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Abstract

Given n fixed sites on the plane, there are several ways
to determine a permutation of the sites as a function of a
unit vector u or a vantage point v. Given such a scheme
and a permutation π, we can ask whether there is any
unit vector or vantage point for which the permutation
is π. We give linear-time algorithms for this realization
problem under three schemes for determining permuta-
tions: sweeping a line across the sites in a direction u;
expanding a circle starting from a vantage point v; and
sweeping a ray from v to give a cyclic permutation.

1 Introduction

Given an arrangement of points called sites on the
plane, there are several ways to choose a permutation of
the sites. For instance, we could sweep a line across the
arrangement and enumerate the sites in the order the
line touches them. We could start from some vantage
point and consider the sites in order of increasing dis-
tance from the vantage point. We could instead sweep a
ray from the vantage point radially through all possible
angles and consider the circular ordering of the sites it
encounters. Other rules are also possible. Given a set
of sites S and a geometric rule for defining a permuta-
tion of S as a function of a sweep direction or vantage
point, some permutations can be realized by some choice
of sweep direction or vantage point, and other permu-
tations cannot be realized. In this work we consider
the algorithmic problem of recognizing realizable per-
mutations, and describe linear-time algorithms for this
problem under three different geometric rules.

Problems of this type have applications in settings
that involve computing the position of an observer such
as a robot [8] within its environment relative to a se-
quence of observations made using a directional sensor
(such as a sonar, radar, or camera).

2 Definitions and notation

Let S = {s1, s2, . . . , sn} be a set of points on the Eu-
clidean plane, called the sites. Let S1 represent the set
of directions, or unit vectors, in the plane. Assume that
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all points and directions in the problem are in general
position: that is, no two points are coincident; no three
points are collinear; no point is equidistant from two
others; no four points w, x, y, and z have the relation-
ship that the line wx is parallel to the line yz; and (in
the case of sweep-line permutations) the given sweep di-
rection u is not orthogonal to the line connecting any
two points.

For any unit vector u ∈ S1 in general position relative
to S, let the sweep-line permutation of u be the permu-
tation of sites determined by sweeping a line orthogonal
to u across the sites in the direction u and enumerating
the sites in the order encountered. It would be equiva-
lent to say that we project all the sites onto a directed
line parallel to u and define the permutation by the or-
der of the projected sites along the line.

Instead of sweeping a line in a direction, we might
start from a point v called the vantage point and enu-
merate the sites in order of increasing distance from v
to form a distance permutation. This derivation can be
imagined as expanding a circle centred on v and enumer-
ating the sites in the order encountered; or as sending
out a sonar ping and recording the order of the echoes
received.

Another way of determining a permutation would be
by taking a ray starting from v and sweeping it counter-
clockwise through a complete rotation of 360◦, enumer-
ating the sites in the order the ray encounters them.1

Then we obtain a cyclic permutation; that is, an equiv-
alence class of permutations up to rotation. This radial
permutation is analogous to scanning the sites with a
rotating search light or radar beam, and recording the
order in which we see them without regard for the angles
or the starting orientation of the sweep.

Figure 1 illustrates the three kinds of site permuta-
tions we consider. In the figure, a line swept in the
direction u encounters the sites in the order dcba. An
expanding circle starting at v encounters the sites in
the order bdac; and a ray originating at v and swept
counterclockwise encounters them in the order cdba, up
to a rotation that depends on the starting orientation
of the sweep. For any of these schemes, given a per-
mutation or cyclic permutation π and a set of sites, a
unit vector u or vantage point v is said to realize π if π
is the permutation determined by u or v for the given

1We describe angles using degrees to avoid confusion with the
symbol π used for a generic permutation.
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Figure 1: A. sweep-line permutation in direction u:
dcba. B. distance permutation centred at v: bdac. C.
radial permutation centred at v: cdba.

scheme and sites. Then π is said to be realizable if and
only if there is a vantage point or unit vector realizing
it. In this work we consider the problem of deciding
whether a permutation π is realizable and, if so, com-
puting a corresponding unit vector u or vantage point v
that realizes π.

If the vantage point v is sufficiently far from the sites
in the direction opposite to u, then the expanding circle
centred on v when it passes over the sites is equivalent
to a line orthogonal to u and sweeping in the direction
u. Similarly, if the vantage point v is sufficiently far
from the sites in a direction 90◦ counterclockwise from
u, then the sweeping ray from v when it passes over the
sites is equivalent a line sweeping in the direction u. We
can thus make the following observation.

Observation 1 Every sweep-line permutation for an
arrangement of sites is also realized as a distance per-
mutation and a radial permutation.

Throughout our algorithmic results we assume a real
RAM model of computation, in which we can perform
basic arithmetic operations in unit time. This is a
standard assumption for computational geometry algo-
rithms in general; and in particular, the linear-time lin-
ear programming algorithm of Megiddo [5], which we
use, is only linear-time under the assumption it can
complete in constant time the multiplication and divi-
sion operations needed to find the intersections of lines
given as input. Analysing the algorithms under some
other model to force a superlinear result would be pri-
marily an exploration of the complexity of arithmetic in
general without giving specific insight into these algo-
rithms.

3 Previous work

The cyclic sequence of sweep-line permutations formed
by a site arrangement as we rotate the sweep direc-
tion through a full circle is called an allowable sequence,
and allowable sequences are well-studied. Goodman and
Pollack pioneered the use of allowable sequences in char-
acterizing the order type of the sites [4]. The allowable
sequence for a site arrangement is closely connected to
the oriented matroid associated with the site arrange-
ment, and that connection leads to many combinatorial
insights [2].

Chávez, Figueroa, and Navarro introduced distance
permutations in a database context, as a way of classi-
fying points in high-dimensional general metric spaces
to support efficient proximity queries [3]. Note that this
kind of permutation (possibly with a tiebreaking as-
sumption added to handle degenerate cases) is defined
for any space with a real distance function—it need not
even be a metric. Skala proved bounds on the number of
distinct distance permutations that can occur as a func-
tion of the number of sites in various spaces, including
an exact count for Euclidean spaces [6].

Bieri and Schmidt studied radial permutations as well
as sweep-line permutations and a variation on radial
permutations in which a line is swept instead of a ray [1].
Noting that the number of radial permutations realized
by a site arrangement is Θ(n4) (which follows from the
number of bisectors and the fact that k lines in general
position on the plane divide the plane into Θ(k2) cells),
they give an algorithm to generate all the permutations
in Θ(n4) time—interesting because the naive size of the
output would be Θ(n5). To achieve the faster running
time, they order the permutations in such a way that
each except the first differs from some previous permu-
tation by one swap of adjacent elements; then the swaps
can be found in O(n4) time. Tovar, Freda, and LaValle
studied radial permutations in the context of robot nav-
igation; assuming a robot with a sensor that detects the
radial permutation of landmarks as seen from its current
location, they show how the robot can achieve naviga-
tional goals [8].

4 Bisectors and Voronoi diagrams

The sweep-line method of finding a permutation implic-
itly divides the set of possible directions into intervals
corresponding to the realizable permutations. Similarly,
the distance and radial permutations correspond to cells
of a Voronoi-like diagram in the plane. These divisions
are shown in Figure 2. Note that the unbounded cells
for distance and radial permutations correspond to the
permutations realized by points at infinity, and thus to
the sweep-line permutations (Observation 1).

Every pair of sites si and sj determines a bisector :
a set of points where the ordering of si and sj is not
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Figure 2: Division of space by permutation schemes: (a) sweep-line, (b) distance, (c) radial.

uniquely defined. If we imagine a point wandering con-
tinuously through the space (like Tovar, Freda, and
LaValle’s robot [8]), the permutation it observes will
change by a swap of adjacent elements each time it
crosses a bisector. For sweep-line permutations, the
bisector of si and sj consists of the two unit vectors
parallel to the line between si and sj . For distance per-
mutations, it is the set of all points equidistant from
si and sj , which is the line orthogonally bisecting the
segment that connects the two sites. For radial per-
mutations, it is the line connecting si and sj , with the
segment between them removed. The radial bisector is
unusual because it can be said to cut the plane into just
one piece: with two sites, only one permutation exists
up to rotation, so there is only one cell. Radial bisectors
become more meaningful once there are three or more
sites.

Examination of these divisions of space leads to sim-
ple counts or bounds on the number of permutations re-
alized. For sweep-line permutations, the bisectors each
consist of two points, and distinct bisectors never coin-
cide when sites are in general position, so it is trivial
that the number of intervals and thus permutations for
n sites is 2

(
n
2

)
. For distance permutations,

(
n
2

)
bisectors

and the quadratic bound on number of cells formed by
lines in general position gives an upper bound of O(n4)
permutations; Skala notes that bisectors are not in gen-
eral position because of transitivity, and gives an exact
recurrence for the number of permutations, as well as
generalizing the question to higher dimensions of Eu-
clidean space; in d dimensions the number of permuta-
tions is shown to be Θ(n2d) [6]. For radial permutations,
the same kind of argument gives an obvious O(n4) up-
per bound, but the possibility for a permutation’s cell to
be non-convex or even disconnected (as in Figure 2(c) )
complicates matters. Bieri and Schmidt state as a the-
orem (without detailed proof) that the upper bound is
achieved by some arrangement of n sites for every n [1].

5 Radial permutations in the dual space

For each site si in s1, s2, . . . , sn, define a line s∗i as fol-
lows: let (xi, yi) be the coordinates of si, and then let
s∗i be the line dual to si, defined by y = x · xi − yi.

Let v = xv, yv be a point in the plane, not equal to
any of the sites, and similarly define its dual line v∗

by y = x · xv − yv. These points and lines are shown
in Figure 3. The vantage point v was chosen to be
the origin for convenience in making and understanding
the figure; its image in dual space is the x axis. The
sorted sequence of the segments (v, si) around v corre-
sponds to an ordered sequence of intersections between
the lines v∗ and s∗i , as a line connecting two points in
primal space corresponds to the intersection of two lines
in dual space.

Let L be the vertical line passing through v. L di-
vides the plane into two half-planes. In Figure 3(a),
the right half-plane contains s3, s5, and s6, and the left
half-plane contains s1, s2, and s4. In Figure 3(b), the
crossing points for s∗3, s∗5, and s∗6 (shown in white) ap-
pear consecutively right to left. Similarly, the crossing
points for s∗1, s∗2, and s∗4 (shown in black) appear consec-
utively left to right. We can concatenate the two lists
to obtain a radial permutation π of the sites around v:
s1, s2, s4, s3, s5, s6.

The dual space naturally suggests another sequence
of the sites, that found by examining all the crossings
(not black and white separately) along the line. From
right to left that sequence is s∗1, s

∗
2, s
∗
3, s
∗
5, s
∗
4, s
∗
6. In the

primal space it corresponds to rotating a line, not a ray,
passing through v, starting at vertical and then 180◦

counterclockwise until it becomes vertical again, and
enumerating the sites in the order the line encounters
them. This variation of radial permutations corresponds
to the undirected stars described by Streinu [7]. If we
add a sign to each element in the sequence describing
whether it was hit by the head or the tail of the line
during the radial sweep, the result is a directed star (or
simply a star) as described by Streinu; in Figure 3, using
Streinu’s notation, the star would be 123̄5̄46̄, where x
and x̄ denote that element x was met by the head or tail
end, respectively, of the rotating line. Given a directed
star, it is straightforward to construct the corresponding
radial permutation in linear time.
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Figure 3: A radial permutation in (a) primal and (b) dual spaces.

6 Results

The bisectors for sweep-line permutations suggest a sim-
ple linear-time algorithm for realizing permutations; in
fact, because the cells are simply intervals around the
circle, we not only compute a single unit vector to re-
alize the permutation, but also completely describe the
set of all such vectors in the same asymptotic time.

Theorem 1 There exists a linear-time algorithm that
given sites s1, s2, . . . , sn and a permutation π on the
indices, finds the set of all directions u for which the
sweep-line permutation is π.

Proof. By transitivity, it suffices to enforce the n − 1
constraints that the sweep line reaches sπ(1) before sπ(2),
sπ(2) before sπ(3), and so on. Each of those constraints
corresponds to an interval of allowed values for u in S1.
Each interval is open and has length 180◦; therefore
the intersection of any two of them is a single, possibly
smaller, interval; and by associativity we can compute
the intersection of all of them in O(n) time. �

In the case of distance permutations, linear time does
not allow us to examine all of the quadratic number of
bisectors; but because the bisectors correspond to the
transitive “less than” relation on distances, we can ob-
tain all the necessary information by examining a linear-
sized subset of them.

Theorem 2 There exists a linear-time algorithm that
given sites s1, s2, . . . , sn and a permutation π on the
indices, finds a vantage point v for which the distance
permutation is π, if such a v exists.

Proof. By transitivity, it suffices to enforce the n − 1
constraints that v is closer to sπ(1) than to sπ(2), closer
to sπ(2) than to sπ(3), and so on. Each of those corre-
sponds to a half-plane (linear) constraint. By the linear-
time two-dimensional linear programming algorithm of
Megiddo [5], we can find a point v satisfying all the
constraints in O(n) time. �

Radial permutations present a greater challenge, pri-
marily because we are seeking not a single permutation

θ1θ2

θ3

sπ(1)

sπ(2)

sπ(3)

v

Figure 4: Angles measured around v.

but an equivalence class of permutations. We begin by
proving a connection between the realization problem
and linear programming.

Lemma 3 There exists a linear-time algorithm that
given sites s1, s2, . . . , sn and a permutation π on the
indices, constructs a set of linear constraints such that
any vantage point v for which the radial permutation
is π up to rotation satisfies all, or all but one, of the
constraints.

Proof. Where v is the vantage point, for each integer
1 ≤ i ≤ n, let θi denote the angle measured counter-
clockwise around v from the ray pointing at sπ(i) to the
ray pointing at sπ(j), where j = (i mod n)+1, as shown
in Figure 4. Let Θ =

∑n
i=1 θi, that is, the sum of all

the θi.
For each pair of successive sites sπ(i) and sπ(j) where

θi < 180◦, it must be that v, sπ(i), and sπ(j) form a tri-
angle in counterclockwise order, like v, sπ(1), and sπ(2)
in Figure 4. That is equivalent to the statement that
v is on the left side of the directed line from sπ(i) to
sπ(j), and we can express that statement as a half-plane
constraint. We create such a constraint for each pair of
successive sites.

One way v might realize π would be if it were in the
kernel of a star-shaped polygon formed by the sites in
the order described by π; then every θi < 180◦ and all
the linear constraints would be satisfied. This situation
is illustrated in Figure 5(a).
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Figure 5: Realizing a permutation while violating (a) zero or (b) one of the linear constraints (π is the identity).

It is also possible for the vantage point v to lie out-
side the kernel of the star-shaped polygon, as shown in
Figure 5(b). However, if v realizes π, then summing all
the θi corresponds to making one full sweep around v;
Θ = 360◦. Thus, at most one of the θi can be greater
than 180◦, corresponding to a violated constraint; all
the others must be satisfied. Therefore, at most one of
the constraints can be violated. �

To actually solve the realization problem we must not
only perform linear programming but also determine
which constraint to violate, if any. Here we exploit the
special properties of Megiddo’s linear programming al-
gorithm [5], which either finds a solution to the realiza-
tion problem immediately, or gives us a clue to where
the permutation must start.

Theorem 4 There exists a linear-time algorithm that
given sites s1, s2, . . . , sn and a permutation π on the
indices, finds a vantage point v for which the radial per-
mutation is π up to rotation, if such a v exists.

Proof. We invoke the linear-time two-dimensional lin-
ear programming algorithm of Megiddo [5] to find a
point satisfying all the constraints of Lemma 3, if possi-
ble. We can then distinguish two cases: (1) such a point
exists; or (2) no such point exists.

Case 1. It is possible that a point v could satisfy all
the constraints but not realize the permutation π, if the
sequence of sites described by π winds more than once
around v. An example demonstrating this situation is
shown in Figure 6. When the linear program returns
a solution v, it is easy to test in linear time whether
v realizes the permutation π. If it does, the algorithm
returns it immediately.

Suppose v does not realize π. The cumulative angle
Θ must be an integer multiple of 360◦; and when v is
a solution to the linear program but does not realize
the desired permutation, it must be at least 720◦. Re-
moving one constraint (changing the polygon to a path,

which might still be self-intersecting) reduces the sum
for the remaining pairs of sites by strictly less than 360◦,
leaving it strictly greater than 360◦. Now suppose we
start our ray sweep with a ray pointing from v′, a solu-
tion to the linear program with one constraint relaxed,
to the site at the start of the path. If we sweep to each
successive site on the path in turn, we will complete a
full angle (360◦) and see the start of the path again,
before we complete the sweep at the end of the path.
That means we must already have seen the end of the
path, before its proper place at the end of the sweep.
Therefore v′ cannot realize the permutation π. In intu-
itive terms, if the polygon wraps more than once around
some solution, it must wrap at least twice, and then
the path formed by deleting one edge from the polygon
(which subtracts less than 360◦) must still wrap more
than once around every solution.

We have that if there exists a vantage point v that is
a solution to the linear program but does not realize the
permutation π, then no point v′ which is a solution to
any linear program formed by relaxing one of the orig-
inal constraints, can realize the permutation π. Since
every point realizing π must be a solution to our origi-
nal linear program with at most one constraint relaxed,
then there can be no point realizing π at all. Thus, in
Case 1, where the linear program is feasible, it suffices
to test whether the solution v realizes π, return it if it
does realize π, and return failure if it does not.

Case 2. If the first linear program is infeasible, then
any v realizing π must be a solution to the linear pro-
gram with exactly one constraint relaxed. Megiddo’s al-
gorithm [5] works by examining constant-sized subsets
of the input constraints and, at each one, attempting to
prove that at least one of the constraints is unnecessary
for the optimal solution. His analysis shows that in each
of the subsets at least one constraint can always be re-
moved if the input is feasible, allowing the algorithm to
stop after a linear number of steps with either a solution
or a proof of infeasibility. That approach has the impor-
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Figure 6: The sites wind more than once around v (π is
the identity).

Figure 7: An infeasibility certificate.

tant consequence that in case of an infeasible input, the
algorithm actually finds a constant-sized certificate of
infeasibility, namely the last subset of input constraints
it examined before halting. The algorithm can easily
be modified to produce the certificate as output, in the
form of at most three constraints that cannot all be sat-
isfied. In general those constraints will be arranged as
shown in Figure 7; with input not in general position
a certificate consisting of two non-intersecting parallel
half-planes would also be possible.

In order to be a vantage point realizing the desired
radial permutation, v would have to satisfy all except
at most one of the constraints in the original linear
programming problem. If v can satisfy all except one,
but not all of the constraints, then every infeasible sub-
set of the constraints must include that one constraint,
so it must be among the at most three returned when
Megiddo’s algorithm failed. By invoking Megiddo’s al-
gorithm at most three more times, with each constraint
from the certificate removed in turn, we can find a value
for v that realizes the permutation π, if any exists. �

7 Conclusion

In this paper, we considered the problem of realizing
a permutation π on a set of n sites in the plane. We

gave three linear-time algorithms for this kind of prob-
lem, corresponding to three schemes of determining per-
mutations: sweeping a line in direction u, measuring
distance from a vantage point v, and sweeping a ray
counterclockwise around v. One obvious direction for
future work is to consider other ways of determining a
permutation; for example, rotating a line through v in-
stead of a ray starting at v. We might also consider
more general kinds of constraint satisfaction involving
site permutations; for instance, finding a point that re-
alizes any permutation containing a given contiguous
subsequence.
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