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1 Extended Abstract

Suppose that a traveler arrives in the
city of Toronto, and wants to walk to
the famous CN Tower, one of the tallest
free-standing structures in the world.
Our visitor, lacking a map of Toronto,
is standing at an intersection fromwhich
he can see the CN Tower, and several
streets S1; : : : ; Sm from which he can
choose to start his walk. A natural
(and most likely safe) assumption is
that our visitor should choose the street
whose direction points closest to the
CN Tower; see Figure 1.

A close look at maps of numerous
cities around the world shows us that
using this method to explore a new and
unknown city will, in general, yield walks
that will be close enough to the opti-
mal ones to travel from one location to
another.

In mathematical terms, we can model
the maps of many cities by geomet-
ric graphs in which street intersections
are represented by the vertices of our
graphs, and streets by straight line seg-
ments. Compass routing on geometric
networks, in its most elemental form
yields the following algorithm:

Compass Routing Suppose that

☞

Figure 1: Finding our way to the CN
Tower.

we want to travel from an initial ver-
tex s to a destination vertex t, and that
all the information available to us at
any point in time is: the coordinates
of our destination, our current posi-
tion, and the directions of the edges in-
cident with the vertex at which we are
located. Starting at s, we will in a re-
cursive way choose to traverse the edge
of the geometric graph incident to our
current position and with the closest
slope to that of the line segment con-
necting the vertex of our current posi-
tion to t. Ties are broken randomly.

Using this criterion in the graph shown
in Figure 2, if we want to travel from s

to t, compass routing will produce the
path s, a, b, c, t.

In this paper we study local routing
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Figure 2: Traveling from s to t using
compass routing.

algorithms on geometric networks. A
routing algorithm is called a local rout-
ing algorithm if it satis�es the follow-
ing conditions:

1. At each point in time, we know
the coordinates of our starting po-
sition, as well as those of our des-
tination. In addition, we have at
our disposal a �nite amount of
storage where we can keep a con-
stant number of identi�ers of ver-
tices of our network. Notice that
this implies that at no point in
time do we have full knowledge
of the topology of the entire net-
work.

2. Upon arrival at a vertex v (start-
ing at s), we can use local infor-
mation stored in v regarding its
neighbours, and the edges con-
necting v to them. Using this in-
formation plus that stored in our
local memory, we choose an edge
incident to v, and traverse it un-
til we reach its second end ver-
tex, unless v = t, in which case
we stop.

3. We are not allowed to change the
local information stored at v. No-
tice that in particular, once we
have left a vertex, if we return to

it, we will not know that we have
already visited it.

The motivation for the last condi-
tion can arise naturally when informa-
tion is sent between di�erent nodes of
a network. For example if a server is
connected to the web, we would like
to avoid keeping track of the messages
that have passed through our server,
for this would easily use an enormous
amount of memory that could quickly
overload the storage available at those
sites.

An approach to obtain local rout-
ing algorithms has been studied for dis-
tributed networks for which compact
routing algorithms such as interval rout-
ing [11], boolean routing [9] etc. have
been developed. Such schemes, how-
ever, can be worst-case storage-intensive
in the sense that large amounts of in-
formation may be required be stored
per node in order to achieve all-pair
shortest path routing; see [3, 8]. An-
other drawback of the previous approach,
perhaps more serious from our point of
view, is that the topology of the net-
works for which these algorithms have
been developed is assumed to be of a
speci�c type, e.g. Cayley graphs. Our
goal in this paper is that of develop-
ing routing algorithms that can be ap-
plied to existing communication net-
works whose only restriction is that they
are planar networks. It is interesting
to note that some of the best network
topology maps used by internet service
providers and internet backbone net-
works, such as TEN-34, EuropaNET,
Eunet, Qwest Nationwide Network, and
others, can be modeled as planar or al-
most planar graphs; see [1].

Finally, we mention that routing al-
gorithms of a similar type to those stud-
ied in this paper have been studied within
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the framework of wireless communica-
tion networks, i.e. networks in which
processors represent devices similar to
radio stations, two of which can com-
municate if they are su�ciently close
to each other; see [2, 7, 12]. In these
problems, as in ours, the goal is not
necessarily that of �nding the short-
est path connecting two vertices of the
network, but to ensure that the infor-
mation being transmitted does reach
its destination.

It is not true however, that compass
routing will always �nd a path from
any starting point in a geometric graph
to any other, not even in cases when
our geometric graphs are 3-connected,
and the internal as well as the external
faces are bounded by convex polygons.
The geometric graph shown in Figure
3 has these properties, yet when we try
to go from s = u0 to t using compass
routing, we enter the cycle with vertex
set fu0; wi; i = 0; : : : ; 5g, and continue
to travel around it in an endless loop.
Our graph consists of two concentric
regular hexagons, one of which is ro-
tated slightly with respect to the other.
The line segment t � ui is orthogonal
to the edge joining ui to wi and wi lies
on t� ui. Also, ui+1 and vi lie on the
same side of the line through wi and
ui+1, i = 0; : : : ; 5. It is now easy to see
that under these conditions, if we are
at point ui (resp. wi), compass rout-
ing will choose the edge connecting ui
to wi (resp. wi to ui+1, addition taken
mod 6).

We say that a geometric graph G

supports compass routing if for every
pair of its vertices s and t, compass
routing (starting at s) produces a path
from s to t. In a similar way we say
that a planar graph G supports com-
pass routing if there is an embedding of
it (which produces a geometric graph)
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Figure 3: Compass routing will not
reach t from ui, i = 0; : : : ; 5.

which supports compass routing.
We prove that Delaunay triangula-

tions of point sets on the plane support
compass routing. We also obtain a ge-
ometric local routing algorithm that al-
ways �nds a path between any two ver-
tices of a connected geometric graph.
We study the problem of determining
which planar graphs have a geometric
embedding that supports shortest path
compass routing, i.e. embeddings of
graphs for which compass routing ac-
tually produces the shortest path be-
tween any pair of its vertices. We prove
that trees always have embeddings that
support shortest path compass rout-
ing, and that not all outerplanar graphs,
and hence not all planar graphs, have
these types of embeddings.

References

[1] An Atlas of Cyberspaces,
http://www.geog.ucl.ac.uk/casa
/martin/atlas/isp maps.html.

3



[2] Basagni, S., I. Chlamatac, V.R.
Syrotiuk, and B.A. Woodward,
\A distance routing e�ect algo-
rithm for mobility", Proc. MOBI-
COM, 1998, 76-84.

[3] P. Fraigniau and C, Gavoille,
\Universal routing schemes",
Journal of Distributed Comput-
ing, 10 (1997), pp. 65-78.

[4] G. N. Frederickson and R. Ja-
nardan, \Designing networks with
compact routing tables", Algo-
rithmica, 3 (1988), pp. 171-190.

[5] G. N. Frederickson and R. Janar-
dan, \E�cient message routing in
planar networks", SIAM Journal
of Computing, 18 (1989), 843-857.

[6] C, Gavoille and S. Perennes,
\Lower bounds for shortest path
interval routing", Proceedings of
SIROCCO96, pp. 88-103, N. San-
toro and P. Spirakis, eds, Carleton
University Press, 1997.

[7] Ko, Y.B., and N.H. Vaidya,
\Location-aided routing in mobile
ad hoc networks", Proc. MOBI-
COM, 1998, 66-75.

[8] E. Kranakis and D. Krizanc, Pro-
ceedings of STACS96, pp. 529-
540, C. Puech and R. Reischuk,
eds, SVLNCS vol. 1046, 1996.

[9] E. Kranakis and D.
Krizanc,\Boolean routing on
Cayley networks", Proceedings
of SIROCCO96, 119-124, N.
Santoro and P. Spirakis, eds,
Carleton University Press, 1997.

[10] Preparata, F., and I.M. Shamos,
Computational Geometry, an In-
troduction. Springer Verlag, 1985.

[11] Santoro, N., and R. Khatib, \La-
beling and implicit routing in net-
works" The Computer Journal,
28, 1 (1985), 5-8.

[12] Stojmenovic, I., and X. Liu, \Ge-
ographic distance routing in ad
hoc wireless networks", Preprint,
SITE, University of Ottawa, 1999.

4


