. A study of unit bar-visibility
graphs. PhD thesis, University of Louisville, 2008.

[14] S. K. Wismath. Characterizing bar line-of-sight
graphs. In Symposium on Computational Geome-
try, pages 147–152. ACM, 1985.

236

30th Canadian Conference on Computational Geometry, 2018

Appendix A wIUBVR for outerplanar graphs

We now explain how to create a wIUBVR of a 2-
connected outerplanar graph with maximum degree 4.
As before, we root the weak dual G∗ (which is a tree)
at a leaf r∗. For any face f∗ 6= r∗ corresponding to
face f , the parent-face is the face p corresponding to
the parent p∗ of f∗. Let (v, w) be the edge that f
shares with its parent-face; it will be convenient to
direct (v, w) so that f is to its right. The subgraph
Gv,w attached at (v, w) is the graph formed by the
faces in the subtree rooted at f∗. We create up to 5
possible drawings of Gv,w, where the β-drawing, for
β ∈ {NW,N,NE,SE,SW}, satisfies the following (see
also Fig. 10):

r

c

v

w

(a) N

v
w

or

(b) NE

v
w

or

(c) SE

Figure 10: Drawing types. The bold orange edge is the
edge shared with the parent-face, and the entire drawing
must reside within the gray region (extended infinitely
rightward). (a) also illustrates how to add root r at the
end.

• (v, w) is the β-edge at v.

• One of v, w is in layer 1, i.e., the leftmost layer.

• If β = N, then v has a NE-edge, w has a SE-edge,
and layer 1 contains no other vertices.

• If β = NE, then v has a SE-edge and w has a S-
edge or a SE-edge (or both). Layers 1 and 2 are
empty above v, w.

• If β = SE, then w has a S-edge or a SW-edge or
both, and it has no NE-edge. Layers 1 and 2 are
empty above v, w. (This in particular implies that
SE-drawings can exist only if deg(v) = 2; we will
ensure that this holds.)

• β = NW is symmetric with β = NE and β = SW
is symmetric with β = SE; flip the corresponding
drawings in Fig. 10 upside-down.

We create such drawings by going bottom-up in
tree G∗. So let f∗ 6= r∗ be a node of G∗, corresponding
to face f . Enumerate the vertices of f as v1, . . . , vk
in counter-clockwise order such that v1 → vk is the
edge that f shares with its parent-face. We want to
draw the subgraph Gv1,vk attached at (v1, vk). For
s = 1, . . . , k − 1, denote by Gs the subgraph Gvs,vs+1

attached at (vs, vs+1) (it is empty if (vs, vs+1) is on the

v1
v2

v3

vk

fparent-
face

G1

Gk−1

(a) setup

v1

v2

v3

vk

(b) N

v1

v2

v3

vk

(c) N

v3

v1

v2

(d) NE,k=3

vk

v1

v2

(e) NE,k>3

vk

v1

v2

(f) NE,k>3

v1

v2
v3

vk

(g) SE

v1

v2
v3

vk

(h) SE

Figure 11: Drawing face f and merging subgraphs. We
only show the corresponding layered drawing. Dashed
green edges are outer-face edges. We show some of the
cases where Gs is empty and therefore more ports are
available for Gs−1 and Gs+1.

outer-face). Since v1 has degree at most 4 and it is ad-
jacent to vk 6∈ G1 and has one further neighbour in the
parent-face of f , we can conclude that v1 has degree at
most 2 in G1.

We explain how to create a β-drawing of Gv1,vk
only

for β = N,NE,SE, the cases β = NW,SW are symmet-
ric (flip the drawings for NE and SE upside-down); see
Fig. 11.

Case 1: β = N. We draw f as a trapezoid with
(v1, vk) as long vertical edge in layer 1. Directing the
other edges as v1 → v2 → · · · → vk, their orientations
(in order) are NE,N, . . . ,N,NW. With this we have the
required NE-edge for v1 and SE-edge for vk.

For each 1 ≤ s ≤ k−1, recursively find the β′-drawing
of Gs where β′ is the orientation that we just assigned
to vs → vs+1. The goal is to merge these drawings; for
this we need to argue that no port at a vertex vs is used
repeatedly (it could be used by f or by Gs−1 or by Gs).

One easily verifies that there is no conflict between f
and Gs due to the restrictions on the drawing type
for Gs; for example; if Gs is a N-drawing, then its left-
most layer contains only (vs, vs+1) and so it uses no
port at vs that was used by f . But it is less obvious
that Gs−1 and Gs, presuming they are both non-empty,
could not both use a port of vs. Recall that Gs−1 uses
a NE-drawing or a N-drawing, so vs has a S-edge or a
SE-edge in Gs−1 that is not (vs−1, vs). Likewise Gs uses
a NW-drawing or a N-drawing, and vs has a N-edge or
a NE-edge in Gs that is not (vs, vs+1). This gives four
distinct edges at vs, so by deg(vs) ≤ 4 there are no oth-
ers. So all edges of vs in Gs−1 go southward while all
its edges in Gs go northward and there is no conflict
among the ports.

237

CCCG 2018, Winnipeg, Canada, August 8–10, 2018

With this, we can merge the drawings of the attached
subgraphs into the drawing of the face. Because no
ports at any vs can be used by two subgraphs, this does
not lead to overlap as long as we compact the drawing
of Gs vertically so that it occupies only minimal space
below vs and above vs+1. Also, if G1 is non-empty then
it uses a NE-drawing and so v1 has a SE-edge other
than (v1, v2). Since v1 has at no other neighbours in G1

as argued earlier, it has no S-edge and layer 1 is empty
below v1. Similarly layer 1 is empty above v2. So we
have created the desired N-drawing of Gv1,vk

.

Case 2: β = NE and k = 3. We draw f as a trian-
gle with v1 → v3 as NE-edge of v1; thus v1 → v2 is a
SE-edge and v2 → v3 is a N-edge, giving the edges re-
quired for a NE-drawing. As before, for each attached
subgraph find the drawing that respects these orienta-
tions (this is feasible for G1 since v1 has at most two
neighbours in G1). If both G1 and G2 are non-empty,
then v2 has a NE-edge in G2 and a S-edge or SW-edge
in G1, and so there is no port-conflict at v2. Therefore,
we can merge the drawings of the sub-graphs. One eas-
ily verifies that layer 1 and 2 remain empty above v1
and vk, so we obtain a NE-drawing.

Case 3: β = NE and k > 3. We draw f as a pen-
tagon with v1 → v3 as NE-edge of v1; v1 → · · · → vk re-
ceive orientations (in order) SE,NE,N, . . . ,N,NW. As
before, for each attached subgraph Gs find the draw-
ing that respects these orientations. The argument
that there is no conflict among ports is the same as
for Case 1, except at vertex v2. Here (presuming both
subgraphs G1 and G2 are non-empty) v2 receives a S-
edge or SW-edge in G1 and a SE-edge in G2, and by
maximum degree 4 it has no other edges and there are
no port-conflicts. Therefore we can merge the draw-
ings of the sub-graphs. One easily verifies that layer 1
and 2 remain empty above v1 and vk, so we obtain a
NE-drawing.

Case 4: β = SE. We know that this happens only if
deg(v1) = 2. We draw f as a trapezoid with v1 → vk as
SE-edge, so the edges v1 → · · · → vk receive orientation
S,NE,N, . . . ,N. Since deg(v1) = 2 there is no subgraph
attached at (v1, v2). For 2 ≤ s < k−1, find the drawing
of Gs that respects the assigned orientations. Verify as
for Case 1 that this cannot lead to conflict among the
ports. Therefore we can merge the drawings of the sub-
graphs. One easily verifies that layer 1 and 2 remain
empty above v1 and vk.

We must argue that vk has no NE-edge. We know
that vk has at most three neighbours in Gv1,vk (be-
cause it has one more in the parent-face of f). If it has
three neighbours, then the neighbour x other than v1
and vk must be in subgraph Gk−1. But Gk−1 uses a N-
drawing or a NE-drawing; either way it has an edge dif-
ferent from (vk−1, vk) that is a S-edge or SE-edge of vk.
So (vk, x) has southerly orientation, as do (vk, v1) and

(vk, vk−1). Hence vk has no NE-edge and we obtain a
SE-drawing.

With this, we can draw any subgraph that corre-
sponds to a strict subtree of G∗. To finish off, as before
let r∗ be the root of G∗ and let (v, w) be the unique
chord of r (recall that r∗ is a leaf). Find a N-drawing of
the graph Gv,w attached at (v, w), which places (v, w)
as vertical edge in the leftmost layer. We can now add r
as a trapezoid with (v, w) as long edge on the right and
all other vertices in one layer further left. This gives the
desired wIUBVR of G.

Appendix B Details of the NP-hardness

We start by describing the components used later
to form a vertex gadget. We define a k-zigzag
to be the graph that consists of a (2k−1)-cycle
v1, . . . , vk, uk−1, . . . , u1 with chords (vi, uj) for i =
2, . . . , k−1 and j ∈ {i − 1, i}; see Fig. 12a. We call
vertices v1, . . . , vk squared, vertices u1, . . . , uk−1 circu-
lar, and the vertices v1 and vk end vertices. Since every
interior face of a k-zigzag T is a triangle, choosing the
orientation of a single edge of T fixes the orientation
of all of its edges. Note that the edges on the path
v1, . . . , vk are all drawn with the same orientation β; we
say that T is drawn with orientation β or that it is a
β-k-zigzag or just β-zigzag.

We construct a node block L as follows; see Fig. 12b.
Let T be a 3-zigzag, and let T ′ and T ′′ be two 4-
zigzags. Identify vertex v4 of T with vertex v′1 of T ′

and vertex v′5 of T ′ with vertex v′′1 of T ′′. Finally, add
a path P=(v′3, x, y, v

′′
3), (called a fixating path). Let a

be vertex v1 of T and let b be vertex v′′5 of T ′′. A node
block Li(v) consists of a 3-zigzag Ti, two 4-zigzags T ′i
and T ′′i and a fixating path Pi.

v1

v2

v3

v4

u1

u2

u3

(a)

a

b

T

T ′

T ′′
P

(b)

a

b

(c) (d)

Figure 12: (a) A 3-zigzag. (b) A node block (c) con-
nected to a tube and (d) the node gadget of a degree-2
vertex.

Let n = |VG| and set M = 24n. For any vertex
v ∈ VG with deg(v)=d, the node gadget Nv of v con-
sists of a cycle of d node blocks L1(v), . . . , Ld(v) in H
obtained by identifying vertex bi of Li(v) with ver-
tex ai+1 of Li+1(v) for i=1, . . . , d (where Ld+1=L1).
See Fig. 12d. Let u1, . . . , ud be the neighbours of v in G

238

30th Canadian Conference on Computational Geometry, 2018

hv−1 hv hv+1

v

ui

uj−1

ui−1

uj

v

ui

ui−1

hv−1 hv hv+1

(a)

Ti

Tj

T ′′i−1

T ′i−1

Pi−1

T ′′j−1

T ′j−1

-1 1 2 3 4 50

(b)

Ti

T ′′i−1

T ′i−1

Ti−1

T ′i

T ′′i

1 2 3 4 50

(c)

Figure 13: (a) A node v in G; (b)–(c) the node gadget
of v in H when v has neighbours on (b) both sides and
(c) only to the right. In this and the following figures,
we omit the (v) identifier of the zigzags and we label the
layers without the addition of hv · (2M + 8) to reduce
clutter.

in clockwise order as defined by the embedding. Assign
edge (v, ui) in G to the 3-zigzag Ti(v) in H, 1 ≤ i ≤ d.

Now every edge (v, u) of EG is assigned to exactly
two 3-trapezoids in H, say Ti(v) and Tj(u). Attach an
M -tube Me to Ti(v) and Tj(u) as depicted in Fig. 12c.
This completes the construction of H.

From G to H. We now show that we can construct
a wIUBVR D of H from a leveled-planar drawing Γ
of G. Enumerate the levels of Γ from left to right
as 0, 1, . . . ,m. Let v be a node of G with deg(v)=d
that is drawn in level hv. We draw Nv in the layers
hv · (2M + 8)−1 to hv · (2M + 8) + 5 as follows. Let
(v, ui) be the edge assigned to Ti(v), 1 ≤ i ≤ d.

First, assume that v has at least one neigh-
bour in both level hv+1 and level hv−1. Let ui
be the top-most neighbour of v in level hv+1
and let uj be the bottom-most neighbour of v
in level hv−1; see Fig. 13a (top). We draw
the trapezoids Ti(v), T ′i (v) . . . , Tj−1(v), T ′j−1(v) with S-
orientation such that all their squared vertices lie in
layer hv · (2M + 8) + 4 and all their circular vertices
lie in layer hv · (2M + 8) + 5; see Fig. 13b. The in-
terior vertices of the fixating paths Pi, . . . , Pj−2 are
placed one layer left of their endpoints, that is, in
the layer hv · (2M + 8) + 3. Symmetrically, we place
the trapezoids Tj(v), T ′j(v) . . . , Ti−1(v), T ′i−1(v) with N-
orientation such that all their squared vertices lie in
layer hv · (2M + 8) and all their circular vertices lie
in layer hv · (2M + 8) − 1. The interior vertices

v

1 2 3 4

(a) G

M -tube

Nv

(b) H

Figure 14: An example of a drawing of H obtained from
a drawing of G. The node gadgets lie completely inside
the shaded rectangles and the M -tubes lie in between.

of Pj , . . . , Pi−2 are symmetrically placed in layer hv ·
(2M + 8)+1. The trapezoid T ′′i−1(v) is drawn with SE-
orientation in the layers hv ·(2M+8) to hv ·(2M+8)+4.
By this construction, the endpoints of Pi−1 lie in the lay-
ers hv ·(2M+8) and hv ·(2M+8)+2, so we can place its
interior vertices in layer hv · (2M + 8). Symmetrically,
the trapezoid T ′′j−1(v) is drawn with NW-orientation in
the layers hv ·(2M+8) to hv ·(2M+8)+4 and the interior
vertices of Pj−1 are placed in layer hv · (2M + 8)+3.

Second, assume that all neighbours of v lie in
level hv+1 as shown in Fig. 13a (bottom). Again let ui
be the top-most neighbour of v. We place the trape-
zoids Ti(v), T ′i (v) . . . , Ti−1(v) with S-orientation such
that all their squared vertices lie in layer hv ·(2M+8)+4
all their circular vertices lie in layer hv ·(2M+8)+5; see
Fig. 13c. As in the previous case, the interior vertices
of Pi, . . . , Pi−2 are placed in layer hv · (2M + 8) + 3.
The trapezoid T ′i−1(v) is placed with NW-orientation
and T ′′i−1(v) is placed with NE-orientation in the layers
hv ·(2M+8)+4 to hv ·(2M+8) This way, the endpoints
of Pi−1 both lie in layer hv ·(2M+8)+2, so we can draw
the path vertically in this layer.

Finally, if all neighbours of v lie in level hv−1,
then we place the vertices symmetrical to the previ-
ous case by choosing ui as the bottom-most neigh-
bour of v such that the circular vertices of the trape-
zoids Ti(v), T ′i (v) . . . , Ti−1(v) lie in layer hv ·(2M+8)−1.

By this construction, if any edge between a node v
in level hv and a node u in level hv+1 is assigned to vi
and uj inH, then the circular vertices of Ti(v) are drawn
in layer hv ·(2M+8)+5 and the circular vertices of Tj(u)
are drawn in layer (hv+1) · (2M + 8) − 1, so there are
exactly 2M+1 layers between them that we use to place
the M -tube that is connected to Ti(v) and Tj(u). This
completes the construction; see Fig. 14 for an example.

From H to G. Next, we show how to construct a
leveled-planar drawing Γ of G from a wIUBVR D
of H. We enumerate the layers of D from left to right
as 0, 1, . . . ,m. For any vertex u ∈ VH , let `(u) be the
layer of u in D.

Let v ∈ VG with deg(v)=d and let e=(v, u) ∈ EG be
assigned to the trapezoids Ti(v) and Tj(u). Since Ti(v)

239

CCCG 2018, Winnipeg, Canada, August 8–10, 2018

and Tj(v) are connected to an M -tube Me, both have
to be drawn with S-orientation or with N-orientation.
Furthermore, Ti(v) is a S-zigzag if and only if Tj(u) is a
N-zigzag. Assume w.l.o.g. that Ti(v) is a S-zigzag. We
aim to show that Nu lies completely to the right of Nv,
that is, `(u∗) > `(v∗) for every u∗ ∈ Nu and v∗ ∈ Nv.
The node gadget Nv consists of d node blocks, so it con-
tains 24d ≤ 24n vertices. Analogously, Nu consists of at
most 24n vertices. Hence, both Nv and Nu lie in at most
24n consecutive layers. Let v′ ∈ Ti(v) and u′ ∈ Tj(u).
Since Ti(v) and Tj(u) are connected to the same M -
tube Me, we have `(u′) ≥ `(v′)+2M+2. Furthermore,
for any vertex v∗ ∈ Nv we have `(v∗) ≤ `(v′) + 24n and
for any vertex u∗ ∈ Nu we have `(u∗) ≥ `(u′) − 24n.
Hence,

`(u∗) ≥ `(u′)− 24n ≥ `(v′) + 2M + 2− 24n

≥ `(v∗) + 2M + 2− 48n

= `(v∗) + 48n+ 2− 48n > `(v∗).

Let v ∈ G and let Mi(v) be the M -tube attached
to the 3-zigzag Ti(v) in Nv, i = 1, . . . , d = deg(v).
Since D is planar, the M -tubes M1(v), . . . ,Md(v) ei-
ther all leave Nv to the right, all leave Nv to the left, or
there is some 1 ≤ i, j ≤ d such that Mi(v), . . . ,Mj−1(v)
leave Nv to the right and Mj(v), . . . ,Mi−1(v) leave Nv

to the left. It follows that Nv has one of the following
properties.

(P1) Every Ti(v), 1 ≤ i ≤ d, is a S-zigzag.
There is some 1 ≤ j ≤ d such that
Mj(v), . . . ,Md(v),M1(v), . . . ,Mj−1(v) are ordered
from top to bottom in this order.

(P2) Every Ti(v), 1 ≤ i ≤ d, is a N-zigzag.
There is some 1 ≤ j ≤ d such that
Mj(v), . . . ,Md(v),M1(v), . . . ,Mj−1(v) are ordered
from bottom to top in this order.

(P3) There is some i, 1 ≤ i ≤ d, and some j 6= i,
1 ≤ j ≤ d, such that Ti(v), Ti+1(v), . . . , Tj−1(v)
are S-zigzags, Mi(v),Mi+1(v), . . . ,Mj−1(v) are
ordered from top to bottom in this order,
Tj(v), Tj+1(v), . . . , Ti−1(v) are N-zigzags, and
Mj(v),Mj+1(v), . . . ,Mi−1(v) are ordered from bot-
tom to top in this order.

Lemma 11 Let Nv be a node gadget. The circular ver-

tices of all S-3-zigzags of Nv lie in the same layer
−→̀
v

and the circular vertices of all N-3-zigzags of Nv lie in

the same layer
←−̀
v with ∆`=

−→̀
v−
←−̀
v=6. Furthermore, the

drawing of Nv spans at least 6 layers between
←−̀
v and

−→̀
v .

Proof. Consider first the case that D is drawn with
property (P1), that is, Every Ti(v), 1 ≤ i ≤ d, is
a S-zigzag and there is some 1 ≤ j ≤ d such that
Mj(v), . . . ,Md(v),M1(v), . . . ,Mj−1(v) are ordered from

Ti

T ′i

T ′′i

Ti+1

e1

e2

e3

e4

e5

e6

(a) T ′i (v) and T ′′i (v)
are S-zigzags

Ti

Ti+1

T ′i

T ′′i

e1

e2

e3

e4

e6

e5

(b) T ′i (v) is a NW-zigzag and T ′′i (v)
is a NE-zigzag

T ′i
e2

e3

e4

e5

T ′′i

(c) T ′i (v) is a S-zigzag and
T ′′i (v) is a SE-zigzags

T ′′i
e5

e4

e3

e2

T ′i

(d) T ′i (v) is a SW-zigzag
and T ′′i (v) is a S-zigzag

Figure 15: Ti(v) and Ti+1(v) are S-zigzags.

top to bottom in this order. Let 1 ≤ i ≤ n, i 6= j−1.
Then, Ti and Ti+1 are S-zigzags and Mi+1(v) lies be-
low Mi(v). We will argue that T ′i (v) and T ′′i (v) are also
S-zigzags. Intuitively, between two zigzags in counter-
clockwise order, there can never be a “rightwards bend”
because of the order of the edges around each squared
vertex, as otherwise at least one port has to be used
twice.

Consider the (directed) edges e1, . . . , e6 in Fig. 15.
By construction, e1 and e6 are S-edges. Since there
are two edges between e1 and e2 around their common
vertex in clockwise order, e2 and thus e3 has to be a
S-, SW-, or NW-edge. Symmetrically, e5 and thus e4
has to be a S-, SE-, or NE-edge. However, since there
are two edges between e3 and e4 around their common
vertex in clockwise order, there are only two compatible
configurations: either both are a S-edge (see Fig. 15a),
or e3 is a NW-edge and e4 is a NE-edge (see Fig. 15b);
otherwise, at least one port between e3 and e4 has to
be used twice (see Figures 15c and 15d. However, the
second case is a contradiction to the face that Mi(v)
lies completely above Mi+1(v). Hence, e1, . . . , e6 are
S-edges and thus Ti(v), T ′i (v), T ′′i (v), and Ti+1 are S-
zigzags.

Now, let i=j−1. In this case, the argument is
exactly the same; with the only difference that now
Mi(v)=Mj−1(v) is the bottom-most one M -tube, so

240

30th Canadian Conference on Computational Geometry, 2018

Tj−1

T ′j−1

Tj

T ′′j−1

(a) T ′j−1(v) is a S-zigzag and
T ′′j−1(v) a NW-zigzag

Tj−1

T ′j−1
Tj

T ′′j−1

(b) T ′j−1(v) a S-zigzag and
T ′′j−1(v) is a SW-zigzag

Tj−1

T ′j−1

Tj

T ′′j−1

(c) T ′j−1(v) is a SW-zigzag
and T ′′j−1(v) is a NW-zigzag

Tj

Tj−1

T ′′j−1

T ′j−1

(d) T ′j−1(v) and T ′′j−1(v) are
NW-zigzags

Figure 16: Tj−1(v) is a S-zigzag and Tj(v) is a N-zigzag.

Mi+1(v)=Mj(v) lies above it. Hence, the case that e3
and e4 are S-edges is a contradiction to this property.
Thus, T ′i (v) is a NW-zigzag and T ′′i (v) is a NE-zigzag;
see Fig. 15b. Hence, Nv spans exactly the 6 layers be-

tween
−→̀
v − 5 and

−→̀
v .

This shows that Tj(v), T ′j(v), T ′′j (v), . . . , Tj−1(v) are
all S-zigzags. Hence, the circular vertices of the 3-
zigzags T1(v), . . . , Td(v), which are all S-3-zigzags, all

lie in the same layer
−→̀
v .

The case that D is drawn with property (P2) is com-
pletely symmetric.

Consider now the case that D is drawn with property
(P3), so there is some 1 ≤ i, j ≤ d, i 6= j, such that
Ti(v), . . . , Tj−1(v) are S-zigzags and Tj(v), . . . , Ti−1(v)
are N-zigzags. With the same argument as above, we
show that the circular vertices of Ti(v), . . . , Tj−1(v) all

lie in the same layer
−→̀
v and that the circular vertices of

Tj(v), . . . , Ti−1(v) all lie in the same layer
←−̀
v . It remains

to show that ∆`=6.

Consider the S-zigzag Tj−1(v), the N-zigzag Tj(v),
and the (directed) edges e1, . . . , e6 in Fig. 16. Following
the same arguments as above, T ′j−1(v) has to be a S-,
SW-, or NW-zigzag and T ′′j−1(v) has to be a N-, SW-
, or NW-zigzag. However, the fixating path Pj−1(v)
forces either T ′j−1(v) to be a S-zigzag or T ′′j−1(v) to be
a N-zigzag; see Fig. 16a and Fig. 16b for the former
case, the latter case is symmetric. In particular, as-
sume that T ′j−1(v) and T ′′j−1(v) are both drawn SW-

or NW-zigzags; see Fig. 16c and Fig. 16d, the remain-
ing cases are symmetric. Then, there are three lay-
ers between the endpoints of Pj−1(v), but Pj−1(v) only
has two interior vertices. Hence, it is impossible to
draw Pj−1(v). Thus, T ′j−1(v) and T ′′j−1(v) have to be
drawn as in Fig. 16a and Fig. 16b (up to symmetry)
and one can easily see that this implies ∆`=6 and Nv

spans exactly the 7 layers between
←−̀
v and

−→̀
v . �

We now show that every node gadget Nv lies com-
pletely inside the layers hv·(2M+8)−1 to hv·(2M+8)+5
for some 0 ≤ hv ≤ n.

First, we show that all vertices in layer 0 belong to
a node gadget. Assume to the contrary that there is
some vertex u in layer 0 that belongs to an M -tube. By
construction, every M -tube is connected to a vertex of
a node gadget on both sides; hence, there has to be at
least one vertex that completely lies to the left of the
M -tube. This is a contradiction to layer 0 being the
leftmost layer that contains a vertex.

Let s ∈ VG be a node such that some vertex of Ns

lies on layer 0 in D. For any node v ∈ VG, let dv be the
length of the shortest path between s and v in G. We
now analyze the layers that contain the vertices of node
gadgets.

Lemma 12 For any node v ∈ VG,
←−̀
v=hv · (2M+8)−1

and
−→̀
v=hv · (2M + 8) + 5 for some 0 ≤ hv ≤ dv.

Proof. We prove the lemma by induction over dv.
If dv=0, then v=s. Let hs=0. By choice of s, the

leftmost vertex of Ns lies in layer 0 > 0 · (2M + 8)− 1.
Since there are no node gadgets that lie to the left of Ns,
it is drawn as depicted in Fig. 13c. Hence, the Ns is
drawn with property (P1) and by Lemma 11 all circular
vertices of its S-3-zigzags lie in layer 5=hv ·(2M+8)+5.

Now, assume that the lemma holds for all vertices w ∈
VG with dw ≤ k ≥ 0. Let v ∈ VG with dv=k+1 and
let (u, v) be the last edge on the shortest path from s
to v in G. Let ui and vj be the vertices the edge (u, v)
is assigned to.

Assume first that Ti(u) is a S-3-zigzag and Tj(v) is

a N-3-zigzag. By induction, ui lies in a layer
−→̀
u=hu ·

(2M+8)+5 for some 0 ≤ h ≤ du. The vertices ui and vj
are connected to the same M -tube. Since an M -tube
spans exactly 2M+1 layers, it follows that `(vj)=

−→̀
u +

(2M+2)=hv · (2M + 8) − 1 for hv=hu+1. Hence, by

Lemma 11,
←−̀
v=hv ·(2M+8)−1 and

−→̀
v=hv ·(2M+8)+5.

If that Ti(u) is a N-3-zigzag and Tj(v) is a S-3-zigzag,

then analogously `(vj)=
←−̀
u−(2M + 2)=hv · (2M + 8) + 5

for hv=hu+1 and thus
←−̀
v=hv ·(2M+8)−1 and

−→̀
v=hv ·

(2M + 8) + 5. �

We are now ready to create the drawing Γ of G. We
draw every node v ∈ VG in level hv in Γ. Let v1, . . . , vk

241

CCCG 2018, Winnipeg, Canada, August 8–10, 2018

be the vertices in level h, 0 ≤ h ≤ n. By Lemma 11
and 12, each node gadget Nv1 , . . . , Nvk contains at least
one vertex in layer hv ·(2M+8). Since each of these node
gadgets is connected to at least one M -tube, there is
some order, say v1, . . . , vk, such that the vertices in layer
belong to Nv1

, . . . , Nvk from bottom to top. We draw
each node vi, 1 ≤ i ≤ k at coordinate (h, i). Since D
is planar, the obtained drawing Γ of G is also planar.
Let (v, u) ∈ EG be assigned to vertices vi of Nv and uj
of Nv. Assume w.l.o.g. that Ti(v) is a S-zigzag and Tj(u)
is a N-zigzag. Since vi and uj are connected to a com-

mon M -tube, we have `(vi)=
−→̀
u=hu · (2M + 8) + 5 and

hu · (2M + 8)− 1 =
←−̀
u = `(uj)

= hv · (2M + 8) + 5 + 2M + 2

= (hv+1) · (2M + 8)− 1,

so hu=hv+1. Hence, v is placed in level hv and u is
placed in level hv+1, so Γ is a leveled-planar drawing.

This completes the proof of Theorem 5.

Appendix C Details of testing for an sIUBVR

C.1 Compatibility of configurations

We first explain in more detail how to test whether
two configurations (e`, α`) and (er, αr) are compatible,
i.e., what properties must hold if some sIUBVR has
D(e`, α`) and D(er, αr) in adjacent slabs, say in slabs
i−1 and i corresponding to layers i−1, i and i+1.

In the following, we consider paths R(e`, α) and
L(er, αr) to be directed downward, i.e., from the end
in e`/er to the other end. We claim that the following
conditions are necessary for compatibility:

• The vertices U of R(e`, α`) ∪ L(er, αr) form an in-
duced path P of G that can be directed such that
it is consistent with the directions of R(e`, α`) and
L(er, αr). This holds because the union of the two
paths is drawn on level i as a vertical path.

• In particular, the vertices I in R(e`, α`)∩L(er, αr)
must form a subpath of P and the edges among
them must be directed the same in R(e`, α`) and
L(er, αr). Also, the vertices in U − I=R(e`, α`) ⊕
L(er, αr) must occur at the beginning or end of P .

• If α`=SE, thenR(e`, α`) is a prefix of P , i.e., no ver-
tex of P comes before the first vertex of R(e`, α`).
This holds because the left end v` of e` is above
the right end w`, and w` is the topmost vertex of
R(e`, α`). If any vertices of L(er, αr) were above
w`, then there would be an edge from them to v`
(or higher up), and hence e` would not be on the
outer-face.

• Similarly we have three more requirements at the
bottom/top ends to avoid unwanted edges.

– if αr=NE, then no vertex in P comes before
L(er, αr).

– Let e` be the bottommost diagonal edge of
D(e`, α`). If its direction (in D(e`, α`)) is NE,
then no vertex in P comes after R(e`, α`).

– Let er be the bottommost diagonal edge of
D(er, αr). If its direction (in D(er, αr)) is SE,
then no vertex in P comes after R(er, αr).

It is not hard to see that these conditions are also
sufficient. If they are satisfied, then draw P , in order,
in level i from top to bottom. In level i−1 place the
vertices of L(e`, α`) so that their position relative to the
vertices in R(e`, α`) is the same as it was in D(e`, α`).
Observe that this results in exactly the same set of edges
as the set that spans slab i−1. Additional edges could
only come from vertices above/below R(e`, α`) in P but
such vertices either require e` to be directed NE or e`
to be directed SE, neither of which results in a line-
of-sight. Similarly, we place the vertices of R(er, αr) in
level i+1 to obtain the desired representation of the two
slabs.

For later use, we note one more property:

Observation 2 Assume that (e`, α`) is compatible with
(er, αr). Then the edges in R(e`, α`)⊕L(er, αr) are on
the outer-face.

Proof. Consider just the edges of R(e`, α`)−L(er, αr),
the others are symmetric. Continuing in the notations
introduced above, we saw that all these edges are drawn
vertically in layer i, either above or below D(er, αr).
Say they are above. Then no diagonal edge that spans
slab i is above them, thus they can reach the outer-face
through slab i. �

C.2 Correctness of the construction

Recall that we combined all D(ei, αi) for some path
s → v(e1, α1) → · · · → v(ek, αk) → t. Let D be the
sIUBVR that is induced by the resulting bars. For
i=2, . . . , k, set Ii := R(ei−1, αi−1)∩L(ei, αi). By Obser-
vation 2, Ii is a path that connects two outer-face ver-
tices. We can therefore split the graph G into subgraphs
by splitting at all paths I2, . . . , Ik. More precisely, us-
ing I1=L(e1, α1) and Ik+1=R(ek, αk), we set Gi to be
the graph formed by all faces that can reach the inner
face at ei along a path of inner faces without crossing Ii
or Ii+1.

It is now straightforward to show by induction that
the first i slabs of D (i.e., what we obtain when putting
together D(e1, α1) ∪ · · · ∪ D(ei, αi)) is an sIUBVR of
G1 ∪ · · · ∪ Gi. This is straightforward for i=1 since
D(e1, α1) represents exactly G1. When adding in
D(ei+1, αi+1), we add exactly the faces of Gi+1 since
D(ei+1, αi+1) covers them, and we do not add extra

242

30th Canadian Conference on Computational Geometry, 2018

edges since the compatibility-condition ensures that ver-
tices in L(ei+1, αi+1) (if any) that are added in layer i+1
do not add edges to layer i.

C.3 Run-time

We now turn towards the time-complexity of testing
whether a 2-connected plane graph G has a sIUBVR.
There are O(n) edges on the outer-face of G, hence H
has O(n) vertices. As we will argue below, it also
has O(n) arcs. Computing the directed path in H (if
any) hence takes O(n) time, and we can extract the
sIUBVR from it in O(n) time as well.

However, computing the arcs of H is non-trivial and
takes cubic time if done in a straightforward way, and
quadratic time if we are careful. As a first step, com-
pute sets L(e, α) and R(e, α) for all configurations (e, α)
where e is on the outer-face and α ∈ {NE,SE}; this can
be done in O(n) time per configuration and hence over-
all quadratic time. While doing this we can easily check
whether (e, α) is compatible with the left/right bound-
ary and hence find all arcs incident to s and t.

The remaining arcs all connect v(e, α) to v(e′, β)
for some outer-face edges e, e′ and directions α, β ∈
{NE,SE}. To find such an arc, we do four tests for
each configuration (e, α):

• Walk clockwise along the outer-face starting at e
until you encounter the first edge e′ that does not
belong to R(e, α). Test for both β=NE and β=SE
whether (e, α) is compatible with (e′, β).

• Walk counter-clockwise along the outer-face start-
ing at e until you encounter the first edge e′′ that
does not belong to L(e, α). Test for both γ=NE and
γ=SE whether (e′′, γ) is compatible with (e, α).

To see that this suffices, observe that if (e, α) it compat-
ible with (e′, β), then the clockwise path Q from e to e′

on the outer-face belongs to either R(e, α) or L(e′, β).
(This holds by Observation 2: The edges in R(e, α) ⊕
L(e′, β) are on the outer-face, and because G is 2-
connected, path Q cannot include any edges not in
them.) If Q belongs to R(e, α), then our first test will
use exactly this e′ and hence detect the compatibility.
If Q belongs to L(e, α), then at the time of perform-
ing the test for configuration (e′, β), the second test will
use e as e′′ and hence detect compatibility. So this de-
termines all arcs of H as needed, and there are O(n) of
them. Notice that one test of compatibility can be done
in O(n), and so the overall run-time is quadratic.

C.4 Dealing with cutvertices

So far, we assumed that G is a 2-connected plane graph.
If G has a cutvertex, then we will argue that we can
process each 2-connected component (blocks) separately.

For this, we need to argue some restrictions on the struc-
ture near cutvertices. We assume in the following thatG
is not a path, else it trivially has an sIUBVR. We need
two definitions. First, recall that the edges at a vertex
can be classified as NE-edge etc. by their relative direc-
tions; we say that two edges incident to a vertex v use
consecutive ports if their directions are consecutive in
the cyclic order {N,NE,SE,S,SW,NW}. Second, de-
fine an subdivided leg of graph G to be a maximal in-
duced path for which one end has degree 1 in G. The
other end (which necessarily has degree at least 3 in G)
is called the attachment point of the subdivided leg.

Lemma 13 Let G be a plane graph that has an
sIUBVR D. Let v be a cutvertex of G that is in layer i.

1. v is on the outer-face of G.
2. If w1, w2 are two vertices in the same layer but in

different cut-components of v, then they are both in
layer i with v between them.

3. If e1, e2 are two incident edges of v in different cut-
components of v, then they do not use consecutive
ports at v.

4. v has at most three cut-components.
5. If v has exactly three cut-components, then one of

them is a subdivided leg.
6. For any block B containing v the IUBVR DB of B

induced by D is a strong IUBVR and contains v as
topmost or bottommost vertex in layer i.

Proof. 1. Recall that an inner face forms a trape-
zoid, hence is drawn convex in the associated lay-
ered drawing. But at least one face at v contains v
repeatedly and so cannot be convex. So v must be
adjacent to the outer-face.

2. The vertices within one layer induce a path. So if
w1, w2 are in the same layer, they are connected
by the path of the vertices that are between them
on the layer. Any such path must contain v since
w1, w2 are in different cut-components.

3. Inspection of all cases shows that if two such edges
use consecutive ports, then their other endpoints
are connected by an edge, contradicting that they
are in different cut-components.

4. v has only 6 ports, and we must skip one port when-
ever we switch from one cut-component to the next
in the order of edges around v.

5. The three cut-components must use 3 ports at v
without using consecutive ones; up to symmetry
these are the N-,SE-, and SW-port. Then the cut-
component that uses the N-port must entirely lie
within layer i to avoid having an edge to the other
two components. So it forms an induced path and
its topmost vertex has degree 1, hence it is a sub-
divided leg.

243

CCCG 2018, Winnipeg, Canada, August 8–10, 2018

(a) (b)

(d) (e)

(c)

(f)

Figure 17: Possible cutvertex configurations

6. Let x, y be two vertices in B and assume that they
have a line-of-sight in DB , but not in D. The ver-
tex z that blocked the line-of-sight in D must share
a level with at least one of them, say z and x are in
the same level. Since z is in a different 2-connected
component, this must be level i and vertex v must
be between z and x. But then vertex v would block
the line-of-sight in DB . So DB is a strong IUBVR.
If there were vertices of B both above and below v
in layer i, then the N-edge and S-edge at v belong
to B. All other edges at v hence would then use
consecutive ports with an edge in B, contradicting
that v is a cutvertex.

�

We assume in the following that G satisfies conditions
(1),(4) and (5), i.e., the conditions that do not depend
on the choice of the sIUBVR.

Lemma 14 Let G be a plane graph that has an
sIUBVR. Let G′ be the graph obtained from G by re-
moving all subdivided legs. Then the blocktree of G′ is
a simple path.

Furthermore, the blocktree can be enumerated as B0−
w1−B1−· · ·−Bk−1−wk−Bk for blocks B0, . . . , Bk and
cutvertices w1, . . . , wk such that `(w1) ≤ · · · ≤ `(wk)
(where `(wi) denotes the layer of wi), and all vertices
of Bi lie within [`(wi), `(wi+1)] (where `(w0) := 1 and
`(wk+1) :=∞).

Proof. Call a cutvertex of G non-trivial if it has at
least two cut-components that contain cycles; these are
the same as the cutvertices of G′. Notice that a non-
trivial cutvertex has exactly two cut-components with
cycles (which correspond to cut-components of G′) by
Lemma 13.

Fix a non-trivial cutvertex v and the two cut-
components C1, C2 of v that have cycles. We claim that,
up to renaming, all vertices in C1 must be in the level
of v and farther left while all vertices in C2 must be in
the level of v or farther right. For otherwise, since both
cut-components have cycles, they would both use the

same adjacent layer of v, leading to an edge from C1−v
to C2 − v, a contradiction. We say that v separates its
cut-components that have cycles.

Now consider a block B that is not a bridge and hence
has cycles and occupies at least two layers. Assume two
non-trivial cutvertices v1, v2 belong to B and are in the
same layer. Since v1 separates B from some other cut-
component at v1, it must be in the leftmost or rightmost
layer of B. Say v1 and v2 are in the leftmost layer of B.
Then the other cut-components C1 and C2 at v1 and v2
must be to the left of v1 and v2. We may choose C1

and C2 to contain cycles, so they must use layers strictly
to the left of v1 and v2. But then there is an edge from
C1 − v1 to C2 − v2, an impossibility. So for any non-
bridge block B, no two non-trivial cutvertices can be in
the same layer, and if there are two, they must be in
the leftmost and rightmost layer of B. We say that B
is between its non-trivial cutvertices. In particular, this
implies that any non-bridge block has at most two non-
trivial cutvertices. Putting things together, therefore
every block and cutvertex of G′ has at most two incident
cutvertices/blocks, which means that the blocktree ofG′

is as desired.
The second claim follows almost immediately. Let `

be the leftmost and rightmost level that contain ver-
tices of G′. If all of G′ is drawn within layer `, then the
second claim holds trivially. So assume G′ uses some
layers further right, and let B be a block of G′ that
spans slab `. Observe that there cannot be two such
blocks B,B′, because otherwise we could find a cycle
that contains edges of both blocks by using the paths
within layers ` and `+1 and the diagonal edges in the
two blocks that span the slab. Observe further that B
cannot have a non-trivial cutvertex in `. For otherwise
both of its incident cut-components in G′ would have to
use layer `+1, leading to an edge between them, a con-
tradiction. Since B lies between its non-trivial cutver-
tices, therefore B has only one non-trivial cutvertex, in
its rightmost layer. Thus B is a leaf of the blocktree
of G′; call it B0 and enumerate the rest of the blocktree
correspondingly. In particular w1 is the (unique) non-
trivial cutvertex of B0 and lies in its rightmost column.
Block B1 cannot use layers to the left of w1 since w1

separates B0 and B1. So B1 is either drawn entirely
within `(w1) (then it is necessarily a bridge) or it is
drawn in `(w1) and further right, and its unique other
non-trivial cutvertex lies in its rightmost level. Either
way we obtain `(w1) ≤ `(w2) and B1 lies only within
these layers. Repeating the argument for the remaining
blocks and cutvertices of G′ gives the claim. �

We note here that this lemma mirrors nicely the char-
acterization of T that have an sIUBVR: We know that
this exists if and only if T is a subdivided caterpillar,
which means that it, after removing subdivided legs, is
a path (and hence its blocktree is also a path).

244

30th Canadian Conference on Computational Geometry, 2018

We need one last characterization of how subdivided
legs can be drawn.

Observation 3 Let G be a plane graph that has an
sIUBVR D. Let G′ be the graph obtained from G
by removing subdivided legs and let D′ be its induced
sIUBVR. Let P be a subdivided leg whose attachment
point v is not in the leftmost or rightmost level of D′.
Then P is drawn vertically in the level of v, and either
immediately above v or immediately below v.

Proof. Let i be the level of v, and assume for contra-
diction that P contains a diagonal edge, say vertex wP

of P is in level i+1. By assumption some vertex w′ of G′

also resides in level i+1. This contradicts Lemma 13
since wP and w′ are in different cut-components of v.
So P must reside within level i, and be immediately
above or below v to create the edge between v and its
neighbour in P . �

Now we can explain the full algorithm. First, de-
tect all subdivided legs (this can be done in linear time
by extending paths from vertices of degree 1) and re-
move them while marking their attachment point. So
we have G′ and compute its blocktree of G′. This must
split into a path B0 − w1 −B1 − · · · − wk −Bk, else G
has no sIUBVR. Note that if G has an sIUBVR, then we
may without loss of generality assume that none of the
vertices of B0 are farther right than the vertices of Bk,
for otherwise we can rotate the representation by 180◦.
We hence can require the levels of the cutvertices to
satisfy `(w1) ≤ `(w2) ≤ · · · ≤ `(wk).

For each block Bi of G′ that is not a bridge, let Hi

be the auxiliary graph computed as before, with super-
source si and super-sink ti. We modify Hi slightly to
remove some arcs that clearly cannot lead to a solu-
tion. Namely, assume that Hi has an arc a=v(e`, α`)→
v(er, αr). If arc a is used in a solution, then the result-
ing sIUBVR contains D(e`, α`) and D(er, αr) in consec-
utive slabs, and in particular, fixes exactly the vertices
U=R(e`, α`) ∪ L(er, αR) that are in the common layer
of the slabs (say layer j). It also fixes the direction of
incident edges of U . We remove arc a from Hi if this
placement of U contradicts restrictions from Lemma 13
or Observation 3. In particular we remove a if

• U contains cutvertex wi or wi+1. (This would con-
tradict that these two cutvertices are the leftmost
or rightmost within their 2-connected component,
while arc a implies that there are vertices both left
and right of layer j.)

• U contains a cutvertex w 6= wi, wi+1 of G, and
w is not the topmost or bottommost vertex of U .
(Note that we are studying here cutvertices of G,
not G′, so such a cutvertex w can exist if it is the
attachment point for some subdivided leg.)

• U contains a cutvertex w 6= wi, wi+1 of G, but the
edges to U use ports such that we cannot attach
the subdivided leg vertically at w without using
consecutive ports and while respecting the planar
embedding.

With this, any path from si to ti in Hi leads to an
sIUBVR of Bi to which we can add all subdivided legs
whose attachment point is not in the leftmost or right-
most layer.

Now we want to create an auxiliary graph for Bi ∪
Bi+1. Assume first that neither Bi nor Bi+1 is a bridge.
We then combine the two auxiliary graphs Hi and Hi+1,
by eliminating vertices ti and si+1 and adding arcs be-
tween some of their neighbours. Consider any (e, α)
and (e′, β) such that we had arcs (e, α) → ti and
si+1 → (e′, β) in Hi, i.e., we could have had these con-
figurations in the rightmost/leftmost slab in represen-
tations of Bi/Bi+1. We can eliminate any such vertices
if wi+1 6∈ R(e, α) or wi+1 6∈ L(e′, β), since we know
that this is required in an sIUBVR of G′. If wi+1 oc-
curs in both sets, then this determines a unique way
of merging D(e, α) and D(e′, β), and with it, the direc-
tion of all edges incident to R(e, α) ∪ L(e′β). We add
an arc a=v(e, α) → v(e′, β) if this gives a feasible rep-
resentations that allows adding subdivided legs. More
precisely, we add arc a only if

• no port at wi is used by edges in both partial draw-
ings,

• no two consecutive ports at wi are used by edges
to Bi and Bi+1,

• for any w ∈ R(e, α) ∪ L(e′, β) that is an attach-
ment point of a subdivided leg, the incident edges
in Bi and/or Bi+1 use ports such that it is possible
to add the subdivided leg vertically at w without
using consecutive ports or violating the planar em-
bedding.

(It may sound as if we could create Ω(n2) arcs here, but
similarly as in the 2-connected case we need not test
all combinations of (e, α) and (e′, β); we can read from
the planar embedding and the outer-face path of G′ a
constant-size set of edges e′ that need to be tested for
each configuration (e, α).)

Thus if neither Bi nor Bi+1 is a bridge, then
we can combine their auxiliary graphs. If Bi is a
bridge (wi, wi+1), then we create an auxiliary graph
for Bi ∪ Bi+1 similarly. Namely, let in this case Hi

consist of vertices si and ti and four more ver-
tices v(e,N), v(e,NE), v(e,SE) and v(e, S), representing
the possibility of drawing (wi, wi+1) while respecting
`(wi) ≤ `(wi+1). Each vertex determines the represen-
tation of Bi in its entirety and so we can combine this

245

CCCG 2018, Winnipeg, Canada, August 8–10, 2018

graph with Hi+1 as above, adding arcs only if this al-
lows for merging of subdivided legs. Similarly we deal
with the case where Bi+1 is a bridge.

With this, any directed path from si to ti+1 in the
combined graph leads to an sIUBVR of Bi∪Bi+1 where
we can add all subdivided legs whose attachment point
is not in the leftmost and rightmost layer. Repeatedly
merging, we obtain one graph H where any path from
s0 to tk corresponds to an sIUBVR of G′ where we can
add all subdivided legs whose attachment point is not
in the leftmost or rightmost layer.

As a final step, we must modify H to deal with subdi-
vided legs whose attachment points are in the leftmost
layer (the rightmost layer is dealt with similarly). This
is slightly different from before since Observation 3 does
not apply. In fact, a subdivided leg that attaches at
(say) the topmost vertex v in the leftmost layer may
well use the NW-port at v, allowing the NE-port of v
to be used by G′. More precisely, let a=s0 → v(e, α) be
an arc in H0 (and hence H). If arc a is used for a so-
lution, then this determines the layout of L(e, α) in the
leftmost layer. Let vt and vb be the topmost and bot-
tommost vertex of L(e, α). We must remove a from H
if one of the following happens:

• L(e, α) contains a cutvertex w of G that is neither
vt nor vb.

• vt 6= vb, both vt and vb are cutvertices of G, vt uses
the NE-port and vb uses the SE-port for edges in
B0. (In this case, neither of the attached subdi-
vided legs at vt and vb can be drawn vertically, so
they both must go to the left, but this would create
an edge between them which is not allowed.)

It should be clear from the construction that if G
has an sIUBVR, then there exists a path from s0 to tk
in the final constructed auxiliary graph. For the other
direction, assume we have such a path. This implies
a path from si to ti in each subgraph Hi and so an
sIUBVR Di for each block Bi. Furthermore, we elimi-
nated sufficiently many arcs such that D0 ∪ . . . Dk can
be combined into one, and all subdivided legs can be
attached without creating unwanted edges. So we ob-
tain an sIUBVR of G as desired. Therefore testing for
an sIUBVR equals finding a path from s0 to tk in a di-
rected graph, which takes linear time. Building H can
be done in O(n2), since for each of the O(n) arcs the
conditions for eliminating or adding it can be tested in
O(n). Theorem 10 follows.

246

CCCG 2018, Winnipeg, Canada, August 8–10, 2018

Continuous Terrain Guarding with Two-Sided Guards

Wei-Yu Lai∗ Tien-Ruey Hsiang†

Abstract

We consider the continuous two-sided guarding on a 1.5-
dimensional(1.5D) terrain T . To our knowledge, this is
the first work on this problem. Specificially, we aim at
selecting a minimum number of guards such that every
point on the terrain can be seen by a guard to its left,
and another guard to its right. A vertex v sees a point p
on T if the line segment connecting v to p is on or above
T . We demonstrate that the continuous 1.5D terrain
guarding problem can be transformed to the discrete
terrain guarding problem with a finite point set X and
that if X is two-sided guarded, then T is also two-sided
guarded. Through this transformation, we provide an
optimal algorithm determining a guard set with mini-
mum cardinality that completely two-sided guards the
terrain.

1 Introduction

A 1.5 dimensional(1.5D) terrain T is an x-monotone
polygonal chain in R2 specified by n vertices V (T) =
{v1, ..., vi, ..., vn}, where vi = (xi, yi). The vertices in-
duce n− 1 edges E(T) = {e1, ..., ei, ..., en−1} with ei =
vivi+1.

A point p sees or guards q if the line segment pq lies
above or on T , or more precisely, does not intersect the
open region bounded from above by T and from the left
and right by the downward vertical rays emanating from
v1 and vn.

There are two types of terrain guarding problems: (1)
continuous terrain guarding (CTG) problem, with ob-
jective of determining a subset of T with minimum car-
dinality that guards T , and (2) discrete terrain guarding
problem, with the objective of determining a subset of
U with minimum cardinality guarding X, given that the
two point sets U and X are on T .

Many studies have referred to applications of 1.5D
terrain guarding in real world [1, 2, 3]. The examples in-
clude guarding or covering a road with security cameras
or lights and using line-of-sight transmission networks
for radio broadcasting.

∗Department of Computer Science and Information Engi-
neering, National Taiwan University of Science Technology,
D10115005@mail.ntust.edu.tw
†Department of Computer Science and Information Engi-

neering, National Taiwan University of Science Technology,
trhsiang@csie.ntust.edu.tw

1.1 Related Work

Ample research has focused on the 1.5D terrain guard-
ing problem, which can be divided into the general
terrain guarding problem and the orthogonal terrain
guarding problem.

In a 1.5D terrain, King and Krohn [4] proved that the
general terrain guarding problem is NP-hard through
planar 3-SAT.

Initial studies on the 1.5D terrain guarding problem
discussed the design of a constant-factor approximation
algorithm. Ben-Moshe et al. [5] gave the first constant-
factor approximation algorithm for the terrain guarding
problem and left the complexity of the problem open.
King [6] gave a simple 4-approximation, which was later
determined to actually be a 5-approximation. Recently,
Elbassioni et al. [7] gave a 4-approximation algorithm.

Finally, Gibson et al. [8] considered the discrete ter-
rain guarding problem by finding the minimal cardinal-
ity from candidate points that can see a target point
[8] and proved the presence of a planar graph that ap-
propriately relating the local and global optima; thus,
the discrete terrain guarding problem allows a polyno-
mial time approximation scheme (PTAS) based on local
search. Friedrichs et al. [9] revealed that for the con-
tinuous 1.5D terrain guarding problem, finite guard and
witness sets (G and X, respectively) can be constructed
such that an optimal guard cover G′′ ⊆ G that covers
terrain T is present and when these guards monitor all
points in X, the entire terrain is guarded. According to
[8], the continuous 1.5D terrain guarding problem can
apply PTAS by constructing a finite guard and witness
set with the former PTAS.

Some studies have considered orthogonal terrain T . T
is called an orthogonal terrain if each edge e ∈ E(T) is
either horizontal or vertical. An orthogonal terrain has
four vertex types. If vi is a vertex of orthogonal terrain
and the angle ∠vi−1vivi+1 = π/2, then vi is a convex
vertex, otherwise it is a reflex vertex. A convex vertex
vi is left(right) convex if vi−1vi(vivi+1) is vertical. A
reflex vertex vi is left(right) reflex if vi−1vi(vivi+1) is
horizontal.

Katz and Roisman [10] gave a 2-approximation al-
gorithm for the problem of guarding the vertices of an
orthogonal terrain. The authors constructed a chordal
graph demonstrating the relationship of visibility be-
tween vertices. On the basis of [11], [10] gave a 2-
approximation algorithm and used the minimum clique

247

30th Canadian Conference on Computational Geometry, 2018

Figure 1: Point p is two-sided guarded by v1 and vn.

cover of a chordal graph to solve the right(left) convex
vertex guarding problem.

Lyu and Üngör [12] gave a 2-approximation algorithm
for the orthogonal terrain guarding problem that runs
in O(n logm), where m is the output size. The au-
thors also gave an optimal algorithm for the right(left)
convex vertex guarding problem. On the basis of the
vertex type of the orthogonal terrain, the objective of
the subproblem is to determine a minimum cardinality
subset of V (T) guarding all right(left) convex vertices
of V (T); furthermore, the optimal algorithm uses stack
operations to reduce time complexity.

The O(n logm) time 2-approximation algorithm has
previously been considered the optimal algorithm for
the orthogonal terrain guarding problem. However,
some studies have used alternatives to the approxima-
tion algorithm.

Durocher et al. [13] gave a linear-time algorithm for
guarding the vertices of an orthogonal terrain under
a directed visibility model, where a directed visibility
mode considers the different visibility for types of ver-
tex. If u is a reflex vertex, then u sees a vertex v of T , if
and only if every point in the interior of the line segment
uv lies strictly above T . If u is a convex vertex, then u
sees a vertex v of T , if and only if uv is a nonhorizontal
line segment that lies on or above T . Khodakarami et
al. [14] considered the guard with guard range. They
presented a fixed-parameter algorithm that found the
minimum guarding set in time O(4k · k2 · n), where k is
the terrain guard range.

1.2 Result and Problem Definition

In this paper, we define the CTG problem with two-
sided guards and propose an optimal algorithm for the
1.5D CTG problem with two-sided guards. To the best
of our knowledge, the 1.5D CTG problem with two-
sided guards has never been examined.

Definition 1 (Two-Sided Guarding). A point p on
a 1.5D terrain is two-sided guarded if there exist two
distinct guards u, which is on or to the left of p, and v,
which is on or to the right of p, such that p can be seen
by both u and v. Furthermore, the guards u and v are

Figure 2: Schematic of Lemma 1.

called a left-guard and a right-guard of p.

Fig. 1 illustrates an example where vertex v1 left-
guards p and vn right-guards p. In this paper, we define
the following problem:

Definition 2(CTGTG: Continuous Terrain Guard-
ing with Two-Sided Guards) Given a 1.5D terrain T ,
find a vertex guard set S of minimum cardinality such
that every point of T can be two-sided guarded.

1.3 Paper Organization

Section 2 presents preliminaries, Section 3 demonstrates
how to create a finite point set for the CTGTG model,
Section 4 gives an algorithm for the CTGTG, along with
its proof, and Section 5 presents our conclusions.

2 Preliminaries

Let p and q be two points on a 1.5D terrain, we write
p ≺ q if p is on the left of q. We denote the visible region
of p by vis(p) = {v ∈ V (T)|v sees p}. For a vis(p), let
L(p) be the leftmost vertex in vis(p) and R(p) be the
rightmost vertex in vis(p).

Given a CTGTG instance, let OPT = {o1, o2, ..., om}
be an optimal guard set, where ok ≺ ok+1 for k =
1, ...,m − 1. For a point p on the terrain, let OR(p)
and OL(p) be the subsets of OPT such that p is right-
guarded by every guard in OR(p) and left-guarded by
every guard in OL(p). We also define NR

i as the right-
most point on the terrain that is not right-guarded by
{oi, oi+1, ..., om} and NL

i as the leftmost point on the
terrain that is not left-guarded by {o1, o2, ..., oi}.

An important visible property on 1.5D terrains is as
follows:

Lemma 1 (Order Claim[5]) Let a, b, c and d be four
points on a terrain T such that a ≺ b ≺ c ≺ d. If a sees
c and b sees d, then a sees d.

Fig. 2 is a schematic of Lemma 1. Because T is an
x-monotone chain, we use a straight line to demonstrate
the relation between x-coordinate of points and an arc
to show the visible relation among points on T . In this
paper, we use a straight line to simplify the explana-
tions.

248

CCCG 2018, Winnipeg, Canada, August 8–10, 2018

Figure 3: V (T) is right-guarded and left-guarded by
{v1, v2, v4, v5}, but not T .

Observation 1 Let ej be an edge of the terrain and p
is on ej. If p is left-guarded by a guard v, then v also
completely guards pvj+1.

Observation 2 Let ej be an edge of the terrain and p
is on ej. If p is right-guarded by a guard v, then v also
completely guards vjp.

3 Discretization

Although V (T) are right-guarded and left-guarded, T
is not necessarily right-guarded and left-guarded. In
Fig. 3, V (T) is right-guarded and left-guarded by
{v1, v2, v4, v5} with minimal cardinality. The vertices
v1 and v2 are left-guarded by v1 and right-guarded by
v2. Vertices v4 and v5 are left-guarded by v4 and right-
guarded by v5. Vertex v3 is left-guarded and right-
guarded by v2 and v4, respectively. Only v3 can right-
guard p and left-guard q where p is on e2 and q is on
e3, but v3 /∈ {v1, v2, v4, v5}. In our example, we must
create a point set X such that if X is right-guarded and
left-guarded, then T is also.

Definition 3 (Boundary Point). If line vivj and ek
have an intersection point f /∈ {vk, vk+1}, and vi and vj
can see f then f is the boundary point.

In Fig. 4, we provide an example with four boundary
points: f1, f2, f3 and f4. Boundary point f1 is from v7,
f2 is from v5; and boundary points f3 and f4 are from
v1. We say e1 has two boundary points, f1 and f2; each
of e4 and e6 has a boundary point.

Lemma 2 For an edge ei on terrain T , there exist at
most two non-endpoints p and q such that ei is complete
two-sided guarded if p and q are two-sided guarded.

Proof. According to the number of boundary points on
ei, we may consider the proof under the following cases:
edge ei does not have boundary point or has one, two,
or k boundary points (where k ≥ 3).

In the first case, we assume ei does not have boundary
point. Let point p /∈ {vi, vi+1} be on edge ei. If p
is right-guarded and left-guarded, then edge ei is also
right-guarded and left-guarded.

Figure 4: Points f1, f2, f3 and f4 are boundary points
on T .

In the second case, we assume ei has a boundary point
f . We split the edge into two line segments vif and
fvi+1. Then, the first case can be applied to the line seg-
ments vif and fvi+1. Therefore, we create two points
p /∈ {vi, f} on line segment vif and q /∈ {f, vi+1} on line
segment fvi+1. If p and q are right-guarded and left-
guarded, then ei is also right-guarded and left-guarded.

In the third case, we assume ei has two boundary
points f1 and f2. We split the edge into three line seg-
ments vif1, f1f2 and f2vi+1. The line segments vif1
and f2vi+1 can be reduced to the first case. Therefore,
we create two points p /∈ {vi, f1} on line segment vif1
and q /∈ {f2, vi+1} on line segment f2vi+1. If p and q are
left-guarded and right-guarded, then line segment f1f2
is also left-guarded and right-guarded.

In the final case, we assume ei has k boundary points
f1, ..., fk. We split the edge into k + 1 line segments
L = {vif1, f1f2, ..., fkvi+1}. The line segments vif1 and
fkvi+1 can be reduced to the first case. Therefore, we
create two points: p /∈ {vi, f1} on line segment vif1 and
q /∈ {fk, vi+1} on line segment fkvi+1. If p and q are
left-guarded and right-guarded, then each line segment
fcfc+1 ∈ L is also left-guarded and right-guarded. �

From the construction of Lemma 2, in order to com-
pletely two-sided guard a terrain, it is sufficient to first
select a finite subset X of positions from the terrain to
be two-sided guarded, such that |X| ≤ 2(n− 1).

4 An Optimal Algorithm for CTGTG

In this section, we present an optimal algorithm for the
CTGTG. The idea of the algorithm follows from Obser-
vation 3. In each step of our algorithm, we add a vertex
vi to our result S such that if vi /∈ OPT then vi can
replace a vertex vj ∈ OPT and |S| = |OPT |.

Observation 3 The optimal solution of the CTGTG
includes v1 and vn.

This is because in the CTGTG for right-guarded and
left-guarded T , only v1 can left-guard v1 and only vn
can right-guard vn.

249

30th Canadian Conference on Computational Geometry, 2018

Figure 5: Position of vj ∈ R(NR
i) ∪OR(NR

i).

Figure 6: If g ∈ OR(NR
i) left-guard x′, then xk and NR

i

see each other.

Figure 7: If x′ and NR
i see each other, then oj right-

guards NR
i .

Lemma 3 R(NR
i) and any guard in OR(NR

i) do not
lie on the right side of oi.

Proof. Let x be a point on the edge ej−1 such that
NR

i ≺ x. We assume that vj ∈ R(NR
i) ∪OR(NR

i) is on
the right side of oi. We know that x is right-guarded by
ok and ok is on the right side of vj . According to Lemma
1, if ok right-guards x, then NR

i is right-guarded by ok.
This contradicts the definition of NR

i and ok sees NR
i .

The schematic of Lemma 3 is given in Fig 5. �

Lemma 4 If R(NR
i) /∈ OR(NR

i), then any guard in
OR(NR

i) cannot left-guard x′ ∈ {x ∈ X|R(NR
i) ≺ x}.

Proof. Let g be a guard in OR(NR
i) \ R(NR

i) and let
x′ be a point such that R(NR

i) ≺ x′. Therefore, NR
i ≺

g ≺ R(NR
i) ≺ x′. Consider x′ on the edge ek = vkvk+1,

there exists a guard oj that right-guards x′. According
to Lemma 1, if x′ and g see each other, then x′ and
NR

i also see each other. This is illustrated in Fig. 6.
Because oj right-guards x′ and sees vk, if x′ sees NR

i

then oj right-guard NR
i too, as illustrated in Fig. 7. �

Figure 8: If L(v) cannot see x and v sees x, then v =
L(x).

Lemma 5 If R(NR
i) /∈ OR(NR

i), x ∈ X is right-
guarded by oj and i ≤ j ≤ m, then x cannot lie between
g ∈ OR(NR

i) and R(NR
i).

Proof. We assume that the point x is on the ek =

vkR(NR
i) and x is right-guarded by oj . We know

that oj right-guards vk by Observation 2. Accord-
ing to Lemma 1, if x is right-guarded by oj , then
NR(oi) is right-guarded by oj . Therefore, we know
that if R(NR

i) /∈ OR(NR
i), then x cannot lie between

g ∈ OR(NR
i) and R(NR(oi)). �

By Lemma 3, Lemma 4 and Lemma 5, we have the
following theorem.

Theorem 6 If R(NR
i) /∈ OR(NR

i), then R(NR
i) can

replace any guard in OR(NR
i).

Proof. Based on Lemma 3, Lemma 4 and Lemma 5, if
R(NR

i) /∈ OR(NR
i), then g ∈ OR(NR

i) cannot left-guard
xk ∈ {xj | NR

i ≺ xj}. Due to g ≺ R(NR
i)), we know

vis(R(NR
i)) ⊇ vis(g) by Lemma 1. �

Similarly, L(NL
i) can replace any guard in OL(NL

i).

Theorem 7 If OL(NL
i) /∈ L(NL

i), then L(NL
i) can re-

place any guard in OL(NL
i).

5 Complexity

Because our approach has two phases, we must first dis-
cuss the complexity of discretization. We obtain bound-
ary points for a vertex v on E(T) in O(n) time by [15].
Therefore, we compute all boundary points for each ver-
tex of V (T) on each edge e ∈ E(T) in O(n2) time. We
obtain at most 2|V (T)| boundary points in O(n2) time.

Next, we demonstrate how to compute an optimal
solution for the CTGTG. In step 1, we add v1 and vn
to our solution. In step 2, we compute the vis(v1) and
vis(vn). In step 3, we add R(x) to our solution, where

250

CCCG 2018, Winnipeg, Canada, August 8–10, 2018

x ∈ X is the nonright-guarded rightmost point. If a
point x exists that is not right-guarded, then repeat step
3 until X is right-guarded. In step 4, we add L(x) to our
solution, where x is the nonleft-guarded leftmost point.
If there exists a point x that is not yet left-guarded, then
repeat Step 4 until it is left-guarded. Thus, all points
on the terrain are successfully guarded from both sides.

We show our algorithm for the CTGTG runs in O(n)
time using two steps. Before the algorithm begins, we
can compute R(x) and L(x) for each point of X in O(n)
time. After this computation, we proceed to the algo-
rithm in O(n) time. Therefore, our proposed algorithm
for the CTGTG runs in O(n) time.

Algorithm 1: Compute all L(x)

Input: T : terrain, X: point set
Output: { L(x)|x ∈ X }
Q← X ∪ V (T)
for qi ∈ Q processed from left to right do

qj = qi−1
while L(qi) = ∅ do

if qi sees L(qj) then
if L(qj) is not v1 then

qj = L(qj)
else

L(qi) = v1
else

L(qi) = qj
for x ∈ X processed from left to right do

Return L(x)

Lemma 8 Let v and x be two points on a terrain T
such that v ≺ x. If L(v) cannot see x and v sees x then
v = L(x).

Proof. Let p, v and x be three points on T such that
p ≺ L(v) ≺ v ≺ x. We assume that L(v) cannot see
x and v can see x. If p sees x and cannot see v, then
a vertex q exists and lie above line vL(v) and p ≺ q ≺
L(v), as illustrated in Fig. 8. However, the assumption
that L(v) 6= q is contradictory. �

We propose Algorithm 1 to compute L(x) for all
points x in X according to Lemma 8 and Lemma 1.
We prove that the running time of Algorithm 1 is O(n).

Theorem 9 Algorithm 1 runs in O(n) time.

Proof. We count the number of times qi sees L(qj) in
the algorithm. If qi sees L(qj), then the algorithm does
not visit the vetrices between qi and L(qj). Therefore,
the number of times qi sees L(qj) is at most once for
each point of Q. If qi does not see L(qj), then qi has
found L(qi). Therefore, the number of times qi does not
see L(qj) is at most once for each point Q. �

After computing L(xi) and R(xi) for X, we reach the
algorithm for the CTGTG in O(n) time. We divided
our algorithm into left-guarding and right-guarding, and
therefore we provide the algorithm for left-guarding that
can be implemented in O(n) time.

Algorithm 2: Left-guarding

Input: T : terrain, X: point set
Output: SL : left-guarding set
SL is null;
Add v1 to SL;
V (T ′)=V (T);
for xi ∈ X processed from left to right do

while g(xi) is null do
s is rightmost vertex in SL ∩ V (T ′);
if xi is guarded by s then

g(xi) is s;
Remove the vertices between xi and s
from V (T ′);

else if s ≺ L(xi) then
g(xi) be the vertex L(xi) ;
Add g(vi) to SL;
Remove the vertics between xi and
L(xi) from V (T ′);

else
Remove s from V (T ′);

return SL

Theorem 10 Algorithm 2 runs in O(n) time.

Proof. For each xi, we examine whether xi is guarded
by s ∈ SL from xi to g(xi). If g(xi) = vj , then Algo-
rithm 2 will not visit the point and vertex between xi
and vj . We count the number of times xi is not seen
by SL. We can check s from xi to L(xi). If s does not
see xi, then we will not check s for {xk | xi ≺ xk}. The
number of times X is not seen by SL is |V (T)|, and
the number of times X is seen by SL is |X|. There-
fore, the algorithm visits the point and vertex at most
2|X| + |V (T)| times. After computing all L(xi), Algo-
rithm 2 runs in O(n) time. �

6 Conclusion

In this paper, we considered the CTGTG problem and
devised an algorithm that can determine the minimal
cardinality vertex that guards T under two-sided guard-
ing. We showed that the CTGTG problem can be re-
duced to the discrete terrain guarding problem with at
most 2|V (T)| points in O(n2) time and solved the prob-
lem using our devised algorithm in O(n) time where n
is the number of vertices on T .

251

30th Canadian Conference on Computational Geometry, 2018

References

[1] P. Ashok, F. V. Fomin, K. Sudeshna, S. Saurabh,
M. Zehavi, Exact algorithms for terrain guarding,
in: 33rd International Symposium on Computa-
tional Geometry, 2017.

[2] H. Eliş, A finite dominating set of cardinality O(k)
and a witness set of cardinality O(n) for 1.5d ter-
rain guarding problem, Annals of Operations Re-
search (2017) 1–10.

[3] F. Khodakarami, F. Didehvar, A. Mohades, A
fixed-parameter algorithm for guarding terrains,
Theoretical Computer Science 595 (2015) 134–142.

[4] J. King, E. Krohn, Terrain guarding is np-hard,
SIAM Journal on Computing 40 (5) (2011) 1316–
1339.

[5] B. Ben-Moshe, M. J. Katz, J. S. Mitchell, A
constant-factor approximation algorithm for opti-
mal 1.5 d terrain guarding, SIAM Journal on Com-
puting 36 (6) (2007) 1631–1647.

[6] J. King, A 4-approximation algorithm for guarding
1.5-dimensional terrains, in: Latin American Sym-
posium on Theoretical Informatics, Springer, 2006,
pp. 629–640.

[7] K. Elbassioni, E. Krohn, D. Matijević, J. Mestre,
D. Ševerdija, Improved approximations for guard-
ing 1.5-dimensional terrains, Algorithmica 60 (2)
(2011) 451–463.

[8] M. Gibson, G. Kanade, E. Krohn, K. Varadara-
jan, An approximation scheme for terrain guarding,
in: Approximation, Randomization, and Combi-
natorial Optimization. Algorithms and Techniques,
Springer, 2009, pp. 140–148.

[9] S. Friedrichs, M. Hemmer, C. Schmidt, A ptas for
the continuous 1.5d terrain guarding problem, in:
Canadian Conference on Computational Geometry,
2014.

[10] M. J. Katz, G. S. Roisman, On guarding the ver-
tices of rectilinear domains, Computational Geom-
etry 39 (3) (2008) 219–228.

[11] F. Gavril, Algorithms for minimum coloring, max-
imum clique, minimum covering by cliques, and
maximum independent set of a chordal graph,
SIAM Journal on Computing 1 (2) (1972) 180–187.

[12] Y. Lyu, A. Üngör, A fast 2-approximation algo-
rithm for guarding orthogonal terrains, in: Cana-
dian Conference on Computational Geometry,
2016.

[13] S. Durocher, P. C. Li, S. Mehrabi, Guarding or-
thogonal terrains., in: Canadian Conference on
Computational Geometry, 2015.

[14] F. Khodakarami, F. Didehvar, A. Mohades, 1.5d
terrain guarding problem parameterized by guard
range, Theoretical Computer Science 661 (2017)
65–69.

[15] M. Löffler, M. Saumell, R. I. Silveira, A faster algo-
rithm to compute the visibility map of a 1.5d ter-
rain, in: Proc. 30th European Workshop on Com-
putational Geometry, 2014.

252

CCCG 2018, Winnipeg, Canada, August 8–10, 2018

Finding Minimum Witness Sets in Orthogonal Polygons

I. Aldana-Galván∗† C. Alegŕıa-Galicia∗‡ J.L. Álvarez-Rebollar∗§ N. Maŕın-Nevárez∗¶

E. Soĺıs-Villarreal∗‖ J. Urrutia∗∗ C. Velarde††

Abstract

A witness set W in a polygon P is a subset of P such
that any set G ⊂ P that guards W is guaranteed to
guard P . We study the problem of finding a minimum
witness set for an orthogonal polygon under three mod-
els of orthogonal visibility: rectangular, staircase and
k-periscope visibility.

Under the traditional line-segment visibility, it is
known that not all simple polygons admit a finite wit-
ness set and, when a polygon admits a finite minimal
witness set, the witnesses must lie on the boundary of
the polygon [3].

In this paper, we prove that every orthogonal poly-
gon with n vertices admits a finite witness set which
has O(n2) witnesses under rectangular, staircase and
k-periscope visibility. We also show that there exist or-
thogonal polygons which require Ω(n2) witnesses under
staircase visibility. Furthermore, we show that there ex-
ist orthogonal polygons for which the boundary is not
a witness set for any of the three considered visibility
models. Finally, we describe an O(n4) time algorithm
to find a minimum witness set for a given orthogonal
polygon under the rectangular and staircase visibility
models.

1 Introduction

The Art Gallery Problem (AGP) is a classical problem
in Computational Geometry that has been widely stud-

∗Research supported by PAEP from Universidad Nacional
Autónoma de México
†Universidad Nacional Autónoma de México,

ialdana@ciencias.unam.mx.
‡Posgrado en Ciencia e Ingenieŕıa de la Com-

putación, Universidad Nacional Autónoma de México,
calegria@uxmcc2.iimas.unam.mx
§Posgrado en Ciencias Matemáticas, Universidad Nacional

Autónoma de México, chepomich1306@gmail.com
¶Posgrado en Ciencia e Ingenieŕıa de la Com-

putación, Universidad Nacional Autónoma de México,
mnjn16@uxmcc2.iimas.unam.mx
‖Posgrado en Ciencia e Ingenieŕıa de la Com-

putación, Universidad Nacional Autónoma de México,
solis e@uxmcc2.iimas.unam.mx
∗∗Research supported by PAPIIT IN102117 from Universidad

Nacional Autónoma de México, urrutia@matem.unam.mx
††Instituto de Investigaciones en Matemáticas Aplicadas y en

Sistemas, velarde@unam.mx

ied since it was proposed in 1973 by V. Klee [2]: given a
polygon P , the Art Gallery Problem consists in finding
a minimum set of points G such that each point in P
is guarded by at least one element of G. G is called a
guard set.

Several variants of AGP arise by imposing restric-
tions on the type of guards, the visibility model or the
shape of the gallery. Many results on problems related
to AGP can be found in the book by O’Rourke [9] and
the surveys by Shermer [12] and Urrutia [13].

Under line-segment visibility, it is well known that
finding minimum guard sets for simple and orthogonal
polygons is an NP-hard problem, see Lee and Lin [7]
and Schuchardt and Hecker [10], respectively.

In this paper we are interested in three kinds
of orthogonal visibility: rectangular, staircase and
k-periscope visibility. For rectangular visibility, a mini-
mum guard set can be found in polynomial time if the
polygon has no holes. An algorithm with complexity
O(n17) is given by Worman and Keil in [14]. However,
if the polygon has holes, then AGP is NP-hard under
rectangular visibility, as proven by Biedl and Mehrabi
in [1]. For staircase visibility, Motwani et al. [8] prove
that a minimum guard set can be found in O(n8) time
in orthogonal polygons without holes. It remains as an
open problem to determine if AGP is NP-hard in poly-
gons with holes under staircase visibility. Finally, for
k-periscope visibility, Gewali and Ntafos proved in [6]
that AGP can be solved in O(n3) time for k = 1 in a
restricted class of orthogonal polygons.

The Witness Problem is a variant of AGP that con-
sists in finding a set W in a given polygon, such that if
W is guarded by a set of guards G, then the polygon is
guaranteed to be guarded by G. The set W is called a
witness set. A motivation behind this research is that
a witness set allows us to quickly verify if a polygon is
guarded by a set of points.

The Witness Problem under line-segment visibility in
simple polygons was studied by Chwa et al. in [3]. They
proved that not all simple polygons admit a finite wit-
ness set. They also proved that, if a simple polygon P
admits a finite minimal witness set, then all the wit-
nesses must lie on the boundary of P . In addition,
they gave an O(n2 log n) time algorithm that computes
a minimum witness set for P if it exists, or it reports
the non-existence of a finite witness set otherwise.

253

30th Canadian Conference on Computational Geometry, 2018

In this paper, we study the Witness Problem in or-
thogonal polygons under rectangular, staircase and k-
periscope visibility. First, we show that there exist or-
thogonal polygons such that their boundary is not a
witness set under the visibility models considered here.
Then, we prove that we can always find a finite wit-
ness set with O(n2) elements in any orthogonal polygon
under each of the considered visibility models. Finally,
we describe an O(n4) time algorithm for finding a min-
imum witness set in orthogonal polygons under rectan-
gular and staircase visibility models.

2 Preliminaries

Let P be a simple polygon. A vertex of P is convex if
its interior angle is less than π and is reflex if its interior
angle is greater than π.

Consider two points p and q in P . Under the line-
segment visibility model, p and q are mutually visible if
the line segment pq is contained in P . Under the rect-
angular visibility model, p and q are mutually visible
if the smallest isothetic rectangle containing p and q,
denoted by R(p, q), is contained in P . Under the stair-
case visibility model, p and q are mutually visible if P
contains a monotone isothetic polygonal path joining p
and q. Finally, under the k-periscope visibility model,
for k ∈ N \ {0}, p and q are mutually visible if P con-
tains an isothetic polygonal path joining p and q with
at most k bends.

The following definitions are common to all the visi-
bility models described above. The kernel of P , denoted
by K(P), is the set of points in P from which every point
in P is visible. Let p be a point in P . The visibility poly-
gon of p, denoted by VP(p), is the set of points of P that
are visible to p. The visibility kernel of VP(p), for short
the visibility kernel of p, denoted by VK(p), is the set
of points from which each point of VP(p) is visible.

Recall that a witness set is defined as a set of points
in a given polygon P , such that if any set of points
G guards W , then P is also guarded by G. We say
that a point p witnesses another point q if guarding p
guarantees that q is also guarded.

The following auxiliary results were proved for line-
segment visibility. Nevertheless, they also hold for
rectangular, staircase and k-periscope visibility models.
This is because they rely on properties of visibility poly-
gons that are valid in all the visibility models mentioned
above.

Theorem 1 [3, Theorem 1] Let P be a simple polygon
and let W be a point set in P . Then W is a witness set
for P if and only if the union of the visibility kernels of
the elements of W covers P completely.

Lemma 2 [3, Lemma 1] Let P be a polygon and let p
and q be points in P . Then p witnesses q if and only if
q lies in VK(p).

Lemma 3 [3, Lemma 2] Let P be a simple polygon. A
point p in P witnesses a point q in P if and only if
VP(p) ⊂ VP(q).

Lemma 4 [3, Lemma 3] Let P be a simple polygon,
and let p, q and r be points in P . If p witnesses q and
q witnesses r, then p witnesses r.

We now give two definitions of directed graphs that
we use in the next section. Two nodes u and v in a
directed graph are said to be mutually adjacent if there
is an arc from u to v and there is an arc from v to u. A
clique in a directed graph is a set of pairwise mutually
adjacent nodes of the directed graph.

The pixelation of P is the partition of P obtained
by extending a horizontal and a vertical line inward at
every reflex vertex until each line hits the boundary.
The regions obtained from this partition are known as
pixels. We denote as Ψ the set of pixels obtained from
the pixelation of an orthogonal polygon P . Note that,
in general, Ψ may have a quadratic amount of elements.

3 Witnessing orthogonal polygons

It is known that, under line-segment visibility, if there
exists a finite witness setW , then the elements of a mini-
mal witness set W are always be placed on the boundary
of the polygon [3]. For orthogonal polygons under rect-
angular, staircase or k-periscope visibility that is not
always the case, even though we can always find a fi-
nite witness set for an orthogonal polygon under these
three visibility models (as proven below in Lemma 7).
In Figure 1 we show an orthogonal polygon that is not
witnessed even if we place a witness at each point of its
boundary for each of the considered visibility models.

Figure 1: An orthogonal polygon P such that its bound-
ary is not a witness set. The red points guard the
boundary of P under rectangular visibility. The blue
points guard the boundary of P under 1-periscope and
staircase visibility. In both cases the gray region re-
mains unguarded. Hence, there has to be a witness
in the interior of P . To attain the same effect for k-
periscope visibility we only need to bend k − 1 times
each extremity of P .

254

CCCG 2018, Winnipeg, Canada, August 8–10, 2018

Now, we prove that it is always possible to find a finite
witness set for an orthogonal polygon under rectangular,
staircase and k-periscope visibility. Consider the set of
pixels Ψ obtained from the pixelation of an orthogonal
polygon P . We next show that any two points in a pixel
of Ψ have the same visibility kernel.

Lemma 5 Let X be a pixel obtained from the pixelation
of P and let p, q ∈ X be two distinct points. Then
VK(p) = VK(q), and X ⊂ VK(p) under rectangular,
staircase and k-periscope visibility.

Proof. Let H be the maximal rectangle contained in P
whose top edge contains the top edge of X and whose
bottom edge contains the bottom edge of X. Similarly,
let V be the maximal rectangle contained in P whose
left edge contains the left edge of X and whose right
edge contains the right edge of X. Note that the left
and right edges of H and the top and bottom edges of
V are contained in edges of P .

Note that if VP(p) = VP(q), then VK(p) = VK(q).
Therefore we prove that VP(p) = VP(q). Consider a
point r ∈ P seen by p. Now we prove that r is also
visible to q. Note that if r is contained in H or V
then r is trivially visible from q under any of the three
visibility models. Therefore, we suppose that r is not in
H nor V .

First, we consider rectangular visibility, see Figure 2a.
As r is seen by p, R(p, r) is contained in P . Observe that
the horizontal edges of R(p, r) and R(q, r) incident to p
and q, respectively, are contained in H. Similarly, the
vertical edges of R(p, r) and R(q, r) incident to p and
q, respectively, are contained in V . As the symmetric
difference of R(p, r) and R(q, r) is contained in V ∪ H
for any r ∈ P visible to p, R(q, r) is contained in P .
Hence, q sees r.

Now consider staircase visibility, see Figure 2b. Since
p sees r, P contains a monotone isothetic polygonal path
T = t0, t1, . . . , tk joining p and r. Let ti be the line
segment of T with an endpoint in H ∪ V and the other
one outside, and let ` be the straight line containing ti.
Let s1 be the line segment orthogonal to ` joining q and
` and let s = s1 ∩ `. Let s2 be the line segment joining
s and ti ∩ ti+1. Note that either ti contains s2 or s2
contains ti. In any case, the isothetic polygonal path
s1, s2, ti+1, ti+2, . . . , tk is monotone and is contained in
P . Hence, q sees r.

Finally, consider k-periscope visibility, see Figure 2c.
Since p sees r, P contains an isothetic polygonal path
T = t0, t1, . . . , tk joining p and r with at most k bends.
Let ti be the first line segment of T with an endpoint in
X and the other one outside ofX, and let t′ = ti+1∩ti+2.
Let s be the intersection point of the line through ti+1

and the line through q parallel to ti. Note that s is ei-
ther contained in H or V . Thus, the polygonal path
qs, st

′
, ti+2, ti+3, . . . , tk joining q and r is completely

contained in P and has at most k bends. Hence, q
sees r.

As VP(p) for any p ∈ X is contained in the visibility
polygon of any other point in X, X ⊂ VK(p). �

(a)

(b) (c)

Figure 2: Illustration of the proof for Lemma 5. Given
two points p and q in the same pixel X, they have the
same visibility polygon under: (a) rectangular visibility,
(b) staircase visibility and (c) k-periscope visibility.

The following corollary is a direct consequence of the
previous lemma.

Corollary 6 Let p be a point in an orthogonal poly-
gon P . Then, VK(p) is the union of a set of pixels
of the pixelation of P under rectangular, staircase and
k-periscope visibility.

Lemma 5 allows us to give the following definitions.
We define the visibility kernel of a pixel a, denoted as
VK(a), as the visibility kernel of any point in a. We
say that a pixel a witnesses a pixel b if any point in a
contains any point in b in its visibility kernel. Note that,
by Lemma 4, if the pixel a witnesses the pixel b, then a
witnesses the region of P witnessed by b.

Lemma 7 Let P be an orthogonal polygon with n ver-
tices. There is always a finite witness set W for P
under rectangular, staircase and k-periscope visibility.
Furthermore, W has O(n2) elements.

Proof. Let Ψ be the set of pixels obtained from the
pixelation of P . By Lemma 5, the visibility kernel of

255

30th Canadian Conference on Computational Geometry, 2018

any point p in P contains the pixel of P containing it.
By Theorem 1, a subset W of P is a witness set if the
union of the visibility kernels of the elements of W is P .
Therefore, a set of points containing a point in each pixel
of Ψ is a witness set for P . Since |Ψ| ∈ O(n2), we can
always find a finite witness set with O(n2) elements for
an orthogonal polygon under the considered visibility
models. �

Figure 3: A family of orthogonal polygons that needs a
quadratic number of witnesses under staircase visibility.

Theorem 8 There are orthogonal polygons with n ver-
tices for which any witness set has cardinality Ω(n2)
under staircase visibility.

Proof. Let P be an orthogonal polygon consisting of a
rectangle R with m vertically oriented T -shaped orthog-
onal polygons attached to the interior of its left edge and
m horizontally oriented T -shaped orthogonal polygons
attached to the interior of its top edge. We illustrate
this construction in Figure 3.

Consider the pixelation of P . Observe that R is sub-
divided in a grid with i rows and j columns of pixels,
with i = j = 2m+ 1. We denote as ri,j the pixel at the
i-th row and the j-th column of R.

Consider the pixels of the T -shaped subpolygons
which are shown shaded in Figure 3. We label these
pixels as follows. If T is attached to the left edge of R
at the i-th row of the pixelation we label the top pixel of
T as ti and the bottom pixel of T as bi. If T is attached
to the top edge of R at the j-th column of the pixelation
we label the left pixel of T as lj and the right pixel of
T as rj .

Consider a pixel ri,j with both i and j odd, shown in
gray in Figure 3. Then, the set consisting of a guard in

each pixel bk for k < i, tk for k > i, rk for k < j and lk
for k > j guards each pixel in P except ri,j . Therefore,
we need to place a witness in each of the ri,j with both
i and j odd. Note that there are (m + 1)2 such pixels
in R.

Since P has n = 16m + 4 vertices and there are
(m+ 1)2 pixels in R in which we need to place a witness,
it follows that P needs Ω(n2) witnesses under staircase
visibility.

�

It follows from Lemmas 5 and 7 that any minimal
witness set contains at most one point in each pixel
of P . For the sake of simplicity, we will henceforth say
that a set of pixels L is a witness set if a set containing
a point in each pixel of L is a witness set.

The following remarks follow from Theorem 1 and
Lemmas 2, 3 and 4:

• If a pixel a is not contained in the visibility kernel
of any other pixel in P , then a must be included in
the witness set W .

• If a pixel a is contained in the visibility kernel of
the pixel b but b is not contained in the visibility
kernel of a, then a cannot be included in a minimum
witness set.

• If two or more different pixels contain each other
on their respective visibility kernels, then only one
of them can be included in a minimal witness set.

3.1 An algorithm for finding a minimum witness set

In order to find the pixels contained in a minimum wit-
ness set, we first obtain the set of pixels Ψ from the
pixelation of P . Then, we construct a directed graph
H, which we call the kernel graph of P , in such a way
that there is a bijection between the set of nodes of H
and Ψ. After that, we compute the visibility kernel K
of the pixel represented by each node u ∈ H. Finally,
we add to H the arc from u to v if K contains the pixel
represented by v ∈ H, with u 6= v. For the sake of
simplicity, we say that a node u in H witnesses another
node v if H contains the arc (u, v).

To compute the visibility kernel of a point p in an or-
thogonal polygon under rectangular and staircase vis-
ibility, we first compute VP(p) and then we compute
K(VP(p)), the kernel of VP(p). It is straightforward to
see that, under rectangular visibility, the visibility re-
gion VP(p) of a point is also an orthogonal polygon. For
orthogonal polygons without holes, and under staircase
visibility, Gewaly [5] proved that the visibility region of
a point is also an orthogonal polygon. Therefore, we
can use one of the existing algorithms for computing
the kernel of an orthogonal polygon under rectangular
or staircase visibility.

256

CCCG 2018, Winnipeg, Canada, August 8–10, 2018

Now we prove that the polygon obtained in this man-
ner is indeed the visibility kernel of the point p. In or-
thogonal polygons with holes under staircase visibility
that is not always the case as shown in Figure 4.

Proposition 9 Let P be an orthogonal polygon (possi-
bly with holes). Let p be a point in P . Then the polygon
obtained by computing the kernel of VP(p) is equal to
VK(p) under rectangular visibility.

Proof. It is straightforward to see that K(VP(p)) is
contained in VK(p). Therefore we only prove that
K(VP(p)) contains VK(p). Suppose that there exists
a point q ∈ VK(p) which is not contained in the poly-
gon obtained by computing the kernel of VP(p). Thus,
there exists a point r ∈ VP(p) such that R(q, r) is
contained in P but not in VP(p). As p sees both q
and r, then both R(p, q) and R(p, r) are contained in
P . Therefore, R(p, q) ∪ R(p, r) ∪ R(q, r) ⊂ P . This
implies that for any point l ∈ R(q, r) we have that
R(p, l) ⊂ R(p, q) ∪ R(p, r) ∪ R(q, r) ⊂ P . Therefore,
l ∈ VP(p), which implies that R(q, r) ⊂ VP(p), a con-
tradiction. Hence, q is contained in the polygon ob-
tained by computing the kernel of VP(p). �

Proposition 10 Let P be an orthogonal polygon with-
out holes. Let p be a point in P . Then the polygon
obtained by computing the kernel of VP(p) is equal to
VK(p) under staircase visibility.

Proof. It is straightforward to see that K(VP(p)) is
contained in VK(p). Therefore we only prove that
K(VP(p)) contains VK(p). Suppose there exists a point
q ∈ VK(p) which is not contained in the polygon ob-
tained by computing the kernel of VP(p). Thus, there
exists a point r ∈ VP(p) such that T , the monotone
isothetic polygonal path joining q and r, is contained
in P but not in VP(p). As p sees both q and r, there
exist two monotone isothetic polygonal paths contained
in P , the first one T ′ joining p and q, and the second
one T ′′ joining p and r. Since P has no holes, the region
R bounded by T , T ′ and T ′′ is contained in P . Thus,
we can always find a monotone isothetic polygonal path
M joining p to any point of T , such that M is contained
in R. Therefore, p sees every point in T which implies
that T is contained in VP(p), a contradiction. Hence, q
is contained in the polygon obtained by computing the
kernel of VP(p). �

Now we show how to find a minimum witness set once
we have constructed the kernel graph H of P . Observe
that, by Lemma 4, for any clique C in H, any node of
C witnesses all the elements of C.

We say that a node u of H is a source node if for each
arc of the form (v, u) for any other node v, H contains
the arc (u, v).

Figure 4: An orthogonal polygon with a hole (shown
in gray) and an interior point p. Under staircase or 1-
periscope visibility the following holds. The visibility
polygon of p is the union of the blue, yellow and red
regions. The visibility kernel of p is the union of the blue
and red regions. The kernel of the visibility polygon of
p is the blue region.

Theorem 11 Let P be an orthogonal polygon. Let H
be the kernel graph of P . Let C be a set containing
one node in each maximal clique of source nodes in H.
Then any set containing exactly one point in the pixel
represented by each node of C is a minimum witness set
for P .

Proof. Let u be a node of H. If u is a source node
then it can only be witnessed by a node contained in
a clique containing u. Note that, since witnessing is
transitive (Lemma 4), each node in H is contained in
at most one maximal clique. Therefore, we need one
witness per maximal clique of source nodes, placed in
any of the pixels associated to the nodes of the clique.

Now suppose that u is not a source node. As witness-
ing is transitive, there exists an arc from a source node
to u. Otherwise, u would be a source node. Therefore,
it is not necessary to place a witness in a pixel corre-
sponding to a non-source node in H.

Hence, the witness set composed by a pixel for each
maximal clique of source nodes in H is a minimum wit-
ness set for P . �

In order to report a minimum witness set, we do a
traversal of H as follows. If the node u ∈ H is not a
source node, we remove it from H. If u is a source node,
we add the pixel represented by u to the witness set W
and remove u as well as its neighborhood from H. Note
that in this manner we add to the witness set at most
one pixel for each maximal clique of source nodes in H.

Now we analyze the running time of the proposed so-
lution. Obtaining the pixelation takes O(n2) time, since
we need to report O(n2) regions. The time required to
create the directed graph H depends on the subroutines
used to compute the visibility kernel of each pixel.

In their book [4], Fink and Wood give an O(n log n)
time algorithm to obtain VP(p) from a point p in an
orthogonal polygon under rectangular visibility. In [11],
Schuierer and Wood give an O(n) time algorithm to

257

30th Canadian Conference on Computational Geometry, 2018

obtain the kernel of an orthogonal polygon under rect-
angular visibility. Note that, by Corollary 6, VK(p) is a
set of pixels under rectangular visibility. Note also that
VK(p) is a rectangle. Therefore, finding the coordinates
enclosing the set of pixels in VK(p) takes O(1) time.
Since the visibility kernel of a point may have O(n2)
pixels, H may have O(n4) arcs. Therefore, constructing
H takes O(n4) time under rectangular visibility.

In [5], Gewali gives an O(n) time algorithm to obtain
VP(p) from a point p in an orthogonal polygon with-
out holes under staircase visibility. In the same paper,
he gives an algorithm to obtain the kernel of a point in
O(n) time for orthogonal polygons without holes under
staircase visibility. Once we have computed the visibil-
ity kernel of a point, it is not difficult to see that we can
find all the pixels it contains in O(n2) time. Since we
only do this once for each pixel, this step takes O(n4)
time. Therefore, constructing H takes O(n4) time un-
der staircase visibility.

In the last step of the algorithm we do a traversal of H
to report the obtained minimum witness set. Since we
process each node of H just once, this step takes O(n2)
time. Therefore, our procedure takes O(n4) overall time
under rectangular and staircase visibility. For the case
of k-periscope visibility, we can achieve the same run-
ning time under the assumption that we can obtain
the visibility kernel of a point in O(n2) time. How-
ever, efficiently calculating the visibility kernel under
k-periscope visibility is, to the best of our knowledge,
an open problem.

4 Conclusions

In this paper we studied the Witness Problem on or-
thogonal polygons under three models of orthogonal vis-
ibility. We proved that there are orthogonal polygons
that are not witnessed by their boundary under rectan-
gular, staircase and k-periscope visibility. Next proved
that all orthogonal polygons admit a finite witness set
under these three visibility models. We achieved this by
using the so called pixelation of an orthogonal polygon,
in which any two points in the same pixel turned out to
have the same visibility polygon. We also proved that,
under staircase visibility, some orthogonal polygons re-
quire a quadratic number of witnesses. As the main
result, we gave an O(n4) time algorithm for computing
a minimum witness set for orthogonal polygons under
the rectangular and staircase visibility models. This al-
gorithm makes use of the pixelation of a polygon, and
relies on an algorithm for computing the visibility kernel
of a point under each visibility model.

References

[1] T. Biedl and S. Mehrabi. On r-guarding thin orthogonal
polygons. In LIPIcs-Leibniz International Proceedings

in Informatics, volume 64, pages 17:1–17:13. Schloss
Dagstuhl-Leibniz-Zentrum fuer Informatik, 2016.

[2] V. Chvatal. A combinatorial theorem in plane ge-
ometry. Journal of Combinatorial Theory, Series B,
18(1):39–41, 1975.

[3] K.-Y. Chwa, B.-C. Jo, C. Knauer, E. Moet,
R. Van Oostrum, and C.-S. Shin. Guarding art galleries
by guarding witnesses. International Journal of Compu-
tational Geometry & Applications, 16(02n03):205–226,
2006.

[4] E. Fink and D. Wood. Restricted-orientation convexity.
Springer Science & Business Media, 2012.

[5] L. P. Gewali. Recognizing s-star polygons. Pattern
recognition, 28(7):1019–1032, 1995.

[6] L. P. Gewali and S. Ntafos. Covering grids and orthog-
onal polygons with periscope guards. Computational
Geometry, 2(6):309–334, 1993.

[7] D. Lee and A. Lin. Computational complexity of art
gallery problems. IEEE Transactions on Information
Theory, 32(2):276–282, 1986.

[8] R. Motwani, A. Raghunathan, and H. Saran. Covering
orthogonal polygons with star polygons: The perfect
graph approach. Journal of computer and system sci-
ences, 40(1):19–48, 1990.

[9] J. O’Rourke. Art gallery theorems and algorithms, vol-
ume 57. Oxford University Press Oxford, 1987.

[10] D. Schuchardt and H.-D. Hecker. Two np-hard art-
gallery problems for ortho-polygons. Mathematical
Logic Quarterly, 41(2):261–267, 1995.

[11] S. Schuierer and D. Wood. Staircase visibility and com-
putation of kernels. Algorithmica, 14(1):1–26, 1995.

[12] T. C. Shermer. Recent results in art galleries (geome-
try). Proceedings of the IEEE, 80(9):1384–1399, 1992.

[13] J. Urrutia. Art gallery and illumination problems. In
Handbook of computational geometry, pages 973–1027.
Elsevier, 2000.

[14] C. Worman and J. M. Keil. Polygon decomposition
and the orthogonal art gallery problem. International
Journal of Computational Geometry & Applications,
17(02):105–138, 2007.

258

CCCG 2018, Winnipeg, Canada, August 8–10, 2018

Red-Blue-Partitioned MST, TSP, and Matching

Matthew P. Johnson∗

Abstract

Arkin et al. [2] recently introduced partitioned pairs net-
work optimization problems: Given n pairs of points
in a metric space, the task is to color one point from
each pair red and the other blue, and then to com-
pute two separate network structures or disjoint (node-
covering) subgraphs of a specified sort, one on the graph
induced by the red points and the other on the blue
points. Three structures have been investigated by
[2]—spanning trees, traveling salesperson tours, and per-
fect matchings—and the three objectives to optimize
for when computing such pairs of structures: min-sum,
min-max, and bottleneck. We provide improved approxi-
mation guarantees and/or strengthened hardness results
for these nine NP-hard problem settings.

1 Introduction

We consider the class of partitioned pairs network op-
timization problems recently introduced by Arkin et
al. [2]. Given a complete metric-weighed graph G whose
vertex set consists of n pairs {p1, q1}, ..., {pn, qn} (with
n even), the task is to color one node from each pair
red and the other blue, and then to compute two net-
work structures or disjoint (node-covering) subgraphs of
a specified sort, one on the graph induced by the blue
nodes and the other on the red nodes. One motivation
is robustness: if the pairs represent n different types
of resources needed to build the desired network struc-
ture, with two available instances pi, qi of each type i,
then solving the problem means computing two sepa-
rate independent instances of the desired structure, one
of which can be used as a backup if the other fails.

The structures that have been investigated are span-
ning trees, traveling salesperson, and perfect matchings.
A solution consists of a disjoint pair of subgraphs cov-
ering all nodes, i.e., two (partial) matchings, two trees,
or two cycles, and there are different potential ways of
evaluating the cost of the pair. The optimization ob-
jectives that have been considered are: 1) minimize the
sum of the two structures’ costs (min-sum), 2) minimize
the maximum of the two structures’ costs (min-max),
and 3) minimize the weight of the heaviest edge used in
either of the structures (bottleneck).

Contributions. We provide a variety of results for

∗Lehman College and The Graduate Center, CUNY

these nine problem settings (all of which turn out to be
NP-hard; see Table 1), including algorithms with im-
proved approximation guarantees and/or stronger hard-
ness results for each. In particular, we provide tighter
analyses of the min-sum and min-max approximation
factors (along with problem instances matching these
factors) of Arkin et al. [2]’s 2-MST approximation al-
gorithm, which is equivalent to that of Algorithm 1 be-
low. We also show that a simple extension of this algo-
rithm (see Algorithm 2 below) provides improved min-
sum and min-max approximation guarantees for 2-TSP.
See the full version of the paper for omitted proofs.

Related work. The primary antecedent of this work
is Arkin et al. [2] (see also references therein), which
introduced the class of 2-partitioned network optimiza-
tion problems. Earlier related problem settings include
optimizing a path visiting at most one point from each
pair [8], generalized MST [15, 17, 3], generalized TSP
[3], constrained forest problems [9], adding conflict con-
straints to MST [18, 12, 6] and to perfect matching
[16, 6], and balanced partition of MSTs [1].

2 2-MST

2.1 Min-sum/min-max 2-MST: algorithm

In this section we give a simple algorithm (see Algo-
rithm 1) that provides an approximation guarantee for
2-MST under both the min-sum and min-max objec-
tives. The key lemma that the approximation guar-
antee relies on proves a property about the result of
partitioning a metric-edge-weighted spanning tree into
a 2-component spanning forest.

Initially we show that for any 2-coloring V1 ∪V2 = V
of the graph, the sum of the costs of MSTs on V1 and
V2 will be at most 3 times the cost of the spanning tree
on V . Then we modify the argument to improve the
combined cost of the two trees slightly, reducing it by
the weight of their single heaviest edge in the following
key lemma.

Theorem 1 Let V C be a set of points lying within a
metric space. Let TC be an MST on V . Let V C

1 ∪V C
2 =

V C be any 2-coloring of V C , and let TC
1 and TC

2 be
MSTs of V C

1 and V C
2 , respectively. Let eC = {vCL , vCR}

be a heaviest edge in T , with weight wC . Let TL, TR
be the trees (on nodes V C

L , V
C
R , respectively) obtained by

259

30th Canadian Conference on Computational Geometry, 2018

Table 1: Summary of results. R,B ⊆ E denote the red and blue solutions, respectively. UB values indicate the approximation
factors we obtain, all for general metric spaces; LB values indicate hardness of approximation lower bounds, all (except min-
sum and min-max TSP) for the special case of metric weights {1, 2}. Best prior bounds (all due to [2]) are also shown, where
ρSt ≤ 2 denotes the underlying metric space’s Steiner ratio (conjectured to be 2√

3
≈ 1.1547 in Euc. 2D [11]), and ρtsp denotes

TSP’s best achievable approximation factor in the underlying metric space (currently ρtsp = 1.5 in general [4]).

min-sum min-max bottleneck
c(R) + c(B) max{c(R), c(B)} max{we : e ∈ B ∪R}

MST

our UB: 3 4 −
[2]’s UB: (3ρSt) (4ρSt) (9)
our LB: NP-h NP-h 2
[2]’s LB: (-) (NP-h in metric) (-)

TSP

our UB: 4 4 −
[2]’s UB: (3ρtsp) (6ρtsp) (18)
our LB: 123/122 ≈ 1.00819 with metric weights {.5,1,1.5,2} 2
[2]’s LB: (-) (-) (-)

matching

our UB: − − −
[2]’s UB: (2) (3) (3)

our LB: 8305
8304 ≈ 1.00012 8305

8304 ≈ 1.00012 2
[2]’s LB: (NP-h in metric) (weakly NP-h in 2D Euc.) (-)

Algorithm 1 Min-sum/min-max 2-MST approx

1: T ← an MST on the 2n nodes
2: {TL, TR} ← result of deleting a max-weight edge e×

from T
3: for each node pair (pi, qi) ∈ VL × VR do

color pi blue and qi red

4: for each other node pair (pi, qi) do
assign pi, qi arbitrary distinct colors

5: for c ∈ {b, r}: Tc ← a minimum-weight tree span-
ning the color-c nodes

6: return {Tb, Tr}

deleting eC from TC , where vCL ∈ TC
L and vCR ∈ TC

R .
Then we have:

(a) c(TC
1) + c(TC

2) ≤ 3c(TC)− wC , and

(b) max{c(TC
1), c(TC

2)} ≤ 2c(TC)− wC .

Observation 1 There exist families of instances show-
ing that bounds (a) and (b) of Theorem 1 are (simulta-
neously) tight.

Then we analyze Algorithm 1, which forms trees
TL, TR by deleting a max-weight edge e× (of weight w×)
from an MST T computed on the 2n nodes, and then
colors all “lone” nodes appearing without their partners
in TL blue and all lone nodes in TR red, and assigns ar-
bitrary distinct colors to all other node pairs.

Theorem 2 Algorithm 1 provides a 3-approximation
for min-sum 2-MST.

The proof analyzes three cases, depending on whether
one, both, or neither TL, TR contains a pair, the first

two cases of which imply that OPT must cross between
TL and TR at least once or twice, respectively. The
challenge is that c(OPT) is lower-bounded by c(TL) +
c(TR) but not by c(T) = c(TL)+w×+c(TR). We bound
ALG by carefully applying Theorem 1 to both TL and
TR, and we obtain a bound on c(OPT) include w× or
2w×, permitting the two bounds to be compared, by
subtracting max-weight edges from one or both sides.

This immediately implies that the same algorithm
provides 6-approximation for min-max 2-MST, but we
perform a tighter analysis.

Theorem 3 Algorithm 1 provides a 4-approximation
for min-max 2-MST.

Extending Observation 1, we obtain:

Observation 2 There exist families of instances show-
ing that the 2-MST min-sum and min-max approxima-
tion ratios are both tight.

2.2 Min-sum/min-max/bottleneck: hardness

We provide a reduction inspired by the reduction of [7]
from Three-Dimensional Matching to the problem of
partitioning a bipartite graph into two connected com-
ponents, each containing exactly half the vertices.

In our reduction, however, we reduce the traditional
3-SAT problem.

Given the 3-SAT formula, we construct the following
graph (see Fig. 1). For each clause, create a path of
length p. For each variable xi, we create create two
nodes, xi and x̄i. We also create a path of length pb
called b and a path of length pr called r. From each xi
or x̄i, we draw an edge to the final nodes of the paths

260

CCCG 2018, Winnipeg, Canada, August 8–10, 2018

Pb

Pr

C1 C2 C3 Cm

x1 x2 x3 xn

x̄1 x̄2 x̄3 x̄n

Figure 1: Spanning tree reduction.

corresponding the clauses that the literal appears in.
Finally, from each xi and x̄i, we draw edges to the final
nodes paths b and r. All the edges defined have 1; all
non-defined edges have weight 2. (In all cases when we
refer to the “final” node of one of these m+ 2 paths, we
mean the node with degree > 2.)

The path lengths are defined as follows: pr = (n+1) ·
n3 + n+ n+ 1, pb = n3 + n+ 1, p = n3 + 1.

Then the total number of nodes in the graph con-
structed is: |V | = n · p+ pb + pr +m,= 2 · (nr +m).

Finally, we must specify the {pi, qi} pair relationships
of these nodes. Each pair {xi, x̄i} is a {pi, qi} pair. All
pr nodes of path pr are pi s. All pb nodes of path p and
all p nodes of path corresponding to an element are qi
nodes. Observe that results in an equal number of pi
and qi nodes since pb + n · p = pr.

Lemma 4 The formula is satisfiable iff the constructed
graph admits a 2-MST solution using only weight-1
edges.

Thus we conclude:

Theorem 5 In the special case of metric graphs with
weights 1 and 2, min-sum and min-max, 2-MST are
both (strongly) NP-Complete, and bottleneck 2-MST is
NP-hard to approximate with factor better than 2.

Algorithm 2 Min-sum/min-max 2-TSP approx

Identical to Alg, 1, except with lines 5,6 replaced by:
5: C ← a TSP tour, computed from T by edge-

doubling
6: for c ∈ {b, r}: Cc ← a tour of the color-c nodes,

computed by shortcutting C
7: return {Cb, Cr}

3 2-TSP

3.1 Min-sum/min-max/bottleneck 2-TSP: hardness

Clearly the min-sum and min-max objectives for 2-TSP
are at least as hard to approximate as ordinary TSP in
the same metric space (e.g., hard to approximate with
factor better than 123/122 [13], even with edge weights
{.5, 1, 1.5, 2}): to reduce TSP to either of these, simply
introduce a co-located pair {pv, qv} for each node v in
the TSP instance. Similarly, the same reduction implies
that the bottleneck objective for 2-TSP is at least as
hard to approximate as ordinary bottleneck TSP in the
same metric space (e.g., hard to approximate with factor
better than 2, even with edge weights {1, 2}).

3.2 Min-sum/min-max 2-TSP: algorithm

Now we adapt Algorithm 1 above to obtain a 4-
approximation algorithm for min-sum and min-max 2-
TSP (see Algorithm 2).

The proof again analyzes three cases, depending on
whether one, both, or neither TL, TR contains a pair.
Unlike with 2-MST, 2-TSP’s c(OPT) is lower-bounded
by c(T) in the first two cases, and so we can compare it
to the simple upper bound on c(ALG) of 4c(T).

Theorem 6 Algorithm 2 is a 4-approximation algo-
rithm for min-sum 2-TSP.

Theorem 7 Algorithm 2 is a 4-approximation algo-
rithm for min-max 2-TSP.

Observation 3 There exist families of instances show-
ing that the 2-TSP min-sum and min-max approxima-
tion factors are both tight.

4 2-Matching

4.1 Preliminaries

In the case of perfect matching we require that the num-
ber of pairs n be even. It will be convenient to re-express
the 2-Matching problem as an equivalent problem con-
cerning cycle covers.

We begin with some observations about the nature
of feasible solutions in this setting. By definition, two
nodes pi, qi from the same pair can never be matched

261

30th Canadian Conference on Computational Geometry, 2018

because they must receive different colors. Each must
then be matched with a node of the same color, and
each of those nodes’s partners must receive the opposite
color and be matched with a node of that color, and
so on, in a consistent fashion. One way to make this
consistency requirement concrete is the following alter-
native description. First, for each pair {pi, qi}, draw
a length-2 path (of unit-weight edges) between them,
separated by a dummy node di, and in the resulting
3n-node graph G′ consider instead the task of finding
a 2-factor, i.e., a node-disjoint cycle cover, of minimum
cost. In particular, consider seeking a cycle cover that
uses only unit-weight edges, which would have cost 3n.

Definition 1 Say that a 2-matching or cycle cover is
feasible if it uses only unit-weight edges. We call a non-
dummy node of G′ (i.e., a node from G) a real node;
similarly, we call an edge between a dummy node and a
real node G′ a dummy edge and a path pidiqi a dummy
path; we call an edge between two real nodes a real edge.

Observe that any feasible 2-matching in G will in-
duce a 2-factor of G′: imagine G′ drawn in a “tripar-
tite” style, with the red nodes in the left column, the
blue nodes in the right column, and the dummy nodes
in the center column. Then each path pi−di− qi forms
a “cross-edge” (going either left or right), each red edge
appears in the left column, and each blue edge appears
in the right column. Each non-dummy node is matched
with one other node in the 2-matching, so if we combine
the edges of the paths pi−di−qi to those of the match-
ing, then in the graph induced by these edges, each of
the 3n nodes will have degree 2. This implies the edge
set is a 2-factor. Note that the cost of the 2-factor dif-
fers by a known amount (2n, because each dummy nodes
two edges are unit-weight)) from the (min-sum) cost of
the corresponding 2-matching.

The problem of finding a minimum-cost 2-factor is
known to be polynomial-time solvable by reduction to
bipartite matching (folklore). Unfortunately, a 2-factor
of G′ will not necessarily induce a valid 2-matching on
G. In G′ as defined, the additional property needed
(somewhat analogously to bipartite graphs having no
odd cycles) is for each cycle’s size to be a multiple of 6,
which we will call a C6×-cover.

Definition 2 Let a C6×-cover for a given graph be a 2-
factor, i.e., a node-disjoint collection of subgraphs cov-
ering all nodes, where each subgrraph is a member of
{C6, C12, C18, ...}.

Lemma 8 Any feasible C6×-cover for G′ will induce a
feasible 2-matching for G.

Unfortunately, unlike the problem of deciding
whether a graph admits a feasible cycle cover, decid-
ing whether it admits a C6×-cover is NP-Complete [10].

This fact does not immediately imply the hardness of
the 2-Matching problems, however, because G′ is not
an arbitrary graph. We can characterize it as follows.
It contains 3n nodes consisting of n triples {pi, di, qi},
where each di is degree 2, with neighbors pi, qi.

4.2 Bottleneck 2-Matching: hardness

To prove hardness, we give a reduction inspired by Pa-
padimitriou’s reduction [5] from 3-SAT to the problem
of deciding whether a graph can be partitioned into a
node-disjoint collection of cycles, each of size at least 6.

We reduce from Monotone 1-in-3 SAT (which has
no negated literals) to the problem of deciding whether
G′ admits a (feasible, i.e., using unit-weight edges only)
C6×-cover. Recall that edge weights in G′ are 1 or 2,
and that each dummy node’s two edges are weight-1.
Given the boolean formula, we proceed as follows.

For each variable xi, we create a gadget as shown
in Fig. 2a. It consists of a 6-path (pi, di, qi, p

′
i, d
′
i, q
′
i),

whose nodes form two triples {pi, di, qi}, {p′i, d′i, q′i}, plus
an edge (pi, q

′
i) labeled eiT and a pseudoedge labeled eiF .

There will be exactly two feasible ways to cover the
nodes of this gadget in a C6×-cover, with the cycle in-
cluding eTi , corresponding to xi being true, and the one
including eFi , corresponding to false.

For each clause Cj , we create a gadget as shown in
Fig. 2b. It consists of two copies of K4, where each
node uj` in one Kr is connected by a 2-path and dummy

node to a corresponding node vj` in the other. Three

pseudoedges connecting a distinguished node uj0 to the

other three nodes of the same K4 are labeled f j1 , f
j
2 , f

j
3 .

If a feasible C6×-cover, one of these edges will be on
and the other two off, corresponding to a satisfied 1-in-
3 SAT clause.

Definition 3 A pseudoedge is an edge, or the result of
attaching a connection gadget to a pseudoedge.

Finally, to implement the appearance of a variable in
a clause, we use the gadget shown in Fig. 2c, which will
appear in sequence. Applying a connection gadget to
pseudoedges eiF and f j` does the following:

1. the last (rightmost) edge of f j` is split into a 9-path
path via the creation of 8 new nodes (compare eiF
in Figs. 2a, 2c(left), and 2d);

2. f j` ’s edge is replaced with two new edges (labeled
ε1, ε5 in Fig. 2c) incident to two new nodes (com-
pare f j` in Figs. 2b and 2c(left));

3. f j` ’s first new node is connected to eiF ’s first and
seventh new nodes, by a 2-path and an edge, re-
spectively (see Fig. 2c(left)); and

4. f j` ’s second new node is connected to eiF ’s second
and eighth new nodes, by an edge and a 2-path,
respectively (see Fig. 2c(left)).

262

CCCG 2018, Winnipeg, Canada, August 8–10, 2018

ei
T

ei
F

pi q′
i

(a) Variable gadget for xi. Any feasible C6×-cover
must include pseudoedge eiF xor edge eiT .

f j
1

f j
3

f j
2

uj
1 uj

2 uj
3

uj
4

(b) Clause gadget for Cj . Any feasible C6×-cover
must include exactly one of the three distinguished
pseudoedges f1, f2, f3 (plus one of the unlabeled
dashed edges from the bottom and two of the top).

ei
F

f j
`

ε6 ε5b ε4ε3

ε1 ε5

ε2ε4b

pi qi′

uj
k uj

k′

ei
F = off

f j
` = on

pi qi′

uj
k uj

k′

ei
F = on

f j
` = off

pi qi′

uj
k uj

k′

(c) Connection gadget (left fig.) for an appearance (negated iff v = F) of variable xi in clause Cj . The lower shaded path is a
more detailed view of one of the xi gadget’s pseudoedge eiF (see (a)); the upper shaded path is a more detailed view of one of
the Cj gadget’s three distinguished pseudoedges f j

1 , f
j
2 , f

j
3 (see (b)). We show (see Lemma 8) that there are only two possible

feasible C6×-covers of the gadget, one in which f j
` is on and eiF is off, meaning this connection represents Cj ’s unique true

literal (middle fig.), and one in which f j
` is off and eiF is on, meaning it represents one of Cj ’s two false literals (right fig.).

f j
`

ei
F

pi

uj

uj

f j′

`′uj′
uj′

f j′′

`′′

qi′

uj′′

uj′′

(d) The example eiF shown here is a more detailed view of pseudoedge eiF in variable xi’s gadget (see (a)). An eiF can have
multiple connections (in this example, three), corresponding to appearances of xi’s in different clauses (in this example, an xi
literal appears as the `th literal in clause Cj , and so on; typically j, j′, j′′ will all be distinct); an f j

` has only one connection,
since it indicates what literal the `th literal in clause Cj is. Subscripts of u nodes are omitted for clarity.

Figure 2: Gadgets used in 2-Matching’s hardness proof. Real nodes are shown filled in, dummy nodes unshaded.
Edges that must be used in any feasible solution are shown solid, other edges dashed. eiF and f j1 , f

j
2 , f

j
3 are pseu-

doedges, i.e., schematic representations of paths that connections attach to.

For each variable xi appearing (in some position k ∈
[3]) within a clause Cj , we draw a connection gadget

between xi’s e
i
F and Cj ’s f

j
k . First observe the following,

which can be verified by inspection:

Fact 1 If all pseudoedges eiF and f jk were simply edges,
then a C6×-cover would induce one of two legal states
within any variable Xi’s gadget, with exactly one of
eiF , e

i
T on, and one of three legal states within any clause

Cj’s gadget, with exactly one of f j1 , f
j
2 , f

j
3 on.

Now we show that any C6×-cover will induce one
of two canonical states on each connection gadget (see

Fig. 2c middle and right), each pseudoedge, and each
variable gadget.

Lemma 9 Within any pseudoedge pair (eiF , f
j
k) con-

nected by a connection gadget, a feasible C6×-cover
induces one of only two legal states: one with the
first and last edges (labeled ε1 and ε5, respectively, in
Fig. 2c(left)) within f jk on (“f jk is on”), and the other
with with the first and last edges (labeled ε6 and ε4, re-
spectively, in Fig. 2c(left)) within eiF on (“eiF is on”).

This immediately implies:

263

30th Canadian Conference on Computational Geometry, 2018

Corollary 1 A feasible C6×-cover induces one of two
canonical states within each variable gadget and one of
three canonical states within each cause gadget.

In a solution where the clause’s edge f jk is on, this
forces eFik to be off, and hence eTik to be on; similarly, it
forces clause Cj ’s other two distinguished pseudoedges
to be off, and hence the variables connected to those
edges to be false. (The clause gadget’s other edges
can be freely used or not, as needed to form a fea-
sible C6×-cover.) Finally, observe that the final con-
structed graph G′ indeed satisfies the required structure
for corresponding to an equivalent instance G of the 2-
Matching problem: every dummy node has exactly two
neighbors (both real), and every real node has exactly
one dummy neighbor.

From the arguments above, we conclude that G′ ad-
mits an all-unit weight C6×-cover iff G admits an all-
unit weight 2-matching iff the underlying boolean for-
mula is satisfiable. Thus we conclude:

Theorem 10 In the special case of metric graphs with
weights 1 and 2, bottleneck 2-Matching is NP-hard to
approximate with factor better than 2 (and min-sum and
min-max 2-Matching are both (strongly) NP-Complete).

4.3 Min-sum/min-max 2-Matching: hardness

By reduction from a special case of Max 1-in-3 SAT,
we can obtain a hardness of approximation result for
the min-sum and min-max objectives. Let Max 1-in-3
SAT-5 denote Max 1-in-3 SAT under the restriction
that each variable appears in at most 5 clauses.

Lampis has shown (implicitly in [14]1) the following:

Lemma 11 There exists a family of Max 1-in-3
SAT-5 instances with 15m clauses and 8.4m variables,
each appearing in at most 5 clauses, for which, for any
ε > 0, it is NP-hard to decide whether the minimum
number of unsatisfiable clauses is at most εm or at least
(0.5− ε)m.

For concreteness, let Min Not-1-in-3 SAT-5 indi-
cate the optimization problem of minimizing the num-
ber of unsatisfied clauses in a 1-in-3 SAT-5 formula.

Now we argue that the same construction used above
provides an approximation-preserving reduction from
Min Not-1-in-3 SAT-5.

Corollary 2 Min-sum and min-max 2-Matching are
both, in the special case of metric graphs with weights 1
and 2, NP-hard to approximate with factor better than
8305/8304 ≈ 1.00012.

1Karpinksi et al. [13] provide a similar construction yielding a
stronger hardness of approximation lower bound for Metric TSP,
but adapting that construction to our present problem actually
leads to a slightly weaker lower bound.

Acknowledgements. This work was supported in part by
NSF award INSPIRE-1547205, and by the Sloan Foundation
via a CUNY Junior Faculty Research Award. We thank Ali
Assapour, Ou Liu, and Elahe Vahdani for useful discussions.

References

[1] M. Andersson, J. Gudmundsson, C. Levcopoulos, and
G. Narasimhan. Balanced partition of minimum spanning
trees. International Journal of Computational Geometry &
Applications, 13(04):303–316, 2003.

[2] E. M. Arkin, A. Banik, P. Carmi, G. Citovsky, S. Jia, M. J.
Katz, T. Mayer, and J. S. B. Mitchell. Network optimization
on partitioned pairs of points. In ISAAC, pages 6:1–6:12,
2017.

[3] B. Bhattacharya, A. Ćustić, A. Rafiey, A. Rafiey, and
V. Sokol. Approximation algorithms for generalized MST
and TSP in grid clusters. In COCOA, pages 110–125. 2015.

[4] N. Christofides. Worst-case analysis of a new heuristic for the
travelling salesman problem. Technical Report 88, Manage-
ment Sciences Research Group, Carnegie-Mellon University,
Pittsburgh, PA, 1976.

[5] G. Cornuejols and W. Pulleyblank. A matching problem
with side conditions. Discrete Mathematics, 29(2):135–159,
1980.

[6] A. Darmann, U. Pferschy, J. Schauer, and G. J. Woeginger.
Paths, trees and matchings under disjunctive constraints.
Discrete Applied Mathematics, 159(16):1726–1735, 2011.

[7] M. E. Dyer and A. M. Frieze. On the complexity of parti-
tioning graphs into connected subgraphs. Discrete Applied
Mathematics, 10(2):139–153, 1985.

[8] H. N. Gabow, S. N. Maheshwari, and L. J. Osterweil. On
two problems in the generation of program test paths. IEEE
Transactions on Software Engineering, (3):227–231, 1976.

[9] M. X. Goemans and D. P. Williamson. A general approx-
imation technique for constrained forest problems. SIAM
Journal on Computing, 24(2):296–317, 1995.

[10] P. Hell and D. G. Kirkpatrick. Packings by cliques and by
finite families of graphs. Discrete Mathematics, 49(1):45–59,
1984.

[11] A. O. Ivanov and A. A. Tuzhilin. The Steiner ratio Gilbert–
Pollak conjecture is still open. Algorithmica, 62(1-2):630–
632, 2012.

[12] M. M. Kanté, C. Laforest, and B. Momege. Trees in graphs
with conflict edges or forbidden transitions. In TAMC, pages
343–354. Springer, 2013.

[13] M. Karpinski, M. Lampis, and R. Schmied. New inapprox-
imability bounds for TSP. Journal of Computer and System
Sciences, 81(8):1665–1677, 2015.

[14] M. Lampis. Improved inapproximability for TSP. In AP-
PROX/RANDOM, pages 243–253. Springer, 2012.

[15] Y.-S. Myung, C.-H. Lee, and D.-W. Tcha. On the generalized
minimum spanning tree problem. Networks, 26(4):231–241,
1995.

[16] T. Öncan, R. Zhang, and A. P. Punnen. The minimum
cost perfect matching problem with conflict pair constraints.
Computers & Operations Research, 40(4):920–930, 2013.

[17] P. C. Pop. New models of the generalized minimum span-
ning tree problem. Journal of Mathematical Modelling and
Algorithms, 3(2):153–166, 2004.

[18] R. Zhang, S. N. Kabadi, and A. P. Punnen. The minimum
spanning tree problem with conflict constraints and its vari-
ations. Discrete Optimization, 8(2):191–205, 2011.

264

CCCG 2018, Winnipeg, Canada, August 8–10, 2018

Optimal Solutions for a Geometric Knapsack Problem
using Integer Programming∗

Rafael G. Cano† Cid C. de Souza† Pedro J. de Rezende†

Abstract

The objective of this paper is to present an experimen-
tal study of the Geometric Knapsack Problem (GKP)
with the goal of obtaining provably optimal solutions.
We introduce an Integer Linear Programming model for
the GKP and apply it to hundreds of instances of two
classes: one comprised of uniformly generated points
with randomly assigned values; and another composed
of convex layered points with value distribution biased
towards concentrating negative-valued points on the in-
nermost layers. Trial tests were used to guide the choice
of input parameters so as to avoid generating trivial in-
stances. Our experiments show that the layered class is
significantly harder to be solved to optimality, in prac-
tice, since even instances with as few as 35 points could
not be solved within 5 minutes of CPU time.

1 Introduction

Geometric knapsack problems (GKP) are extensions of
the classic knapsack problem to a geometric setting. In
the classic version, we are given a set of items with speci-
fied weights and values, together with a knapsack of lim-
ited capacity. The objective is to select a subset of items
whose combined weight does not exceed the capacity of
the knapsack and whose total value is maximum.

The geometric variants typically consist of the so-
called fence enclosure problems [1]. Here, we restrict our
study to a two-dimensional version in which items are
points in the plane. Consider a set P = {p1, p2, . . . , pn}
of n distinct points. With each point pi ∈ P there is
an associated real value vi, unrestricted in sign. The
“knapsack” (also called fence) consists of a simple poly-
gon, and the selected items are the points that it en-
closes. Unlike the classic variant, items do not have
an explicit weight. However, there is a cost associated
with the total length of the fence. The objective is to
maximize the net profit given by the total value of the

∗This work was supported by grants from Conselho Na-
cional de Desenvolvimento Cient́ıfico e Tecnológico (CNPq)
#304727/2014-8, #309627/2017-6, Fundação de Amparo à Pes-
quisa do Estado de São Paulo (FAPESP) #2014/12236-1,
#2018/11100-0, and Fundo de Apoio ao Ensino, à Pesquisa e
Extensão (FAEPEX).
†Institute of Computing, University of Campinas, Campinas –

Brazil, {rgcano,cid,rezende}@ic.unicamp.br

enclosed points minus the cost of the fence. An example
is shown in Figure 1.

Figure 1: An instance of the GKP with an optimal
fence. Positive and negative point values are repre-
sented by blue and red circles, resp., with radii pro-
portional to the magnitude of the values.

Formally, we say that a simple polygon ϕ (a fence)
strictly encloses all the points in P that lie in the in-
terior of the region bounded by ϕ. On the other hand,
among the points that lie on the polygon boundary, ϕ
also encloses those of non-negative value. The reason
for this apparent asymmetry is that, if we only take
into account the points that are strictly enclosed by the
fence, then an exact solution, such as the one shown
in Figure 1, would not be attainable. Nonetheless, our
extended definition of enclosure allows us to compute
a polygon that realizes the supremum of the net profit
function. Moreover, it is always possible to slightly alter
the given polygon in such a way that it strictly encloses
all positive-valued points lying on its boundary. This
modification would increase the length of the fence by
some ε > 0, but the resulting additional cost could be
made as small as desired.

We denote by Pϕ the set of all points enclosed by
ϕ. Let Lϕ be the total Euclidean perimeter of ϕ, and
c ≥ 0 be a construction cost per unit of length of the
fence. The GKP requires a fence ϕ to be built, which

maximizes the net profit
(∑

pi∈Pϕ
vi

)
− c · Lϕ.

265

30th Canadian Conference on Computational Geometry, 2018

1.1 Related Work

The GKP was proposed by Arkin et al. [1], who in-
troduced its many variants. In their work, they allow
the set of items to consist of either points, line seg-
ments or simple polygons. They also consider versions
in which there is an upper bound on the total length
of fence available. For point items, they show that the
problem is NP-hard if values are unrestricted in sign
(which is precisely the variant that we address here).
However, if all values are non-negative, they describe
two exact O(n3) algorithms. Moreover, if there is lim-
ited length of fence to use, the problem of maximizing
the total value of the enclosed points is NP-hard even
with non-negative values. For polygonal items, they
present different polynomial-time algorithms, depend-
ing on whether the fence is allowed to cross the objects.

Our version of the GKP is also related to the following
problem. Given two sets of points R (the “red points”)
and B (the “blue points”), we say that a separating
polygon for R and B is a simple polygon ϕ such that all
points of R are in the interior or on the boundary of ϕ,
and all points ofB are in the exterior or on the boundary
of ϕ (or vice-versa). The Red-Blue Separation Problem
(RBSP) consists of finding the minimum-perimeter sep-
arating polygon for the given sets of points. This prob-
lem was shown to be NP-hard by Eades and Rappaport
[5]. Approximation algorithms were proposed by Mata
and Mitchell [6] and Arora and Chang [2].

Reinbacher et al. [8] study an enclosure problem in
the context of Geographic Information Systems (GIS).
They address the problem of computing boundaries to
imprecise, verbally-defined regions, such as “Northern
Portugal” or “British Midlands”. In order to estimate
the boundary, they first extract a set of known locations
that are generally considered to be inside or outside the
desired region. Then, they compute a separating poly-
gon that encloses the inside points and obeys certain
geographic criteria.

Finally, our work also benefits from the theory de-
veloped for the Traveling Salesman Problem (TSP). In
particular, we use some results presented by Balas [3]
for the Prize Collecting TSP. In this version, a salesman
travels between pairs of cities and collects an amount of
prize money at each city that he visits. Contrary to the
classic variant, he can choose not to visit a city at the
cost of a penalty. The goal is to visit enough cities so as
to collect a minimum specified amount of prize money
while minimizing travel and penalty costs.

1.2 Our Contribution

In this work, we present a formulation of the GKP as an
Integer Linear Program (ILP). This is, to the best of our
knowledge, the first exact algorithm for this problem.
We use the ILP to obtain provably optimal solutions

for instances with up to 40 points. Based on a series of
experiments, we also devised a class of instances that
are particularly challenging to be solved in practice.

The remainder of the text is organized as follows. Sec-
tion 2 discusses some properties of optimal solutions.
Section 3 presents our ILP. Section 4 describes the in-
stances used in our tests and reports the main results
of our experimental evaluation. Some final remarks are
provided in Section 5.

2 Structure of Optimal Solutions

Given an instance of the GKP, consider an optimal fence
ϕ∗ that encloses the set of points Pϕ∗. Clearly, ϕ∗ must
be the minimum-perimeter polygon that separates Pϕ∗
and P \ Pϕ∗. Thus, properties that apply to optimal
solutions of the RBSP also apply to the GKP. In partic-
ular, for both problems, all vertices of the constructed
polygon must be points of the given set. This is il-
lustrated in Figure 2, where points of P are shown as
solid disks. Since vertices r and s are not points of P ,
a polygon of smaller perimeter can be obtained using
the chords r′r′′ and s′s′′, for the triangles (r′, r, r′′) and
(s′, s′′, s) do not contain any points of P .

r

s

r′′ r′

s′

s′′

Figure 2: A suboptimal fence with two vertices r and s
that are not points of P .

Moreover, it is easy to obtain a stronger result for
the GKP. Suppose a convex vertex r is a point of P
with negative value. By definition, r is not enclosed by
the fence. Thus, the previous perimeter-reducing con-
struction would still maintain the same set of enclosed
points and the original fence would not be optimal. Sim-
ilarly, if s ∈ P is a reflex vertex of positive value, by the
aforementioned construction, a fence of smaller perime-
ter could be built. Therefore, all convex (reflex) vertices
of an optimal fence must be points of P of positive (neg-
ative) values.

266

CCCG 2018, Winnipeg, Canada, August 8–10, 2018

3 Integer Programming Model

Let G = (P,A) be the complete directed graph whose
node set is the set of input points P and A = {(pi, pj) :
pi, pj ∈ P, i 6= j}. Given three points pi, pj , pk ∈ P ,
let ∆(pi, pj , pk) denote their orientation, i.e., the sign
of the signed area of the triangle pi, pj , pk. To simplify
our exposition, we assume that the points of P are in
general position. Hence, ∆(pi, pj , pk) 6= 0 for any three
points pi, pj , pk ∈ P .

In our formulation, we represent the fence as a single
directed cycle in G. For each arc (pi, pj) ∈ A we define a
binary variable xij that takes value 1 if and only if this
arc is part of the fence. Also, for each point pi we define
a binary variable yi that indicates whether pi is enclosed
by the fence. Two auxiliary expressions will be used to
simplify the description of the constraints. First, note
that a point pi is a vertex of the fence whenever there
is an arc incident to pi. Thus, we define

B(pi) =
∑

(pi,pj)∈A
xij . (1)

Since the solution must consist of a single directed cy-
cle, we include a set of constraints that limit the number
of outgoing and incoming arcs on each point to at most
one. Thus, B(pi) may take one of two values: 1 if pi is
on the fence, and 0 otherwise.

In order to model the objective function, it is also nec-
essary to determine which points are enclosed by a fence.
Ultimately, we must solve the point location problem
w.r.t. an arbitrary simple polygon built from (a sub-
set of) the input points. We apply an approach similar
to the following parity checking ray-crossing algorithm.
Denote by `i the horizontal half-line that extends from
a point pi to the positive direction of the x-axis. Given
a simple polygon ϕ, pi is interior to ϕ iff `i crosses (the
boundary of) ϕ an odd number of times.

However, parity checking in a linear model is not
a simple task. Nonetheless, arc directions are useful
to circumvent this issue. First, we adopt the con-
vention that the cycle representing the fence must be
counterclockwise-oriented (we will later show how to en-
force this in the model). Now, given a point pi not on
the border of the fence, we trace `i starting at pi, as
shown in Figure 3. Each time we cross an arc (pj , pk),
we inspect the value of ∆(pi, pj , pk). If it is positive, we
are moving from the inside to the outside of the fence,
otherwise we are moving from the outside to the inside.
Let nouti and nini be the number of times we move to
the outside and to the inside of the fence, respectively.
Clearly, pi is outside the fence iff nouti = nini .

Let Ri ⊆ A be the set of arcs crossed by `i (excluding
the intersections at pi itself, if any). We further define
R+
i = {(pj , pk) ∈ Ri : ∆(pi, pj , pk) > 0} and R−i =
{(pj , pk) ∈ Ri : ∆(pi, pj , pk) < 0}. From the previous

pi

p1

pj
`j

`i

p2

p3

p4

p5

p6p7

p9

p8

Figure 3: Illustration of the ray-crossing algorithm used
to determine which points are enclosed by the fence.

observation, we may write

nouti =
∑

(pj ,pk)∈R+
i

xjk and nini =
∑

(pj ,pk)∈R−
i

xjk.

As an example, for the point pi in Figure 3, all vari-
ables in the first summation have value 0, except for
x8,9, x2,3 and x5,6, so nouti = 3. In the second sum-
mation, the only variables with value 1 are x7,8 and
x3,4, so nini = 2. Note that `i intersects both (p3, p4)
and (p4, p5) at p4. Whenever the half-line intersects the
fence at a vertex pk, we only consider that it crosses
those arcs whose other endpoint is above pk. Thus x4,5
is not included in the summation. Finally, we define

I(pi) = nouti − nini . (2)

From the previous discussion, it follows that for any
point pi not on the border of the fence, I(pi) has value
1 when pi is inside the fence and 0 otherwise. It should
be noted that these values may differ for points lying on
the fence (e.g., in Figure 3, I(p3) = 1 and I(p5) = 0).
Even in this case I(pi) can only take values 0 or 1. As
we argue in the next section, these cases will not be of
importance for our formulation.

It remains for us to show how to enforce a counter-
clockwise orientation on the constructed cycle. In order
to do this, we make use of the observations in Section 2.
Since positive-valued points cannot be reflex vertices of
an optimal fence, we write constraints to enforce this
property. Let pi, pj , pk ∈ P be three distinct points,
with vj > 0 (recall that vj denotes the value associated
with point pj). If ∆(pi, pj , pk) < 0, then pj becomes a
reflex vertex whenever arcs (pi, pj) and (pj , pk) are used
together in a fence; thus we may write xij + xjk ≤ 1.
Analogously, if vj < 0 and ∆(pi, pj , pk) > 0, the pre-
vious inequality also prevents pj from becoming a con-
vex vertex. In general, this inequality is valid whenever
vj · ∆(pi, pj , pk) < 0 and it guarantees that all cycles
will lead to counterclockwise-oriented polygons.

Given an arc (pi, pj) ∈ A, let dij denote the Euclidean
distance between pi and pj . Also, given a set of points

267

30th Canadian Conference on Computational Geometry, 2018

S ⊂ P , let δ(S) denote the set of all arcs of G directed
from a point in S to a point in P \ S, i.e., δ(S) =
{(pi, pj) ∈ A : pi ∈ S and pj ∈ P \ S}.

The following ILP is a formulation of the GKP. The
objective function to be maximized is

∑

pi∈P
vi · yi −

∑

(pi,pj)∈A
c · dij · xij (3)

subject to the following constraints:

∑

(pi,pj)∈A
xij ≤ 1 ∀ pi ∈ P (4)

∑

(pi,pj)∈A
xij =

∑

(pj ,pi)∈A
xji ∀ pi ∈ P (5)

xij + xji ≤ 1 ∀ pi, pj ∈ P (6)

xij + xjk ≤ 1 ∀ pi, pj , pk ∈ P : (7)

vj ·∆(pi, pj , pk) < 0

yi ≤ I(pi) +B(pi) ∀ pi ∈ P : vi > 0 (8)

yi ≥ I(pi)−B(pi) ∀ pi ∈ P : vi < 0 (9)

∑

(pi,pj)∈δ(S)
xij ≥ B(pk) +B(p`)− 1 ∀ S ⊂ P, (10)

2 ≤ |S| ≤ n− 2

pk ∈ S, p` ∈ P \ S.

The objective function (3) computes the sum of the
values of all enclosed points minus the sum of the costs
of all arcs in the cycle that represents the fence. Con-
straints (4) limit the number of outgoing arcs of each
node to at most one, and constraints (5) ensure that
whenever an arc enters a node, another arc must leave
it. Constraints (6) prevent two opposite arcs from being
chosen. Constraints (7) guarantee that positive-valued
points cannot become reflex vertices of the fence, and
negative-valued points cannot become convex vertices.

Constraints (8) and (9) enforce the desired meaning
of the y variables. If pi has positive value, then, due to
the maximization of the objective function, yi will be
set to 1, except if some constraint forbids it. Hence, we
must only force it to be 0 when pi is strictly outside the
fence. This is done by constraints (8). Similarly, if pi
has negative value, yi will be set to 0 since we are maxi-
mizing (3), unless it violates some constraint. Thus, we
must only force it to be 1 when pi is strictly inside the
fence. This is accomplished by constraints (9).

Finally, we must guarantee that a single cycle will
be constructed by the model. This is done by con-
straints (10). These constraints are well-known in the
literature of the TSP. The classic TSP requires that a
cycle be constructed using all nodes of the input graph
(i.e., it must be a Hamiltonian cycle). However, in our
case, points can be left out, so we use inequalities that
were originally studied by Balas [3] for the Prize Collect-
ing TSP. Those inequalities state that, given a subset

S of the input points, if points pk ∈ S and p` ∈ P \ S
are nodes on a constructed cycle, then there must be
at least one arc from S to P \ S. Although there is
an exponential number of them, we used a well-known
procedure to separate them in polynomial time using
a max-flow min-cut algorithm (see, e.g., Padberg and
Rinaldi [7]).

As a final remark, we mentioned earlier that I(pi)
might take value 0 or 1 if pi is on the fence itself. Note
that this variation does not affect the correctness of our
model, since constraints (8) and (9) are trivially satisfied
when B(pi) > 0.

4 Experiments

We now present our experimental study of the GKP,
which had two main goals. Firstly, we wanted to un-
derstand what features make an instance particularly
hard to solve in practice. This led us to create a chal-
lenging set of benchmark instances for exact methods.
Secondly, we wished to evaluate the performance of the
proposed ILP and to determine which instance sizes can
be solved in a reasonable amount of time. More details
are given in the next sections.

4.1 Instances

In order to create instances for the GKP, we must de-
cide on two major factors: the spatial distribution of
the points and the assignment of their associated val-
ues. In this work, we limit ourselves to uniformly dis-
tributed points in a square. The magnitudes of point
values are also drawn from a uniform distribution and
are restricted to a predefined range. We do, however,
vary the way in which the sign of each value is chosen,
giving rise to two classes of instances.

In the first class, each value is given an equal prob-
ability of receiving a positive or a negative sign. We
refer to these instances as uniform instances. Uniform
instances exhibit no particular structure and are useful
as a baseline to evaluate the performance of our ILP.

For the second class, we attempt to create more chal-
lenging instances based on the following idea. Since the
objective function seeks to maximize the net profit, an
optimal fence will naturally enclose as many positive-
valued points as possible, while avoiding the enclosure
of negative ones. Thus, an instance becomes more diffi-
cult when negative-valued points are hard to avoid. So,
we assign positive values to the outermost points, and
gradually increase the probability that a point receives
a negative value as we move inwards through the point
set.

More formally, to create instances for the second class,
we start by computing the convex layers of the set of
points. Given a point pi, denote by d the depth of its
layer and by D the depth of the innermost layer. The

268

CCCG 2018, Winnipeg, Canada, August 8–10, 2018

probability that pi receives a negative value is set to√
d/D (we consider that the depth of the first layer – the

convex hull – is zero). Here, we apply the square root so
as to obtain a higher number of negative-valued points,
otherwise, the instance loses some of its complexity, as
we determined through some preliminary experiments.
We refer to instances of this class as layered instances.

We conclude this section by providing further details
on the creation of our instances. The square from which
the n points are drawn has side 100

√
n. The magnitude

of the values is selected in the range [50, 150]. The lower
bound of 50 is used because values with very small mag-
nitudes rarely have any significant impact on optimal
solutions, so the associated points often become irrele-
vant. The complete set of instances can be found on our
web page [4].

4.2 Computational Results

We executed the experiments on an Intel Xeon E5-
2603 1.60GHz CPU with 32GB of RAM. Integer pro-
grams were solved with a branch and cut algorithm us-
ing CPLEX 12.8 in deterministic mode using a single
thread. Our code was written in C++ and compiled
with g++ 5.4.0 with optimization flag -O3.

Initially, we ran some preliminary experiments to ob-
serve the behavior of each class of instances with differ-
ent values of the cost c per unit length of fence. Note
that if c is too high, the optimal fence will enclose a sin-
gle point of maximum value, and the instance becomes
trivial. Similarly, if c is too low, the cost of the fence
becomes negligible. In this case, the optimal fence will
enclose all (and only) positive-valued points, thus, the
problem reduces to the RBSP. To avoid both scenarios,
we chose intermediate values for c. For each class, we
ran tests with three values that were found to be the
most suitable according to the results of our prelimi-
nary experiments: {0.4, 0.6, 0.8} and {0.3, 0.4, 0.5} for
uniform and layered instances, respectively.

We created instances of five different sizes: {20, 25,
30, 35, 40}. For each size, we created 10 instances of
each class. Thus, in total, we have 50 uniform and 50
layered instances. We, then, ran our ILP on each one of
them with the three specified cost values, yielding a to-
tal of 300 test problems. The results are summarized in
Tables 1 and 2. For each size n and cost c, we report the
minimum (tmin) and maximum (tmax) running times
of the 10 instances. We also show the average running
time (tavg) together with the standard deviation. We
imposed a time limit of 5 minutes for each run, and
the last column shows the number of instances solved
to optimality within this time bound.

The results for uniform instances (Table 1) indicate
that this class does not pose difficulties to our ILP,
which was able to find optimal solutions for all in-
stances. Although the average running time is always

c n tmin tmax tavg #opt

0.4

20 0.1 0.6 0.3 ± 0.2 10
25 0.2 11.8 2.2 ± 3.6 10
30 0.2 16.6 5.4 ± 6.2 10
35 0.5 57.7 10.8 ± 17.6 10
40 1.6 201.5 52.6 ± 68.8 10

0.6

20 0.1 1.7 0.3 ± 0.5 10
25 0.1 6.0 1.0 ± 1.8 10
30 0.2 10.2 2.7 ± 3.1 10
35 0.4 43.9 10.0 ± 13.5 10
40 1.4 157.3 39.3 ± 47.9 10

0.8

20 0.1 0.3 0.1 ± 0.1 10
25 0.1 1.2 0.3 ± 0.3 10
30 0.1 1.9 0.8 ± 0.6 10
35 0.4 54.3 11.0 ± 16.4 10
40 1.0 178.9 50.7 ± 62.5 10

Table 1: Summary of the results for uniform instances.
Times are given in seconds.

c n tmin tmax tavg #opt

0.3

20 0.2 1.2 0.6 ± 0.4 10
25 0.3 52.4 13.5 ± 16.9 10
30 6.3 231.7 91.5 ± 72.6 10
35 0.6 300.0 200.0 ± 128.7 5
40 59.4 300.0 251.0 ± 89.9 3

0.4

20 0.2 3.0 0.9 ± 0.9 10
25 0.4 63.0 16.0 ± 21.8 10
30 3.1 120.6 34.4 ± 39.2 10
35 0.7 300.0 153.1 ± 116.7 8
40 14.9 300.0 235.0 ± 106.3 4

0.5

20 0.1 2.4 1.1 ± 0.9 10
25 0.3 38.3 11.0 ± 12.8 10
30 0.3 237.2 38.4 ± 72.5 10
35 1.2 300.0 119.4 ± 126.1 9
40 2.5 300.0 204.9 ± 128.1 4

Table 2: Summary of the results for layered instances.
Times are given in seconds.

below one minute, there is a very large deviation, which
is, in most cases, larger than the average itself. In sev-
eral cases, the solver took a long time to find a good
feasible solution to the ILP, which led to the processing
of a high number of nodes in the branch and bound tree
and, consequently, high running times.

As for layered instances, the results in Table 2 show
that this is, as desired, a much harder class. We were
not able to find optimal solutions for several instances
with 35 and 40 points. The average running times are
also higher in all cases. Therefore, we believe this is a
challenging set of instances to serve as a benchmark for
the GKP.

In our last experiment, we examined the behavior of
individual instances for a wide range of fence cost values.

269

30th Canadian Conference on Computational Geometry, 2018

Figure 4: Running time for each value of c for four
layered instances with 30 points each.

We selected four layered instances and ran our ILP on
them with values of c that range from 0.10 to 0.80 in
increments of 0.05. The running times are depicted in
Figure 4.

The graph shows that for low values of c, the instances
are harder to solve. As we mentioned earlier, when c is
too low, the problem reduces to the RBSP, which is also
NP-hard. The high variance in the running times is due
to CPLEX’s branch and bound process, which is, to a
certain extent, unpredictable. If the solver cannot find
a good solution quickly, a lot of branching is required
and the computation time increases. However, for high
values of c, the problem becomes easier. This happens
because the cost of several edges becomes prohibitive
and the solver can easily prune some nodes of the branch
and bound tree.

We observed this behavior for all test instances. Al-
though the specific value of c varies among instances,
there is always some threshold for which they become
trivial. This is illustrated in Figure 5, which shows
four optimal solutions for the instance layered-30c, ob-
tained with four different values of c. The rightmost

figure shows the shortest optimal non-degenerate fence
for that instance. If c is further increased, the opti-
mal solution becomes a degenerate polygon enclosing a
single point.

5 Conclusion

We addressed an NP-hard variant of the Geometric
Knapsack Problem and proposed an ILP formulation
for it. This is, to the best of our knowledge, the first
exact method to solve this variant. We also devised two
classes of instances to evaluate our ILP. One of them,
namely, layered instances, proved to be quite challeng-
ing for our formulation, and we propose it as a bench-
mark for this problem. As for future work, we believe
the development of effective heuristics could improve the
running times of our ILP, since in several cases, CPLEX
struggled to find feasible solutions. Finally, the study
of known optimal solutions could also lead to significant
speedups, especially if one can develop preprocessing
procedures that take advantage of the geometric prop-
erties of each instance.

References

[1] E. M. Arkin, S. Khuller, and J. S. Mitchell. Geometric
knapsack problems. Algorithmica, 10(5):399–427, 1993.

[2] S. Arora and K. Chang. Approximation schemes for
degree-restricted MST and red–blue separation prob-
lems. Algorithmica, 40(3):189–210, 2004.

[3] E. Balas. The prize collecting traveling salesman prob-
lem. Networks, 19(6):621–636, 1989.

[4] R. G. Cano, C. C. de Souza, and P. J. de Rezende. Geo-
metric knapsack – instances and experimental results,
2018. www.ic.unicamp.br/~cid/Problem-instances/

Geometric-Knapsack.

Figure 5: Optimal fences for the instance layered-30c with fence costs of 0.25, 0.40, 0.60 and 0.75, from left to right.
Positive and negative point values are represented by blue and red circles, resp., with radii proportional to the
magnitude of the values.

270

CCCG 2018, Winnipeg, Canada, August 8–10, 2018

[5] P. Eades and D. Rappaport. The complexity of comput-
ing minimum separating polygons. Pattern Recognition
Letters, 14(9):715–718, 1993.

[6] C. S. Mata and J. S. Mitchell. Approximation algorithms
for geometric tour and network design problems. In Proc.
of the Eleventh Annual Symposium on Computational
Geometry, SCG ’95, pages 360–369. ACM, 1995.

[7] M. Padberg and G. Rinaldi. Facet identification for the
symmetric traveling salesman polytope. Mathematical
Programming, 47(1):219–257, 1990.

[8] I. Reinbacher, M. Benkert, M. van Kreveld, J. S.
Mitchell, J. Snoeyink, and A. Wolff. Delineating bound-
aries for imprecise regions. Algorithmica, 50(3):386–414,
2008.

271

CCCG 2018, Winnipeg, Canada, August 8–10, 2018

Approximate Data Depth Revisited

David Bremner ∗ Rasoul Shahsavarifar ∗

Abstract

Halfspace depth and β-skeleton depth are two types of
depth functions in nonparametric data analysis. The
halfspace depth of a query point q ∈ Rd with respect
to S ⊂ Rd is the minimum portion of the elements
of S which are contained in a halfspace which passes
through q. For β ≥ 1, the β-skeleton depth of q with
respect to S is defined to be the total number of β-
skeleton influence regions that contain q, where each
of these influence regions is the intersection of two hy-
perballs obtained from a pair of points in S. The β-
skeleton depth introduces a family of depth functions
that contain spherical depth and lens depth if β = 1
and β = 2, respectively. The main results of this pa-
per include approximating the planar halfspace depth
and β-skeleton depth using two different approximation
methods. First, the halfspace depth is approximated
by the β-skeleton depth values. For this method, two
dissimilarity measures based on the concepts of fitting
function and Hamming distance are defined to train the
halfspace depth function by the β-skeleton depth values
obtained from a given data set. The goodness of this
approximation is measured by a function of error val-
ues. Secondly, computing the planar β-skeleton depth is
reduced to a combination of some range counting prob-
lems. Using existing results on range counting approxi-
mations, the planar β-skeleton depth of a query point is
approximated in O(n poly(1/ε, log n)), β ≥ 1. Regard-
ing the β-skeleton depth functions, it is also proved that
this family of depth functions converge when β → ∞.
Finally, some experimental results are provided to sup-
port the proposed method of approximation and con-
vergence of β-skeleton depth functions.

1 Introduction

Data depth is a method to generalize the concept of
rank in the univariate data analysis to the multivari-
ate case. Data depth measures the centrality of a
data point with respect to a dataset, and it gives a
center-outward ordering of data points. In other words,
applying a data depth on a dataset generates a partial
ordered set (poset) of the data points. A poset is a
set together with a partial ordering relation which is

∗Faculty of Computer Science, University of New Brunswick,
Fredericton, NB, Canada, {bremner,ra.shahsavari}@unb.ca

reflexive, antisymmetric and transitive. Over the last
decades various notions of data depth such as halfs-
pace depth (Hotelling [15, 28]; Tukey [30]), simplicial
depth (Liu [19]) Oja depth (Oja [21]), regression depth
(Rousseeuw and Hubert [22]), and others have been
introduced in the area of non-parametric multivariate
data analysis. These depth functions are different in
application, definition, and complexity of computation.
Among the different notions of data depth, we focus
on halfspace depth and a recently defined data depth
named β-skeleton depth (Yang and Modarres [32]).

In 1975, Tukey generalized the definition of uni-
variate median and defined the halfspace median as
a point in which the halfspace depth is maximized,
where the halfspace depth is a multivariate measure of
centrality of data points. Halfspace depth is also known
as Tukey depth or location depth. In general, the half-
space depth of a query point q with respect to a given
data set S is the smallest portion of data points that
are contained in a closed halfspace through q [6, 30].
The halfspace depth function has various properties
such as vanishing at infinity, affine invariance, and
decreasing along rays. These properties are proved in
[10]. Many different algorithms for the computation
of halfspace depth in lower dimensions have been
developed elsewhere [6, 7, 8, 24]. The bivariate and
trivariate case of halfspace depth can be computed
exactly in O(n log n) and O(n2 log n) time [23, 29],
respectively. However, computing the halfspace depth
of a query point with respect to a data set of size n in
dimension d is an NP-hard problem if both n and d
are part of the input [16]. Due to the hardness of the
problem, designing efficient algorithms to compute (or
approximate) the halfspace depth of a point remains
an interesting task in the research area of data depth
[5, 9]. Some results on ε-approximation of halfspace
depth can be found in [1, 3, 14].

In 2017, Yang and Modarres introduced a family
of depth functions called β-skeleton depth, indexed by
a single parameter β ≥ 1. The β-skeleton depth of a
query point q ∈ Rd with respect to a given data set S
is defined as the portion of β-skeleton influence regions
that contain q. The influence regions of β-skeleton
depth are the multidimensional generalization of lunes
in the definition of the β-skeleton graph [17]. A notable
characteristic of the β-skeleton depth is related to its

272

30th Canadian Conference on Computational Geometry, 2018

time complexity that grows linearly in the dimension d
whereas no polynomial algorithms (in the dimension)
in higher dimensions are known for most other data
depths. To the best of our knowledge, the current best
algorithm for computing the β-skeleton depth in higher
dimension d is the straightforward algorithm which
takes Θ(dn2). The authors, in their previous work [26],
improved this bound for the planar β-skeleton depth.
They developed an O(n3/2+ε) algorithm for all values
of β ≥ 1, and a Θ(n log n) algorithm for the special case
of β = 1. Spherical depth (Elmore, Hettmansperger,
and Xuan [11]) and lens depth (Liu and Modarres [20])
can be obtained from β-skeleton depth by considering
β = 1 and β = 2, respectively. It is known that the
β-skeleton depth function is monotonic, maximized at
the center, and vanishing at infinity. The β-skeleton
depth function is also orthogonally (affinely) invariant
if the Euclidean (Mahalanobis) distance is used to con-
struct the β-skeleton influence regions [11, 20, 31, 32].

The concept of data depth is widely studied by
statisticians and computational geometers. Some di-
rections that have been considered by researchers
include defining new depth functions, improving the
complexity of computations, computing both exact
and approximate depth values, and computing depth
functions in higher dimensions. Two surveys by Aloupis
[2] and Small [28] can be referred to as overviews of
data depth from a computational geometer’s and a
statistician’s point of view, respectively.

In this paper, different methods are presented to
approximate the halfspace and β-skeleton depth func-
tions. Computing the β-skeleton depth is reduced
to a combination of range counting problems. Using
different range counting approximations in [4, 13, 27],
the planar β-skeleton depth (β ≥ 1) of a given point
is approximated in O(n poly(1/ε, log n)) query time.
Furthermore, we propose a technique to approximate
the halfspace depth using the β-skeleton depth. In
this method, two dissimilarity measures based on the
concepts of fitting function and Hamming distance are
defined to train the halfspace depth function by the
β-skeleton depth values obtaining from a given data
set. The goodness of approximation can be measured
by the sum of square of error values. We also show that
β-skeleton depth functions converge when β → ∞. Fi-
nally, some experimental results are provided regarding
our proposed method of approximation.

2 Halfspace Depth

Definition: The halfspace depth of a query point q ∈
Rd with respect to a given data set S = {x1, ..., xn} ⊆
Rd is defined as the minimum portion of points of S con-

tained in any closed halfspace that has q on its bound-
ary. Using the notation of HD(q;S), the above definition
can be presented by (1).

HD(q;S) =
2

n
min{|S ∩H| : H ∈ H}, (1)

where 2/n is the normalization factor1, H is the class of
all closed halfspaces in Rd that pass through q, and |S∩
H| denotes the number of points within the intersection
of S and H. As illustrated in Figure 1, HD(q1;S) =
6/13 and HD(q2;S) = 0, where S is a given set of points
in the plane and q1, q2 are two query points not in S.

Figure 1: Two examples of halfspace depth in the plane

3 β-skeleton Depth

Definition: For 1 ≤ β ≤ ∞, the β-skeleton influence
region of xi and xj (Sβ(xi, xj)) is defined as follows:

Sβ(xi, xj) = B(ci, r) ∩B(cj , r), (2)

where r = β
2 ‖xi − xj‖, ci = β

2xi + (1 − β
2)xj , and

cj = (1− β
2)xi + β

2xj .

In the case of β = ∞, the β-skeleton influence
region is well defined, and it is a slab defined by two
halfspaces. Figure 2 shows the β-skeleton influence
regions for different values of β.

Definition: Let S = {x1, ..., xn} be a set of points in
Rd. For the parameter 1 ≤ β ≤ ∞, the β-skeleton
depth of a query point q ∈ Rd with respect to S, is
defined as the proportion of the β-skeleton influence re-
gions Sβ(xi, xj), 1 ≤ i < j ≤ n that contain q. Using the

1Instead of the normalization factor 1/n which is common in
literature, we use the normalization factor 2/n in order to let the
depth of 1 to be achievable.

273

CCCG 2018, Winnipeg, Canada, August 8–10, 2018

Figure 2: The β-skeleton influence regions defined by
xi and xj for β=1, 2, 3, and β = ∞, where c =

xi+xj
2 ,

ci = 3
2xi + (1− 3

2)xj , and cj = (1− 3
2)xi + 3

2xj

indicator function I, this definition can be represented
by Equation (3).

SkDβ(q;S) =
1(
n
2

)
∑

1≤i<j≤n
I(q ∈ Sβ(xi, xj)) (3)

It can be verified that q ∈ Sβ(xi, xj) is equivalent to the

inequality of β2 ‖xi−xj‖ ≥ max{‖q− ci‖, ‖q− cj‖}. The
straightforward algorithm for computing the β-skeleton
depth of q ∈ Rd takes Θ(dn2) time because the above
inequality should be checked for all 1 ≤ i, j ≤ n.

4 Dissimilarity Measures

In this section, two different types of dissimilarity mea-
sures for depth functions are introduced.

4.1 Fitting Functions and Dissimilarity Measures

To determine the dissimilarity between two vectors U =
(u1, ..., un) and V = (v1, ..., vn), the idea of fitting func-
tions can be applied. Considering the goodness mea-
sures of fitting functions, assume that f is the best func-
tion fitted to U and V which means that ui = f(vi)±δi.
Let ξi = ui−U , where U is the average of ui (1 ≤ i ≤ n).
We define the dissimilarity measure between U and V
(dE(U, V)) to be a function of δi and ξi as follows:

dE(U, V) = 1− r2, (4)

where r2 is the coefficient of determination [25] which
is defined by:

r2 =

n∑
i=1

(ξ2i − δ2i)

n∑
i=1

ξ2i

. (5)

Since r2 ∈ [0, 1], dE(U, V) ∈ [0, 1]. A smaller value of
dE(U, V) represents more similarity between U and V .

Definition: Let S = {x1, ..., xn} be a finite set. It is
said that P = (S,�) is a partially ordered set (poset)
if � is a partial order relation on S, that is, for all
xi, xj , xt ∈ S: (a) xi � xi; (b) xi � xj and xj � xt
implies that xi � xt; (c) xi � xj and xj � xi implies
that xi ≡p xj , where ≡p is the corresponding equiva-
lency relation.
Poset P = (S,�) is called a chain if any two elements of
S are comparable, i.e., given xi, xj ∈ S, either xi � xj
or xj � xi. If there is no comparable pair among the
elements of S, the corresponding post is an anti chain.
Figure 3 illustrates different posets with the same ele-
ments.

Figure 3: Different posets and relations among their
elements

4.2 Dissimilarity Measures Between two Posets

The idea of defining the following distance comes from
the proposed structural dissimilarity measure between
posets in [12]. Let P = {Pt = (S,�t)|t ∈ N} be a finite
set of posets, where S = {x1, ..., xn}. For Pk ∈ P we
define a matrix Mk

n×n by:

Mk
ij =

{
1 xi �k xj
0 otherwise.

We use the notation of dc(Pf , Pg) to define a dissimilar-
ity between two posets Pf , Pg ∈ P as follows:

dc(Pf , Pg) =

n∑
i=1

n∑
j=1

|Mf
ij −Mg

ij |

n2 − n (6)

It can be verified that dc(Pf , Pg) ∈ [0, 1], where the
closer value to 1 means the less similarity between Pf
and Pg. This measure of similarity is a metric on P
because for all Pf , Pg, Ph ∈ P,

• dc(Pf , Pg) ≥ 0

• dc(Pf , Pg) = 0⇔ Pf = Pg

274

30th Canadian Conference on Computational Geometry, 2018

• dc(Pf , Pg) = dc(Pg, Pf)

• dc(Pf , Ph) ≤ dc(Pf , Pg) + dc(Pg, Ph).

Proving these properties is straightforward. The proof
of last property which is less trivial can be found in
Appendix (see Lemma 3).

5 Approximation of Halfspace Depth

We propose a method, which is different from other ap-
proximation methods in the literatures, to approximate
the halfspace depth. Motivated by statistical applica-
tions and machine learning techniques, we train the half-
space depth function using the values of another depth
function. Among all depth functions, the β−skeleton
depth is chosen to approximate the halfspace depth be-
cause it is easy to compute and its time complexity, i.e.
O(dn2), grows linearly in higher dimension d.

5.1 Approximation of Halfspace Depth and Fitting
Function

Suppose that S = {x1, ..., xn} is a set of data points.
By choosing some subsets of S as training samples, we
consider the problem of learning the halfspace depth
function using the β−skeleton depth values. Finally,
by applying the cross validation techniques in machine
learning, the best function f can be obtained such that
HD(xi;S) = f(SkDβ(xi;S)) ± δi. The function f can
be considered as an approximation function for halfs-
pace depth, where the value of dE(HD,SkDβ) that can
be computed using Equation (4) is the error of approx-
imation.

5.2 Approximation of Halfspace Depth and Poset
Dissimilarity

In some applications, the structural ranking among the
elements of S is more important than the depth value of
single points. Let S = {x1, ..., xn} be a set of points and
D be a depth function. Applying D on xi with respect
to S generates a poset. In fact, PD = (D(xi;S),≤)
is a chain because for every xi, xj ∈ S, the values of
D(xi;S) and D(xj ;S) are comparable. For halfspace
depth and β-skeleton depth, their dissimilarity measure
of rankings can be obtained by Equation (6) as follows:

dc(HD,SkDβ) =

n∑
i=1

n∑
j=1

|MHD
ij −M

SkDβ
ij |

n2 − n .

The smaller value of dc(HD,SkDβ), the more similar-
ity between HD and SkDβ in ordering the elements of S.

In sections 5.1 and 5.2, instead of β-skeleton, any
other depth function can be considered to approximate

halfspace depth. Considering any other depth function,
we can compute the goodness of approximation using
dissimilarity measures dE and dc.

Conjecture 1 For two depth functions D1 and D2, the
small value of dc(D1, D2) implies the small value of
dE(D1, D2) and vice versa.

6 Approximation of β-skeleton Depth

The convergence of β-skeleton depth functions when
β →∞ is investigated in this section. Furthermore, the
problem of planar β-skeleton depth is reduced to a com-
bination of disk and halfspace range counting problems.
This reduction is applied to approximate the planar β-
skeleton depth using range counting approximations.

6.1 Convergence of β-skeleton Depth Functions

The following theorem helps understand the definition
of SkD∞ in Equation (3).

Theorem 1 If β → ∞, all β-skeleton depth func-
tions converge to SkD∞. In other words, for data set
S = {x1, ..., xn} and query point q,

lim
β→∞

SkDβ(q;S)

SkD(β+1)(q;S)
= 1. (7)

Proof. Referring to (3), the definition of β-skeleton
depth, it is enough to prove that if β →∞,

∀xi, xj ∈ S; Sβ(xi, xj) = S(β+1)(xi, xj). (8)

It is proved that Sβ(xi, xj) ⊆ S(β+1)(xi, xj), and uβ =
u(β+1) if β → ∞ (see Lemma 4 and 5 in Appendix),
where uβ is a fixed intersection point of B(ci, r) and
B(cj , r) (see figure 4). Since the influence regions of
β-skeleton depth functions are closed and convex, the
proof is complete if

lim
β→∞

A(Sβij)

A(S(β+1)ij)
= 1, (9)

where A(Sβij) is the area of Sβ(xi, xj). It can be verified
that A(Sβij) is equal to θr2 − da, where l = d(xi, xj),

a = (l/2)
√

(2β − 1), r = βl/2, θ = cos−1((β − 1)/β),
and d = (β − 1)l. See Figure 4.

A(Sβij)

A(S(β+1)ij)
=
β2 cos−1[(β − 1)/β]− (β − 1)

√
2β − 1

(β + 1)2 cos−1[β/(β + 1)]− β√2β + 1

Equation (9) is proved because

lim
β→∞

cos−1
(
β − 1

β

)
= lim
β→∞

cos−1
(

β

β + 1

)
= 0.

�

275

CCCG 2018, Winnipeg, Canada, August 8–10, 2018

Figure 4: An illustration of d, a, r, l, and θ.

6.2 ε−approximation of Planar β-skeleton Depth

In this section, we prove that for S = {x1, ..., xn} ⊂ R2

and q ∈ R2, computing SkDβ(q;S) is equivalent to
at most 3n semialgebraic range counting problems.
This result can be applied to approximate the planar
β-skeleton depth in O(n poly(1/ε, log n)) query time
with O(n poly(1/ε, log n)) storage and the same bound
for preprocessing time.

Given a set S = {x1, ..., xn} ⊂ R2, a semialge-
braic range τ with constant description complexity, and
a parameter ε > 0, S can be preprocessed into a data
structure that helps to efficiently compute an approxi-
mated count ητ which satisfies the (ε, τ)-approximation
given by:

(1− ε)|S ∩ τ | ≤ ητ ≤ (1 + ε)|S ∩ τ |.

Considering S and ε as introduced above, a short list of
recent results for approximation of some semialgebraic
range counting problems in R2 is as follows. To obtain
an ε-approximation of β-skeleton depth, we use these
results as black boxes.

• Halfspace: With O(npoly(1/ε, log n)) preprocess-
ing time, one can construct a data structure of size
O(npoly(1/ε, log n)) such that for a given halfspace
~, it outputs a number η~ that satisfies the (ε, ~)-
approximation with query time O(poly(1/ε, log n)).
For points in R3, the same results can be obtained
[13].

• Disk: By standard lifting of planar points to the
paraboloid in R3, one can reduce a disk range query
in the plane to a halfspace range query in three
dimensions [13].

• Circular cap: A circular cap is the larger part of
a circle cut by a line. In near linear time, S can
be preprocessed into a linear size data structure
that returns the emptiness result of any circular cap

query in O(poly log n). With O(ε−2T (n) log n) pre-
processing time and O(ε−2S(n) log n) storage, one
can construct a data structure such that for a given
circular cap ρ, it returns in O(ε−2Q(n) log n) time,
a number ηρ that satisfies the (ε, ρ)-approximation.
Both of T (n) and S(n) are near linear and Q(n) is
the time for an emptiness query of ρ [27].

Definition: For an arbitrary non-zero point a ∈ R2

and parameter β ≥ 1, `(p) is a line that is perpendic-
ular to −→a at the point p = p(a, β) = (β − 1)a/β. This
line forms two halfspaces Ho(p) and Ha(p). The one
that includes the origin is Ho(p) and the other one that
includes a is Ha(p).

Definition: For a disk B(c, r) with center
c = c(a, β) = βa/(2(β − 1)) and radius r = ‖c‖,
Bo(c, r) is the intersection of Ho(p) and B(c, r), and
Ba(c, r) is the intersection of Ha(p) and B(c, r), where
β > 1 and a is an arbitrary non-zero point in R2.

Figure 5 is an illustration of these definitions for
different values of parameter β.

Theorem 2 For arbitrary non-zero points a, b in R2

and parameter β > 1, b ∈ Ho(p) \ {intBo(c, r)} if and
only if the origin O = (0, 0) is contained in Sβ(a, b),
where c = βa/(2(β − 1)), r = ‖c‖, and p = (β − 1)a/β.

Proof. First, we show that Bo(c, r) is a well-defined
set meaning that `(p) intersects B(c, r). We compute
d(c, `(p)), the distance of c from `(p), and prove that
this value is not greater than r. It can be verified that
d(c, `(p)) = d(c, p). Let k = β/(2(β − 1)); the following
calculations complete this part of the proof.

d(c, p) = d

(
βa

2(β − 1)
,

(β − 1)a

β

)
= d

(
ka,

1

2k
a

)

=

(
k − 1

2k

)√
(ax2 + ay2) =

(
2k2 − 1

2k

)
‖a‖

≤ 2k2

2k
‖a‖ = k‖a‖ = r

We recall the definition of β-influence region given by
Sβ(a, b) = B(ca,

β
2 ‖a − b‖) ∩ B(cb,

β
2 ‖a − b‖), where

ca = β
2 a + (1 − β

2)b and cb = β
2 b + (1 − β

2)a. Using
this definition, the following equivalencies can be de-
rived from O ∈ Sβ(a, b).

O ∈ Sβ(a, b)⇔ β‖a− b‖
2

≥ max{‖ca‖, ‖cb‖} ⇔

β‖a− b‖ ≥ max{‖β(a− b) + 2b‖, ‖β(b− a) + 2a‖} ⇔
β2‖a− b‖2 ≥ max{‖β(a− b) + 2b‖2, ‖β(b− a) + 2a‖2}

276

30th Canadian Conference on Computational Geometry, 2018

Figure 5: The Ho(p) and B(c, r) defined by a ∈ R2 for β = 1, 1.5, 2, and β →∞, where A = Ho(p) \ {intBo(c, r)}

⇔ 0 ≥ max{b2(1− β) + β−→a .−→b , a2(1− β) + β−→a .−→b }.

By solving these inequalities for (β−1)/β which is equal
to 1/2k, we have:

1

2k
≥ max

{−→a .−→b
‖a‖2 ,

−→a .−→b
‖b‖2

}
. (10)

For a fixed point a, the inequalities in Equation (10)
determine one halfspace and one disk given by (11) and
(12), respectively.

1

2k
≥
−→a .−→b
‖a‖2 ⇔

−→a .−→b ≤ 1

2k
‖a‖2. (11)

1

2k
≥
−→a .−→b
‖b‖2 ⇔ b2 − 2k−→a .−→b ≥ 0

⇔ b2 − 2k−→a .−→b + k2a2 ≥ k2a2

⇔ (b− ka)
2 ≥ (k‖a‖)2 .

(12)

The proof is complete because for a point a, the set of
all points b contained in the feasible region defined by
Equations (11) and (12) is equal to
Ho(p) \ {intBo(c, r)}. �

Note 1: It can be verified that for the value of β = 2+√
2, the given halfspace in (11) passes through the center

of the given disk in (12). See Lemma 6 in Appendix.

Note 2: The range counting approximations work
after translating the points of S by −q.

For S = {x1, ..., xn} ⊂ R2 and xi ∈ S, let ~(xi)
be the given halfspace by (11), and B(xi) be the given
disk by (12). From Theorem 2, it can be deduced that
we need to do

• n halfspace range counting approximations to ap-
proximate SkD1(q;S) because

SkD1(q;S) =
1

2

n∑

i=1

|~(xi)|.

• n halfspace and n disk range counting approxima-
tions to approximate SkD∞(q;S) because

SkD∞(q;S) =
1

2

n∑

i=1

(|~(xi)| − |B(xi)|).

• n halfspace, n disk, and n circular cap range count-
ing approximations to approximate SkDβ(q;S), for
1 < β < 2 +

√
2, because

SkDβ(q;S) =
1

2

n∑

i=1

(|~(xi)| − |B(xi)|+ |ρ(xi)|),

where ρ(xi) is the circular cap obtained from b(xi)
cut by ~(xi).

• n halfspace and n circular cap range counting
approximations to approximate SkDβ(q;S), for
2 +

√
2 ≤ β <∞, because

SkDβ(q;S) =
1

2

n∑

i=1

(|~(xi)| − |ρ(xi)|).

7 Experimental Results

In this section some experimental results are provided
to support Section 5 and Theorem 1. We compute the
planar halfspace depth and planar β-skeleton depth of
q ∈ Q with respect to S for different values of β, where
Q and S are sets of randomly generated points (with
double precision floating point coordinates) of sizes 1000
and 2500, respectively. The results of our experiments
are summarized in Table 1 and its corresponding fig-
ures provided in Appendix. The columns 2− 4 of Table
1 show that the halfspace depth can be approximated
by a quadratic function of the β-skeleton depth with a
relatively small value of dE(SkD,HD) u 0.003. In par-
ticular, HD u 4.3(SkDβ)2− 2.8(SkDβ) + 0.47 if β →∞.
Columns 5− 7 include the experimental results to sup-
port Theorem 1.

277

CCCG 2018, Winnipeg, Canada, August 8–10, 2018

Acknowledgment: The authors would like to thank
Joseph O’Rourke and other attendees of CCCG2017
for inspiring discussions regarding the relationships be-
tween depth functions and posets.

References

[1] Peyman Afshani and Timothy M Chan. On approxi-
mate range counting and depth. Discrete & Computa-
tional Geometry, 42(1):3–21, 2009.

[2] Greg Aloupis. Geometric measures of data depth. DI-
MACS series in discrete mathematics and theoretical
computer science, 72:147, 2006.

[3] Bagchi, Amitabha and Chaudhary, Amitabh and Epp-
stein, David and Goodrich, Michael T. Deterministic
sampling and range counting in geometric data streams.
ACM Transactions on Algorithms (TALG), 3(2), 2007.

[4] Boris Aronov and Sariel Har-Peled. On approximat-
ing the depth and related problems. SIAM Journal on
Computing, 38(3):899–921, 2008.

[5] Boris Aronov and Micha Sharir. Approximate halfs-
pace range counting. SIAM Journal on Computing,
39(7):2704–2725, 2010.

[6] David Bremner, Dan Chen, John Iacono, Stefan
Langerman, and Pat Morin. Output-sensitive algo-
rithms for tukey depth and related problems. Statistics
and Computing, 18(3):259–266, 2008.

[7] David Bremner, Komei Fukuda, and Vera Rosta.
Primal-dual algorithms for data depth. DIMACS se-
ries in discrete mathematics and theoretical computer
science, 72:147, 2006.

[8] Timothy M Chan. An optimal randomized algorithm
for maximum tukey depth. In Proceedings of the fif-
teenth annual ACM-SIAM symposium on Discrete al-
gorithms, pages 430–436. Society for Industrial and Ap-
plied Mathematics, 2004.

[9] Dan Chen, Pat Morin, and Uli Wagner. Absolute ap-
proximation of tukey depth: Theory and experiments.
Computational Geometry, 46(5):566–573, 2013.

[10] David L Donoho and Miriam Gasko. Breakdown prop-
erties of location estimates based on halfspace depth
and projected outlyingness. The Annals of Statistics,
pages 1803–1827, 1992.

[11] Ryan T Elmore, Thomas P Hettmansperger, and
Fengjuan Xuan. Spherical data depth and a multivari-
ate median. DIMACS Series in Discrete Mathematics
and Theoretical Computer Science, 72:87, 2006.

[12] Marco Fattore, Rosanna Grassi, and Alberto Arcagni.
Measuring structural dissimilarity between finite partial
orders. In Multi-indicator Systems and Modelling in
Partial Order, pages 69–84. Springer, 2014.

[13] Sariel Har-Peled. Geometric approximation algorithms.
Number 173. American Mathematical Soc., 2011.

[14] Sariel Har-Peled and Micha Sharir. Relative (p, ε)-
approximations in geometry. Discrete & Computational
Geometry, 45(3):462–496, 2011.

[15] Harold Hotelling. Stability in competition. In The
Collected Economics Articles of Harold Hotelling, pages
50–63. Springer, 1990.

[16] David S. Johnson and Franco P Preparata. The dens-
est hemisphere problem. Theoretical Computer Science,
6(1):93–107, 1978.

[17] David G Kirkpatrick and John D Radke. A framework
for computational morphology. In Machine Intelligence
and Pattern Recognition, volume 2, pages 217–248. El-
sevier, 1985.

[18] Regina Y Liu. Data depth: robust multivariate analysis,
computational geometry, and applications, volume 72.
American Mathematical Soc., 2006.

[19] Regina Y Liu et al. On a notion of data depth based on
random simplices. The Annals of Statistics, 18(1):405–
414, 1990.

[20] Zhenyu Liu and Reza Modarres. Lens data depth
and median. Journal of Nonparametric Statistics,
23(4):1063–1074, 2011.

[21] Hannu Oja. Descriptive statistics for multivariate dis-
tributions. Statistics & Probability Letters, 1(6):327–
332, 1983.

[22] Peter J Rousseeuw and Mia Hubert. Regression
depth. Journal of the American Statistical Association,
94(446):388–402, 1999.

[23] Peter J Rousseeuw and Ida Ruts. Algorithm as 307:
Bivariate location depth. Journal of the Royal Statis-
tical Society. Series C (Applied Statistics), 45(4):516–
526, 1996.

[24] Peter J Rousseeuw and Anja Struyf. Computing loca-
tion depth and regression depth in higher dimensions.
Statistics and Computing, 8(3):193–203, 1998.

[25] Douglas S Shafer and Z Zhang. Beginning statistics.
Phylis-Barnidge publisher, 304, 2012.

[26] Rasoul Shahsavarifar and David Bremner. Com-
puting the planar β-skeleton depth. arXiv preprint
arXiv:1803.05970, 2018.

[27] Hayim Shaul. Range Searching: Emptiness, Report-
ing, and Approximate Counting. University of Tel-Aviv,
2011.

[28] Christopher G Small. A survey of multidimensional
medians. International Statistical Review/Revue Inter-
nationale de Statistique, pages 263–277, 1990.

[29] Anja J Struyf and Peter J Rousseeuw. Halfspace depth
and regression depth characterize the empirical distri-
bution. Journal of Multivariate Analysis, 69(1):135–
153, 1999.

[30] John W Tukey. Mathematics and the picturing of data.
In Proceedings of the international congress of mathe-
maticians, volume 2, pages 523–531, 1975.

[31] Mengta Yang. Depth Functions, Multidimensional Me-
dians and Tests of Uniformity on Proximity Graphs.
PhD thesis, The George Washington University, 2014.

[32] Mengta Yang and Reza Modarres. β-skeleton depth
functions and medians. Communications in Statistics-
Theory and Methods, pages 1–17, 2017.

278

30th Canadian Conference on Computational Geometry, 2018

Appendix

Lemma 3 For posets A,B, C in P = {Pt = (S,�t)|t ∈ N},
dc(A,B) ≤ dc(A,C) + dc(C,B), where

dc(A,B) =

n∑
i=1

n∑
j=1

|MA
ij −MB

ij |

n2 − n
and

Mk
ij =

{
1 xi �k xj
0 otherwise.

Proof.

dc(Pf , Ph) =

n∑
i=1

n∑
j=1

|Mf
ij −Mh

ij |

n2 − n

=

n∑
i=1

n∑
j=1

|(Mf
ij −Mg

ij) + (Mg
ij −Mh

ij)|

n2 − n

≤

n∑
i=1

n∑
j=1

(|Mf
ij −Mg

ij |+ |Mg
ij −Mh

ij |)

n2 − n

=

n∑
i=1

n∑
j=1

|Mf
ij −Mg

ij |

n2 − n +

n∑
i=1

n∑
j=1

|Mg
ij −Mh

ij |

n2 − n
= dc(Pf , Pg) + dc(Pg, Ph).

�

Lemma 4 For β′ > β ≥ 1 and a, b ∈ R2, Sβ(a, b) ⊆
Sβ′(a, b), where Sβ(a, b) is the intersection of two disks
B(Cabβ , Rabβ) and B(Cbaβ , Rbaβ), Cabβ = (β/2)(a− b) + b,
and Rabβ = (β/2)d(a, b).

Proof. To prove that B(Cabβ , Rabβ) ∩ B(Cbaβ , Rbaβ)
is a subset of B(Cabβ′ , Rabβ′) ∩ B(Cbaβ′ , Rbaβ′), it is
enough to prove B(Cabβ , Rabβ) ⊆ B(Cabβ′ , Rabβ′) and
B(Cbaβ , Rbaβ) ⊆ B(Cbaβ′ , Rbaβ′). We only prove the first
one, and the second one can be proved similarly. Suppose
that β < β′ = β + ε; ε > 0. It is trivial to check that two
disks B(Cabβ , Rabβ) and B(Cabβ′ , Rabβ′) meet at b. See Fig-
ure 6. Let t 6= b be an extreme point of B(Cabβ , Rabβ). This
means that

d(t, Cabβ) = Rabβ ⇔ d(t,
β(a− b)

2
+ b) =

β(d(a, b))

2

⇔
∣∣∣∣
β(a− b)

2
+ (b− t)

∣∣∣∣
2

=

(
β(a− b)

2

)2

⇔ |b− t|2 − β(b− a) · (b− t) = 0

This means (b− a) · (b− t) ≥ 0. Hence,

|b− t|2 − β(b− a) · (b− t) = 0⇔
|b− t|2 − (β + ε)(b− a) · (b− t) < 0⇔
|b− t|2 − β′(b− a) · (b− t) < 0⇔
d(t, Cabβ′)−Rabβ′ < 0

The last inequality means that t is an interior point of
B(Cabβ′ , Rabβ′). �

Figure 6: Sβ(a, b) and Sβ′(a, b) .

Lemma 5 For a, b ∈ R2,

lim
β→∞

δ = lim
β→∞

(h(β+1)l − hβl) = 0, (13)

where hβl = (l/2)
√

(2β − 1). See Figure 6.

Proof. Instead of proving (13), we prove its equivalent form
as follows:

lim
β→∞

h(β+1)l

hβl
= lim
β→∞

(l/2)
√

(2β + 1)

(l/2)
√

(2β − 1)
= lim
β→∞

√
(2β + 1)√
(2β − 1)

= 1.

�

Lemma 6 For k = β/(2(β−1)) and a, b ∈ R2 (a is fixed and

b is arbitrary), halfspace −→a .−→b ≤ (1/2k)‖a‖2 passes through
the center of disk (b− ka)2 ≥ (k‖a‖)2 if β = 2 +

√
2.

Proof. It is enough to substitute b in the given halfspace
with ka which is the center of the given disk.

−→a .−−→(ka) ≤ 1

2k
‖a‖2 ⇒ k‖a‖2 ≤ 1

2k
‖a‖2 ⇒ 2k2 ≤ 1⇒

2(
β

2(β − 1)
)2 ≤ 1⇒ −β2 + 4β − 2 ≤ 0⇒ β = 2±

√
2

Since β ≥ 1, the β = 2 +
√

2 is valid. �

279

CCCG 2018, Winnipeg, Canada, August 8–10, 2018

Table 1: Summary of experimental results
x HD = f(x) dE(x,HD) Figure f(x,SkD∞) dE(x,SkD∞) Figure

SkD1 3.103x2 − 0.013x+ 0.013 0.0016 7 0.942x+ 0.288 0.007 12
SkD2 2.71x2 − 0.48x+ 0.04 0.0019 8 0.858x+ 0.23 0.002 13
SkD3 2.92x2 − 0.82x+ 0.08 0.0021 9 0.86x+ 0.192 0.001 14
SkD1000 4.26x2 − 2.76x+ 0.47 0.0031 10 0.999x+ 0.002 0.0 15
SkD10000 4.27x2 − 2.78x+ 0.47 0.0031 11 1.0x+ 0.0 0.0 16

Figure 7: HD versus SkD1.

Figure 8: HD versus SkD2.

Figure 9: HD versus SkD3.

Figure 10: HD versus SkD1000.

Figure 11: HD versus SkD10000.

Figure 12: SkD∞ versus SkD1.

280

30th Canadian Conference on Computational Geometry, 2018

Figure 13: SkD∞ versus SkD2.

Figure 14: SkD∞ versus SkD3.

Figure 15: SkD∞ versus SkD1000.

Figure 16: SkD∞ versus SkD10000.

281

CCCG 2018, Winnipeg, Canada, August 8–10, 2018

Approximate range closest-pair search

Jie Xue∗ Yuan Li† Ravi Janardan ‡

Abstract

The range closest-pair (RCP) problem, as a range-
search version of the classical closest-pair problem, aims
to store a dataset of points in some data structure such
that whenever a query range Q is given, the closest-pair
inside Q can be reported efficiently. This paper studies
an approximate version of the RCP problem in which
the answer pair is allowed to be “approximately” con-
tained in the query range. A general reduction from
the approximate RCP problem to the range-minimum
and range-reporting problems is given, which works for
a general class of query spaces. The reduction is applied
to obtain efficient approximate RCP data structures for
disk queries in R2 and ball queries in higher dimen-
sions. Finally, the paper also shows that for orthogonal
queries, the approximate RCP problem is (asymptoti-
cally) at least as hard as the orthogonal range-minimum
problem.

1 Introduction

The closest-pair problem, as one of the most fundamen-
tal problems in Computational Geomtry, finds many
real-world applications in similarity search and collision
detection, etc. In some scenarios, instead of finding the
global closest-pair, users are interested in computing the
closest-pair inside some specified query range. This re-
sults in the so-called range closest-pair (RCP) problem,
which aims to store a dataset of n points in some data
structure such that whenever a query range Q is given,
the closest-pair inside Q can be reported efficiently. The
RCP problem has been the subject of some recent pa-
pers [1, 4, 5, 6, 7, 9].

Unlike most traditional range-search problems, the
RCP problem is non-decomposable. That is, even if a
query range Q can be written as Q = Q1 ∪Q2, the an-
swer for Q cannot be obtained efficiently from the an-
swers for Q1 and Q2. Due to this non-decomposability,
many traditional range-search techniques are inappli-
cable to the RCP problem, which makes the problem
quite challenging. Even for very simple query types in
R2 (e.g., quadrants, strips, etc.), the RCP problem is
nontrivial. In higher dimensions, it is even not clear

∗University of Minnesota, Twin Cities, xuexx193@umn.edu
†Facebook Inc., lydxlx@fb.com
‡University of Minnesota, Twin Cities, janardan@umn.edu

how to build efficient data structures for answering RCP
queries.

When handling such a difficult range-search problem,
approximation could be helpful. In this paper, we study
an approximate version of the RCP problem, where
the approximation is defined with respect to the query
ranges. Specifically, we allow the returned point-pair to
be approximately (instead of strictly) contained in the
query range Q in the sense that one point of the pair
can be slightly outside Q but still within a small ex-
pansion of Q. For example, consider the disk query in
the plane. Given a query disk Q and an approximation
factor ε > 0 (which is part of the query), the data struc-
ture should return a pair (a, b) of points in the dataset
which satisfies the following conditions:
(i) the distance between a and b is at most the distance
of the closest-pair in Q.
(ii) a ∈ Q and b ∈ (1 + ε)Q, where (1 + ε)Q is the disk
obtained by expanding Q by a factor 1 + ε.
Such an approximation can be useful in many real-world
applications where the underlying data and/or query is
not known precisely anyway. We are interested in how
to build efficient data structures for this kind of approx-
imate RCP search.

1.1 Related work

The RCP problem has received attention in recent years
[1, 4, 5, 6, 7, 9]. The problem was for the first time in-
troduced in the work [6]. The papers [4, 5, 7] mainly
studied the RCP problem in R2 for orthogonal queries,
while the paper [1] considered halfplane queries. Very
recently, the previous results were all improved in [9]. In
the table below, we summarize the best known bounds
for various query types in R2 (Space refers to the space
cost of the data structure and Qtime refers to the query
time). In higher dimensions, the RCP problem is quite
open. To our best knowledge, even in R3, no RCP
data structure with guaranteed worst-case performance
is known currently.

1.2 Our contributions

As mentioned before, in this paper, we study the prob-
lem of building efficient data structures for approximate
RCP search. Throughout the paper, the query ranges
under consideration are always convex bodies (i.e., con-
vex compact subsets) in Rd. Let Q be a collection of

282

30th Canadian Conference on Computational Geometry, 2018

Query Source Space Qtime
Quadrant [9] O(n) O(log n)

Strip [9] O(n log n) O(log n)

Rectangle [9] O(n log2 n) O(log2 n)
Halfplane [9] O(n) O(log n)

Table 1: Summary of the best known bounds for the
RCP problem in R2.

convex bodies in Rd, called the query space. An approx-
imate Q-RCP data structure built on a dataset S in Rd
can return, for a specified query (Q, ε) where Q ∈ Q is
the query range and ε > 0 is the (user-specified) approx-
imation factor, a pair φ = (a, b) of points in S such that
(i) ‖b − a‖2 is at most the distance of the closest-pair
in S ∩Q and (ii) a ∈ Q, b ∈ (1 + ε)Q, where (1 + ε)Q
is the (1 + ε)-expansion of Q (see Section 2 for a precise
definition).

Our main contribution is a general reduction from
the approximate RCP problem to the range-reporting
and range-minimum problems for the same query space
(Theorem 1). Our reduction works for any query space
Q (consisting of convex bodies) whose elements have
width-diameter ratio lower-bounded by a positive con-
stant (this ratio will be explained Section 2). As con-
crete applications of the reduction, we obtain efficient
approximate RCP data structures for disk queries in
R2 (Corollary 3) and ball queries in higher dimensions
(Corollary 4). These query types have not been con-
sidered in previous work. Finally, we give a hardness
result which shows that, for orthogonal queries, the ap-
proximate RCP problem is (asymptotically) at least as
hard as the orthogonal range-minimum problem (The-
orem 5).

The rest of the paper is organized as follows. Sec-
tion 2 presents some preliminaries. (We suggest the
reader reads this section carefully before moving on.)
The general reduction is given in Section 3, while its
applications are given in Section 4. In Section 5, we
present the hardness result.

2 Preliminaries

Point-pairs and closest-pair. For a pair φ = (a, b) of
points in Rd, the length of φ, denoted by |φ|, is referred
to the distance between a and b, i.e., |φ| = ‖a−b‖2. The
closest-pair (in a set of points) is the pair of (distinct)
points with minimum length. For a point-set S, we
denote by κ(S) the closest-pair distance of S, i.e., the
length of the closest-pair in S.

Slabs. A slab in Rd is a closed region bounded by two
distinct parallel hyperplanes in Rd. The thickness of a
slab L, denoted by thk(L), is the distance between its
two bounding hyperplanes. Note that for any slab in Rd,
we can always write the equations of its two bounding

hyperplanes as
∑d
i=1 aixi+b = −1 and

∑d
i=1 aixi+b =

1 for some a1, . . . , ad, b ∈ R.

Diameter, width, and directional width. Let X
be a convex body in Rd, and LX be the collection of all
minimal (with respect to the partial order of “⊆”) slabs
enclosing X. For a unit vector u in Rd, the directional
width of X in the direction u, denoted by widu(X), is
defined as

widu(X) = sup
x∈X
〈u, x〉 − inf

x∈X
〈u, x〉,

where 〈·, ·〉 denotes the inner product. Equivalently,
widu(X) is the thickness of the slab L ∈ LX whose
two bounding hyperplanes are perpendicular to u. The
diameter diam(X) of X is defined as diam(X) =
supu(widu(X)) for u taken over all unit vectors in Rd,
while the width wid(X) of X is defined as wid(X) =
infu(widu(X)). Equivalently, we can also define the
diameter and width as diam(X) = supL∈LX

(thk(L))
and wid(X) = infL∈LX

(thk(L)). The width-diameter
ratio of X, denoted by γ(X), is defined as γ(X) =
wid(X)/diam(X). If X is a collection of convex bod-
ies in Rd, we define the width-diameter ratio of X as
γ(X) = infX∈X γ(X).

Expansion of a convex body. In order to introduce
our result, we need to formally define what we mean
by “expanding” a convex body. Let X be a convex
body in Rd. If X is a ball, then expanding X (by a
factor δ ≥ 1) can be simply defined as scaling X with
respect to the center of X by a factor of δ. This defi-
nition can be naturally generalized to a general convex
body as follows. For a slab L bounded by two hyper-
planes

∑d
i=1 aixi + b = −1 and

∑d
i=1 aixi + b = 1,

we define the δ-expansion of L (for δ ≥ 1), denoted
by δL, as the slab bounded by the two hyperplanes∑d
i=1 aixi + b = −δ and

∑d
i=1 aixi + b = δ. Let LX be

the collection of all minimal (with respect to the partial
order of “⊆”) slabs enclosing X. Then we define the
δ-expansion of X, denoted by δX, as δX =

⋂
L∈LX

δL.
Under this definition, the 1-expansion of X is X itself
(since X =

⋂
L∈LX

L). Furthermore, as one can easily
verify, widu(δX) = δwidu(X) for any unit vector u.

3 A general reduction

Let Q be a collection of convex bodies in Rd. Recall
that an approximate Q-RCP data structure built on a
dataset S in Rd can return, for a specified query (Q, ε)
where Q ∈ Q is the query range and ε > 0 is the ap-
proximation factor, a pair φ = (a, b) of points in S such
that (i) ‖b−a‖2 ≤ κ(S∩Q) and (ii) a ∈ Q, b ∈ (1+ε)Q.
Note that here ε is specified in the query and needs not
to be known beforehand.

Our main result is a reduction from the approxi-
mate RCP problem to the range-reporting and range-

283

CCCG 2018, Winnipeg, Canada, August 8–10, 2018

minimum problems for the same query space. This re-
duction works for any query space Q (consisting of con-
vex bodies) satisfying γ(Q) > 0.

Theorem 1 Let Q be a fixed collection of convex bod-
ies in Rd satisfying γ(Q) > 0. Given a range-minimum
data structure D1 and a range-reporting data structure
D2 for query space Q, one can build an approximate Q-
RCP data structure D such that
• If the space of D1 is s1(n) and the space of D2 is s2(n),
then the space of D is O(s1(n) + s2(n)).
• If the query time of D1 is q1(n) and the query time of
D2 is q2(n, k) where k is the number of points to be re-
ported, then the query time of D is O(q1(n)+q2(n, ε−d)+
ε−d log(1/ε)) where ε is the parameter specified in the
query.
• If the preprocessing time of D1 is p1(n) and the pre-
processing time of D2 is p2(n), then the preprocessing
time of D is O(p1(n) + p2(n) + n log n).

The rest of this section is dedicated to proving the
above result. To this end, we first describe the con-
struction of the desired data structure in Theorem 1,
and then analyze its space, query time, and preprocess-
ing time. Let S be the given dataset in Rd of size n. We
want to build an approximate Q-RCP data structure D
on S, given the range-minimum data structure D1 and
the range-reporting data structure D2.

Data structure. For a point a ∈ S, let nn(a) ∈ S
denote the nearest neighbor of a in S\{a}. We associate
the information of nn(a) with the point a for all a ∈ S.
Define a weight function w : S → R as w(a) = ‖nn(a)−
a‖2. This gives us a weighted dataset S = (S,w). We
build on S the range-minimum data structure D1. Also,
we build on S the range-reporting data structure D2.
Then our approximate Q-RCP data structure D (built
on S) simply consists of D1 and D2.

Query algorithm. Let (Q, ε) be a query, where Q ∈ Q
is the query range and ε > 0 is the approximation fac-
tor. Our query algorithm consists of two phases. In the
first phase, we use the range-minimum data structure
D1 to find the point a∗ ∈ S ∩ Q with the minimum
weight. If w(a∗) ≤ εwid(Q), then we report the pair
(a∗, nn(a∗)) and terminate the query process. Other-
wise, we proceed to the second phase. In the second
phase, we use the range-reporting data structure D2 to
report all the points in S ∩ Q. Then we simply run
the standard divide-and-conquer closest-pair algorithm
on S ∩ Q to find the closest-pair and report it as the
answer.

Correctness. Let φ be the answer returned by our
query algorithm. If φ is reported in the second phase,
then it is in fact the closest-pair in S ∩ Q and hence
our algorithm is clearly correct (as |φ| = κ(S ∩Q) and
both points of φ are contained in Q). Suppose φ is re-
ported in the first phase. Then φ = (a∗, nn(a∗)) where

a∗ is the point in S ∩ Q with the minimum weight.
Assume (s, t) is the closest-pair in S ∩ Q. We see
‖nn(a∗) − a∗‖2 = w(a∗) ≤ w(s) = ‖nn(s) − s‖2 ≤
‖t − s‖2 = κ(S ∩ Q). Next, we show that a∗ ∈ Q
and nn(a∗) ∈ (1 + ε)Q, whence the correctness of our
algorithm is verified. We have a∗ ∈ Q by the def-
inition of a∗. To see nn(a∗) ∈ (1 + ε)Q, let L be
any minimal (with respect to the partial order of “⊆”)
slab enclosing Q. The thickness thk(L) of L is at
least wid(Q). Furthermore, we have dist(nn(a∗), L) ≤
dist(nn(a∗), Q) ≤ ‖nn(a∗)− a∗‖2 ≤ εwid(Q) ≤ εthk(L),
where dist(nn(a∗), L) (resp., dist(nn(a∗), Q)) denotes
the minimum distance between nn(a∗) and a point in
L (resp., Q), which is zero when nn(a∗) ∈ L (resp.,
nn(a∗) ∈ Q). Hence, we have nn(a∗) ∈ (1 + ε)L, which
implies nn(a∗) ∈ (1 + ε)Q (as the slab L is arbitrarily
chosen). See Figure 1 for an intuitive illustration. Since
‖nn(a∗)−a∗‖2 ≤ κ(S∩Q) and a∗ ∈ Q, nn(a∗) ∈ (1+ε)Q,
our algorithm is correct.

Q

a∗

nn(a∗)

L

(1 + ε)L

Figure 1: nn(a∗) ∈ (1 + ε)L because ‖nn(a∗) − a∗‖2 ≤
εwid(Q) ≤ εthk(L).

Analysis. We now show that the space, query time,
and preprocessing time of our data structure D sat-
isfy the requirements in Theorem 1. The space of D
is clearly O(s1(n) + s2(n)), as it just consists of D1 and
D2. To analyze the query time of D, we observe that
there are not too many points reported in the second
phase.

Lemma 2 The number of the points reported in the sec-
ond phase is bounded by O(ε−d).

Proof. Recall that in the query algorithm, we proceed
to the second phase only if w(a∗) > εwid(Q). Since a∗

is the point in S∩Q with the minimum weight, we have
w(a) > εwid(Q) for all a ∈ S ∩ Q, i.e., ‖nn(a) − a‖2 >
εwid(Q) for all a ∈ S ∩ Q. It follows that ‖b − a‖2 >
εwid(Q) for any a, b ∈ S ∩ Q unless a = b. Now we
can show |S∩Q| = O(ε−d) using the Pigeonhole Princi-
ple. Indeed, diam(Q) = wid(Q)/γ(Q) ≤ wid(Q)/γ(Q),
hence ‖b − a‖2 ≤ diam(Q) ≤ wid(Q)/γ(Q) for any
a, b ∈ S ∩Q. So there exists a hyper-cube of side-length

284

30th Canadian Conference on Computational Geometry, 2018

wid(Q)/γ(Q) that contains S ∩ Q. Because the pair-
wise distances of the points in S ∩ Q are greater than
εwid(Q), we have |S ∩ Q| = O((γ(Q) · ε)−d) = O(ε−d)
by the Pigeonhole Principle. (The Pigeonhole Principle
implies that a set of points in a hyper-cube with side-
length α whose pairwise distances are greater than β
has size O((α/β)d).) �
The time cost of the first phase is O(q1(n)). By
Lemma 2, the time cost for range reporting in the second
phase is O(q2(n, ε−d)). The standard closest-pair algo-
rithm on m points runs in O(m logm) time, therefore
to compute the closest-pair among the reported points
takes O(ε−d log(1/ε)) time. Thus, the total query time
of D is O(q1(n) + q2(n, ε−d) + ε−d log(1/ε)). Finally, we
analyze the preprocessing time of D. To build D, we
need to compute nn(a) for all a ∈ S. This can be done
using the well-known all-nearest-neighbor algorithm [3],
which takes O(n log n) time. After all nn(a) are com-
puted, we build D1 and D2 directly. Thus, the overall
preprocessing time is O(p1(n) + p2(n) + n log n). This
completes the proof of Theorem 1.

Discussion. We now briefly discuss which kinds of
concrete query spaces our reduction is applicable to.
The condition in Theorem 1 for the query space Q is
γ(Q) > 0. If Q is the collection of all balls in Rd (e.g.,
all disks in R2), then γ(Q) = 1, and our reduction is ap-
plicable; we will discuss this in detail in the next section.
More generally, let C be a convex body with nonempty
interior in Rd called base shape (note that γ(C) > 0
in this case). Define QC as the collection of all con-
vex bodies that can be obtained by applying rotation,
isotropic scaling, and translation on the base shape C.
Then γ(QC) = γ(C) > 0, and our reduction is applica-
ble. We remark that our reduction is inapplicable to the
axis-parallel box query, since γ(B) = 0 where B is the
collection of all axis-parallel boxes in Rd (indeed, the
width-diameter ratio of a box can be arbitrarily small).
However, if we consider a sub-collection Bη ⊆ B con-
sisting of the boxes in which the ratio of the length of
the shortest edge to the length of the longest edge is at
least η (where η > 0), then γ(Bη) ≥ η/

√
d > 0, and our

reduction is applicable.

4 Applications

In this section, we apply our general reduction to some
specific query spaces to build efficient approximate RCP
data structures.

First, we consider the disk query. Let O be the col-
lection of all disks in R2. Clearly γ(O) = 1 and thus
the reduction in Section 3 applies to the query space
O. Therefore, to build an approximate O-RCP data
structure, it suffices to have the disk range-minimum
and range-reporting data structures. It is well-known
that the disk range-minimum (resp., range-reporting)

problem can be reduced (via lifting) to the halfspace
range-minimum (resp., range-reporting) problem in R3.
Halfspace range-reporting in R3 can be solved optimally
(i.e., with O(n) space, O(log n + k) query time, and
O(n log n) preprocessing time), using the data struc-
ture given in [2]. Note that this data structure can also
be used to answer halfspace range-emptiness queries in
O(log n) time (i.e., decide whether a given halfspace
contains no points in the dataset). By taking advan-
tage of this range-emptiness data structure, we can eas-
ily build in O(n log2 n) time a halfspace range-minimum
data structure in R3 withO(n log n) space andO(log2 n)
query time; we defer the details to Section 4.1. As such,
Theorem 1 implies the following corollary.

Corollary 3 There exists an approximate O-RCP
data structure with O(n log n) space and O(log2 n +
ε−2 log(1/ε)) query time, which can be built in
O(n log2 n) time.

More generally, we consider the ball query in Rd.
Let Od be the collection of all disks in Rd where
d ≥ 3. Again, we have γ(Od) = 1 and thus the re-
duction in Section 3 works. Similar to the disk case,
the range-minimum (resp., range-reporting) problem for
query space Od can be reduced to the halfspace range-
minimum (resp., range-reporting) problem in Rd+1. By
reducing the halfspace range-minimum problem to the
halfspace range-emptiness problem, we can obtain a
halfspace range-minimum data structure in Rd+1 with
O(ndd/2e) space and O(log2 n) query time; we defer the
details to Section 4.1. The halfspace range-reporting
in Rd+1 can be solved with O(ndd/2e logc n) space and
O(log n+k) query time [8], where c is a sufficiently large
constant. Therefore, Theorem 1 implies the following
corollary.

Corollary 4 There exists an approximate Od-
RCP data structure with O(ndd/2e logc n) space and
O(log2 n+ ε−d log(1/ε)) query time.

While our reduction can be applied to obtain effi-
cient approximate RCP data structures for disk and ball
queries, it is unfortunately inapplicable to orthogonal
queries (i.e., axis-parallel box queries). In Section 5, we
will consider the approximate RCP problem for orthog-
onal queries and show that it is (asymptotically) at least
as hard as the orthogonal range-minimum problem.

4.1 Halfspace range-minimum data structures

We show how to solve the halfspace range-minimum
problem via halfspace range-emptiness queries. Sup-
pose there is a halfspace range-emptiness data struc-
ture D0 in Rd, whose space is s0(n), query time is
q0(n), and preprocessing time is p0(n). We build a half-
space range-minimum data structure D in Rd as follows.

285

CCCG 2018, Winnipeg, Canada, August 8–10, 2018

Let S = (S,w) be a weighted dataset in Rd. Assume
S = {a1, . . . , an} where w(a1) ≤ · · · ≤ w(an). The
data structure D built on S, denoted by D(S), is con-
structed recursively. If n = 1, then D(S) is the triv-
ial data structure. Otherwise, let S1 = {a1, . . . , an/2}
and S2 = {an/2+1, . . . , an}. We recursively build D(S1)
and D(S2), where Si = (Si, w|Si

) (w|Si
denotes the re-

striction of the weight function w to Si). Furthermore,
we build the halfspace range-emptiness data structure
D0(S1). Then D(S) is the combination of D(S1), D(S2),
and D0(S1). If we write the space of D as s(n) and
the preprocessing time (excluding the time for sort-
ing the points by their weights) of D as p(n), we have
the recurrences s(n) = 2s(n/2) + s0(n/2) and p(n) =
2p(n/2) + p0(n/2).

To answer a halfspace range-minimum query H using
D(S), we first query D0(S1) to see whether S1 ∩ H is
empty. If S1 ∩H is nonempty, then the answer should
be some point in S1, and thus we can recursively query
D(S1) to find it. If S1 ∩H is empty, the answer should
be in S2, and we can query D(S2) to find it. If we write
the query time of D as q(n), we have the recurrence
q(n) = q(n/2) + q0(n/2).

In R3, the optimal halfspace range-reporting data
structure [2] gives us a halfspace range-emptiness data
structure with s0(n) = O(n) space, q0(n) = O(log n)
query time, and p0(n) = O(n log n) preprocessing time.
Thus the above recurrences solve to s(n) = O(n log n),
q(n) = O(log2 n), and p(n) = O(n log2 n).

In Rd+1 for d ≥ 3, there exists a halfspace range-
emptiness data structure with s0(n) = O(ndd/2e) space
and q0(n) = O(log n) query time [8]. Thus the above
recurrences solve to s(n) = O(ndd/2e) and q(n) =
O(log2 n).

5 Hardness result for orthogonal queries

In this section, we show that, for orthogonal queries, the
approximate RCP data structure is (asymptotically) at
least as hard as the range-minimum problem. We use
B to denote the collection of all axis-parallel boxes in
Rd. An orthogonal range-minimum (resp., RCP) data
structure in Rd refers to a range-minimum (resp., RCP)
data structure for query space B.

Theorem 5 Given an approximate orthogonal RCP
data structure D0 in Rd, one can build an orthogonal
range-minimum data structure D in Rd such that
• If the space of D0 is s(n), then the space of D is
O(s(2n) + n).
• If the query time of D0 is q(n, ε), then the query time
of D is O(q(2n, 1) + log n).
• If the preprocessing time of D0 is p(n), then the pre-
processing time of D is O(p(2n) + n log n).

Proof. Let S = (S,w) be a weighted dataset in Rd
of size n. We show how to build the desired orthog-

onal range-minimum data structure D on S, with D0

in hand. Suppose S = {a1, . . . , an}. For convenience,
assume a1, . . . , an have distinct coordinates in each di-
mension and have distinct weights. We keep d sorted
lists Γ1, . . . , Γd of {a1, . . . , an}, where Γj is sorted by
the j-th coordinates of the points. For i ∈ {1, . . . , n}
and j ∈ {1, . . . , d}, we write ti,j as the rank of the j-th
coordinate of ai in S, i.e., ti,j = k if the index of ai in Γj
is k. Set α = 1/(100

√
d). Define for each i ∈ {1, . . . , n}

a hypercube Ci =
∏d
j=1[ti,j , ti,j + α]. We now choose

2n points b1, . . . , bn, b
′
1, . . . , b

′
n such that (i) bi, b

′
i ∈ Ci

for all i ∈ {1, . . . , n} and (ii) ‖bi − b′i‖2 < ‖bj − b′j‖2
if w(ai) < w(aj). See Figure 2 for an intuitive il-
lustration. Our construction above guarantees that
‖bi − b′i‖2 ≤ 1/100 for all i ∈ {1, . . . , n}. Furthermore,
for distinct i, j ∈ {1, . . . , n}, the distance between a
point in Ci and a point in Cj is at least 0.5. We let
S′ = {b1, . . . , bn, b′1, . . . , b′n}, and build the orthogonal
RCP data structure D0 on S′. Then the desired data
structure D is just D0 and the sorted lists Γ1, . . . , Γd.

a2

a1

a3

a4

C2

C1

C4

C3

w = 3

w = 9

w = 6

w = 4

Figure 2: Illustration of the hyper-cubes C1, . . . , Cn.
The two points contained in each Ci are bi and b′i.

To answer an orthogonal range-minimum query Q =∏d
j=1[pj , qj] on S using D, we first create another box

Q′ as follows. For all j ∈ {1, . . . , d}, let Lj be the slab
bounded by the two hyperplanes xj = pj and xj = qj ,
and define uj = min{ti,j : ai ∈ Lj} and vj = max{ti,j :

ai ∈ Lj}. Then we set Q′ =
∏d
j=1[uj , vj+α], and query

the data structure D0 with (Q′, ε) for ε = 1. (Actually,
any ε > 0 works here.) Let φ be the pair returned by D0.
Assume that ak is the point in S∩Q with the minimum
weight, i.e., the answer to the range-minimum query Q.
We claim that φ = (bk, b

′
k). By the construction of Q′,

for all i ∈ {1, . . . , n}, bi, b′i ∈ Q′ if ai ∈ Q and bi, b
′
i /∈

Q′ otherwise. Therefore, according to the locations of
b1, . . . , bn, b

′
1, . . . , b

′
n, we observe that (i) the closest-pair

in S′∩Q′ is (bk, b
′
k) and (ii) the distance between a point

in S′ ∩ Q′ and a point in S′\(S′ ∩ Q′) is at least 0.5
(as the two points must be contained in different Ci’s).
Note that ‖bk − b′k‖2 ≤

√
dα = 1/100. It follows that

‖bk−b′k‖2 < ‖f−g‖2 for any distinct points f ∈ S′∩Q′
and g ∈ S′. Since |φ| ≤ ‖bk − b′k‖2 and one point of φ
must be contained in Q′, we have φ = (bk, b

′
k). As such,

286

30th Canadian Conference on Computational Geometry, 2018

with φ in hand, we can know ak and answer the query
Q.

Now we analyze the performance ofD. The space ofD
is clearly O(s(2n)+n), as it consists of D0 and the sorted
lists Γ1, . . . , Γd. The query time of D consists of the time
for constructing Q′ and querying D0. To construct Q′, it
suffices to compute u1, . . . , ud, v1, . . . , vd, which can be
done in O(log n) time using binary search in Γ1, . . . , Γd.
Querying D0 takes O(q(2n, 1)) time. Thus the query
time of D is O(q(2n, 1) + log n). The preprocessing of
D can be done in O(p(2n) + n log n) time. Indeed, we
use O(n log n) time to create the sorted lists Γ1, . . . , Γd.
With the lists in hand, we can compute ti,j and S′ in
linear time. Finally, constructing D0 takes O(p(2n))
time. �

Theorem 5 implies that for orthogonal query ranges,
the range minimum problem is (asymptotically) no
harder than the approximate RCP problem considered
here (or equivalently, the approximate RCP problem is
asymptotically at least as hard as the range minimum
problem), assuming that s(n) is Ω(n), p(n) is Ω(n log n),
and the part of q(n, ε) that depends on n is Ω(log n).

6 Conclusion and future work

In this paper, we studied an approximate version of the
RCP problem in which one point of the answer pair is
allowed to be slightly outside the query range. We gave
a general reduction from the approximate RCP prob-
lem to the range-minimum and range-reporting prob-
lems, which works for any query space consisting of con-
vex bodies whose width-diameter ratio is lower bounded
by a positive constant. By applying our reduction,
we obtained efficient approximate RCP data structures
for disk and ball queries. Finally, we showed that
the approximate RCP problem for orthogonal queries
is (asymptotically) at least as hard as the orthogonal
range-minimum problem.

Next, we raise an open question for future work. The
approximation used in this paper is with respect to the
query range. Perhaps, the most natural approximation
model is with respect to the quality of the answer. That
is, for a specified query range Q, we want to report
a (1 + ε)-approximate closest-pair in Q, i.e., a pair of
points (strictly contained in Q) whose distance is at
most (1+ε)·κ(S∩Q). How to design efficient RCP data
structures for this approximation model is an interesting
direction for future study.

References

[1] M. A. Abam, P. Carmi, M. Farshi, and M. Smid. On
the power of the semi-separated pair decomposition. In
Workshop on Algorithms and Data Structures, pages 1–
12. Springer, 2009.

[2] P. Afshani and T. M. Chan. Optimal halfspace range re-
porting in three dimensions. In Proceedings of the twen-
tieth annual ACM-SIAM symposium on Discrete algo-
rithms, pages 180–186. Society for Industrial and Applied
Mathematics, 2009.

[3] P. B. Callahan and S. R. Kosaraju. A decomposition
of multidimensional point sets with applications to k-
nearest-neighbors and n-body potential fields. Journal
of the ACM (JACM), 42(1):67–90, 1995.

[4] P. Gupta. Range-aggregate query problems involving ge-
ometric aggregation operations. Nordic Journal of Com-
puting, 13(4):294–308, 2006.

[5] P. Gupta, R. Janardan, Y. Kumar, and M. Smid. Data
structures for range-aggregate extent queries. Compu-
tational Geometry: Theory and Applications, 2(47):329–
347, 2014.

[6] J. Shan, D. Zhang, and B. Salzberg. On spatial-range
closest-pair query. In International Symposium on Spa-
tial and Temporal Databases, pages 252–269. Springer,
2003.

[7] R. Sharathkumar and P. Gupta. Range-aggregate prox-
imity queries. Technical Report IIIT/TR/2007/80. IIIT
Hyderabad, Telangana, 500032, 2007.

[8] C. D. Toth, J. O’Rourke, and J. E. Goodman. Handbook
of discrete and computational geometry. Chapman and
Hall/CRC, 2017.

[9] J. Xue, Y. Li, S. Rahul, and R. Janardan. New
bounds for range closest-pair problems. In Proceed-
ings of the 34th Symposium on Computational Geom-
etry. Schloss Dagstuhl-Leibniz-Zentrum fur Informatik
GmbH, Dagstuhl Publishing, 2018.

287

CCCG 2018, Winnipeg, Canada, August 8–10, 2018

Time-Dependent Shortest Path Queries Among Growing Discs

Anil Maheshwari∗ Arash Nouri∗ Jörg-Rüdiger Sack∗

Abstract

The determination of time-dependent collision-free short-
est paths has received a fair amount of attention. Here,
we study the problem of computing a time-dependent
shortest path among growing discs which has been previ-
ously studied for the instance where the departure times
are fixed. We address a more general setting: For two
given points s and d, we wish to determine the function
A(t) which is the minimum arrival time at d for any de-
parture time t at s. We present a (1 + ε)-approximation
algorithm for computing A(t).

As part of preprocessing, we execute O(1
ε log(Vr

Vc
))

shortest path computations for fixed departure times,
where Vr is the maximum speed of the robot and Vc is
the minimum growth rate of the discs. For any query
departure time t ≥ 0 from s, we can approximate the
minimum arrival time at the destination in O(log(1

ε) +

log log(Vr

Vc
)) time, within a factor of 1 + ε of optimal.

Since we treat the shortest path computations as black-
box functions, for different settings of growing discs, we
can plug-in different shortest path algorithms. Thus, the
exact time complexity of our algorithm is determined by
the running time of the shortest path computations.

1 Introduction

An algorithmic challenge in robotics arises when a point
object (modeling a robot, person or vehicle) is operat-
ing among moving entities or obstacles, e.g., settings
in which a point object needs to avoid encountering in-
dividuals who are moving from known locations, with
known speeds, but in unknown directions. This uncer-
tainty can be modeled by discs, whose radii grow over
time. Therefore, the task of computing a shortest path
avoiding these individuals reduces to computing shortest
path among growing discs. This particular motivation
arose, e.g., in video games [1].

Given are a set of growing discs C = {C1, ..., Cn}
(the obstacles), a point robot R with maximum speed
Vr, a source point s and a destination point d, located
on the plane. The radii of the discs are growing with
the same constant speed V ∈ (0,Vr). The shortest
path among growing discs (SPGD) problem is to find a
shortest path from s to d, such that the robot leaves the

∗School of Computer Science, Carleton University,
{anil,arash,sack}@scs.carleton.ca

source immediately (i.e., at time t = 0) and does not
intersect the interior of the discs, to reach d as quickly as
possible. Yi [2] showed that this problem can be solved
in O(n2 log n) time.

In this paper, we study the time-dependent version
of the SPGD problem, where the departure time is a
variable. The objective is to find the minimum arrival
time function A(t), defined as the earliest time when the
robot can arrive at destination d such that: (1) R leaves
s at time t, (2) R does not intersect the interior of the
discs after the departure. We refer to this problem as
the time-dependent shortest path among growing discs
(TDSP) problem.

Related results. The SPGD problem has been stud-
ied in different settings. Overmars et al. studied this
problem in the setting where the discs are growing with
equal constant speed. They presented an O(n3 log n)
time algorithm, where n is the number of discs. This re-
sult was improved by Yi [2] who showed that the shortest
path among the same-speed growing discs can be found
in O(n2 log n) time. Yi also presented an O(n3 log n)
time algorithm for the case where the discs are grow-
ing with different speeds. Nouri and Sack [3] studied
a general version of this problem where the speeds are
polynomial functions of time.

Time-dependent shortest path problems have been
studied in network settings (see [4, 5, 6]). A network
is a graph G = (V,E) with edge set E and node set V .
Each edge e ∈ E is assigned with a real valued weight.
Given a source node s ∈ V and a destination node d ∈ V ,
a shortest path from s to d is a path in G, where the
sum of the weights of its constituent edges is minimized.
However, in many applications, the weight of the edges
are dynamically changing over time. In such situations,
the total weight of a path depends on the departure
time at its source. The problem of computing shortest
paths from s to d for all possible departure times at s
is known as the time-dependent shortest path problem.
The general shortest path problem on time-dependent
networks has been proven to be NP-Hard [7]. However,
there are several approximation algorithms (see [8, 5, 6]),
which are of interest in real-world applications [9].

Contribution. We say an approximation function
A(t, ε) is a (1 + ε)-approximation for function A(t)
if A(t) ≤ A(t, ε) ≤ (1 + ε)A(t) for all positive val-
ues of t. Here, our contribution is to compute a
(1+ ε)-approximation for the minimum arrival time func-
tion A(t). The preprocessing step of our algorithm exe-

288

30th Canadian Conference on Computational Geometry, 2018

cutes O(1
ε log(Vr

Vc
)) time-minimal path computations for

fixed departure times, where Vr is the maximum speed
of the robot and Vc is the minimum growth rate of the
discs. Then, for a given query departure time t ≥ 0 from
s, we can report the minimum arrival time at the desti-
nation in O(log(1

ε) + log log(Vr

Vc
)) time, within a factor

of 1 + ε of optimal. We first start with a simple version
of the problem, where all discs are growing with speed
Vc. In this setting, each time-minimal path computation
runs in O(n2 log n) time [2]. Our algorithm runs the
shortest path computations as a black-box and its time
complexity is determined by the number of such calls.
This enables us to extend our algorithm for different set-
tings of growing discs [2, 10], by plugging-in appropriate
shortest path algorithms.

In Section 3, we establish several properties of the
arrival time function. These properties allow us to work
with arrival time functions instead of a more indirect
approach of using the travel time, which has been uti-
lized in previous work. We show that A(t) is the lower
envelope of a set of curves called the arrival time func-
tions. The algorithm’s output size is denoted by FA and
counts the number of pieces (i.e. the sub-arcs) on the
lower envelope needed to represent the function A(t). In
Section 3.1, we establish a lower bound for FA. This
lower bound, along with the complexity of computing
the lower envelope, provides the motivation to study the
approximation algorithm in the first place.

In Section 4, we define the reverse shortest path prob-
lem, in which we are to find a path from the destination
to the source. Existing algorithms for the time dependent
shortest paths utilize the reverse shortest path compu-
tations. These computations were done by a reversal of
Dijkstra’s algorithm [11, 5]. Here, we need to generalize
the existing shortest path computations for growing discs
[2] to shortest path computations for shrinking discs.

2 Preliminaries

2.1 Time-minimal paths among growing discs

A robot-path is a path in the plane that connects the
source point s to the destination point d. The time at
which the robot departs s is called the departure time
and the time it arrives at d is the arrival time. We call
a path λ valid (or collision-free) if it does not intersect
any of the discs in C ; otherwise, λ is invalid. For a
fixed departure time, a time-minimal path is a valid
robot-path, where the arrival time is minimized over all
valid paths.

It is proven that on any time-minimal path, the point
robot always moves with maximal velocity of Vr [1]. It is
shown in [3, 12] that any time-minimal path from s to d
is solely composed of two types of alternating sub-paths:
(1) tangent paths: straight line paths that are tangent
to pairs of discs, and (2) spiral paths: logarithmic

spiral paths that each lies on a boundary of the growing
disc. We describe these two paths in the following.

For any pair of discs Ci and Cj , we define four tangent
paths corresponding to their tangent lines: right-right,
right-left, left-right and left-left tangents, denoted by
`rrij , `rlij , `rlij and `llij (see Figure 4). Each tangent path
−→̀rr
ij (τ) = pq represents a straight line robot-path from

a point p on the boundary of Ci to a point q on the
boundary of Cj . The two points p and q are called
Steiner points. A spiral path −→σ = Ùpq, represents the
trace of the robot’s move, over time, from p to q, where
p, q ∈ ∂Ci are two “consecutive” Steiner points (see
Figure 4 (a)). Note that the length of these paths are
changing over time. If the robot leaves p at time τ , then
it arrives at q at time τ̂ , where τ < τ̂ . Observe that there
exist O(n2) (moving) tangent/spiral paths and O(n2)
(moving) Steiner points.

To simplify our exposition, we let the two points s
and d be two discs with zero radii and zero velocities
and add them to C . Let E be the set of all spiral and
tangent paths. Let S be the set of all Steiner points.
We construct a directed adjacency graph G = (Vs, Es)
as follows. With each Steiner point v ∈ S we associate
a unique vertex, v̇, in Vs. Then, with each path −→uv ∈ E
we associate a unique edge −→̇uv̇ in Es. The weight of each
edge in G is the length of its corresponding tangent or
spiral path, which is a function of time. Since each edge
in Es is associated with a path in E , therefore, each path
in the graph G is associated with a sequence of paths in
E .

Yi [2] showed that by running Dijkstra’s algorithm on
the adjacency graph, the SPGD problem can be solved
in O(n2 log n) time. The main steps of this algorithm
are as follows:

(i) Identify the Steiner points, tangent paths and spiral
paths (i.e., the sets S and E).

(ii) Construct the adjacency graph G = (Vs, Es).

(iii) Run Dijkstra’s algorithm to find a time-minimal
path between s, d ∈ Vs.

In our approximation algorithm, we use the above
algorithm as a black-box. The input to this algorithm is
a set of growing discs and a departure time τ . The output
is a shortest path between s and d in the adjacency graph,
denoted by π(s, d, τ).

2.2 Minimum time-dependent arrival time

Let P be the set of all paths between s and d, in the
adjacency graph G. Let π ∈ P and τ be a departure
time at s. Recall that there exists a unique geometric
path corresponding to the pair (π, τ). For instance,
Figure 5 shows the geometric paths corresponding to a

289

CCCG 2018, Winnipeg, Canada, August 8–10, 2018

Aπ4
(t)

Aπ1
(t)

Aπ3
(t)

Aπ2
(t)

Tmax

Arrival Time

Departure Time

Figure 1: This figure represents the arrival curves cor-
responding to the time-minimal paths in Figure 5. The
dotted curve (the lower envelope) represents the mini-
mum arrival time function A(t).

set of paths {π1, π2, π3, π4} at three different departure
times.

For a given path π ∈ P, let the arrival time func-
tion Aπ(t) represents the arrival time of the robot-path
corresponding to π when the departure time is t. Let
A = {Aπ(t)|π ∈ P} be the arrival time function cor-
responding to the paths in P. The lower envelope of
the set A , denoted by A(t), is defined as the point-wise
minimum of all the arrival functions in A . The lower
envelope is formally defined as:

A(t) = min
π∈P

Aπ(t)

where Aπ(t) = Aπ(t) if π is a valid path and Aπ(t) =
∞, otherwise. We call A(t) the minimum arrival time
function, which is found via finding the lower envelope of
the arrival functions in A . We also refer to the minimum
arrival time functions as arrival curves.

Figure 1 depicts the arrival functions corresponding to
the paths in Figure 5. A(t) is found as the lower envelope
of the arrival functions {Aπ1(t),Aπ2(t),Aπ3(t),Aπ4(t)}.
Observe that after a certain time, the destination point
will be contained in some disc. We denote this time by
Tmax. Since there exists no valid path from s to d after
Tmax, for any t > Tmax we have A(t) = ∞. Observe
that the lower envelope is composed of sub-arcs of arrival
curves in A . A sub-arc is a maximal connected piece of
an arrival curve on the lower envelope.

3 Properties of A(t)

In this section, we define some properties of the minimum
arrival time function. First, we show that A(t) is an
increasing function. If the robot is allowed to move
with any speed lower than Vr, then the below lemma is

π
0(t1)

π(t0)s

d

Figure 2: This figure illustrates two time-minimal paths
for two departure times t0 and t1, where t1 > t0. For
the sake of simplicity, we assumed that the speed of the
robot is considerably higher than the growth rates of
the discs (V � Vr).

straightforward (the later it departs from the source the
later it arrives at the destination). However, we assumed
that the robot moves with maximum speed at all time
and only uses tangent and/or spiral paths. Thus, the
following proof is necessary.

Lemma 1 A(t) is an increasing function.

Proof. Let π(t0) and π′(t1) be any two time-minimal
robot-paths between s and d, corresponding to two
departure times t0 and t1, where t0 < t1 (see Figure
2). We prove that Aπ(t0) < Aπ′(t1) and consequently
A(t0) < A(t1).

Let Tπ′(t1) = Aπ′(t1)− t1 be the travel time for the
path π′(t1). Similarly, let Tπ(t0) = Aπ(t0) − t0. By
contradiction, we assume Aπ′(t1) ≤ Aπ(t0). Then:

Tπ′(t1) + t1 ≤ Tπ(t0) + t0
t0<t1⇒ Tπ′(t1) < Tπ(t0)

Therefore, π(t0) is a longer robot-path than π′(t1). Since
the discs are continuously growing, the free space is
shrinking simultaneously. Thus, if π′(t1) is a valid robot-
path, it is also valid for any departure time before t1.
As illustrated in Figure 2, π′(t1) is a valid path when
the robot leaves s at time t0.

Since |π′(t1)|< |π(t0)| and π′(t1) is a valid robot-path
when the robot departs s at time t0, this contradicts the
fact that Aπ′(t1) ≤ Aπ(t0). �

Define |sd| as the Euclidean distance between the
source and the destination. Recall that Vr is the maxi-
mum speed of the robot, and Vc is the minimum growth
rate among the discs in C .

Let
−→
sd be a tangent path from s to d. For a given

departure time t, if
−→
sd(t) is not obstructed by any disc,

then the calculation of A(t) is straightforward. Thus, we
are interested in computing A(t) when

−→
sd(t) is invalid,

290

30th Canadian Conference on Computational Geometry, 2018

i.e.,
−→
sd(t) is intersected by a disc for any departure time

t. With the above assumption, we have the following
lemma which states the upper and the lower bound on
A(t).

Lemma 2 Let τ be a departure time, where A(τ) is
defined (i.e., A(τ) <∞). Then,

(i) A(τ) ≥ |sd|
Vr

(ii) A(τ) ≤ |sd|
Vc

Proof. (i) Let λ1 be a valid time-minimal robot-path
from s to d with departure time 0. It is observed that
the length of λ1 is greater or equal to |sd|. Thus, |sd|

Vr
≤

A(0). By Lemma 1, we have A(0) ≤ A(τ). Therefore,
|sd|
Vr
≤ A(τ).

(ii) Let λ2 be the straight line (invalid) robot-path
from s to d, which is obstructed by the disc C ∈ C . Let
the robot depart s at time τ and move along the path λ2
with speed Vr, until it arrives at the boundary of C at
point q. Note that the robot arrives at q at time τ + |sq|

Vr
.

Let x be the shortest Euclidean distance between d and
the boundary of C at time τ + |sq|

Vr
. If C encloses d at

time T , then the robot must arrive at the destination at
or before T . Thus, we obtain T ≤ τ + |sq|

Vr
+ x

V . Because
x ≤ |qd| and V < Vc, we have:

T ≤ τ +
|sq|
Vr

+
|qd|
Vc

Since the above inequality is true for all departure times
(including τ = 0), we must have:

T ≤ |sq|Vc
+
|qd|
Vc

=
|sd|
Vc

⇒A(τ) ≤ |sd|Vc
�

3.1 The output size

The output size of the time-dependent shortest path,
denoted by FA, is defined as the number of sub-arcs in
the lower-envelope needed to represent the minimum
arrival time function A(t). In Lemma 3, we provide an
example for which FA is Θ(n2). Therefore, the number
of sub-arcs in the lower envelope is lower bounded by
Ω(n2). This lower bound, along with the complexity
of calculating the sub-arcs, inspired us to develop an
approximation algorithm for this problem.

Lemma 3 FA is lower bounded by Ω(n2).

X

Y

s d

C1

C2

Cn

C3

(x0; 0) (x1; 0) (x2; 0) (x3; 0)
(xn; 0) (xn+1; 0)

Cn+1

C2n+1

C2n+2

Cn+2

(a)

X

Y

s d

C1

C2

Cn

C3

(x0; 0) (x1; 0) (x2; 0) (x3; 0)
(xn; 0) (xn+1; 0)

Cn+1

C2n+1

C2n+2

Cn+2

(b)

Figure 3: This figure illustrates an example where there
are Θ(n2) unique time-minimal paths for different depar-
ture times. For the ease of demonstration, we assumed
V � Vr.

Proof. We prove this lemma by giving an example
where FA is Θ(n2). In this example, which is illustrated
in Figure 3, the source is located at (x0, 0) and the des-
tination is located at (xn+1, 0), where x0 � xn+1. A set
of growing discs C1 = {C1, ..., Cn} are sorted along the x-
axis, such that Ci ∈ C1 is centered at point (xi, 0), where
xi−1 < xi < xi+1 and x0 � xi � xn+1. We also define
a set of “disjoint” growing discs C2 = {Cn+1, ..., C2n},
such that Ci ∈ C2 is centered at point (x1, yi), where
yi+1 < yi < 0. Similarly, we define a set of “disjoint”
growing discs C3 = {C2n+1, ..., C3n}, such that Ci ∈ C3

is centered at point (x1,−yi). For the sake of simplicity,
we assume that V � Vr, where V is the speed of the
discs and Vr is the maximum speed of the robot.

Let T1 = {τ1, ..., τn} be a set of departure times, sorted
in increasing order. Denote by {λτ1 , ..., λτn} the set of
time-minimal robot-paths corresponding to the depar-
ture times in T1. We choose the initial radius of disc
C1 large enough (with respect to the other discs in C1)
so that the robot-path λτ1 is tangent to disc C1 and
does not touch the other discs in C1 (see Figure 3 (a)).
Similarly, we choose the initial radius of disc C2 such
that λτ2 is only tangent to C1 and C2. We repeat the
same procedure for all the departure times in T1. Con-
sequently, each robot-path λτi is tangent all the discs in
{C1, C2, ..., Ci}.

291

CCCG 2018, Winnipeg, Canada, August 8–10, 2018

Observe that we can choose an appropriate value for
yn+1 such that C1 and Cn+1 intersect at time τ ′1, where
for a small value of α we have τn < τ ′1 < τn + α. Let
λτ ′

1
be the time-minimal robot-path corresponding to

the departure time τ ′1. As illustrated in Figure 3 (b),
observe that λτ ′

1
is tangent to disc Cn+1. By an argument

similar to the above paragraph, we can define a set
T2 = {τ ′1, ..., τ ′n}, where the corresponding time-minimal
paths of the departure times τ ′i ∈ T2 are tangent to
all the discs in {Cn+1, C2, ..., Ci}. We repeat the above
procedure for all the discs in C2. Let T = T1∪T2∪...∪Tn.

Let π(s, d, τi) and π(s, d, τj) be a pair of shortest paths
in the adjacency graphG, corresponding to the departure
times τi, τj ∈ T1, where i 6= j. Since λτi and λτj are
tangent to different sets of discs, we have π(s, d, τi) 6=
π(s, d, τj). Thus, observe that A(t) consists of Θ(|T |) =
Θ(n2) sub-arcs. �

4 Approximating A(t)

4.1 The reverse shortest path

Let us define a function A−1 : [0, Tmax] → [0, Tmax]
where A−1(t) is the latest departure time at s, when the
robot arrives at d at time t. In this section, we describe
our method for computing the function A−1(t) for a set
of “fixed” values of t. We generalize the time-minimal
path algorithm presented in [2] to the case where the
discs are shrinking.

A growing disc Ci is defined by a pair (Oi, Ri(t)),
where Oi is the center and Ri(t) is the radius of Ci at
time t. Let ∂Ci(t) denote the boundary of the disc Ci

at time t ∈ [0, Tmax]. We now define a shrinking disc
Ĉi by a pair (Oi, R̂i(t)), such that R̂i(t) = Ri(Tmax− t).
Note the following properies:

• Ĉi and Ci are centered at the same point.

• ∂Ci(0) = ∂Ĉi(Tmax).

• ∂Ci(t) = ∂Ĉi(Tmax − t).

Let Ĉ = {Ĉ1, ..., Ĉn} be a set of shrinking discs. We
begin with the following observation.

Observation 1 For any two given times τ and τ̂ , where
0 ≤ τ < τ̂ ≤ Tmax, Ci(τ) and Cj(τ̂) have the same
tangent lines as Ĉi(Tmax − τ) and Ĉj(Tmax − τ̂).

Let `rlij(τ) = pq be a tangent line where p ∈ ∂Ci(τ) and
q ∈ ∂Cj(τ̂). Similarly, let ˆ̀lr

ji(Tmax − τ̂) = qp be a tan-
gent line where q ∈ ∂Ĉj(Tmax−τ̂) and p ∈ ∂Ĉi(Tmax−τ).
By Observation 1, `rlij(τ) is equivalent to ˆ̀lr

ji(Tmax − τ̂).

Thus, the two tangent paths
−→̂
`lrji(Tmax − τ̂) and

−→
`rlij(τ)

are the same line segments, but with opposite directions.
We call

−→̂
`lrji(Tmax − τ̂) the reverse tangent path of

−→
`rlij(τ).

Similarly, for a spiral path −→σ (τ) there exists a reverse
spiral path

−→̂
σ (Tmax − τ̂). Moreover, we can extend this

definition to a robot-path: let λ be a valid robot-path
from s to d, where the departure time is τs and the
arrival time is τd. Then, there exists a reverse robot-path
λ̂ from d to s whose departure time is Tmax − τd and
arrival time is Tmax − τs.

Recall that in Step (ii) of the SPGD algorithm (see
Section 2.1), the adjacency graph G is constructed us-
ing the identified tangents and spiral paths in Step (i).
Similarly, we construct the reverse adjacency graph Ĝ
using the reverse tangents and spiral paths.

Lemma 4 Let π(u, v, τu) be a valid path from vertex u
to vertex v in G, where the departure time is τu and
the arrival time is τv. Then, there exists a valid path
π̂(v, u, Tmax − τv) in Ĝ whose arrival time is Tmax − τu.

Proof. Since π(u, v, τu) is a valid path, there exists a
robot-path λ with departure time τu and arrival time
τv. By definition, there exists a reverse robot-path of
λ, denoted by λ̂, whose departure time and arrival time
are Tmax − τv and Tmax − τu, respectively. Thus, there
exists a valid path π̂(v, u, Tmax − τv) in Ĝ. �

By the above lemma, for any path π from s to d in
G, there exists a path π̂ from d to s in Ĝ of the same
length as π. Thus, in order to find a shortest path form
s to d, we can find a shortest path in Ĝ and reverse
its direction. Therefore, similar to the SPGD algorithm
in Section 2.1, a reverse shortest path can be found by
running Dijkstra’s algorithm in Ĝ. We summarize the
steps of the above algorithm as follows.

(i) Identify the reverse tangents and spiral paths.

(ii) Construct the reverse adjacency graph Ĝ.

(iii) Run Dijkstra’s algorithm on Ĝ to find a time-
minimal path.

We call the above algorithm the reverse shortest path
among growing discs (RSPGD). Using this algorithm,
for any given time t, a time-minimal path can be found
which arrives at destination at time t.

Corollary 1 For a given arrival time t at d, A−1(t)
can be computed by running the RSPGD algorithm.

We should remark that finding a shortest path from
d to s in Ĝ does not always yield a time-minimal path
among shrinking discs. For example, consider the case
where the robot stops and waits for some discs to shrink
to a certain size, until they open a previously blocked
path. Then, the robot starts moving with maximum ve-
locity towards the destination along the recently opened
path. This contradicts our assumption that the robot
always moves with the maximum speed. Thus, a shortest
path in Ĝ does not guarantee a time-minimal robot-path
among shrinking discs.

292

30th Canadian Conference on Computational Geometry, 2018

4.2 Approximation Algorithm

In this section, we present a (1 + ε)-approximation al-
gorithm for computing the minimum arrival time func-
tion A(t). To obtain an approximation for A(t), our
algorithm (Algorithm 1) computes a set of arrival time
values A = {a1, a2, ..., am}, such that, for 2 ≤ i ≤ m,
ai

ai−1
= 1+ε (i.e., arrival times are spaced within a factor

of 1 + ε from each other). Since A(t) is an increasing
function (refer to Lemma 1), for each valid arrival time,
there exists a unique departure time. This is a key dis-
tinction to some of the previously standard variants of
the time-dependent shortest path problems. For each
ai ∈ A, the algorithm runs the RSPGD algorithm to
find its corresponding departure time bi. Let us denote
the departure time values by a set B = {b1, b2, ..., bm}.
Each departure time in B is referred to as a sampled
time.

Algorithm 1 Computing B
1: B = ∅, A = ∅, i = 0, a0 = A(0)
2: . A(0) is calculated by running the SPGD

algorithm [2]
3: while ai < Tmax do
4: ai+1 = (1 + ε)ai
5: bi = A−1(ai+1)
6: B := B ∪ {bi}
7: A := A ∪ {ai+1}
8: i = i+ 1

9: return B and A

Lemma 5 Algorithm 1 runs O(1
ε log(Vr

Vc
)) time-minimal

path computations.

Proof. We first estimate the number of sampled times
in B. Let B = {b1, b2, ..., bm}. By definition we have

A(bm)

A(b1)
=
am
a1

= (1 + ε)m−1

By Lemma 2, for any 1 ≤ i ≤ k we have A(bi) ≤ |sd|
Vr

and A(bi) ≥ |sd|
Vc

. So, we obtain

(1 + ε)m−1 ≤ VrVc
For ε ∈ (0, 1), we observe that ε

2 < log(1 + ε). Thus,

(m− 1)
ε

2
≤ log

ÄVr
Vc
ä

Therefore, there are O(1
ε log(Vr

Vc
)) sampled times in B.

For each sampled time, the algorithm runs an instance
of the reverse shortest path algorithm in Line 5. Thus,
the total number of time-minimal path computations is
O(1

ε log(Vr

Vc
)). �

Using the sampled times reported by Algorithm 1, we
now define a step function A : [0, Tmax] × (0, 1) → A
such that for t ∈ [bi, bi+1), we have A(t, ε) = ai+1.

Lemma 6 For any real constant value of ε ∈ (0, 1),
function A is a (1 + ε)-approximation for the arrival
time function A.

Proof. The proof is deferred to the Appendix. �

Theorem 7 The minimum arrival time function can be
approximated by executing O(1

ε log(Vr

Vc
)) time-minimal

path computations.

Proof. This is a direct result of Lemmas 5 and 6. �

Since the time-minimal path algorithm for fixed
departure times runs in O(n2 log(n)) time [2], the
time complexity of our preprocessing algorithm is
O(n2

ε log(Vr

Vc
) log(n)). For a given query departure time

t ≥ 0, we can report the approximated value of the min-
imum arrival time (i.e., A(t, ε)) using a binary search in
B. In Lemma 5, we proved that the size of the set B is
O(1

ε log(Vr

Vc
)). Thus, the query time of our algorithm is

O(log(1
ε) + log log(Vr

Vc
)).

5 Conclusions

In this paper, we studied the time-dependent minimum
arrival time problem among growing discs. We presented
a (1 + ε)-approximation to compute the minimum ar-
rival time function. Our algorithm runs shortest path
algorithms as a black-box and its time complexity is
determined by the number of such calls. Therefore,
for different problem settings, we can plug-in differ-
ent shortest path algorithms. For example, Nouri and
Sack [3] studied a variant of the SPGD problem where
the growth rates of the discs are given as polynomial
functions of degree β. In this algorithm a query time-
minimal path can be found in O(n2 log(βn)) time. By
plugging-in this algorithm, our preprocessing step exe-
cutes O(1

ε log(Vr

Vc
)) shortest path computations, running

in O(n2

ε log(Vr

Vc
) log(βn)) time.

In order to compute the output size of the minimum
arrival time function A(t), one would need to determine
the number of sub-arcs in the lower envelope, denoted
by FA. We presented a lower bound on FA and we leave
as an open problem to establish an upper bound.

Another interesting open problem is to approximate
the minimum arrival time function when the query in-
volves the departure time at s, as well as s and d as part
of the input.

References

[1] Jur van den Berg and Mark Overmars. Planning
the shortest safe path amidst unpredictably mov-

293

CCCG 2018, Winnipeg, Canada, August 8–10, 2018

ing obstacles. Algorithmic Foundation of Robotics,
pages 103–118, 2008.

[2] Jiehua Yi. A Ubiquitous GIS: Framework, Services
and Algorithms Development. PhD thesis, Ottawa,
Carleton University, Ont., Canada, 2009.

[3] Arash Nouri and Jorg-Rudiger Sack. Query short-
est paths amidst growing discs. CoRR, arXiv :
abs/1804.01181, 2018.

[4] Frank Dehne, Masoud T. Omran, and Jörg-Rüdiger
Sack. Shortest paths in time-dependent FIFO net-
works. Algorithmica, 62(1):416–435, 2012.

[5] Masoud Omran and Jörg-Rüdiger Sack. Improved
approximation for time-dependent shortest paths.
Computing and Combinatorics: 20th International
Conference, COCOON 2014, pages 453–464, 2014.

[6] Luca Foschini, John Hershberger, and Subhash Suri.
On the complexity of time-dependent shortest paths.
Algorithmica, 68(4):1075–1097, 2014.

[7] Ariel Orda and Raphael Rom. Minimum weight
paths in time-dependent networks. Networks,
21(3):295–319, 1991.

[8] Frank Dehne, Masoud T. Omran, and Jörg-Rüdiger
Sack. Shortest paths in time-dependent FIFO net-
works using edge load forecasts. In Proceedings of
the Second International Workshop on Computa-
tional Transportation Science, IWCTS ’09, pages
1–6, New York, NY, USA, 2009. ACM.

[9] Danny Z. Chen. Developing algorithms and soft-
ware for geometric path planning problems. ACM
Comput. Surv., 28(4es), December 1996.

[10] A. Nouri and Jörg-Rüdiger Sack. Query Shortest
Paths Amidst Growing Discs. Preprint submitted
to SWAT 2018, 2018.

[11] Carlos F. Daganzo. Reversibility of the time-
dependent shortest path problem. Transportation
Research Part B: Methodological, 36(7):665 – 668,
2002.

[12] J. van den Berg. Path planning in dynamic environ-
ments. Ph.D. Thesis, Utrecht University, Utrecht,
The Netherlands, 2007.

Appendix

Lemma 6 For any real constant value of ε ∈ (0, 1),
function A is a (1 + ε)-approximation for the arrival
time function A.

Proof. By definition, for any t ∈ [bi, bi+1) we have
A(t, ε) = ai+1. Referring to the fact that A is an
increasing function, for any t ∈ [bi, bi+1) we obtain
A(bi) ≤ A(t) < A(bi+1). Thus,

A(bi+1)

A(bi+1)
<
A(t, ε)

A(t)
≤ A(bi+1)

A(bi)

Since we have A(bi+1) = ai+1 and A(bi) = ai:

1 <
A(t, ε)

A(t)
≤ ai+1

ai
= 1 + ε

�

p

p

q

qCi(tp)

Ci(tq)

(a)

Cj(0)

Ci(0)

p

q

lrlij(tp)

Ci(tp)

Cj(tq)

(b)

Figure 4: Two robot-paths are illustrated: (a) spiral
path, (b) a right-left tangent path. Note that tp is the
departure time and tq is the arrival time where tq > tp.

294

30th Canadian Conference on Computational Geometry, 2018

s

d

π1
π2

π3

(a)

s

π1

π3

d

(b)

s

π4

π3

d

(c)

Figure 5: This figure illustrates valid paths between s
and d for three different departure times. (a) At this
time, three paths π1, π2 and π3 are valid. (b) Path π2
is obstructed and becomes invalid. Consequently, path
π3 is the time-minimal path. (c) Path π1 is obstructed
and π4 is the time-minimal path.

295

CCCG 2018, Winnipeg, Canada, August 8–10, 2018

Trajectory Planning for an Articulated Probe

Ovidiu Daescu∗ Kyle Fox∗ Ka Yaw Teo∗

Abstract

We present a geometric-combinatorial algorithm for
computing a feasible solution for a new trajectory plan-
ning problem involving a simple articulated probe. The
probe is modeled as two line segments ab and bc, with a
joint at the common point b, where bc is of fixed length
r and ab is of arbitrarily large (infinite) length. Initially,
ab and bc are collinear. Given a set of obstacles repre-
sented as n line segments, and a target point t, the probe
is to first be inserted in straight line, followed possibly
by a rotation of bc, so that in the final configuration
c coincides with t, all while avoiding intersections with
the line segments (obstacles). We prove that a feasible
probe trajectory can be determined in O(n2 log n) time
using O(n log n) space (in fact, our algorithm finds a set
of “extremal” feasible configurations). In the process,
we address and solve some other interesting problems,
such as circular sector emptiness queries and a special
case of circular arc ray shooting queries for line segments
in the plane.

1 Introduction

Consider the following trajectory (or motion) planning
problem. An articulated needle-like probe is modeled
in <2 as two line segments, ab and bc, joined at point
b. Line segment bc may rotate at point b. The length
of line segment ab can be arbitrarily large (infinitely
long), while line segment bc has a fixed length r (e.g.,
unit length).

A two-dimensional workspace is defined as the region
bounded by a circle S, which contains a set of n disjoint
line segment obstacles P (see Figure 1). Let t be a
point in the free space (i.e., inside S and outside the
obstacles).

In the beginning, the probe assumes a straight con-
figuration, that is, line segments ab and bc are collinear,
with b ∈ ac. We call this an unarticulated configuration.
Starting from outside S, the unarticulated probe, rep-
resented by straight line segment abc, may be inserted
into S as long as no obstacle is intersected by abc. After
the insertion, line segment bc may be rotated at point
b up to π/2 radians in either direction, provided that
line segment bc does not collide with any obstacle. If a

∗Department of Computer Science, University of Texas
at Dallas, Richardson, TX, USA. {daescu, kyle.fox,

ka.teo}@utdallas.edu

Figure 1: Trajectory planning for an articulated probe.
After a straight insertion of line segment abc, in order to
reach point t in the midst of obstacles, line segment bc
may be required to rotate from its intermediate position
(red dashed line) to the final position (black solid line).

rotation is performed, then we have an articulated con-
figuration of the probe.

A feasible probe trajectory consists of an initial inser-
tion of straight line segment abc, possibly followed by a
rotation of line segment bc at point b, such that point
c ends at the target point t, while avoiding obstacles in
the process of insertion and rotation.

The objective of the problem is to determine a fea-
sible probe trajectory, if one exists. As far as the au-
thors are aware, no previous geometric-combinatorial al-
gorithm for this problem is known. Possible extensions
of the problem include reporting the space of all feasi-
ble probe trajectories and finding feasible probe trajec-
tories of maximum clearance, although these extensions
are beyond the scope of this extended abstract.

Because bc may only rotate up to π/2 radians, it is an
easy observation that for any feasible probe trajectory,
point b is the first intersection of segment ab with a
circle C of radius r centered at point t. As illustrated
in Figure 1, segment bc may rotate about point b, and
the area swept by segment bc is a sector of a circle (a
portion of a disk enclosed by two radii and an arc), with
the center located on C, radius r, and the endpoint of
one of its two bounding radii located at point t. For
conciseness, the center of the circle on which a circular
sector is based is referred to herein as the center of the
circular sector.

296

30th Canadian Conference on Computational Geometry, 2018

Related work

The motion of a linkage – that is, a sequence of fixed-
length edges connected consecutively through joints –
has been formerly studied from various perspectives,
ranging from basic properties and questions (e.g., reach-
ability, reconfiguration, and locked decision) with strong
geometric and topological aspects [4, 9] to application-
driven robotic arm modeling and motion planning prob-
lems [10].

In contrast to those previous studies, our paper is
concerned with finding a collision-free path of motion
for a two-bar linkage constrained to an ordered sequence
of motions – namely, a straight insertion (of the linkage)
followed by a rotation (at the joint). Furthermore, one
of the links is considered to be unbounded in length.

Motivation

The problem setting described in the current study has
practical relevance in the field of robotics, particularly
in minimally invasive robotic surgery, where the plane
of insertion for a surgical probe can be defined based on
various medical imaging techniques. In minimally inva-
sive surgical approaches, a small incision is made, and
the surgical operation is performed by using specialized
tools inserted through the incision.

Most conventional surgical devices are straight, rigid,
or flexible. A simple articulated probe such as one
defined herein could be useful in minimally invasive
surgery for reaching previously unattainable targets by
circumventing critical structures, and for reaching mul-
tiple targets from a single insertion site while minimiz-
ing healthy tissue damage.

Results and contributions

We describe an algorithm that finds a feasible probe
trajectory in O(n2 log n) time using O(n log n) space.
In fact, our algorithm finds a set of so called “extremal”
feasible probe configurations. In such a configuration,
one or two obstacle endpoints are tangent to the probe
(see Lemma 1 below).

In the process of describing our solution, we solve
some special cases of a number of fundamental problems
of theoretical interest in computational geometry, such
as circular sector intersection and circular sector empti-
ness queries. In particular, we present a data structure
of near-linear size with logarithmic query time for solv-
ing a special instance of the circular arc intersection
query problem (i.e., for a query circular arc with a fixed
radius r and fixed endpoint t).

Our algorithm for articulated probe trajectory plan-
ning can be extended for polygonal obstacles, where we
can exploit output sensitive algorithms with respect to
the number of polygons and the complexity of the visi-
bility (to infinity) from a given point.

2 Main observation

Our algorithm crucially depends upon the following ob-
servation. It immediately implies that it suffices to test
a finite number of probe trajectories for feasibility. We
refer to these trajectories as extremal.

Lemma 1 There exists a feasible probe trajectory such
that the probe assumes either I: an unarticulated final
configuration (i.e., it is a straight line segment abc with
c = t) that intersects an obstacle endpoint, or II: an ar-
ticulated final configuration (i.e., line segments ab and
bc are not colinear and c = t) that intersects an obstacle
endpoint outside C and another obstacle endpoint inside
or outside C.

Proof. The existence of feasible probe trajectories for
case I and II can be proven using simple perturbation
arguments. The full proof of Lemma 1 is given in the
Appendix. �

3 Solution approach

Based on the observation stated in Lemma 1, the set
of extremal feasible probe trajectories can be obtained
using the following approach. For the purpose of anal-
ysis and clarity, the line segments of P are divided into
those lying inside C and those lying outside C. Since a
line segment may intersect C at most two times, a line
segment may be partitioned by C into at most three line
segments. Let Pin (resp. Pout) be the set of line seg-
ments lying inside (resp. outside) C. In addition, let V ,
Vin, and Vout denote the set of endpoints of the line seg-
ments of P , Pin, and Pout, respectively. Let nin = |Vin|,
nout = |Vout|. We have nin + nout = O(n).

Case I. Feasible unarticulated probe trajectory

We compute the set R of O(n) rays, each of which origi-
nates at point t, passes through a vertex of V , and does
not intersect any line segment of P . Each ray γ ∈ R
represents a feasible unarticulated probe trajectory, and
the set R of rays can be obtained by computing the visi-
bility polygon from point t in O(n log n) time [1, 6, 15].1

Lemma 2 The set of extremal feasible unarticulated
probe trajectories can be determined in O(n log n) time.

1For our case of disjoint line segments or even polygonal ob-
stacles, we could use the visibility complex to compute R. The
visibility complex is a two-dimensional subdivision in which each
cell corresponds to a collection of rays with the same visibility
properties [12]. For a simple scene of polygonal obstacles with
a total of n vertices, the visibility complex can be computed in
O(n logn + m) time using O(m) space, where m is the size of
the visibility complex (or the corresponding visibility graph) [13].
In the worst case, m = O(n2). After the visibility complex is
built, one can compute the view from a point in time O(k logn),
where k is the size of the computed view (from which the “visible”
tangents or rays can be reported).

297

CCCG 2018, Winnipeg, Canada, August 8–10, 2018

Case II. Feasible articulated probe trajectory

For ease of exposition, the two subcases of Case II,
depending on whether an articulated final configuration
intersects 1) an obstacle endpoint outside C and an
obstacle endpoint inside C, or 2) two obstacle endpoints
outside C, are considered separately.

Subcase 1. In order to find a feasible probe trajectory
with an articulated final configuration that intersects an
obstacle endpoint outside C and an endpoint inside C,
we first determine a feasible articulated final configura-
tion in the following manner.

We compute the set Rin of rays, each of which origi-
nates at point t, passes through an endpoint of Vin, and
does not intersect any line segment of Pin. By using the
same algorithm for computing the visibility polygon of
t used in Case I, Rin can be obtained in O(nin log nin)
time (alternatively, we can actually extract Rin directly
from the visibility polygon constructed for Case I in
O(n) additional time).

For each ray γin ∈ Rin, we i) find the intersection
point b of γin and C in O(1) time, and ii) compute
the set Rout of rays, each of which originates at point
b, passes through an endpoint of Vout, and does not
intersect any line segment of Pout. This can be done in
O(nout log nout) time (we could get rid of the O(log n)
factor with some care, using duality, while treating all
such b points at once).

A pair of rays γin ∈ Rin and γout ∈ Rout intersecting
at a point b defines a feasible final configuration of an
articulated probe trajectory, that intersects an endpoint
outside C and an endpoint inside C. Given that the
number of rays in Rin is bounded by O(nin), the worst-
case running time for finding the final configuration
pairs of rays γin and γout, intersecting at a point b, is
in the order of O(ninnout log nout + nin log nin).

Subcase 2. In order to find a feasible probe trajectory
with an articulated final configuration that intersects
two endpoints outside C, we determine a feasible inter-
mediate configuration (i.e., the probe configuration af-
ter inserting straight line segment abc into S and before
rotating line segment bc) using the following procedure.

For each endpoint v ∈ Vout, we compute the set R
of rays, each of which has the following properties: it
originates at endpoint v, passes through an endpoint of
Vout \{v}, does not intersect any line segment of P , and
its reversal intersects C and goes at least a distance r
beyond the intersection point with C without intersect-
ing any line segment of P . Again, R can be obtained in
O(n log n) time by computing the visibility polygon of
v. For each ray γ ∈ R, in O(1) time, we find the first
intersection point b of C with the reversal of γ.

A ray γ ∈ R whose reversal intersects C at a point
b and satisfies the obstacle free restriction above

represents a feasible intermediate configuration of an
articulated probe trajectory that intersects two vertices
outside C. Since |Vout| = nout, the worst-case running
time for finding such a ray γ is O(noutn log n).2

An articulated probe trajectory with a feasible final
or intermediate configuration is feasible if and only if
the area swept by segment bc after the initial insertion
(i.e., a circular sector) is not intersected by any obstacle.
Thus, the remainder of Case II entails a circular sector
intersection problem, detailed in the next section.

4 Circular sector intersection queries

The general line segment circular sector intersection
query problem can be formally stated as follows.

Given a set P of n line segments, preprocess it so that,
for a query circular sector σ, one can efficiently
determine whether σ intersects P .

For our purposes, it suffices to solve a special case of
this problem where the radius of the circular sector is
fixed to r and one endpoint of the circular arc of the sec-
tor is fixed at t. The intersection of a line segment and
a circular sector can only occur as some combination of
the three basic scenarios depicted in Figure 2.

Figure 2: Basic scenarios of a line segment intersecting
with a circular sector. (A) The segment intersects both
radii of the sector. (B) The segment intersects the sec-
tor’s circular arc at least once. (C) At least one segment
endpoint lies inside the sector.

Recall that a feasible final or intermediate configura-
tion for an articulated probe trajectory has been found
in the previous section. Thus, one of the radii of the
query circular sector is surely not intersected by any
line segment of P . Therefore, the basic scenario in Fig-
ure 2A can be eliminated from consideration.

Hence, our case of the circular sector intersection
problem reduces to the following two problems:

1. Circular arc intersection query – for detecting the
basic scenario in Figure 2B.

2. Circular sector emptiness query – for detecting the
basic scenario in Figure 2C.

2As before, we can handle subcases 1 and 2 using the visibility
complex approach.

298

30th Canadian Conference on Computational Geometry, 2018

Circular arc intersection queries. Consider the fol-
lowing circular arc intersection problem.

Problem 1 Given a set P of n line segments, prepro-
cess it so that, for a query circular arc γ that originates
at a fixed point t and has a fixed radius r, one can effi-
ciently determine if γ intersects P .

Notice that since a query circular arc γ originates
from a fixed point t and has a fixed radius r, the center
of γ is always located on a circle C of radius r centered
at point t.

Figure 3: Counter-clockwise circular arcs `Ss and `Ls em-
anating from point t.

Let D be a circle of radius r centered at any point
p ∈ C (Figure 3). Note that circle D passes through
the center t of circle C. We let θ be the angle of tp
relative to the x-axis; D is uniquely determined by θ
since we know p lies on C. We will consider only query
arcs that emanate counter-clockwise from t. The other
case can be handled symmetrically.

Fix a line segment s, and let hs be its supporting line.
We will define two partial functions `Ss , `

L
s : [0, 2π) →

R≥0. Let θ ∈ [0, 2π) and let D be the circle for that θ
as defined above. If D intersects hs and the first inter-
section lies on s, let `Ss (θ) be the length of the counter-
clockwise arc from t to that first intersection. Other-
wise, `Ss (θ) is undefined. Similarly, if D has a second
intersection with hs on s, let `Ls (θ) be the length of the
arc to that intersection. We easily observe the following
properties of `Ss (Figure 4). The same statements apply
to `Ls as well.

Property 1 Function `Ss is defined over at most two
maximal contiguous subsets of [0, 2π).

Property 2 Given two segments si, sj, we have
`Ssi(θ) = `Ssj (θ) for at most one value of θ. Specifically, it
is the value of θ for which D’s shorter counter-clockwise
arc ends at the intersection of si and sj. Because si and
sj can only intersect at their endpoints, `Ssi(θ) = `Ssj (θ)
only at the endpoints of the maximal contiguous subsets
of [0, 2π) for which `Ssi and `Ssj are defined.

Figure 4: Illustration of the properties of function `Ss .
A given line segment s induces a partially-defined piece-
wise continuous curve lSs . Two curves `Ssi and `Ssj inter-
sect (at most once) if and only if their corresponding
line segments si and sj intersect (e.g., s1 and s2).

The lower envelope of n segments in the plane has
complexity bounded by the third order Davenport-
Schinzel sequence, which is O(nα(n)), where α(n) is the
inverse of the Ackermann function [14]. The lower enve-
lope can be found by a worst-case optimal divide-and-
conquer algorithm running in O(n log n) time [7]. Let
V S be the lower envelope of the curves `Ssi for all given
line segments si ∈ P . Given the properties of each `Ssi
(in particular that the curves intersect at endpoints),
the size of lower envelope V S is actually bounded by
the second order Davenport-Schinzel sequence, which is
O(n), and we can again compute it in O(n log n) time.
We define and compute V L similarly for the curves `Lsi .
In order to determine whether a query circular arc γ
intersects P , the angle θ of center p of circular query
arc γ from point t is looked up in V S and V L by us-
ing two binary searches that take O(log n) time. If the
length of γ is less than `Ssi(θ) and `Lsi(θ) for all si, then
γ does not intersect any line segment of P . Otherwise,
it intersects the segment which lies on a lower envelope
at θ. Thus, we obtain the following result, which can
be easily shown to be worst case optimal (see [15]).

Lemma 3 A set P of n non-crossing line segments can
be preprocessed in O(n log n) time into a data structure
of size O(n) so that, for a query circular arc γ that
originates at a fixed point t and has a fixed radius r,
one can determine whether γ intersects P in O(log n)
time.

Circular sector emptiness queries. Our special case
of the circular sector emptiness problem can be stated
as follows.

Problem 2 Given a set P of n points in the plane pre-
process it so that, for a query circular sector σ of fixed
radius r whose arc contains a fixed point t, one can ef-
ficiently determine whether σ contains any point of P .

Circular sector σ can be partitioned into i) a triangle
4bct and ii) a circular segment bounded by arc ct and

299

CCCG 2018, Winnipeg, Canada, August 8–10, 2018

the chord connecting the endpoints of the arc. Notice
that circular sector σ is void of P if and only if both
the triangle and circular segment are void of P . Thus,
Problem 2 can be reduced to the following two subprob-
lems – 1) restricted triangular emptiness query and 2)
restricted circular segment emptiness query.

Consider the restricted triangular emptiness problem
stated below.

Subproblem 1 Given a set P of n points in the plane,
preprocess it so that, for a query triangle4 with a vertex
incident on a fixed point t, one can efficiently determine
whether 4 contains any point of P .

As proposed by Benbernou et al. [2], Subproblem 1
can be solved as follows. The points of P can be at first
sorted around point t in counter-clockwise order. Con-
sider a wedge formed by two rays emanating from point
t. Let i and j be the first and last points, respectively,
within the wedge in counter-clockwise order. Points i
and j can be determined for any given wedge in O(log n)
time. Based on this observation, with O(n log n) prepro-
cessing space and time, a restricted triangular emptiness
query can be answered in O(log n) time. Daescu et al.
[5] also used a similar idea to build a data structure for
halfplane farthest-point queries.

The result for Subproblem 1 is summarized in the
following lemma.

Lemma 4 A set P of n points in the plane and a fixed
point t can be preprocessed in O(n log n) time into a data
structure of size O(n log n) so that, for a query trian-
gle 4 with a vertex incident on t, one can determine
whether 4 contains any point of P in O(log n) time.

The restricted circular segment emptiness problem is
given as follows.

Subproblem 2 Given a set P of n points in the plane,
preprocess it so that for a query circular segment s,
bounded by a circular arc originating from a fixed point
t and the chord connecting the endpoints of the arc, one
can efficiently determine if s contains any point of P .

Let sct be a query circular segment bounded by cir-
cular arc ct (of a circle C of radius r) and the chord
connecting points c and t. In order to determine if sct
contains any point of P , we begin by finding its corre-
sponding “enclosing” circular segment (or semi-circle)
spt as illustrated in Figure 5. spt is a circular segment
bounded by arc pt and the chord connecting points p
and t. Given circular arc ct emanating from point t
and running counter-clockwise, spt can be determined
by extending the arc until it intersects with a circle D
of radius 2r centered at point t. The case of clockwise
circular segments can be handled symmetrically.

Figure 5: Circular segment sct and its “enclosing” cir-
cular segment spt.

Figure 6: Circular segment spt and its corresponding
event interval indicated by [i, j].

Let Ppt ⊆ P be the set of points in spt, and CH(Ppt)
be the convex hull of Ppt. As shown in Figure 6, at most
two tangent lines on the convex hull pass through point
t. Let q be the intersection point between arc pt and
the first of the two tangents in counter-clockwise order.
If point c is located on arc qt, then sct is empty of P .

We now describe a preprocessing procedure based on
the earlier observations. At first, observe that, as spt
rotates about point t counter-clockwise, a point of P
may enter and leave spt. Each of these point-entering
and -leaving events can be determined in O(1) time by
computing the intersections between the boundary of
spt and each point of P . Since a point of P can en-
ter and leave spt at most once, the total number of
point-entering and -leaving events is bounded by 2n.
These events can be sorted in counter-clockwise order
in O(n log n) time.

Let sit and sjt be the circular segments associated
with any two consecutive events in sorted order, where
i and j are the endpoints of the bounding arcs (ema-
nating from point t) for sit and sjt, respectively (see
Figure 6, right). Notice that, the set of points of P
in spt remains constant within this event interval. For
each of these event intervals, the set of points of inter-
est, their convex hull, and ultimately point q can be
determined by using a dynamic convex hull data struc-
ture [3, 8], which requires O(n) space, O(n log n) prepro-
cessing time, O(log n) time per update operation, and
O(log n) time for tangent queries. A simple O(log n)
query-time data structure of linear size can then be built

300

30th Canadian Conference on Computational Geometry, 2018

to store point q for each event interval.
Thus, given a query circular segment sct, point p can

be computed in O(1) time, followed by a look-up of the
event interval [i, j] that contains p and its associated
point q in O(log n) time. If the endpoint c of sct is
located within arc qt, then sct does not contain any
point of P .

Lemma 5 For a fixed point t, a set P of n points in
the plane can be preprocessed in O(n log n) time into a
data structure of size O(n) so that, given a query cir-
cular segment s, bounded by a circular arc originating
from t and the chord connecting the endpoints of the
arc, one can determine whether s contains any point of
P in O(log n) time.

Altogether, the following result is obtained for Prob-
lem 2.

Lemma 6 For a positive number r and a fixed point t,
a set P of n points in the plane can be preprocessed in
O(n log n) time into a data structure of size O(n log n)
so that, given a query circular sector σ with radius r and
an endpoint of its arc located at t, one can determine
whether σ contains any point of P in O(log n) time.

Remark. We can solve the more general circular sec-
tor emptiness problem without a fixed radius or point
t on the arc using a multilevel data structure similar to
one by Matous̆ek [11] for counting points in the inter-
section of halfspaces (see also [5] for a similar approach
on a related problem). Specifically, the first level is con-
structed for halfplane range queries to select the points
of P lying on the σ side of the line supporting bc, and
the second level is for halfplane range queries on the re-
sulting points to select those lying on the σ side of bt.
Thus, these two levels are used to find the points inside
the wedge centered at b. Each subset of P on the second
level is further preprocessed for nearest neighbor queries
by computing its Voronoi diagram and augmenting it for
point location. At query time, we can locate b in this
data structure in logarithmic time. If the closest point
is within distance r of b, then the circular sector is not
empty of P . By following the strategy outlined in the
first half of [11, Theorem 6.2], we can create a tradeoff
between space and time usage by our data structure.

Lemma 7 A set P of n points can be preprocessed into
a data structure of size O(m) in O(m log n) time so
that, for a query circular sector σ of radius r centered
at point p, one can determine whether σ is void of P in
O(n/m1/2 log5/2 n) time for any n1+ε ≤ m ≤ n2.

Finishing up. According to Lemmas 3 and 6, the result
for our case of the circular sector intersection problem
can be stated as follows.

Lemma 8 For a positive value r and a fixed point t,
a set of P of n line segments can be preprocessed in
O(n log n) time into a data structure of size O(n log n)
so that, given a query circular sector σ with radius r
whose circular arc has an endpoint at t, one can deter-
mine whether σ intersects P in O(log n) time.

Let ns be the number of endpoints of V within dis-
tance 2r from point t. Then, in Case II, given that
O(ninnout + n2out) queries are to be processed in the
worst case and we only need to worry about endpoints
lying sufficiently close to t, the following result is ob-
tained.

Lemma 9 A feasible articulated probe trajectory can
be determined in O((ninnout + n2out) log ns) time using
O(ns log ns + n) space.

Given that the space/time complexity of Case II
(Lemma 9) is dominant over that of Case I (Lemma
2), the solution approach proposed herein for finding a
feasible probe trajectory leads to the following theorem.

Theorem 10 A feasible probe trajectory can be de-
termined in O((ninnout + n2out) log ns) time using
O(ns log ns + n) space.

Recall that nin, nout, ns ≤ n. Thus, the space us-
age and running time are bounded by O(n log n) and
O(n2 log n), respectively.

5 Conclusion

We presented an efficient geometric-combinatorial algo-
rithm for a novel trajectory planning problem involv-
ing a simple articulated probe. Specifically, we can de-
termine a feasible probe trajectory in O(n2 log n) time.
Our algorithm reduced to special cases of the circular
sector intersection problem, for which we provided so-
lutions.

A number of open problems remain: (1) Our algo-
rithm works by enumerating over a set of possible “ex-
tremal” solutions. Can it be sped up, possibly by skip-
ping some of these solutions? (2) Can the algorithm be
extended to find a representation of all feasible probe
trajectories? (3) Can the space usage of the special cir-
cular sector queries be reduced to O(n)? We conjecture
that our result would then be optimal. (4) Can we find
an efficient general data structure for circular arc ray
shooting queries among (disjoint or intersecting) line
segments?

Acknowledgements. The authors would like to thank
Pankaj K. Agarwal and Carola Wenk for helpful discus-
sions and pointers to related literature.

301

CCCG 2018, Winnipeg, Canada, August 8–10, 2018

References

[1] E. Arkin and J. Mitchell. An optimal visibility al-
gorithm for a simple polygon with star-shaped holes.
Technical report, Cornell University Operations Re-
search and Industrial Engineering, 1987.

[2] N. M. Benbernou, M. Ishaque, and D. L. Souvaine.
Data structures for restricted triangular range search-
ing. In 20th Annual Canadian Conference on Compu-
tational Geometry, pages 15–18. Citeseer, 2008.

[3] G. S. Brodal and R. Jacob. Dynamic planar convex
hull. In Foundations of Computer Science, 2002. Pro-
ceedings. The 43rd Annual IEEE Symposium on, pages
617–626. IEEE, 2002.

[4] R. Connelly and E. D. Demaine. Geometry and topol-
ogy of polygonal linkages. Handbook of discrete and
computational geometry, pages 233–256, 2017.

[5] O. Daescu, N. Mi, C. Shin, and A. Wolff. Farthest-point
queries with geometric and combinatorial constraints.
Computational Geometry, 33(3):174–185, 2006.

[6] P. J. Heffernan and J. S. Mitchell. An optimal algorithm
for computing visibility in the plane. SIAM Journal on
Computing, 24(1):184–201, 1995.

[7] J. Hershberger. Finding the upper envelope of n line
segments in O(n log n) time. Information Processing
Letters, 33(4):169–174, 1989.

[8] J. Hershberger and S. Suri. Off-line maintenance of pla-
nar configurations. Journal of Algorithms, 21(3):453–
475, 1996.

[9] J. Hopcroft, D. Joseph, and S. Whitesides. Movement
problems for 2-dimensional linkages. SIAM Journal on
Computing, 13(3):610–629, 1984.

[10] S. M. LaValle. Planning algorithms. Cambridge univer-
sity press, 2006.

[11] J. Matoušek. Range searching with efficient hierar-
chical cuttings. Discrete & Computational Geometry,
10(2):157–182, 1993.

[12] M. Pocchiola and G. Vegter. The visibility complex. In-
ternational Journal of Computational Geometry & Ap-
plications, 6(03):279–308, 1996.

[13] S. Rivière. Topologically sweeping the visibility com-
plex of polygonal scenes. In Proceedings of the Eleventh
Annual Symposium on Computational Geometry, pages
436–437. ACM, 1995.

[14] M. Sharir and P. K. Agarwal. Davenport-Schinzel se-
quences and their geometric applications. Cambridge
university press, 1995.

[15] S. Suri and J. O’Rourke. Worst-case optimal algorithms
for constructing visibility polygons with holes. In Pro-
ceedings of the Second Annual Symposium on Compu-
tational Geometry, pages 14–23. ACM, 1986.

Appendix

For case I, suppose that a feasible probe trajectory T exists,
such that the final pose of the probe is unarticulated and
point c coincides with point t. In other words, t has unob-
structed vision to some points on the bounding circle S. Let
T ′ be the trajectory resulting from rotating T about point
t in clockwise direction until T intersects an obstacle end-
point v. It is apparent that T ′ is also a feasible trajectory,
and its articulation point b′ is the intersection of segment vt
and circle C.

Figure 7: Case II of Lemma 1. T ′′ represents a feasible
articulated probe trajectory such that the final config-
uration of the probe intersects an obstacle endpoint v1
outside C and an obstacle endpoint v2 inside C.

For case II, assume that a feasible trajectory T exists such
that the final pose of the probe is articulated (i.e., line seg-
ments ab and bc are not collinear) and point c coincides
with point t (Figure 7). Suppose probe trajectory T rotates
segment bc clockwise around b to reach point t; the other
case uses symmetric arguments. Let T ′ be the trajectory
resulting from rotating line segment ab of T about point b in
clockwise direction until line segment ab intersects an obsta-
cle endpoint v1 outside C. Given that the area swept by line
segment bc of T ′ is within that of T (indicated by the shaded
circular sectors in Figure 7), T ′ is also a feasible trajectory.

Now, let T ′′ be the trajectory obtained by rotating line
segment bc of T ′ about point t in counter-clockwise direction
while simultaneously rotating ab around v1 in the clockwise
direction until either abc becomes a line segment or either ab
or bc intersects some obstacle endpoint v2. Note that as T ′

changes into T ′′ point b of T ′ slides on circle C in counter-
clockwise direction into a new position b′′. If abc becomes
a line segment, we have achieved case I of the lemma. We
now assume otherwise.

Observe that every point of the circular sector centered at
b′′ lies on the t side of the line through v1 and b. They also
lie on the b side of the line through b′′ and t. Therefore, these
points either lie in the circular sector of radius r centered at
t with arc endpoints at b and b′′, or they lie in the wedge
emanating from the circular sector centered at b. We know
the sector centered at t is empty, because it was swept while
constructing T ′′. We now argue the remaining points of the
sector centered at b′′ not only lie in the wedge from b, but
they actually lie in the circular sector centered at b. Because
T ′ is a feasible probe trajectory, the sector at b and therefore
the whole sector at b′′ is empty as well, and T ′′ is a feasible
probe trajectory.

Indeed, let x be a point of the sector centered at b′′ that

302

30th Canadian Conference on Computational Geometry, 2018

Figure 8: Point x lies inside the circular sector centered
at b.

lies in the wedge at b. Let o be the intersection of the line
segments bt and b′′x (Figure 8). By the triangle inequality,

|bx| ≤ |bo|+ |ox|
= |bt| − |ot|+ |b′′x| − |b′′o|
≤ |bt|+ |b′′x| − |b′′t|
= |b′′x|
≤ r

If v2 is inside circle C, then point b′′ is the intersection be-
tween circle C and a ray emanating from point t through v2.
Otherwise, both v1 and v2 lie on the line segment ab′′.

303

CCCG 2018, Winnipeg, Canada, August 8–10, 2018

Distance-Two Colorings of Barnette Graphs

Tomás Feder∗ Pavol Hell† Carlos Subi‡

Abstract

Barnette identified two interesting classes of cubic poly-
hedral graphs for which he conjectured the existence of
a Hamiltonian cycle. Goodey proved the conjecture for
the intersection of the two classes. We examine these
classes from the point of view of distance-two color-
ings. A distance-two r-coloring of a graph G is an as-
signment of r colors to the vertices of G so that any
two vertices at distance at most two have different col-
ors. Note that a cubic graph needs at least four colors.
The distance-two four-coloring problem for cubic planar
graphs is known to be NP-complete. We claim the prob-
lem remains NP-complete for tri-connected bipartite
cubic planar graphs, which we call type-one Barnette
graphs, since they are the first class identified by Bar-
nette. By contrast, we claim the problem is polynomial
for cubic plane graphs with face sizes 3, 4, 5, or 6, which
we call type-two Barnette graphs, because of their rela-
tion to Barnette’s second conjecture. We call Goodey
graphs those type-two Barnette graphs all of whose faces
have size 4 or 6. We fully describe all Goodey graphs
that admit a distance-two four-coloring, and character-
ize the remaining type-two Barnette graphs that admit
a distance-two four-coloring according to their face size.

For quartic plane graphs, the analogue of type-two
Barnette graphs are graphs with face sizes 3 or 4. For
this class, the distance-two four-coloring problem is also
polynomial; in fact, we can again fully describe all col-
orable instances – there are exactly two such graphs.

1 Introduction

Tait conjectured in 1884 [22] that all cubic polyhedral
graphs, i.e., all tri-connected cubic planar graphs, have
a Hamiltonian cycle; this was disproved by Tutte in 1946
[24], and the study of Hamiltonian cubic planar graphs
has been a very active area of research ever since, see
for instance [1, 11, 17, 19]. Barnette formulated two
conjectures that have been at the centre of much of
the effort: (1) that bipartite tri-connected cubic pla-
nar graphs are Hamiltonian (the case of Tait’s conjec-
ture where all face sizes are even) [4], and (2) that tri-
connected cubic planar graphs with all face sizes 3, 4, 5
or 6 are Hamiltonian, cf. [3, 20]. Goodey [12, 13] proved

∗Palo Alto, tomas@theory.stanford.edu
†School of Computing Science, SFU, pavol@sfu.ca
‡Los Altos Hills, carlos.subi@hotmail.com

that the conjectures hold on the intersection of the two
classes, i.e., that tri-connected cubic planar graphs with
all face sizes 4 or 6 are Hamiltonian. When all faces
have sizes 5 or 6, this was a longstanding open prob-
lem, especially since these graphs (tri-connected cubic
planar graphs with all face sizes 5 or 6) are the popu-
lar fullerene graphs [8]. The second conjecture has now
been affirmatively resolved in full [18]. For the first con-
jecture, two of the present authors have shown in [10]
that if the conjecture is false, then the Hamiltonicity
problem for tri-connected cubic planar graphs is NP-
complete. In view of these results and conjectures, in
this paper we call bipartite tri-connected cubic planar
graphs type-one Barnette graphs; we call cubic plane
graphs with all face sizes 3, 4, 5 or 6 type-two Barnette
graphs; and finally we call cubic plane graphs with all
face sizes 4 or 6 Goodey graphs. Note that it would be
more logical, and historically accurate, to assume tri-
connectivity also for type-two Barnette graphs and for
Goodey graphs. However, we prove our positive results
without needing tri-connectivity, and hence we do not
assume it.

Cubic planar graphs have been also of interest from
the point of view of colorings [6, 15]. In particular, they
are interesting for distance-two colourings. Let G be a
graph with degrees at most d. A distance-two r-coloring
of G is an assignment of colors from [r] = {1, 2, . . . , r} to
the vertices of G such that if a vertex v has degree d′ ≤ d
then the d′ + 1 colors of v and of all the neighbors of v
are all distinct. (Thus a distance-two coloring of G is a
classical coloring ofG2.) Clearly a graph with maximum
degree d needs at least d+ 1 colors in any distance-two
coloring, since a vertex of degree d and its d neighbours
must all receive distinct colors. It was conjectured by
Wegner [25] that a planar graph with maximum degree
d has a distance-two r-colouring where r = 7 for d = 3,
r = d + 5 for d = 4, 5, 6, 7, and r = b3d/2c + 1 for all
larger d. The case d = 3 has been settled in the positive
by Hartke, Jahanbekam and Thomas [14], cf. also [23].

For cubic planar graphs in general it was conjectured
in [14] that if a cubic planar graph is tri-connected, or
has no faces of size five, then it has a distance-two six-
coloring. We propose a weaker version of the second case
of the conjecture, namely, we conjecture that a bipar-
tite cubic planar graph can be distance-two six-colored.
We prove this in one special case (Theorem 5), which
of course also confirms the conjecture of Hartke, Ja-
hanbekam and Thomas for that case. Heggerness and

304

30th Canadian Conference on Computational Geometry, 2018

Telle [16] have shown that the problem of distance-two
four-coloring cubic planar graphs is NP-complete. On
the other hand, Borodin and Ivanova [5] have shown
that subcubic planar graphs of girth at least 22 can be
distance-two four-colored. In fact, there has been much
attention focused on the relation of distance-two col-
orings and the girth, especially in the planar context
[5, 15].

Our results focus on distance-two colorings of cubic
planar graphs, with particular attention on Barnette
graphs, of both types. We prove that a cubic plane
graph with all face sizes divisible by four can always
be distance-two four-colored, and a give a simple condi-
tion for when a bi-connected cubic plane graph with all
face sizes divisible by three can be distance-two four-
colored using only three colors per face. It turns out
that the distance-two four-coloring problem for type-
one Barnette graphs is NP-complete, while for type-two
Barnette graphs it is not only polynomial, but the posi-
tive instances can be explicitly described. They include
one infinite family of Goodey graphs (cubic plane graphs
with all faces of size 4 or 6), and all type-two Barnette
graphs which have all faces of size 3 or 6. Interestingly,
there is an analogous result for quartic (four-regular)
graphs: all quartic planar graphs with faces of only sizes
3 or 4 that have a distance-two five coloring can be ex-
plicitly described; there are only two such graphs.

Note that we use the term “plane graph” when the ac-
tual embedding is used, e.g., when discussing the faces;
on the other hand, when the embedding is unique, as in
tri-connected graphs, we stick with writing “planar”.

The proofs omitted here can be found in [9].

2 Relations to edge-colorings and face-colorings

Distance-two colorings have a natural connection to
edge-colorings.

Theorem 1 Let G be a graph with degrees at most d
that admits a distance-two (d+ 1)-coloring, with d odd.
Then G admit an edge-coloring with d colors.

Proof. The even complete graph Kd+1 can be edge-
colored with d colors by the Walecki construction [2].
We fix one such coloring c, and then consider a distance-
two (d+ 1)-coloring of G. If an edge uv of G has colors
ab at its endpoints, we color uv in G with the color
c(ab). It is easy to see that this yields an edge-coloring
of G with d colors. �

We call the resulting edge-coloring of G the derived
edge-coloring of the original distance-two coloring.

In this paper, we mostly focus on the case d = 3 (the
subcubic case). Thus we use the edge-coloring of K4 by
colors red, blue, green. This corresponds to the unique
partition of K4 into perfect matchings. Note that for

every vertex v of K4 and every edge-color i, there is a
unique other vertex u of K4 adjacent to v in edge-color
i. Thus if we have the derived edge-coloring we can
efficiently recover the original distance-two coloring. In
the subcubic case, in turns out to be sufficient to have
just one color class of the edge-coloring of G.

Theorem 2 Let G be a subcubic graph, and let R be
a set of red edges in G. The question of whether there
exists a distance-two four-coloring of G for which the
derived edge-coloring has R as one of the three color
classes can be solved by a polynomial time algorithm. If
the answer is positive, the algorithm will identify such
a distance-two coloring.

There is also a relation to face-colorings. It is a folk-
lore fact that the faces of any bipartite cubic plane graph
G can be three-colored [21]. This three-face-coloring in-
duces a three-edge-coloring of G by coloring each edge
by the color not used on its two incident faces. (It is
easy to see that this is in fact an edge-coloring, i.e., that
incident edges have distict colors.) We call an edge-
coloring that arises this way from some face-coloring of
G a special three-edge-coloring of G. We first ask when
is a special three-edge-coloring of G the derived edge-
coloring of a distance-two four-coloring of G.

Theorem 3 A special three-edge-coloring of G is the
derived edge-coloring of some distance-two four-coloring
of G if and only if the size of each face is a multiple of
4.

Proof. The edges around a face f alternate in colors,
and the vertices of f can be colored consistently with
this alternation if and only if the size of f is a multi-
ple of 4. This proves the “only if” part. For the “if”
part, suppose all faces have size multiple of 4. If there is
an inconsistency, it will appear along a cycle C in G. If
there is only one face inside C, there is no inconsistency.
Otherwise we can join some two vertices of C by a path
P inside C, and the two sides of P inside C give two
regions that are inside two cycles C ′, C ′′. The consis-
tency of C then follows from the consistency of each of
C ′, C ′′ by induction on the number of faces inside the
cycle. �

Corollary 4 Let G be a cubic plane graph in which the
size of each face is a multiple of four. Then G can be
distance-two four-colored.

We now prove a special case of the conjecture stated
in the introduction, that all bipartite cubic plane graphs
can be distance-two six-colored. Recall that the faces of
any bipartite cubic plane graph can be three-colored.

Theorem 5 Suppose the faces of a bipartite cubic plane
graph G are three-colored red, blue and green, so that the

305

CCCG 2018, Winnipeg, Canada, August 8–10, 2018

red faces are of arbitrary even size, while the size of each
blue and green face is a multiple of 4. Then G can be
distance-two six-colored.

Proof. Let G′ be the multigraph obtained from G by
shrinking each of the red faces. Clearly G′ is planar,
and since the sizes of blue and green faces in G′ are half
of what they were in G, they will be even, so G′ is also
bipartite. Let us label the two sides of the bipartition as
A and B respectively. Now consider the special three-
edge coloring of G associated with the face coloring of
G. Each red edge in this special edge-coloring joins a
vertex of A with a vertex of B; we orient all red edges
from A to B. Now traversing each red edge in G in
the indicated orientation either has a blue face on the
left and green face on the right, or a green face on the
left and blue face on the right. In the former case we
call the edge class one in the latter case we call it class
two. Each vertex of G is incident with exactly one red
edge; the vertex inherits the class of its red edge. The
vertices around each red face in G are alternatingly in
class 1 and class 2. We assign colors 1, 2, 3 to vertices
of class one and colors 4, 5, 6 to vertices of class two.
It remains to decide how to choose from the three col-
ors available for each vertex. A vertex adjacent to red
edges in class i has only three vertices within distance
two in the same class, namely the vertex across the red
edge, and the two vertices at distance two along the red
face in either direction. Therefore distance-two coloring
for class i corresponds to three-coloring a cubic graph.
Since neither class can yield a K4, such a three-coloring
exists by Brooks’ theorem [7]. This yields a distance-
two six-coloring of G. �

3 Distance-two four-coloring of type-one Barnette
graphs is NP-complete

We now state our main intractability result.

Theorem 6 The distance-two four-coloring problem
for tri-connected bipartite cubic planar graphs is NP-
complete.

In this note we only derive the following weaker ver-
sion of our claim. (See [9] for the proof of the entire
claim.)

Theorem 7 The distance-two four-coloring problem
for bipartite planar subcubic graphs is NP-complete.

Proof. Consider the graph H in Figure 1.
We will reduce the problem of H-coloring planar

graphs to the distance-two four-coloring problem for bi-
partite planar subcubic graphs. In the H-coloring prob-
lem we are given a planar graph G and and the question
is whether we can color the vertices of G with colors
that are vertices of H so that adjacent vertices of G

H

12

24 23

34

14 13

Figure 1: The graph H for the proof of Theorem 7

obtain adjacent colors. This can be done if and only
if G is three-colorable, since the graph H both con-
tains a triangle and is three-colorable itself. (Thus any
three-coloring of G is an H-coloring of G, and any H-
coloring of G composed with a three-coloring of H is a
three-coloring of G.) It is known that the three-coloring
problem for planar graphs is NP-complete, hence so is
the H-coloring problem.

...

b

b

d

1

1

1

4

4

a
2k

b
2kd2k

2kc
a1

d
c a2

b
2

d2
c2

a
3

3d
c3

b
3

a
4 c

4

d
5

b c55

a5

6a
d6

c
6

b
6

Figure 2: The ring gadget

Thus suppose G is an instance of the H-coloring prob-
lem. We form a new graph G′ obtained from G by re-
placing each vertex v of G by a ring gadget depicted
in Figure 2. If v has degree k, the ring gadget has 2k
squares. A link in the ring is a square aibicidiai followed
by the edge ciai+1. A link is even if i is even, and odd
otherwise. Every even link in the ring will be used for a
connection to the rest of the graph G′, thus vertex v has
k available links. For each edge vw of G we add a new
vertex fvw that is adjacent to a vertex ds in one avail-
able link of the ring for v and a vertex d′t in one available
link of the ring for w. (We use primed letters for the cor-
responding vertices in the ring of w to distinguish them
from those in the ring of v.) The actual choice of (the
even) subscripts s, t does not matter, as long as each
available link is only used once. The resulting graph is
clearly subcubic and planar. It is also bipartite, since

306

30th Canadian Conference on Computational Geometry, 2018

we can bipartition all its vertices into one independent
set A consisting of all the vertices ai, ci, bi+1, di+ 1 with
odd i in all the rings, and another independent set B
consisting of the vertices ai, ci, bi+1, di+ 1 with even i
in all the rings. Moreover, we place all vertices fvw into
the set A. Note that in any distance-two four-coloring
of the ring, each link must have four different colors
for vertices ai, bi, ci, di, and the same color for ai and
ai+1. Thus all ai have the same color and all ci have
the same color. The pair of colors in bi, di is also the
same for all i; we will call it the characteristic pair of
the ring for v. For any pair ij of colors from 1, 2, 3, 4,
there is a distance-two coloring of the ring that has the
characteristic pair ij.

One can prove that G is H-colorable if and only if G′

is distance-two four-colorable. �

We remark that (with some additional effort) we can
prove that the problem is still NP-complete for the class
of tri-connected bipartite cubic planar graphs with no
faces of sizes larger than 44.

4 Distance-two four-coloring of Goodey graphs

Recall that Goodey graphs are type-two Barnette graph
with all faces of size 4 and 6 [12, 13]. In other words, a
Goodey graph is a cubic plane graph with all faces having
size 4 or 6. By Euler’s formula, a Goodey graph has
exactly six square faces, while the number of hexagonal
faces is arbitrary.

A cyclic prism is the graph consisting of two disjoint
even cycles a1a2 · · · a2ka1 and b1b2 · · · b2kb1, k ≥ 2, with
the additional edges aibi, 1 ≤ i ≤ 2k. It is easy to
see that cyclic prisms have either no distance-two four-
coloring (if k is odd), or a unique distance-two four-
coloring (if k ≥ 2 is even). Only the cyclic prisms with
k = 2, 3 are Goodey graphs, and thus from Goodey
cyclic graphs only the cube (the case of k = 2) has a
distance-two coloring, which is moreover unique.

In fact, all Goodey graphs that admit distance-two
four-coloring can be constructed from the cube as fol-
lows. The Goodey graph C0 is the cube, i.e., the cyclic
prism with k = 2. The Goodey graph C1 is depicted
in Figure 4. It is obtained from the cube by separat-
ing the six square faces and joining them together by a
pattern of hexagons, with three hexagons meeting at a
vertex tying together the three faces that used to meet
in one vertex. The higher numbered Goodey graphs are
obtained by making the connecting pattern of hexagons
higher and higher. The next Goodey graph C2 has two
hexagons between any two of the six squares, with a cen-
tral hexagon in the centre of any three of the squares,
the following Goodey graph C3 has three hexagons be-
tween any two of the squares and three hexagons in the
middle of any three of the squares, and so on. Thus in

general we replace every vertex of the cube by a triangu-
lar pattern of hexagons whose borders are replacing the
edges of the cube. We illustrate the vertex replacement
graphs in Figure 3, without giving a formal description.
The entire Goodey graph C1 is depicted in Figure 4.

3

0C
C

1

2C
C

Figure 3: The vertex replacements for Goodey graphs
C0, C1, C2, and C3

Figure 4: The Goody graph C1

We have the following results.

Theorem 8 The Goodey graphs Ck, k ≥ 0, have a
unique distance-two four-coloring, up to permutation of
colors.

Theorem 9 The Goodey graphs Ck, k ≥ 0, are the only
bipartite cubic planar graphs having a distance-two four-
coloring.

We can therefore conclude the following.

Corollary 10 The distance-two four-coloring problem
for Goodey graphs is solvable in polynomial time.

Recognizing whether an input Goodey graph is some
Ck can be achieved in polynomial time; in the same time
bound G can actually be distance-two four-colored.

307

CCCG 2018, Winnipeg, Canada, August 8–10, 2018

5 Distance-two four-coloring of type-two Barnette
graphs is polynomial

We now return to general type-two Barnette graphs, i.e.,
cubic plane graphs with face sizes 3, 4, 5, or 6. As a first
step, we analyze when a general cubic plane graph ad-
mits a distance-two four-coloring which has three colors
on the vertices of every face of G.

Theorem 11 A cubic plane graph G has a distance-
two four-coloring with three colors per face if and only
if

1. all faces in G have size which is a multiple of 3,

2. G is bi-connected, and

3. if two faces share more than one edge, the rela-
tive positions of the shared edges must be congruent
modulo 3 in the two faces.

The last condition means the following: if faces F1, F2

meet in edges e, e′ and there are n1 edges between e and
e′ in (some traversal of) F1, and n2 edges between e and
e′ in (some traversal of) F2, then n1 ≡ n2 mod 3.

Proof. Suppose G has a distance-two four-coloring
with three colors in each face. The unique way to
distance-two color a cycle with colors 1, 2, 3 is by re-
peating them in some order (123)∗ along one of the two
traversals of the cycle. Therefore the length is a multi-
ple of 3 so (1) holds. Moreover, there can be no bridge
in G as that would imply a face that self-intersects and
is traversed in opposite directions along any traversal
of that face, disagreeing with the order (123)∗ in one of
them; thus (2) also holds. Finally, (3) holds because the
common edges must have the same colors in both faces.

Suppose the conditions hold, and consider the dual
GD of G. (Note that each face of GD is a triangle.) We
find a distance-two coloring of G as follows. Let F be a
face in G; according to conditions (1-2), its vertices can
be distance-two colored with three colors. That takes
care of the vertex F in GD. Using condition (3), we
can extend the coloring of G to any face F ′ adjacent to
F in GD. Note that we can use the fourth colour, 4,
on the two vertices adjacent in F ′ to the two vertices
of a common edge. In this way, we can propagate the
distance-two coloring of G along the adjacencies in GD.
If this produces a distance-two coloring of all vertices
of G, we are done. Thus it remains to show there is no
inconsistency in the propagation. If there is an incon-
sistency, it will appear along a cycle C in GD. If there
is only one face inside of C, then C is a triangle corre-
sponding to a vertex of G, and there is no inconsistency.
Otherwise we can join some two vertices of C by a path
P inside C, and the two sides of P inside C give two
regions that are inside two cycles C ′, C ′′. The consis-
tency of C then follows from the consistency of each of

C ′, C ′′ by induction on the number of faces inside the
cycle. �

It turns out that conditions (1 - 3) are automatically
satisfied for cubic plane graphs with faces of sizes 3 or
6.

Corollary 12 Type-two Barnette graphs with faces of
sizes 3 or 6 are distance-two four-colorable.

Proof. Such a graph must be bi-connected, i.e., can-
not have a bridge, since no triangle or hexagon can
self-intersect. Moreover, only two hexagons can have
two common edges, and it is easy to check that they
must indeed be in relative positions congruent modulo
3 on the two faces. (Since all vertices must have degree
three.) Thus the result follows from Theorem 11. �

Theorem 13 Let G be type-two Barnette graph. Then
G is distance-two four-colorable if and only if it is one
of the graphs Ck, k ≥ 0, or all faces of G have sizes 3
or 6.

Proof. If there are faces of size both 3 and 4 (and pos-
sibly size 6), then there must be (by Euler’s formula)
two triangles and three squares, and as in the proof of
Theorem 9, the squares must be joined by chains of
hexagons, which is not possible with just three squares.

If there is a face of size 5, then there is no distance-
two four-coloring since all five vertices of that face would
need different colors. �

6 Distance-two coloring of quartic graphs

A quartic graph is a regular graph with all vertices of
degree four. Thus any distance-two coloring of a quar-
tic graph requires at least five colors. A four-graph is
a plane quartic graph whose faces have sizes 3 or 4.
The argument to view these as analogues of type-two
Barnette graphs is as follows. For cubic plane Euler’s
formula limits the numbers of faces that are triangles,
squares, and pentagons, but does not limit the number
of hexagon faces. Similarly, for plane quartic graphs,
Euler’s formula implies that such a graph must have 8
triangle faces, but places no limits on the number of
square faces.

We say that two faces are adjacent if they share an
edge.

Lemma 14 If a four-graph can be distance-two five-
colored, then every square face must be adjacent to a
triangle face. Thus G can have at most 24 square faces.

Proof. We view the numbers 1, 2, 3, 4 modulo 4, and
number 5 is separate. Let u1u2u3u4 be a square face
that has no adjacent triangle face. (This is depicted in
Figure 5 as the square in the middle.) Color ui by i. Let

308

30th Canadian Conference on Computational Geometry, 2018

the adjacent square faces be uiui+1wi+1vi. One of vi, wi

must be colored 5 and the other one i+2. Then either all
vi or all wi are colored 5, say all wi are colored 5, and all
vi are colored i + 1. Then viuiwi cannot be a triangle
face, or wi, wi+1 would be both colored 5 at distance
two. Therefore tiviuiwi must be a square face. (In
the figure, this is indicated by the corner vertices being
marked by smaller circles; these must exist to avoid a
triangle face.) This means that the original square is
surrounded by eight square faces for u1u2u3u4, and ti
must have color i + 3, since ui, vi+3, vi, wi have colors
i, i+ 1, i+ 2, 5.

But then there cannot be a triangle face xiviwi+1,
since xi is within distance two of ui, ui+1, vi, ti, wi+1

of colors i, i + 1, i + 2, i + 3, 5, so each of the adjacent
square faces uiui+1wi+1vi for u1u2u3u4 has adjacent
square faces as well. This process of moving to adjacent
square faces eventually reaches all faces as square faces,
contrary to the fact that there are 8 triangle faces. �

2

4

3 5

421

34 5

1

23

5

5

1

Figure 5: One square without adjacent triangles implies
all faces must be squares

It follows that there are only finitely many distance-
two five-colorable four-graphs.

Corollary 15 The distance-two five-coloring problem
for four-graphs is polynomial.

In fact, we can fully describe all four-graphs that are
distance-two five-colorable. Consider the four-graphs
G0, G1 given in Figure 6. The graph G0 has 8 triangle
faces and 4 square faces, the graph G1 has 8 triangle
faces and 24 square faces. Note that G0 is obtained
from the cube by inserting two vertices of degree four
in two opposite square faces. Similarly, G1 is obtained
from the cube by replacing each vertex with a trian-
gle and inserting into each face of the cube a suitably
connected degree four vertex. (In both figures, these
inserted vertices are indicated by smaller size circles.)

Theorem 16 The only four-graphs G that can be
distance-two five-colored are G0, G1. These two graphs
can be so colored uniquely up to permutation of colors.

G
0

G
1

Figure 6: The only four-graphs that admit a distance-
two five-coloring

Figure 7: A four-graph requiring nine colors in any
distance-two coloring

We close with a few remarks and open problems.
Wegner’s conjecture [25] that any planar graph with

maximum degree d = 3 can be distance-two seven-
colored has been proved in [14, 23]. That bound is actu-
ally achieved by a type-two Barnette graph, namely the
graph obtained from K4 by subdividing three incident
edges. Thus the bound of 7 cannot be lowered even for
type-two Barnette graphs.

Wegner’s conjecture for d = 4 claims that any planar
graph with maximum degree four can be distance-two
nine-colored. The four-graph in Figure 7 actually re-
quires nine colors in any distance-two coloring. Thus
if Wegner’s conjecture for d = 4 is true, the bound of
9 cannot be lowered, even in the special case of four-
graphs. It would be interesting to prove Wegner’s con-
jecture for four-graphs, i.e., to prove that any four-graph
can be distance-two nine-colored.

Finally, we’ve conjectured that any bipartite cubic
planar graph can be distance-two six-colored (a special
case of a conjecture of Hartke, Jahanbekam and Thomas
[14]). The hexagonal prism (a cyclic prism with k = 3,
which is a Goodey graph), actually requires six colors.
Hence if our conjecture is true, the bound of 6 cannot be
lowered even for Goodey graphs. It would be interesting
to prove our conjecture for Goodey graphs, i.e., to prove
that any Goodey graph can be distance-two six-colored.

309

CCCG 2018, Winnipeg, Canada, August 8–10, 2018

References

[1] R.E.L. Aldred, S. Bau, D.A. Holton, and B.D. MacKay.
Non-hamiltonian 3-connected cubic planar graphs.
SIAM J. Discrete Math. 13:25–32, 2000.

[2] B. Alspach. The wonderful Walecki construction. Bull.
Inst. Combin. Appl. 52:7–20, 2008.

[3] D. Barnette. On generating planar graphs. Discrete
Math. 7:199–208, 1974.

[4] D. Barnette. Conjecture 5. Recent Progress in Combi-
natorics (Ed. W.T. Tutte), Academic Press, New York
343, 1969.

[5] O.V. Borodin and A.O. Ivanova. 2-distance 4-
colorability of planar subcubic graphs with girth at least
22. Discussiones Math. Graph Theory 32:141–151, 2012.

[6] O.V. Borodin. Colorings of plane graphs: a survey,
Discrete Math. 313:517–539, 2013.

[7] R.L. Brooks, On coloring the nodes of a network. Proc.
Cambridge Philos. Soc. 37:194–197, 1941.

[8] R. Erman, F. Kardoš, J. Miskuf. Long cycles in
fullerene graphs. J. Math. Chemistry 46:1103–1111,
2009.

[9] T. Feder, P. Hell, and C. Subi. Distance-two colorings
of Barnette graphs arXiv:1807.01410 [cs.CG]

[10] T. Feder and C. Subi. On Barnette’s conjecture.
Electronic Colloquium on Computational Complexity
(ECCC) TR06-015, 2006.

[11] M.R. Garey, D.S. Johnson, and R.E. Tarjan. The planar
Hamiltonian circuit problem is NP-complete. SIAM J.
Comput. 5:704–714, 1976.

[12] P.R. Goodey. Hamiltonian circuits in polytopes with
even sided faces. Israel J. Math. 22:52–56, 1975.

[13] P.R. Goodey. A class of Hamiltonian polytopes. J.
Graph Theory 1:181–185, 1977.

[14] S.G. Hartke, S. Jahanbekam, and B. Thomas. The chro-
matic number of the square of subcubic planar graphs.
arXiv:1604.06504.

[15] F. Havet. Choosability of the square of planar subcubic
graphs with large girth. Discrete Math. 309:3353–3563,
2009.

[16] P. Heggernes and J.A. Telle. Partitioning graphs into
generalized dominating sets. Nordic J. Computing
5:128–143, 1998.

[17] D.A. Holton, B.D. McKay. The smallest non-
Hamiltonian 3-connected cubic planar graphs have 38
vertices. J. Combin. Theory B 45:305–319, 1988.

[18] F. Kardoš. A computer-assisted proof of Barnette-
Goodey conjecture: Not only fullerene graphs are
Hamiltonian. arXiv math:1409.2440

[19] X. Lu. A note on 3-connected cubic planar graphs.
Discrete Math. 310:2054–2058, 2010.

[20] J. Malkevitch. Polytopal graphs. in Selected Topics in
Graph Theory (L. W. Beineke and R. J. Wilson eds.)
3:169–188, 1998.

[21] O. Ore. The four colour problem. Academic Press,
1967.

[22] P.G. Tait. Listing’s topologie. Philosophical Magazine,
5th Series 17:30-46, 1884. Reprinted in Scientific Pa-
pers, Vol. II, pp. 85–98.

[23] C. Thomassen. The square of a planar cubic graph is
7-colorable. manuscript 2006.

[24] W.T. Tutte. On hamiltonian circuits. J. Lond. Math.
Soc. 21:98–101, 1946.

[25] G. Wegner. Graphs with given diameter and a coloring
problem. Technical Report, University of Dortmund,
Germany, 1977.

310

CCCG 2018, Winnipeg, Canada, August 8–10, 2018

Emanation Graph: A New t-Spanner∗

Bardia Hamedmohseni† Zahed Rahmati‡ Debajyoti Mondal§

Abstract

We introduce a new t-spanner, called emanation graph
Mk, based on the idea of shooting rays out of each ver-
tex at specific angles, determined by k, the grade of the
emanation graph. Emanation graphs of grade one coin-
cide with the competition mesh, which was studied by
Mondal and Nachmanson [18] in the context of network
visualization. They proved that the spanning ratio of
such a graph is bounded by (2 +

√
2) ≈ 3.41.

In this paper, we prove an improved
√

10 ≈ 3.162
upper bound on the spanning ratio of emanation graphs
of grade one, which in fact improves the previous result.
We also prove that the spanning ratio of the emanation

graphs of grade k is at least
2+sin(π

2k
)

1+cos(π
2k

) , for sufficiently

large n.

1 Introduction

Let G be a geometric graph embedded in the Euclidean
plane, and let u and v be a pair of vertices in G. Let
dG(u, v) and dE(u, v) be the minimum graph distance
(i.e., shortest path distance) and Euclidean distance be-
tween u and v, respectively. The spanning ratio of

G is max
{u,v}∈G

dG(u,v)
dE(u,v) , i.e., the maximum ratio between

dG(u, v) and dE(u, v) over all pairs of vertices {u, v} in
G. Graph G is called a t-spanner of the complete geo-
metric graph, if for every pair of vertices {u, v} in G, the
distance dG(u, v) is at most t times of their Euclidean
distance dE(u, v).

The t-spanners are commonly used in computational
geometry. They also find applications in wireless net-
work routing [9] and in network visualizations [18, 19].
A rich body of research is devoted towards the construc-
tion of t-spanners, and there has also been significant
efforts to find tight spanning ratios for different classes
of geometric graphs.

In this paper, we examine plane geometric spanners,
i.e., no two edges in the spanner cross except at their

∗Work of D. Mondal is supported in part by NSERC.
†Department of Mathematics and Computer Sci-

ence, Amirkabir University of Technology, Tehran, Iran
hamedmohseni@aut.ac.ir
‡Department of Mathematics and Computer Science, Amirk-

abir University of Technology, Tehran, Iran zrahmati@aut.ac.ir
§Department of Computer Science, University of

Saskatchewan, Saskatoon, Canada dmondal@cs.usask.ca

p1

p2

p3

p4

R(P)

Figure 1: The emanation graph of grade two, for four
points in the Euclidean plane.

common endpoints. A natural question in this context
is as follows: Given a set of points P of n points in the
plane, can we compute a planar spanner G = (V,E)
of P with small size, degree and spanning ratio? We
allow the spanner to have Steiner points, i.e., P ⊆ V ,
thus V may contain vertices that do not correspond to
any point of P . Note that keeping the degree, size and
spanning ratio of the spanners small are often motivated
by application areas, and appeared in the literature [9,
8]. Note that we do not require the paths between a
pair of Steiner points to be bounded.

In this paper, we introduce a new type of t-spanners,
called the emanation graph. Given a set P of n points in
a bounding box R(P), and an integer k > 0, the emana-
tion graph Mk of grade k is constructed by emanating,
from each point pi ∈ P , 2k+1 rays with equal angular
distances of π

2k
, and equal constant speed. Each ray

stops as soon as it hits another ray of larger length, or
R(P). If two parallel rays collide, then they both stop
and if two or more non-parallel rays of equal length col-
lide, then arbitrarily one of them continues, and the
other rays stop. The vertices formed by the collision of
rays are considered as Steiner points. Figure 1 depicts
M2 for four points in the plane.

In the following we briefly review the literature re-
lated to the planar spanners (both with and without
Steiner points).

1.1 Background

Delaunay graphs are one of the most studied plane geo-
metric spanners. Chew [10] showed that the L1-metric
Delaunay graph is a

√
10-spanner. There have been sev-

311

30th Canadian Conference on Computational Geometry, 2018

eral attempts to find tight spanning ratio for Delaunay
triangulations (L2-metric Delaunay graphs) [16, 12, 6].
The currently best known upper and lower bound on
the spanning ratio of the Delaunay triangulation is
1.998 [20] and 1.5932 [21], respectively.

Another popular class of plane geometric spanner
is half-Θ6 graphs, which is formed by partitioning the
space around each vertex into six cones of equal angle,
and then connecting the vertex to the bisector nearest
neighbor in the first, third and fifth cones (for some fixed
clockwise ordering of the cones); the bisector nearest
neighbor in a cone means the neighbor with the small-
est projection on the bisector of the cone. The half-Θ6

graphs are 2-spanners [10].

While both the Delaunay triangulations and half-Θ6

graphs have linear number of edges and small spanning
ratio, they may have vertices with unbounded degree.
Bose et al. [7] showed that plane t-spanners of bounded
degree exist (for some constant t). A significant amount
of research followed this result, which examines the con-
struction of bounded degree plane spanners with low
spanning ratio. Some of the best known spanning ra-
tios for spanners with maximum degree 4, 6 and 8 are
20 [15], 6 [4] and 4.414 [8], respectively.

Although there exist point sets that do not admit a
planar spanner of spanning ratio less than 1.43 [13], by
allowing O(n) Steiner points, one can obtain a spanning
ratio of (1 + ε)-spanners, for any ε > 0. Arikati et al. [1]
showed that one can construct a plane geometric (1+ε)-
spanner with O(n/ε4) Steiner points. Bose and Smid [9]
asked whether the dependence on ε can be improved.

Recently, Dehkordi et al. [11] proved that any set of n
points admits a ‘planar angle-monotone graph of width
90◦’ with O(n) Steiner points. Since an angle mono-
tone graphs of width α is a 1

cos(α/2) -spanner [3], this

implies the existence of a
√

2-spanner with O(n) Steiner
points, which may contain vertices of unbounded degree.
See [17] for more details on the construction of angle-
monotone graphs with Steiner points.

Mondal and Nachmanson introduced a class of ge-
ometric graphs (with Steiner points), called competi-
tion mesh, and used those graphs to implement a large
network visualization system (GraphMaps [18]). They
proved the competition mesh is a (2 +

√
2)-spanner. A

competition mesh is exactly the emanation graph of
grade one, and hence their result implies an uppper
bound of (2+

√
2) on the spanning ratio of M1. Mondal

and Nachmanson [18] noticed that the competition mesh
can be viewed as a variation of a motorcycle graphs [14].
This also holds for the emanation graphs.

Instead of choosing three cones in the half-Θ6 graphs,
one can connect a vertex to the bisector nearest neigh-
bors in all the six cones, which gives rise to the full-
Θ6 graphs. The concept has also been extended to
full-Θr graphs [5], where the space around the vertices

s t

R(P)

s t

R(P)

α α

rpm−1

pnpm

r

pm−1

pm
(a) (b)

Figure 2: Illustration for lower bound proof.

are partitioned into r cones of equal angle θ = 2π/r.
Similarly, there exist Yao-graphs Yr, where the nearest
neighbor in a cone is chosen based on the Euclidean
distance [2]. However, all these generalizations yield
non-planar spanners.

1.2 Contributions

We introduce a class of plane geometric spanners, called
emanation graphs, which generalizes the competition
mesh [18]. We prove a

√
10 upper bound on the span-

ning ratio of emanation graphs of grade one, which im-
proves the previously known upper bound of (2 +

√
2).

We also prove that the spanning ratio of every emana-
tion graph with r rays, where r = 4q+2 and q ≥ 1, is at
most 1

sin(π/r) sin(π/2r) . In contrast, we prove the span-

ning ratio of the emanation graphs of grade k to be at

least
2+sin(π

2k
)

1+cos(π
2k

) (for sufficiently large n). Note that Mon-

dal and Nachmanson [18] proposed several heuristics to
simplify the emanation graphs (e.g., deleting the seg-
ments that do not lie on the shortest paths), which can
also be applied to emanation graphs of higher grade.
However, we do not consider any such simplification
methods in this paper.

2 Lower Bounds

In this section, we prove the lower bounds on the span-
ning ratio of the emanation graphs.

Theorem 1 There exists an emanation graph Mk of n

vertices with spanning ratio
2+sin(π

2k
)

1+cos(π
2k

) , for sufficiently

large n.

Proof. We refer the reader to Figures 2(a) and (b),
which depict the case when k = 1 and k = 2, respec-
tively. We construct a set of n points inside a bound-
ing box R as follows. Imagine two parallel guidelines
with an angle of α = π

2k+1 , as shown in green dashed

312

CCCG 2018, Winnipeg, Canada, August 8–10, 2018

pmpm−1
k = 3

r

t

Figure 3: Illustration for the case when k = 3.

lines. Specifically, the two points s and t, which will
achieve the lower bound, are lying along the horizon-
tal axis. One of the two guidelines starts at s and the
other guideline starts at t. As shown in the figure, the
top-left corner of the bounding box R is determined by
the intersection of the vertical line through s and the
guideline that starts at t. The bottom-right corner of
R is determined by the intersection of the vertical line
through t and the guideline that starts at s.

We may assume that the number of vertices is even
(if the number of vertices is odd, then we place one ver-
tex on the bottom-left corner of R). We distribute n/2
points p1, p2, . . . , pn/2(= pm) on the guideline incident
to s. We place the points ensuring that the segments
pipi+1 all have the same length. We place the rest of
the points symmetrically on the other guideline.

We now define a canonical path L that starts at s and
ends at t, as follows. The path L visits all the points
s(= p1), . . . , pm−1, by following the rays closest to the
guidelines but staying above the guideline. The path
continues from pm−1 by following the ray that reach
closest to t. Assume that the ray intersects R at point
r. Then the path continues the vertical segment rt to
reach t. Figures 2(a) and (b) depict the path L in blue.
Figures 3 illustrates the scenario when k = 3. We will
later prove in Lemma 2 that the canonical path L is a
shortest path between s and t.

For any two points a and b, we denote the horizontal
and vertical distances between them by |ab|x and |ab|y,
respectively. By ab, we denote the straight line segment
connecting a and b. Note that s and t are horizontally
aligned, and pm is vertically aligned with t. Assume that
dE(pi, pi+1) = 2, and dE(p1, pm) = 2(m−1), where m =
n/2. Therefore, |pmt|y = 2(m − 1) sinα, and |spm|x =
2(m− 1) cosα which is equal to dE(s, t).

Since the triangle 4pm−1pmr is isosceles, the length
of pm−1r is equal to that of pmr. The length of the
subpath p1, . . . , pm−1 of L is 2(m − 2)/ cosα, so the

graph distance dG(s, t) between s and t is

2(m− 2)

cosα
+ |pmt|y =

2(m− 2)

cosα
+ 2(m− 1) sinα.

Lemma 2 proves that the shortest path between s and
t is L. Thus the spanning ratio would be

dG(s, t)

dE(s, t)
=

2(m−2)
cosα + 2(m− 1) sinα

2(m− 1) cosα

=
2(m− 2) + 2(m− 1) cosα sinα

2(m− 1) cos2 α

For a sufficiently large m, the proof obtains:

lim
m→∞

dG(s, t)

dE(s, t)
=

2 + 2 cosα sinα

2 cos2 α

=
2 + sin(2α)

1 + cos(2α)

=
2 + sin(π

2k
)

1 + cos(π
2k

)
.

�

Theorem 1 concludes that the lower bound of span-
ning ratio for the emanation graph of grade k = 1 is 3,
and for a graph of grade k = 2 is approximately 1.58.

Lemma 2 The selected path in Theorem 1 is a shortest
path between s and t.

Proof. (Sketch) We use the construction described in
Theorem 1 (e.g., see Figure 4) to show that any path
from s to t is at least as large as the canonical path
L (marked in blue). First observe that it suffices to re-
strict our attention to x-monotone paths. One can cate-
gorize the candidate monotone paths in two groups: (I)
Paths that have the same length as L, such paths can be
formed by replacing segments of L by their symmetric
counterparts, two of these counterparts are highlighted
in yellow. (II) Paths with segments that do not belong
to (I), two of such segments are highlighted in red. We
only need to show that the paths in (II) can not be
shorter than that of L.

By the symmetric structure of the graph, it is
straightforward to observe that the paths in (II) can
gradually be transformed into the canonical path L
without changing the length. For example, the yellow
path from pj to t can be replaced by the blue path from
pj to t. Appendix includes the formal details. �

3 Upper Bounds

In this section we give the upper bounds on the spanning
ratio of the emanation graphs.

313

30th Canadian Conference on Computational Geometry, 2018

t

R(P)

r

pm

pi
pj

pk

s

pj+1

Figure 4: Illustration for proof of Lemma 2.

a2

s = a1
a3

t

q

r

Figure 5: Illustration for proof of Theorem 3.

3.1 Emanation Graphs of Grade One

Theorem 3 The spanning ratio of every emanation
graph of grade one is at most

√
10 ≈ 3.162.

Proof. Let s and t be a pair of vertices in the emana-
tion graph. Consider four cones around s, where the
cones are determined by two lines passing through s
with slopes +1 and −1, respectively, as illustrated in
Figure 5. Without loss of generality assume that t lies
in the rightward cone C of s.

We now construct an x-monotone path Px, which lies
entirely in cone C, as follows: The path starts at s and
for each original vertex, the path follows its rightward
segment `. If a rightward segment is stopped by an-
ther segment `′, then the path follows `′ to the original
vertex that created `′. Figure 5 illustrates a subpath
s(= a1), . . . , q of Px in blue. For any subpath ai, . . . , aj
on Px, we will use the notation Yaiaj (resp., Xaiaj) to
refer to the sum of the lengths of all the vertical (resp.,
horizontal) segments in ai, . . . , aj .

By construction of Px and the definition of the emana-
tion graph, the length of any horizontal segment on Px
is at least as large as the subsequent vertical segment.
Hence for every subpath ai, . . . , aj in Px, which starts
with a horizontal segment, we will have Xaiaj ≥ Yaiaj .

Without loss of generality assume that t lies on or
above Px. We now construct another path Py follow-
ing the same construction as that of Px, but following
the upward segments. Note that t is now in the region
bounded by the paths Px and Py. We now construct an
(−x − y)-monotone path Pt starting at t. Pt starts at
t and follows the leftward segment. If the last segment
` of Pt is stopped by a horizontal (resp., vertical) seg-
ment `′, then we follow `′ towards the leftward (resp.,
downward) direction.

Note that Pt now either intersects Px or Py. Assume
first that Pt intersects Px at point q (see Figure 5). Let
`h be the horizontal line through s. Assume that t lies
above and q lies below `h (Note that the other cases
would give rise to a smaller spanning ratio). Let r be
the intersection point of Pt with `h. Thus the sum of
the length of subpath of Ps from s to q and the subpath
of Pt from q to t is as follows:

|sq|x + Ysq + |qt|x + |qt|y =(|sq|x + |qt|x) + Ysq + |qt|y
=|st|x + Ysq + |qt|y
=|st|x + Ysq + |qr|y + |rt|y
≤2|st|x + Ysq + |rt|y
≤2|st|x + |st|x + |rt|y
=3|st|x + |rt|y
=3|st|x + |st|y

Therefore, the spanning ratio is: f =
(3|st|x+|st|y)√
(|st|x)2+(|st|y)2

.

To find and upper bound we need to maximize f , there-
fore we expect |st|x = 3|st|y, thus f ≤

√
10 ≈ 3.162.

Assume now that Pt intersects Py at point q. But this
case would be the same as when Pt intersects Px with
t lying on the upward cone of s. However, applying the
same analysis, we again get an upper bound of (3|st|x+
|st|y) on the length of the path s, . . . , q, . . . , t, and hence
an upper bound of 3.162. �

3.2 Generalization

Note that instead of grades, emanation graphs can also
be defined with any set of r rays emanating from each
vertex, where the rays create r cones of equal angle θ =
2π/r. In this section, we prove a general upper bound
on the spanning ratio of emanation graphs with r rays,
where r = 4q + 2, where q ≥ 1. We first describe the
concept of angle-monotone paths.

A polygonal path is an angle-monotone path of width
γ if the angles of any two edges in the path differ by
at most γ (Figure 7(a)). Every angle-monotone path
of width γ is a (1

cos(γ/2))-spanner [3]. A geometric

graph in the plane is angle-monotone of width γ if ev-
ery pair of vertices is connected by an angle-monotone
path of width γ. Hence these graphs are also (1

cos(γ/2))-

314

CCCG 2018, Winnipeg, Canada, August 8–10, 2018

P (Wd)

P (Wu)

s

t

s

W1

u1

u2

d1

d2

β C

s

t

u1

s′

P (Wt)
s t

q(= s′)

θ
2

π
2−

θ
4

(a) (b) (c) (d)

t
C

t′ d2

s

W2

t
C

θ
2

Figure 6: Illustration for the upper bound on the spanning ratio.

γ

(a)

s

(b)

W

s

θ

Figure 7: (a) An angle-monotone path of width γ. (b)
Illustration for P (W), where r = 10.

spanners. In the following we will prove that every em-
anation graph with r rays is an angle-monotone graph
of width 1

sin(π/r) sin(π/2r) .

Let M be an emanation graph with r rays, and let s
and t to be a pair of vertices in G. Since we assumed
that r = 4q+2, we may assume that there two horizontal
rays around s, but no vertical rays. Let C be the cone
incident to the rightward ray of s (lying above the ray),
and without loss of generality assume that t lies in C
(Figure 6(a)).

Let W be a wedge with angle (π − θ) such that the
rightward ray of s is the bisector b of W (Figure 7(b)).
By P (W) we denote a path that starts following the ray
parallel to b and continues as follows: If a segment stops
the last segment of the current path, then we follow
the ray towards the direction which is monotone with
respect to b. If we reach an original vertex, then we
continue to follow the ray parallel to the bisector. Note
that P (W) is an angle monotone path of width (π − θ)
and lies entirely inside W .

We now define wedges W1,W2, . . . around s, where
W1 coincides with W and the subsequent cones are ob-
tained by rotating W counter clockwise by an angle of
θ (Figure 6(a)). Let Wu and Wd be two wedges, each
of angle (π − θ) and contains t. Furthermore, P (Wu)
contains t or lies above t, and similarly, P (Wd) contains
t or lies below t. Let u1 and u2 be sides of Wu that lie
above and below t, respectively. Similarly, d1 and d2 be
the sides of Wd that lie above and below t, respectively.

Case 1: We first consider the case when Wu and Wd

exist and choose Wu and Wd such that they minimize
the angle β between u1 and d2 (Figure 6(b)). Note that
β ≤ π. Otherwise, by construction, β has to be at least
(π+ θ), and hence the wedge W ′ determined by d1 and
u2 will be at least (π− θ). In this case, we can improve
the choice of Wu and Wd further by replacing one of
them using W ′.

Let Wt be a wedge of angle (π − θ) with apex at t
forming a quadrangle ss′tt′, as illustrated in Figure 6(c).
In fact, we will choose Wt such that min{∠ss′t,∠st′t}
is maximized. Note that P (Wt) must intersect either
P (Wu) or P (Wd) at some point q. We now use the
path P ′ = (s, . . . , q, . . . , t) to compute an upper bound
on the spanning ratio. Since P (Wu) and P (Wd) are
angle monotone paths of width (π − θ), the length of

P ′ is at most dE(s,q)+dE(q,t)
cos(π/2−θ/2) . This term is maximized

when ∠ss′t is the smallest, i.e., when ∠ss′t = (θ/2),
and dE(s, q) = dE(q, t) (see Figure 6(d)). In this case,

dE(s, q)+dE(q, t) = 2·dE(s, q) = dE(s,t)
sin(θ/4) . Consequently,

the length of P ′ is at most

dE(s, q) + dE(q, t)

cos(π/2− θ/2)
=

dE(s, t)

sin(θ/2) · sin(θ/4)

C

s

t

q

W ′

P (W ′)

P (W ′′)

θ/2

Figure 8: Illustration for Case 2.

Case 2: The remaining case is when Wu and Wd do
not exist. Without loss of generality assume that for ev-
ery wedge W (with apex at s) of angle (π−θ) containing
t, the path P (W) lying below t. In this scenario, let W ′

be the wedge that contains C with one side determined
by the rightward ray of s. We then consider a downward
wedge W ′′ (with apex at t) of angle (π−θ), as illustrated
in Figure 8. Let q be the intersection point of the paths
P (W) and P (W ′′). Since P (W) and P (W ′′) are angle

315

30th Canadian Conference on Computational Geometry, 2018

monotone paths of width (π − θ), the spanning ratio
in this case can be bounded to (1

sin(θ/2) sin(θ/4)) using

the same analysis as in Case 1. The following theorem
summarizes the result of this section.

Theorem 4 The spanning ratio of every emanation
graph with r rays, where r = 4q + 2 and q ≥ 1, is at
most 1

sin(π/r) sin(π/2r) .

4 Open Questions

For emanation graphs with 6 rays, Theorem 4 gives us
an upper bound of 7.72, which is larger than the up-
per bound we obtained for the emanation graphs with
four rays (i.e., M1 has an upper bound of 3.16). This
raises an interesting question of whether we can prove
the lower bound on the spanning ratio of emanation
graphs of grade 2 to be larger than 3.16. Note that
such a scenario where increasing the number of cones
increases the spanning ratio can be found in the con-
text of Θr-graphs [5].

It would be interesting to find max-degree-4 planar
geometric spanners with at most 4n Steiner points and
a spanning ratio better than

√
10. Note that these

bounds (4n Steiner points, and spanning ratio
√

10) are
currently achieved by emanation graphs of grade one
(equivalently, by the competition mesh [18]).

References

[1] S. R. Arikati, D. Z. Chen, L. P. Chew, G. Das, M. H. M.
Smid, and C. D. Zaroliagis. Planar spanners and ap-
proximate shortest path queries among obstacles in the
plane. In Algorithms - ESA ’96, Fourth Annual Euro-
pean Symposium, Barcelona, Spain, September 25-27,
1996, Proceedings, pages 514–528, 1996.

[2] L. Barba, P. Bose, M. Damian, R. Fagerberg, W. L.
Keng, J. O’Rourke, A. van Renssen, P. Taslakian,
S. Verdonschot, and G. Xia. New and improved span-
ning ratios for yao graphs. Journal of Computational
Geometry (JoCG), 6(2):19–53, 2015.

[3] N. Bonichon, P. Bose, P. Carmi, I. Kostitsyna, A. Lu-
biw, and S. Verdonschot. Gabriel triangulations and
angle-monotone graphs: Local routing and recognition.
In Proceedings of the 24th International Symposium on
Graph Drawing and Network Visualization (GD), pages
519–531, 2016.

[4] N. Bonichon, C. Gavoille, N. Hanusse, and L. Perkovic.
Plane spanners of maximum degree six. In Proceedings
of the 37th International Colloquium, on Automata,
Languages and Programming (ICALP), pages 19–30,
2010.

[5] P. Bose, J. D. Carufel, P. Morin, A. van Renssen, and
S. Verdonschot. Towards tight bounds on theta-graphs:
More is not always better. Theor. Comput. Sci., 616:70–
93, 2016.

[6] P. Bose, L. Devroye, M. Löffler, J. Snoeyink, and
V. Verma. Almost all delaunay triangulations have
stretch factor greater than pi/2. Comput. Geom.,
44(2):121–127, 2011.

[7] P. Bose, J. Gudmundsson, and M. H. M. Smid. Con-
structing plane spanners of bounded degree and low
weight. Algorithmica, 42(3-4):249–264, 2005.

[8] P. Bose, D. Hill, and M. H. M. Smid. Improved span-
ning ratio for low degree plane spanners. Algorithmica,
80(3):935–976, 2018.

[9] P. Bose and M. H. M. Smid. On plane geometric span-
ners: A survey and open problems. Comput. Geom.,
46(7):818–830, 2013.

[10] L. P. Chew. There is a planar graph almost as good as
the complete graph. In Proceedings of the Third Annual
Symposium on Computational Geometry (SoCG), pages
169–177, 1986.

[11] H. R. Dehkordi, F. Frati, and J. Gudmundsson.
Increasing-chord graphs on point sets. J. Graph Al-
gorithms Appl., 19(2):761–778, 2015.

[12] D. P. Dobkin, S. J. Friedman, and K. J. Supowit. De-
launay graphs are almost as good as complete graphs.
Discrete & Computational Geometry, 5:399–407, 1990.

[13] A. Dumitrescu and A. Ghosh. Lower bounds on the
dilation of plane spanners. Int. J. Comput. Geometry
Appl., 26(2):89–110, 2016.

[14] D. Eppstein, M. T. Goodrich, E. Kim, and R. Tamstorf.
Motorcycle graphs: Canonical quad mesh partitioning.
Comput. Graph. Forum, 27(5):1477–1486, 2008.

[15] I. A. Kanj, L. Perkovic, and D. Türkoglu. Degree four
plane spanners: Simpler and better. Journal of Com-
putational Geometry (JoCG), 8(2):3–31, 2017.

[16] J. M. Keil and C. A. Gutwin. Classes of graphs which
approximate the complete euclidean graph. Discrete &
Computational Geometry, 7:13–28, 1992.

[17] A. Lubiw and D. Mondal. Angle-monotone graphs:
Construction and local routing. CoRR, abs/1801.06290,
2018.

[18] D. Mondal and L. Nachmanson. A new approach to
GraphMaps, a system browsing large graphs as inter-
active maps. In Proceedings of the 13th International
Joint Conference on Computer Vision, Imaging and
Computer Graphics Theory and Applications (VISI-
GRAPP), pages 108–119, 2018.

[19] L. Nachmanson, R. Prutkin, B. Lee, N. H. Riche, A. E.
Holroyd, and X. Chen. GraphMaps: Browsing large
graphs as interactive maps. In Proceedings of the 23rd
International Symposium on Graph Drawing and Net-
work Visualization (GD), pages 3–15, 2015.

[20] G. Xia. The stretch factor of the delaunay triangulation
is less than 1.998. SIAM J. Comput., 42(4):1620–1659,
2013.

[21] G. Xia and L. Zhang. Toward the tight bound of the
stretch factor of delaunay triangulations. In Proceedings
of the 23rd Annual Canadian Conference on Computa-
tional Geometry (CCCG), pages 175–180, 2011.

316

CCCG 2018, Winnipeg, Canada, August 8–10, 2018

Appendix

Proof of Lemma 2

Proof. We use the construction described in Theorem 1
(e.g., see Figure 4) to show that any path from s to t is at
least as large as the canonical path L (marked in blue).
First observe that it suffices to restrict our attention to
x-monotone paths. One can categorize the candidate
monotone paths in two groups: (I) Paths that have the
same length as L, such paths can be formed by replacing
segments of L by their symmetric counterparts, two of
these counterparts are highlighted in yellow. (II) Paths
with segments that do not belong to (I), two of such
segments are highlighted in red. We only need to show
that the paths in (II) can not be shorter than that of L.

By the symmetric structure of the graph, it is
straightforward to observe that the paths in (II) can
gradually be transformed into the canonical path L
without changing the length. For example, the yellow
path from pj to t can be replaced by the blue path from
pj to t. Here, we describe a proof by induction. In
fact, we prove a stronger claim, i.e., L is a shortest path
and for any original vertex q on the bottom guideline,

a shortest path between s and q can be computed by
following the rays closest to the guideline.

A formal way to see this is to apply an induction on
the number of vertices. The claim is straightforward to
verify when the emanation graph has only four vertices
(e.g., consider the emanation graph determined by the
rightmost four vertices in Figure 4). Assume now that
the claim holds for the emanation graph of 2q vertices,
where 4 ≤ 2q < n(= 2q + 2), and consider the case
when the graph has n vertices. Any x-monotone short-
est path P of type (II) from s to t must pass through an
original vertex other than s and t. If it passes through
a vertex pj on the bottom guideline, then the claim fol-
lows by induction. Specifically, we can choose pj to be
the source, and then the subpath pj to t of P can be
replaced by a subpath of L by induction. Note that the
path from s to pj can also be replaced by a subpath of L
by induction. Thus L must be a shortest path between
s to t.

On the other hand, if P passes through some vertex
pk on the top guideline, then we can swap the role of s
and t to prove the existence of a path symmetric to L
using the analysis used in the previous case. �

317

CCCG 2018, Winnipeg, Canada, August 8–10, 2018

Uniform 2D-Monotone Minimum Spanning Graphs∗

Konstantinos Mastakas†

Abstract

A geometric graph G is xy−monotone if each pair of
vertices of G is connected by a xy−monotone path.
We study the problem of producing the xy−monotone
spanning geometric graph of a point set P that (i) has
the minimum cost, where the cost of a geometric graph
is the sum of the Euclidean lengths of its edges, and
(ii) has the least number of edges, in the cases that
the Cartesian System xy is specified or freely selected.
Building upon previous results, we easily obtain that
the two solutions coincide when the Cartesian System
is specified and are both equal to the rectangle of influ-
ence graph of P . The rectangle of influence graph of P
is the geometric graph with vertex set P such that two
points p, q ∈ P are adjacent if and only if the rectangle
with corners p and q does not include any other point
of P . When the Cartesian System can be freely chosen,
we note that the two solutions do not necessarily coin-
cide, however we show that they can both be obtained in
O(|P |3) time. We also give a simple 2−approximation
algorithm for the problem of computing the spanning
geometric graph of a k−rooted point set P , in which
each root is connected to all the other points (including
the other roots) of P by y−monotone paths, that has
the minimum cost.

1 Introduction

A sequence of points in the Euclidean plane q0, q1, . . . ,
qt is called y−monotone if the sequence of their y coor-
dinates, i.e. y(q0), y(q1), . . . , y(qt), is either decreasing
or increasing, with y(p) denoting the y coordinate of
the point p. A geometric path Q = (q0, q1, . . . , qt) is
called y−monotone if the sequence of its vertices, i.e.
the sequence q0, q1, . . . , qt, is y−monotone. If Q is
y′−monotone for some axis y′ then Q is called mono-
tone. Let G = (P,E) be a geometric graph. If each
p, q ∈ P are connected by a y−monotone path then G is
called y−monotone. If G is y′−monotone for some axis
y′ then G is called uniform monotone (following the ter-
minology of [22]). Uniform monotone graphs were called

∗This research was financially supported by the Special Ac-
count for Research Grants of the National Technical University of
Athens.
†School of Applied Mathematical and Physical Sciences,

National Technical University of Athens, Athens, Greece,
kmast@math.ntua.gr

1−monotone graphs by Angelini [3]. If each p, q ∈ P are
connected by a monotone path, where the direction of
monotonicity might differ for different pairs of vertices,
then G is called monotone. Monotone graphs were in-
troduced by Angelini et al. [4]. Drawing an (abstract)
graph as a monotone (geometric) graph has been a topic
of research [3, 4, 5, 13, 24].

The Monotone Minimum Spanning Graph problem,
i.e. the problem of constructing the monotone spanning
geometric graph of a given point set that has the min-
imum cost, where the cost of a geometric graph is the
sum of the Euclidean lengths of its edges, was recently
introduced (but not solved) in [22] and it remains an
open problem whether it is NP-hard. Since the more
general (without the requirement of monotonicity) Eu-
clidean Minimum Spanning Tree problem can be solved
in Θ(|P | log |P |) time [27], this constitutes a great differ-
entiation that is induced by the addition of the property
of monotonicity.

A point set P is k−rooted if there exist k points r1,
r2, . . . , rk ∈ P distinguished from the other points of
P which are called the roots of P . A geometric graph
G = (P,E) is called k−rooted if P is k−rooted and its
roots are the roots of P . A k−rooted geometric graph
G is k−rooted y−monotone if each root r ∈ P and each
point p ∈ P \ {r} are connected by y−monotone paths.
Similarly, G is k−rooted uniform monotone (following
the terminology of [22]) if it is k−rooted y′−monotone
for some axis y′. For simplicity, we may also denote
point sets or geometric graphs that are 1−rooted simply
as rooted. A polygon that is 2−rooted y−monotone, in
which its roots are its lowest and highest vertices, can be
triangulated in linear time [11]. Lee and Preparata [16]
preprocessed a subdivision S of the plane such that the
region in which a query point belongs can be found
quickly, by (i) extending the geometric graph bound-
ing S to a 2−rooted y−monotone planar geometric
graph in which the roots are the highest and lowest
vertices of S, and (ii) constructing a set of appropri-
ate y−monotone paths from the lowest to the high-
est vertex of S. Additionally, Lee and Preparata [16]
noted that a 2−rooted planar geometric graph, where
all vertices have different y coordinates, in which the
roots are the highest and lowest vertices of the graph is
2−rooted y−monotone if and only if each non-root ver-
tex has both a neighbor above it and a neighbor below
it. Furthermore, a rooted geometric graph G = (P,E),
where all vertices have different y coordinates, with a

318

30th Canadian Conference on Computational Geometry, 2018

(single) root r that is not the highest or lowest point
of P is rooted y−monotone if and only if each non-root
vertex p has a neighbor q such that y(q) is between y(r)
(inclusive) and y(p) [22]. Additionally, rooted uniform
monotone graphs can be efficiently recognized [22]. The
k−rooted y−monotone (uniform monotone) minimum
spanning graph (following the terminology of [22]) of
a k−rooted point set P is the k−rooted y−monotone
(uniform monotone) spanning graph of P that has
the minimum cost. The rooted y−monotone (uni-
form monotone) minimum spanning graph1 of a rooted
point set P can be produced in O(|P | · log2 |P |) (resp.,
O(|P |2 · log |P |)) time [22]. The problem of drawing a
rooted tree as a rooted y−monotone minimum spanning
graph is studied in [20]. The (|P |−rooted) y−monotone
minimum spanning graph of a point set P is the geo-
metric path that traverses all the points of P by mov-
ing north, from the lowest point to the highest point
of P [22]. Regarding the problem of producing the
k−rooted y−monotone minimum spanning graph of a
k−rooted point set P , with 1 < k < |P |, it is an open
problem, posed in [22], whether it is NP-hard.

The restricted fathers tree problem was introduced
in [12] and is related to the rooted y-monotone min-
imum spanning graph problem constrained to rooted
point sets P in which the y coordinate of the root is
zero and the y coordinates of the other points of P are
all negative (or all positive). The input of the restricted
fathers tree problem is a complete graph with root where
each edge has a cost and each vertex has a value and the
goal is to output the spanning tree in which the path
from the root to each vertex decreases in value that has
the minimum cost. The restricted fathers tree problem
is greedily solvable [12, Corollary 2.6].

A geometric path Q = (q0, q1, . . . , qt) is
xy−monotone if the sequence of its vertices is both
x−monotone, i.e. the sequence x(q0), x(q1), . . . , x(qt),
is monotone, and y−monotone. Q is 2D-monotone (fol-
lowing the terminology of [22]) if it is x′y′−monotone
for some orthogonal axes x′, y′. A geometric graph
G = (P,E) is 2D-monotone (following the terminol-
ogy of [22]) if each pair of points of P is connected
by a 2D-monotone path. 2D-monotone paths/graphs
were called angle-monotone paths/graphs by Bonichon
et al. [8]. Bonichon et al. [8] showed that deciding if
a geometric graph G = (P,E) is 2D-monotone can be
done in O(|P | · |E|2) time. Triangulations with no ob-
tuse internal angles are 2D-monotone graphs [10, 19].
There exist point sets for which any 2D-monotone span-
ning graph is not planar [8]. The problem of construct-
ing 2D-monotone graphs with asymptotically less than
quadratic edges was studied by Lubiw and Mondal [18].
It is an open problem, posed in [22], whether the 2D-
monotone spanning graph of a point set P that has the

1In [22] it is shown that it is actually a tree.

minimum cost can be efficiently computed.
The (rooted) xy−monotone and (rooted) uniform 2D-

monotone (using the terminology of [22]) graphs are de-
fined similar to the (rooted) y−monotone and (rooted)
uniform monotone graphs. Deciding if a rooted ge-
ometric graph G = (P,E) is rooted xy−monotone
(uniform 2D-monotone) can be done in O(|E|) (resp.,
O(|E| · log |P |)) time [22]. Additionally, the rooted
xy−monotone (uniform 2D-monotone) spanning graph
of a rooted point set P that has the minimum cost2 can
be computed in O(|P | · log3 |P |) (resp., O(|P |2 log |P |))
time [22]. We focus on the production of the xy-
monotone minimum spanning graph (xy−MMSG) of a
point set P , i.e. the xy-monotone spanning graph of
P that has the minimum cost, and the production of
the uniform 2D−monotone minimum spanning graph
(2D−UMMSG) of a point set P , i.e. the uniform
2D−monotone spanning graph of P that has the min-
imum cost. We also study the corresponding problems
regarding the production of the spanning graphs with
the least number of edges, i.e. the production of the
xy-monotone spanning graph with the least number of
edges and the production of the uniform 2D−monotone
spanning graph with the least number of edges.

A curve C is increasing-chord [15, 26] if for each
p1, p2, p3, p4 traversed in this order along it, the length
of the line segment p1p4 is greater than or equal to the
length of p2p3. Alamdari et al. [1] introduced increasing-
chord graphs which are the geometric graphs for which
each two vertices are connected by an increasing-chord
path. Increasing-chord graphs are widely studied [1, 6,
10, 21, 23]. The problem of producing increasing-chord
spanning graphs (where Steiner points may be added) of
a point set P was studied in [1, 10, 21]. The approach
employed in [1, 10, 21], was to connect the points of
P by 2D-monotone paths since as noted by Alamdari
et al. [1] 2D-monotone paths are also increasing-chord
paths.

Let P be a point set and let p, q ∈ P then p and q are
rectangularly visible if the rectangle with corners p and q
does not include any other point of P . Furthermore, the
rectangle of influence graph of P is the geometric graph
spanning P such that pq is an edge of the graph if and
only if p and q are rectangularly visible. Alon et al. [2]
denoted rectangularly visible points as separated points
and the rectangle of influence graph as the separation
graph. Computing the rectangle of influence graph G =
(P,E) of P can be done in O(|P |·log |P |+|E|) time [25].
There exist point sets P for which the number of edges
of their rectangle of influence graph is Ω(|P |2) [2]. The
rectangle of influence graph does not remain the same
if the Cartesian System is rotated [14, Proposition 3].

2In [22] it is shown that it is actually a tree, denoted as the
rooted xy−monotone (uniform 2D-monotone) minimum span-
ning tree in [22] and abbreviated as the rooted xy−MMST (resp.,
rooted 2D−UMMST) in [22].

319

CCCG 2018, Winnipeg, Canada, August 8–10, 2018

Drawing an abstract graph as a rectangle of influence
graph has been studied [17].
Our Contribution. Building upon previous results,
we easily obtain that given a point set P the xy−MMSG
of P is equal to the xy−monotone spanning graph of P
that has the least number of edges and are both equal
to the rectangle of influence graph of P . We note that
given a point set P the 2D−UMMSG of P does not nec-
essarily coincide with the uniform 2D-monotone span-
ning graph of P that has the least number of edges.
We also show that both the 2D−UMMSG of P and
the uniform 2D-monotone spanning graph of P that has
the least number of edges can be produced in O(|P |3)
time. Additionally, we give a simple 2−approximation
algorithm for the problem of producing the k−rooted
y−monotone minimum spanning graph of a k−rooted
point set.

2 Preliminaries

2.1 xy−Monotone Minimum Spanning Graphs

Angelini [3] noted the following Fact regarding
y−monotone graphs.

Fact 1 (Angelini [3]) Let G = (P,E) be a
y−monotone graph where no two points of P have
the same y coordinate and let p, q ∈ P such that
for each r ∈ P \ {p, q} the sequence p, r, q is not
y−monotone. Then, p and q are adjacent in G.

Fact 1 is easily extended in the context of
xy−monotone graphs. More specifically, let G = (P,E)
be a xy-monotone graph and p, q ∈ P such that for
each r ∈ P \ {p, q} the sequence of points p, r, q is not
xy−monotone, then p and q are adjacent in G. Alon et
al. [2] noted that the points p, q of a point set P are rect-
angularly visible if and only if for each r ∈ P \{p, q} the
sequence of points p, r, q is not xy−monotone. Hence,
the rectangle of influence graph of P is a subgraph of
G.

Liotta et al. [17, Lemma 2.1] showed that the rectan-
gle of influence graph of a point set is a xy−monotone
graph3.

From the previous two sentences, regarding the rect-
angle of influence graph, we obtain the following Corol-
lary.

Corollary 1 Let P be a point set. The xy−MMSG of
P and the xy−monotone spanning graph of P that has
the least number of edges coincide and they are both
equal to the rectangle of influence graph of P .

3Technically speaking, Liotta et al. [17] showed that the rect-
angle of influence graph of a point set is a graph such that each
two vertices are connected by a path lying inside the rectangle
defined by these vertices but upon careful reading the path that
is obtained in their proof is xy−monotone.

We recall that the rectangle of influence graph G =
(P,E) of P can be produced in O(|P | · log |P | + |E|)
time [25] which is optimal [25] and that there exist point
sets P for which the rectangle of influence graph has size
Ω(|P |2) [2] as well as point sets for which it has linear
size [2].

2.2 Rooted Uniform 2D-Monotone Graphs

Mastakas and Symvonis [22] studied the problem of rec-
ognizing rooted uniform 2D-monotone graphs. They
initially noted the following Fact.

Fact 2 (Observation 8 in [22]) Let G be a geomet-
ric graph G = (P,E) with root r. If one rotates
a Cartesian System x′y′, then G may become rooted
x′y′−monotone while previously it was not, or vice
versa, only when the y′ axis becomes (or leaves the po-
sition where it previously was) parallel or orthogonal to

1. a line passing through r and a point p ∈ P \ {r}.
2. an edge pq ∈ E, where p, q 6= r.

Based on Fact 2, Mastakas and Symvonis [22] gave a
rotational sweep algorithm denoted as the rooted uni-
form 2D-monotone recognition algorithm in [22].

Fact 3 ([22]) The rooted uniform 2D-monotone recog-
nition algorithm

i) computes, in O(|E|·log |P |) time, a set of sufficient
Cartesian Systems, of size O(|E|) , which are asso-
ciated with (1) lines passing through r and a point
p ∈ P \ {r} and (2) edges pq ∈ E, where p, q 6= r.

ii) tests, in O(|E|) total time4, if G is rooted
x′y′−monotone for some Cartesian System x′y′ in
the previously computed set of sufficient Cartesian
Systems.

Fact 4 (Theorem 1 in [22]) Let P be a rooted point
set then the rooted y−monotone minimum spanning
graph of P can be obtained in O(|P | · log2 |P |) time.

3 The 2D-UMMSG Problem

We now deal with the construction of the 2D−UMMSG
and the uniform 2D−monotone spanning graph with

4Technically speaking in [22] it is shown that the remaining
steps, i.e. the steps after the computation of the sufficient Carte-
sian Systems, of the rooted uniform 2D-monotone recognition al-
gorithm take O(|E| · log |P |) total time. Internally in the rooted
uniform 2D-monotone recognition algorithm given in [22], for each
p ∈ P \ {r} it is stored the set of adjacent points to p that are
in the rectangle w.r.t. the Cartesian System x′y′ with corners p
and r, which is denoted as A(p, x′, y′) in [22]. Furthermore, it is
stored the set of points p ∈ P \ {r} for which |A(p, x′, y′)| > 0
which is denoted as B(x′, y′) in [22]. However, only the cardinal-
ities of these sets are necessary [22, Lemma 9], hence if instead
of the sets A(p, x′, y′), p ∈ P and B(x′, y′) their cardinalities are
stored, the remaining steps of the rooted uniform 2D-monotone
recognition algorithm take O(|E|) total time.

320

30th Canadian Conference on Computational Geometry, 2018

the least number of edges. We initially show that
the 2D−UMMSG of a point set P can be obtained in
O(|P |3) time. For this, we employ a rotational sweep
technique. Our approach regarding the construction of
the 2D−UMMSG is similar to the approach employed
for the calculation of the rooted uniform 2D−monotone
spanning graph that has the minimum cost in [22]. We
assume that no three points of P are collinear and no
two line segments pq and p′q′, p, p′, q, q′ ∈ P, are parallel
or orthogonal.

Let P be a point set and p be a point of P . Let
RV (p, x′, y′) denote the subset of points of P that are
rectangularly visible from p w.r.t. the Cartesian System
x′y′. See for example, Figure 1(a).

Proposition 2 If we rotate a Cartesian System x′y′

counterclockwise, then the x′y′−MMSG of P changes
only when y′ reaches or moves away from a line perpen-
dicular or parallel to a line passing through two points
of P .

Proof. If we rotate the Cartesian System x′y′ coun-
terclockwise then the RV (p, x′, y′) for a point p ∈ P
changes only when y′ reaches or moves away from a line
perpendicular or parallel to a line passing through two
points of P ; e.g. see Figure 1. From the previous and
since the RV (p, x′, y′), p ∈ P , equals to the set of adja-
cent vertices of p in the x′y′−MMSG of P (Corollary 1),
we obtain the Proposition. �

y′

x′p

a
b

c

d

e

f
g

h
i

j

y′

x′p

a
b

c

d

e

f
g

h
i

j

(a) (b)
y′

x′

p

a
b

c

d

e

f
g

h
i

j

(c)

Figure 1: In (a) RV (p, x′, y′) = {a, b, d, e, g, h, i}. In
(b) the y′ becomes parallel to the ab and now b is not
rectangularly visible from p. Finally, in (c) the y′ has
left the position where it previously was orthogonal to
the ef and now f becomes rectangularly visible from p.

Let S = {s ∈ [0, π2) : a line of slope s is perpendicular
or parallel to a line passing through two points of P}.

Let S = {s1, s2, . . . , sl} with l =
(|P |

2

)
such that 0 ≤ s1

< s2 < . . .< sl <
π
2 . We now define the set Ssufficient

to be equal to {s1, s1+s2
2 , s2, s2+s3

2 , . . . , sl,
sl+

π
2

2 }.
Let x1y1, x2y2, . . . , x2ly2l be the Cartesian Systems in
which the vertical axis has slope in Ssufficient, ordered
w.r.t. the slope of their vertical axis.

Theorem 3 The uniform 2D−monotone minimum
spanning graph of a point set P can be computed in
O(|P |3) time.

Proof. From Proposition 2 and the previous definitions
we obtain the following Proposition.

Proposition 4 The uniform 2D−monotone minimum
spanning graph of P is one of the x′y′−MMSG of P over
all Cartesian Systems x′y′ with y′ of slope in Ssufficient.

We now give a O(|P |3) time rotational sweep
algorithm. The algorithm initially computes the
x1y1−MMSG of P and then it obtains each
xi+1yi+1−MMSG of P from the xiyi−MMSG of
P . Throughout the procedure the Cartesian System
xoptyopt in which the algorithm encountered the min-
imum cost solution so far is stored. In its last step,
the algorithm recomputes the xoptyopt−MMSG of P ,
which since it is equal to the rectangle of influence
graph G = (P,E) w.r.t. the Cartesian System xoptyopt

(Corollary 1) it can be computed in O(|P | · log |P |+ |E|)
time [25]. The crucial proposition (which we show later)
that makes the time complexity of the algorithm equal
to O(|P |3) is that each transition from the xiyi−MMSG
of P to the xi+1yi+1−MMSG of P takes O(|P |) time.

For each two points p, q of P let I(p, q, xi, yi) be the
number of points of P \ {p, q} that are included in the
rectangle w.r.t. the Cartesian System xiyi with opposite
vertices p and q. Then, RV (q, xi, yi) can be equivalently
defined using the quantities I(p, q, xi, yi), p ∈ P \ {q},
as follows: p ∈ RV (q, xi, yi) if I(p, q, xi, yi) = 0.

We store the RV (q, xi, yi), q ∈ P , i = 1,2, . . . , 2l
in the data structure rv(q) which is implemented as an
array of |P | booleans. We also store the I(p, q, xi, yi),
p, q ∈ P , i = 1,2, . . . , 2l in the variable i(p, q).

Computing the Cartesian Systems xiyi, i = 1, 2, . . . ,
2l can be done in O(|P |2 log |P |) time. Accompanied
with each Cartesian System xiyi is the pair of points
(pi, qi) such that piqi is either parallel or perpendicular
to the yi axis or the yi−1 axis.

Ichino and Sklansky [14] noted that employing a range
tree [7, 9] that contains the points of P one can calcu-
late i) the rectangle of influence graph of P , and ii) the
I(p, q, x, y), p, q,∈ P , for a Cartesian System xy. Apply-
ing the previously mentioned approach, noted by Ichino
and Sklansky [14], are obtained i) the rectangle of in-
fluence graph of P w.r.t. the Cartesian System x1y1

(which by Corollary 1 equals to the x1y1−MMSG of
P), and ii) the I(p, q, x1, y1), p, q,∈ P .

321

CCCG 2018, Winnipeg, Canada, August 8–10, 2018

We now show that we can update all the rv(p), p ∈ P ,
such that from equal to RV (p, xi−1, yi−1), p ∈ P , they
become equal to RV (p, xi, yi), p ∈ P , in O(|P |) total
time. For each p ∈ P \{pi, qi} the update of rv(p) takes
O(1) time. This is true, since only the points pi and
qi have to be tested for inclusion to or removal from
rv(p). More specifically, we have to test if for one of
them, say pi, the rectangle with corners p and pi con-
tains (or it does not contain) qi w.r.t. the Cartesian
System xiyi while it did not contain (or it contained) it
w.r.t. xi−1yi−1. If this is true, then the i(pi, p) changes
and pi has to be tested for membership in rv(p) and
included to or removed from rv(p). Regarding rv(pi),
the update takes O(|P |) time, since for each other point
q ∈ P \{pi, qi} we have to test if the rectangle with cor-
ners q and pi contains (or it does not contain) qi w.r.t.
the Cartesian System xiyi while it did not contain it (or
it contained it) w.r.t. the xi−1yi−1 and if so update both
the i(q, pi) and the existence of q in rv(pi) if necessary.
Similarly, rv(qi) can be updated in O(|P |) time. �

We note that the procedure of obtaining the
2D−UMMSG can be trivially modified such that the
uniform 2D-monotone spanning graph of a point set
P with the least number of edges can be obtained
in O(|P |3) time. Since for an arbitrary Cartesian
System x′y′ the x′y′−MMSG of P is equal to the
x′y′−monotone spanning graph of P with the least num-
ber of edges (Corollary 1), the only modification which
is necessary is that in the transition from the Carte-
sian System xiyi to the Cartesian System xi+1yi+1 we
check if the xi+1yi+1−monotone spanning graph of P
with the least number of edges has the least number of
edges among all the produced solutions so far.

In Figure 2 is given a point set P for which
the 2D−UMMSG of P is different from the uniform
2D−monotone spanning graph of P with the least num-
ber of edges.

In Figure 3 we give a point set P for which the (non-
uniform) 2D−monotone spanning graph of P with the
least number of edges does not coincide to the (non-
uniform) 2D−monotone spanning graph of P that has
the minimum cost.

Regarding recognizing uniform 2D-monotone graphs,
we note that the O(|E| · log |P |) time rotational sweep
algorithm given in [22], which decides if a geometric
graph G = (P,E) with a specified vertex r as root is
rooted uniform 2D−monotone, can be easily extended
into a O(|P |2 · log |P |+ |P | · |E|) time rotational sweep
algorithm that decides if G is uniform 2D−monotone.
More specifically, in order to decide if G is uniform
2D−monotone, the |P | rooted geometric graphs (p1, G),
(p2, G), . . . , (p|P |, G) where (pi, G) is the geometric
graph G with root pi and {p1, p2, . . . , p|P |} is the
vertex set of G, are considered. A Cartesian System
x′y′ is rotated counterclockwise. From Fact 2, it fol-

a

b
c

d

f
e

a

b
c

d

f

e

(a) (b)

Figure 2: The points a,b and c form a right angle. Ad-
ditionally, the points d, e and f form a right angle. The
slope of de is smaller than the slope of bc. The uniform
2D−monotone spanning graph with the least number of
edges is obtained when the y′ axis becomes perpendic-
ular to the de and is shown in (a). On the other hand
the 2D−UMMSG is obtained when the y′ axis becomes
perpendicular to the bc and is shown in (b).

a

b c d
e

f a

b c d
e

f

(a) (b)

Figure 3: The slope of ac is π
4 while the slope of fd

is 3π
4 . In (a) is depicted the 2D−monotone spanning

graph of P with the least number of edges. In (b) is
illustrated the 2D−monotone spanning graph of P that
has the minimum cost.

lows that one of these |P | rooted geometric graphs be-
comes rooted x′y′−monotone while previously it was
not, or vice versa, only when the y′ axis becomes (or
leaves the position where it was previously) parallel or
orthogonal to a line passing through two points of P .
Hence, O(|P |2) Cartesian Systems need to be consid-
ered, which can be computed in O(|P |2 log |P |) time.
When the y′ becomes (or leaves the position that it pre-
viously was) parallel or perpendicular to a line passing
through the points p, q ∈ P then by Fact 2 the status,
i.e. being rooted x′y′−monotone, of the rooted geo-
metric graphs (p,G) and (q,G) may change. Hence, the
steps of the rooted uniform 2D-monotone recognition al-
gorithm given in [22] for handling the event associated
with the current Cartesian System x′y′ regarding the
rooted geometric graphs (p,G) and (q,G), are applied.
Furthermore, if pq ∈ E then by Fact 2 it follows that
the status, i.e. being rooted x′y′−monotone, of each
(r,G), r ∈ P \ {p, q}, may also change. Hence, for each
(r,G), r ∈ P \ {p, q}, the steps of the rooted uniform
2D-monotone recognition algorithm given in [22] for
handling the event associated with the current Carte-
sian System x′y′ are applied. Since, the remaining
steps, i.e. after the calculation of the sufficient axes,
of the rooted uniform 2D-monotone recognition algo-
rithm, given in [22], regarding any of these |P | rooted

322

30th Canadian Conference on Computational Geometry, 2018

geometric graphs take O(|E|) time (Fact 3), applying
the remaining steps regarding all these |P | rooted geo-
metric graphs, takes O(|P | · |E|) total time.

4 A 2−Approximation Algorithm for the k−Rooted
y−Monotone Minimum Spanning Graph Problem

We now study the problem of producing the k−rooted
y−monotone minimum spanning graph of a k−rooted
point set P , where 1 < k < |P |. We assume that no two
points have the same y coordinate.

Let P be a point set and a, b ∈ R then Py>a is the
subset of points of P whose y coordinate is greater than
a. Similarly are defined Py≥a, Py<a and Py≤a. Pa<y<b
is the subset of points of P whose y coordinate is be-
tween a and b. Similarly are defined Pa<y≤b, Pa≤y<b
and Pa≤y≤b.

In [22, Lemma 1] it is noted that the rooted
y−monotone minimum spanning graph of a rooted
point set P with root r is the union of the rooted
y−monotone minimum spanning graphs of (i) Py≤y(r)

and (ii) Py≥y(r). The previous Fact is extended to the
following Lemma.

Lemma 5 Let P be a k−rooted point set, with 1 < k <
|P |, where r1, r2, . . . , rk are the roots of P such that
y(r1) < y(r2) < . . .< y(rk). The k−rooted y−monotone
minimum spanning graph of P is the union of

1. the rooted y−monotone minimum spanning graph
of Py≤y(r1).

2. the rooted y−monotone minimum spanning graph
of Py≥y(rk).

3. the 2−rooted y−monotone minimum spanning
graph of Py(ri)≤y≤y(ri+1), 1 ≤ i ≤ k − 1.

Theorem 6 Given a k−rooted point set P , with 1 <
k < |P |, we can obtain in O(|P | · log2 |P |) time a
k−rooted y−monotone spanning graph of P with cost at
most twice the cost of the k−rooted y−monotone mini-
mum spanning graph of P .

Proof. For a 2−rooted point set P with roots r1 and
r2 that are the lowest and highest points of the point
set, respectively, we prove the following Lemma.

Lemma 7 Given a 2−rooted point set P with roots r1

and r2 that are the lowest and highest points of the point
set, respectively, we can obtain in O(|P |·log2 |P |) time a
2−rooted y−monotone spanning graph of P with cost at
most twice the cost of the 2−rooted y−monotone mini-
mum spanning graph of P .

Proof. Initially, we employ Fact 4 to P considering it
to have only the root r1 and obtain the geometric graph
G1. Then, we employ Fact 4 to P considering it to have
only the root r2, obtaining G2. In the final step we
return the union of G1 and G2. G1 ∪ G2 is 2−rooted

y−monotone since G1 (G2) is rooted y−monotone with
root r1 (resp., r2). We now show that G1 ∪G2 has cost
at most twice the cost of the 2−rooted y−monotone
minimum spanning graph Gopt of P . Since, in Gopt all
the points p are connected with r1 (r2) by y−monotone
paths it follows that its cost is greater than or equal to
the cost of G1 (resp., G2). Hence, the cost of G1 ∪ G2

which is less than or equal to the sum of the costs of G1

and G2 is at most twice the cost of Gopt. �

From Lemma 5, Fact 4 and Lemma 7 we obtain the
Theorem. �

A 2−rooted planar geometric graph G = (P,E) with
roots r1, r2 s.t. y(r1) < y(p) < y(r2), p ∈ P \ {r1, r2},
is 2−rooted y−monotone if and only if for each p ∈ P \
{r1, r2} there exist q1, q2 ∈ Adj(p) with y(q1) < y(p) <
y(q2) [16]. Furthermore, a rooted geometric graph G =
(P,E) with a (single) root r that is not the highest or
lowest point of P is rooted y−monotone if and only if for
each p ∈ P \ {r} there exists q ∈ Adj(p) such that y(q)
is between y(r) (inclusive) and y(p) [22]. We extend the
previous two Propositions to the following equivalent
characterization of k−rooted y−monotone graphs where
the latter implies an efficient recognition algorithm for
k−rooted y−monotone graphs.

Proposition 8 Let G = (P,E) be a k−rooted geomet-
ric graph, where 1 < k < |P |, with roots r1, r2, . . . , rk
such that y(r1) < y(r2) < . . .< y(rk). G is k−rooted
y−monotone if and only if

1. for each p ∈ Py<y(r1) there exists q ∈ Adj(p) s.t.
y(q) ∈ (y(p), y(r1)].

2. for each p ∈ Py>y(rk) there exists q ∈ Adj(p) s.t.
y(q) ∈ [y(rk), y(p)).

3. for each p ∈ Py(ri)<y<y(ri+1) there exist q1, q2 ∈
Adj(p) s.t. y(q1) ∈ [y(ri), y(p)) and y(q2) ∈
(y(p), y(ri+1)], i = 1, 2, . . . , k − 1.

4. there exists q ∈ Adj(r1) s.t. y(q) ∈ (y(r1), y(r2)].
5. there exists q ∈ Adj(rk) s.t. y(q) ∈ [y(rk−1), y(rk)).
6. there exist q1, q2 ∈ Adj(ri) s.t. y(q1) ∈

[y(ri−1), y(ri)) and y(q2) ∈ (y(ri), y(ri+1)], 2 ≤ i ≤
k − 1.

5 Further Research Directions

Given a point set P can the 2D−monotone spanning
graph of P that has the least number of edges be pro-
duced in polynomial time?

Does there exist a t−approximation algorithm, t <
2, for the k−rooted y−monotone minimum spanning
graph problem?

Acknowledgement: I would like to thank Professor
Antonios Symvonis for his valuable contribution in de-
veloping the results presented in this paper.

323

CCCG 2018, Winnipeg, Canada, August 8–10, 2018

References

[1] S. Alamdari, T. M. Chan, E. Grant, A. Lubiw,
and V. Pathak. Self-approaching graphs. In
W. Didimo and M. Patrignani, editors, Graph
Drawing - GD 2012, volume 7704 of LNCS, pages
260–271. Springer, 2013.

[2] N. Alon, Z. Füredi, and M. Katchalski. Separating
pairs of points by standard boxes. Eur. J. Comb.,
6(3):205–210, 1985.

[3] P. Angelini. Monotone drawings of graphs with few
directions. Inf. Process. Lett., 120:16–22, 2017.

[4] P. Angelini, E. Colasante, G. Di. Battista, F. Frati,
and M. Patrignani. Monotone drawings of graphs.
J. Graph Algorithms Appl., 16(1):5–35, 2012.

[5] P. Angelini, W. Didimo, S. Kobourov,
T. Mchedlidze, V. Roselli, A. Symvonis, and
S. Wismath. Monotone drawings of graphs with
fixed embedding. Algorithmica, 71(2):233–257,
2015.

[6] Y. Bahoo, S. Durocher, S. Mehrpour, and D. Mon-
dal. Exploring increasing-chord paths and trees.
In J. Gudmundsson and M. Smid, editors, Proceed-
ings of the 29th Canadian Conference on Compu-
tational Geometry, CCCG 2017, pages 19–24. Car-
leton University, Ottawa, Ontario, Canada, 2017.

[7] J. L. Bentley and H. A. Maurer. Efficient worst-
case data structures for range searching. Acta Inf.,
13:155–168, 1980.

[8] N. Bonichon, P. Bose, P. Carmi, I. Kostitsyna,
A. Lubiw, and S. Verdonschot. Gabriel triangu-
lations and angle-monotone graphs: Local routing
and recognition. In Y. Hu and M. Nöllenburg,
editors, Graph Drawing and Network Visualiza-
tion - 24th International Symposium, GD 2016,
Athens, Greece, September 19-21, 2016, Revised
Selected Papers, volume 9801 of LNCS, pages 519–
531. Springer, 2016.

[9] M. de Berg, O. Cheong, M. J. van Kreveld, and
M. H. Overmars. Computational geometry: al-
gorithms and applications. Springer, 3rd edition,
2008.

[10] H. R. Dehkordi, F. Frati, and J. Gudmundsson.
Increasing-chord graphs on point sets. J. Graph
Algorithms Appl., 19(2):761–778, 2015.

[11] M. R. Garey, D. S. Johnson, F. P. Preparata, and
R. E. Tarjan. Triangulating a simple polygon. Inf.
Process. Lett., 7(4):175–179, 1978.

[12] N. Guttmann-Beck and R. Hassin. On two re-
stricted ancestors tree problems. Inf. Process. Lett.,
110(14-15):570–575, 2010.

[13] D. He and X. He. Optimal monotone drawings
of trees. SIAM Journal on Discrete Mathematics,
31(3):1867–1877, 2017.

[14] M. Ichino and J. Sklansky. The relative neighbor-
hood graph for mixed feature variables. Pattern
Recognition, 18(2):161–167, 1985.

[15] D. G. Larman and P. McMullen. Arcs with increas-
ing chords. Mathematical Proceedings of the Cam-
bridge Philosophical Society, 72:205–207, Septem-
ber 1972.

[16] D. T. Lee and F. P. Preparata. Location of a point
in a planar subdivision and its applications. SIAM
J. Comput., 6(3):594–606, 1977.

[17] G. Liotta, A. Lubiw, H. Meijer, and S. White-
sides. The rectangle of influence drawability prob-
lem. Comput. Geom., 10(1):1–22, 1998.

[18] A. Lubiw and D. Mondal. Angle-monotone
graphs: Construction and local routing. CoRR,
abs/1801.06290, 2018.

[19] A. Lubiw and J. O’Rourke. Angle-monotone paths
in non-obtuse triangulations. In J. Gudmunds-
son and M. Smid, editors, Proceedings of the 29th
Canadian Conference on Computational Geometry,
CCCG 2017, pages 25–30. Carleton University, Ot-
tawa, Ontario, Canada, 2017.

[20] K. Mastakas. Drawing a Rooted Tree as a Rooted
y−Monotone Minimum Spanning Tree. CoRR,
abs/1806.04720, 2018.

[21] K. Mastakas and A. Symvonis. On the construction
of increasing-chord graphs on convex point sets. In
6th Int. Conf. on Information, Intelligence, Sys-
tems and Applications, IISA 2015, Corfu, Greece,
July 6-8, 2015, pages 1–6. IEEE, 2015.

[22] K. Mastakas and A. Symvonis. Rooted uniform
monotone minimum spanning trees. In D. Fotakis,
A. Pagourtzis, and V. Th. Paschos, editors, Algo-
rithms and Complexity - 10th International Con-
ference, CIAC 2017, Athens, Greece, May 24-26,
2017, Proceedings, volume 10236 of LNCS, pages
405–417, 2017. Full Version:arXiv:1607.03338v2,
2017.

[23] M. Nöllenburg, R. Prutkin, and I. Rutter. On
self-approaching and increasing-chord drawings of
3-connected planar graphs. Journal of Computa-
tional Geometry, 7(1):47–69, 2016.

324

30th Canadian Conference on Computational Geometry, 2018

[24] A. Oikonomou and A. Symvonis. Simple compact
monotone tree drawings. In F. Frati and K.-L.
Ma, editors, Graph Drawing and Network Visual-
ization - 25th International Symposium, GD 2017,
Boston, MA, USA, September 25-27, 2017, Revised
Selected Papers, volume 10692 of LNCS, pages 326–
333. Springer, 2017.

[25] M. H. Overmars and D. Wood. On rectangular
visibility. J. Algorithms, 9(3):372–390, 1988.

[26] G. Rote. Curves with increasing chords. Mathe-
matical Proceedings of the Cambridge Philosophical
Society, 115:1–12, January 1994.

[27] M. I. Shamos and D. Hoey. Closest-point prob-
lems. In 16th Annual Symposium on Foundations
of Computer Science, Berkeley, California, USA,
October 13-15, 1975, pages 151–162. IEEE Com-
puter Society, 1975.

325

CCCG 2018, Winnipeg, Canada, August 8–10, 2018

On Nonogram and Graph Planarity Puzzle Generation

Marc van Kreveld∗

There are many puzzles in the world, both physical and
digital ones. From the computational perspective, a lot
of attention has been given to combinatorial puzzles and
how to (algorithmically) solve them. We will focus on
puzzles with a geometric component where techniques
from discrete and computational geometry can be em-
ployed to generate them. We also present new nonogram
and graph planarity puzzles.

1 Nonogram puzzles

In a basic nonogram, each row and each column has a
clue that gives an abstract description as to which cells
are to be filled. Suppose a row is eight cells long. Then
a clue 1 3 specifies that in the row, one cell should
be filled, and later in that row another three cells in se-
quence. Between the one and the three filled cells, there
is at least one non-filled cell. Also, before the one filled
cell and after the three filled cells, there are zero or more
non-filled cells. In binary, 00101110 and 10011100 are
both valid filling choices for the row of cells correspond-
ing to the clue. A nonogram puzzle originally consists
of a grid with no cells filled, see Fig. 1. A solution (or
filling) is correct if for every row and column, the filled
cells are an option for the given clue.

The scientific study of nonograms usually focuses on
the algorithmic complexity of solving them [1, 2, 11, 13].

1
3

7

5 1

1
1

4 1

4 1
2
1
1

1
5
1

1
3 1 1

Figure 1: Basic nonogram (right) of the pixel image
shown left.

In this talk we will discuss the problem of convert-
ing a simple polygon, representing some shape, into a
nonogram. In essence, the polygon will become a low-
res pixel image. We analyze how a pixel polygon can
be formed that is simple and has small Hausdorff or

∗Department of Information and Computing Sciences, Utrecht
University, m.j.vankreveld@uu.nl

Fréchet distance to the input. It is based on research
by Bouts et al. [4].

We will also introduce new types of nonograms that
generalize the basic type. Puzzles can be constructed
based on any set of lines and even of curves. For these
new types of generalized nonograms we review the de-
sign choices and let these inspire an automated method
to generate a nonogram from a drawing. For nonograms
based on curves, the curves replace the grid lines of basic
nonograms and form an arrangement of cells with vary-
ing shape and size. Since rows and columns no longer
exist, we need a new way to give clues indicating which
cells should be filled by the puzzler. It allows for new
reasoning steps that do not exist in a grid-based nono-
gram. This part is based on research by van de Kerkhof
et al. [7].

2 Graph planarity puzzles

Planarity [10] is a popular abstract puzzle game that
is widely available. The idea is that a tangled graph
is given with intersecting edges, and the objective is
to untangle the graph by dragging vertices to other lo-
cations. If the graph is planar, then the objective can
always be realized, and we never need more vertex drags
than there are vertices.

Algorithmically, planarity of a graph can be tested in
linear time, and the algorithm returns an embedding of
the graph in which it is drawn planar. So for an algo-
rithm, an instance of Planarity is easily solvable in
linear time. Minimizing the number of moves, however,
is NP-hard [6, 12], see also [3].

In this talk we propose several variations on the game
Planarity. These variations essentially limit the free-
dom of the operations that can be done on the drawn
graph. Since the puzzle type is abstract, it is prefer-
able that the interaction and operations themselves be
simple. The puzzle might then become an elegant ab-
stract puzzle of which there are many already (Move,
Lines/Flow, Zengrams, Nintaii, Fling, . . .).

Besides interacting with a vertex like in Planarity,
it is natural to interact with an edge. Clicking or select-
ing is arguably the easiest interaction. We list a number
of ways in which the drawing can change when an edge
is selected:
• Swap: the two endpoints of the selected edge swap

locations. Intuitively, the edge turns around while
the endpoints drag all incident edges with them.

326

30th Canadian Conference on Computational Geometry, 2018

(a)

(b)

Figure 2: (a) Puzzle and solution after one swap (the
left edge). (b) Puzzle and solution after two swaps.

• Rotate: like swap, but now the selected edge ro-
tates over 90 degrees around its center. Since a sin-
gle edge can be selected consecutively three times,
it does not matter whether we rotate clockwise or
counter-clockwise.
• Stretch: the selected edge is scaled by a factor 2

from its center, or by a factor 1/2.
• Mid collapse: the endpoints of the selected edge are

united. The united vertex is placed in the middle of
the edge and gets all edges incident to the original
vertices. The selected edge is removed.
• End collapse: Same but the united vertex is placed

at a selected endpoint.
We will investigate the first of the new variations

closely: Swap Planarity. Examples are shown in
Fig. 2. We show that quadratically many swaps are
sometimes necessary (even if the input has just one edge
crossing) and always sufficient; the latter follows from
[14]. The decision (solvability) question is NP-complete
for general graphs; this follows from [5]. Simple graphs
like trees can always be made planar by swaps, but min-
imizing the number of swaps needed is NP-hard.

We discuss the automated generation of good puzzle
instances for Swap Planarity by describing a five-step
process which yields such a puzzle instance. Some of the
considerations of a good instance are puzzle (complex-
ity) based and some are geometry based. This part is
based on research by Kraaijer et al. [8].

Acknowledgements. Research is supported by the
Netherlands Organisation for Scientific Research
(NWO) on grant no. 612.001.651

References

[1] Kees Joost Batenburg and Walter A. Kosters. Solving
Nonograms by combining relaxations. Pattern Recogni-
tion 42(8):1672–1683, 2009.

[2] Daniel Berend, Dolev Pomeranz, Ronen Rabani, and
Ben Raziel. Nonograms: Combinatorial questions and
algorithms. Discrete Applied Mathematics 169:30–42,
2014.

[3] Prosenjit Bose, Vida Dujmovic, Ferran Hurtado, Stefan
Langerman, Pat Morin, and David R. Wood. A poly-
nomial bound for untangling geometric planar graphs.
Discrete & Computational Geometry 42(4):570–585,
2009.

[4] Quirijn W. Bouts, Irina Kostitsyna, Marc van Kreveld,
Wouter Meulemans, Willem Sonke, and Kevin Verbeek.
Mapping polygons to the grid with small Hausdorff and
Fréchet distance. In 24th Annual European Symposium
on Algorithms, ESA. LIPIcs, 22:1–22:16, 2016.

[5] Sergio Cabello. Planar embeddability of the vertices
of a graph using a fixed point set is NP-hard. Journal
of Graph Algorithms and Applications 10(2):353–363,
2006.

[6] Xavier Goaoc, Jan Kratochv́ıl, Yoshio Okamoto, Chan-
Su Shin, and Alexander Wolff. Moving vertices to make
drawings plane. In Graph Drawing, 15th International
Symposium, GD 2007, volume 4875 of Lecture Notes in
Computer Science, pages 101–112. Springer, 2008.

[7] Mees van de Kerkhof, Tim de Jong, Marc van Kreveld,
Maarten Löffler, Raphael Parment, and Amir Vaxman.
Design and automated generation of Japanese picture
puzzles. Manuscript, 2018.

[8] Rutger Kraaijer, Marc van Kreveld, Wouter Meule-
mans, and André van Renssen. Geometry and gener-
ation of a new graph planarity game. In Proceedings
of the IEEE Conference on Computational Intelligence
and Games. To appear, 2018.

[9] Emilio G. Ort́ız-Garćıa, Sancho Salcedo-Sanz, José M.
Leiva-Murillo, Ángel M. Pérez-Bellido, and José Anto-
nio Portilla-Figueras. Automated generation and visu-
alization of picture-logic puzzles. Computers & Graph-
ics 31(5):750–760, 2007.

[10] John Tantalo. Planarity. http://planarity.net/, 2007.
Accessed: 2018-05-25.

[11] Jinn-Tsong Tsai. Solving Japanese nonograms by
Taguchi-based genetic algorithm. Applied Intelligence
37(3):405–419, 2012.

[12] Oleg Verbitsky. On the obfuscation complexity of pla-
nar graphs. Theoretical Compututer Science, 396(1-
3):294–300, 2008.

[13] I-Chen Wu, Der-Johng Sun, Lung-Ping Chen, Kan-
Yueh Chen, Ching-Hua Kuo, Hao-Hua Kang, and
Hung-Hsuan Lin. An Efficient Approach to Solving
Nonograms. IEEE Transactions on Computational In-
telligence and AI in Games 5(3):251–264, 2013.

[14] Katsuhisa Yamanaka, Erik D. Demaine, Takehiro Ito,
Jun Kawahara, Masashi Kiyomi, Yoshio Okamoto,
Toshiki Saitoh, Akira Suzuki, Kei Uchizawa, and
Takeaki Uno. Swapping labeled tokens on graphs. The-
oretical Computer Science 586:81–94, 2015.

327

CCCG 2018, Winnipeg, Canada, August 8–10, 2018

Threadable Curves∗

Joseph O’Rourke Emmely Rogers†

Abstract

We define a plane curve to be threadable if it can rigidly
pass through a point-hole in a line L without otherwise
touching L. Threadable curves are in a sense gener-
alizations of monotone curves. We have two main re-
sults. The first is a linear-time algorithm for decid-
ing whether a polygonal curve is threadable—O(n) for
a curve of n vertices—and if threadable, finding a se-
quence of rigid motions to thread it through a hole. We
also sketch an argument that shows that the threadabil-
ity of algebraic curves can be decided in time polynomial
in the degree of the curve. The second main result is
an O(npolylog n)-time algorithm for deciding whether
a 3D polygonal curve can thread through a hole in a
plane in R3, and if so, providing a description of the
rigid motions that achieve the threading.

1 Introduction

We define a simple (non-self-intersecting) open planar
curve C to be threadable if there exists a continuous
sequence of rigid motions that allows C to pass through
a point-hole o in an infinite line L without any other
point of C ever touching L. For fixed L, we will take
L to be the x-axis and o to be the origin; equivalently
we can view C as fixed and L moving (Lemma 1). C
could be a polygonal chain or a smooth curve. C is
open in the sense that it is not closed to a cycle. An
example is shown in Fig. 1; animations are available at
http://cs.smith.edu/~jorourke/Threadable/.

Note that our definition requires “strict threadabil-
ity” in the sense that no other point of C touches L.
So, for example, the curve illustrated in Fig. 2 is not
threadable.

This notion has appeared in the literature in another
guise. In particular, a threadable curve C corresponds
to a “generalized self-approaching curve” with width π
in both directions, as defined in [AAI+01]. However,
those authors do not explore that concept, and in any
case, our explorations focus on different properties of C.
Nevertheless, our algorithms are quite similar to those
for recognizing self-approaching curves and increasing-
chord paths in [ACG+12].1

∗Full version: https://arxiv.org/abs/1801.08003, v3.
†Department of Computer Science, Smith College, Northamp-

ton, MA, USA. {jorourke,erogers}@smith.edu.
1We thank Anna Lubiw for these references.

(a) (b)1

2
3

4
5

6

7
8

9

10

11

1

23

4
5

6

7
8

9

10

11

L

Figure 1: Two snapshots of a 10-segment polygonal
chain passing through a point-hole in the x-axis.

Figure 2: A curve that is not threadable. To pass com-
pletely through o, an edge would have to lie on L.

328

30th Canadian Conference on Computational Geometry, 2018

One could view our topic as a specialized motion-
planning problem, but it seems not directly addressed
in the literature. Work of Yap [Yap87], discussed in
Section 7, can be viewed as a higher dimensional ver-
sion. Research examining the fabrication of hydraulic
tubes [AFM03], as well as work on “producible protein
chains” [DLO06], lead to workspace-clearance concerns,
to which we return in Section 8. We will see that classi-
cal computational geometry tools suffice to address our
problems, but some interesting questions are raised.

1.1 Definition Consequences

We now explore a few consequences of the definition.

Lemma 1 If a curve C is threadable, then through ev-
ery point p ∈ C there is a line L that meets C in exactly
p: L ∩ C = {p}, and L properly crosses C at p.

Note that L tangent to C is insufficient for thread-
ability, for then C would locally lie on one side of L.
This is why the lemma insists on proper crossings.

What is perhaps not immediate is the implication in
the other direction to Lemma 1:

Lemma 2 If a curve C has the property that through
every point p ∈ C there is a line L that meets C in ex-
actly p, and L properly crosses C at p, then C is thread-
able.

The reason this is not immediate, is that it is conceivable
that the orientation of the line changes discontinuously
at some point p ∈ C, requiring an instantaneous rigid
“jump” motion of C to pass through L, rather than a
continuous rigid motion. A proof is deferred until we
can rule out this discontinuity (Section 3).

1.2 Monotone Curves

A monotone curve C is defined as one that meets all
lines parallel to some line L in a single point (if strictly
monotone), or which intersects every such line in either
a point or a segment (if non-strictly monotone). Ev-
ery strictly monotone curve is threadable, and one can
view threadability as a generalization of monotonicity,
allowing the orientation of L to vary.

2 Butterflies

Define the butterfly bf(p) for p ∈ C to be the set of
all lines L satisfying the threadability condition at p:
those lines that meet C in exactly p and properly cross
C at p. Let L be one line in bf(p), and view C as pass-
ing through L at p. Then the convex hull H+ of the
chain from p upward is above L and meets L exactly
at p, and the hull H− of the chain from p downward
is below L and again meets L exactly at p. (Here “up-
ward” and “downward” are not meant literally, but just

convenient shorthand for the two portions of the curve
delimited by a roughly horizontal L.) If either hull met
L in more than just p, then strict threadability would be
violated at L. Now rotate L counterclockwise about p
until it hits C at some point other than p, and similarly
clockwise. The stopping points determine the butterfly
wing-lines. See Fig. 3.

1

2

3

45

6

7

8

9

10

11

1

2

3

45

6

7

8

9

10

11

(a) (b)

H+

H−

H+

H−

p

p

w+

w−w+

w−

Figure 3: Here C is fixed, and two bf(p)’s are shown.
Note the hulls H+ and H− meet at exactly p. (a) The
stopping point ccw is vertex 6 and cw it is vertices 4, 5.

Thus bf(p) is an open double wedge. Its two boundary
wing-lines w+ and w− (which are not part of bf(p)) must
both be externally supported by points of C distinct
from p. Each wing must touch C on at least one of
its two halves with respect to p. Note by our definition,
bf(p) can never be a line; rather it becomes empty when
the wing-lines merge to one line.

3 Upper and Lower Hulls

It is not difficult to see that the upper convex hull
H+ changes continuously (say, under the Hausdorff dis-
tance measure) as p moves along C, and similarly for
H−. This has long been known in the work on com-
puting “kinetic” convex hulls of continuously moving
points (although we have not found an explicit state-
ment). Roughly, because each point in the convex hull
of a finite set of points is a convex combination of those
points, moving one point p a small amount ε changes
the hull by at most a small amount δ. For more detail,
see [Nie17].

Because the hulls change continuously, the butter-
flies change continuously as well. So we have finally
established Lemma 2: If there is a line through every
p ∈ C meeting the threadability criteria, then indeed C
is threadable: there are continuous rigid motions that
move C through a point-hole in a line.

And now this is an immediate consequence of
Lemma 2 and our definition of bf(p):

Lemma 3 A curve C is threadable if and only if bf(p)
is never empty for any p ∈ C.

We can also now see the following characterization,
which is the basis of the algorithm in the next section:

329

CCCG 2018, Winnipeg, Canada, August 8–10, 2018

Lemma 4 A curve C is threadable iff, for every p ∈ C,
the upper and lower hulls intersect in exactly p, i.e.,
H+ ∩H− = {p}.

Proof. (⇒:) Suppose C is threadable, but H+∩H− 6=
{p}. We then show C could not be threadable.

• Case 1: H+ ∩H− is a 2D region (Fig. 4(a)). Then
p is strictly interior to one of H+ or H−. So, the
butterfly = ∅. Therefore C is not threadable by
Lemma 3.

• Case 2: H+ ∩ H− is a segment (Fig. 4(b)). Note
the intersection could not consist of ≥ 2 segments,
for that would violate the convexity of convex hulls.
So, the butterfly wings reduce to a line; so the but-
terfly is empty. And again, C is not threadable by
Lemma 3.

(⇐:) Assume H+ ∩ H− = {p} for every p. Then, by
the definition of bf(p), for every p the butterfly is non-
empty, because one could rotate a line through p until it
hits H±. So Lemma 3 implies that C is threadable. �

1

2

3

4

6

7

8

9 51

2

3

4

5

6

7

8

H+

H−

H+

H−

(b)(a)

Figure 4: (a) An example of Case 1: H+ ∩ H− is a
2D region. (b) An example of Case 2: H+ ∩ H− is a
segment.

4 Algorithm for Threadability

In light of Lemma 4, we can detect whether a polygonal
chain is threadable by computing H+ and H− for all
p along C, and verifying that p never falls inside either
hull, i.e., ceases to be a nonflat vertex of either hull.
Let p be a point on C = (v1, v2, . . . , vn), which we view
as moving “vertically downward” from v1 (top) to vn
(bottom). Let the edges of C be ei = (vi−1vi). We con-
centrate on constructing H = H+ as p moves downward
along C. Clearly the same process can be repeated to
construct H−.

As p moves down along C, H = hull{v1, . . . vi−1, p}
grows in the sense that the hulls form a nested sequence.
Thus once a vertex of C leaves ∂H, it never returns to
∂H (where ∂H is the boundary of H.) At any one
time, p is a vertex of H. Let a1, a2 be the vertices of H

right-adjacent to p, and b1, b2 the vertices left-adjacent,
so that (b2, b1, p, a1, a2) are consecutive vertices of H.
Finally, let A and B be the lines through a1a2 and b1b2
respectively. See Fig. 5.

Figure 5: Algorithm snapshots. (a) H grows without
combinatorial change until p reaches v. (b) p = v event.
(c) a1, a2 updated. ei crosses B. (d) b1, b2 updated.

We now walk through the algorithm, whose pseu-
docode is displayed in the full version. Let p be on
the interior of an edge ei = (vi−1vi). The portion of ei
already passed by p must lie inside H, and the remain-
ing portion outside H. As long as p remains within the
wedge region delimited by A, B, and ∂H, the combi-
natorial structure of H remains fixed (Fig. 5a). If p
crosses A or B—say A—then a1 leaves H and a1, a2
become the next two vertices counterclockwise around
∂H. If p reaches the endpoint vi of ei, then if ei+1 an-
gles outside H, vi becomes a new a1 or b1 depending on
the direction of ei+1. If instead, ei+1 turns inside H,
advancing p would enter H and we have detected that
C is not threadable by Lemma 4.

All the updates just discussed are constant-time up-
dates: detecting if ei crosses A or B, updating a1, a2
and b1, b2, and detecting if ei+1 turns inside H, enter-
ing 4b1via1.

At the end of the algorithm, H is the hull of C. It
may seem surprising that we can compute the hull of
C in linear time (rather than O(n log n)), but Melkman
showed long ago that the hull of any simple polygonal
chain can be computed in linear time [Mel87]. The chain
C acts almost as a pre-sorting of the points, leading to
an O(n) algorithm for threadability.

4.1 Rigid Motions

At any stage where the butterfly bf(p) is non-empty,
we could choose the line L to bisect bf(p). This choice
was used to produce the online animations cited in Sec-
tion 1. To prepare for an analogous 3D-computation
in Section 6, we explain the bisection choice in terms
of vectors normal to L. Fig. 6(a) shows the possible
L choices through p dictated by the two incident edges
of H+ and the two incident edges of H−, illustrated
by rightward rays from p along L. Rotating these 90◦

in (b) of the figure yields the possible vectors normal

330

30th Canadian Conference on Computational Geometry, 2018

to L. The intersection of the H+ and H− constraints
yields an interval corresponding to bf(p), which is then
bisected to select a particular N and therefore L. (The
intersection always yields an interval [rather than two
intervals] because each of the H+ and H− constraints
is ≤ a semicircle.)

(b)(a)

p

H+

H−

p
L

H+

H−

N

Figure 6: (a) Rightward rays along possible L’s.
(b) Normal vector N to L (black).

Let H+
j and H−j , j = 1, . . . ,m be the sequence of hulls

at the points at which there is a combinatorial change
in either. Let rj ⊆ e be the range of p along edge e
of C between {H+

j , H
−
j } and {H+

j+1, H
−
j+1}. Then as

p moves along rj , the wings of the butterfly bf(p) have
the same set of tangency points on the hulls. With L
chosen as the bisector of bf(p), translation of p along rj
leads to translation and rotation of L. It is not difficult
to see that the rotation implied by p moving along rj
reverses at most once, from clockwise to counterclock-
wise or vice versa. This is evident in Fig. 7, where the
butterfly angle θ bisected to yield L has at most one
local maximum. Thus each slide of p along rj leads to
at most two monotonic rotations. We call a slide and
a simultaneous monotonic rotation an elementary rigid
motion. But note that, although “elementary,” these
motions are not pure rotations and pure translations,
but rather the particular mix determined by the slide
and the butterfly bisection. We leave these elementary
motions as the output rigid motions, not further ana-
lyzed into explicit analytical expressions.

Figure 7: (a) p slides along edge e from p0 to p1, rj =
(p0, p1) ⊆ e. (b) The butterfly angle θ has at most one
local maximum throughout the range.

Thus the sequence of O(n) hulls provides a set of O(n)

elementary rigid motions to thread C, which we used to
produce the online animations.

4.2 Difficult-to-Thread Curves

One easy consequence of our analysis is that a thread-
able curve need never “back-up” while threading
through a hole, because p never enters H± as it pro-
gresses along the chain. However, one could define the
“difficulty” of threading by, say, integrating the abso-
lute value of the back-and-forth rotations necessary to
thread. Then variations on the curve shown in Fig. 8
are difficult to thread in this sense. For each pair of
adjacent spikes require a rotation by θ, and with many
short spikes, there is no bound on

∑ |θ| even for a fixed-
length chain.2

Figure 8: A threadable curve that requires re-
peated rotations. Animation: http://cs.smith.edu/

~jorourke/Threadable/, Example 2.

5 Algebraic Curves

In the full version, we sketch an argument that shows
detection of threadability for algebraic curves is achiev-
able in time O(d4), where d is the degree of the curve.

6 Threadable Curves in 3D

The results in Section 4 can be extended to R3, asking
whether a 3D polygonal chain C can pass through a
point-hole in a plane. First we roughly sketch an algo-
rithm. We claim without proof that the natural gener-
alization of the 2D lemmas hold in 3D as well.

Again Lemma 4 is the key: we need that H+ ∩H− =
{p} holds for all p on C. Again computing H+ and H−

will suffice to answer all questions; see Fig. 9. But now
what was the simple wedge region between hull sup-
porting lines A, B, and ∂H, becomes a more complex
region R bounded by O(n) hull-supporting planes, and
the portion of ∂H formed by the faces incident to p,
i.e., what is called star(p) in simplicial-complex theory
(which has size O(n)). Setting aside complexity issues
temporarily, the next edge ei+1 on which p will travel

2Thanks to Anna Lubiw for this observation.

331

CCCG 2018, Winnipeg, Canada, August 8–10, 2018

H+

H−

p

Figure 9: Upper and lower hulls for a 3D polygonal
chain. Animation: http://cs.smith.edu/~jorourke/
Threadable/, Example 6.

must be intersected with the planes bounding this re-
gion R, to determine whether R changes combinatori-
ally, and if so, which supporting plane is first pierced by
ei+1.

The planes bounding R that are not determined by
faces in star(p) are the planes incident to an edge of
link(p), i.e., the edges of star(p) not incident to p, which
form a topological circle. See Fig. 10. When ei+1 pierces
a plane A supporting face4abc of H, with ab an edge of
link(p), then ab is deleted from the link, and ac and cb
added, and the planes incident to these new link edges
are added to those defining R.

Figure 10: Faces sharing an edge with link(p) are ex-
tended to form the lower part of R. H+ does not change
combinatorially until p crosses one of those planes.

This allows H to be maintained throughout the move-
ment of p along C. As in 2D, C is threadable if and only
if p never enters either hull.

If C is threadable, selecting planes in the more com-
plex bf(p) regions and determining rigid motions that
achieve the threading are more complicated tasks than
in 2D.

6.1 Updating the hull H quickly

Timothy Chan’s powerful dynamic data structure for
updating 3D convex hulls [Cha10] provides the tools
needed to update the hull H quickly. Here “quickly”
means in amortized expected O(polylog n) time. His
“nonvertical ray shooting” queries permit determining
if the next edge ei+1 intersects a supporting plane of
the region R described above, and if so, which one.
Then that plane can be deleted, and new planes in-
serted according to the new link(p), as identified above.
Thus the computation of the hulls H+ and H−—and
therefore threadability detection—can be achieved in
O(n polylog n) time.

6.2 Butterfly “bisecting” planes

The equivalent of the butterfly bf(p) in 3D is a more
complicated region than in 2D, and choosing a plane P
through p separating H+ and H− (the analog of L) is
correspondingly more complicated. As in 2D, we iden-
tify P by its normal vector N , say, pointing toward H+.
The outward normals to the faces of H− incident to p
form a convex geodesic polygon on the Gaussian sphere,
with each node a face normal, and each geodesic arc cor-
responding to the dihedral angle along the edge shared
by two adjacent faces. See, e.g., [BLS07]. Any point
within this geodesic polygon corresponds to a normal
vector whose plane supports H− at p. Repeating this
for H+ yields another geodesic polygon corresponding
to the faces of H+ incident to p. Using outward face
normals leads to normals pointing toward H−; reflect-
ing this geodesic polygon through the origin then orients
the normals for H+ and H− consistently. See Fig. 11.
Then the butterfly region bf(p) is determined by the
intersection I of these two geodesic polygons.

Figure 11: Gaussian sphere. The blue polygon repre-
sents the faces of H− incident to p, and the red polygon
the faces of H+ incident to p. Any point in the (yellow)
intersection I is the normal vector N of a plane P in
bf(p).

The equivalent of bisecting bf(p) in 2D would be
choosing the centroid of the intersection region I on

332

30th Canadian Conference on Computational Geometry, 2018

the Gaussian sphere; of course any point in the interior
of I would suffice. In 2D we argued that, as p slides
along an edge e between combinatorial changes in ei-
ther H+ or H−, the rigid rotation reverses direction at
most once, which led to a linear-size description of the
rigid motions. In 3D, even with p on one edge e between
combinatorial changes, it seems that the intersection re-
gion I on the Gaussian sphere might change Ω(n) times,
requiring recalculation of N ∈ I. This complicates de-
scribing the rigid motions in a concise manner. We leave
finding a clean notion of what should constitute a “el-
ementary rigid motion” in 3D to future work, but we
note that the rigid motions for threading are analyti-
cally determined and could be detailed to any precision
desired.

7 Higher Dimensional Generalizations

There are two natural generalizations to higher dimen-
sions, but neither seems a fruitful line of future inquiry.
The first retains the curve as a 1-dimensional object
which must pass through a hole in a hyperplane in Rd.

The second generalization replaces the curve with a
polygon P , which must pass through a slit in L. This
topic has been explored previously, in two versions. We
cite [Yap87] and [BVK05] and leave further discussion
to the full version.

8 Open Problems

1. In R3, can finding a plane P separating H+ and
H−, as sketched in Section 6, be achieved in
O(npolylog n) time? In other words, can the in-
tersection I of the two geodesic polygons be main-
tained in amortized expected O(polylog n) time?

2. Is there a natural definition of what constitutes an
“elementary rigid motion” in R3, and how many
such motions are needed to thread a polygonal
curve of n segments?

3. If C were a hydraulic tube, it would be neces-
sary to ensure clearance regions above and/or be-
low L are empty of other objects to avoid colli-
sions [AFM03]. If C represents a polygonal protein
chain, clearance within a cone is important in some
models [DLO06]. Finding minimum clearance re-
gions requires more careful selection of L in bf(p),
rather than just using the bisector as we suggest in
Section 4.1. The question is most relevant in R3.

4. Suppose instead of C passing through a line, C were
to pass through a point hole in a polygonal k-chain.
What is the complexity of finding a threading mo-
tion as a function of n and k?

5. If C is not threadable, what is the shortest slit in L
through which C could pass? Or, in R3, the small-

est radius hole in a plane? Likely Yap’s door width
algorithm [Yap87] could apply to the 2D problem,
but it would be attractive to find a hull-based ap-
proach in 2D and 3D.

Acknowledgements. We thank Mikkel Abrahamsen,
Anna Lubiw, Joseph Mitchell, and the referees for help-
ful suggestions.

References

[AAI+01] O. Aichholzer, F. Aurenhammer, C. Icking,
R. Klein, E. Langetepe, and G. Rote. Gen-
eralized self-approaching curves. Discrete
Appl. Math., 109:3–24, 2001.

[ACG+12] S. Alamdari, T.M. Chan, E. Grant, A. Lu-
biw, and V. Pathak. Self-approaching
graphs. In Internat. Symp. Graph Drawing,
pages 260–271. Springer, 2012.

[AFM03] E.M. Arkin, S.P. Fekete, and J.S.B. Mitchell.
An algorithmic study of manufacturing pa-
perclips and other folded structures. Com-
put. Geom. Theory Appl., 25:117–138, 2003.

[BLS07] T. Biedl, A. Lubiw, and M. Spriggs.
Cauchy’s theorem and edge lengths of con-
vex polyhedra. Algorithms Data Structs.,
pages 398–409, 2007.

[BVK05] P. Bose and M. Van Kreveld. Generaliz-
ing monotonicity: On recognizing special
classes of polygons and polyhedra. Internat.
J. Comput. Geom. & Appl., 15(06):591–608,
2005.

[Cha10] T.M. Chan. A dynamic data structure for
3-D convex hulls and 2-D nearest neighbor
queries. J. ACM, 57(3):16, 2010.

[DLO06] E.D. Demaine, S. Langerman, and
J. O’Rourke. Geometric restrictions
on producible polygonal protein chains.
Algorithmica, 44(2):167–181, 2006.

[Mel87] A.A. Melkman. On-line construction of the
convex hull of a simple polyline. Info. Proc.
Letters, 25(1):11–12, 1987.

[Nie17] M. Nientker. Convex hulls change continu-
ously as one point moves continuously, Octo-
ber 2017. https://math.stackexchange.

com/q/2529897.

[Yap87] C.-K. Yap. How to move a chair through
a door. IEEE J. Robotics Automation,
3(3):172–181, 1987.

333

CCCG 2018, Winnipeg, Canada, August 8–10, 2018

Looking for Bird Nests: Identifying Stay Points with Bounded Gaps

Ali Gholami Rudi∗

Abstract

A stay point of a moving entity is a region in which it
spends a significant amount of time. In this paper, we
identify all stay points of an entity in a certain time
interval, where the entity is allowed to leave the region
but it should return within a given time limit. This
definition of stay points seems more natural in many
applications of trajectory analysis than those that do
not limit the time of entity’s absence from the region.
We present an O(n log n) algorithm for trajectories in
R1 with n vertices and a (1+ǫ)-approximation algorithm
for trajectories in R2 for identifying all such stay points.
Our algorithm runs in O(kn2), where k depends on ǫ
and the ratio of the duration of the trajectory to the
allowed gap time.

1 Introduction

The question, asking where a moving entity, like an ani-
mal or a vehicle, spends a significant amount of its time
is very common in trajectory analysis [1]. These regions
are usually called popular places, hotspots, interesting
places, stops, or stay points in the literature. There
are several definitions of stay points and different tech-
niques have been presented to find them [2, 3, 4, 5, 6].
However, from a geometric perspective, which is the fo-
cus of the present paper, few papers are dedicated to
this problem.
Benkert et al. [2] defined a popular place to be an axis-

aligned square of fixed side length in the plane which
is visited by the most number of distinct trajectories.
They modelled a visit either as the inclusion of a trajec-
tory vertex or the inclusion of any portion of a trajectory
edge, and presented optimal algorithms for both cases.
Gudmundsson et al. [3] introduced several different def-
initions of trajectory hotspots. In some of these defini-
tions, a hotspot is an axis-aligned square that contains a
contiguous sub-trajectory with the maximum duration
and in others it is an axis-aligned square in which the
entity spends the maximum possible duration but its
presence may not be contiguous. For hotspots of fixed
side length, for the former they presented an O(n logn)
algorithm and for the latter they presented an algorithm
with the time complexity O(n2), where n is the num-
ber of trajectory vertices. Damiani et al. [7], like some

∗Department of Electrical and Computer Engineering, Bobol
Noshirvani University of Technology, gholamirudi@nit.ac.ir

of the cases considered by Gudmundsson et al. [3], al-
lowed gaps between stay point and presented heuristic
algorithms for finding them.
There are applications in which we need to identify

regions that are regularly visited. Djordjevic et al. [8]
concentrated on a limited form of this problem and pre-
sented an algorithm to decide if a region is visited almost
regularly (in fixed periods of time) by an entity. How-
ever, in many applications that require spatio-temporal
analysis, these definitions are inadequate. For instance,
a bird needs to return to its nest regularly to feed its
chicks. In other words, the bird may leave its nest but
it cannot be away for a long time. We would like to find
all possible locations for its nest.
Arboleda et al. [6] studied a problem very similar to

the focus of the present paper, except that they assumed
the algorithm takes as input, in addition to the trajec-
tories, a set of polygons as potential stay points or inter-
esting sites. They presented a simple algorithm to iden-
tify stay points among the given interesting sites; their
algorithm computes the longest sub-trajectory visiting
each interesting site for each trajectory, while allowing
the entity to leave the site for some predefined amount
of time. They also mentioned motivating real world ex-
amples to show that in some applications, it makes sense
to allow the entity to leave the site for short periods of
time, like leaving a cinema for the bathroom.
Our goal is identifying all trajectory stay points,

i.e. axis-aligned squares in which the entity is always
present, except for short periods of time, where both
the side length of the squares and the allowed gap time
are specified as inputs of the algorithm and assumed to
be fixed. Note that we ignore the duration in which
the entity stays in a region. If, for instance, a region
with the maximum duration among our stay points is
desired, our algorithm can be combined with those that
find a stay point with the maximum duration, but al-
low unbounded entity absence, like the ones presented
by Gudmundsson et al. [3].
This paper is organized as follows. In Section 2, we

introduce the notation and define some of the main
concepts of this paper. In Section 3, we handle tra-
jectories in R1 and present an algorithm to find all
stay points of such trajectories with the time com-
plexity O(n log n). We focus on trajectories in R2 in
Section 4 and present an approximation algorithm for
finding their stay points. We conclude this paper by
showing that the complexity of the stay map of two-

334

30th Canadian Conference on Computational Geometry, 2018

0

10 15

20

25 35

s

Figure 1: An example two-dimensional trajectory. The
number near each vertex shows its timestamp. The
green region is the stay map and the green square is
a stay point (g = 15).

dimensional trajectories can be Θ(n2).

2 Preliminaries

A trajectory T describes the movement of an entity in
a certain time interval. Trajectories can be modelled
as a set of vertices and edges in the plane. Each ver-
tex of T represents a location at which the entity was
observed. The time of this observation is indicated as
the timestamp of the vertex. We assume that the en-
tity moves in a straight line and with constant speed
from a vertex to the next; the edges of the trajectory
connect its contiguous vertices. A sub-trajectory of T
for a time interval (a, b) is denoted as T (a, b), and de-
scribes the movement of the entity from time a to time
b. Except possibly the first and the last vertices of a
sub-trajectory, which may fall on an edge of T , its set
of vertices is a subset of those of T . The stay points
considered in this paper are formally described in Def-
inition 1. We use the symbols defined here, such as g
and s, throughout the paper without repeating their de-
scription. Also, any square that appears in the rest of
this paper is axis-aligned and has side length s.

Definition 1 A stay point of a trajectory T in R2 is
a square of fixed side length s in the plane such that
the entity never spends more than a given time limit g
outside it continuously.

The goal of this paper is identifying all stay points of
a trajectory, or its stay map (Definition 2). Note that
the parameters s and g are assumed to be fixed and
specified as inputs of the algorithm.

Definition 2 The stay map M of a trajectory T in R2

is a subset of the plane such that every square of side
length s whose lower left corner is in M is a stay point
of T , and the lower left corners of all stay points of T
are in M .

s

Time

Location

Figure 2: Mapping a one-dimensional trajectory to the
time-location plane. The green rectangle of height s
shows a possible stay point.

Figure 1 shows an example trajectory, its stay map,
and one of its stay points. Note that every square, whose
lowest left corner is in the stay map, is a stay point.
Although these definitions are presented for trajectories
in R2, they can be trivially adapted for one-dimensional
trajectories, as we do in Section 3.

3 Stay Maps of One-Dimensional Trajectories

Let T be a trajectory in R1. A stay point of T is an
interval of length s such that the entity never leaves it
for a period of time longer than g. The stay map M of
T is the region containing the left end points of all stay
points of T . In this section, we present an algorithm for
finding M .

Lemma 3 The stay map M of a trajectory T in R1 is
continuous.

Proof. To obtain a contradiction, let points p and q
be inside M and v be outside it such that p < v < q
(our assumption that M is non-continuous implies the
existence of this triple). Let rp, rq, and rv be three
segments of length s, whose left corners are at p, q,
and v, respectively. Clearly, rp and rq are stay points
while rv is not. Whenever the entity moves to the left
of v, it must return to q before the time limit g to visit
rq. Also, whenever the entity moves beyond the right
end point of rv (which is outside rp), it must return
to rp before the time limit. Therefore, it can never be
outside rv for more than time g and this implies that
v is also a stay point and inside M , which yields the
desired contradiction. �

Lemma 4 Given a trajectory T with n vertices in R1,
we can answer in O(n) time whether a point p is in the
stay map or not, and if not, whether the stay map is on
its left side or on its right side.

335

CCCG 2018, Winnipeg, Canada, August 8–10, 2018

Proof. Define r as segment pq, in which q is p+s. Test-
ing each trajectory edge in order, we can compute the
duration of each maximal sub-trajectory outside r and
check if it is at most g. Therefore, we can decide if p is
the left end point of a stay point in O(n) time. If it is not
a stay point, there is at least one time interval, in which
the entity spends more than time g on the left or on the
right side of r. Without loss of generality, suppose it
does so on the left side. Then, no point on the right of
r can be a stay point and therefore the whole stay map
of T must appear on the left of p. This again can be
tested in O(n) time by processing trajectory edges. �

An event point of a trajectory T in R1 is a point on the
line in which one of the following occurs: i) a trajectory
vertex lies on that point, ii) the time gap between two
contiguous visits to that point is exactly g.

Lemma 5 The stay map M of a trajectory T starts and
ends at an event point or at distance s from one.

Proof. By Lemma 3, M is continuous. Let p be the
left end point of the stay map M . Let r = pq be a
segment such that q = p+s. Whenever the entity leaves
r through p, it returns by passing it again within the
time limit g. Similarly, if the entity leaves r through q,
it visits q again within time g. Suppose, for the sake of
contradiction, that p is not an event point. Then, we can
move r slightly to the left to obtain r′. r′ must also be
a stay point because every time the entity leaves it from
either of its end points, it returns within time g, because
neither p nor q is an event point (the time between the
contiguous visits of the entity is not exactly g and they
are not on a trajectory vertex). This contradicts the
choice of p. A similar argument shows that the right
endpoint ofM must also be an event point or at distance
s from one. �

Lemma 6 The set of event points of a trajectory with
n vertices can be computed in O(n log n) time.

Proof. We map the trajectory to a plane such that
a trajectory vertex at position p with timestamp t is
mapped to point (t, p) (see Figure 2). Obviously, the
polygonal path representing the trajectory in this plane
is y-monotone. We perform a plane sweep by sweeping
a line parallel to the x-axis in the positive direction of
the y-axis in this plane.
The edges in this plane chop the sweep line into sev-

eral segments. We maintain the length of every such seg-
ment during the sweep line algorithm. When the sweep
line intersects a trajectory vertex v, an event point is
recorded and, based on the other end point of the edges
that meet at that vertex, one of the following cases oc-
curs:

1. If v is the lowest end point of both edges, two new
segments are introduced. Based on the slope of the

edges bounding each segment, we record an event
at which the distance between the edges is exactly
g, if they are long enough.

2. If v is the highest end point of both edges that meet
at v, three segments on the sweep line are merged
(when the sweep line is before v, three segments
are created by the edges incident to v, at v, there
are two such segments, and after v, they merge into
one). We also record an event for the location at
which the length of the remaining segment becomes
g in the plane.

3. If v is the highest end point of one edge and the
lowest end point of another, the event scheduled
for the location at which the length of each of the
two incident segments on the sweep line are g may
need to be updated.

Note that since the sweep line stops at n vertices and at
each vertex only a constant number of event points are
added, the total number of event points is O(n). �

Theorem 7 The stay map M of a trajectory T with n
vertices in R1 can be computed in O(n logn) time.

Proof. Lemma 6 implies that the set of event points of
T can be computed with the time complexity O(n log n).
From this set, we can obtain an ordered sequence of
event points and points at distance exactly s from them
in O(n logn) time (note that the length of this sequence
is still O(n)). Based on Lemma 5, M starts and ends at
a point of this sequence. Also, Lemma 4 implies that we
can decide if any of the end points of M appears before
or after any point in O(n) time. Therefore, we can per-
form a binary search on the sequence obtained from the
event points of T to find the left and the right end points
of M . Since the length of the sequence is O(n), the time
complexity of the binary search is O(n logn). �

Unfortunately, this algorithm cannot be adapted for
two-dimensional trajectories, because their stay maps
may no longer be continuous.

4 Stay Maps of Two-Dimensional Trajectories

We use the notation P (a, b) to denote the region that
contains the lower left corners of all squares of side
length s that contain at least one point of the sub-
trajectory T (a, b). We also use M(a, b) to indicate the
stay map of the sub-trajectory T (a, b). We assume that
trajectory T starts at time 0 and has total duration D.
It is clear that every point in the stay map of T must ap-
pear in P (t, t+g) for any value of t, where 0 ≤ t ≤ D−g
(because the entity cannot be outside a stay point of T
for more than time g). Therefore, the stay map of T
is the intersection of P (t, t+ g) for every possible value

336

30th Canadian Conference on Computational Geometry, 2018

P(b − g, a)

V

a − g b − g a b

P(a − g, b − g) P(a, b)

Figure 3: The difference V in Algorithm 1, when P (a−
g, b− g) and P (a, b) do not overlap.

of t, 0 ≤ t ≤ D − g. This suggests the general scheme
demonstrated in Algorithm 1 for finding the stay map
of a two-dimensional trajectory, assuming D > g.

Algorithm 1 Let T be two-dimensional trajectory with
n edges and total duration D. Compute the stay map of
T (M(0, D)) as follows.

1. Compute P (0, g), as the union of polygons P (u, v),
for all edges uv in T (0, g).

2. Let M(0, g) be P (0, g). This is not strictly correct
as M(0, t) must include the complete plane when
t ≤ g and its value changes to a subset of T (0, g)
for any value of t > g. This simplifying assump-
tion, however, does not affect the correctness of the
algorithm, since D > g.

3. Incrementally compute M(0, D) as follows. Com-
pute M(0, b) from M(0, a), in which M(0, a) is the
last computed stay map and b is the smallest value
after a, such that b − g or b is the timestamp of a
trajectory vertex. Let V be the difference between
M(0, a) and M(0, b) (note again that M(0, b) is a
subset of M(0, a)). After computing V , we obtain
M(0, b) by excluding V from M(0, a).

The core of Algorithm 1 is the computation of the
difference V . By the choice of b, T (a − g, b − g) and
T (a, b) are both line segments. The value of V depends
on these segments and T (b− g, a).

Let r be a square, whose lower left corner is in V and
let a − g + δ be the time of entity’s departure from r
before time b − g. Since the lower left corner of r is in
V , r is not visited by the entity in the sub-trajectory
T (a − g + δ, a + δ). In other words, any point not in
P (a− g + δ, b− g), P (b− g, a), and P (a, a+ δ) for any
value of δ in 0 ≤ δ ≤ g cannot be a stay point.
To make the computation of V easier, we define V ′ as

follows (V ′ is very similar to V , except that it ignores
P (b− g, a)):

V
′
=

⋃

0≤δ≤g

P (a − g, a − g + δ) \ (P (a − g + δ, b − g) ∪ P (a, a + δ))

V ′ contains the lower left corners of all squares that
have been visited during the interval (a− g, a− g + δ),
but have not been visited in (a−g+δ, b−g) or (a, a+δ)
for some δ in 0 ≤ δ ≤ g. Then, V = V ′ \ P (b− g, a).

If no square intersects both T (a−g, b−g) and T (a, b),
V ′ is P (a − g, b − g). This case is shown in Figure 3,
in which V ′ is the rectangle on the left. Otherwise, V ′

depends on the relative speed of the entity in these sub-
trajectories. In both cases, V ′ is a polygon of constant
complexity and can be computed in constant time. We
do not discuss the details of the computation of V ′ in
this paper, however. Since T (b − g, a) consists of O(n)
edges, P (b− g, a) is the union of O(n) simple polygons.
Therefore, V ′ \ P (b − g, a) is also the union of a set
of polygons with the total complexity O(n). Let Vt be
the union of the differences V for all iterations of the
third step of Algorithm 1 (note that the complexity of
Vt is O(n2)). When the algorithm finishes, M(0, D) is
P (0, g)\Vt. Since the computation of Vt requires finding
the union of polygons with the total complexity O(n2),
an O(n2) implementation of this exact algorithm seems
unlikely.

4.1 Approximate Stay Maps of Two-Dimensional
Trajectories

In Algorithm 2, we consider P (t, t + g) for limited dis-
crete values of t to compute approximate stay maps of
a trajectory (Definitions 8 and 9), to improve the time
complexity of Algorithm 1.

Definition 8 A (1+ǫ)-approximate stay point of a tra-
jectory T in R2 is a square of fixed side length s, such
that the entity is never outside it for more than g + ǫg
time.

Definition 9 A (1+ ǫ)-approximate stay map of a tra-
jectory T in R2 is the region containing the lower left
corners of all exact stay points of T and possibly the
lower left corners of some of its (1 + ǫ)-approximate
stay points.

Algorithm 2 Let T be a trajectory in R2 with n edges
and total duration D and let ǫ be any real positive
constant no greater than D/g. Compute a (1 + ǫ)-
approximate stay map of T as follows.

1. Compute P (t, t+g) for t = iλ for integral values of
i from 0 to D/λ, where λ is ǫg. We call P (t, t+ g)
for any value of t a snapshot of T .

2. Compute the intersection of these snapshots. For
this, we can use the topological sweep of Chazelle
and Edelsbrunner [9] on the subdivision of the plane
induced by the edges of the snapshots and include
in the output the faces present in all snapshots.

337

CCCG 2018, Winnipeg, Canada, August 8–10, 2018

t1 tb te

t1 + εg t1 + εg + g

Time

Figure 4: The entity leaves a square at tb and returns
at te. If te − tb is larger than g+ gǫ, there is a snapshot
in which the entity is outside the square.

Theorem 10 For trajectory T in R2 with n edges and
total duration D and any real positive constant ǫ no
greater than D/g, Algorithm 2 computes a (1 + ǫ)-
approximate stay map of T .

Proof. Since the output of Algorithm 2 is the intersec-
tion of different snapshots of T , the lower left corner of
every stay point must be inside it. Therefore, it suffices
to show that every point in the output of the algorithm
is the lower left corner of a (1 + ǫ)-approximate stay
point.
Let r be a square whose lower left corner is in the

region reported by this algorithm. Suppose that the
entity leaves r at tb and reenters r at te. We can set
tb = 0 for handling the initial part of the trajectory,
and, if the entity never returns to r, we can set te = D.
To prove the approximation factor, we show that te ≤
tb + g + ǫg. Let i be the largest index such that λi ≤ tb
and let t1 = λi. We show that the entity must return
before time t1+λ+λ/ǫ. Otherwise, P (t1+λ, t1+λ+λ/ǫ),
which is a snapshot since λ/ǫ is equal to g, does not
contain the lower left corner of r (this is demonstrated
in Figure 4) and this contradicts the assumption that
it is included in the region returned by the algorithm.
Therefore, the entity cannot be outside r for longer than
λ/ǫ+ λ, and te ≤ tb + g + ǫg. �

Theorem 11 The time complexity of Algorithm 2 is
O(n2/ǫ2 + σ2/ǫ2), in which σ is D/g.

Proof. A subdivision of the plane by m line segments
has O(m2) faces and can be swept with the same time
complexity [9]. Moreover, the number of the segments of
each snapshot depends on the number of vertices of the
sub-trajectory inside that snapshot (the region contain-
ing the lower left corners of the squares that intersect an
edge of the sub-trajectory is a polygon with a constant
number of sides). We, therefore, count the total num-
ber of vertices of the sub-trajectories in all snapshots.
There are two types of trajectory vertices in each snap-
shot: those present in the original trajectory T and the
end points of the snapshot, which may not coincide with
a trajectory vertex. Since the duration of each snapshot
is g and the difference between the start time of contigu-
ous snapshots is ǫg, each trajectory vertex appears in at
most 1/ǫ snapshots. Therefore, the total number of ver-
tices is at most n/ǫ+ 2D/(ǫg) and the time complexity
of Algorithm 2 is O(n2/ǫ2 + σ2/ǫ2). �

It is not difficult to see that the stay map of a two-
dimensional trajectory may contain Θ(n2) faces and
therefore we cannot expect an algorithm with the worst-
case time complexity o(n2). In what follows, we demon-
strate a trajectory with O(n) edges and a stay map of
Θ(n2) faces. Trajectory edges are added incrementally,
as demonstrated in Figure 5, in which filled regions rep-
resent the stay map (except for t ≤ g, in which they
represent P (0, t)) and arrows show trajectory edges. We
assume that the entity starts at time 0 and position
(0, 0).

Generate m vertical strips as follows. Add the second
vertex at (2s, 0) with timestamp g/2 (Figure 5.a). Move
the entity to its initial position using three vertices as
shown in Figure 5.b; the position of the last vertex is
(0, 0) and its timestamp is g−g/2n. Create the vertical
strips as follows: after every g/n time, quickly move
the entity by s/n to the right (Figures 5.c–5.e). After
n such steps and waiting for at least g, the current stay
map consists of n vertical strips (Figure 5.f).

The same trajectory we used for creating vertical strip
can be used for creating horizontal strips after rotating
the trajectory 90 degrees. If this is performed after the
previous step, however, this would result in a stay map
(Figure 5.g), which consists of Θ(n2) small squares.

5 Concluding Remarks

The definition of stay points with bounded gaps can
be easily extended to multiple trajectories. A multi-
trajectory stay point is a square that is visited by at
least one of the entities in any interval of duration g. It
seems possible to compute such stay maps, by modify-
ing Algorithm 2 to compute the intersection of the union
of the snapshots of different entities. However, the time
complexity of this algorithm may no longer be O(n2),
where n is the total number of trajectory vertices. Find-
ing an efficient exact algorithm for the multi-trajectory
version of the problem seems interesting.

As shown in Section 4, the complexity of a stay map
can be Θ(n2), rendering an algorithm with the time
complexity o(n2) impossible. This bound however is not
tight and a natural question is whether it is possible to
find the exact stay map of two-dimensional trajectories
in O(n2) time. Also, by limiting the size of the output,
for instance by finding only one of the stay points, a
more efficient algorithm is not unlikely. Furthermore,
it seems interesting to study the problem in higher di-
mensions.

Acknowledgement

We thank Neda Ahmadzadeh Tori for the inspiring dis-
cussions that led to the study of this problem.

338

30th Canadian Conference on Computational Geometry, 2018

a b c

d e f g

Figure 5: A trajectory with a stay map of O(n2) faces. The arrows indicate trajectory edges and filled regions
indicate the stay map at each step.

References

[1] Y. Zheng. Trajectory data mining - an overview. ACM
Transactions on Intelligent Systems and Technology,
6(3):29:1–29:41, 2015.

[2] M. Benkert, B. Djordjevic, J. Gudmundsson, and
T. Wolle. Finding popular places. International
Journal of Computational Geometry and Applications,
20(1):19–42, 2010.

[3] J. Gudmundsson, M. J. van Kreveld, and F. Staals.
Algorithms for hotspot computation on trajectory data.
In SIGSPATIAL/GIS, pages 134–143, 2013.

[4] M. Fort, J. A. Sellarès, and N. Valladares. Computing
and visualizing popular places. Knowledge and Infor-
mation Systems, 40(2):411–437, 2014.

[5] R. Prez-Torres, C. Torres-Huitzil, and H. Galeana-
Zapin. Full on-device stay points detection in smart-
phones for location-based mobile applications. Sensors,
16(10):1693, 2016.

[6] F. J. M. Arboleda, V. Bogorny, and H. Patio. Smot+ncs
- algorithm for detecting non-continuous stops. Com-
puting and Informatics, 3(2):283–306, 2017.

[7] M. L. Damiani, H. Issa, and F. Cagnacci. Extracting
stay regions with uncertain boundaries from gps tra-
jectories - a case study in animal ecology. In SIGSPA-
TIAL/GIS, pages 253–262, 2014.

[8] B. Djordjevic, J. Gudmundsson, A. Pham, and
T. Wolle. Detecting regular visit patterns. Algorith-
mica, 60(4):829–852, 2011.

[9] B. Chazelle and H. Edelsbrunner. An optimal algorithm
for intersecting line segments in the plane. Journal of
the ACM, 39(1):1–54, 1992.

339

CCCG 2018, Winnipeg, Canada, August 8–10, 2018

When Can We Treat Trajectories as Points?

Parasara Sridhar Duggirala∗ & Donald R. Sheehy†

Abstract

In the formal verification of dynamical systems, one of-
ten looks at a trajectory through a state space as a
sample behavior of the system. Thus, metrics on tra-
jectories give important information about the different
behavior of the system given different starting states.
In the important special case of linear dynamical sys-
tems, the set of trajectories forms a finite-dimensional
vector space. In this paper, we exploit this vector space
structure to define (semi)norms on the trajectories, give
an isometric embedding from the trajectory metric into
low-dimensional Euclidean space, and bound the Lips-
chitz constant on the map from start states to trajec-
tories as measured in one of several different metrics.
These results show that for an interesting class of tra-
jectories, one can treat the trajectories as points while
losing little or no information.

1 Introduction

The starting point for many problems in computational
geometry is a discrete set of points in a Euclidean space.
Alternatively, many interesting questions arise from sets
of paths or trajectories, and usually, such problems re-
quire very different ideas and methods. In this paper,
we consider a class of trajectories that arise naturally
in the field of formal verification of cyber-physical sys-
tems (CPSs)1 in which one can transform a collection
of trajectories into a set of points while losing little or
no information.

Motivated partly by recent work on using algorithms
from computational geometry to analyze trajectories
through the state space of a CPS [12], we highlight an in-
teresting class of systems studied in that field, for which
natural metrics on trajectories can be nicely embed-
ded into low-dimensional Euclidean space. Generally,
it would be inefficient to treat trajectories as points.
Even though a discrete trajectory in the plane broken
into k pieces can be thought of as a single point in R2k,
the blowup in dimension can be prohibitive for most

∗Computer Science Department, University of Connecticut,
psd@uconn.edu
†Computer Science Department, University of Connecticut,

don.r.sheehy@uconn.edu
1For this paper, we can identify the buzzword “cyberphysical

systems” used in the verification literature with the more general
notion of a dynamical system.

geometric algorithms, especially those where the low-
dimensional (i.e. d = 2 or 3) structure can be exploited.

Control software in safety critical CPSs such as au-
tonomous vehicles and power plants should always sat-
isfy the prescribed safety specification. One of the main
challenges in verifying CPS safety properties is that
they involve a mix of continuous and discrete behaviors.
Even if we ignore the discrete switching, the continuous
dynamics in most real world CPSs are highly nonlinear
and difficult to analyze. For example, when we “sim-
plify” the nonlinear dynamics to a linear approxima-
tion, verifying such linear systems of high dimensions is
still challenging due to the curse of dimensionality. In
dynamic analysis techniques, a few sample executions,
also called trajectories of the systems are computed.
Whether the system satisfies the desired property or
not is inferred after carefully analyzing the generated
executions. As these techniques purely depend on sam-
ple executions, they can be easily integrated into the
testing and debugging phase of CPS design.

In many CPSs, the state space is modeled as a Eu-
clidean space. As in other dynamical systems, the next
state is a function of the current state and often some
inputs or controls. The executions that form the pri-
mary data are trajectories in a Euclidean space. For this
work, we consider the simplest case where the system
is governed by a linear dynamical system. That is, the
derivative of the state is a linear function of the current
state. We will show how one can model the geometry
of the space of trajectories as a set of points. Naturally,
this will depend on a choice of a metric on the space of
trajectories. We will consider several different metrics
on trajectories including Lp-type metrics as well as the
Fréchet distance and the Skorokhod distance.

The main goal is to show when and to what extent one
can study the class of trajectories arising from a CPS us-
ing algorithms and data structures designed for points.
The hope is that this will open the door to more appli-
cations of classical computational geometry of points in
Euclidean space to problems in formal verification.

2 Metrics, Norms, and Samples

In this section, we review several notions that will be
very familiar to most readers. We include the for-
mal definitions for completeness, because our results are
given in considerable generality and the fine distinctions

340

30th Canadian Conference on Computational Geometry, 2018

in the definitions (e.g. pseudometrics and seminorms)
will be important.

A metric space X is a pair (X,d) where X is a set
and d : X×X → R is a function satisfying the following
conditions.

1. Nonnegative: d(x, y) ≥ 0

2. Symmetric: d(x, y) = d(y, x)

3. Triangle Inequality: d(x, z) ≤ d(x, y) + d(y, z)

4. Identity of Indiscernables: d(x, y) = 0 if and only
if x = y.

A function d satisfying the first three properties is called
a pseudometric.

Let V be a vector space over some subfield of the
complex numbers C. A norm V is a function ‖ ·‖ : V →
R satisfying the following conditions.

1. Nonnegative: ‖v‖ ≥ 0

2. Absolutely scalable: ‖cv‖ = |c|‖v‖

3. Triangle Inequality: ‖u+ v‖ ≤ ‖u‖+ ‖v‖

4. Definite: If ‖v‖ = 0, then v = 0.

A function satisfying the first three conditions of a norm
is called a seminorm. Every norm on V induces a metric
on V defined as d(u, v) = ‖u−v‖. Similarly, a seminorm
induces a pseudometric.

A function between (pseudo)metric spaces, f :
(X,dX) → (Y,dY) is λ-Lipschitz if for all x, x′ ∈ X,
we have

dY (f(x), f(x′)) ≤ λdX(x, x′).

This is a basic stability condition on mappings between
metric spaces. It is most often used to describe real-
valued functions using the standard metric on R.

An ε-sample of a subset U of a metric space is a sub-
set S ⊆ U such that for all u ∈ U , there exists s ∈ S
such that d(u, s) ≤ ε. This notion is closely related to
the Hausdorff distance, a (pseudo)metric on compact
subsets of a (pseudo)metric space.2 It is defined as fol-
lows.

dH(S, T) = max{max
s∈S

min
t∈T

d(s, t),max
t∈T

min
s∈S

d(s, t)}

Using this definition, an ε-sample of U is a subset S ⊆ U
such that dH(S,U) ≤ ε.

2Compactness here is primarily required for distance minimiz-
ers to exist.

3 States and Trajectories

Let X = (X,d) denote a metric space. For this paper,
X will represent the space of states of some system.
Usually, we will only consider states in Rd, but it is
useful to give the following definitions in full generality.

A trajectory in X is a continuous function f : [0, 1]→
X . We are only considering maps from the unit inter-
val, though many of the results in this paper generalize
naturally to other finite length intervals. We use Tr(X)
to denote the set of all trajectories in X .

3.1 Sampling trajectories

A dynamical system may be viewed as a function from
states to trajectories. If we endow both the state space
and the trajectory space with metrics, we can ask when
such a function (the dynamical system) is Lipschitz.
Having a bound on the Lipschitz constant associated
to such a system justifies sampling trajectories by sam-
pling start states. For indeed, the Lipschitz condition
implies that a good sample of the valid start states will
give a correspondingly good sample of the trajectories
in the following precise sense.

Proposition 1 Let X be a set of states and let Θ ⊂ X
be a set of start states. Let Tr(X) be a metric space of
trajectories in X with metric T . If S ⊆ Θ is an ε-sample
of Θ and ξ : X → Tr(X) is λ-Lipschitz, then

ξ(S) := {ξ(s) | s ∈ S} is a λε-sample of ξ(Θ).

Proof. Fix any γ ∈ ξ(Θ). Then γ = ξ(x) for some
x ∈ Θ. So, there exists s ∈ S such that d(s, x) ≤ ε. If
γ′ = ξ(s), then,

T (γ, γ′) = T (ξ(x), ξ(s))

≤ λd(x, s)

≤ λε.

So, for all γ ∈ ξ(Θ), there exists γ′ ∈ ξ(S) such that
T (γ, γ′) ≤ λε. We conclude that ξ(S) is a λε-sample of
ξ(Θ) as desired. �

3.2 Vector Spaces of Trajectories

The set of all trajectories mapping the interval [0, 1]
to the state space Rd naturally forms a vector space.
Let c ∈ R be a scalar and let φ, ψ : [0, 1] → Rd be
trajectories. Scalar multiplication and vector addition
are defined as

(cφ)(t) := cφ(t), and

(φ+ ψ)(t) := φ(t) + ψ(t).

In general, the dimension of this vector space is in-
finite. However, the following important case yields a
finite-dimensional space of trajectories.

341

CCCG 2018, Winnipeg, Canada, August 8–10, 2018

Consider systems that evolve in Rd in continuous
time. At a given instant in time, the system state is
denoted as a vector x ∈ Rd and its evolution is given as
a linear differential equation, i.e.,

ẋ = Ax, (1)

where A ∈ Rd×d. By using an extra variable and allow-
ing A to be singular, this includes also the case of affine
systems

ẋ = Ax+B, (2)

where B ∈ Rd×1. The system of trajectories, denoted as
ξ : Rd×R≥0 → Rd are solutions of the initial value prob-
lem of the differential equation given in Equation (1).
Given an initial state x0, ξ(x0, t) denotes the state of the
system at time instance t. The closed form expression
for the trajectories is given in Equation (3) below.

ξ(x0, t) = eAtx0 +

∫ t

0

eA(t−τ)Bdτ, (3)

where eAt = I + At
1! + (At)2

2! + (At)3

3! + . . . represents the
matrix exponential operation. We denote the trajectory
starting from initial state x0 as ξx0

, i.e., ξx0
(t) = ξ(x0, t)

so that it fits with our previous definition of trajectory.

Definition 1 Trajectories of linear dynamical systems
(such as given in Equation (1)) satisfy the superpo-
sition principle. Given any state x0 ∈ Rd, vectors
v1, v2, . . . , vm ∈ Rd, and scalars α1, α2, . . . , αm ∈ R,
the following equality is satisfied.

ξ(x0+

m∑

i=1

αivi, t) = ξ(x0, t)+

m∑

i=1

αi(ξ(x0+vi, t)−ξ(x0, t))

The observation made in Definition 1 follows from the
closed form solution given in Equation (3). Using the
superposition principle, we can infer that for any pair
of states x0, x1 ∈ Rn and for any vector v ∈ Rd,

ξ(x0 + v, t)− ξ(x0, t) = ξ(x1 + v, t)− ξ(x1, t)
These equations reveal the low dimensional vector

space structure of the space of trajectories. Indeed,
given any basis (b1, . . . , bn) for the state space, a trajec-
tory starting from x =

∑n
i=1 xibi is the corresponding

linear combination of basis trajectories:

ξx =
n∑

i=1

xiξbi .

When the matrix A determining the system is non-
singular, then the closed form for the trajectory (Equa-
tion (3)) simplifies to

ξx(t) = eAtx.

For the rest of the paper, we will assume this case for
simplicity.

Figure 1: Two different trajectories with the same im-
age. Left: 3e10πit. Right: 3e2πit.

4 Metrics Spaces of Trajectories

In this section, we will define several classes of metrics
on trajectories. If one is content to view a trajectory
f : [0, 1] → Rd as merely a set of points in the state
space, i.e.

im f := {f(t) | t ∈ [0, 1]},
then the Hausdorff distance provides an easy to define
metric on trajectories. That is, one can define

TH(f, g) := dH(im f, im g).

The Hausdorff distance has a natural geometric inter-
pretation as the minimum radius r such that expanding
im f by r would cover im g and vice versa. Unfor-
tunately, the Hausdorff distance ignores the continuous
structure of the input trajectories. For example, it sees
no difference between the two trajectories of Figure 1,
the first of which makes five revolutions and the second
makes only one.

Indeed, the Hausdorff distance only give a pseudomet-
ric on trajectories as the distance between a trajectory
f and its reverse trajectory g(t) = f(1 − t) is precisely
0.

The Lp-type metrics on trajectories are defined for an
integer p ≥ 1 as follows:

Lp(f, g) :=

(∫ 1

0

‖f(t)− g(t)‖ppdt
) 1

p

.

This includes, in particular, the L∞ distance:

Ld,∞(f, g) := max
t∈[0,1]

d(f(t), g(t)),

where d(·, ·) can be any metric on the state space.
We abuse notation and write L∞ to denote Ld,∞ with
d(x, y) := ‖x − y‖2. We do this primarily because it is
such a popular metric and can also be used to define
other metrics as we will see.

A drawback of Lp-type metrics (usually L∞) is their
inability to recognize similarity of trajectories that dif-
fer only by some continuous reparameterization of time.

342

30th Canadian Conference on Computational Geometry, 2018

Figure 2: In this example the Fréchet distance between
the curves is less than the L∞ distance because repa-
rameterization allows the lower trajectory to slow down
in the neighborhood of the upper trajectory’s zigzag.

For this reason, the Fréchet distance is often considered.
It is defined as

dF (f, g) := min
h∈H

L∞(f, g ◦ h),

where H is the set of orientation-preserving homeomor-
phisms h : [0, 1] → [0, 1], i.e. the continuous reparame-
terizations of time.

The Fréchet distance is also called the “dog walking
distance” using the metaphor that a person walks along
one trajectory and the dog walks along another [1, 13].
The person may adjust their speed (reparameterize
time) so as to minimize the length of the leash (the L∞
distance). For example in Figure 2, the lower trajectory
can slow down to lessen the impact of the zigzag in the
upper trajectory. It is an interesting exercise to show
that using a different Lp-type metric instead of L∞ in
the definition, does not result in a metric.

Technically, the Fréchet distance gives a pseudomet-
ric on trajectories. The trajectories f and f ◦ h have
Fréchet distance zero despite being different functions.
The triangle inequality follows by composing homeo-
morphisms.

The minimization in the definition of the Fréchet dis-
tance allows a substantial amount of freedom to align
trajectories, sometimes too much freedom to be real-
istic. The Skorokhod distance addressed this issue by
penalizing excessive time reparameterization [11]. This
distance may be viewed as treating time as another
spatial parameter. One starts with a metric on the
space×time product Rn× [0, 1]. For example, one could
use the `p-product metric

`p((x, s), (y, t)) := (d(x, y)p + |s− t|p)1/p.

This includes the `∞ metric

`∞((x, s), (y, t)) := max{d(x, y), |s− t|}.

Note that the definition does not specify a particular
metric d on the state space. The graph of a trajectory
ξ is the trajectory

Gr(ξ)(t) = (ξ(t), t).

One defines a Skorokhod distance (assuming a product
metric is fixed) as

dS(f, g) := dF (Gr(f),Gr(g)).

5 Hilbert Spaces of Trajectories

Just as with finite-dimensional vector spaces, the L2-
norm on trajectories results in a Hilbert space. The
inner product is simply the integral of the standard Eu-
clidean inner product, i.e.

〈ξx, ξy〉 :=

∫ 1

0

ξx(t)>ξy(t)dt.

If we only consider the trajectories coming from a linear,
dynamical system ẋ = Ax, the resulting Hilbert space
only has the dimension of the state space as previously
observed, but moreover, the induced metric is Euclidean
and can be computed explicitly.

Theorem 2 Given a dynamical system in Rd governed
by ẋ = Ax, there exists a matrix L ∈ Rd×d such that
for any x, y ∈ Rd,

L2(ξx, ξy) = ‖Lx− Ly‖2.

Proof.

‖ξx‖2 =

∫ 1

0

ξx(t)>ξx(t)dt

=

∫ 1

0

(eAtx)>(eAtx)dt

= xT
(∫ 1

0

(eAt)>(eAt)dt

)
x

Let M be the matrix
∫ 1

0
(eAt)>(eAt)dt so that ‖ξx‖2 =

x>Mx. As the matrices are positive definite for all t,
it follows that M is also positive definite. Thus, the
Cholesky decomposition M = LL> exists and the ma-
trix L has the property that

‖ξx‖2 = (Lx)>(Lx).

This fact about the L2 norm immediately implies the
corresponding claim about the L2 metric. �

Computational Issues and Implications Following the
proof of Theorem 2, a natural approach to computing
L, at least approximately, is to discretize the integral∫ 1

0
(eAt)>(eAt)dt and compute the pieces using the lead-

ing terms of the expansion of the matrix exponential,

eAt = I + At
1! + (At)2

2! + · · · . The result is a positive
definite matrix M whose Cholesky decomposition gives
the desired linear operator L.

343

CCCG 2018, Winnipeg, Canada, August 8–10, 2018

One immediate use for Theorem 2 is in the analy-
sis of collections of trajectories. Any data analysis de-
pending on the distances between trajectories, such as
clustering or subsampling, would naturally require com-
puting many pairwise distances. If the trajectories are
discretized into k pieces, the straightforward computa-
tion of the L2 distance would require O(kd) time. If in-
stead, one first computes L, then the time to compute
these distances is reduced to O(d2). For high-fidelity
measurements with large k, this can be a substantial
speedup. This idea, though technically simple, has not
been exploited in the literature on formal verification of
these systems.

6 The Lipschitz Bound

It is only a small consolation if a car that always crashes,
spends most of its time in an “uncrashed” state. Un-
fortunately, it is the nature of L2 metrics to average
distances over time, so such bad behaviors of a system
could be missed. For this reason, a max-norm like L∞
is often preferable. However, an isometric embedding of
the trajectories into Euclidean space as in Theorem 2
is not possible (consider A = 0 for example). The al-
ternative we propose in this section is to at least bound
the Lipschitz constant of the system when viewed as a
mapping from a metric on states to a metric on trajec-
tories. We give such a bound in considerable generality;
it applies to any seminorm on trajectories and we show
its implications for other pseudometrics including the
Fréchet and Skorokhod distance.

Theorem 3 Let Rd be the states equipped with a norm
‖ · ‖. Let ẋ = Ax be a linear dynamical system and let
TrA(Rd) be the trajectories in Rd arising from A en-
dowed with some seminorm, ‖ · ‖Tr. Let (b1, . . . , bd) be
a basis for Rd and let (ξ1, . . . , ξd) be the corresponding
basis for TrA(Rd). Let t = ‖(‖ξ1‖Tr, . . . , ‖ξd‖Tr)‖ Then,
the mapping from Rd to TrA(Rd) is t-Lipschitz. That
is, for any pair of states x, y ∈ Rd,

‖ξx − ξy‖Tr ≤ t‖x− y‖.

Proof. Write the states x and y in terms of the basis
(b1, . . . , bd) as follows.

x =
d∑

i=1

xibi and y =
d∑

i=1

yibi.

Then, the trajectories ξx and ξy can be written in the
corresponding basis of trajectories as follows.

ξx =
d∑

i=1

xiξi and ξy =
d∑

i=1

yiξi.

We can now bound ‖ξx − ξy‖Tr as follows.

‖ξx − ξy‖Tr = ‖
d∑

i=1

(xi − yi)ξi‖Tr [by definition]

≤
d∑

i=1

‖(xi − yi)ξi‖Tr [triangle ineq.]

=
d∑

i=1

(xi − yi)‖ξi‖Tr [norms are linear]

≤ t‖x− y‖ [Cauchy-Schwarz]

�

The hypothesis about working with (semi)norms in
the theorem above are necessary to apply the Cauchy-
Schwarz inequality. Thus, it’s not clear how to duplicate
this proof while replacing the norms on trajectories with
a more elaborate distance on trajectories. However, the
theorem naturally extends to give a Lipschitz bound
when the distances on trajectories are measured using
either the Fréchet distance or the Skorokod distance by
using the relationship between these metrics and the
L∞ norm.

Theorem 4 Let Rd be the states equipped with a norm
‖ · ‖. Let A be a linear dynamical system and let
TrA(Rd) be the trajectories in Rd arising from A en-
dowed with either the Fréchet distance or the Skorokhod
distance. Let (b1, . . . , bd) be a basis for Rd and let
(ξ1, . . . , ξd) be the corresponding basis for TrA(Rd). Let
t = ‖(‖ξ1‖∞, . . . , ‖ξd‖∞)‖ Then, the mapping from Rd
to TrA(Rd) is t-Lipschitz.

Proof. It suffices to observe that for any pair of trajec-
tories f, g : [0, 1] → Rd and any `p-product metric on
Rd × [0, 1], the following inequalities hold.

dS(f, g) ≤ dF (f, g) ≤ L∞(f, g)

These inequalities hold by replacing the minimization
over homeomorphisms with the specific choice of the
identity homeomorphism. Thus, the theorem follows
from Theorem 3 using the L∞ metric on trajecto-
ries. �

7 Related Work, Conclusion, and Future Work

Proving properties of software systems while leverag-
ing the data generated from the sample executions has
been a well studied topic in the domain of formal ver-
ification [10, 14, 7, 15, 9]. However, these techniques
do not deal with the CPS where the dynamics of the
physical environment is of utmost importance. Recent
techniques to integrate the information generated from
sample trajectories for proving properties of CPS have

344

30th Canadian Conference on Computational Geometry, 2018

been investigated [4, 5]. In a recent work [6], the fact
that the trajectories form a vector space has been lever-
aged to improve the scalability of verification by two
orders of magnitude [2]. Techniques similar to [5] to pro-
vide probabilistic guarantees about trajectories of CPS
have been investigated in [8].

This work attempts to address the gap between the
data-driven verification technique and computational
geometry. The focus on linear dynamical systems is
because of two reasons. First, linear dynamical sys-
tems describe a large set of control systems that are in
deployment. Second, these systems enjoy a rich set of
properties (such as the superposition principle) that can
be readily exploited to represent trajectories as points.
Mapping from trajectories to points would also help us
in performing topological data analysis [3] over trajec-
tories.

While in this paper we considered a specific sub-class
of dynamical systems, in our future work, we intend
to apply similar techniques to nonlinear dynamics. Our
goal is to eventually perform data-driven analysis of tra-
jectories where partial or no model information is avail-
able.

References

[1] Helmut Alt and Michael Godau. Computing the
fréchet distance between two polygonal curves. Int.
J. Comput. Geometry Appl, 5(1 & 2):75–91, 1995.

[2] Stanley Bak and Parasara Sridhar Duggirala.
Simulation-equivalent reachability of large linear
systems with inputs. In International Conference
on Computer Aided Verification, pages 401–420.
Springer, 2017.

[3] Gunnar Carlsson. Topology and data. Bulletin
of the American Mathematical Society, 46(2):255–
308, 2009.

[4] Alexandre Donzé and Oded Maler. Systematic sim-
ulation using sensitivity analysis. In International
Workshop on Hybrid Systems: Computation and
Control, pages 174–189. Springer, 2007.

[5] Parasara Sridhar Duggirala, Sayan Mitra, and Ma-
hesh Viswanathan. Verification of annotated mod-
els from executions. In Proceedings of the Eleventh
ACM International Conference on Embedded Soft-
ware, page 26. IEEE Press, 2013.

[6] Parasara Sridhar Duggirala and Mahesh
Viswanathan. Parsimonious, simulation based
verification of linear systems. In International
Conference on Computer Aided Verification, pages
477–494. Springer, 2016.

[7] Michael D Ernst, Jeff H Perkins, Philip J Guo,
Stephen McCamant, Carlos Pacheco, Matthew S
Tschantz, and Chen Xiao. The daikon system for
dynamic detection of likely invariants. Science of
Computer Programming, 69(1-3):35–45, 2007.

[8] Chuchu Fan, Bolun Qi, Sayan Mitra, and Mahesh
Viswanathan. Dryvr: Data-driven verification and
compositional reasoning for automotive systems. In
International Conference on Computer Aided Ver-
ification, pages 441–461. Springer, 2017.

[9] Pranav Garg, Christof Löding, P Madhusudan,
and Daniel Neider. Ice: A robust framework
for learning invariants. In International Confer-
ence on Computer Aided Verification, pages 69–87.
Springer, 2014.

[10] Patrice Godefroid, Nils Klarlund, and Koushik Sen.
Dart: directed automated random testing. In ACM
Sigplan Notices, volume 40, pages 213–223. ACM,
2005.

[11] Rupak Majumdar and Vinayak S. Prabhu. Com-
puting the skorokhod distance between polygonal
traces. In Proceedings of the 18th International
Conference on Hybrid Systems: Computation and
Control, pages 199–208, 2015.

[12] Rupak Majumdar and Vinayak S Prabhu. Com-
puting distances between reach flowpipes. In Pro-
ceedings of the 19th International Conference on
Hybrid Systems: Computation and Control, pages
267–276. ACM, 2016.

[13] Günter Rote. Computing the fréchet distance be-
tween piecewise smooth curves. Computational Ge-
ometry: Theory and Applications, 37(3):162–174,
2007.

[14] Koushik Sen, Darko Marinov, and Gul Agha. Cute:
a concolic unit testing engine for c. In ACM
SIGSOFT Software Engineering Notes, volume 30,
pages 263–272. ACM, 2005.

[15] Rahul Sharma. Data-driven Verification. PhD the-
sis, Stanford University, 2016.

345

CCCG 2018, Winnipeg, Canada, August 8–10, 2018

Compatible 4-Holes in Point Sets

Ahmad Biniaz∗ Anil Maheshwari† Michiel Smid†

Abstract

Counting interior-disjoint empty convex polygons in a
point set is a typical Erdős-Szekeres-type problem. We
study this problem for convex 4-gons. Let P be a set of
n points in the plane and in general position. A subset
Q of P , with four points, is called a 4-hole in P if Q is
in convex position and its convex hull does not contain
any point of P in its interior. Two 4-holes in P are
compatible if their interiors are disjoint. We show that
P contains at least b5n/11c−1 pairwise compatible 4-
holes. This improves the lower bound of 2b(n − 2)/5c
which is implied by a result of Sakai and Urrutia (2007).

1 Introduction

Throughout this paper, an n-set is a set of n points in
the plane and in general position, i.e., no three points
are collinear. Let P be an n-set. A hole in P is a subset
Q of P , with at least three elements, such that Q is in
convex position and no element of P lies in the interior
of the convex hull of Q. A k-hole in P is a hole with k
elements. By this definition, a 3-hole in P is an empty
triangle with vertices in P , and a 4-hole in P is an empty
convex quadrilateral with vertices in P .

The problem of finding and counting holes in point
sets has a long history in discrete combinatorial geome-
try, and has been an active research area since Erdős and
Szekeres [14, 15] asked about the existence of k-holes in
a point set. In 1931, Esther Klein showed that any 5-
set contains a convex quadrilateral [15]; it is easy to see
that it also contains a 4-hole. In 1978, Harborth [17]
proved that any 10-set contains a 5-hole. In 1983, Hor-
ton [18] exhibited arbitrarily large point sets with no 7-
hole. The existence of a 6-hole in sufficiently large point
sets has been proved by Nicolás [22] and Gerken [16]; a
shorter proof of this result is given by Valtr [26].

Two holes Q1 and Q2 are disjoint if their convex hulls
are disjoint, i.e., they do not share any vertex and do
not overlap. We say sat Q1 and Q2 are compatible if the
interiors of their convex hulls are disjoint, that is, they
can share vertices but do not overlap. A set of holes
is called disjoint (resp. compatible) if its elements are
pairwise disjoint (resp. compatible). See Figure 1.

∗University of Waterloo, Canada. Supported by NSERC Post-
doctoral Fellowship. ahmad.biniaz@gmail.com
†Carleton University, Canada. Supported by NSERC. {anil,

michiel}@scs.carleton.ca

Figure 1: Two disjoint 4-holes (left), and five compatible
4-holes (right).

Since every three points form the vertices of a trian-
gle, by repeatedly creating a triangle with the three left-
most points of an n-set we obtain exactly bn/3c disjoint
3-holes. However, this does not generalize to 4-holes,
because the four leftmost points may not be in con-
vex position. Obviously, the number of disjoint 4-holes
in an n-set is at most bn/4c. Hosono and Urabe [19]
proved that the number of disjoint 4-holes is at least
b5n/22c; they improved this bound to (3n−1)/13 when
n = 13 ·2k−4 for some k > 0. A variant of this problem
where the 4-holes are vertex-disjoint, but can overlap,
is considered in [29]. As for compatible holes, it is easy
to verify that the number of compatible 3-holes in any
n-set is at least n−2 and at most 2n−5; these bounds
are obtained by triangulating the point set: we get n−2
triangles, when the point set is in convex position, and
2n−5 triangles, when the convex hull of the point set is
a triangle. Sakai and Urrutia [24] proved among other
results that any 7-set contains at least two compatible
4-holes. In this paper we study the problem of finding
the maximum number of compatible 4-holes in an n-set.

Devillers et al. [13] considered some colored variants
of this problem. They proved among other results that
any bichromatic n-set has at least dn/4e−2 compatible
monochromatic 3-holes; they also provided a matching
upper bound. As for 4-holes, they conjectured that a
sufficiently large bichromatic point set has a monochro-
matic 4-hole. Observe that any point set that disproves
this conjecture does not have a 7-hole (regardless of col-
ors). For a bichromatic point set R ∪ B in the plane,
Sakai and Urrutia [24] proved that if |R| > 2|B|+5, then
there exists a monochromatic 4-hole. They also studied
the problem of blocking 4-holes in a given point set R;
the goal in this problem is to find a smallest point set
B such that any 4-hole in R has a point of B in its inte-
rior. The problem of blocking 5-holes has been studied
by Cano et al. [12].

346

30th Canadian Conference on Computational Geometry, 2018

a

b

c

C(a:b,c)

h(a:b→c)

p

p0

p1

p2

p3
p4

p5 p6

p7

p8

− +
+

−
−−

p9
p10

p11

p12

+

+

+
−

C(p0:p1,p4)

C(p0:p7,p10)

Figure 2: The point p is the attack point of h(a:b→c) (left). The radial ordering of points around p0 (middle). A
10-set with at most three compatible 4-holes (right).

Aichholzer et al. [3] proved that every 11-set contains
either a 6-hole, or a 5-hole and a disjoint 4-hole. Bhat-
tacharya and Das [6] proved that every 12-set contains
a 5-hole and a disjoint 4-hole. They also proved the
existence of two disjoint 5-holes in every 19-set [7]. For
more results on the number of k-holes in small point sets
and other variations, see the paper by Aichholzer and
Krasser [4], a summary of recent results by Aichholzer et
al. [5], and B. Vogtenhuber’s doctoral thesis [27]. Re-
searchers also have studied the problem of counting the
number of (not necessarily empty nor compatible) con-
vex quadrilaterals in a point set; see, e.g., [2, 11, 21, 28].

A quadrangulation of a point set P in the plane is
a planar subdivision whose vertices are the points of
P , whose outer face is the convex hull of P , and ev-
ery internal face is a quadrilateral; in fact the quadri-
laterals are empty and pairwise compatible. Similar
to triangulations, quadrangulations have applications
in finite element mesh generation, Geographic Informa-
tion Systems (GIS), scattered data interpolation, etc.;
see [9, 10, 23, 25]. Most of these applications look for
a quadrangulation that has the maximum number of
convex quadrilaterals. To maximize the number of con-
vex quadrilaterals, various heuristics and experimental
results are presented in [9, 10]. This raises another moti-
vation to study theoretical aspects of compatible empty
convex quadrilaterals in a planar point set.

In this paper we study lower and upper bounds for
the number of compatible 4-holes in point sets in the
plane. A trivial upper bound is bn/2c − 1 which comes
from n points in convex position. The b5n/22c lower
bound on the number of disjoint 4-holes that is proved
by Hosono and Urabe [19], simply carries over to the
number of compatible 4-holes. Also, as we will see in
Section 2, the lower bound of 2b(n− 2)/5c on the num-
ber of compatible 4-holes is implied by a result of Sakai
and Urrutia [24]. After some new results for small point
sets, we prove non-trivial lower bounds on the number of
compatible 4-holes in an n-set. We prove that every 9-
set (resp. 11-set) contains three (resp. four) compatible
4-holes. Using these results, we prove that every n-set
contains at least b5n/11c−1 compatible 4-holes. Our

proof of this lower bound is constructive, and imme-
diately yields an O(n log2 n)-time algorithm for finding
this many compatible 4-holes.

Since the initial presentation of this work [8], the
problem has attracted further attention. Most promi-
nently, the lower bound on the number of compatible
4-holes has been improved to dn−32 e by Cravioto-Lagos,
González-Mart́ınez, Sakai, and Urrutia [1]. The same
bound is claimed in an abstract by Lomeli-Haro, Sakai,
and Urrutia in Kyoto International Conference on Com-
putational Geometry and Graph Theory (CGGT2007)
[20]. However, this result has not been published yet.

2 Preliminaries

First we introduce some notation from [19]. We define
the convex cone C(a:b, c) to be the region of the angular
domain in the plane that is determined by three non-
collinear points a, b, and c, where a is the apex, b and c
are on the boundary of the domain, and ∠bac is acute
(less than π/2). We denote by h(a:b→c) the rotated
half-line that is anchored at a and rotates, in C(a:b, c),
from the half-line ab to the half-line ac. If the interior of
C(a:b, c) contains some points of a given point set, then
we call the first point that h(a:b→c) meets the attack
point of h(a:b→c); see Figure 2-left.

Let P be an n-set. We denote by CH(P) the convex
hull of P . Let p0 be the bottommost vertex on CH(P).
Without loss of generality assume that p0 is the origin.
Label the other points of P by p1, . . . , pn−1 in clockwise
order around p0, starting from the negative x-axis; see
Figure 2-middle. We refer to the sequence p1, . . . , pn−1
as the radial ordering of the points of P \{p0} around p0.
We denote by li,j the straight line through two points
with indexed labels pi and pj .

It is easy to verify that the number of 4-holes in an
n-set in convex position is exactly bn/2c−1. Figure 2-
right, that is borrowed from [19], shows an example of
a 10-set that contains at most three compatible 4-holes;
by removing a vertex from the convex hull, we obtain
a 9-set with the same number of 4-holes. This example
can be extended to larger point sets, and thus, to the
following proposition.

347

CCCG 2018, Winnipeg, Canada, August 8–10, 2018

Proposition 1 For every n > 3, there exists an n-set
that has at most dn/2e−2 compatible 4-holes.

Proposition 2 The number of compatible 4-holes in an
n-set is at most n− 3.

Proof. Let P be an n-set. Consider the maximum
number of compatible 4-holes in P . The point set P to-
gether with an edge set, that is the union of the bound-
ary edges of these 4-holes, introduces a planar graph G.
Every 4-hole in P corresponds to a 4-face (a face with
four edges) in G, and vice versa. Using Euler formula
for planar graphs one can verify that the number of in-
ternal 4-faces of G is at most n − 3. This implies that
the number of 4-holes in P is also at most n− 3. �

Theorem 1 (Klein [15]) Every 5-set has a 4-hole.

Theorem 2 (Sakai and Urrutia [24]) Every 7-set
has at least two compatible 4-holes.

As a warm-up, we show that the number of 4-holes in
an n-set P is at least b(n−2)/3c. Let p0 be the bottom-
most point of P and let p1, . . . , pn−1 be the radial order-
ing of the other points of P around p0. Consider b(n−
2)/3c cones C(p0:p1, p4), C(p0:p4, p7), C(p0:p7, p10), . . .
where each cone has three points of P (including p0)
on its boundary and two other points in its interior.
See Figure 2-middle. Each cone contains five points
(including the three points on its boundary), and by
Theorem 1 these five points introduce a 4-hole. Since
the interiors of these cones are pairwise disjoint, we
get b(n − 2)/3c compatible 4-holes in P . We can im-
prove this bound as follows. By defining the cones
as C(p0:p1, p6), C(p0:p6, p11), C(p0:p11, p16), . . . , we get
b(n− 2)/5c cones, each of which contains seven points.
By Theorem 2, the seven points in each cone introduce
two compatible 4-holes, and thus, we get 2 · b(n− 2)/5c
compatible 4-holes in total. Intuitively, any improve-
ment on the lower bound for small point sets carries
over to large point sets.

3 Compatible 4-holes in small point sets

In this section we provide lower bounds on the number
of compatible 4-holes in 9-sets and 11-sets. In Subsec-
tion 3.2 we prove that every 9-set contains at least three
compatible 4-holes and every 11-set contains at least
four compatible 4-holes. Both of these lower bounds
match the upper bounds given in Proposition 1. Due to
the nature of this type of problems, our proofs involve
case analysis. The case analysis gets more complicated
as the number of points increases. To simplify the case
analysis, we use two observations and a lemma that are
given in Subsection 3.1. To simplify the case analysis
further, we prove our claim for 9-sets first, then we use

this result to obtain the proof for 11-sets. In this section
we may use the term “quadrilateral” instead of 4-hole.

Let P be an n-set. Let p0 be the bottommost
point of P and let p1, . . . , pn−1 be the radial order-
ing of the other points of P around p0. For each
point pi, with i ∈ {2, . . . , n − 2}, we define the sig-
nature s(pi) of pi to be “+” if, in the quadrilateral
p0pi−1pipi+1, the inner angle at pi is greater than π,
and “−” otherwise; see Figure 2-middle. We refer to
s(p2)s(p3) . . . s(pn−2) as the signature sequence of P
with respect to p0. We refer to s(pn−2) . . . s(p3)s(p2)
as the reverse of s(p2)s(p3) . . . s(pn−2). A minus sub-
sequence is a subsequence of − signs in a signature se-
quence. A plus subsequence is defined analogously. For
a given signature sequence δ, we denote by m(δ), the
number of minus signs in δ.

3.1 Two observations and a lemma

In this section we introduce two observations and a
lemma to simplify some case analysis in our proofs,
which come later. Notice that if s(pi) . . . s(pj) is a
plus subsequence, then the points pi−1, pi, . . . , pj , pj+1

are in convex position and the interior of their con-
vex hull does not contain any point of P . Also, if
s(pi) . . . s(pj) is a minus subsequence, then the points
p0, pi−1, pi, . . . , pj , pj+1 are in convex position and the
interior of their convex hull does not contain any point of
P . Therefore, the following two observations are valid.

Observation 1 Let s(pi) . . . s(pj) be a plus subse-
quence of length 2k, with k > 1. Then, the convex hull
of pi−1, . . . , pj+1 can be partitioned into k compatible
4-holes. See Figure 3(a).

Observation 2 Let s(pi) . . . s(pj) be a minus subse-
quence of length 2k + 1, with k > 0. Then, the convex
hull of p0, pi−1, . . . , pj+1 can be partitioned into k + 1
compatible 4-holes. See Figure 3(b).

Lemma 3 Let s(pi+1)s(pi+2) . . . s(pi+2k) be a minus
subsequence of length 2k, with k > 1, and let pi and
pi+2k+1 have + signatures. Then, one can find k + 1
compatible 4-holes in the convex hull of p0, pi−1, . . . ,
pi+2k+2.

Proof. Refer to Figures 3(c) and 3(d). For every
j ∈ {0, . . . , k} let li+j be the line through pi+j and
pi+2k+1−j . These lines might intersect each other, but,
for a better understanding of this proof, we visualized
them as parallel lines in Figures 3(c) and 3(d).

Notice that the points p0, pi, . . . , pi+2k+1 are in con-
vex position. If pi−1 is below li, then we get a 4-hole
p0pi−1pipi+2k+1 and k other compatible 4-holes in the
convex hull of the points pi, . . . , pi+2k+1; see Figure 3(c).
Assume pi−1 is above li. If pi−1 is below some lines in
the sequence li+1, . . . , li+k, then let li+j be the first one

348

30th Canadian Conference on Computational Geometry, 2018

p0

+
+ + +

p1

p2

p3

p4
p5 p6

p7

p8

p9

p0

p1

p2
p3 p4

p5

p6
p7

p8−
− −

−
−

−
p9

p10 p11

p0

pi

pi+1

pi+k pi+k+1

pi+2k

pi+2k+1

pi+2k+2
pi−1

li

li+1

li+k

−

−

− −

−

−

+ +

p0

pi

pi+j−1

pi+k pi+k+1

pi+2k+1

pi−1

−

−

− −

−

−

pi+j pi+2k+1−j

pi+2k+2

li

li+1

li+k

(a) (b) (c) (d)

Figure 3: (a) Plus subsequence s(p4)s(p5)s(p6)s(p7) of length four. (b) Minus subsequences s(p2) and s(p5) . . . s(p9)
of lengths one and five. The point pi−1 is (c) below li, and (d) below li+j and above all lines li, . . . , li+j−1.

in this sequence, that is, pi−1 is below li+j but above
all lines li, . . . , li+j−1. Notice that in this case pi−1
is also above the line through pi+j−1 and pi+2k+1−j .
In this case we get a 4-hole pi−1pi+jpi+2k+1−jpi+j−1,
and k − j compatible 4-holes in the convex hull of
pi+j . . . , pi+2k+1−j , and j compatible 4-holes in the con-
vex hull of p0, pi, . . . , pi+j−1, pi+2k+1−j , . . . , pi+2k+1; see
Figure 3(d). Thus, we get k + 1 compatible 4-holes in
total. Similarly, if pi+2k+2 is below one of the lines
li+j for j ∈ {0, . . . , k} we get k + 1 compatible 4-
holes. Thus, assume that both pi−1 and pi+2k+2 are
above all lines li, . . . , li+k. In this case we get a 4-hole
pi−1pi+2k+2pi+k+1pi+k and k other compatible 4-holes
in the convex hull of pi, . . . , pi+2k+1. Thus, we get k+ 1
compatible 4-holes in total. �

Quadrilaterals obtained by Observations 1 and 2 do
not overlap because quadrilaterals obtained by Observa-
tion 1 lie above the chain p1, . . . , pn−1 while quadrilat-
erals obtained by Observation 2 lie below this chain.
However, the quadrilaterals obtained in the proof of
Lemma 3 might lie above and/or below this chain. The
quadrilaterals obtained by this lemma can overlap the
quadrilaterals obtained by Observations 1 or 2 in the
following two cases:

• Consider the first case in the proof of Lemma 3 when
pi−1 lies below li and we create the quadrilateral
p0pi−1pipi+2k+1. If s(pi−1) belongs to a minus sub-
sequence, and we apply Observation 2 on it, then
the quadrilateral p0pi−2pi−1pi obtained by this ob-
servation overlaps the quadrilateral p0pi−1pipi+2k+1.
Similar issue may arise when s(pi+2k+2) belongs to a
minus subsequence.

• Consider the last two cases in the proof of Lemma 3
when pi−1 lies above li. If s(pi−1) belongs
to a plus subsequence, and we apply Observa-
tion 1 on it, then the quadrilaterals obtained by
this observation might overlap either the quadri-
lateral pi−1pi+jpi+2k+1−jpi+j−1 or the quadrilateral
pi−1pi+2k+2pi+k+1pi+k that is obtained by Lemma 3.
Similar issue may arise when s(pi+2k+2) belongs to a
plus subsequence.

As such, in our proofs, we keep track of the follow-
ing two assertions when applying Lemma 3 on a subse-
quence s(pi+1)s(pi+2) . . . s(pi+2k):

Assertion 1. Do not apply Observation 1 on a plus
subsequence that contains s(pi−1) or s(pi+2k+2).

Assertion 2. Do not apply Observation 2 on a minus
subsequence that contains s(pi−1) or s(pi+2k+2).

3.2 Compatible 4-holes in 9-sets and 11-sets

Here we count compatible 4-holes in 9-sets and 11-sets.

Theorem 4 Every 9-set contains at least three compat-
ible 4-holes.

Theorem 5 Every 11-set contains at least four com-
patible 4-holes.

In the rest of this section we prove Theorem 4. The
proof of Theorem 5, which is given in the full version of
our paper [8], has the same structure as of Theorem 4,
and make more use of Observations 1-2 and Lemma 3.

Let P be a 9-set. Let p0 be the bottommost point of
P and let p1, . . . , p8 be the radial ordering of the other
points of P around p0. Let δ be the signature sequence
of P with respect to p0, i.e., δ = s(p2) . . . s(p6)s(p7).
Depending on the value of m(δ), i.e., the number of mi-
nus signs in δ, we consider the following seven cases.
Notice that any proof of this theorem for δ carries over
to the reverse of δ as well. So, in the proof of this theo-
rem, if we describe a solution for a signature sequence,
we skip the description for its reverse.

• m(δ) = 0: In this case δ is a plus subsequence of
length six. Our result follows by Observation 1.

• m(δ) = 1: In this case δ has five plus signs. By Ob-
servation 2, we get a quadrilateral by the point with
− signature. If four of the plus signs are consecu-
tive, then by Observation 1 we get two more quadri-
laterals. Otherwise, δ has two disjoint subsequences
of plus signs, each of length at least two. Again,
by Observation 1 we get a quadrilateral for each of
these subsequences. Therefore, in total we get three
4-holes; these 4-holes are pairwise non-overlapping.

349

CCCG 2018, Winnipeg, Canada, August 8–10, 2018

• m(δ) = 2: Notice that δ has a plus subsequence of
length at least two. If the two minus signs are non-
consecutive, then we get two quadrilaterals by Ob-
servation 2 and one by Observation 1. Assume the
two minus signs are consecutive. If the four plus signs
are consecutive or partitioned into two subsequences
of lengths two, then we get two quadrilaterals by Ob-
servation 1 and one by Observation 2. The remaining
sequences are +−−+++ and +++−−+, where the
second one is the reverse of the first one. By splitting
the first sequence as +−−+ |++ we get two quadri-
laterals for the subsequence +−−+, by Lemma 3. If
in this lemma we land up in the last case where both
pi−1 and pi+2k+2 are above li+k, then we get a third
compatible quadrilateral p1p6p7p8, otherwise we get
p4p6p7p8. Notice that Assertion 1 holds here.

• m(δ) = 3: If the three minus signs are pairwise non-
consecutive, then we get three quadrilaterals by Ob-
servation 2. If the three minus signs are consecu-
tive, then δ has a plus subsequence of length at least
two. Thus, we get two quadrilaterals by Observa-
tion 2 and one by Observation 1. Assume the minus
signs are partitioned into two disjoint subsequences
of lengths one and two. Then, we get two quadrilat-
erals for the minus signs. If δ has a plus subsequence
of length at least two, then we get a third quadrilat-
eral by this subsequence. The remaining sequences
are +−−+−+ and its reverse.

We show how to get three compatible 4-holes with the
sequence + − − + −+. See Figure 4. First we look
at p1. If p1 is below l2,5 then the three quadrilater-
als p0p1p2p5, p2p3p4p5, and p0p5p6p7 are compatible.
Assume p1 is above l2,5. If p1 is below l3,4 then the
quadrilaterals p1p3p4p2, p0p2p4p5, and p0p5p6p7 are
compatible. Assume p1 is above l3,4. Now, we look
at p6. If p6 is above l3,4 then p1p6p4p3, p2p3p4p5, and
p0p5p6p7 are compatible. If p6 is below l3,4 and above
l2,5 as in Figure 4-left, then p0p2p3p5, p3p4p6p5, and
p0p5p6p7 are compatible. Assume p6 is below l2,5 as
in Figure 4-right; consequently p7 is also below l2,5
because p6 has − signature. Since p5 has + signature,
p4 is above l5,6. Now, we look at p8. If p8 is above l5,6,
then p4p8p6p5, p2p3p4p5, and p0p5p6p7 are compati-
ble. If p8 is below l5,6 and above l5,7, then p5p6p8p7,
p2p3p4p5, and p0p2p5p7 are compatible. Assume p8 is
below l5,7 as in Figure 4-right. In this case p2p3p4p5,
p2p5p6p7, and p0p2p7p8 are compatible.

• m(δ) = 4: If the two plus signs in δ are consecutive,
then we get one quadrilateral by Observation 1 and
two by Observation 2. Assume the two plus signs
are non-consecutive. If the minus signs are parti-
tioned into three subsequences or two subsequences
of lengths one and three, then we get three compatible
4-holes by Observation 2. The remaining sequences

p0

p1
p2

p3
p4

p5

p6

p7

p8− −
−

+
+

+

p0

p1
p2

p3
p4

p5 p6

p7

p8

− −

−
+

Figure 4: Signature sequence + − − + −+. Left: p1 is
above l3,4, and p6 is below l3,4 and above l2,5. Right:
p1 is above l3,4, p6 is below l2,5, and p8 is below l5,7.

are +−−−−+, +−−+−− and its reverse. For the
sequence +−−−−+ we get three quadrilaterals by
Lemma 3. The sequence +−−+−− can be handled
by splitting as +−−+|−|−, where we get two quadri-
laterals for the subsequence + − −+, by Lemma 3,
and one quadrilateral for the last minus sign, by Ob-
servation 1. Notice that Assertion 2 holds here as we
apply Observation 1 on the last minus sign.

• m(δ) = 5: If the five minus signs are consecutive, then
we get three compatible quadrilaterals by Observa-
tion 2. Otherwise, δ has two minus subsequences, one
of which has size at least three. By Observation 2 we
get three quadrilaterals with these two subsequences.

• m(δ) = 6: The six minus signs are consecutive and
our result follows by Observation 2.

4 Compatible 4-holes in n-sets

In this section we prove our main claim for large point
sets, that is, every n-set contains at least b5n/11c − 1
compatible 4-holes. As in Section 2, by combining Theo-
rems 4 and 5 with the idea of partitioning the points into
some cones with respect to their radial ordering about a
point p0, we can improve the lower bound on the num-
ber of compatible 4-holes in an n-set to 3·b(n−2)/7c and
4 · b(n − 2)/9c, respectively. In the rest of this section,
we first prove a lemma, that can be used to improve
these bounds further. We denote by ab the straight-line
through two points a and b. We say that a 4-hole Q
is compatible with a point set A if the interior of Q is
disjoint from the interior of the convex hull of A.

Lemma 6 For every (r+s)-set, with r, s > 4, we can
divide the plane into two internally disjoint convex re-
gions such that one region contains a set A of at least
s points, the other region contains a set B of at least r
points, and there exists a 4-hole that is compatible with
A and B.

Before proving this lemma, we note that a similar
lemma has been proved by Hosono and Urabe (Lemma
3 in [19]) for disjoint 4-holes, where they obtain a set A′

of s−2 points, a set B′ of r−2 points, and a 4-hole Q
that is disjoint from A′ and B′. However, their lemma
does not imply our Lemma 6, because it might not be

350

30th Canadian Conference on Computational Geometry, 2018

possible to add two points of Q to A′ to obtain a set A
of s points such that Q is compatible with A.

a2

b1

b2

a1

a2

a3

b1

b2

b3

a1

a2

a3
b1

b2

b3
a1

a2

a3
b1

b2

b3

a1

a2

a3
b1

b2

b3 a4

a1 a1

a2

a3
b1

b2
b3

a4

b4

Figure 5: Illustration of Lemma 6. The convex regions
with r and s points are shown in light purple and light
orange, respectively. The compatible 4-holes with these
regions are in blue color. The gray regions are empty.

In the following proof, if there exist two internally
disjoint convex regions such that one of them contains
a set A of s points, the other contains a set B of r points,
and there exists a 4-hole that is compatible with A and
B, then we say that A and B are good.

Proof of Lemma 6. Consider an (r+s)-set. In this
proof a “point” refers to a point from this set. Also
when we say a convex shape is “empty” we mean that
its interior does not contain any point from this set.

Let a1 be a point on the convex hull of this set, and
without loss of generality assume that a1 is the lowest
point. Let a2 be the point such that s−2 points are to
the right side of the line a1a2. Let A be the set of points
that are on or to the right side of a1a2, and let B be
the set of other points. Notice that A contains s points
and B contains r points. Let b1 be the point of B such
that the interior of C(a1:a2, b1) does not contain any
point. Let b2 be the point of B such that the interior of
C(a1:a2, b2) contains only b1. See Figure 5(top-left).

If b1 is not in the interior of the triangle 4a1a2b2,

then a1a2b1b2 is a 4-hole that is compatible with A and
(B \ {b1}) ∪ {a1}. As shown in Figure 5(top-left), the
interiors of the convex hulls of these two sets are dis-
joint, and thus, these two sets are good. Assume that
b1 is in the interior of 4a1a2b2. We consider two cases
depending on whether or not C(b1:b2, a2) is empty.

• C(b1:b2, a2) is not empty. If C(b1:b2, a2) contains a
point of A, then let a3 be such a point that is the
neighbor of a2 on CH(A); see Figure 5(top-right).
Then b1b2a3a2 is a 4-hole, and A and (B \ {b1}) ∪
{a1} are good. If C(b1:b2, a2) contains a point of B,
then let b3 be such a point that is the neighbor of
b2 on CH(B). Then b1b2b3a2 is a 4-hole, and A and
(B \ {b1}) ∪ {a1} are good.

• C(b1:b2, a2) is empty. Let a3 be the attack point of
h(b1:a1→a2), i.e., the first point that h(b1:a1→a2)
meets. If the attack point of h(b1:a1→b2) is below
b1a3, then let b3 be that point; Figure 5(middle-left).
In this case b1a3a1b3 is a 4-hole, and (A\{a1})∪{b1}
and B are good. Assume that the attack point of
h(b1:a1→b2) is above b1a3. We consider the following
two cases depending on whether or not there is a
point of B above the line a2b2.

– No point of B is above a2b2. Let b3 be the attack
point of h(b1:b2→a1) as in Figure 5(middle-right).
Then b1b3b2a2 is a 4-hole, and A ∪ {b1} and (B \
{b2}) ∪ {a1} are good.

– Some point of B is above a2b2. Let b3 be such
a point that is the neighbor of b2 on CH(B). If
some point of A is above a2b2, then let a4 be such
a point that is the neighbor of a2 on CH(A); see
Figure 5(bottom-left). Then a2b2b3a4 is a 4-hole,
and A∪{b1} and B ∪{a1} are good. Assume that
no point of A is above a2b2. Let a4 be the attack
point of h(b1:a2→a3) and b4 be the attack point of
h(a2:b1→b2) as in Figure 5(bottom-right). Notice
that it might be the case that b4 = b2. In either
case, b1b4a2a4 is a 4-hole, and (A\{a2})∪{b1} and
(B \ {b1}) ∪ {a2} are good. �

Theorem 7 Every n-set contains at least b5n/11c − 1
compatible 4-holes.

Proof. Let P be an n-set. Our proof is by induction
on the number of points in P . The base cases happen
when |P | 6 14. If |P | 6 13, then our claim follows from
one of Theorems 1, 2, 4, or 5. If |P | = 14, then by
applying Lemma 6 on P with r = s = 7 we get a 4-hole
together with two sets A and B each containing at least
7 points. By Theorem 2 we get two 4-holes in each of
A and B. Thus, we get five compatible 4-holes in total.
This finishes our proof for the base cases.

Assume that |P | > 15. By applying Lemma 6 on P
with r = n−11 and s = 11 (notice that r is at least four

351

CCCG 2018, Winnipeg, Canada, August 8–10, 2018

as required by this lemma) we get a 4-hole together with
two sets A and B such that the interiors of their convex
hulls are disjoint, A contains at least 11 points, and B
contains at least n−11 points. By Theorem 5 we get
four compatible 4-holes in CH(A). By induction, we
get b5(n − 11)/11c − 1 compatible 4-holes in CH(B).
Therefore, in total, we get

1 + 4 +

(⌊
5(n− 11)

11

⌋
− 1

)
=

⌊
5n

11

⌋
− 1

compatible 4-holes in P . �

An O(n log2 n)-time algorithm for computing this
many 4-holes follows from the proofs, by using a dy-
namic convex hull data structure for computing the sets
A and B in Lemma 6.

References

[1] Personal communication with J. Urrutia.

[2] O. Aichholzer, F. Aurenhammer, and H. Krasser. On
the crossing number of complete graphs. Computing,
76(1):165–176, 2006.

[3] O. Aichholzer, C. Huemer, S. Kappes, B. Speckmann,
and C. D. Tóth. Decompositions, partitions, and cover-
ings with convex polygons and pseudo-triangles. Graphs
and Combinatorics, 23(5):481–507, 2007.

[4] O. Aichholzer and H. Krasser. The point set order type
data base: A collection of applications and results. In
Proceedings of the 13th Canadian Conference on Com-
putational Geometry, pages 17–20, 2001.

[5] O. Aichholzer, R. F. Monroy, H. González-Aguilar,
T. Hackl, M. A. Heredia, C. Huemer, J. Urrutia,
P. Valtr, and B. Vogtenhuber. On k-gons and k-holes
in point sets. Comput. Geom., 48(7):528–537, 2015.

[6] B. B. Bhattacharya and S. Das. On the minimum size
of a point set containing a 5-hole and a disjoint 4-
hole. Studia Scientiarum Mathematicarum Hungarica,
48(4):445–457, 2011.

[7] B. B. Bhattacharya and S. Das. Disjoint empty convex
pentagons in planar point sets. Periodica Mathematica
Hungarica, 66(1):73–86, 2013.

[8] A. Biniaz, A. Maheshwari, and M. Smid. Compatible
4-holes in point sets. CoRR, abs/1706.08105, 2017.

[9] P. Bose, S. Ramaswami, G. T. Toussaint, and A. Turki.
Experimental results on quadrangulations of sets of
fixed points. Computer Aided Geometric Design,
19(7):533–552, 2002.

[10] P. Bose and G. T. Toussaint. Characterizing and ef-
ficiently computing quadrangulations of planar point
sets. Computer Aided Geometric Design, 14(8):763–
785, 1997.

[11] A. Brodsky, S. Durocher, and E. Gethner. Toward the
rectilinear crossing number of Kn: new drawings, upper
bounds, and asymptotics. Discrete Mathematics, 262(1-
3):59–77, 2003.

[12] J. Cano, A. G. Olaverri, F. Hurtado, T. Sakai, J. Tejel,
and J. Urrutia. Blocking the k-holes of point sets in
the plane. Graphs and Combinatorics, 31(5):1271–1287,
2015.

[13] O. Devillers, F. Hurtado, G. Károlyi, and C. Seara.
Chromatic variants of the Erdős-Szekeres theorem on
points in convex position. Comput. Geom., 26(3):193–
208, 2003.

[14] P. Erdős. Some more problems on elementary geometry.
Austral. Math. Soc. Gaz., 5:52–54, 1978.

[15] P. Erdős and G. Szekeres. A combinatorial problem in
geometry. Compositio Mathematica, 2:463–470, 1935.

[16] T. Gerken. Empty convex hexagons in planar point
sets. Discrete & Computational Geometry, 39(1):239–
272, 2008.

[17] H. Harborth. Konvexe Fünfecke in ebenen Punktmen-
gen. Elemente der Mathematik, 33:116–118, 1978.

[18] J. D. Horton. Sets with no empty convex 7-gons. Canad.
Math. Bull., 26(4):482–484, 1983.

[19] K. Hosono and M. Urabe. On the number of disjoint
convex quadrilaterals for a planar point set. Comput.
Geom., 20(3):97–104, 2001.

[20] M. Lomeli-Haro, T. Sakai, and J. Urrutia. Con-
vex quadrilaterals of point sets with disjoint interi-
ors. In Abstracts of Kyoto International Conference
on Computational Geometry and Graph Theory (Ky-
otoCGGT2007).

[21] L. Lovász, K. Vesztergombi, U. Wagner, and E. Welzl.
Convex quadrilaterals and k-sets. In J. Pach, editor,
Towards a Theory of Geometric Graphs, volume 342 of
Contemporary Mathematics, pages 139–148. 2004.

[22] C. M. Nicolás. The empty hexagon theorem. Discrete
& Computational Geometry, 38(2):389–397, 2007.

[23] S. Ramaswami, P. A. Ramos, and G. T. Toussaint. Con-
verting triangulations to quadrangulations. Comput.
Geom., 9(4):257–276, 1998.

[24] T. Sakai and J. Urrutia. Covering the convex quadri-
laterals of point sets. Graphs and Combinatorics,
23(Supplement-1):343–357, 2007.

[25] G. T. Toussaint. Quadrangulations of planar sets. In
Proceedings of the 4th International Workshop on Al-
gorithms and Data Structures (WADS), pages 218–227,
1995.

[26] P. Valtr. On empty hexagons. In J. E. Goodman,
J. Pach, and R. Pollack, editors, Surveys on Discrete
and Computational Geometry: Twenty Years Later,
pages 433–441. 2008.

[27] B. Vogtenhuber. Combinatorial aspects of colored point
sets in the plane. PhD thesis, Graz University of Tech-
nology, November 2011.

[28] U. Wagner. On the rectilinear crossing number of com-
plete graphs. In Proceedings of the 14th Annual ACM-
SIAM Symposium on Discrete Algorithms (SODA),
pages 583–588, 2003.

[29] L. Wu and R. Ding. On the number of empty convex
quadrilaterals of a finite set in the plane. Appl. Math.
Lett., 21(9):966–973, 2008.

352

CCCG 2018, Winnipeg, Canada, August 8–10, 2018

Some Heuristics for the Homological Simplification Problem

Erin W. Chambers ∗ Tao Ju † David Letscher ‡ Mao Li § Christopher Topp ¶ Yajie Yan ‖

Abstract

In this paper, we consider heuristic approaches for solv-
ing the homological simplification problem. While NP-
Hard in general, we propose an algorithm that in prac-
tice significantly reduces topological noise from large
datasets, such as those from medical or biological imag-
ing.

1 Introduction

In this paper, we will consider the homological simpli-
fication problem. Introduced in [5], this asks: given a
pair of simplicial complexes (C,N) where C ⊂ N , can
the persistent homology group of this pair be realized
as the homology of some intermediate complex? This
problem is one way to approach the problem of topolog-
ically accurate simplification, where the goal is to take
a “noisy” shape and simplify it to reach some desired
topological structure. Such algorithms are useful in a
wide range of applications, as any surface or region re-
construction algorithm on scanned input data is apt to
contain errors, and hence a post processing phase to
simplify it is necessary.

For filtrations of closed and orientable 2-manifolds,
the homological simplification problem is solvable [11];
this work actually solves the more general problem of
finding an ε-simplification in a filtration. However,
such existence results do not hold in 3-manifolds since
there are filtrations of manifolds that do not have ε-
simplifications [11]. For the homological simplification
problem, it is NP-Hard to determine if a simplification
exists for 3-manifolds, even if the complex is embedded
in R3 [5].

In this paper, we consider a 2-phase heuristic algo-
rithm to simplify voxelized shapes. We first use a per-
sistent homology-based algorithm to identify candidate

∗Department of Computer Science, Saint Louis University,
echambe5@slu.edu.
†Department of Computer Science and Engineering, Washing-

ton University, St. Louis taoju@cse.wustl.edu.
‡Department of Computer Science and Engineering, Saint

Louis University, letscher@slu.edu.
§Donald Danforth Plant Science Center,

mli@danforthcenter.org .
¶Donald Danforth Plant Science Center,

ctopp@danforthcenter.org .
‖Department of Computer Science and Engineering, Washing-

ton University, St. Louis yajieyan@wustl.edu.

simplifications. This approach is inspired by prior work
to find “nice” generators for homology groups on sur-
faces [8], but we expand to find not just the generators
of homology group, but also representatives in the larger
space that kills those generators. Phase 2 is then a val-
idation: given such a candidate simplification, we must
check that it does result in a global simplification, since
adding such things can introduce new topological fea-
tures. We apply this algorithm to a number of types of
input data, to assess how successful the heuristic is in
practice. We find that our simplifications are able to re-
move over 99% of topological errors in several real-world
data sets.

2 Related Work

2.1 Cubical complexes

A cubical complex is built from a collection of cells that
are points, intervals, squares, cubes and higher dimen-
sional analogs, where the intersection of any two cells is
also a cell of the cubical complex. Formally, the cells are
built from products of intervals, either the unit interval
[k, k + 1] or a degenerate interval [k, k], where k is an
integer (so that our complex is aligned with an integer
lattice); in d-dimensional space, a cube is a product of
d elementary intervals. Given 2 cubes x and y, x is a
face of y if x ⊆ y. A cubical complex of dimension d
is a collection of cubes that is closed under taking faces
such that the intersection of any two faces is a common
subface. In this paper, we will use cubical complexes to
represent the topology of our shapes.

2.2 Digital topology

In imaging and computer graphics, voxelizations are
among the most common shape representations. With
3-dimensional Euclidean space divided using a cubical
lattice, each individual cube is a single voxel and a vox-
elization of a shape is a set of these voxels. A common
connectivity model of voxels is called 6-connectivity,
which considers two voxels adjacent if they share a com-
mon 2-dimensional face [15]. This connectivity model
results in a different topology than just taking the ac-
tual union of the voxels, which would typically connect
anything that shares an edge or vertex as well. To be
topologically consistent with the union of voxels, we will
work in a dual complex where there is a vertex for each

353

30th Canadian Conference on Computational Geometry, 2018

voxel, and edge whenever two voxels share a common
face, a square or 2-cell for any 4 voxels around an edge,
and a 3-cell or voxel whenever there are 8 voxels sur-
rounding a common vertex. Note that this is still a
cubical complex, but it is not a pure cubical complex,
since not every cell of dimension 1 or 2 belongs to 3-cell.

2.3 Homology

Homology groups and persistent homology on filtrations
are commonly used tools to find topological features in
spaces; due to space constraints, we refer the reader to
recent books covering the topic for definitions of ho-
mology and persistent homology groups [9, 17]. For two
spaces C ⊆ N , these persistent homology groups simply
capture some of the topological features that are present
in C and still remain in N . Most relevant to our set-
ting, cubical persistent homology has been considered
in some prior work [21], including optimized data struc-
tures to compute persistent homology groups of such
complexes.

The pth Betti number of a space X, βp(X) is defined
to be the rank of the pth homology groups. Given an
inclusion map f : C → N , we can define a persis-
tent notion of Betti number, where the pth Betti num-
ber of f is the rank of the induced map on homology:
βp(C → N) = rk(f∗(Hp(C))). Extending this to filtra-
tions of more than 2 spaces precisely gives the notion of
persistent homology groups (or their ranks).

2.4 Homological simplification

Consider two spaces C ⊂ N ⊂ R3. The homological
simplification problem is generally phrased in terms of
Betti numbers: we wish to find a space X such that
the p-dimensional Betti number, βp(X) is equal to the
Betti number of the inclusions C → N , βp(C → N).
In three dimensions, this problem has been shown to be
NP-Hard [5].

2.5 Topological repair

Various methods have been developed in different re-
search communities for removing topological errors of
surfaces in R3. In computer graphics, algorithms exist
for modifying a given surface to either remove features
smaller than a given size or achieve a specific topology
(e.g., a single connected component with a prescribed
genus) [22, 24, 6]. These methods make decisions of
where and how to modify the surface solely based on
the shape of the given surface, whereas homological
simplification bases its decision on the persistence of
topological features between two spaces. In medical im-
age analysis, there has been active research on rectify-
ing the topology of reconstructions of biological struc-
tures, such as the cortical surface in the human brain

[19, 13, 18, 23]. Most of these methods are specialized
for removing redundant handles and cannot deal with
other types of topological noises such as disconnected
components or cavities. Finally, in scientific visualiza-
tion, a line of research aims at simplifying the topologi-
cal structure (e.g., the Morse-Smale complex) of a scalar
function [7, 11, 12, 20]. While these methods effectively
remove topological noise on all level sets of the function,
they are unnecessarily expensive if the goal is to fix the
topology of one level set. In addition, methods designed
to work on functions in R3 are limited to reducing the
set of maxima or minima, and hence are less useful for
removing topological handles on the level sets.

3 Heuristic Shape Simplification

Since we will use voxelized representatives of our input
shapes, we will focus on the restriction of the homology
simplification problem to voxelized shapes. We restate
the problem as follows where we refer to C as the core,
and N as the neighborhood, and we wish to find a space
X which is somehow “in between” them with homology
equal to the persistent homology of C → N .

3.1 Voxelized homological simplification

Suppose C ⊂ N ⊂ R3 are voxel regions. Determine if
there exists X such that C ⊂ X ⊂ N and βp(X) =
βp(C → N) for all p.

Proposition 1 The voxelized homological simplifica-
tion problem is NP-hard.

Proof. [Proof sketch] We omit details due to space con-
straints, but just briefly note that the proof for sim-
plicial complexes embedded in R3 is a reduction from
3SAT [5]. They construct gadgets that are easily mod-
ified to be built from voxels on an O(m) by O(n) grid,
where n is the number of booleans variables and m is
the number of clauses in the 3SAT instance. �

It is typically impractical to solve the homological
simplification problem; however, we are concerned with
simplifying a shape as much as possible. In particu-
lar, we will try to find a shape X where C ⊂ X ⊂ N
with each of the Betti numbers βp as close as possible
to the persistent Betti numbers βp(C → N). If they
are equal, we have a solution to the homological sim-
plification problem. Even if we do not achieve maximal
simplification, we will typically simplify our shape sig-
nificantly.

Our simplification procedure will be a two phase pro-
cess. It starts with the core C, which our algorithm will
always include in the result, and then tries to expand
to remove topological noise. First, a modified version of
the standard persistence algorithm [10] is used to find

354

CCCG 2018, Winnipeg, Canada, August 8–10, 2018

Figure 1: The core and neighborhood for the root system of corn. Note that in the inclusion of core into the
neighborhood some loops are filled (blue inset), components connect (red inset) and new loops form (green inset).
A solution to the homological simplification problem will accept the first two types of modifications and reject the
creation of new loops and voids.

sets of voxels whose addition would remove topological
features that are not in the neighborhood. However,
these candidates might add new features that are not
desired. The second phase examines the modified shape
and checks if the persistence Betti numbers have been
reduced. If so, the changes are kept. This process of
candidate generation and validation is repeated until
no more valid additions can be found. There are no
guarantees that this will remove all of the undesired
topological features; however, our experiments in Sec-
tion 5 show that in real world examples the accuracy of
the simplification is very high.

3.2 Types of topological errors

We now examine the types of topological errors in
more detail, and our candidate simplifications. Con-
sider C ⊂ N ⊂ R3 and the maps induced by inclusion
f∗p : Hp(C)→ Hp(N) for p = 0, . . . , 3. If every f∗p is an
injection then C is already a solution to the homologi-
cal simplification problem. Assuming we do not have a
solution, we know that not all the f∗p are injective; in
addition, we know that any extraneous topological noise
must appear in the kernel of some f∗p . In order to get a
solution to the homological simplification problem, we
therefore need to remove all such cycles.

To this end, consider a cycle α 6= 0, where fp(α) = 0.
In this 3-dimensional setting, we have several possibili-
ties: α might connect two components, or it might fill
a void or loop in the large space. To demonstrate what

these look like, assume α is irreducible, that is it cannot
be written as a non-trivial sum of other elements of the
kernel. Depending on the dimension p, we can interpret
the different types of noise we observe, and our algo-
rithm will suggest different ways of removing that α in
order to construct a better candidate solution (or near-
solution, if we cannot generate an optimal one) to the
homological simplification problem. We note that each
of these cases can be observed in the root data in Fig-
ure 1, and hence we expect them all to exist in practice,
depending on the data set. The cases to consider:

• α ∈ ker f∗0 : Here α is represented by two points
lying in different components of C. These com-
ponents can be connected by a path γ in N that
connects the two points. In this case, γ is a one di-
mensional chain in N . By adding γ to C we obtain
a new space C∪γ where the kernel of H0(C∪γ)→
H0(N) has rank one less than H0(C)→ H0(N).

• α ∈ ker f∗1 : In this case α is a curve that follows a
non-trivial topological feature in C, such as going
around a handle, but which‘’ bounds some surface
in N that kills that homological feature. If this sur-
face is a disk D then H1(C∪D)→ H1(N) has rank
one less than H1(C)→ H1(N). In other words, we
can add the disk D to remove the handle that is
present in C. However, if the curve bounds a sur-
face with genus, then if we were to add the surface
in, a generator of the kernel is removed but two or
more generators are added (since this surface has

355

30th Canadian Conference on Computational Geometry, 2018

its own handles). Hence the resulting object is not
simpler in terms of homology, and we cannot use
this chain to simplify the space.

• α ∈ ker f∗2 : Here α is a surface bounding a hollow
region (a “void”) in C, but which is not hollow in
N . This void could be a simple ball, but could
also contain topology. In either case, we can fill
this in to simplify the topology. If the surface is
a sphere, Alexander’s theorem implies that it will
bound a ball B in N [14]. In this case, it is easy
to simplify since H2(C ∪ B) → H2(N) has rank
one less than H2(C)→ H2(N). If the surface does
not bound a ball, then the simplification may also
simplify ker f1, as some loops will disappear when
the void disappears.

The commonality of all of these cases is that our al-
gorithm must find a (k + 1)-dimensional structure in
N whose boundary is in the kernel of f∗k and whose
addition simplifies the topological structure. Our tech-
niques are based on this observation, repeatedly adding
simplifications until no more can be found; we describe
the generation of these candidates in the next subsec-
tion. Ideally, after adding these (k + 1)-dimensional
structures, we obtain a space X with C ⊂ X ⊂ N and
Hk(C) → Hk(X) is a surjection and Hk(X) → Hk(N)
is an injection for all k; in this case, we would actu-
ally have a solution to the homological simplification
problem. Our algorithm will only simplify the shape,
although we have no guarantees of optimality or ap-
proximation ratio. In Section 5, we will discuss our
implementation and show that it works well on several
data sets.

3.3 Candidate generation

We now describe our algorithm to find generators in
the kernel as well as to find candidate cycles that
they bound in order to simplify the shape. Consider
C ⊂ X ⊂ N where X is initially equal to C but will
be extended to remove topological features that are not
shared by C and N . We will build a boundary matrix,
∂p, for calculating the p-dimensional persistent homol-
ogy of the filtration C ⊂ X ⊂ N . There is a column
of ∂p for each (p+ 1)-cell of X and a non-zero entry in
that column for each p-cell that is a face of the (p+ 1)-
cell. The rows and columns are ordered so that cells
of C occur first, then cells of X and finally cells of N .
The standard persistence algorithm [10] adds columns
to ones to their right to obtain a canonical reduced form.

After these matrix reductions, the columns of ∂p rep-
resent cycles involving the cells with non-zero entries. If
that column corresponds to cells of N and the non-zero
entries involved include d-cells of C, then this cycle, z,
is a feature of C that does not persist in N and should

Figure 2: (top) Three intensity threshold input: t −
ε, t, t + ε. (bottom) Corresponding core and neighbor-
hood.

be removed. To remove this feature we need to find a
(d+ 1) chain, b, in X such that ∂pb = z. We note that
of course there are potentially many candidates for z;
we find one by creating a copy of the identity matrix M
with an entry for each column of ∂p and performing the
same column operations as we did in the reduction. An
invariant of these column operations is that if v is the
i-th column of M , then ∂pv is the i-th column of ∂p. So
we choose b to be the union of cells with non-zero entries
in the column of M corresponding to the cycle z; recall
that b is actually a chain in the dual cubical complex.
We build a candidate simplification S which is the set of
voxels that contain b. When S is added to X, the cycle
z will become trivial; however, additional features could
be added, so we cannot add S and guarantee reduction
of Betti numbers.

We note that many improvements to the standard
persistence algorithm have been made to make this cal-
culation more efficient [2, 1]. These algorithms focus
only on finding birth and death times, however, and
discard any non-essential information in order to make
calculations faster. In particular, they either discard or
never compute information about generators in order to
speed up the calculations; we need not only the genera-
tors, but also the cycles they bound, which we know of
no way to track directly in the faster algorithms.

In addition, it is worth re-iterating that there are
many possible cycles that could be added in order to
kill generators in the kernel; we have merely computed
the ones which can be calculated with a simple modifica-
tion of the standard persistence algorithm. Surprisingly,
in our experiments the algorithm nonetheless produces
geometrically pleasing results, particularly for smaller
topological errors which are common in real-world data.

3.4 Candidate validation

To determine if the addition of S will actually sim-
plify the shape, recall that our algorithm tries to min-
imize the sum of Betti numbers B(X) =

∑3
p=0 βp(X),

with the goal of reducing this complexity to be equal
to
∑3
p=0 βp(C → N). If S is set of voxels that form

a candidate simplification, we will calculate B(X ∪ S).
If B(X ∪ S) < B(X) and βp(X ∪ S) ≤ βp(X) for all

356

CCCG 2018, Winnipeg, Canada, August 8–10, 2018

p, then we will consider this a valid simplification. We
cannot be sure that the addition of S has not created
new topological feature, but our check does guarantee
that more features are removed than were introduced.

Our algorithm We will repeat the process of finding
candidate simplifications using the modified standard
persistence algorithm and adding them one at a time if
they are valid simplifications, until no more are possible.

4 Removing Topological Errors in 3D Imaging

In a 3D imaging technology such as CT or MRI, the
output is a grid of voxels each with an intensity value.
A typical representation would be a map f : {0, . . . , k−
1}3 → R. Shapes of interest, in theory, can be extracted
by selecting voxels in a given intensity range. A typical
segmentation might try to extract all voxels with inten-
sity over a specified threshold, e.g. X = f−1 ([t,∞)).
However, there can be a variety of errors in this segmen-
tation.

Define Nδ(X) as a neighborhood of the set X for pos-
itive δ, or as points with a |δ| neighborhood contained
in the set X for negative δ. Formally:

Nδ(X) =

{
∪x∈XBδ(x) δ ≥ 0

{x | B−δ(x) ⊂ X} δ < 0

Then there is a natural two dimensional filtration of the
region where Xt,δ = Nδ

(
f−1 ([t,∞))

)
. Here, t specifies

the intensity threshold, and Nδ is in fact a morpholog-
ical dilation when δ > 0 or erosion when δ < 0, using
the ball of radius |δ| as the structuring element[16].

If t is a threshold for an initial segmentation X =
f−1 ([t,∞)), we can give two parameters, ε and δ, repre-
senting noise levels on the threshold value and geometric
scale, respectively. We will define the core C = Xt+ε,−δ
and the neighborhood N = Xt−ε,δ. This collapses the
two dimensional filtration into a pair of spaces C ⊂ N .
In this case the core C represents voxels that we want to
include in the final shape, they all have neighborhoods
meeting a higher intensity threshold. And the neighbor-
hood N contains all the voxels near some voxel with a
lower intensity threshold. See Figure 2 for an example.

A good solution to the homological simplification with
this C and N would have features that do not appear or
disappear with a small change in threshold, expanding
or contraction of the shape, or a combination of these
changes. In practice, a partial solution to the homo-
logical simplification problem might only remove some
of the noise; in our experiments (described in the next
section), this still results in an improvement over simple
thresholding techniques. This improvement is quite ev-
ident in Figure 1, for example, where thresholding any
any level (in the top pictures) leaves errors such as dis-
connected fragments and cycles; since this is a root and

hence a simply connected space, these must be sam-
pling errors and not actual features of the data. In the
following section, we will discuss our observations of a
reduction in more than 99% of the noise in several real
world datasets.

5 Experimental Results

We experimented on three different collections of data:
CT scans of corn root systems, synthetic root systems
and brain volumes reconstructed from histological sec-
tions. The corn data was from a single variety of corn,
with three different scans each viewed at two different
resolutions. The synthetic root was designed to roughly
resemble a root system and was studied at nine differ-
ent resolutions. The brain scans were of the BigBrain
dataset [4] downsampled at ten different resolutions.
Figure 3 gives some information about the datasets,
and our code is available [3]. The largest regions had
close to 400 million voxels; this forced some additional
techniques described below to handle the scale of the
data sets. The largest core in these experiments has 2.5
million voxels and the largest neighborhood had over 4
million voxels. The most complicated example had ap-
proximately 8 thousand components, 17 thousand loops
and one thousand voids. All but approximately 100 of
those where noise features. In general, the complexity
of the initial shapes was very high and there were very
few features that were shared between the core and the
neighborhood.

5.1 Practical concerns

The shapes that we have considered have regions as
large as several hundred million voxels. As a result,
we utilize a sparse representation for our shapes, so
that the neighborhoods have about 6 million voxels at
most; instead of storing actual values of the intensity,
we have 3 hash sets that simply mark the core C, the
current shape, and the neighborhood N . Even with
this compression, there are speed issues. While there
are faster persistent homology implementations [1, 2]
that can handle inputs of this size, the standard persis-
tence algorithm [10] has trouble on this size of inputs.
However, we have no way to generate candidate sim-
plifications using these faster algorithms, as discussed
in Section 3.3. In order to deal with the size of the
data, we did this calculation on windows of data at most
2503 voxels in size, where the windows were chosen to
overlap and cover the shape. This of course makes it
likely we will miss some larger errors, but made the
algorithm computationally feasible. We performed the
calculations on the largest shapes in under five hours on
a Linux desktop with a 2.20 GHz processor I5 processor
and 64 GB RAM; see Figure 4.

357

30th Canadian Conference on Computational Geometry, 2018

Region size Core size Neighborhood size Complexity
Corn 2.3× 106 − 1.5× 108 1.6× 103 − 2.4× 105 2.4× 103 − 4.6× 106 109− 6, 713
Synthetic 3.9× 106 − 3.8× 108 1.8× 103 − 1.7× 105 2.3× 103 − 2.7× 106 208− 26, 605
Brain 3.9× 105 − 1.7× 107 5.1× 104 − 2.5× 106 6.1× 105 − 3.6× 106 388− 15, 393

Figure 3: Characteristics of the data analyzed, including the number of voxels in the region examined, core and
neighborhood and the initial complexity of the shapes.

103 104 105 106
100

101

102

103

104

Size of core (voxels)

S
im

p
li
fi
ca

ti
on

ti
m

e
(s

ec
on

d
s)

Simplification Time

Corn roots
Synthetic roots

Brain

103 104 105 106
0.0%

0.1%

0.2%

0.3%

Size of core (voxels)
P

er
ce

n
t

n
oi

se
re

m
ai

n
in

g

Simplification Error

Corn roots
Synthetic roots

Brain

Figure 4: (a) Experimental runtime and (b) error rates on three datasets.

Figure 5: Synthetic root input shape with noise.

5.2 Accuracy

For all of the test shapes, over 99.7% of the topological
errors were removed by our method; it is worth noting
that much of this success is perhaps because many of the
errors were quite small, consisting of just a few missing
or extra voxels. In several cases, our algorithm was able
to find solutions to the homological simplification prob-
lem. See Figure 4 for the error rates in the experiments.
We note that it is computationally infeasible to deter-
mine in the other cases if solutions to the homological
simplification problem exist.

6 Future Work

There are several natural directions to pursue next.
First, we note that the algorithm described here picks

some candidate to remove a particular error, but does
not necessarily choose a geometrically nice generator.
In fact, we have found examples where our algorithm
adds a cycle that is obviously not ideal, or misses larger
topological features due to the windows used in our
algorithm. We plan to consider a more robust set of
candidate simplifications that might be able to reduce
the errors that are not repaired; at the same time, we
would like to restrict to simplifications that have nice
geometric properties as well as topological properties.
In general, calculating ”optimal” generators is impossi-
ble. However, for data sets such as the roots, we can
take advantage of prior knowledge about the physical
structure to prefer certain reconstructions, such as those
that would reconnect two nearly crossing roots so as
to maintain roughly the same local feature size along
each. Second, on the more practical end, we would
like to continue scaling the algorithms to larger datasets
through optimizations and potential parallelization. Fi-
nally, more on the theoretical side, it is interesting to
consider the notion of hardness of approximation or
any approximation guarantees of heuristics such as our
greedy approach.

Acknowledgements: This material is based upon
work supported by the National Science Foundation un-
der Award numbers: (PGRP) IOS-1638507, (EPSCoR)
IIA-1355406, (AF) 1614562, and the linked collabora-
tive awards (ABI) 1759807, 1759836 and 1759796.

358

CCCG 2018, Winnipeg, Canada, August 8–10, 2018

References

[1] DIPHA. https://github.com/DIPHA/dipha.

[2] GUHDI c++ library. http://gudhi.gforge.inria.fr/.

[3] Voxelized homological simplification im-
plementation. http://git.cs.slu.edu/public-
repositories/shape-simplification-software.

[4] Katrin Amunts, Alan Evans, and Karl Zilles. Big-
brain dataset.

[5] Dominique Attali, Ulrich Bauer, Olivier Devillers,
Marc Glisse, and André Lieutier. Homological re-
construction and simplification in r3. In Proceed-
ings of the Twenty-ninth Annual Symposium on
Computational Geometry, SoCG ’13, pages 117–
126, New York, NY, USA, 2013. ACM.

[6] Marco Attene, Marcel Campen, and Leif Kobbelt.
Polygon mesh repairing: An application perspec-
tive. ACM Computing Surveys (CSUR), 45(2):15,
2013.

[7] P-T Bremer, Bernd Hamann, Herbert Edelsbrun-
ner, and Valerio Pascucci. A topological hierarchy
for functions on triangulated surfaces. IEEE Trans-
actions on Visualization and Computer Graphics,
10(4):385–396, 2004.

[8] T. K. Dey, K. Li, and J. Sun. On computing handle
and tunnel loops. In Cyberworlds, 2007. CW ’07.
International Conference on, pages 357–366, Oct
2007.

[9] Herbert Edelsbrunner and John Harer. Compu-
tational Topology: An Introduction. AMS Press,
2009.

[10] Herbert Edelsbrunner, David Letscher, and Afra
Zomorodian. Topological persistence and simplifi-
cation. In Foundations of Computer Science, 2000.
Proceedings. 41st Annual Symposium on, pages
454–463. IEEE, 2000.

[11] Herbert Edelsbrunner, Dmitriy Morozov, and Va-
lerio Pascucci. Persistence-sensitive simplifica-
tion functions on 2-manifolds. In Proceedings of
the twenty-second annual symposium on Computa-
tional geometry, pages 127–134. ACM, 2006.

[12] David Günther, Alec Jacobson, Jan Reininghaus,
Hans-Peter Seidel, Olga Sorkine-Hornung, and
Tino Weinkauf. Fast and memory-efficienty topo-
logical denoising of 2d and 3d scalar fields. IEEE
transactions on visualization and computer graph-
ics, 20(12):2585–2594, 2014.

[13] Xiao Han, Chenyang Xu, Ulisses Braga-Neto, and
Jerry L Prince. Topology correction in brain cor-
tex segmentation using a multiscale, graph-based
algorithm. IEEE Transactions on Medical Imag-
ing, 21(2):109–121, 2002.

[14] John Hempel. 3-manifolds, volume 349. American
Mathematical Soc., 2004.

[15] Reinhard Klette and Azriel Rosenfeld. Digital
geometry: Geometric methods for digital picture
analysis. Elsevier, 2004.

[16] Laurent Najman and Hugues Talbot. Mathemati-
cal morphology: from theory to applications. John
Wiley & Sons, 2013.

[17] Steve Y. Oudot. Persistence Theory: From Quiver
Representations to Data Analysis, volume 209 of
Mathematical Surveys and Monographs. American
Mathematical Society, 2015.

[18] Florent Ségonne, Jenni Pacheco, and Bruce Fis-
chl. Geometrically accurate topology-correction of
cortical surfaces using nonseparating loops. IEEE
transactions on medical imaging, 26(4):518–529,
2007.

[19] David W Shattuck and Richard M Leahy. Auto-
mated graph-based analysis and correction of corti-
cal volume topology. IEEE transactions on medical
imaging, 20(11):1167–1177, 2001.

[20] Maxime Soler, Melanie Plainchault, Bruno Conche,
and Julien Tierny. Topologically controlled lossy
compression. arXiv preprint arXiv:1802.02731,
2018.

[21] Hubert Wagner, Chao Chen, and Erald Vuçini.
Efficient Computation of Persistent Homology for
Cubical Data, pages 91–106. Springer Berlin Hei-
delberg, Berlin, Heidelberg, 2012.

[22] Zoë Wood, Hugues Hoppe, Mathieu Desbrun,
and Peter Schröder. Removing excess topology
from isosurfaces. ACM Transactions on Graphics
(TOG), 23(2):190–208, 2004.

[23] Rachel Aine Yotter, Robert Dahnke, Paul M
Thompson, and Christian Gaser. Topological cor-
rection of brain surface meshes using spherical har-
monics. Human brain mapping, 32(7):1109–1124,
2011.

[24] Qian-Yi Zhou, Tao Ju, and Shi-Min Hu. Topology
repair of solid models using skeletons. IEEE Trans-
actions on Visualization and Computer Graphics,
13(4), 2007.

359

CCCG 2018, Winnipeg, Canada, August 8–10, 2018

Isomorphism Elimination
by Zero-Suppressed Binary Decision Diagrams∗

Takashi Horiyama† Masahiro Miyasaka† Riku Sasaki‡

Abstract

In this paper, we focus on the isomorphism elimination.
More precisely, our problem is as follows: Given a graph
G with labeled edges and a family F of its subgraphs,
we extract all automorphisms AutG = {π1, π2, . . . , } on
the given graph, define the lexicographically largest sub-
graph for each set of the mutually isomorphic subgraphs
on each automorphism πi, and select the lexicograph-
ically largest subgraphs on any of the automorphisms.
In this paper, the families of subgraphs are manipulated
by ZDDs. We also apply our algorithms to the enumer-
ation of nonisomorphic developments of Platonic and
Archimedean solids and d-dimensional hypercubes. Ex-
perimental results show that the proposed method is
more than 300 times faster and 3,000 times less mem-
ory than the conventional method in the best case. Our
algorithms are applicable to many other enumeration
problems with eliminating isomorphic solutions.

1 Introduction

Suppose that we are given a cube. By cutting along
the set of edges {e2, e3, e4, e6, e10, e11, e12} of the cube
in Figure 1(a), we can obtain the development in Fig-
ure 1(c). When we rotate the positions of cut edges
by 90 degrees, i.e., by cutting along the set of edges
{e1, e3, e4, e7, e9, e11, e12} as depicted in Figure 1(b), we
can also obtain the development in Figure 1(c). Are
these the same? If we focus on the fact that the edges
are labeled, the positions of cut edges are different, and
thus we can say they are different. If we do not care
about the labels, i.e., the edges are unlabeled, the shape
of the developments are the same, and thus we can say
they are isomorphic.

A cube has 384 labeled developments, and they are
classified into 11 nonisomorphic developments (i.e., es-
sentially different unlabeled developments). Here, a de-
velopment and its mirror shape are regarded as isomor-
phic. As for the labeled developments, we can count
their numbers by combining the following two theorems:

∗A preliminary version was presented at AAAC2018.
†Graduate School of Science and Engineering, Saitama Uni-

versity, {horiyama,miyasaka}@al.ics.saitama-u.ac.jp
‡Faculty of Engineering, Saitama University, sasaki@al.ics

.saitama-u.ac.jp

e4

e1

e3

e5
e6

e2

e7e8

e9

e10

e11

e12

e4

e1

e3

e5
e6

e2

e7e8

e9

e10

e11

e12

(a) (b)

(c)

Figure 1: The developments of a cube by different cut
edges (a) and (b) are isomorphic.

Theorem 1 (See, e.g., [[5], Lemma 22.1.1]) The cut
edges of a development of a polyhedron form a spanning
tree of the 1-skeleton (i.e., the graph formed by the ver-
tices and the edges) of the polyhedron, and vice versa.

Theorem 2 Matrix Tree Theorem [12]: The number of
spanning trees of a graph is equal to any cofactor of the
Laplacian matrix of the graph.

By applying the theorems, Brown et al. showed
that a Buckminsterfullerene (also known as an
icosahedral C60, or a truncated icosahedron) has
375,291,866,372,898,816,000 (approximately 3.75×1020)
labeled developments [1]. The numbers of labeled devel-
opments of Handballene (truncated dodecahedral C60)
and Archimedene (truncated icosidodecahedral C120)
are given in [2].

As for counting the nonisomorphic developments,
the numbers for Platonic solids are obtained in the
1970s [7][10]. Recently, Horiyama and Shoji proposed
a technique for counting the number of nonisomorphic
developments of any polyhedron (including nonconvex
polyhedron) [9]. By applying this method, they also
listed the number of nonisomorphic (and also labeled)
developments of all regular-faced convex polyhedra (i.e.,
Platonic solids, Archimedean solids, Johnson-Zalgaller
solids, Archimedean prisms, and antiprisms), Catalan
solids, bipyramids and trapezohedra. For example, a
Buckminsterfullerene (i.e., a truncated icosahedron) has
3,127,432,220,939,473,920 (approximately 3.13 × 1018)

360

30th Canadian Conference on Computational Geometry, 2018

nonisomorphic developments. We here note that the
technique in [9] counts the number of nonisomorphic
developments without enumerating developments.

If we turn to the developments of polytopes in 4 (or
more) dimensions. We can apply the matrix tree theo-
rem to any polytope, and thus we can count the num-
ber of the labeled developments. As for the number
of the nonisomorphic developments, Gardner asked to
enumerate all of the nonisomorphic developments of a
4-dimensional hypercube [6], and Turney enumerated
261 nonisomorphic developments by hands [19]. He also
says “As far as I know, the only way is to exhaustively
examine the possibilities” in [19]. Later, a technique
for counting the number of the nonisomorphic develop-
ments of 4-dimensional regular convex polytopes [4] is
proposed. The technique is an extension of those for
the Platonic solids [7][10], and is further extended to
that for any 3-dimensional polyhedron [9]. These tech-
niques avoid explicitly enumerating the developments,
but count their numbers by exploiting Polya’s counting
theorem [17].

As for the enumeration of nonisomorphic develop-
ments, an efficient exhaustive search technique using
BDDs (Binary Decision Diagrams) is proposed in [8],
where a BDD [3] is a succinct data structure that rep-
resents a family of sets by a graph. In [8], a method
to construct a BDD corresponding to a family of la-
beled developments is proposed, where each develop-
ment are represented as a set of labeled edges that form
a spanning tree. Then, by omitting mutually isomorphic
developments, the nonisomorphic developments are ob-
tained.

Later, a sophisticated technique called a “frontier-
based search” [11] is proposed for constructing
BDDs/ZDDs representing all constrained subgraphs,
and we can adopt this technique to the first step of the
method in [8]. A ZDD (Zero-suppressed Binary Deci-
sion Diagram) [16] is a variant of BDDs, and also rep-
resents a family of sets. The frontier-based search is an
extension of Simpath algorithm [13] by Knuth for enu-
merating all st-paths (i.e., simple paths from vertex s to
t) in a given graph. The method can be considered as
one of DP-like algorithms, and it constructs the result-
ing BDDs/ZDDs in a top-down manner. By applying
this method to the first step in [8], we can speed-up the
construction of the BDD/ZDD representing a family of
spanning trees.

Our contribution. In this paper, we focus on the
second step of the method in [8], i.e., the isomorphism
elimination. More precisely, our problem is as fol-
lows: Given a graph G with labeled edges and a fam-
ily F of its subgraphs, we extract all automorphisms
AutG = {π1, π2, . . . , } on the given graph, define the
lexicographically largest subgraph for each set of the
mutually isomorphic subgraphs on each automorphism

πi, and select the lexicographically largest subgraphs on
any of the automorphisms. In this paper, both of the
given and resulting families of subgraphs are in the form
of ZDDs, and the computation are performed on ZDDs.
This is because (1) ZDDs can represent a family of sets
compactly, (2) the manipulation of ZDDs are faster than
the other representations in many cases.

In general, the first step for extracting all automor-
phisms on a given graph is not tractable: It is still open
whether the graph automorphism problem (i.e., the
problem deciding whether a given graph has a nontrivial
automorphism or not) is in P or in NP-complete [15].
Fortunately, however, we can solve the problem in poly-
nomial time if the degrees of vertices in a graph graph
are bounded by a constant [14].

Our main issue is to select the lexicographically
largest subgraphs on any of the automorphisms. In [8],
BDDs G1, G2, . . . are constructed so that Gi represents
a family of the lexicographically largest subgraphs on
automorphism πi, and their intersection is taken for se-
lecting a family of subgraphs that appear in all of the
families of G1, G2, . . . Unfortunately, the method was
proposed before the era of the frontier-based search al-
gorithms. Thus, similarly to the BDD/ZDD algorithms
in those days, it obtains the resulting BDD by an old-
fashioned manner, i.e., by the repetition of so-called
“apply operations.” In this paper, we renovate this
step by introducing the framework of the frontier-based
search: We propose algorithms for the top-down con-
struction of the ZDD representing a family of the lexi-
cographically largest subgraphs on πi.

2 Enumeration by Zero-Suppressed Binary Decision
Diagrams

A zero-suppressed binary decision diagram (ZDD) [16]
is directed acyclic graph that represents a family of
sets. As illustrated in Figure 2, it has the unique
source node1, called the root node, and has two sink
nodes 0 and 1, called the 0-node and the 1-node, respec-
tively (which are together called the constant nodes).
Each of the other nodes is labeled by one of the vari-
ables x1, x2, . . . , xn, and has exactly two outgoing edges,
called 0-edge and 1-edge, respectively. On every path
from the root node to a constant node in a ZDD, each
variable appears at most once in the same order. The
size of a ZDD is the number of nodes in it.

Every node v of a ZDD represents a family of sets
Fv, defined by the subgraph consisting of those edges
and nodes reachable from v. If node v is the 1-node
(respectively, 0-node), Fv equals to {{}} (respectively,
{}). Otherwise, Fv is defined as F0-succ(v) ∪ {S | S =
{var(v)} ∪ S′, S′ ∈ F1-succ(v)}, where 0-succ(v) and

1We distinguish nodes of a ZDD from vertices of a graph (or
a 1-skeleton).

361

CCCG 2018, Winnipeg, Canada, August 8–10, 2018

x4

x3x3

x2x2

x1

10

0-edge

1-edge

constant node

variable node

Figure 2: A ZDD representing {{1, 2}, {1, 3, 4},
{2, 3, 4}, {3}, {4}}.

1-succ(v), respectively, denote the nodes pointed by
the 0-edge and the 1-edge from node v, and var(v)
denotes the label of node v. The family F of sets
represented by a ZDD is the one represented by the
root node. Figure 2 is a ZDD representing F =
{{1, 2}, {1, 3, 4}, {2, 3, 4}, {3}, {4}}. Each path from the
root node to the 1-node, called 1-path, corresponds to
one of the sets in F.

The frontier-based search [11] constructs ZDDs in a
top-down manner, and it can be considered as one of
DP-like algorithms. We can modify DP algorithms for
recognition (i.e., testing whether a given instance sat-
isfies some property) to the frontier-based search algo-
rithm that construct a ZDD representing the family of
the yes-instances of the property. Thus, in Section 3,
we mainly focus on the method in the form of DP algo-
rithms. The key of the frontier-based search is to share
ZDD-nodes by simple “knowledge” of partially given in-
put, and not to traverse the same subproblems more
than once. In the context of DP, this means that “in-
ternal state” for partially given input should be small.
For more details, see [11].

3 Isomorphism Elimination

Let π be a permutation on {1, 2, . . . , n}, and � be a lex-
icographical order on x = (xn, xn−1, . . . , x1) ∈ {0, 1}n.
For any x, we can obtain π(x) = (xπ(n), xπ(n−1), . . . ,
xπ(1)), and thus we can define a family Fπ of lexico-
graphically larger x’s as Fπ = {x | x � π(x)} . Here, we
regard a vector x as a set {xi | xi = 1}, which implies
that Fπ can be regarded as a family of sets {xi1 , xi2 , . . .}
(⊆ {xn, xn−1, . . . , x1}) that are lexicographically larger
than their π-mapped set {xπ(i1), xπ(i2), . . .}. Given a
set of permutations AutG = {π1, π2, . . .}, by taking the
intersection of Fπ1

,Fπ2
, . . ., we can obtain a family of

sets each of which is the lexicographically largest on
AutG. By our algorithms described below, we can con-
struct ZDDs of Fπ1 ,Fπ2 , . . . in the top-down manner.
By combining the top-down construction of the ZDD for

e4e1

e3

e5

e2
e6

e7

e8

e9

e10

e11
e12

(0 , 1 , 1 , 1 , 0 , 0 , 1 , 0 , 0 , 1 , 1 , 1)

(1 , 0 , 1 , 1 , 0 , 0 , 0 , 1 , 1 , 0 , 1 , 1)
xπ(12)xπ(11)xπ(10)xπ(9) xπ(8)xπ(7)xπ(6)xπ(5) xπ(4)xπ(3)xπ(2)xπ(1)

x12 x11 x10 x9 x8 x7 x6 x5 x4 x3 x2 x1

xi’s are given on the fly

e4e1

e3

e5

e2
e6

e8

e9

e10

e11
e12

e7

x12 x11 x10 x9 x8 x7 x6 x5 x4 x3 x2 x1

Figure 3: Comparison of x and π(x), and propagation
graph Gπ.

spanning trees Fs, we can directly construct the ZDD
of their intersection Fs∩Fπ1

∩Fπ2
∩· · · in the top-down

manner [18].
Now, we discuss a DP algorithm for recognizing Fπ.

As illustrated in Figure 3, xn, xn−1, . . . , x1 are given
on-the-fly. In other words, xi is given in time slot i
(i = n, n − 1, . . . , 1). We compare x and π(x), and
output 1 if and only if x � π(x) holds.

The outline of our algorithm is as follows. The algo-
rithm consists of two phases. In Phase I, xn, xn−1, . . . ,
x1 are given on-the-fly. In the comparison of x and π(x),
xi is compared with xπ(i). In case i > π(i), since xπ(i)
will be given in the future, we store xi in the memory
until xπ(i) is given. On the other hand, in case i < π(i),
xπ(i) is already stored in the memory, and thus we can
compare xi and xπ(i). We transfer the result (denoted
as ci) of the comparison to Phase II. In case i = π(i),
we compare xi and xπ(i), and transfer ci := ‘=’ (i.e.,
equivalent) to Phase II.

In Phase II, the results of the comparisons C =
{cn, cn−1, . . . , c1} are given from Phase I. Note that
the given order of ci is not cn, cn−1, . . . , c1. The or-
der is defined by π. Let π′ denote the order of
ci’s given to Phase II: ci’s are given in the order of
cπ′(n), cπ′(n−1), . . . , cπ′(1). We also note that no ci may
be given in some time slot, and that two ci and ci′ may
be given in the same time slot. In Phase II, by checking
such ci’s, we conclude whether x � π(x) holds or not.

Now, we move to the details of the algorithm. In
Phase I, xi is stored until xπ(i) appears. At the
same time, xi is required to compare with xπ−1(i).
Thus, precisely speaking, xi is stored into the mem-
ory if i > min{π(i), π−1(i)} holds, and it is stored
until xmin{π(i),π−1(i)} is given. We define the propaga-
tion graph Gπ as the graph Gπ = (V,E) with V =
{xn, xn−1, . . . , x1} and (xi, xπ(i)) ∈ E. From Gπ, we
can estimate the memory consumption. (Note that the
ordering of the variables is fixed.)

Proposition 3 To store xi’s in Phase I, w bit is
enough, where w is the cut width of the propaga-

362

30th Canadian Conference on Computational Geometry, 2018

Algorithm 1: Preparation of Phases I and II

Input : n, π
Output: UpdateMemory[], cutwidth, Compare[]

1 Prepare an empty array until[]
2 for i := n, n− 1, . . . , 1 do
3 if i > min{π(i), π−1(i)} then // It is necessary to store xi in the memory

4 k :=

{
min{j | i ≤ until[j]} if ∃j s.t. i ≤ until[j]
(cardinality of until[]) + 1 otherwise

5 until[k] := min{π(i), π−1(i)} // M [k] should be kept until the level of xπ(i) or xπ−1(i)

6 position[i] := k // xi is stored in M [k]
7 UpdateMemory[i] := UpdateMemory[i] ∪ {(k, ‘store’)}
8 UpdateMemory[until[k]] := UpdateMemory[until[k]] ∪ {(k, ‘erase’)}

9 cutwidth := cardinality of until[]
10 for i := n, n− 1, . . . , 1 do
11 if i > π(i) then // xi is stored until xπ(i) is given
12 Compare[π(i)] := Compare[π(i)] ∪ {(i,position[i], ‘input’)}
13 else if i < π(i) then // xπ(i) is stored until xi is given
14 Compare[i] := Compare[i] ∪ {(i, ‘input’,position[π(i)])}
15 else // xi and xπ(i) are the same variable
16 Compare[i] := Compare[i] ∪ {(i, ‘input’, ‘input’)}

tion graph Gπ with respect to the variable ordering
xn, xn−1, . . . , x1.

Algorithm 1 summarizes the preparation necessary
for Phases I and II. If i > min{π(i), π−1(i)} holds in
Line 3, we plan to store the value of xi in M [k] and keep
M [k] until xmin{π(i),π−1(i)} is given (Lines 4–6). In Line
4, we assign the position k in the first-fit manner. That
is, we set the smallest j as k, where M [j] is not used
in time slot i. We use a variable-length array until[]
to indicate that M [k] should be kept until time slot
min{π(i), π−1(i)} (Lines 1 and 5). In Line 4, if no j
satisfies i ≤ until[j], we prepare a new position. In
Line 6, position[i] is used to indicate that xi is in M [k].
In Line 7 (respectively, Line 8), we record the plan for
storing xi in M [k] (respectively, erasing M [k]). These
plans UpdateMemory[] are actually executed in Lines
7–11 of Algorithm 2 (Phase I).

The plan for comparing xi and xπ(i) is recorded in
Lines 10–16, and it is actually executed in Lines 3–6
of Algorithm 2. Compare[i] is a set of the plans for
the comparison in time slot i. In case i > π(i) (Lines
11 and 12), we keep xi in M [position[i]] until xπ(i) will
be given in time slot π(i). Thus, we store our plan
in Compare[π(i)]. Plan (i,position[i], ‘input’) indicates
that ci (i.e., the comparison of xi and xπ(i)) can be
obtained by comparing M [position[i]] and ‘input’ (i.e.,
xπ(i)) in time slot π(i). In case i < π(i) (Lines 13 and
14), since we already have xπ(i) in M [position[π(i)]], we
can compare xi and xπ(i) in time slot i. Thus, we store

Algorithm 2: Phase I

Input : UpdateMemory[], cutwidth, Compare[],
x = (xn, xn−1, . . . , x1)

Output: (cn, cn−1, . . . , c1)
1 Prepare an array M [] of size cutwidth
2 for i := n, n− 1, . . . , 1 do
3 foreach (i′, p0, p1) ∈ Compare[i] do

4 m0 :=

{
xi if p0 = ‘input’
M [p0] otherwise

5 m1 :=

{
xi if p1 = ‘input’
M [p1] otherwise

6 ci′ :=





‘>’ if m0 > m1

‘<’ if m0 < m1

‘=’ if m0 = m1

7 foreach (k,behavior) ∈ UpdateMemory[i] do
8 if behavior = ‘store’ then
9 M [k] := xi // Store xi in M [k]

10 else // In case behavior = ‘erase’,
11 M [k] := 0 // erase M [k]

our plan in Compare[i]. Plan (i, ‘input’,position[π(i)])
indicates that ci is obtained by comparing ‘input’ in
time slot i (i.e., xi) and M [position[π(i)]]. Otherwise,
since xi and xπ(i) are the same variable, we can com-
pare xi and xπ(i) in time slot i. We store our plan
(i, ‘input’, ‘input’) in Compare[i], where the plan in-

363

CCCG 2018, Winnipeg, Canada, August 8–10, 2018

Algorithm 3: Phase II

Input : (cn, cn−1, . . . , c1) and a permutation π′

Output:

{
1 : if x � π(x)
0 : otherwise

1 (is, cis) := (∞, ‘=’) // Set the initial state
2 for j := n, n− 1, . . . , 1 do
3 i′ := π′(j)
4 if i′ > is then

// The position of ci′ is higher than that of cis
5 if ci′ 6= ‘=’ then
6 (is, cis) := (i′, ci′)

7 else
// The position of cis is higher than that of ci′

8 if cis = ‘=’ and ci′ 6= ‘=’ then
9 (is, cis) := (i′, ci′)

10 if cis = ‘>’ or ‘=’ then
11 Output 1 // x � π(x) holds

12 else
13 Output 0 // x 6� π(x) holds

dicates that ci is obtained by comparing ‘input’ and
‘input’ (i.e., both are xi’s) in time slot i.

Algorithm 2 executes the plans in Compare[i] and
UpdateMemory[i] in each time slot i. In Line 6, ci′ =
‘>’ means xi′ > xπ(i′). The notions ci′ = ‘<’ and ‘=’
are also defined similarly.

Algorithm 3 describes Phase II. Recall that cn, cn−1,
. . . , c1 may not be given in this order. For convenience,
we introduce permutation π′ denoting that ci’s are given
in the order of cπ′(n), cπ′(n−1), . . . , cπ′(1). (This ordering
is implicitly given by Lines 2 and 3 of Algorithm 2, and
thus, it is just for convenience, and we will avoid it later
by combining Phases I and II.)

Suppose i′ = π′(j) as in Line 3 of Algorithm 3. At
this moment, we are checking ci′ . Note that some of
the already checked cπ′(n), cπ′(n−1), . . . , cπ′(j) may be in
the higher position than ci′ , and others may be in the
lower position than ci′ . To avoid storing all of them,
we use (is, cis) as an internal state. In case cis = ‘>’
(respectively, ‘<’), all of the already checked ck’s sat-
isfying k > is are ‘=’ and already checked cis is ‘>’
(respectively, ‘<’). In this case, if ck is in the lower po-
sition than cis (i.e., k < is), it does not affect the result
in the comparison of x and π(x). In case cis = ‘=’, all
of the already checked ck’s are ‘=’, and thus, they do
not affect the result in the comparison of x and π(x).
In Line 1 of Algorithm 3, we set (is, cis) := (∞, ‘=’) as
an initial state. (is =∞ means no ck’s are checked.)

By checking ci′ , we update (is, cis): If ci′ is in the
higher position than cis (i.e., i′ > is holds), ci′ is prior
to cis . Thus, in case ci′ is not ‘=’, we store (i′, ci′) as

a new state (Lines 4–6). If cis is in the higher position
than ci′ , cis is prior to ci′ . Thus, only in case cis is ‘=’
and ci′ is not ‘=’, we have a chance to store (i′, ci′) as
a new state (Lines 7–9). After all ci′ are checked, we
can conclude whether x � π(x) holds or not according
to the final cis (Lines 10–13).

Now, we combine Phases I and II. Line 1 of Algo-
rithm 3 is an initialization of state (is, cis), and it should
be inserted in the beginning of Algorithm 2. Lines 4–9 of
Algorithm 3 receive ci′ , and thus they should be inserted
just after Line 6 in the foreach-loop of Algorithm 2. As
we mentioned above, we do not need π′ since i′ in Al-
gorithm 3 is given as the i′ in Algorithm 2. Lines 10–13
of Algorithm 3 decide the output according to the final
cis , and thus they should be inserted just after the last
part of Algorithm 2. Given xn, xn−1, . . . , x1 on-the-fly,
by Algorithm 1 and Algorithm 2+3 (i.e., combined ver-
sion of Algorithms 2 and 3), we can conclude whether
x � π(x) holds or not.

In the frontier-based search, we construct ZDDs in a
top-down manner. Each node of the resulting ZDD has
its internal state (is, cis) and M []. The root node of the
resulting ZDD is prepared with (is, cis) := (∞, ‘=’). We
do not care about M [] since we are not given any input
xi. The label of the root node is xn, which indicates
that we are checking xn. For each i in {n, n− 1, . . . , 1}
and for each node v labeled xi, we try both of the cases
xi = 0 and 1. In case xi = 0, from node v, we prepare
node 0-succ(v). The internal state of 0-succ(v) can be
obtained by applying Lines 3–11 of Algorithm 2 (com-
bined with Lines 4–9 of Algorithm 3) to the state of v.
We can perform similarly in case xi = 1. If two nodes
have the same label xi and the same internal state, by
following the definition of ZDD, we merge the two nodes.
From this observation, we can estimate the upper bound
on the size of the resulting ZDD. Furthermore, since the
execution of Lines 3–11 of Algorithm 2 and Lines 4–9
of Algorithm 3 for each node can be done in constant
time, we can also evaluate the time complexity.

Theorem 4 The size of the resulting ZDD is O(n22w),
where w is the cut width of the propagation graph Gπ
with respect to the variable ordering xn, xn−1, . . . , x1.
The computation time for the construction is propor-
tional to the size of the resulting ZDD.

4 Experimental Results

Experimental results are given in Tables 1 and 2. The
computation time is measured on Intel(R) Xeon(R) E7-
2830 2.13GHz, 2TB Memory, Red Hat Enterprise Linux
Server release 6.6.

In table 1, the developments of 5 Platonic solids and
5 out of 13 Archimedean solids (a cuboctahedron, a
truncatedtetrahedron, a truncatedoctahedron, a trun-
catedcube, and a rhombicuboctahedron) are enumer-

364

30th Canadian Conference on Computational Geometry, 2018

Table 1: Summary of the results for Platonic and Archimedian solids.

Computation
Time (s)

Required
Memory (MB)

Polyhedron |E| |Aut| #

(
Labeled
Developments

)
#Developments Conven-

tional Proposed
Conven-
tional Proposed

Tetrahedron 6 24 16 1 0.01 0.00 30 2
Cube 12 48 384 11 0.02 0.01 30 2

Octahedron 12 48 384 11 0.02 0.01 30 2
Dodecahedron 30 120 5,184,000 43,380 9.10 0.54 529 5

Icosahedron 30 120 5,184,000 43,380 5.73 0.51 282 10
Cuboctahedron 24 48 331,776 6,912 0.35 0.06 36 3

Truncatedtetrahedron 18 24 6,000 261 0.03 0.01 30 2
Truncatedoctahedron 36 48 101,154,816 2,108,512 75.59 2.67 11,192 23

Truncatedcube 36 48 32,400,000 675,585 133.63 2.10 2,078 35
Rhombicuboctahedron 48 48 301,056,000,000 6,272,012,000 > 3 H 1,913.97 11,182

Table 2: Summary of the results for d-dimensional hypercubes.

Computation
Time (s)

Required
Memory (MB)

d |E| |Aut| #

(
Labeled
Developments

)
#Developments Conven-

tional Proposed
Conven-
tional Proposed

2 4 8 4 1 0.02 0.00 36 2
3 12 48 384 11 0.10 0.01 36 2
4 24 384 82,944 261 3.00 0.09 150 2
5 40 3,840 32,768,000 9,694 1166.52 3.96 36,036 10
6 60 46,080 20,736,000,000 502,110 > 3 H 478.39 > 140,000 208

ated. The second column |E| in Table 1 gives the num-
ber of edges in the 1-skeleton of a polyhedron. The
third column |Aut| gives the number of automorphisms
of a polyhedron. The fourth and fifth columns give the
number of labeled and nonisomorphic (i.e., unlabeled)
developments, respectively. For example, as for a rhom-
bicuboctahedron, we have 301,056,000,000 labeled de-
velopments. By checking the graph isomorphism for
all of these labeled developments among 48 automor-
phisms, we obtained 6,272,012,000 nonisomorphic de-
velopments. The size of the required memory is sum-
marized in the eighth and ninth column.

As the conventional method, we used the algorithm
in [8] combined with the frontier-based search [11] for
enumerating labeled developments. The difference be-
tween the conventional and our proposed methods is
as follows: The algorithm in [8] was proposed before
the era of the frontier-based search algorithms. Thus
it is necessary to construct the ZDDs of Fπ1 ,Fπ2 , . . .
completely and then make an intersection of the ZDDs.
On the other hand, in our proposed method, we can
directly construct the ZDD of the intersection with-
out constructing the intermediate ZDDs of Fπ1

,Fπ2
,

The proposed method requires less memory than the
conventional method in many cases.

In table 2, the developments of d-dimensional hyper-
cubes are enumerated. Similarly to the case of tak-
ing dual of a 3-dimensional polyhedron, we prepare the
facet-adjacency graph whose vertices and edges cor-
responds to the (d − 1)-dimensional hypercubes and
their adjacency of the original hypercube. The facet-
adjacency graph of d-dimensional hypercube is a com-
plete d-partite graph with 2d vertices and 4

(
d
2

)
edges.

The automorphism Aut has 2d
(
d
2

)
permutations. Ta-

ble 2 tells that the proposed method is more than 300
times faster and 3,000 times less memory than the con-
ventional method in case d = 5. As for the case d ≥ 6,
we believe the speed-up ratio is more than 300.

5 Conclusion

We have address the issue of the isomorphism elimina-
tion by proposing the top-down construction method
for the ZDDs of lexicographically largest instances. Ex-
perimental results show that the proposed method is
more than 300 times faster and 3,000 times less mem-
ory than the conventional method in the best case. Our
algorithms are applicable to many other enumeration
problems with eliminating isomorphic instances.

365

CCCG 2018, Winnipeg, Canada, August 8–10, 2018

References

[1] T. J. N. Brown, R. B. Mallion, P. Pollak, B. R. M. de
Castro, J. A. N. F. Gomes, The number of spanning
trees in buckminsterfullerene, Journal of Computational
Chemistry, vol. 12, pp. 1118–1124, 1991.

[2] T. J. N. Brown, R. B. Mallion, P. Pollak, A. Roth,
Some Methods for Counting the Spanning Trees in La-
belled Molecular Graphs, examined in Relation to Cer-
tain Fullerenes, Discrete Applied Mathematics, vol. 67,
pp. 51–66, 1996.

[3] R. E. Bryant, Graph-based algorithms for Boolean func-
tion manipulation, IEEE Transactions on Computers,
vol. C-35, pp. 677–691 (1986).

[4] F. Buekenhout, M. Parker, The Number of Nets of the
Regular Convex Polytopes in Dimension ≤ 4, Discrete
Mathematics, vol. 186, pp. 69–94, 1998.

[5] E. D. Demaine, J. ORourk, Geometric Folding Algo-
rithms: Linkages, Origami, Polyhedra, Cambridge Uni-
versity Press (2007).

[6] M. Gardner, Mathematical Games: Is It Possible to Vi-
sualize a Four-Dimensional Figure?, Scientific American,
214, pp. 138–143, 1966.

[7] C. Hippenmeyer, Die Anzahl der inkongruenten ebenen
Netze eines regulären Ikosaeders, Elemente der Mathe-
matik, vol. 34, pp. 61–63, 1979.

[8] T. Horiyama and W. Shoji, Edge Unfoldings of Platonic
Solids Never Overlap, In Proc. of the 23rd Canadian
Conference on Computational Geometry (CCCG 2011),
pp. 65–70, 2011.

[9] T. Horiyama and W. Shoji, The Number of Different Un-
foldings of Polyhedra, In Proc. of the 24th International
Symposium on Algorithms and Computation (ISAAC
2013), Lecture Notes in Computer Science, 8283, pp.
623–633, Springer-Verlag, 2013.

[10] M. Jeger, Über die Anzahl der inkongruenten ebenen
Netze des Würfels und des regulären Oktaeders, Ele-
mente der Mathematik, vol. 30, pp. 73–83, 1975.

[11] J. Kawahara, T. Inoue, H. Iwashita, and S. Mi-
nato. Frontier-based Search for Enumerating All Con-
strained Subgraphs with Compressed Representation.
IEICE Transactions on Fundamentals of Electronics,
Communications and Computer Sciences, vol. E100-A,
no. 9, pp. 1773–1784, 2017.

[12] G. Kirchhoff, Über die Auflösung der Gleichungen, auf
welche man bei der Untersuchung der linearen Verteilung
galvanischer Ströme gefuhrt wird, Annalen der Physik
und Chemie, 72, pp. 497–508, 1847.

[13] D. E. Knuth, The Art of Computer Programming, vol.
4, fascicle 1, Bitwise Tricks & Techniques, Binary Deci-
sion Diagrams, Addison-Wesley (2009).

[14] E. M. Luks, Isomorphism of graphs of bounded valence
can be tested in polynomial time, Journal of Computer
and System Sciences, 25 (1), pp. 42–65, 1982.

[15] A. Lubiw, Some NP-complete problems similar to graph
isomorphism, SIAM Journal on Computing, 10 (1), pp.
11–21, 1981.

[16] S. Minato. Zero-Suppressed BDDs for Set Manipula-
tion in Combinatorial Problems. In Proc. of the 30th
ACM/IEEE Design Automation Conference (DAC’93),
pp. 272–277, 1993.

[17] G. Pólya, Kombinatorische Anzahlbestimmungen für
Gruppen, Graphen und chemische Verbindungen, Acta
Mathematica, 68 (1), pp. 145–254, 1937.

[18] TdZdd: A top-down/breadth-first decision dia-
gram manipulation framework, https://github.com/

kunisura/TdZdd

[19] P. D. Turney, Unfolding the Tesseract, Journal of
Recreational Mathematics, 17 (1), pp. 1–16, 1984–85.

366

CCCG 2018, Winnipeg, Canada, August 8–10, 2018

On error representation in exact-decisions number types

Martin Wilhelm∗

Abstract

Accuracy-driven computation is a strategy widely used in
exact-decisions number types for robust geometric algo-
rithms. This work provides an overview on the usage of
error bounds in accuracy-driven computation, compares
different approaches on the representation and computa-
tion of these error bounds and points out some caveats.
The stated claims are supported by experiments.

1 Introduction

In Computational Geometry, many algorithms rely on
the correctness of geometric predicates, such as orienta-
tion tests or incircle tests. In contrast to various other
areas of computing, a small error in computation often
does not imply a small error in the result. Instead, algo-
rithms may fail, produce drastically wrong output, or no
output at all if a predicate returns the wrong result [8].
To mitigate the consequences of this problem, exact-

decisions number types have been developed, based on
the concept of accuracy-driven-computation and the Ex-
act Geometric Computation Paradigm [12]. Examples
for such number types are leda::real from the LEDA
library [2], Core::Expr [3, 14] and Real_algebraic [4].
They store the expressions involved in directed acyclic
graphs, called expression dags, and maintain approxima-
tions and error bounds for each subexpression. When
a decision has to be made, the accuracy of the subex-
pressions is increased until the value can be separated
from zero or value can be guaranteed to be zero through
a separation bound [1]. This concept will be explained
in slightly more detail in Section 2.1.

Approximations are usually stored in arbitrary-preci-
sion floating-point number types, or short, bigfloats. In
both leda::real and Real_algebraic, error bounds
are stored in a bigfloat as well, in form of an absolute
error bound. In Core::Expr, error bounds are stored as
a combination of upper and lower bound for the most
significant bit of the value.
In this paper we will show advantages and disadvan-

tages of different error bound representation forms for
accuracy-driven computation. In Section 2, various pos-
sibilities are evaluated and sensible choices for an imple-
mentation are proposed. We present an experimental

∗Institut für Simulation und Graphik, Otto-von-Guericke-
Universität Magdeburg, martin.wilhelm@ovgu.de

comparison for these choices in Section 3 based on the
number type Real_algebraic.

2 Error Representation

There are more aspects to the representation of an error
bound than might be apparent at first glance. One
natural way to represent an error is by storing a value
edir, such that x̂ − edir ≤ x ≤ x̂ + edir, if x represents
the real value of the expression and x̂ its approximation.
We call this the direct error representation.

Since an error bound can get quite small, a direct rep-
resentation must be stored in a non-primitive data type,
most commonly in a bigfloat. Computations involving
bigfloats are expensive. Another natural way of storing
an error bound is to store an exponent elog, such that
x̂ − 2elog ≤ x ≤ x̂ + 2elog . It then suffices to store elog
as a primitive integer data type, such as long. We call
this the logarithmic representation.

The obvious advantage of a direct over a logarithmic
value is that the direct representation can be much more
precise than the logarithmic one. If, for example, a
large sum is computed with error e at the m operands,
error propagation with a direct representation leads to
an error bound of me (assuming exact operations). A
logarithmic integer bound, on the other hand, increases
by at least 1 for each addition. So error propagation
leads to an error bound of 2log(e)+m if the additions are
processed sequentially.
To keep the bound small while avoiding bigfloats, a

third approach on error representation would be to store
a logarithmic error bound in a floating-point primitive,
such as double. While not as precise as the direct rep-
resentation, the error bound can be increased in smaller
steps, avoiding an exponential increase as in the pre-
vious example. In contrast to the error representation
as an integer value, it might also enable more elabo-
rate evaluation strategies, such as proposed by van der
Hoeven [9].
There are various other ways to represent an error.

While all three methods above store the radius of an
error interval, the interval can be stored directly through
an upper and lower bound, such as in Core::Expr. Fur-
thermore one can imagine various combined approaches,
where the representation can change based on the size
of the error. In this paper, however, we will focus on
the three variants proposed above. We also only con-
sider absolute error bounds, although there are good

367

30th Canadian Conference on Computational Geometry, 2018

reasons to compute the bound relative to the size of
the approximation or even combine an absolute and a
relative error [7].

2.1 Errors in accuracy-driven computation

We introduced three different ways of representing an
error bound in a number type. The complexity rises if we
consider different combinations of the approaches during
the computation process. The usefulness of error bound
representations may change depending on the current
task. So it could be advantageous to switch between
different representations during the computation.
In this section we will shortly describe the con-

cept of accuracy-driven computation as implemented in
Real_algebraic and the usage of error bounds within.
Accuracy-driven computation was first introduced by
Yap and Dubé under the name “precision-driven com-
putation” [13]. It describes a lazy approach on exact-
decisions computation. Computations are not done di-
rectly on invocation, but stored in an arithmetic expres-
sion dag, i.e., a rooted ordered directed acyclic graph
whose nodes are either a floating-point number or an
operator with its operands as children.
Once a decision has to be made, the computation

is started. Since every decision can be translated to
the decision, whether a value is positive, negative or
zero, it is sufficient to determine the sign of the root
node. This can be done by using a separation bound,
i.e., a number sep(E) for an expression E, such that
| value(E)| > 0⇒ | value(E)| > sep(E). If sep(E) is not
part of the error interval of an approximation, then the
sign of the approximation is correct.
The strategy in accuracy-driven computation is to

start with a desired accuracy q at a (root) node, com-
pute the accuracy needed at its children to guarantee a
respective error bound, and recurse on the children with
the new desired accuracies. To determine whether an ex-
pression E is zero, an accuracy of qmax = blog(sep(E))c
is needed. If value(E) > 0, however, a separation is
usually possible with a much larger error as soon as zero
is not contained anymore in the error interval. So usually
q is chosen to be a small negative number1 in the begin-
ning, with an exponential increase until |q| > |qmax|.

Before the top-down computation is started, an initial
value for each node must be computed bottom-up, i.e.,
with a small fixed precision. This is necessary, since
sometimes an estimate for the value of a child node is
needed to compute the required accuracy. During this
process, an accuracy-driven-computation for a subex-
pression may be invoked, if the value of a divisor or the
operand of a root needs to be separated from zero.

Error bounds mainly occur in three different places:
1We will refer to accuracies as “small” if their absolute value is

small, although they are usually negative numbers. We fear that
the opposite notion would be even more misleading.

1. In each node a current error bound is stored to
prevent recomputations of approximations that are
already sufficiently accurate.

2. A desired error bound is computed and propagated
top-down through the expression dag.

3. An initial error bound for each node is computed
bottom-up.

In Real_algebraic, a direct error bound is used in the
first and the third case, while the top-down propagation
is done with a logarithmic integer error bound. The
number type leda::real uses direct error bounds in
all three cases, whereas Core::Expr uses a logarithmic
integer bound in the second and a logarithmic integer
interval, i.e., a combination of upper and lower bound
in the third case. Both representations are saved inside
each node.

The initial bottom-up computation is done with small
precision. Bigfloat operations are less expensive then,
whereas the influence of a weak error bound is increased.
A direct error bound is therefore a sensible choice for this
part of the algorithm. In contrast, the main accuracy-
driven parts of the computation require high precisions,
causing the maintenance of a direct error bound to be
too expensive compared to its benefits [6].

2.2 Switching between direct and logarithmic bound

When parts of the algorithm are computed with differing
error representations, the algorithm must switch between
those representations. Since floating-point data types are
stored as a mantissa and an exponent, computing a direct
bound edir from a logarithmic bound elog can be done
fast and without loss of precision by setting the exponent
of edir to elog, i.e., edir = Φ(elog) := 2elog . For the reverse
process, elog must be computed as elog = Φ̂(edir) :=
dlog(edir)e, losing some precision in the progress. In
particular, it cannot be expected that edir = Φ(Φ̂(edir)).
However, we should expect elog = Φ̂(Φ(elog)) to be true.

As previously mentioned, computing Φ is cheap. What
about Φ̂? The mantissa m and exponent b of a floating-
point value x are usually chosen, such that m ∈ [0.5, 1),
b ∈ Z and x = m2b. So it seems natural to choose
Φ̂(x) = b as a cheap conversion function, as done in
Real_algebraic.
However, there is a significant drawback to this ap-

proach. If x is a power of two, Φ̂ overestimates dlog(x)e
by one, since then m = 0.5. While this does not affect
overall correctness of the algorithm and the case seems
very special, implementing Φ̂ like that can lead to mas-
sive drops in performance, since then elog 6= Φ̂(Φ(elog))
for every value of elog.
After an error bound is guaranteed by the accuracy-

driven computation, the stored error is set to this error
bound. If later on the same error bound is needed for

368

CCCG 2018, Winnipeg, Canada, August 8–10, 2018

the respective node, the algorithm checks whether a
recomputation is necessary. If the representations of the
stored bound and the requested bound differ, as present
in Real_algebraic, the check fails and the computation
needs to be executed again.
A drastic example for this effect arises if a power is

computed through repeated squaring. Each node gets
recomputed along each of the 2n paths from the root to
the leaf, leading to an exponential increase in running
time (cf. Figure 1). For x =

√
13 +

√
17 and n = 15

operations, Real_algebraic takes 87.84 seconds with
the “inexact” implementation to evaluate the expression
up to an accuracy of q = 50000, compared to about 0.01
seconds with an “exact” one2,3. While in this example
the problem can be avoided by switching to a topological
evaluation order (see Mörig et al. [5]), it persists if checks
need to be repeated in the main algorithm.

∗ ∗ ∗ x

Figure 1: The arithmetic expression dag resulting from
computing x2

n

through repeated squaring. There are 2n

different paths from the topmost multiplication to the
common leaf x. If recomputation checks fail due to con-
version errors, the evaluation time increases drastically.

If the conversion should be exact, considerable effort
needs to be done. We need to check, whether the value
of the mantissa is exactly 0.5 and, if so, decrease the
result by one. When using mpfr bigfloats for example,
this changes the one-liner

mpfr_exp_t ceil_log2 (const mpfr_t& a) {
re turn mpfr_get_exp (a) ;

}

to the more elaborate method

mpfr_exp_t ceil_log2 (const mpfr_t& a) {
mpfr_exp_t e = mpfr_get_exp (a) ;
mpfr_t rop ; mpfr_init (rop) ;
mpfr_div_2si (rop , a , e , MPFR_RNDA) ;
i f (mpfr_cmp_d (rop , 0 . 5) == 0) −−e ;
mpfr_clear (rop) ;
r e turn e ;

}

In the second method, the mantissa of the bigfloat
is accessed, which can potentially be large. For large
computations it can be expected to be significantly slower
than the first method. If the undesirable effects described
above should be avoided, it may therefore prove more
efficient to avoid transformations between different error
representations entirely.

2We use the term “exact” in this context to express that the
method correctly implements the function Φ̂(edir) := dlog(edir)e.

3Specifications on the test configuration can be found at the
beginning of Section 3.

Note that even then the conversion function is widely
used during the computation. Approximations of the
value of a (sub)expression must be stored in bigfloats.
In accuracy-driven computation, often a bound for the
magnitude of the result is needed, which is then com-
puted by the above function. Since, in contrast to error
transformation, a worse bound for the magnitude only
causes a small difference in performance, it is reasonable
to use the inexact, but fast transformation method in
those cases.

2.3 Logarithmic floating-point error bounds

In the previous section, difficulties are pointed out that
may arise when switching between a direct and a log-
arithmic error representation. In contrast, switching
between a floating-point representation and an integer
representation for logarithmic errors is cheap and natu-
ral. This raises the question whether the fixed precision
computations can be done more efficiently through a
logarithmic floating-point bound.
Most of the computations involved in error propaga-

tion with a fixed precision can be broken down to the
sum of two or three errors. So with a logarithmic bound
we have to find a value c for two error representations a
and b, such that 2c ≥ 2a + 2b. With an integer value the
error bound doubles with each such summation, since
this is the smallest step in which the bound can be
increased. So we have c = max(a, b) + 1.

If a, b, c are floating-point values, we may find a better
bound by setting c = max(a, b) + log(1 + 2−|a−b|), where
we have to make sure that each operation is rounded up
(towards infinity). With repeated additions, the floating-
point error bound increases much more slowly than the
integer bound, although computing the logarithm in
each step makes it also a lot more expensive.
Can the error propagation during accuracy-driven

computation benefit from more precision in the expo-
nent? Surprisingly, the answer is no, at least not directly.
When deciding which accuracy is needed at the child
nodes to guarantee a certain accuracy at the parent node,
up to three error terms need to be balanced. Besides
the desired accuracies of the one or two children, the
precision at which the operation at the parent node is
computed must be chosen. A higher accuracy at the
child nodes can then be used to reduce the precision
needed for the bigfloat operation.

This decision is done locally, i.e., the parent node does
neither know of what size, nor of which form its subtrees
are. Without this information it cannot be decided to
what extent the precision of the operation needs to be
increased in order to require a smaller overall accuracy.
So if the decision should be made locally, the gain from
switching to a floating-point exponent is marginal and
will probably not cover the additional costs associated
with it.

369

30th Canadian Conference on Computational Geometry, 2018

Nevertheless, benefitting may be possible if a global
error propagation strategy is implemented. The overall
accuracy needed could then be kept small through bal-
ancing of error terms, which in turn has the potential
to drastically improve the performance of the number
type, especially for unbalanced expression dags [9, 10].

2.4 Errors and separation bounds

During the accuracy-driven part of the computation, it is
beneficial to convert subgraphs to a single bigfloat node if
their approximation is already exact, i.e., if their error is
zero. This is especially useful if the value of a subgraph is
found to be zero. If after a computation the approxima-
tion of a node is close to zero, Real_algebraic computes
a separation bound for this node and checks whether the
true value can be declared zero. An approximation is
considered close to zero if zero is part of its error interval.
If the error bound is bad, this check happens (and

fails) more often. This can have significant consequences
for the performance, since for computing the separation
bound of a subexpression, the whole subtree must be
traversed. Existing bounds for the child nodes cannot
be used, since they may misrepresent the algebraic de-
gree of the expression if common subexpressions exist
(cf. Figure 2) and a higher algebraic degree drastically
worsens the separation bound.

∗
+

3
√

5

4
+

d = 2

d = 2

d = 2

Figure 2: The two children of the root node share a
common subexpression with a square root operation.
Although both subexpression at the child nodes have
algebraic degree two, the algebraic degree of the full
expression is still only two.

In addition, the separation bound cannot be assumed
to stay the same during the whole computation, since
subgraphs may be converted to bigfloat nodes. While
a previous separation bound stays valid after such a
conversion, in some cases a much better bound can
be computed, e.g. if roots can be eliminated. So it is
advisable to keep the bound flexible.
To solve this problem, once computed separation

bounds can be cached together with a global times-
tamp. Whenever a bigfloat conversion happens, all pre-
vious timestamps get invalidated. The advantage of this
method is an easy implementation without much over-
head, leading to good results, if the usage of the number

type is limited to few large expressions. However, if
many different usages of the number type exist at the
same time, a separation bound might get invalidated
by a bigfloat conversion in a completely disjoint expres-
sion dag. An alternative approach based on topological
evaluation which leads to similar results can be found
in [11].

3 Experimental Results

The experiments are performed on an Intel Core i5 660,
8GB RAM, under Ubuntu 17.10. For Real_algebraic
we use Boost interval arithmetic as floating-point-filter
and MPFR bigfloats for the bigfloat arithmetic. The
code is compiled using g++ 7.2.0 with C++11 on opti-
mization level O3 and linked against Boost 1.62.0 and
MPFR 3.1.0. Test results are averaged over 25 runs each.
The variance for each data point is negligible.

We compare three main strategies with different rep-
resentations for (a) storing, (b) error propagation in
accuracy-driven computation and (c) fixed precision eval-
uation (cf. Section 2.1):

1. The default strategy of Real_algebraic, i.e., direct
error representation for (a) and (c) and logarithmic
integer representation for (b), named def.

2. Logarithmic integer representation for all three parts
(a), (b) and (c), named lgi.

3. Logarithmic floating-point representation for (a)
and (c), logarithmic integer representation for (b),
named lgd.

Note, that in each case we use a logarithmic integer
representation for (b). It has already been shown that
direct error bounds are very expensive compared to the
additional benefit [6]. As described in Section 2.3, ad-
vanced strategies would be needed for error propagation
to benefit from a logarithmic floating-point represen-
tation. While without such strategies, no interesting
results are to be expected, implementing them heavily
reduces comparability to the other approaches presented
in this paper. Therefore we leave it aside for future work.

3.1 Comparison of separation bound strategies

First, we show the effects of the interactions between
error bound representation and the computation of sep-
aration bounds, as described in Section 2.4. We test for
the equality

Fn =
φn − φ̄n√

5
,

where Fn represents the n-th Fibonacci number and
φ = 1 − φ̄ = 1+

√
5

2 . We compute both sides of the
equation in a simple loop as in the code below.

370

CCCG 2018, Winnipeg, Canada, August 8–10, 2018

template <c l a s s NT>
bool fibonacci_test (const i n t n) {

NT sqrt5 = sqrt (NT (5)) ;
NT phi = (NT (1) + sqrt5) / NT (2) ;
NT phibar = (NT (1) − sqrt5) / NT (2) ;

NT phiN = phi ; NT phibarN = phibar ;
NT fib0 = 0 ; NT fib1 = 1 ; NT tmp ;

f o r (i n t i = 1 ; i < n ; i++){
tmp = fib1 ; fib1 += fib0 ; fib0 = tmp ;
phiN ∗= phi ; phibarN ∗= phibar ;

}

NT res = NT (1) /sqrt5 ∗ (phiN−phibarN) ;
r e turn fib1 == res ;

}

We show running times for each of the three aforemen-
tioned strategies with and without a cached separation
bound computation (indicated by an additional s).

def lgi lgd defs lgis lgds

0

5

10

15

0.
25

0.
27

0.
25

0.
25

0.
2

0.
221.
47 2.
06

1.
7

1.
47

0.
84

1.
06

8.
87

12
.3
8

10
.2
3

8.
42

3.
91 5.

41

T
im

e
(s

ec
on

ds
)

n = 2000
n = 4000
n = 8000

Figure 3: Results for fibonacci_test with different
strategies. A logarithmic error bound increases the run-
ning time due to repeated computation of separation
bounds. If the separation bounds are cached, the running
time can be significantly decreased.

The results are shown in Figure 3. Representing the
error logarithmically has a negative impact on the per-
formance due to a heavy increase in separation bound
computations. For n = 8000, a separation bound com-
putation is started 1149 times with def compared to
29092 and 13939 times with lgi and lgd. When the cost
for those computations can be reduced due to caching,
the logarithmic error bounds outperform the direct rep-
resentation. Note that the logarithmic floating-point
representation ranges in between the other two represen-
tations in each scenario, which underlines its character
of slightly more precision for slightly more overhead
compared to a logarithmic integer representation.

3.2 Geometric problems

In the previous section a first impression of the behavior
of the three different representations is obtained. In
this section we test this impression against more real-
istic geometric problems. For this, we recreate several
experiments from Mörig et al. [4].

Figure 4: Examples from the test data for the delau-
nay triangulation and intersection points computation.
Three types of data are shown: A point cloud with 50%
of its points on a union of disks (left), a random collec-
tion of short segments (middle) and a random collection
of segments with endpoints on a grid (right).

We compare the three strategies introduced at the
beginning of Section 3. In none of the experiments, a
timestamped separation bound computation significantly
worsened the performance. So we show only results with
a timestamped computation enabled. Instead we show
the impact of an exact implementation of ceil_log2
(cf. Section 2.2), indicated by an x.

We first compute the delaunay triangulation of a set
of 20000 points, of which between 50% and 100% lie on
a union of disks with no points inside (cf. Figure 4).

def lgi lgd defx lgix lgdx

0.2

0.4

0.6

0.8

1

0.
22

0.
19

0.
2

0.
41

0.
32

0.
34

0.
27

0.
23

0.
25

0.
54

0.
41

0.
42

0.
31

0.
26

0.
28

0.
65

0.
47

0.
5

T
im

e
(s

ec
on

ds
)

50% 75% 100%

Figure 5: Experimental results for the computation
of a delaunay triangulation on 20000 random points
with different percentages of them distributed along the
boundary of a union of disks and none inside. More
degeneracies lead to more performance gain through
a logarithmic error bound. An exact computation of
ceil_log2 causes an increase in running time in all
cases.

The results are shown in Figure 5. The data shows a
small performance gain by switching from a direct error
representation to a logarithmic one. Using exact trans-
formations between bigfloats and integer types shows
to be very expensive in all cases, but even more so in
the case of direct error representation. In lgi and lgd
errors are not transformed through this method. Still,
both experience an increase in running time, since the
computation of the magnitude of an approximation is
affected by this change as well (cf. Section 2.2). It can
be reasoned that for lgi and lgd the inexact transfor-
mation can be used, since the problems from Section 2.2

371

30th Canadian Conference on Computational Geometry, 2018

are solved by design. While not fully comparable, the
difference between defx and lgi is worth noting.
In Figure 6 the results for the computation of inter-

section points on different test data are shown. The
test data consists of long or short random segments, seg-
ments with endpoints on a grid and segments which are
parallel to the axes (cf. Figure 4). The intersection tests
are performed with homogenous coordinates. Results for
Cartesian coordinates are not shown, but look similar.
The same number of segments as in Mörig et al. are
used in the four scenarios to make the data somewhat
comparable.

def lgi lgd defx lgix lgdx
0

0.5

1

1.5

2

2.5

3

0.
3

0.
31

0.
3

0.
3

0.
3

0.
3

0.
24

0.
24

0.
24

0.
24

0.
25

0.
240.

47

0.
36

0.
4

1.
27

0.
72

0.
77

0.
7

0.
6

0.
64

1.
95

1.
12 1.
18

T
im

e
(s

ec
on

ds
)

long (700) short (2500) grid (500) axis (700)

Figure 6: Results for computing the intersection points
of segments in various constellations. Neither the form of
error representation, nor the exactness of the ceil_log2
operation have an influence on the running time for
random long or short segments. If segments are placed
on a grid or parallel to the axes, a logarithmic error
bound leads to better results. Whether the ceil_log2
operation is performed exactly has significant influence
on the performance in these cases.

For long or short random segments, no difference be-
tween the three forms of error representation is apparent.
Because of the random distribution of the segments, the
data sets have almost no degeneracies. Therefore almost
all relevant signs can be decided through a floating-point
filter, without invoking the accuracy-driven computation
in the first place.
For segments on a grid or axis-parallel segments, sig-

nificant differences are present between different error
representations, especially if the transformation between
representations is exact. In these cases lots of degen-
eracies occur, causing the computation to switch to
accuracy-driven computation more often.
Summarizing the results, in each geometric experi-

ment the logarithmic representation performed at least
as well as the direct representation, while avoiding pos-
sible drawbacks due to a faulty error conversion. The
more degeneracies occur, the larger is the gain compared
to other strategies. Switching to an exact implementa-
tion of ceil_log2 is too expensive to be a reasonable
alternative for solving the problems resulting from an
inexact transformation.

4 Conclusion

Choosing a representation model for error bounds in
accuracy-driven computation means balancing a tradeoff
between the quality of the bound and the efficiency of its
computation. Our results suggest that in most cases it
is not worth the effort to compute a better error bound
to increase the overall efficiency of the number type. A
simple logarithmic integer bound outperforms the direct
error bound representation as well as the logarithmic
floating-point bound in all cases if accompanied by some
cautionary mechanisms regarding the separation bound
computation.

Mixed forms of error representation suffer from prob-
lems arising during the transformation between the rep-
resentation or, respectively, from the transformation
overhead. In conclusion, we suggest using logarithmic in-
teger error bounds by default in exact-decisions number
types based on accuracy-driven computation.

5 Future work

The additional precision gained through the usage of a
logarithmic floating-point representation proved to be
not sufficient to compensate for the additional cost asso-
ciated with its operations in the fixed-precision initial-
ization phase of the algorithm. For accuracy-driven com-
putation it seems promising to combine this approach
with a global error propagation strategy as described in
Section 2.3. To a lesser extent, global strategies may
also be used to improve the error bound computed with
integer exponents.

References

[1] C. Burnikel, S. Funke, K. Mehlhorn, S. Schirra, and
S. Schmitt. A separation bound for real algebraic ex-
pressions. Algorithmica, 55(1):14–28, 2009.

[2] C. Burnikel, K. Mehlhorn, and S. Schirra. The leda class
real number. Report MPI-I-1996-1-001, Max-Planck-
Institut für Informatik, Saarbrücken, Germany, 1996.

[3] V. Karamcheti, C. Li, I. Pechtchanski, and C. Yap. A
core library for robust numeric and geometric computa-
tion. In Proceedings of the Fifteenth Annual Symposium
on Computational Geometry, Miami Beach, Florida,
USA, June 13-16, 1999, pages 351–359, 1999.

[4] M. Mörig, I. Rössling, and S. Schirra. On design and
implementation of a generic number type for real alge-
braic number computations based on expression dags.
Mathematics in Computer Science, 4(4):539–556, 2010.

[5] M. Mörig and S. Schirra. Precision-driven computation
in the evaluation of expression-dags with common subex-
pressions: Problems and solutions. In 6th International
Conference on Mathematical Aspects of Computer and
Information Sciences, MACIS, pages 451–465, 2015.

372

CCCG 2018, Winnipeg, Canada, August 8–10, 2018

[6] M. Mörig. Algorithm Engineering for Expression Dag
Based Number Types. Dissertation, Otto-von-Guericke
Universität Magdeburg, 2015.

[7] K. Ouchi. Real/expr: Implementation of an exact com-
putation package. Master’s thesis, New York University,
Department of Computer Science, Courant Institute,
1997.

[8] S. Schirra. Robustness and precision issues in geometric
computation. In Handbook of Computational Geometry,
pages 597–632. Elsevier, 2000.

[9] J. van der Hoeven. Computations with effective real
numbers. Theor. Comput. Sci., 351(1):52–60, 2006.

[10] M. Wilhelm. Balancing expression dags for more efficient
lazy adaptive evaluation. In Mathematical Aspects of
Computer and Information Sciences - 7th International
Conference, MACIS 2017, Vienna, Austria, November
15-17, 2017, Proceedings, pages 19–33, 2017.

[11] M. Wilhelm. Multithreading for the expression-dag-
based number type Real_algebraic. Technical Report
FIN-001-2018, Otto-von-Guericke-Universität Magde-
burg, 2018.

[12] C. Yap. Towards exact geometric computation. Comput.
Geom., 7:3–23, 1997.

[13] C. Yap and T. Dubé. The exact computation paradigm.
In Computing in Euclidean Geometry, pages 452–492.
World Scientific, 1995.

[14] J. Yu, C. Yap, Z. Du, S. Pion, and H. Brönnimann. The
design of core 2: A library for exact numeric compu-
tation in geometry and algebra. In Proceedings of the
Third International Congress on Mathematical Software,
ICMS, pages 121–141, 2010.

373

Author Index

Aghamolaei, Sepideh 165
Aldana-Galván, Israel 253
Alegŕıa-Galicia, Carlos 253
Allen, Addison 28
Amano, Kazuyuki 68
Amenta, Nina 209
Arluck, Chloe 223
Arseneva, Elena 54

Bahoo, Yeganeh 54
Belton, Robin Lynne 18
Bercea, Ioana 129
Biedl, Therese 230
Biniaz, Ahmad 49, 54, 230, 346
Bremner, David 272

Cano, Pilar 54
Cano, Rafael 265
Cavanna, Nicholas 78
Chambers, Erin 353
Chanchary, Farah 54

Daescu, Ovidiu 296
Damian, Mirela 189
de Rezende, Pedro 265
de Souza, Cid 265
Duggirala, Parasara 340

Eppstein, David 98

Fasy, Brittany Terese 18
Feder, Tomas 304
Flatland, Robin 189
Fox, Kyle 296

Gabor, Jonathan 42
Garcia, Luis 217
Garciia, Alfredo 49
Ghodsi, Mohammad 165
Gholami Rudi, Ali 334
Goodrich, Michael 98
Goodrich, Michael T. 2

374

Gutierrez, Andres 217

Hamedmohseni, Bardia 311
Hashemi, Seyed Naser 72
He, Xiaozhou 85
Hell, Pavol 304
Horiyama, Takashi 360
Hou, Kaiying 114
Hsiang, Tien-Ruey 247

Iacono, John 54
Imanparast, Mahdi 72
Irvine, Veronika 230

Jain, Kshitij 54
Janardan, Ravi 282
Johnson, Matthew P. 259
Johnson, Timothy 2
Jorgensen, Jordan 98
Ju, Tao 353

Katz, Matthew 1
Keikha, Vahideh 142
Kim, Woojin 180
Kindermann, Philipp 230
Kisielius, Oliver 78

Lai, Wei-Yu 247
Letscher, David 353
Li, Mao 353
Li, Yuan 282
Liaw, Christopher 172
Liu, Paul 172
Liu, Zhihui 85
Lubiw, Anna 54
Lynch, Jayson 114
Löffler, Maarten 142

Maheshwari, Anil 288, 346
Marin-Nevárez, Nestaly 253
Mastakas, Konstantinos 318
Masterjohn, Joseph 91
Memoli, Facundo 180
Mertz, Rostik 18
Micka, Samuel 18
Milenkovic, Victor 91, 223

375

Millman, David L. 18
Miyasaka, Masahiro 360
Mohades, Ali 72, 142
Mondal, Debajyoti 54, 311
Mutzel, Petra 11

Nakano, Shin-Ichi 68
Naredla, Anurag Murty 230
Nouri, Arash 288

O’Rourke, Joseph 149, 328
Oettershagen, Lutz 11

Packer, Daniel 35
Pedersen, Logan 158

Rahmati, Zahed 142, 311
Reiss, Robert 172
Rogers, Emmely 328
Rojas, Carlos 209
Ruiz, Isaac 217

Sack, Jörg-Rüdiger 288
Sacks, Elisha 91, 223
Salinas, Daniel 18
Sasaki, Riku 360
Schenfisch, Anna 18
Schupbach, Jordan 18
Shahsavarifar, Rasoul 272
Sheehy, Don 78, 340
Sheikhan, Khadijeh 54
Smid, Michiel 346
Soĺıs-Villarreal, Erick 253
Su, Bing 85
Subi, Carlos 304

Teo, Ka Yaw 296
Topp, Christopher 353
Torres, Manuel 98
Toth, Csaba D. 54
Turcotte, Alexi 230

Uno, Takeaki 61
Urrutia, Jorge 253

van Kreveld, Marc 326

376

Velarde, Carlos 253

Wang, Haitao 158
Wasa, Kunihiro 61
Wenk, Carola 155
White, Sophia 35
Wilhelm, Martin 367
Williams, Aaron 28, 35, 42
Williams, Lucia 18
Winslow, Andrew 217

Xu, Yinfeng 85
Xue, Jie 282

Yamanaka, Katsuhisa 61
Yan, Yajie 353

Zheng, Feifeng 85
Zhu, Binhai 85

Álvarez-Rebollar, José Luis 253

377

