
CCCG 2014, Halifax, Nova Scotia, August 11–13, 2014

Covering Grids by Trees
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Abstract

Given n points in the plane, a covering tree is a tree
whose edges are line segments that jointly cover all the
points. Let Gd

n be a n× · · · × n grid in Zd. It is known
that G3

n can be covered by an axis-aligned polygonal
path with 3

2n
2 + O(n) edges, thus in particular by a

polygonal tree with that many edges. Here we show
that every covering tree for the n3 points of G3

n has at
least (1 + c3)n2 edges, for some constant c3 > 0. On the
other hand, there exists a covering tree for the n3 points
of G3

n consisting of only n2 +n+ 1 line segments, where
each segment is either a single edge or a sequence of
collinear edges. Extensions of these problems to higher
dimensional grids (i.e., Gd

n for d ≥ 3) are also examined.

1 Introduction

Let S be a set of n points in Rd. A covering tree for S is
a tree T drawn in Rd with straight-line edges such that
every point in S is a vertex of T or lies on an edge of
T . Similarly, a covering path for S is a polygonal path
P drawn in Rd with straight-line edges such that every
point in S is a vertex of P or lies on an edge of P . In
this paper we study covering trees and paths for grids
in Rd.

Let the grid Gn1,...,nd
denote the set of points with

integer coordinates (i.e., grid points) in the hypercube
[1, n1] × · · · × [1, nd] in Rd. For simplicity we write Gd

n

for the symmetric grid Gn,...,n ⊂ Zd. In this paper we
restrict ourselves to symmetric grids.

For the square grid G2
n in the plane, Kranakis et al. [6]

showed that every axis-aligned covering path has at
least 2n − 1 edges (a.k.a. links), and this bound can
be attained. If one allows edges of arbitrary orientation
in the path, Collins [4] showed that the number of links
can be reduced by one: every covering path for the n2

points of G2
n has at least 2n − 2 edges, and again, this

bound can be attained. Recently Keszegh [5] has ex-
tended this result to covering trees: every covering tree
for the n2 points of G2

n has at least 2n− 2 edges; again,
this bound can be attained.
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Further, it is known [3, 6] that G3
n can be covered

by an axis-aligned polygonal path with 3
2n

2 + O(n)
edges, thus in particular by a polygonal tree with that
many edges. For paths, this bound is tight up to the
lower order term [1]. Moving to higher dimensions, it
is known [1] that Gd

n can be covered by an axis-aligned
polygonal path with (1 + 1

d−1 )nd−1 +O(nd−3/2) edges,
thus in particular by a polygonal tree with that many
edges; on the other hand, any axis-aligned polygonal
path must consist of at least (1 + 1

d )nd−1 − O(nd−2)
edges.

The problem of estimating the number of links needed
in a covering path for the grid Gd

n appears in the
collection of research problems by Braß, Moser, and
Pach [2, Ch. 10.2] and in the survey article by Mahesh-
wari et al. [7].

In this paper we investigate whether better bounds
can be obtained if one allows edges of arbitrary di-
rections in the respective covering paths or trees; no
such results are known. We start with dimension 3, i.e.,
d = 3. Since every line segment (moreover, every line)
covers at most n points of G3

n, it trivially follows that
every covering tree for the n3 points of G3

n has at least
n3/n = n2 edges. Here we show that this ideal situa-
tion is not realizable, that is, every covering tree for G3

n

requires Ω(n2) additional edges beyond the trivial lower
bound of n2. In particular, every covering path for the
n3 points of G3

n requires Ω(n2) additional edges beyond
the trivial lower bound of n2. This gives partial answers
to two questions raised by Keszegh [5].

Theorem 1 Let n ≥ 103. Every covering tree for the
n3 points of G3

n has at least 1.0025n2 edges. In partic-
ular, every covering path for the n3 points of G3

n has at
least 1.0025n2 edges.

Our bound is quite far from the current upper bound
of 3

2n
2 +O(n), which we suspect is closer to the truth.

Slightly smaller multiplicative constant factors can be
deduced for small n (n ≤ 103) and slightly larger mul-
tiplicative constant factors can be deduced for larger n.
The result in Theorem 1 can be extended to arbitrary
fixed dimension d using similar methods; we omit the
details.

Theorem 2 Every covering tree for the nd points of Gd
n

has at least (1 + cd)n2 edges, where cd > 0 is a constant
depending only on d.
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Minimizing the number of line segments. Instead of
minimizing the number of edges in a covering tree, one
can try to minimize the number of line segments, where
each segment is either a single edge or a sequence of
several collinear edges of the tree. Equivalently, one
would like to determine the minimum number of seg-
ments in a connected arrangement1 of segments that
contains all points of Gd

n. Indeed, the segments of a
covering tree form a connected arrangement; and an
appropriate spanning tree of a connected arrangement
of segments gives a covering tree for Gd

n.
The trivial lower bound of nd−1 also applies to the

number of line segments in a covering tree. For n = 2,
the trivial lower bound is tight, as the vertices of the
hypercube Gd

2 can be covered by 2d−1 diagonals that
meet at the center. For n ≥ 3, we show that every
connected arrangement of segments that covers Gd

n re-
quires Ω(nd−2) additional segments beyond the trivial
lower bound of nd−1, and this bound is the best possible
apart from constant factors.

Theorem 3 For every d, n ∈ N, n ≥ 3, every connected
arrangement of line segments that contains Gd

n has at
least nd−1+c′d n

d−2 segments, where c′d > 0 is a constant
depending only on d.

For every n, d ∈ N, there exist a connected arrange-
ment of (nd−1)/(n−1) = nd−1+nd−2+. . .+1 segments
that contain Gd

n; in particular, there exists a covering
tree for Gd

n with that many segments.

Conjectures. Kranakis et al. [6] conjectured that, for
all d ≥ 3, every axis-aligned covering path for Gd

n con-
sists of at least d

d−1 n
d−1−O(nd−2) edges. As discussed

above, the conjecture has been confirmed [1, 4, 6] up to
d = 3. It can be further conjectured [2, Chapter 10.2,
Conjecture 5] that every (not necessarily axis-aligned)
covering path for Gd

n consists of at least d
d−1 n

d−1 −
O(nd−2) edges. As discussed above, this stronger ver-
sion has been only confirmed [5] up to d = 2.

2 Minimizing the Number of Edges:
Proof of Theorem 1

Let T be a tree that covers the n3 points of G3
n. We can

assume that T is contained in [−z, z]3 for some suit-
able z > 0. Denote by e(T ) the number of edges in T .
Clearly T consists of at least n2 edges. Let α, β ∈ (0, 1)
be two parameters we set with foresight to

α = 0.020 and β = 0.874. (1)

We say that an edge e of T is heavy if it covers at least
(1 − α)n points, and light otherwise. If the number of

1An arrangement of line segments is said to be connected if
the union of the segments is an arc-connected set.

heavy edges in T is at most βn2, then at least (1−β)n2

edges of T are light. So in this case we have

e(T ) ≥ βn2 +
(1− β)n3

(1− α)n
=

(
β +

(1− β)

(1− α)

)
n2

=

(
1 +

α(1− β)

(1− α)

)
n2. (2)

Assume next that the number of heavy edges in T is
at least βn2. We distinguish several cases, depending
on the numbers of various types of heavy edges present
in T . Observe that heavy edges can be of three types
(indeed, edges with consecutive points at distance larger
than 2 don’t contain enough points to qualify as being
heavy):

Type 1: consecutive points are at distance 1, thus
the corresponding segments are axis-aligned, so these
edges have 3 possible directions.

Type 2: consecutive points are at distance
√

2,
thus the corresponding segments are diagonal in axis-
orthogonal planes xoy, xoz, and yoz. Such edges have 6
possible directions, two in each of the 3 axis-orthogonal
planes.

Type 3: consecutive points are at distance
√

3, thus
the corresponding segments are diagonals in 3-space.
Such edges have 4 possible directions.

Observation 1 Let e be a non-vertical edge of T with
an endpoint in the rectangular box B = [a, n− a+ 1]×
[a, n − a + 1] × [−z, z]. Then e covers at most n − a
points.

Let β = β1 + β2 + β3, where

β1 = β − 12.45α− 6.45α2, β2 = 12.45α, β3 = 6.45α2.

Overall, heavy edges can have 13 possible directions.
We distinguish 3 possible cases and at least one of them
must occur:

Case 1. There are at least β1n
2 heavy edges of type 1.

Case 2. There are at least β2n
2 heavy edges of type 2.

Case 3. There are at least β3n
2 heavy edges of type 3.

We proceed with the case analysis:

Case 1: There are at least β1 n
2 heavy edges of type 1.

Since edges of type 1 have 3 possible directions, there
are at least β1n

2/3 heavy edges with the same direction.
For convenience assume that these edges are vertical.
Obviously, the vertical lines supporting these edges are
all distinct.

Put2 a = bαnc. Observe that the number of verti-
cal grid lines through points of G3

n \ [a, n − a + 1] ×
[a, n − a + 1] × [1, n] is at most 4a(n − a) ≤ 4an. The
supporting vertical lines of at most 4an = 4αn2 heavy
edges intersect the border of width a of [1, n]× [1, n]; see
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Figure 1: The border of width a = bαnc in G3
n (drawn

shaded) in view from the top; the figure is not to scale.

Fig. 1. It follows that the remaining (β1/3− 4α)n2 ver-
tical heavy edges are on vertical lines in the rectangular
box B = [a, n− a+ 1]× [a, n− a+ 1]× [−z, z].

Consider a standard top-down representation of the
tree T with the root at the top. Color each vertical
heavy edge lying in the box B blue. Since blue edges are
parallel, no two share a common tree vertex. Since T is
connected, by Observation 1, each blue edge is adjacent
to a light edge of T . Uniquely charge each blue edge in
T to the unique light edge adjacent to it on the upward
path to the root of T . This charging can be applied to
all blue edges except possibly to one blue edge incident
to the root, if any. Since the number of blue edges is
quadratic in n, this possible exception can be ignored
in the counting.

It follows that at least (β1/3 − 4α)n2 edges of T are
light covering at most (1−α)n points. The worst case is
when equality occurs, i.e., (β1/3−4α)n2 edges can cover
at most (1−α)n points each. The remaining points can
be covered at the rate of at most n per edge. It follows
that

e(T ) ≥
[
1−

(
β1
3
− 4α

)
(1− α) +

(
β1
3
− 4α

)]
n2

=

[
1 + α

(
β1
3
− 4α

)]
n2

=

[
1 + α

(
β

3
− 8.15α− 2.15α2

)]
n2. (3)

Case 2: There are at least β2 n
2 heavy edges of type 2.

We show that this case cannot occur. Recall that edges
of type 2 have 6 possible directions along diagonals of
axis-orthogonal planes. For a fixed direction in a fixed
axis-orthogonal plane, the number of heavy edges paral-
lel to the main diagonal of that plane is at most 2a+ 1.
Over all relevant directions and planes there are at most

6 · (2a+ 1)n ≤ 12an+ 6n = 12αn2 + 6n

2For simplicity, floors and ceilings are omitted in the calcula-
tion; the resulting bounds are unaffected.

such edges. However 12αn2 + 6n < 12.45αn2 = β2 n
2,

which contradicts the assumption in Case 2, so this case
cannot occur.

Case 3: There are at least β3 n
2 heavy edges of type 3.

We show that this case also cannot occur, either. Re-
call that edges of type 3 have 4 possible directions along
space diagonals of G3

n. For a fixed diagonal direction,
the number of edges parallel to this direction and cov-
ering at least n − a points is at most 3

∑a
i=1 i + 1 =

3a(a+1)
2 + 1. Over all 4 directions there are at most

4
3a(a+ 1)

2
+ 4 = 6a(a+ 1) + 4

such edges. However,

6a(a+ 1) + 4 = 6αn(αn+ 1) + 4 = 6α2n2 + 6αn+ 4

< 6.45α2n2 = β3 n
2,

which contradicts the assumption in Case 3, so this case
also cannot occur.

To conclude the case analysis, observe that with our
choice of parameters in (1), we have

α(1− β)

(1− α)
≥ 0.0025, and

α

(
β

3
− 8.15α− 2.15α2

)
≥ 0.0025.

Taking into account (2) and (3), it follows that e(T ) ≥
1.0025n2, as required. This completes the proof of The-
orem 1. �

3 Minimizing the Number of Segments:
Proof of Theorem 3

A general upper bound. For every d, n ∈ N, n ≥ 2,
we construct a covering tree T (n, d) for Gd

n with

nd − 1

n− 1
= nd−1 + nd−2 + . . .+ 1

segments. We proceed by induction on d. Refer to
Fig. 2, middle. For d = 1, the n points of G1

n are
collinear, and can be covered by a tree (path) with one
line segment, denoted T (n, 1). For d ≥ 2, note that
Gd

n is the union of n translated copies of Gd−1
n , lying in

the hyperplanes xd = 1, 2, . . . , n. Consider the covering
tree T (n, d− 1) for the copy of Gd−1

n in the hyperplane
xd = 1. Extend this tree to a covering tree T (n, d) for
Gd

n by adding a segment parallel to the xd-axis to each
point of Gd−1

n . The number of segments in T (n, d) is
nd−1 + (nd−2 + . . .+ 1), as claimed.
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Figure 2: Covering trees for G3
2, G3

3, and G3
4 in R3.

The special case of hypercubes. For n = 2, Gd
2 is

the vertex set of a d-dimensional hypercube; see Fig. 2,
left. The 2d−1 space diagonals of the hypercube cover
all 2d vertices. These diagonals meet at the center of the
hypercube, and so they form a covering tree (namely, a
star). Since no three points in Gd

2 are collinear, every
covering tree consists of at least 2d/2 = 2d−1 segments.
Hence the covering tree above is optimal with respect
to the number of segments.

Improved construction for n even. For n ≥ 3, the
grid Gd

n no longer admits a covering tree with only nd−1

segments. However, the special case of the hypercubes
suggests an improved construction for n even. The key
observation is that when n is even, the 2d−1 space diag-
onals of Gd

n meet in a single point, and the intersection
point is not in Gd

n.
For every d, n ∈ N, where d ≥ 3 and n even, we

construct a covering tree T ′(n, d) for Gd
n with

nd − 1

n− 1
− 2d−1 + d

segments. We proceed by induction on d. For d = 3,
the grid G3

n consists of n disjoint copies of G2
n in n

horizontal planes z = 1, 2, . . . , n. Cover the n2 points
of G2

n in the plane z = 1 by a tree with n+ 1 segments
that consists of n parallel segments and a diagonal of
G2

n. (Refer to Fig. 2, right.) In each of the other n− 1
horizontal copies of G2

n, the two main diagonals cover
2n points, and a single vertical segment connects these
pairs of diagonals to a point in the plane z = 1 (using
2(n− 1) + 1 = 2n− 1 segments). We still need to cover
n2 − 2n off-diagonal points in each of n − 1 horizontal
copies of G2

n. We cover these points by n2− 2n vertical
line segments, each of which is attached to the tree in
the plane z = 1. We obtain a covering tree T ′(n, 3) with

(n+ 1) + (2n− 1) + (n2 − 2n) = n2 + n

segments.

For d ≥ 4, the grid Gd
n consists of n disjoint copies of

Gd−1
n that lie in parallel hyperplanes xd = 1, 2, . . . , n.

Cover the copy of G2
n in the hyperplane xd = 1 by a

covering tree T ′(n, d − 1). In each of the other n − 1
parallel copies of Gd−1

n , the 2d−2 main diagonals cover
2d−2n points. A single segment parallel to the xd-axis
connects the stars formed by these diagonals to an ar-
bitrary point in the hyperplane xd = 1. The remaining
nd−1 − 2d−2n off-diagonal points in each of these n− 1
copies of G2

n are covered by nd−1−2d−2n segments par-
allel to the xd-axis. The total number of segments in
the resulting covering tree T ′(n, d) is(

(nd−2 + . . .+ 1)− 2d−2 + (d− 1)
)

+(2d−2(n− 1) + 1) + (nd−1 − 2d−2n)

= (nd−1 + . . .+ 1)− 2d−2 + (d− 1)− 2d−2 + 1

= (nd−1 + . . .+ 1)− 2d−1 + d,

as claimed. This completes the induction step for the
construction of T ′(n, d). Note that for d = 3, the two
expressions match, i.e.,

n2 + n = (nd−1 + . . .+ 1)− 2d−1 + d.

Lower bound. Let L be a connected arrangement of
line segments in Rd that contains all points of the grid
Gd

n. The following greedy procedure orders the seg-
ments in L from 1 to m = |L|. Let `1 be an arbi-
trary segment in L that contains the maximum number
of points of Gd

n, say n1 = `1 ∩ Gd
n. For i = 2, . . . ,m,

let `i be a segment in L \ {`1, . . . , `i−1} that meets one
of the previous segments `1, . . . , `i−1 and contains the
maximum number, say ni, of uncovered points, that is,
points in Gd

n \ (`1∪ . . .∪`i−1). By construction, we have
nd =

∑m
i=1 ni.

A covering tree T has two types of vertices: (1) ver-
tices that lie at points of Gd

n and (2) Steiner points that
are not in Gd

n. The following proposition indicates that
Steiner points play a crucial role in minimizing the num-
ber of segments in a covering tree.
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Proposition 4 If every vertex of a covering tree T for

Gd
n is a point in Gd

n, then T has at least nd−1
n−1 = nd−1 +

nd−2 + . . .+ 1 segments. This bound is the best possible.

Proof. Let L be the set of line segments in T , ordered
by the greedy procedure above. Every line segment con-
tains at most n points of Gd

n, hence ni ≤ n for all i. For
i ≥ 2, however, the intersection point of `i with a previ-
ous segment is a point in Gd

n, which is already covered
by some previous segment. Consequently, ni ≤ n − 1
for i = 2, . . . ,m. That is, nd =

∑m
i=1 ni ≤ m(n−1) + 1,

and so m ≥ (nd − 1)/(n− 1), as required.
The tightness of the bound follows from the general

upper bound given in the first paragraph of this sec-
tion. �

To derive a lower bound on the number of segments
in an arbitrary covering tree, we introduce some termi-
nology in relation to Gd

n. We say that a line in Rd is
heavy if it contains more than dn/2e points of Gd

n, and it

is full if it contains n points of Gd
n. Let B =

∏d
i=1[1, n]

denote the bounding box of Gd
n. We need a few easy

observations.

Observation 2

1. Every full line for Gd
n contains a diagonal of a copy

of Gk
n within Gd

n, for some k = 1, 2, . . . , n (the di-
agonals of a copy of G1

n are axis-parallel).

2. Every full line for Gd
n is either axis-parallel or

contained in one of 2
(
d
2

)
hyperplanes of the form

xi−xj = 0 or xi+xj = n+1, where 1 ≤ i < j ≤ d.

3. Every heavy line is parallel to a full line, and every
axis-parallel heavy line is full.

For the charging scheme in the proof of Theorem 3,
we need to control the number of full lines that intersect
a single line segment.

Proposition 5 Let d ∈ N be a constant.

1. Every line in Rd intersects O(n) full lines for Gd
n.

2. Every heavy line for Gd
n contains at most one

Steiner point that is not in Zd but lies on some
other full line for Gd

n.

3. A heavy line containing n−a points of Gd
n intersects

O(a) full lines at Steiner points in Zd \Gd
n.

4. Every Steiner point lies on at most 2d−1 full lines.

Proof. (1) By Observation 2, the full lines have

d∑
k=1

(
d

k

)
2k−1 =

3d − 1

2

different orientations, and so they can be partitioned
into (3d − 1)/2 families of parallel lines. Every line ` in
Rd meets at most n full lines from each parallel family,
thus O(n) full lines overall.

(2) Assume that a heavy line ` intersects a full line `′ and
the intersection point ` ∩ `′ is not in the integer lattice
Zd. The point ` ∩ `′ lies in some unit cube σ spanned
by Zn (where ` ∩ `′ is either in the interior or on the
boundary of σ). By assumption, ` ∩ `′ is not a vertex
of σ, hence both ` ∩ σ and `′ ∩ σ are line segments. By
Observation 2(3), the heavy line ` is parallel to a full
line, which is the diagonal of a copy of Gk

n in Gd
n for

some 1 ≤ k ≤ d. Therefore, ` contains a diagonal of
a k-dimensional face of σ, and similarly `′ contains the
diagonal of a k′-dimensional face of σ for some 1 ≤ k′ ≤
d. However, the diagonals of any two different faces of
the unit cube σ are either disjoint or meet at a vertex
of σ. Consequently, both ` and `′ contain diagonals of
the same k-dimensional face of σ. The full line `′ must
be a diagonal of the copy of Gk

n ⊆ Gd
n that spans this

particular k-face of σ. That is, both ` and `′ lie in the
same copy of Gk

n ⊆ Gd
n, and ` has a unique intersection

point ` ∩ `′ with the diagonals of this copy of Gk
n.

(3) Let ` be a heavy line passing through n−a points of
Gd

n, and let `′ be a full line such that `∩ `′ is in Zd \Gd
n.

Then every full line parallel to `′ is either disjoint from
` or intersects ` in an integer point in Zd. The lines
` and `′ span a 2-dimensional plane P . The plane P
contains n full lines parallel to `′, but n − a of them
meet `′ at points in Gd

n. Consequently, at most a of
these lines intersect ` outside of Gd

n. Summing over all
(3d − 1)/2 = O(1) directions of full lines, at most O(a)
full lines intersect ` at points in Zd \Gd

n.

(4) If two full lines meet in a Steiner point p, then p is
the center of a copy of Gk

n ⊂ Gd
n, for some 2 ≤ k ≤ d.

The only full lines incident to p are the 2k−1 ≤ 2d−1

diagonals of this copy of Gk
n. �

Proof of Theorem 3. Let L be a connected arrange-
ment of line segments that cover Gd

n. Order the seg-
ments as (`1, . . . , `m) by the greedy procedure described
earlier. (That is, `1 is a segment in L that contains
the maximum number n1 of points of Gd

n; and `i, for
i = 2, . . . ,m, meets one of the previous segments and
contains the maximum number ni of uncovered points
of Gd

n.) We show that the average of ni, the number of
“new” points covered by segment `i, is n − Ω(1). We
distinguish three types of segments in L.

• L1 = {`i ∈ L : ni = n};
• L2 = {`i ∈ L : dn/2e < ni < n};
• L3 = {`i ∈ L : ni ≤ dn/2e}.

Partition the sequence (`1, . . . , `m) into maximal sub-
sequences of consecutive elements such that each seg-
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ment in L2 ∪ L3 is the first element of a subsequence.
Consider one such subsequence (`i, . . . , `i+k), where

k ≥ 0. By construction, `i ∈ L2 ∪ L3 ∪ {`1}, and
`i+1, . . . , `i+k ∈ L1. The full lines `i+1, . . . , `i+k each
intersect a previous segment at a Steiner point. Due to
the greedy ordering, they each intersect a previous seg-
ment from the same subsequence. By Proposition 5(2),
a full line meets any other full lines at the same Steiner
point. Consequently, every line `i+1, . . . , `i+k meets `i
or a previous full line of the subsequence which meets
`i. Each full line that meets `i is responsible for at most
2d−1 other full lines (that do not meet `i) by Proposi-
tion 5(4). Therefore, at least k/2d−1 = Ω(k) full lines
in `i+1, . . . , `i+k meet `i in Steiner points.

If `i ∈ L2, then `i is contained in a heavy line, which
contains n − a points for some 0 ≤ a < bn/2c. That
is, ni ≤ n − max(1, a). By Proposition 5(3), `i meets
at most O(a + 1) full lines in Steiner points (inside or
outside of B). This implies k = O(a + 1), and so the
segments `i, . . . , `i+k contain an average of at most

kn+ n−max(1, a)

k + 1
= n− max(1, a)

k + 1
= n− Ω(1)

new points.
If `i ∈ L3, then `i contains at most n/2 points of Gd

n

and it meets O(n) full lines by Proposition 5(1). In this
case, the segments `i, . . . , `i+k contain an average of at
most

kn+ n/2

k + 1
= n− n

2(k + 1)
= n− Ω(1)

new points.
Finally, if `1 ∈ L1, then the average of ni is n in the

very first subsequence. In this case, by Proposition 5(4),
the full line `1 meets at most 2d−1 − 1 other full lines
in a Steiner point, so this special subsequence covers at
most 2d−1n points of Gd

n.
Consequently, the average of ni over all segments `i ∈

L is n−Ω(1) if n ≥ 3. Now nd =
∑m

i=1 ni = m(n−Ω(1))
yields m = nd−1 + Ω(nd−2), as claimed. �

4 Conclusion

We conclude with a few open problems:

1. Does every covering path for G3
n require at least(

3
2 − o(1)

)
n2 edges?

2. Does every covering tree for G3
n require at least(

3
2 − o(1)

)
n2 edges?

3. Does every covering tree for G3
n require at least

n2 + n segments?

4. Does every covering tree for Gd
n require at least

nd − 1

n− 1
− 2O(d) segments?
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