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Benôıt Hudson, Duru Türkoğlu
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Paul Erdös Memorial Lecture:
Iterated Partitions of Triangles

Ron Graham∗

Abstract

There are many ways in which one can subdivide a triangle into smaller triangles. However, the limiting behavior
when various methods of partitioning are iterated can be quite different. In this talk, we will describe some recent
results for this problem, which include a few facts that we can prove, and a large set of conjectures arising from
computational experiments that we cannot (yet) prove. This is joint work with Steve Butler (UCSD).

∗University of California at San Diego and California Institute for Telecommunications and Information Technology
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How Did It Start?

Michael I. Shamos∗

Abstract

The field of computational geometry coalesced during the period 1972-78 when then-recent algorithm design
techniques were applied to geometric problems. The speaker was deeply involved in the subject during those
years, culminating in his Ph.D. thesis “Computational Geometry” in 1978. This talk traces the development of the
discipline, starting with a straight-line graph embedding problem that arose at the National Institutes of Health in
1971. This gave rise to flood of other problems and resulted in the discovery of important unifying principles. We
will cover the contributions of other researchers and look at some now-forgotten problems and results.

∗Carnegie Mellon University
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The Geometry of Music

Dmitri Tymoczko∗

Abstract

In my talk, I will describe five properties that help make music sound tonal – or “good,” to most listeners. I will
then show that combining these properties is mathematically non-trivial, with the consequence that space of possible
tonal musics is severely constrained. This leads me to construct higher-dimensional geometrical representations of
musical structure, in which it is clear how the various properties can be combined. Finally, I will show that Western
music combines these five properties at two different temporal levels: the immediate level of the chord, and the
long-term level of the scale. The resulting music is hierarchically self-similar, exploiting the same basic procedures
on two different time scales. In fact, one and the same twisted cubic lattice describes the musical relationships
among common chords and scales.

∗Princeton University
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Data Structures for Range-Aggregate Extent Queries

Prosenjit Gupta∗ Ravi Janardan† Yokesh Kumar† Michiel Smid‡

Abstract

We consider a generalization of geometric range search-
ing, with the goal of generating an informative “sum-
mary” of the objects contained in a query range via the
application of a suitable aggregation function on these
objects. We provide some of the first results for func-
tions such as closest pair, diameter, and width that mea-
sure the extent (or “spread”) of the retrieved set. We
discuss a subset of our results, including closest pair
queries on point-sets in the plane and on random point-
sets in R

d (d ≥ 2) and guaranteed-quality approxima-
tions for diameter and width queries in the plane, all for
axes-parallel query rectangles.

1 Introduction

In a traditional instance of range searching, we are given
a set, S, of geometric objects and wish to retrieve the
subset S′ contained in some query object Q (see [1] for
a survey). Often, however, we desire a more informa-
tive “summary” of S′, such as an order-statistic. (For
instance, the average or the median price of homes (the
“objects”) in different neighborhoods (the “queries”) of
a city.) This can be done by applying, on S′, an aggre-
gation function such as count, sum, min, max, mean,
median, mode, and top-k that is computed on a set
of suitable weights defined on the objects (e.g., house
prices). Prior work on such range aggregate query prob-
lems includes [3, 6, 8, 11, 15, 16, 17, 19, 18].

We present results for a new class of aggregation func-
tions, including closest pair, diameter, and width, that
measure the extent or “spread” of the objects in S′. Ex-
tent measures have applications in collision detection,
shape-fitting, clustering etc. [2] and, instead of com-
puting the measure on the entire set, it is often both
sufficient and more efficient to “zoom in” on a query

∗Mentor Graphics, Hyderabad, and International Institute
of Information Technology, Gachibowli, Hyderabad 500032, In-
dia. Supported, in part, by grants SR/S3/EECE/22/2004 and
DST/INT/US/NSF-RPO-0155/04, Dept. of Science and Tech-
nology, Govt. of India. prosenjit gupta@acm.org

†Dept. of Computer Science & Engg., Univ.
of Minnesota, Minneapolis, MN 55455, U.S.A.
{janardan,kumaryo}@cs.umn.edu. Supported, in part, by
NSF grants INT–0422775 and CCF-0514950.

‡School of Computer Science, Carleton University, Ottawa,
Ontario, K1S 5B6, Canada. michiel@scs.carleton.ca. Research
supported by NSERC.

region and compute the measure only for this region
(e.g., the closest pair of aircraft in a prescribed region
of airspace).

A major challenge with extent functions is that (un-
like, say, count) they are not decomposable efficiently,
i.e., the answer for S′ cannot be inferred quickly from
answers for subsets that partition S′. (For instance, the
closest pair in S′ cannot be inferred in sublinear time
from the closest pairs for subsets S′1 and S′2 that parti-
tion S.) Despite this, we obtain space- and query-time-
efficient solutions (exact or guaranteed-quality approx-
imations) to several range-aggregate extent queries, as
summarized in Table 1. Our results are based on mul-
tilevel range trees, Voronoi Diagrams, Euclidean Mini-
mum Spanning Trees, and generating sparse represen-
tations of candidate output sets and proving (expected)
upper bounds on their size.

In prior related work, Shan et al. [12] gave empiri-
cal results for range-aggregate closest pair with axes-
parallel query rectangles, based on R-trees. Gupta [7]
gave a solution in R

1 (resp., R
2) with query time O(1)

using O(n) space (resp., O(log3 n) query time using
O(n2 log3 n) space). Sharathkumar and Gupta [14] im-
proved the 2D result to O(log3 n) query time using
O(n log3 n) space and in [13, 14], showed how to decide
in O(log2 n) time and O(n log2+ǫ n) space if the closest
pair in a query rectangle was within a user-specified tol-
erance. To our knowledge, there is no prior work on the
range-aggregate diameter or width problems.

Due to space limitations, we present only results #1,
2, 4, and 5 in Table 1 and omit proofs and most details.

2 Computing the closest pair in a query rectangle

We wish to preprocess a planar point-set S so that for
a query rectangle Q, the closest pair in S ∩ Q can be
reported. We develop our solution by successively gen-
eralizing solutions for simpler queries.

Computing the closest pair in a quadrant or vertical

strip: First, let Q be a (north-east) quadrant. Let G
be the graph with vertex set S where points p and q are
connected by an edge iff (p, q) is the closest pair in S∩Q
for some Q. G can be shown to be a plane graph and so
has O(n) edges, even though the number of “distinct”
north-east quadrants (w.r.t. S) is Θ(n2).

7
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# Problem Query Space

1 Closest-pair in rect. log2 n n log5 n

(points in R
2)

2 Closest-pair in d-rect. log2d n n log3d−2 n

(random points in R
d) (expected)

3 Closest-pair in disk n2/3+ǫ n1+ǫ

(random points in R
2) (expected) (expected)

4 Diameter in rect. k log5 n (n + (n/k)2) log2 n

(points in R
2) (1 ≤ k ≤ n)

5 Approx. diameter in 1√
δ

log2 n 1√
δ

n log n

rect. (points in R
2) 1√

δ
log n + log3 n n log2 n

(variable δ)

6 Approx. width in 1√
δ

log3 n 1√
δ

n log2 n

rect. (points in R
2)

7 Closest-pair “partly in” logd n n logd n

hyper-rect. (points in R
d)

8 Closest-pair “partly in” n1−1/d+ǫ n1+ǫ

halfspace (points in R
d)

9 Closest-pair “partly in” n1−1/(d+1)+ǫ n1+ǫ

ball (points in R
d)

Table 1: Summary of results. Query rectangles are axes-
parallel. “Random points” means that the points are
chosen independently and uniformly at random in the
unit-square. “Partly in” means that one point in the
closest pair is in the query and the other is outside.
Here k is a tunable parameter, 1 ≤ k ≤ n, δ is an error
tolerance parameter 0 < δ < 1, ǫ > 0 is a constant, and
d ≥ 2 is a constant. “Variable δ” means that δ is part
of the query; otherwise, it is fixed.

For each edge e = (p, q) of G, we define the pla-
nar point re = (min(px, qx), min(py, qy)), with weight
d(p, q), where d(·, ·) is the Euclidean distance function.
Let R = {re : e is an edge in G}. Our problem is
equivalent to reporting the point of minimum weight
in R ∩Q, which can be done with a 2D range tree and
fractional cascading.

Lemma 1 A planar point-set S can be stored in a
structure of size O(n log n) such that the closest pair
in any north-east query quadrant Q can be reported in
O(log n) time.

For a query vertical strip, we will use the following:

Lemma 2 ([14]) S can be stored in a structure of size
O(n log2 n) such that the closest pair in any vertical
query strip can be reported in O(log n) time.

The opposite-quadrant lemma: We can localize the
closest-pair between points in two opposite quadrants
as follows. Let A (resp. B) be the points of S strictly
in the first (resp. third) quadrant Let A5 ⊆ A (resp.
B5 ⊆ B) be the min(5, |A|) (resp. min(5, |B|)) points
that are L∞-closest to the origin.

Lemma 3 Let (p, q) be the closest pair in S and let
p ∈ A and q ∈ B. Then, p ∈ A5 and q ∈ B5.

Computing L∞-neighbors in a quadrant: Assume S
lies strictly in the first quadrant. Given the south-west

quadrant Qq of a query point q in the first quadrant,
we wish to report the min(5, |S ∩Qq|) points in S ∩Qq

that are L∞-closest to the origin.

Let A be the set of points of S on or below the diag-
onal y = x, and let B := S \ A. Then, for each point
p in A (resp. B), the L∞-distance between p and the
origin is equal to the x-coordinate (resp. y-coordinate)
of p. This leads to the following structure to answer
queries when q is, wlog, on or above the diagonal y = x:
We maintain (i) an array storing the points of A sorted
by x-coordinates, and (ii) an array storing the points of
B sorted by x-coordinates; with each entry p in this ar-
ray, we store the min(5, |Bp|) lowest points in Bp, where
Bp := {b ∈ B : bx ≤ px}.

Lemma 4 A set S of points strictly in the first quad-
rant can be stored in a structure of size O(n) such that
for any query point q strictly in the first quadrant, the
min(5, |S ∩Qq|) points in S ∩Qq that are L∞-closest to
the origin can be reported in O(log n) time.

Computing the closest pair in an anchored 3-sided

rectangle: Let ℓ be a fixed vertical line. An anchored
3-sided rectangle Q is a rectangle of the form Q = [a, b]×
[c,∞) that intersects ℓ. Given Q, we wish to report the
closest pair in S ∩Q.

Let T be a balanced binary search tree storing S at
its leaves, by y-order. Let u be the highest node on the
right spine of T such that the horizontal line ℓ′u that
separates the left and right subtrees of u intersects Q.
Point Xu = ℓ ∩ ℓ′u partitions the plane into four quad-
rants. Let u1 and u2 be the left and right children of u,
respectively. Let Sl

u1
(resp. Sr

u2
) be the points of Su1 to

the left (resp. right) of ℓ. (Throughout, Sv denotes the
subset of S stored at the leaves of v’s subtree.) Define
Sl

u2
and Sr

u2
similarly w.r.t Su2 .

Six cases exist for the closest pair (p, q) in S∩Q. (1) p
and q are both to the left of ℓ: Then (p, q) is the closest
pair of Sl

u1
∪ Sl

u2
which is in the north-east quadrant

of the point (a, c). We find (p, q) by storing at u the
structure of Lemma 1 for Sl

u1
∪ Sl

u2
. (2) p and q are

both to the right of ℓ: This is is symmetric to (1). (3)
p and q are both above ℓ′u: Then (p, q) is the closest
pair of Sl

u2
∪ Sr

u2
which is in the strip bounded by the

vertical lines through (a, c) and (b, c). We find (p, q) by
storing at u the structure of Lemma 2 for Sl

u2
∪ Sr

u2
.

(4) p (resp. q) is in the south-west (resp. north-east)
quadrant of Xu: By storing at u appropriate variants of
the structure of Lemma 4, and using Lemma 3, we can
compute 25 point-pairs, such that (p, q) is among them.
(5) p (resp. q) is in the north-west (resp. south-east)
quadrant of Xu: This is symmetric to (4). (6) p and q
are both below ℓ′u: Then both points are in the subtree
of u1. We can find (p, q) by recursively querying this
subtree.

8
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Lemma 5 S can be stored in a structure of size
O(n log3 n) the closest pair in any anchored 3-sided
query rectangle Q can be reported in O(log2 n) time.

Computing the closest pair in an anchored rectangle:

Let ℓ be a fixed horizontal line. An anchored rectangle
Q is a rectangle of the form [a, b]× [c, d] that intersects
ℓ. Given Q, we wish to report the closest pair in S ∩Q.

Let T be a balanced binary search tree storing S at
its leaves, by x-order. Using T , we can reduce our query
to four queries for anchored 3-sided rectangles and two
closest pair queries for opposite quadrants.

Lemma 6 S can be stored in a structure of size
O(n log4 n) such that the closest pair in any anchored
query rectangle Q can be reported in O(log2 n) time.

General closest pair rectangle queries: Given a gen-
eral query rectangle Q, we wish to report the closest
pair in S ∩Q.

Let T be a balanced binary search tree storing S at
its leaves, by y-order. For each internal node u of T ,
define the horizontal line ℓ′u as before. We store at u
the structure of Lemma 6 for Su, to answer closest pair
queries for rectangles anchored w.r.t. ℓ′u.

Given Q, we search down T to the first node u such
that ℓ′u intersects Q. Q is anchored w.r.t. ℓ′u, so we use
the structure for Su to find the closest pair in S ∩Q.

Theorem 7 A set S of n points in the plane can be
stored in a structure of size O(n log5 n) such that for
any axes-parallel query rectangle Q, the closest pair in
S ∩Q can be reported in O(log2 n) time.

3 Closest pair rectangle queries on randomly dis-

tributed points

Let S be a set of n points in the plane, chosen inde-
pendently and uniformly at random in the unit-square.
We obtain a data structure of expected size O(n log4 n)
and query time O(log4 n) time. Though not as efficient,
asymptotically, as the one in [14], our solution is simple
and practical, and, moreover, extends naturally to any
fixed dimension d > 2.

Our approach is to precompute each point-pair (p, q),
with p, q ∈ S, that is the closest pair for at least one
query rectangle. We then store each such pair as a
weighted point in a four-dimensional range tree. The
four dimensions are the x- and y-coordinates of p and
of q; the weight is the Euclidean distance d(p, q). Given
a query rectangle Q, we find the closest pair in S∩Q by
doing a range-minimum query [5] on the tree with the
hyper-rectangle Q×Q.

Formally, let Q be the (infinite) set of all axes-parallel
query rectangles. Let Λ be the number of pairs (p, q),
with p, q ∈ S and p to the left of q, such that there is

a rectangle Q ∈ Q for which (p, q) is a closest pair in
S ∩ Q. Then our structure uses O(Λ log3 n) space and
has a query time of O(log4 n). Moreover, it can be built
in time equal to that needed to compute the Λ pairs
plus O(Λ log3 n) time. Thus, if Λ is “small”, then this
will be an efficient and practical solution.

Unfortunately, Λ can be Θ(n2) in the worst case.
(Take two sets of n/2 points on the boundary of the
unit-circle, in opposite quadrants. Every pair of points,
one from each set, contributes 1 to Λ.) However, if the
points of S are chosen at random then the expected
value of Λ is O(n log n), as seen below.

Lemma 8 Let (p, q) be an ordered point-pair, with
p, q ∈ S and p to the left of q. This pair contributes
1 to Λ iff the rectangle, R(p, q), that has pq as a diago-
nal is empty, i.e., contains no point of S \ {p, q}.

Thus, Λ is the number of empty rectangles R(p, q) in
Lemma 8. If the points of S are chosen at random, then
they are “well-distributed” and there will not be many
empty rectangles R(p, q), as formalized by Lemma 9.
(This result also appears, without proof, in [4].)

Lemma 9 For a set S of n points that are chosen inde-
pendently and uniformly at random in the unit-square,
the expected value, E(Λ), of Λ is O(n log n).

Thus, the closest pair in S ∩ Q can be computed
in O(log4 n) time using a structure of expected size
O(n log4 n).

This approach generalizes to R
d, for any fixed

d ≥ 3, based on a result from [10] that there are
O(n logd−1 n/(d− 1)!) so-called direct domination pairs
(p, q) among n points drawn independently at random
from the unit-hypercube in R

d, since each such pair de-
fines the diagonal of an empty hyper-rectangle. Thus Λ
is O(n logd−1 n). Our problem reduces to storing each of
the Λ pairs (p, q) as a weighted point in a 2d-dimensional
range tree. We conclude:

Theorem 10 A set S of n points chosen independently
and uniformly at random in the unit-hypercube in R

d,
d ≥ 2, can be stored in a structure of expected size
O(n log3d−2 n) so that the closest pair in any axes-
parallel query rectangle can be reported in O(log2d n)
time.

4 Approximating the diameter in a query rectangle

Let S be a set of n points in the plane and let δ be a
fixed real, 0 < δ < 1. Given a query rectangle Q, we
wish to report a pair of points in S ∩Q whose distance
is at least (1− δ) times the diameter of S ∩Q.

Let β(δ) =
⌈

2 arcsin(1−δ)
π−2 arcsin(1−δ)

⌉

; β(δ) = O(1/
√

δ) if δ

converges to zero. Our approach uses the following:

9
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Lemma 11 ([9]) Choose 2(β(δ) + 1) equally-spaced
vectors around the unit-circle. For each vector di, let
pi (resp. qi) be the point of S that is extreme in direc-
tion di (resp. −di). Let D be the diameter of S and let
∆ = maxi d(pi, qi). Then 1− δ ≤ ∆/D ≤ 1.

Our structure is a 2D range tree on S. With each
node v in each secondary tree, we store the O(β(δ)) =
O(1/

√
δ) point-pairs of Lemma 11 for Sv. The space

used is O((1/
√

δ)n log n).
Given Q, we compute a set C of O(log2 n) canon-

ical nodes v in the secondary structures of the range
tree such that S ∩ Q = ∪v∈CSv. Consider any of the
O(β(δ)) direction pairs di and −di. We compute the
extreme points of S∩Q in directions di and −di by com-
puting the extreme points among those stored with the
canonical nodes for this direction pair. By Lemma 11,
the farthest pair so computed over all direction pairs is
an approximation to the diameter of S ∩Q.

Theorem 12 A set S of n points in the plane can
be stored in a structure of size O((1/

√
δ)n log n), so

that for any axes-parallel query rectangle Q, a (1 − δ)-
approximation to the diameter of S ∩Q can be reported
in O((1/

√
δ) log2 n) time, where 0 < δ < 1.

This solution extends to queries where δ comes as an
input parameter along with Q. The idea is to use the
range tree on S to also compute the convex hull of the
S∩Q (by repeated merging of convex hulls stored at the
canonical nodes) and then finding the extremal points
for each of the O((1/

√
δ) directions—in logarithmic time

per merge and per direction. This yields the bounds
shown in Table 1.

5 Approximating the width in a query rectangle

The width of a planar point-set S is the width of a nar-
rowest enclosing strip. For a query rectangle Q, we wish
to report a strip enclosing S∩Q of width at most (1+δ)
times the width of S ∩Q, for a fixed real δ, 0 < δ < 1.

Let γ(δ) =
⌈

π
2 arccos(1/(1+δ))

⌉

; γ(δ) = O(1/
√

δ) if δ

converges to zero. Our approach uses the following:

Lemma 13 ([9]) Let S0 = S and Si be a copy of S ro-
tated clockwise around the origin from Si−1 by an angle
π/γ(δ), 1 ≤ i ≤ γ(δ). For 0 ≤ i ≤ γ(δ), let Li (resp.
Ri) be the downward (resp. upward) convex chain dual
to the upper (resp. lower) hull of the convex hull of
Si. Let ωL

i (resp. ωR
i ) be the minimum distance be-

tween any vertex of Li (resp. Ri) and any point ver-
tically below (resp. above) it on Ri (resp. Li). Let
Ω = mini{ωL

i , ωR
i } and let W be the width of S. Then

1 ≤ Ω/W ≤ 1 + δ.

Both ωL
i and ωR

i can be computed in O(log2 n) time if
Li and Ri are stored in balanced binary search trees [9].

We store S in a range tree. Each node v in each
secondary tree stores 1+γ(δ) instances of the structure
of Lemma 13 for Sv, where the i-th instance is a pair
of balanced binary search trees built on the dual chains
Li(v) and Ri(v) associated with the i-th rotated copy
of Sv. The space is O((1/

√
δ)n log2 n).

Given Q, we compute, in O(log2 n) time, a set C
of O(log2 n) canonical nodes v in the secondary struc-
tures such that S ∩ Q = ∪v∈CSv. For each i, we
merge the Li(v)’s for all v ∈ C into a single chain in
O((1/

√
δ) log3 n) time. Similarly, for the Ri(v)’s. From

these O(1/
√

δ) pairs of chains, we compute the mini-
mum vertical distance between each pair and take the
smallest as Ω.

Theorem 14 A set S of n points in the plane can be
stored in a structure of size O((1/

√
δ)n log2 n) such that

for any query rectangle Q, a (1 + δ)-approximation to
the width of S ∩Q can be reported in O((1/

√
δ) log3 n)

time, where 0 < δ < 1.
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Searching for Frequent Colors in Rectangles

Marek Karpinski∗ Yakov Nekrich†

Abstract

We study a new variant of colored orthogonal range
searching problem: given a query rectangle Q, all colors
c, such that at least a fraction τ of all points in Q are
of color c, must be reported. We describe several data
structures for that problem that use pseudo-linear space
and answer queries in poly-logarithmic time.

1 Introduction

The colored range reporting problem is a variant of the
range searching problem in which every point p ∈ P
is assigned a color c ∈ C. The set of points P is pre-
processed in the data structure so that for any given
rectangle Q all distinct colors of points in Q can be
reported efficiently. In this paper we consider a vari-
ant of this extensively studied problem in which only
frequently occurring colors must be reported.

We say that a color c ∈ C τ -dominates rectangle Q
if at least a τ -fraction of points in Q are of that color:
|{ p ∈ P ∩ Q | col(p) = c }| ≥ τ |P ∩ Q|, where col(p)
denotes the color of point p. We consider several data
structures that allow us to report colors that dominate
Q 1.
Motivation Standard colored range reporting problem
arises in many applications. Consider a database in
which every object is characterized by several numerical
values (point coordinates) and some attribute (color).
For instance the company database may contain infor-
mation about age and salary of each employee. The
attribute associated with each employee is his or her
position. The query consists in reporting all different
job types for all employees with salary between 40.000
and 60.000 who are older than 40 and younger than
60 years old. Colored range reporting also occurs natu-
rally in computational biology applications: each amino
acid is associated with certain attributes (hydrophobic,
charged, etc.). We may want to report different at-
tributes associated with amino acids in certain range [9].

However, in certain applications we are not interested
in all attributes that occur in the query range. Instead,

∗Dept. of Computer Science, University of Bonn. Email
marek@cs.uni-bonn.de.
†Dept. of Computer Science, University of Bonn. Email

yasha@cs.uni-bonn.de.
1Further we will assume that parameter τ is fixed and simply

say that a color c dominates rectangle Q .

we may be interested in reporting the typical attributes.
For instance, in the first example above we may wish to
know all job types, such that at least a fraction τ of all
employees with a given salary and age range have a job
of this type. In this paper we describe data structures
that support such and similar queries.
Related Work. Traditional colored range reported
queries can be efficiently answered in one, two, and
three dimensions. There are data structures that use
pseudo-linear (i.e. n logO(1) n) space and answer one-
and two-dimensional colored range reporting queries in
O(log n + k) time [7], [8] and three-dimensional col-
ored queries in O(log2 n + k) time [7], where k is the
number of colors. A semi-dynamic data structure of
Gupta et al. [7] supports two-dimensional queries in
O(log2 n + k) time and insertions in O(log3 n) amor-
tized time. Colored orthogonal range reporting queries
in d dimensions can be answered in O(log n + k) time
with a data structure that uses O((n1+ε)) space [1], but
no efficient pseudo-linear space data structure is known
for d > 3.

De Berg and Haverkort [4] consider a variant of the
colored range searching in which only significant colors
must be reported. A color c is significant in rectangle Q
if at least a fraction τ of points of that color belong to
Q, |{ p ∈ Q∩P | col(p) = c }| ≥ τ |{p ∈ P | col(p) = c }|.
For d = 1, de Berg and Haverkort [4] describe a linear
space data structure that answers queries in O(log n+k)
time, where k is the number of significant colors. For
d ≥ 2 significant queries can be answered approxi-
mately: in O(log n + k) time we can report a set of
colors such that each color in a set is (1−ε)τ -significant
for a fixed constant ε and all τ -significant colors are re-
ported. The only known data structure that efficiently
answers exact significance queries uses cubic space [4].
Our Results In this paper we show that we can find
domination colors in an arbitrary d-dimensional rectan-
gle in poly-logarithmic time using a pseudo-linear space
data structure.
• We describe a static O((1/τ)n) space data struc-

ture that supports one-dimensional queries
in O((1/τ) logn log log n) time. A static
O((1/τ)n log log n) space data structure sup-
ports one-dimensional domination queries in
O((1/τ) logn) time.
• In the case when all coordinates are integers

bounded by U , there is a O((1/τ)n) space static
data structure that supports one-dimensional dom-
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ination queries in O((1/τ) log log n log logU) time
• There is a dynamic O((1/τ)n) space data structure

that supports one-dimensional domination queries
and insertions in O((1/τ) logn) time and deletions
in O((1/τ) logn) amortized time. We can reduce
the update time to (amortized) O(log n) by increas-
ing the space usage to O((1/τ)n log n)
• There is a data structure that supports domination

queries in d dimensions in O((1/τ) logd n) time and
uses O((1/τ)n logd−1 n) space
• There is a dynamic data structure that an-

swers domination queries in d dimensions in
O((1/τ) logd+1 n) time, uses O((1/τ)n logd−1 n)
space, and supports insertions in O((1/τ) logd+1 n)
time and deletions in O((1/τ) logd+1 n) amortized
time

We describe static and dynamic data structures for
one-dimensional domination queries in sections 2 and
3. Data structures for multi-dimensional domination
queries are described in section 4.

2 Static Domination Queries in One Dimension

The following simple property plays an important role
in all data structures for domination queries.

Observation 1 If Q = Q1 ∪ Q2, Q1 ∩ Q2 = ∅, and
color c is dominant in Q, then either c is dominant in
Q1 or c is dominant in Q2.

Due to this property a query on a set Q can be de-
composed into queries on some disjoint sets Q1, . . . , Qp
such that ∪Qi = Q and p is a constant: we find the
dominating colors for each Qi and for each color c that
dominates some Qi we determine whether c dominates
Q by a range counting query.

Our data structure is based on the same approach
as exponential search trees [2]. Let P be the set of all
points. In one-dimensional case we do not distinguish
between a point and its coordinate. P is divided into
β(n) intervals I1, . . . , Iβ(n) so that each Pi = P ∩ Ii
contains between n2/3/2 and 2n2/3 points and β(n) =
Θ(n1/3). Let li and ri denote the left and right bounds
of interval Ii. For each 1 ≤ i ≤ j ≤ β(n), the list
Lij contains the set of colors that dominate [li, rj ]. We
denote by nij the total number of points in [li, rj ].

Each interval Ii is recursively subdivided in the same
manner: an interval that contains m points is divided
into β(m) subintervals and each subinterval contains be-
tween m2/3/2 and 2m2/3 points. If some interval Ij is
divided into Ij,1, . . . , Ij,β(m), then we say that Ij is a par-
ent of Ij,i (Ij,i is a child of Ij). The tree T reflects the
division of intervals into sub-intervals: each tree node
u corresponds to an interval Iu and a node u is a child
of v if and only if Iu is a child of Iv. The root of T
corresponds to P and leaves of T correspond to points

of P . The height of T is O(log log n). For every color
c, we also store all points of color c in a data structure
that supports range counting queries.

Consider a query Q = [a, b]. Let la and lb be the
leaves of T in which a and b are stored, and let q be
the lowest common ancestor of la and lb. The search
procedure visits all nodes on the path from la to q (lb
to q); for each visited node u we construct the set of
colors Su, such that every c ∈ Su dominates Iu ∩ [a, b].
We also compute the total number of points in Iu ∩
[a, b]. Let u be the currently visited node of T situated
between lb and q, and suppose that the node v visited
immediately before u is the (i + 1)-st child of u. Due
to Observation 1 only colors stored in L1i and Sv may
dominate Iu ∩Q. For each color c in L1i ∪ Sv we count
how many times it occurs in Iu ∩ Q using the range
counting data structure for that color. Thus we can
construct Su by answering at most 2/τ counting queries.
Nodes between la and q are processed in the same way.
Finally, we examine all colors in sets Sp and Sr and list
Lij of the node q, where p and r are nodes on the paths
from q to la and lb respectively, p is the i-th child of
q, and r is the j-th child of q. The search procedure
visits O(log log n) nodes and answers O((1/τ) log log n)
counting queries. Hence, queries can be answered in
O(log n log log n) time.

If an interval I contains m points, then all lists Lij
contain O(m2/3) elements. Data structures for range
counting queries use O(n) space. Therefore the space
usage of our data structure is O(n).

We can reduce the query time to O(log n) by storing
range counting data structures for each interval: for ev-
ery interval Iu and every color c, such that { p ∈ P ∩Iu |
col(p) = c } 6= ∅, we store a data structure that sup-
ports range counting queries in time O(log |Iu|). The
total number of colors in all intervals Iu for all nodes
u situated on the same level of tree T does not exceed
the number of points in P . Therefore the total num-
ber of elements in all range counting data structures is
O(n log log n). The query is processed in the same way
as described above. We must answer O((1/τ)) count-
ing queries on Iq, O((1/τ)) range counting queries on
children of Iq, O((1/τ)) range counting queries on chil-
dren of children of Iq, etc. Therefore the query time is
O((1/τ)(log(|Iq|) + log(|Iq|2/3) + log(|Iq|4/9) + . . .)) =
O((1/τ)

∑
(2/3)i log n) = O((1/τ) log n).

We obtain the following result

Theorem 1 There exists a O((1/τ)n log log n) space
data structure that supports one-dimensional dom-
ination queries in O((1/τ) logn) time. There
exists a O((1/τ)n) space data structure that
supports one-dimensional domination queries in
O((1/τ) logn log log n) time.

In the case when all point coordinates are integers
bounded by a parameter U we can easily answer one-
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dimensional counting queries in O(log logU) time us-
ing the van Emde Boas data structure [6]. As shown
above, a domination query can be answered by answer-
ing O((1/τ) log log n) counting queries; hence, the query
time is O((1/τ) log log n log logU). Since it is not nec-
essary to store range counting data structures for each
interval, all range counting data structures use O(n)
space.

Theorem 2 There exists a O((1/τ)n) space data struc-
ture that supports one-dimensional domination queries
in O((1/τ) log logU log log n) time.

3 Dynamic Domination Queries in One Dimension

Let T be a binary tree on the set of all p ∈ P . With
every internal node v we associate a range rng(v) =
[lv, rv), where lv is the leftmost leaf descendant of v and
rv is the leaf that follows the rightmost leaf descendant
of v. T is implemented as a balanced binary tree, so
that insertions and deletions are supported in O(log n)
time and the tree height is O(log n). In each node v we
store the number of its leaf descendants, and the list Lv;
Lv contains all colors that dominate rng(v). For every
color c in Lv we also maintain the number of points of
color c that belong to rng(v). For each color c there is
also a data structure that stores all points of color c and
supports one-dimensional range counting queries.

A query Q = [a, b] is answered by traversing the paths
from la to q and from lb to q, where la and lb are the
leaves that contain a and b respectively, and q is the
lowest common ancestor of a and b. As in the previous
section, in every visited node u the search procedure
constructs the set of colors Su, such that every c ∈ Su
dominates rng(v) ∩ [a, b]. Suppose that a node v on
the path from lb to q is visited and let u be the child
of v that is also on the path from lb to q. If u is the
left child of v, then rng(v) ∩ [a, b] = rng(u) ∩ [a, b] and
Sv = Su. If u is the right child of v, then rng(v)∩[a, b] =
rng(w)∪(rng(u)∩[a, b]) where w is a sibling of u. Colors
that dominate rng(w) are stored in Lw; we know colors
that dominate (rng(u) ∩ [a, b]) because u was visited
before v and Su is already constructed. Hence, we can
construct Sv by examining each color c ∈ Lw ∪ Su and
answering the counting query for each color. Since one-
dimensional dynamic range counting can be answered in
O(log n) time, we spend O((1/τ) logn) time in each tree
node. Nodes on the path from la to q are processed in a
symmetric way. Finally we examine the colors stored in
Sq1 and Sq2 , where q1 and q2 are the children of q, and
find the colors that dominate rng(q) ∩ [a, b] = [a, b].

When a new element is inserted(deleted), we insert a
new leaf l into T (remove l from T ). For every ancestor
v of l, the list Lv is updated.

After a new point of the color cp is inserted, the color
cp may dominate rng(v) and colors in Lv may cease to

dominate rng(v). We may check whether cp must be
inserted into Lv and whether some colors c ∈ Lv must
be removed from Lv by performing at most (1/τ) + 1
range counting queries. Since a new point has O(log n)
ancestors, insertions are supported in O((1/τ) log2 n)
time.

When a point of color cp is deleted, we may have
to delete the color cp from Lv. We can test this by
performing one counting query. However, we may also
have to insert some new color c into Lv because the
number of points stored in descendants of the node v
decreased by one. To implement this, we store the set
of candidate colors L′v; L

′
v contains all colors that (τ/2)-

dominate rng(v). For each color c ∈ L′v we test whether
c became a τ -dominating color after deletion. When the
number of leaf descendants of the node v decreased by
a factor 2, we re-build the list L′v. If Pv is the set of leaf
descendants of v (that is, points that belong to rng(v)),
then we can construct the set of distinct colors that
occur in Pv in O(|Pv| log(|Pv|)) time. We can also find
the sets of colors that τ -dominate and (τ/2)-dominate
rng(v) in O(|Pv| log(|Pv|)) time. Since we re-build L′v
after a sequence of at least |Pv/2| deletions, re-build
of some L′v incurs an amortized cost O(log n). Every
deletions may affect O(log n) ancestors; hence, deletions
are supported in O(log2 n) amortized time.

We can speed-up the update operations by storing in
each tree node u the set of distinct colors in Pu, de-
noted by Cu. For each color c ∈ Cu, we store how
many times points with color c occur in Pu. When a
new point p is inserted/deleted, we can update Cv for
each ancestor v of p in O(1) time. Using Cv, we can
decide whether a given new color must be inserted into
Lv in O(1) time. Using Cv we can also re-build L′v
in O(|Cv|) = O(|Pv|) time. Hence, we can support in-
sertions in O((1/τ) logn) time and deletions in O(log n)
time with help of lists Cv. The total number of elements
in all Cv is O((1/τ)n log n).

Thus we obtain the following

Theorem 3 There exists a O((1/τ)n) space data struc-
ture that supports one-dimensional domination queries
and insertions in O((1/τ) log2 n) time and deletions
in O((1/τ) log2 n) amortized time. There exists a
O((1/τ)n log n) space data structure that supports
one-dimensional domination queries and insertions in
O((1/τ) logn) time and deletions in O((1/τ) logn)
amortized time.

4 Multi-Dimensional Domination Queries

We can extend our data structures to support d-
dimensional queries for an arbitrary constant d using
the standard range trees [3] approach. We describe
how we can construct a d-dimensional data structure
if we know how to construct a (d− 1)-dimensional data
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structure. A range tree Td is constructed on the set
of d-th coordinates of all points. An arbitrary inter-
val [ad, bd] can be represented as a union of O(log n)
node ranges. Hence, an arbitrary d-dimensional query
Q = Qd−1 × [ad, bd] can be represented as a union of
O(log n) queries Q1, . . . , Qt, where t = O(log n) and
Qi = Qd−1 × rng(vi) for some node vi of T . In each
node v of T we store a (d − 1)-dimensional data struc-
ture Dv that contains the first d − 1 coordinates of all
points whose d-th coordinates belong to rng(v). Dv

supports modified domination queries in d − 1 dimen-
sions: for a (d − 1)-dimensional query rectangle Q, Dv

outputs all colors that dominate Q × rng(v). Using
Dvi we can find (at most (1/τ)) colors that dominate
Qi = Q′×rng(v). Since Q is a union of O(log n) ranges
Qi, we can identify a set C that contains O((1/τ) logn)
candidate colors by answering O(log n) modified (d−1)-
dimensional domination queries. As follows from Obser-
vation 1, only a color from C can dominate Q. Hence,
we can identify all colors that τ -dominate Q by answer-
ing O((1/τ) logn) d-dimensional range counting queries.
Thus the query time for d-dimensional queries can be
computed with the formula q(n, d) = O(log n)q(n, d −
1) + O((1/τ) log n)c(n, d), where q(n, d) is the query
time for d-dimensional domination queries and c(n, d)
is the query time for d-dimensional counting queries.
We can answer d-dimensional range counting queries in
O(logd−1 n) time and O(n logd−1 n) space [5]. We can
answer one-dimensional domination queries in O(log n)
time by Theorem 1. Therefore d-dimensional domina-
tion queries can answered in O((1/τ) logd n) time.

We can apply the reduction to rank space tech-
nique [10, 5] and replace all point coordinates with la-
bels from [1, n]. This will increase the query time by
an additive term O(log n). Since point coordinates are
bounded by n, we can apply Theorem 2 and answer one-
dimensional domination queries in O((log log n)2) time
using a O(n) space data structure. Since the space us-
age grows by a O(log n) factor with each dimension, our
data structure uses O(n logd−1 n) space.

Theorem 4 There exists a data structure that supports
domination queries in d dimensions in O((1/τ) logd n)
time and uses O(n logd−1 n) space.

The same range trees approach can be also applied to
the dynamic one-dimensional data structure for domi-
nation queries. Since one-dimensional dynamic domi-
nation queries can be answered in O((1/τ) log2 n) time
and dynamic range counting queries can be answered in
O(logd n) time and O(n logd−1 n) space, d-dimensional
domination queries can be answered in O(logd+1 n)
time, and the space usage is O((1/τ)n logd−1 n). Since
updates are supported in O(log2 n) (amortized) time in
one-dimensional case and update times grow byO(log n)
factor with each dimension, d-dimensional data struc-
ture supports updates in O(logd+1 n) (amortized) time.

Theorem 5 There is a dynamic data structure that
answers domination queries in d dimensions in
O((1/τ) logd+1 n) time, uses O((1/τ)n logd−1 n) space,
and supports insertions in O((1/τ) logd+1 n) time and
deletions in O((1/τ) logd+1 n) amortized time.

Conclusion

We presented data structures for a new variant of col-
ored range reporting problem. Our data structures use
pseudo-linear space and report all τ -dominating colors
in poly-logarithmic time in the case when the param-
eter τ is small, i.e. constant or poly-logarithmic in n.
It would be interesting to construct efficient data struc-
tures for larger values of τ .
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Data Structures for Restricted Triangular Range Searching

Nadia M. Benbernou∗ Mashhood Ishaque† Diane L. Souvaine‡

Abstract

We present data structures for triangular emptiness
and reporting queries for a planar point set, where the
query triangle contains the origin. The data structures
use near-linear space and achieve polylogarithmic query
times.

1 Introduction

Simplex range searching (emptiness, reporting, count-
ing) [1] is a fundamental problem in computational ge-
ometry. Given a set S of n points, a simplex emptiness
query asks whether a given query simplex contains a
non-empty subset of S. A simplex reporting query asks
for a report of all points of S inside the query simplex,
and a simplex counting query asks for the total number
of such points.

In this paper we consider the restricted version of
simplex (triangular) emptiness and reporting queries for
points in a plane, where each query triangle contains the
origin. Since we can triangulate any triangle containing
origin into three triangles such that each triangle has
one vertex incident on origin, we can assume wlog that
each query triangle has one vertex at origin. The same
idea works for any convex polygon containing the origin,
but the number of query triangles is equal to the number
of sides in the polygon.

1.1 Our Results

We present near-linear-space data structures for the fol-
lowing queries. All reporting queries incur an additional
cost of O(k) where k is the number of objects to be re-
ported.

• Restricted triangular emptiness and reporting
queries in O(lg2 n) time. [Section 2]

• Restricted triangular emptiness and reporting
queries in O(21/ǫ lg n) time. [Section 3]

• Restricted triangular emptiness queries in O(lg n)
time. [Section 4]

• Triangular emptiness and reporting queries in
O(polylog n) time with high probability, where the
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†Tufts University, mishaq01@cs.tuft.edu. Partially supported
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vertices of the query triangle are randomly chosen
from the given point set. [Section 5]

• Ray intersection detection and reporting queries
among an arrangement of n lines in O(polylog n)
time. [Section 6]

• Non-orthogonal square emptiness and reporting
queries in O(polylog n) time. [Section 7]

Query Triangle

Origin

Figure 1: Restricted Triangular Range Queries

1.2 Related Results

Chazelle [5] showed that in the arithmetic model
Ω(n1/2) time is needed to answer a triangular count-
ing query using linear space. Similarly Brönnimann et

al. [4] gave a lower bound of Ω(n1/3) for halfplane range
counting in semigroup arithmetic model. For triangu-
lar reporting queries, Chazelle and Rosenberg [9] showed
that, on a pointer machine, a query time of O(nδ+k) re-
quires Ω(n2(1−δ)−ǫ) space. Consequently polylogarith-
mic query time requires close to quadratic space. Al-
though halfplane range counting is as hard as triangular
range counting, halfplane reporting is significantly eas-
ier than triangular reporting. Chazelle et al. [6] gave a
linear-space data structure for halfplane range reporting
that achieves O(lg n+k) query time. The data structure
maintains nested (peeling) convex layers for the given
point set. Similarly for halfplane emptiness queries, a
linear-space data structure that maintains convex hull
of the given point set allows the queries to be answered
in O(lg n) time.

The best known data structure for triangular empti-
ness (reporting) that uses O(n lg n) space, achieves a
query time of O(n1/2+ǫ) (additional O(k) for reporting).
The data structure is based on Matoušek’s technique of
simplicial partitioning with low crossing number [15].

Using near quadratic space it is possible to sup-
port triangular range searching in polylogarithmic time.
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Chazelle et al. [10] gave a O(n2+ǫ) space data struc-
ture that supports reporting queries in O(lg n+k) time.
Goswami et al. [14] presented a O(n2) space data struc-
ture that can support triangular reporting queries in
O(lg2 n + k) and triangular counting (and hence empti-
ness) queries in O(lg n) time.

Bounding Box

h

Figure 2: Halfplane Queries to Triangular Queries

The best lower bounds known for the triangular
emptiness queries comes from the lower bounds for half-
plane emptiness queries. There is a simple reduction
from halfplane range queries to triangular range queries
(see Figure 2). Erickson [13] showed that for any data
structure supporting halfplane emptiness queries will
have a lower bound of Ω(lg n) for query, Ω(n) for space,
and Ω(n lg n) for preprocessing. While the bounds for
halfplane emptiness are tight, there is no matching up-
per bound for triangular emptiness queries.

2 Simple Data Structures with O(lg2 n) Query

Given a set of n points in the plane, sort the points ro-
tationally in counter-clockwise order around the origin.
Assign as ID to each point its order in the sorted list of
points. Now consider any single wedge formed by two
rays emanating from the origin. Let i be the first and
j be the last point inside the wedge that would be hit
if we were to sweep rotationally around origin using a
ray that goes from the right boundary of the wedge to
the left boundary. Observe that all the points inside the
wedge are consecutive (with wrap-around) in the sorted
order, see Figure 3. For any given wedge, we can find
the points i and j in O(lg n) time. For any triangular
emptiness/reporting query ∆abc with a vertex, b, coinci-
dent with the origin, we can extend the two sides as rays
−→
ba and

−→
bc away from the origin to form a wedge. Now if

we had a halfplane emptiness/reporting data structure
over the points in this wedge, we could answer trian-
gular emptiness and reporting queries by querying the
halfplane bounded by ←→ac .

A näıve data structure for restricted triangular empti-
ness queries would be to store a convex hull for each
pair of indicies (i, j), supporting queries in O(lg n) time,
and using O(n3) space. The preprocessing time would
be O(n3) because we can compute the convex hull in
linear time for points in sorted order. For triangular
reporting we would store nested convex layers instead
of convex hulls. The query time would be O(lg n + k),

space would be O(n3), and the preprocessing would be
O(n3 lg n).

12
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b
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Figure 3: Points Sorted Around the Origin

Since the halfplane emptiness and reporting queries
are decomposable, we could build a simpler data struc-
ture. Given the set of points in sorted order, build
the dynamic convex hull structure of Overmars and van
Leeuwen [16]. The data structure needs O(n) space,
O(n lg n) preprocessing and the query takes O(lg2 n).
To answer an emptiness query, the leaves in the dy-
namic convex hull tree corresponding to two extreme
points inside the wedge are located. Then by climbing
up the tree from the two leaves until the least common
ancestor is reached, up to O(lg n) convex hull structures
are collected. Together these convex hull cover all the
points between and including the two extreme points.
The query is answered by querying each of these O(lg n)
structures for halfplane emptiness. For restricted tri-
angular reporting, a convex peeling layers structure is
stored at each node. The data structure needs O(n lg n)
space , O(n lg2 n) preprocessing and support queries in
O(lg2 n + k) time. Daescu et al. [11] used a similar idea
to build a data structure for halfplane farthest-point
queries.

3 Data Structures with O(21/ǫ lg n) Query

In this section we present an near-linear-space data
structure for restricted triangular emptiness/reporting
queries that achieves logarithmic query time. We start
with the näıve data structures from previous section
that use O(n3) space and achieves O(lg n) query time.
Then we recursively apply the space-reducing transfor-
mation from Aronov et al. [2] to provide a O(n1+ǫ)
space data structure. The space-reducing transforma-
tions preserve the O(lg n) query time, but the constant
is exponential in 1/ǫ.

Here is how the transformation works. Given the
set of n points sorted around the origin, select every
mth point to be a breakpoint. For each breakpoint
mi, compute the convex hull (convex layers for report-
ing) for each sequence of points starting at mi whose
length is a power of two. This constitutes linear space
for each of the breakpoints. In addition, we compute
this data structure recursively for each half-open inter-
val [mi,mi+1) formed by the breakpoints mi and mi+1.
Let M(n) be the size of the data structure on n points.
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The recurrence relation (same as in [2]) for the space of
the data structure after one space-reducing transforma-
tion: M(n) = (n/m + 1)M(m) + O(n2/m)

Applying (1/2 + 1/ǫ) transformations for any given
ǫ > 0, as in [2], yields the desired space and prepro-
cessing of O(n1+ǫ). Although the published proof for
the recurrence relation is incorrect, there is an easy fix
(omitted) suggested by Erik Demaine [12]–an author of
that paper.

To answer a triangular emptiness (reporting) query,
identify in O(lg n) time the extreme points i and j in-
side the wedge; let mi and mj be the breakpoints inside
the wedge, closest to points i and j respectively; open
intervals (i,mi) and (mj , j) do not contain any break-
point, thus we must have a recursive data structure for
them; two convex hull (convex layers) structures will
cover all the points in the interval [mi,mj ]. For a re-
porting query we may report some points twice. The
recurrence relation for query time is given as follows,
with a solution of O(21/ǫ lg n) (as in [2]):

Q(n) = 2Q(m) + O(lg n)

4 Emptiness Queries in O(lg n) Time

We apply the fractional cascading technique [7] to the
O(lg2 n) time emptiness query data structure given in
Section 2. The modified data structure supports empti-
ness queries in O(lg n) time, but the space becomes
O(n lg n).

The basic idea is to reduce a halfplane emptiness
query to the problem of finding the extreme point in
a given direction. A query halfplane is empty if and
only if the extreme (farthest) point in the direction per-
pendicular to the query line (defining the halfplane) is
not contained in the halfplane. With each extreme point
we can associate a half-open interval of slopes. We can
store a sorted array of these intervals and for a given
slope find the extreme point in O(lg n) time using binary
search. We store one such sorted array (corresponding
to extreme points in a node’s subtree) at each node in
the data structure. Notice to answer a restricted trian-
gular emptiness query we still need to perform O(lg n)
extreme point queries, but we can apply fractional cas-
cading here. So only the first extreme point query takes
O(lg n) time, and the queries after that can be answered
in constant time.

Achieving O(lg n + k) time for reporting queries re-
mains a key open problem, as Chazelle and Liu [8]
showed that the fractional cascading technique does not
generalize to planar maps.

5 A Probabilistic Data Structure

For a given set of n points, there are
(

n
3

)

triangles with
vertices in the point set. For a query triangle chosen ran-
domly out of these

(

n
3

)

triangles, there exist near-linear-
space data structures that support triangular emptiness

and reporting queries in O(lg n) time with probability
(1−1/n). Even in case of failure the data structures do
not answer queries incorrectly; instead they identify in
O(lg n) time whether the given query can be answered.
Although it might seem that the same result could be
achieved using ǫ-nets, the obvious strategies for doing
so fail.

The key idea is to use the result by Aronov et al. [3]
which says that for a subset of these

(

n
3

)

triangles of size
at least n2, there exists a point that is inside a fraction
of the triangles in the subset. Thus starting from the
set of all

(

n
3

)

triangles, we find the deepest point. Using
this point as origin we build restricted triangular query
data structures over the given point set. We then re-
move the triangles containing this deepest point, from
the set of triangles. We repeat the method on the re-
maining subset until there are only O(n2) triangles left.
Since we discard a fraction of triangles in every step, we
build O(lg n) restricted triangular query data structures
which together can handle (n3−n2) triangles. For a tri-
angular query we can find in O(lg n) time if there is some
data structure whose origin is contained in the query
triangle. If there exists such a data structure, we use
it to answer the triangular emptiness/reporting query;
otherwise we indicate failure or perform a linear-time
exhaustive search that would result in O(lg n) expected
time.

6 Ray Intersection Detection and Reporting

In the data structures for restricted triangular range
queries if the points are sorted by their x-coordinate in-
stead of radially sorted, the data structures can support
axis-parallel three-sided trapezoidal queries. Using two
such trapezoidal queries, we can answer double-wedge
emptiness and reporting queries where one of the lines
forming the wedge is vertical (see Figure 4).

Figure 4: Trapezoidal Range Queries

Since such a double-wedge corresponds to a ray in
the dual world, the data structures can be used to an-
swer ray intersection detection and reporting queries
among an arrangement of n lines. The data structure
for detecting intersection uses O(n lg n) space and sup-
port queries in O(lg n) time. For intersection reporting
the query time is O(lg2 n + k) using O(n lg n) space, or
O(lg n + k) using O(n1+ǫ) space.
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7 Non-Orthogonal Square Range Searching

By building a range tree of three-sided trapezoidal
query data structures, we could support right-triangular
queries, where the base of the triangle is axis-parallel.
The space for the data structure increases and the query
time slows down by a factor of O(lg n).

Since a non-orthogonal square can be partitioned into
eight axis-parallel right triangles, the data structures for
axis-parallel right triangles also support non-orthogonal
square (or rectangles with constant aspect ratio–fat
rectangles) emptiness and reporting queries .

A brief sketch of the proof: from the highest vertex of
the given square draw a vertical line segment down to
one of the non-adjacent sides. Similarly from the lowest
vertex draw a vertical line segment upwards. Let x be
the side-length then each vertical segment has a length
in the interval [x,

√
2x]. The two diagonals of the square

intersect at a distance 1√
2
x from each vertex. There-

fore, the downward vertical segment goes below and the
upward vertical segments goes above this point of inter-
section. Thus we can draw horizontal segment from the
lower (upper) endpoint of the downward (upward) ver-
tical segment to the other vertical segment. Notice the
argument does not hold for long skinny non-orthogonal
rectangles.

Figure 5: Non-Orthogonal Square Range Queries

8 Concluding Remarks

It is impossible to achieve O(polylog n) time for trian-
gular counting queries using O(n polylog n) space, even
when the query triangle contains the origin; since a half-
plane counting query can be reduced in constant time to
a restricted triangular counting query. Thus the lower
bound for halfplane range counting queries [4] applies
to restricted triangular range counting as well.

The fact that the data structures for restricted tri-
angular queries support both emptiness and reporting
queries in O(polylog n) time indicates that the tech-
niques for restricted case will not extend to general
triangular emptiness. The lower bound on triangular
reporting queries [9] on a pointer machine, indicates
that any near-linear-space data structure achieving
O(polylog n) time for triangular emptiness must handle
emptiness queries differently from reporting queries.
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CCCG 2008, Montr�eal, Qu�ebec, August 13{15, 2008A generalization of Apollonian packing of circlesGerhard Guettler� Colin MallowsyAbstractThree circles touching one another at distinct pointsform two curvilinear triangles. Into one of these wecan pack three new circles, touching each other, witheach new circle touching two of the original circles. Insuch a sextuple of circles there are three pairs of cir-cles, with each of the circles in a pair touching all fourcircles in the other two pairs. Repeating the construc-tion in each curvilinear triangle that is formed resultsin a generalized Apollonian packing. We can invert thewhole packing in every circle in it, getting a \general-ized Apollonian super-packing". Many of the propertiesof the Descartes con�guration and the standard Apol-lonian packing carry over to this case. In particular,there is an equation of degree 2 connecting the bends(curvatures) of a sextuple; all the bends can be integers;and if they are, the packing can be placed in the planeso that for each circle with bend b and center (x; y), thequantities bx=p2 and by are integers.Recently there has been renewed interest in a veryold idea, that of Apollonian packing of circles, in whichan initial con�guration of three mutually tangent circlesis augmented by repeatedly drawing new circles in eachcurvilinear gap. See for example Mumford et al [8]. Wecan also study \super-Apollonian" packings which areobtained by repeatedly inverting an Apollonian packingin every circle in it. It is a remarkable fact that Apol-lonian and super-Apollonian packings exist in which allthe bends (curvatures) are integers. This property wasstudied in detail by Graham et al [3], and the group the-ory associated with these packings has been studied bythe same authors [4-6]. Also, if all the bends are inte-gers, the super-Apollonian packing can be placed in theplane so that all the \bend times center" quantities areintegers. Several extensions of the Apollonian idea havebeen studied, for example Mauldon [7] studied con�gu-rations in which adjacent circles do not touch but haveconstant \separation".Our own interest lies in extending these ideas in newdirections, particularly by packing not one but threecircles within each triangular gap, thus forming sextu-�University of Applied Sciences Giessen Friedberg (Germany),dr.gerhard.guettler@swd-servotech.deyAvaya Labs, Basking Ridge NJ USA 07920,colinm@research.avayalabs.com

ples of circles, and in exploring the degree to which thetheory associated with the classical packings can be ex-tended to cover this case. We �nd that all the bendsin such a generalized packing can be integers; and thereare results relating to the positions of the centers of thecircles that directly generalize those found by Lagariaset al [2] in the classical Descartes-Apollonian case.Figure 1 shows the four possible con�gurations of asextuple. There can be zero, one, or two circles wthbend zero (i.e. straight lines), and at most one bendcan be negative, as in case (a).
(a) (b)

(c) (d)

1

Figure 1: Sextuple con�gurationsThese con�gurations generalize the classicalDescartes con�guration, in which just one circle isplaced in a curvilinear triangle. Such a sextuple ofcircles forms an n = 4 example of what we call a\ball-bearing" con�guration, in which a ring of ncircles (each touching two others) have the propertythat there are \inner" and \outer" circles that eachtouch all n circles in the ring. The n=3 case reproducesthe classical Descartes con�guration. With n = 4 thecircles come in three pairs, with each of the circles ina pair touching all four circles in the other two pairs.The circles of a pair do not touch one another. Thesextuple thus has the symmetry of the vertices of anoctahedron (or of the faces of a cube), rather than thesymmetry of a tetrahedron as in the Descartes case.
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20th Canadian Conference on Computational Geometry, 2008Repeating the construction in each curvilinear trianglethat is formed results in a \generalized Apollonianpacking". See Figures 2 (based on Figure 1(a)) and3 (based on Figure 1(c)). Here, and in subsequent�gures, we include only circles with bend less than 100.
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Figure 2: A generalized Apollonian packing
Figure 3: Another generalized Apollonian packingMany of the properties of the Descartes con�gurationand the standard Apollonian packing carry over to thiscase. In particular:(i) Given a ring of four circles, formed by two pairs ofcircles in a sextuple, there is a quadratic equation whosecoe�cients involve the bends of these four circles, theroots of which are the bends of the other pair of circlesin the set. Explicitly,2x2 � x� + � � 38�2 = 0 (1)where � = b1+b01+b2+b02; � = b12+b012+b22+b022 Thisgeneralizes the classical Descartes equation. Replacingeach bend by the corresponding bend*(complex) cen-ter gives another result which generalizes the \ComplexDescartes Theorem" of [2].(ii) There is an analog of \Descartes reection" (see[2]) in which three circles (one from each pair in a sex-tuple, these three circles occupying a curvilinear trian-gle formed by the other three circles of the sextuple)

are replaced by three circles occupying the other trian-gle formed by these three circles, thus forming anothersextuple. Given a sextuple, this operation can be per-formed in eight di�erent ways. Iteration of this opera-tion creates a generalized Apollonian packing in whichthe interiors of all circles are disjoint. A packing is de-termined by any three touching circles within it.(iii) all six bends of the circles in a sextuple can beintegers. Examples: in Figure 1(c), the bends are (0,2;0,2; 1,1); in Figure 1(a) they are (-1,7; 2,4; 2,4). Thisproperty is inherited by all derived circles.(iv) if all bends of a sextuple are integers, the sextuplecan be placed in the plane so that for each circle withbend b and center (x; y), the \bend times center" quan-tities (bx; by) have both bx=p2 and by integers. Thisproperty is inherited by the generalized packing basedon this sextuple.(v) The construction of the generalized packing canbe realised by integral linear operations acting on ma-trices representing the sextuples. These matrices couldbe 6 x 4 matrices with each row containing the \abbc"or \augmented bend, bend times center" coordinatesintroduced in [2]. The abbc coordinates of a circle Cwith bend ( = 1/radius) b and center (x; y) is the vec-tor a(C) = (�b; b; bx; by) where �b is the bend of the circlethat is the inverse of C in the unit circle, namely�b = b(x2 + y2)� 1=b (2)However it is convenient to represent a sextuple by a 4 x4 matrix that we call F(C) in which the �rst three rowscontain the abbc coordinates of three of the circles inthe sextuple (one from each pair) and the fourth row isthe average of two rows that represent a pair of circlesin the sextuple (this average is the same for each of thethree pairs). This row does not represent a circle.(vi) There are dual operations acting on the right,which represent Mobius transformations.(vii) Among the sextuples with integer bends, thereare \root" sextuples (see [3] and [5]) having the prop-erty that any application of the reection operation in(ii) results in circles with larger bends. These root sex-tuples can be found by applying a reduction algorithm,just as in the Descartes case. Except for the specialsextuple with bends (0,2; 0,2; 1,1) (Figure 1(a)), eachroot sextuple has exactly one circle with negative bend.We have a conjecture as to the number of root sextupleswith smallest bend �n.(viii) By inverting a generalized Apollonian packingin each circle in the packing, and then again in everycircle, and so on, we obtain a \generalized Apolloniansuper-packing", directly analogous to the Apolloniansuper-packing studied in [5]. There is essentially justone super-packing in which all bends are integral. Thissuper-packing can be placed in the plane, in exactly fourways, so that each bx=p2; by is integral. In each version
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CCCG 2008, Montr�eal, Qu�ebec, August 13{15, 2008of this super-packing, there is a basic rectangle (0;p2)x (0; 1) which repeats by translation and reection tocover the whole plane. See Figure 4.
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Figure 4: A generalized Apollonian super-packing(ix) Each primitive integral sextuple appears exactlyonce in the basic (0;p2) x (0; 1) rectangle of the super-packing. Computation suggests that there are somesymmetries within the basic rectangle, like those shownin [5].(x) One can consider \ball-bearing" structures of cir-cles, in which a ring of n balls (each touching two neigh-bors) have the property that there exist \inner" and\outer" circles that each touch each of the \balls" inthe ring. The case n = 3 reproduces the Descartes con-�guration; the case n = 4 gives the sextuples studied inthis paper. The bends of all n+2 circles can be integralonly when n = 3; 4; 6. There is a quadratic equationwhose roots are the bends of the \inner" and \outer"circles, and whose coe�cients involve the bends of thecircles in the ring.(xi) There is an analog of the Farey series and the as-sociated Ford circles, in which at every stage we inserttwo new fractions (and two new touching circles) in-stead of just one, between every existing adjacent pairof fractions. See Figure 5.There are several open questions.Is the conjectured formula for the number ofroot sextuples correct?Are the conjectured symmetries within the ba-sic cell of the super-packing valid?Do all integers arise as bends of circles in gen-eralized Apollonian packings?Is the Hausdor� dimension of our generalizedsuper-packing the same as in the Apollo-nian case?Are there other ways to generalize the classicalApollonian packing?

Are there other ways to pack integer-bend cir-cles?What about higher dimensions?References[1] Aharonov, D. and Stephenson, K. Geometricsequences of discs in the Apollonian packing.Algebra i Analiz. 3:104-140, 1997[2] Lagarias, J.C., Mallows, C.L., and Wilks, A.RBeyond the Descartes circle theorem. Amer.Math. Monthly 109:338-361, 2002.[3] Graham, R.L., Lagarias, J.C., Mallows, C.L.,Wilks, A.R., and Yan, C. Apollonian circlepackings: number theory. J. Number Theory100:1-45, 2003.[4] Graham, R.L., Lagarias, J.C., Mallows, C.L.,Wilks, A.R., and Yan, C. Apollonian circlepackings: Geometry and Group Theory I. TheApollonian Group . Discrete and Computa-tional Geometry 34:547-585, 2005.[5] Graham, R.L., Lagarias, J.C., Mallows, C.L.,Wilks, A.R., and Yan, C. Apollonian circlepackings: Geometry and Group Theory II.Super-Apollonian Group and Integral Pack-ings. Discrete and Computational Geometry35:1-36, 2006.[6] Graham, R.L., Lagarias, J.C., Mallows, C.L.,Wilks, A.R., and Yan, C. Apollonian circlepackings: Geometry and Group Theory III.Higher Dimensions. Discrete and Computa-tional Geometry 35:37-72, 2006.
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A note on α-drawable k-trees

David Bremner∗ Jonathan Lenchner† Giuseppe Liotta‡ Christophe Paul§ Marc Pouget¶

Svetlana Stolpner‖ Stephen Wismath∗∗

Abstract

We study the problem of realizing a given graph as an
α-complex of a set of points in the plane. The graphs we
consider are trees and 2-trees. In the case of 2-trees, we
confine our attention to the realizability of graphs as the
α-complex minus faces of dimension two; in other words,
realizability of the graph in terms of the 1-skeleton of
the α-complex of the point set. We obtain both positive
(realizability) and negative (non-realizability) results.

1 Preliminaries

Consider a finite set S of points in the plane and a
non-negative real number α. For each p ∈ S, let
Bp(α) = {x : ‖x− p‖ < α} be a disk centered at p with
radius α. Let B(S, α) denote the union of balls Bp(α).
We can decompose this union by intersecting each ball
Bp(α) with the Voronoi cell Vp of p into convex pieces
BVp(α) = Bp(α) ∩ Vp. Define the α-complex as the
nerve of the decomposition of B(S, α) by BVp(α) or the
set of all simplices σ ⊆ S such that

⋂
p∈σ BVp(α) 6= ∅.

For details, see [6, 1]. We use α(S) to refer to the α-
complex for the set of points S for this fixed value of the
radius α. The 1-skeleton α1(S) of α(S) is the collection
of 1-dimensional faces in α(S).

We shall find the following graph useful: the Gabriel
graph of S, GG(S), contains an edge between any pair of
points p and q whenever the disk having the line segment
pq as its diameter is empty. The edges of the GG(S) are
those Delaunay edges that intersect their dual Voronoi
edges.

A k-tree is a graph obtained from a k-clique by 0 or
more iterations of adding a new vertex joined to exactly
k vertices of a k-clique in the old graph. A partial k-tree
is a subgraph of a k-tree. Trees are 1-trees.
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2 Introduction

The problem of characterizing those geometric graphs
that satisfy some proximity rule has a long tradition in
the computational geometry literature. This tradition
is justified in part by the theoretical interest of the as-
sociated questions in their own right, and in part by
the variety of application areas where proximity graphs
are used as descriptors of the shape of a set of points.
Extensive surveys about different proximity rules with
their applications can be found in [10, 16].

The characterization problem for proximity graphs
can naturally be expressed as a graph drawing question.
Indeed, for a proximity rule P and a family of graphs G
we can say that a member G ∈ G is P-drawable if there
exists a set S of distinct points in the plane such that
the geometric graph constructed on S by using rule P
is isomorphic to G; we call this geometric graph a P-
drawing of G. Characterizing P-drawable graphs corre-
sponds to describing the combinatorial properties of the
associated P-drawings. Different families of P-drawable
graphs have been studied in the literature, including
Gabriel drawable graphs, Delaunay drawable triangu-
lations, and sphere of influence drawable graphs (see,
e.g., [2, 4, 9, 15]). Those trees that can be drawn as
the minimum spanning tree of a set of points in the
plane are studied in [5, 11, 14]. The interested reader
is referred to [12] for a survey of proximity drawability
problems and more references on the topic.

This paper initiates the study of the combinatorial
properties of α-complexes of set of points in the plane.
α-complexes are a fundamental object in computational
topology [8] and have applications in such areas as struc-
tural molecular biology [7] and shape analysis [3].

We say that a graph G with n vertices is α-drawable
if there exists a set S of n distinct points in the plane
such that the α-complex of S is a straight-line drawing
of G for some value of the parameter α. We call such
an α-complex of S an α-drawing of G. We present some
negative and positive results about those trees and par-
tial 2-trees that are α-drawable. A detailed description
of the results in this note follows.

• Regarding trees, we show differences between α-
drawable trees and other well-studied families of
proximity drawable trees. Namely, we show that
that the family of α-drawable trees is a subset of the
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relative neighborhood drawable trees and a subset
of those trees that are drawable as the minimum
spanning tree of a set of points. We also prove that
there exist α-drawable trees that are not Gabriel-
drawable.

• We exhibit a simple partial 2-tree that is not α-
drawable. Motivated by the observation that the
above counterexample for 2-trees is a series-parallel
graph whose planar embeddings all have some in-
terior vertex, we show that all biconnected outer-
planar graphs are α-drawable.

Our characterizations of α-drawable graphs are based
on constructive proofs that give rise to linear time draw-
ing algorithms, assuming the real RAM model of com-
putation.

3 Results on Trees

Lemma 1 Let (u, v) be an edge of GG(S). If d(u, v) ≥
2α, then (u, v) /∈ α(S). If d(u, v) < 2α, then (u, v) ∈
α(S).

Theorem 2 If α(S) is a tree, it is the Euclidean min-
imum spanning tree of S.

Proof. Suppose α(S) were a tree but not the minimum
spanning tree, MST (S). Then there would be an edge
(u, v) in α(S) not in MST (S), such that d(u, v) < 2α.
Vertices u and v are connected by a path in MST (S)
and adding edge (u, v) to MST (S) creates a cycle. We
know that all edges in MST (S) are Gabriel edges (since
MST ⊆ GG). Suppose that the cycle made by adding
(u, v) to MST (S) does not contain an edge of length
≥ 2α. Then all edges in the path from u to v in MST (S)
are Gabriel edges of length < 2α. By Lemma 1, these
edges are in α(S). But so is (u, v). Thus, α(S) contains
a cycle. This is impossible as it is a tree. Therefore,
an edge of MST (S) along the path from u to v is of
length ≥ 2α. It may be exchanged with (u, v) to obtain
a lighter MST (S). If α(S) is a tree, there cannot be an
edge in α(S) that is not in MST (S). ¤

Corollary 3 If α(S) is a tree, it contains exactly those
Gabriel edges whose length is < 2α.

3.1 Non-realizability results

Lemma 4 Let α(S) be a tree. For two edges (u, v),
(w, v) sharing a common vertex v, ∠uvw > π/3. More-
over, ∠uvw is the largest angle in 4uvw.

Proof. Suppose that ∠uvw ≤ π/3. Then (u,w) is not
the longest edge of 4uvw, i.e. d(u,w) ≤ d(u, v) <
2α, d(u,w) ≤ d(w, v) ≤ 2α. Since (u,w) /∈ T and
d(u, w) < 2α, by Corollary 3, (u,w) /∈ GG(S). Let p

be a point inside the diametric disk of u and w. Then
d(u, p) < d(u, v) and d(w, p) < d(w, v). One of (u, p),
(w, p) is not in T as it is a tree. Either (u, v) may
be replaced with the shorter edge (u, p) or (w, v) with
(w, p) to make a lighter spanning tree of S than T . This
contradicts Theorem 2. We have shown that it is not
possible that ∠uvw ≤ π/3.

It is not possible that 4uvw has a larger angle than
∠uvw since that would mean that the longest side of
4uvw is not (u,w) and that T is not a MST (S). ¤

Corollary 5 The maximum vertex degree of an α-
drawable tree is at most 5 for any possible value of α.

This is in contrast with a generic Euclidean minimum
spanning tree, which has vertex degree of at most 6 [14].

Lemma 6 A tree T consisting of two adjacent vertices
of degree 5 and additionally only leaf nodes is not α-
drawable for any possible value of the parameter α.

Figure 1: Two adjacent degree 5 vertices v and w.

Sketch of Proof. Suppose α(S) is a realization of T
as an α-complex for a given α. Let v and w be adjacent
degree 5 vertices in α(S). Let vi be the leaves adjacent
to v and wi be the leaves adjacent to w. See Fig. 1.
Either ∠v2vw ≥ ∠vww3 or ∠v2vw < ∠vww3. If it is
the latter, we rotate the drawing so that w3 takes the
place of v2 and v2 the place of w3. Hereafter, we assume
that ∠v2vw ≥ ∠vwv3.

By Lemma 4, ∠v2vv3 > π/3, ∠v3vv4 > π/3 and
∠w4ww3 > π/3. Combining this with the fact that
∠v2vw ≥ ∠vww3, we get ∠v4vw + ∠vww4 < π/2. As-
sume that ∠v4vw < π/2 (an analogous argument can
be made in case ∠vww4 < π/2). We know that α(S)
must not contain (v4, w4). By Corollary 3, if this edge is
not present, it is either because (v4, w4) is not a Gabriel
edge or because d(v4, w4) ≥ 2α.

First, we show that (v4, w4) must be a Gabriel edge.
Suppose the contrary. Then ∠v4ww4 ≥ π/2. Write
∠v4vw as π/2−β and ∠w4wv as π/2+ γ, where γ < β.
Then ∠vv4w ≥ π−π/2+β−γ > π/2. This implies that
the Gabriel disk of (v, w) is not empty and that (v, w)
is not in α(S), a contradiction.
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Figure 2: v4 lies on (v, v′4), w4 lies on (w, w′4).

Last, we show that necessarily d(v4, w4) < 2α. Let
L be the length of the longest edge in α(S). Let v′4
be a point such that ∠v′4vw = ∠v4vw < π/2 and
d(v′4, v) = L. We then choose point w′4, satisfying
∠v′4vw + ∠vww′4 < π and d(w,w′4) = L, such that w4

lies along (w, w′4), see Fig. 2. We try to choose v4 and
w4 as far apart as possible.

One possibility is to place w4 so that d(v, w4) =
d(w, w3) and d(v, w) = d(w4, w3). In this case w4 is
a vertex of a parallelogram P , w∗4 , see Fig. 2. Since
∠v2vw ≥ ∠vww3, ∠v2vv3 > π/3 and ∠v3vv4 > π/3,
it follows that ∠v4vw∗4 < π/3. Since d(v, v4) ≤ L and
d(v, w∗4) ≤ L, this implies that d(v4, w

∗
4) < L. Thus,

this placement for w4 is not sufficiently far from v4.
Note that neither ∠w∗4ww3 > π/2 nor ∠vww∗4 > π/2
for that would mean that one of (v, w) or (w,w3) is not
a Gabriel edge and may not be in α(S).

Consider placing w4 inside P . Note that ∠vww3 ≤
∠v2vw < π, since ∠v2vv3 +∠v3vv4 +∠v4vw > π. Then
we have the following 3 cases: (1) Suppose ∠vww4 <
π/2 and ∠w4ww3 < π/2. Then (v, w4) and (w4, w3) are
Gabriel edges and since they are not in α(S), d(v, w4) >
L, d(w4, w3) > L by Corollary 3. No such placement of
w4 is possible inside P ; (2) Suppose ∠vww4 ≥ π/2 and
∠w4ww3 < π/2. Then (w4, w3) is a Gabriel edge and
since it is not in α(S), d(w4, w3) > L, while (v, w4)
is not a Gabriel edge. As ∠vww4 > π/2, this angle
is greater than ∠vww∗4 . Increasing ∠vww4 decreases
∠w4ww3. Thus, w4 lies inside4vw∗4w and d(v, w4) ≤ L.
As (v, w4) is a Gabriel edge and d(v, w4) ≤ L, (v, w4) ∈
α(S), a contradiction; (3) Suppose ∠vww4 < π/2 and
∠w4ww3 ≥ π/2. Then (v, w4) is a Gabriel edge and
since it is not in α(S), d(v, w4) > L, while (w4, w3) is
not a Gabriel edge. This is impossible, by the same
argument as in (2). Thus, w4 may not be placed in P .

Consider moving w4 outside of P so that d(w4, w3) =
d(w∗4 , w3). Recall that (w∗4 , w3) is a Gabriel edge in P .
As d(w, w4) increases, ∠w4ww3 decreases, so (w4, w3)
remains a Gabriel edge. Thus w4 may not be placed
closer to w3. As d(w, w4) increases, d(v4, w4) first de-
creases and then increases. It can be shown (using sim-
ilar arguments as those presented already) that when
d(w, w4) = L, d(v4, w4) ≤ L. Thus, no choice of w4 such
that d(w4, w3) = d(w∗4 , w3) is sufficiently far from v4,

and therefore, the same is true if d(w4, w3) > d(w∗4 , w3).
Therefore, (v4, w4) is a Gabriel edge such that

d(v4, w4) ≤ L < 2α and must be in α(S). ¤

3.2 Realizability results

Lemma 7 α(S) can be a tree with arbitrarily many ad-
jacent degree four vertices.

Sketch of Proof. See Fig. 3. ¤

Figure 3: An α-drawing of a “caterpillar graph” whose
non-leaf vertices have degree 4. In the figure, 2√

5
α ≤

β < α.

We conclude this section by comparing α-drawable
trees with other well-known families of proximity draw-
able trees.

Theorem 8 The family of α-drawable trees is a proper
subset of the family of trees that have a minimum span-
ning tree realization. It is also a proper subset of the
relative neighborhood drawable trees. Also, there exist
α-drawable trees that are not Gabriel drawable.

Sketch of Proof. All trees whose maximum vertex de-
gree is at most five are relative neighborhood drawable
and also admit a realization as the Euclidean minimum
spanning tree of a set of points in the plane [2, 14]. On
the other hand, the tree in Fig. 1 containing two adja-
cent degree five vertices is not α-drawable by Lemma 6.
Also, no tree having two adjacent vertices of degree four
is Gabriel drawable [2], while, by Lemma 7 it may be
α-drawable. ¤

4 Results on 2-Trees

4.1 Non-realizability results

Lemma 9 There are 2-trees that are not α-drawable for
any possible value of α.

Sketch of Proof. Consider the partial 2-tree ABU
given in Fig. 4.

It can be shown that ABU is not α-drawable for any
possible value of α (proof omitted). The only comple-
tion of ABU in a 2-tree with 5 vertices is ABU aug-
mented by the edge (a, c). This 2-tree is well-known
as the 3-sun. Therefore, a 3-sun cannot be realized as
α1(S) for any point set S. ¤
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Figure 4: The partial 2-tree ABU .

4.2 Realizability results

Theorem 10 Every biconnected outerplanar graph is
α-drawable for any possible value of α.

Sketch of Proof. Let G be a biconnected outerplanar
graph. Construct a special dual for G by adding a vertex
for each bounded face of the graph and a vertex for
each edge on the unbounded face. Connect with edges
those vertices corresponding to the bounded faces that
share an edge and also those vertices corresponding to
the bounded faces that have an edge on the unbounded
face with the vertex corresponding to that edge. This
dual is a tree with no degree 2 vertices. By the results
of [13], this tree may be realized as a Voronoi diagram
of a set of points S. If we set the scale of this drawing to
be sufficiently small, for the given α, the α-balls touch
the Voronoi edges for any pair of primal edges of G. ¤

5 Open Problems

1. Are all binary trees α-drawable? Are all binary
trees up to some maximum depth k α-drawable?

2. Is a Gabriel drawable tree always α-drawable?

3. Which partial 2-trees are α-drawable?

4. If α(S) is a tree and we consider any subtree of
α(S), is it true that the subtree is α(S′) on the
restricted set of vertices S′? If true, this would im-
mediately settle the following problem, generalizing
Lemma 6:

5. Is any tree containing two adjacent degree 5 vertices
α-drawable?
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VC-Dimension of Visibility on Terrains

James King∗

Abstract

A guarding problem can naturally be modeled as a set
system (U ,S) in which the universe U of elements is
the set of points we need to guard and our collection S
of sets contains, for each potential guard g, the set of
points from U seen by g.

We prove bounds on the maximum VC-dimension of
set systems associated with guarding both 1.5D ter-
rains (monotone chains) and 2.5D terrains (polygonal
terrains). We prove that for monotone chains, the max-
imum VC-dimension is 4 and that for polygonal terrains,
the maximum VC-dimension is unbounded.

1 Introduction

Terrain Guarding A 1.5D (resp. 2.5D) terrain is a
continuous piecewise linear univariate (resp. bivariate)
function. In other words, a 1.5D terrain is a simple
polygonal chain that intersects any vertical line at at
most one point and a 2.5D terrain is a polygonal mesh
with no holes that intersects any vertical line at at most
one point.

On a terrain T , either 1.5- or 2.5-dimensional, we say
that two points see each other if the line segment be-
tween them does not pass under T . To guard T opti-
mally we must find a minimum set G ⊂ T of points on
the terrain such that every point on T is seen by a point
in G.

Guarding 1.5D terrains is not known to be NP-hard
but no polynomial-time exact algorithm has been found.
The best polynomial-time algorithm found so far is a 5-
approximation algorithm1 [10]. Guarding 2.5D terrains
is NP-complete, as proved by Cole and Sharir [4].

Set Cover and VC-Dimension Set Cover is a well-
studied NP-complete optimization problem. Given a
universe U of elements and a collection S of subsets of
U , Set Cover asks for the minimum subset C of S such
that

⋃
S∈C S = U . In other words, we want to cover all

of the elements with the minimum number of sets in S.
In general, Set Cover is not only difficult to solve

exactly (see, e.g., [7]) but is also difficult to ap-

∗Department of Computer Science, McGill University,
jking@cs.mcgill.ca

1An error in the paper was found after publication, and the
only fix found so far increases the approximation factor from 4 to
5.

proximate – no polynomial time approximation algo-
rithm can have an o(log n) approximation factor unless
NP ⊆ DTIME(nlog log n) [6].

However, some instances of Set Cover (we refer to
instances as set systems), are more complex than others.
VC-dimension is a measure of the complexity of a set
system (U ,S). Consider a set S ⊆ U . There are 2|S|

possible subsets of S. We say that S is shattered by a
collection C of 2|S| sets if, for each of the 2|S| subsets
of S, there is a set in C that contains those elements of
S but no other elements of S. The VC-dimension of a
set system (U ,S) is the maximum d for which a set of
d elements from U can be shattered by sets C ⊆ S.

VC-Dimension and Approximate Set Cover Set
Cover is hard to approximate in general, but set sys-
tems with low VC-dimension are simpler and, intu-
itively, should be easier to approximate. Brönnimann
and Goodrich [3] provide a polynomial time O(d log(d ·
OPT))-approximation algorithm for instances of Set
Cover with VC-dimension d, where OPT is the size of
the optimum solution. When d is bounded from above
by a constant, this gives an O(log OPT) approximation
factor.

Set Systems of Guarding Problems Guarding prob-
lems can naturally be expressed as instances of Set
Cover. For an instance of a guarding problem, the
associated set system (U ,S) is constructed with U con-
taining the points that need to be guarded and S con-
taining, for each potential guard g, the set of points
that g can see. For the sake of brevity we sometimes
refer to the VC-dimension of a guarding problem; by
this we mean the maximum possible VC-dimension of a
set system associated with an instance of the problem.

The classic art gallery problem, the problem of guard-
ing the interior of a polygon, is perhaps the best-known
and best-studied guarding problem. If the polygon can
have holes, the problem is as hard to approximate as
general instances of Set Cover [5]. However, if the
polygon to be guarded is simple (i.e. contains no holes),
the associated set system has constant VC-dimension
[9] (it is known to be at least 6 and at most 23 [11]).
This means that the technique of Brönnimann and
Goodrich leads to an O(log OPT)-approximation algo-
rithm, which is the best known. Guarding simple art
galleries is known to be APX-hard [5] but the exact ap-
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Figure 1: A monotone chain with 4 points, a, b, c, d, that are shattered by 16 guards. The guard seeing {a, b, c, d} is
not pictured, but a very high vertex on the left end of the terrain would see all other vertices. Each of the other 15
guards is labeled with the subset of {a, b, c, d} that it sees.

proximability is unknown.
Isler et al. [8] consider guarding the exterior of poly-

gons and polyhedra. For polygons they show that the
maximum VC-dimension is 2 when guards must lie on a
circle containing the polygon and 5 when guards can lie
anywhere outside the convex hull of the polygon. For
polyhedral galleries in R3 they prove that the maximum
VC-dimension is unbounded when guards must lie on a
sphere containing the gallery.

Our Contribution In section 2 we prove that the maxi-
mum VC-dimension of guarding a 1.5D terrain is 4 with
matching upper and lower bounds. In section 3 we show
that the VC-dimension of guarding a polygonal terrain
is unbounded, via a reduction from polygons with holes.

2 VC-Dimension of Guarding 1.5D Terrains

To prove that a monotone chain can have VC-dimension
4, we simply provide an example of a terrain with 4
points that are shattered by 16 guards (see figure 1).

For points a, b on an x-monotone chain, we say that
a < b if a is to the left of b. The Order Claim [2] states
that, for points a, b, c, d with a < b < c < d, if a sees c
and b sees d then a sees d.

For any point set P that is shattered by a set of
guards G let g(p1, . . . , pk) denote the guard in G that
sees p1, . . . , pk ∈ P but no other points in P . We will

now argue, using only the Order Claim, that no set P of
size 5 can be shattered. This gives us the upper bound
of 4 for the VC-dimension.

Let P = {a, b, c, d, e} and assume without loss of gen-
erality that a < b < c < d < e. We can see (figures
2(a) and 2(b) may help) that g(a, c, e) and g(b, d) will
contradict the order claim unless either

• g(b, d) < c and d < g(a, c, e) , or

• g(a, c, e) < b and c < g(b, d).

We assume the former without loss of generality. Now
consider g(b, c, e). There are four potential ranges that
we consider placing g(b, c, e) in:

• left of g(b, d)

• between g(b, d) and d

• between d and g(a, c, e)

• right of g(a, c, e).

It is not difficult to verify that placing g(b, c, e) in any
of these four ranges would contradict the Order Claim
(see figure 2(c) for an example). Therefore 5 points on a
monotone chain cannot be shattered and no monotone
chain can have VC-dimension greater than 4.
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a b c d e

g (b , d ) g (a , c , e )

(a) In this configuration the Order Claim is contradicted by
g(b, d), g(a, c, e), d, and e.

a b c d e

g (b , d ) g (a , c , e )

(b) In this configuration the Order Claim is not contradicted.

a b c d e

g (b , d ) g (a , c , e )g (b , c , e )

(c) The Order Claim is now contradicted by the addition of
g(b, c, e), regardless of its position. In this configuration the
Order Claim is contradicted by g(b, c, e), g(b, d), c, and d.

Figure 2: Examples of configurations of G and P for the
proof that no 5 points on a 1.5D terrain can be shat-
tered. Solid lines indicate clear lines of sight. Dashed
lines indicate blocked lines of sight.

3 VC-Dimension of Guarding 2.5D Terrains

Set Cover can be reduced to the problem of guarding
the perimeter of a polygon with holes using guards on
the perimeter (§4 of Eidenbenz et al. [5]). As a direct
consequence, for any finite set system (U1,S1), there
exists a polygon with holes whose associated set system
is (U2,S2) such that U1 ⊆ U2 and S1 ⊆ S2. This implies
that a polygon with holes can have arbitrarily large VC-
dimension.

For any polygon A with holes we show how to
construct a polygonal terrain of equal or grater VC-
dimension. The idea behind building T is simple. Lines
of sight between points on A are blocked by the exte-
rior of A. On our terrain T we will build corresponding
mountains to block lines of sight.

We start with T as a horizontal rectangle at altitude
0 that will act as a bounding box for A. We then trace
the perimeter of A on this rectangle and call it AT . AT

partitions T into two open sets, T− which corresponds
to the interior of A and T+ which corresponds to the
exterior of A, including the holes.

In terms of vertical projections, AT , T− and T+ will
remain fixed as we change T . However, T− will be low-
ered and T+ will be raised. There are many ways to
perform this raising and lowering, but perhaps the most
elegant is the method of raising roofs from straight skele-
tons (Aichholzer and Aurenhammer [1], in particular
§4). We raise T+ based on its straight skeleton and
lower T− based on its straight skeleton. The result is
that every point in T+ has positive altitude and every
point in T− has negative altitude. Only AT and the
rectangular perimeter of T will be at altitude 0. See
figure 3 for an example.

We can now verify that two points p, q on AT see each
other if and only if the corresponding points p′, q′ on A
see each other. Since p and q are both at altitude 0, all
of (p, q) is at altitude 0. If p sees q then the open line
segment (p, q) contains no point below T so no point on
(p, q) can be the vertical projection of a point in T+.
The corresponding open line segment (p′, q′) therefore
cannot intersect the exterior of A, so p′ and q′ must see
each other. Therefore p sees q if and only if p′ sees q′,
and the converse can be proved similarly.

From any polygon with holes, we can construct a 2.5D
terrain with equal or greater VC-dimension, so 2.5D ter-
rains have unbounded VC-dimension.
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(a) The polygon A with holes indicated in black. (b) A simplified top view of the associated terrain T . Black
lines indicate AT and the terrain’s perimiter, both at altitude
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Figure 3: A polygon A and a top view of the associated terrain T .
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Polygons Folding to Plural Incongruent Orthogonal Boxes

Ryuhei Uehara∗

Abstract

We investigate the problem of finding orthogonal poly-
gons that fold to plural incongruent orthogonal boxes.
There are two known polygons that fold to produce two
incongruent orthogonal boxes. In this paper, we show
that there are infinite such polygons. We also show
that there exists a tile that produces two incongruent
orthogonal boxes.

1 Introduction

Polygons that can fold to a convex polyhedron have
been investigated since Lubiw and O’Rourke posed the
problem in 1996 [4]. Recently, Demaine and O’Rourke
published a book about geometric folding algorithms
that includes many results about such polygons [2,
Chapter 25]. One of the many interesting problems in
this area is that whether there exists a polygon that
folds to plural incongruent orthogonal boxes. Biedl et
al. answered “yes” by finding two polygons that fold to
two incongruent orthogonal boxes [1] (see also [2, Figure
25.53]). However, are these two polygons exceptional?
We show that the answer is “no.” In this paper, we
first report that there are more than two thousands such
polygons of several sizes. These polygons were found by
a randomized algorithm that repeatedly produces many
nets of orthogonal boxes at random, and matches them
in a huge hash table. Some of those polygons can be
extended to general size. Using this fact, we also show
that there exist an infinite number of polygons that can
fold to two orthogonal boxes. Moreover, we show that
there exists a simple polygon that can fold to two or-
thogonal boxes, and that tiles the plane. This pattern
may be used to produce two kinds of boxes of two dif-
ferent volumes on demand without loss of material.

2 Preliminaries

In this paper, we concentrate on orthogonal polygons
that consist of unit squares. For a positive integer S, we
denote by P (S) the set of three integers a, b, c with 0 <
a ≤ b ≤ c and ab + bc + ca = S, i.e., P (S) = {(a, b, c) |
ab + bc + ca = S}. Clearly, it is necessary to satisfy
|P (S)| ≥ k to have a polygon of size 2S that can fold to

∗School of Information Science, JAIST, Asahidai 1-1, Nomi,
Ishikawa 923-1292, Japan. uehara@jaist.ac.jp

k incongruent orthogonal boxes. For example, the two
known polygons in [1] correspond to P (11) = {(1, 1, 5),
(1, 2, 3)} and P (17) = {(1, 1, 8), (1, 2, 5)}. Similarly, we
have P (15) = {(1, 1, 7), (1, 3, 3)}, P (23) = {(1, 1, 11),
(1, 2, 7), (1, 3, 5)}, P (35) = {(1, 1, 17), (1, 2, 11), (1, 3, 8),
(1, 5, 5)}, P (47) = {(1, 1, 23), (1, 2, 15), (1, 3, 11),
(1, 5, 7), (3, 4, 5)}, P (59) = {(1, 1, 29), (1, 2, 19),
(1, 3, 14), (1, 4, 11), (1, 5, 9), (2, 5, 7)}, and so on.

Let B be an orthogonal box of size a × b × c. Then
there are six faces that consist of two rectangles of size
a × b, b × c, and c × a, respectively. We regard each
rectangle as a set of unit squares. That is, B consists
of 2(ab + bc + ca) unit squares. Then, for B, we define
a dual graph G(B) = (V,E) of B as follows; V is the
set of 2(ab + bc + ca) unit squares, and E contains an
edge {u, v} iff two unit squares u and v share an edge
on B, or they are incident on B. It is easy to see that
G(B) is a 4-regular graph of 2(ab+bc+ca) vertices, and
hence |E| = 4(ab+ bc+ ca). Then we have the following
observation:

Observation 1 Let T be a spanning tree of G(B) for
some B. For every edge {u, v} not in T , we cut the
edge shared by two unit squares u and v on B. Then,
we obtain a net P of B.

That is, we can make a net P of B for any orthogonal
box B. In the case, we say that the spanning tree T
produces P . However, spanning trees themselves are
not good to represent nets of a box. Suppose that a
polygon P can fold to an orthogonal box B. In general,
P contains a rectangle R of size a × b with a > 1 and
b > 1. Then, no spanning tree T generates P since T
forces unnecessary cuts of inside of R. The following
lemma patches this problem.

AB

C D

P

P’ AB

C D

Figure 1:
Gluing.

a

b c d
e

ab

c

dc,e

B P

Figure 2: A half of a nonsimple polygon
folding to a box.

Lemma 1 Let P be a polygon that can fold to a box
B. If P has a cut between two unit squares A and D
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in Figure 1, we glue them and obtain P ′. Then P ′ also
can fold to B.

Proof. Since B is a convex orthogonal box, it fol-
lows. ¤
Repeating the gluing in Lemma 1, we obtain a polygon
P that has no two consecutive identical edges, which
means P contains no unnecessary cuts. From the view-
point of programming, it is sufficient to represent each
polygon P by a usual 0/1 matrix in a natural way, and
ignore such cuts. One may think that any polygon that
can fold to a box is simple. However, it is not the case.

Lemma 2 Let B be an orthogonal box and P a polygon
that can fold to B. Then, P is not necessarily simple.

Proof. For B of size 1 × 2 × 3, we make a (half of)
polygon P as in Figure 2. Then, clearly, P is a polygon
that can fold to B, but P is not simple. ¤

3 Algorithm

Our algorithm is a quite simple randomized one de-
scribed below:

Input : S with |P (S)| > 1;
Output: Polygons of size 2S that fold to plural

boxes;
clear a hash table H;1

while true do2

choose a type t = (a, b, c) in P (S) at random;3

generate a spanning tree T of G(B) for an4

orthogonal box B of size a× b× c at random;
represent a polygon P corresponding to T by a5

0/1 matrix;
if (t′, P ) is in H with t 6= t′ then output P6

(and all associate types);
if P is not in H then add (t, P ) into H;7

end8

We aim at finding polygons shared by two or more types.
Hence, the algorithm ignores weak points mentioned in
Preliminaries. More precisely, the algorithm has the
following flaws; (1) it does not generate the polygons
uniformly at random, (2) some polygons overlap (by
Lemma 2). Moreover, even if the polygon P does not
overlap, two nonincident squares on the box B can share
a common edge on P (by Lemma 2; if we have a cut
between d and e in Figure 2, a, b, c, and d make a hole
in P ). Since the information is not represented on a 0/1
matrix, (3) some polygons P contain holes and have to
be cut in differently to produce two distinct boxes.

Fortunately, the flaws cause few errors through our
experiments; in fact, among 2165 outputs, the algo-
rithm produced 2139 simple polygons, which are solu-
tions, and only 26 non-simple polygons, which are not
solutions. We note that from the algorithmic point of
view, it is easy to check (2) and (3) in linear time when
the algorithm outputs each solution.

Table 1: Experimental results (1)
2S(S) |P (S)| ∼RG(×107) Sols Errs
22(11) 2 6.7 541 15
30(15) 2 18.6 72 1
34(17) 2 28.4 708 0
38(19) 2 30.4 41 0
46(23) 3 191.0 660 8
54(27) 3 126.7 3 0
58(29) 3 89.3 37 0
62(31) 3 82.4 5 0
64(32) 3 204.8 56 2
70(35) 4 91.3 14 0
88(44) 4 217.0 2 0
94(47) 5 51.3 0 0

118(59) 6 35.5 0 0
Total - - 2139 26

Table 2: Experimental results (2)
2S(S) Types Sols Errs
46(23) (1,1,11), (1,3,5) 568 3

(1,2,7), (1,3,5) 92 5
54(27) (1,1,13), (3,3,3) 2 0

(1,3,6), (3,3,3) 1 0
58(29) (1,1,14), (1,4,5) 37 0
62(31) (1,3,7), (2,3,5) 5 0
64(32) (1,2,10), (2,2,7) 50 2

(2,2,7), (2,4,4) 6 0
70(35) (1,1,17), (1,5,5) 3 0

(1,2,11), (1,3,8) 11 0
88(44) (2,2,10), (1,4,8) 2 0

4 Experimental results

We first ran the algorithm on a laptop (IBM ThinkPad
X40: 1 Processor with 1.5GB Memory). This generated
approximately 3×106 polygons in 1 hour, and obtained
around 100 solutions for P (11). To experiment more
efficiently, we used a supercomputer (SGI Altix 4700:
96 Processors with 2305GB Memory). We used an im-
plement of the Mersenne Twister algorithm1 to generate
random numbers. Our results are summarized in Tables
1 and 2. In Table 1, “2S(S)” denotes the (half) size of
a polygon, “|P (S)|” denotes the number of distinct box
types, “RG” denotes the number of random generations,
“Sols” denotes the number of simple polygons that can
fold to two incongruent orthogonal boxes, and “Errs”
denotes the number of non simple polygons. For exam-
ple, for P (11), the algorithm generates around 6.7×107

nets of boxes of size (1, 1, 5) or (1, 2, 3), and we have
556 outputs. Among them, 15 polygons have a hole, and
hence we have 541 distinct simple polygons that can fold

1http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/emt.

html
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to boxes of size (1, 1, 5) and (1, 2, 3). In total, we have
2139 distinct simple polygons that can fold to two incon-
gruent orthogonal boxes. For each S with |P (S)| > 2,
more details can be found in Table 2. All cases are
checked in parallel on the machine, and the computa-
tions take from a few days to a few weeks (we stopped
execution when each process requires too much mem-
ory). Some solutions are illustrated in Figure 7, and
all solutions can be found at http://www.jaist.ac.
jp/~uehara/etc/origami/nets/index-e.html. After
these experiments, we still have no polygon that can
fold to three (or more) incongruent orthogonal boxes.
We note that some values of S are related; for example,
the solutions for P (11) give the solutions for P (44) by
dividing a unit square into four unit squares. Although
we have 541 solutions for P (11) after 6.7× 107 random
generations (it takes 3 days), we have only two solutions
for P (44) after 217.0×107 random generations (it takes
1 month). These two solutions for P (44) do not corre-
spond to any solution for P (11). Some special polygons
found in the solutions are below.

Tiling The discovered polygonal patterns reminded us
of tilings. Indeed, there exists a simple polygon that can
fold to two incongruent orthogonal boxes and it forms
a tiling. The polygon in Figure 3 can fold to two boxes
of size 1× 1× 8 and 1× 2× 5, and it tiles the plane.

+ makes 1x2x5
+ makes 1x1x8

Figure 3: Polygon folding to two boxes of 1× 1× 8 and
1× 2× 5, and tiling the plane.

We note that the boxes with the common polygon
form “double packable solids” introduced by Akiyama
[3, Section 3.5.2]. Moreover, we can make two kinds of
the boxes of volumes 8 and 10 on demand!

Disjoint crease patterns There exists a simple poly-
gon that can fold to two incongruent orthogonal boxes
and that foldings to two boxes are disjoint; the last poly-
gon in Figure 7 satisfies the property.

Cross-free patterns There exists a simple polygon
that can fold to two incongruent orthogonal boxes and

that foldings to two boxes are cross free. The second
last polygon in Figure 7 satisfies the property. We note
that the previously known results in [1] also satisfy the
property.

We have not checked if there exists a simple polygon
such that foldings are disjoint and cross free.

5 Infinite polygons

A natural question is whether or not there are infinite
distinct2 polygons that can fold to plural boxes? The
answer is “yes.” Some polygons obtained by the exper-
iments can be generalized. From two of them, we have
the following theorem.

Theorem 3 For any positive integer k, there is a dis-
tinct polygon that can fold to two incongruent orthogonal
boxes of sizes (1) 1 × 1 × (6k + 2) and 1 × 5 × 2k, and
(2) 1× 1× (8k + 11) and 1× 3× (4k + 5).

k
k

k1

k 1

k
k

k 1

k
k 1

k1

k
k

1

1

1

1

1

1

1

1

1

1

+ makes 1x1x(6k+2)
+ makes 1x5x2k

Figure 4: Polygon folding to two boxes of 1×1×(6k+2)
and 1× 5× 2k by stretch.

1

3 1

1

1
Copy and Paste 
this area k times.

1

3
1

3

1

1

1

1

2

+ makes 1x1x(8k+11)
+ makes 1x3x(4k+5)

Figure 5: Polygon folding to two boxes of 1×1×(8k+11)
and 1× 3× (4k + 5) by spiral.

2Precisely, distinct means gcd(a, b, c, a′, b′, c′) = 1 for two
boxes of size a× b× c and a′ × b′ × c′.
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Proof. The first one is obtained by stretching a poly-
gon. For any positive integer k, Figure 4 gives a polygon
that satisfies (1). The second one is obtained by a spiral
extension of a polygon. For any positive integer k, we
copy in the leftside polygon in Figure 5 and glue it to
the leftmost square (with overlapping at gray areas) and
repeat it k times. Then the polygon satisfies (2). ¤

Corollary 4 There exist an infinite of distinct polygons
that can fold to two incongruent orthogonal boxes.

6 Concluding remarks

From the theoretical point of view, uniform random gen-
eration and enumeration of all simple polygons for a
given box are interesting problems. However, those al-
gorithms are not necessarily useful to find polygons that
can fold to plural incongruent orthogonal boxes. Indeed
we search “similar” polygons heuristically to find such
polygons.

a a’

b

b’

2
3

4
3

1
2

1

1

1

1

1

1

1

1

1

1

1

1 3
1

1

1

Figure 6: A polygon folding to two boxes of 1× 1× 17,
1× 5× 5, and “close” to 1× 3× 8.

It is an open question if a polygon exists that can fold to
three or more orthogonal boxes. The author conjectures
“yes;” through experience, there is a polygon that seems
to be “close” to the answer. The polygon in Figure 6
can fold to two boxes of size 1× 1× 17 and 1× 5× 5 in
the similar ways in Figure 4. Moreover, it also can fold
to the box of size 1 × 3 × 8 with only two overlapping
squares (and hence with two holes); a and b overlap with
a′ and b′, respectively (with a cut between a and a′).
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A Class of Convex Polyhedra
with Few Edge Unfoldings∗

Alex Benton† Joseph O’Rourke‡

Abstract

We construct a sequence of convex polyhedra on n vertices

with the property that, as n→∞, the fraction of its edge

unfoldings that avoid overlap approaches 0, and so the frac-

tion that overlap approaches 1. Nevertheless, each does have

(several) nonoverlapping edge unfoldings.

1 Introduction

An edge unfolding of a polyhedron is a cutting of the
surface along its edges that unfolds the surface to a sin-
gle, nonoverlapping piece in the plane. It has long been
an open question of whether or not every convex poly-
hedron has an edge unfolding.1 See [DO07, Chap. 22]
for background and the current status of this problem.

An early empirical investigation of this question led
to the conjecture that a random edge unfolding of a
random convex polyhedron of n vertices leads to over-
lap with probability 1 as n→∞, under any reasonable
definition of “random” [SO87].2 It is easy to see that
the cuts must form a spanning tree of the polyhedron
vertices. It is known that there are 2Ω(

√
F ) cut trees

for a polyhedron of F faces. So the conjecture says
that “most” of the exponentially many cut trees lead to
overlap. Of course, even if most unfoldings overlap in
this sense, this is entirely compatible with the hypothe-
sis that there always exists at least one non-overlapping
unfolding.

No progress has been made on this random-unfolding
conjecture (as far as we know), but Lucier [Luc06] was
able to disprove several unfolding conjectures by care-
fully arranged polyhedra that force what he calls 2-local
overlap. Although not all our overlaps are 2-local, they
are k-local (in Lucier’s notation) for some small k, so
our work can be viewed as following the spirit of his
investigations.

In this note we construct an infinite sequence of con-
vex polyhedra with the property that most of its unfold-

∗An earlier, full version is available at http://arxiv.org/abs/
0801.4019

†DAMTP, Centre for Mathematical Science, Cambridge Uni-
versity, Cambridge CB3 0WA, UK. A.Benton@damtp.cam.ac.uk.

‡Department of Computer Science, Smith College, Northamp-
ton, MA 01063, USA. orourke@cs.smith.edu.

1http://cs.smith.edu/∼orourke/TOPP/P9.html#Problem.9
2Data summarized in [DO07, p. 315].

ings overlap, in the sense that, as n→∞, the number of
its edge unfoldings that overlap approaches 1. A conse-
quence is that no probabilistic argument could establish
that every convex polyhedron has an edge unfolding.3

2 Banded Hexagon

The construction is based on a particular example
from [O’R07], which showed that it is impossible to ex-
tend band unfoldings to obtain edge unfoldings of pris-
matoids. The details of the motivation for that work are
not relevant here, but we employ its central construc-
tion, which we now describe.

Consider a hexagon formed by replacing each side of
an equilateral triangle with two nearly collinear edges.
The hexagon is then surrounded by a band of six iden-
tical quadrilaterals, forming a slight convexity at all
edges. See Fig. 1. The six vertices of the hexagon A

a0

a5

a4

a1

a3

a2
A

b0
b5

b4

b1

b3

b2

Figure 1: Banded hexagon from [O’R07].

are (a0, . . . , a5), and each is connected to its counter-
part bi on the outer rim of the band. The slight convex-
ity means that the curvature at the ai vertices is small.
Cutting and flattening a vertex opens it by an amount
equal to the curvature.

The key property of this banded hexagon is as follows.

Property 1 (Hexagon Overlap) If only one band
edge aibi is cut (as part of the cut tree), so that the
six quadrilateral faces of the band remain connected to-
gether, and all but one of the hexagon edges aiai+1 are
cut, then the unfolding overlaps.

Fig. 2(a-c) illustrates the opening at a3, and (d-f) the
opening at a0. The other possibilities are symmetric.

3 Banded Geodesic Domes

For the purposes of [O’R07], the band quadrilaterals
were chosen to be trapezoids. However, that is not an

3We owe this point to a referee.
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(e) (f)(d)

(c)(b)(a)

a0

a3

a0
a1 a1

a2

a3

a2

a4

a3

a5

a4

a0

a5

Figure 2: Placements of A when a3 is cut (top row) and
when a0 is cut (bottom row). The attachment edge of
the band to A is blue. Circles indicate overlap. The
band lies outside the red rim. [Fig. 3 in [O’R07].]

essential property, and we modify the construction here
so that the quadrilaterals remain congruent but are no
longer trapezoids. The Hexagon Overlap property only
relies on small curvature at the ai, and the hexagon A
having three acute angles (at {a1, a3, a5}) interspersed
with three nearly π-angles (at {a0, a2, a4}). See ahead
to Fig. 5.

With this flexibility, it is possible to glue together
copies of the banded hexagon construction onto a tri-
angulated surface. We choose to use “geodesic domes”
as our base polyhedron (henceforth: geodomes), a re-
peated meshing starting with the icosahedron that has
nearly equilateral faces. Fig. 3 illustrates two levels of
the geodome construction, with each triangle face re-
placed by a banded hexagon. Let PL be the banded
geodome refined to level L. Level L=0 is based on
the icosahedron. Level L=1 partitions each face of the
icosahedron into four equilateral triangles, and projects
to the circumscribing sphere. And so on. The number of
faces, edges, and vertices of the completed construction
for PL are: F=140·4L, E=300·4L, n=V =160·4L.

We can drive n→∞ by choosing larger and larger val-
ues of L. At L=3, there are n = 10242 vertices.

4 Unfoldings

Although the point of this note is that these banded
geodomes are in some sense difficult to edge-unfold, in
fact each of the PL we constructed can unfold with-
out overlap. Fig. 4 shows unfoldings found by a yet-to-
be-thwarted unfolding procedure described in [Ben08].
Although we have not attempted to formally prove it,
it seems likely that banded geodomes for any L can
be edge-unfolded similarly, roughly by following the
geodesics.

)a( )b(

Figure 3: Banded geodomes for levels L = 0, 2.

(a) (b)

Figure 4: Edge unfoldings of the banded geodomes in
Fig. 3.

All of these unfoldings have the property that each
hexagon has two or more band cuts incident to its ver-
tices (although these cuts are below the resolution of
all but L=0 in Fig. 4(a)). We see how this avoids the
Hexagon Overlap property in the next section.

5 Proof

Overview. The proof has the following overall struc-
ture. First we establish that at least a positive fraction
ρ > 0 of all cut trees that span a finite-sized connected
region C of the surface of PL satisfy the Hexagon Over-
lap property, and so force unfolding overlap. Thus, at
most (1−ρ) of those trees avoid overlap. Then a cut tree
that avoids overlap everywhere in the unfolding must
avoid local overlap in each of these regions. Because
the regions are a finite-size, as L→∞, the number k of
regions also gets arbitrarily large. Thus the fraction of
trees that avoid overlap everywhere is at most (1−ρ)k,
which goes to 0 as k→∞.

Connection Tree. The cut tree T is a spanning tree of
the polyhedron vertices. The dual connection tree T4

is a spanning tree of the faces. In T4, two face nodes
are connected if the faces share an uncut edge. T and
T4 each uniquely determine the other. In this section
we reason mostly with T4.
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One Hexagon. Focus on one hexagon A of the poly-
hedron P . Referring to Fig. 5, let ei = aiai+1, and
ui = aibi. The conditions that lead to Hexagon Over-
lap are: exactly one ei is not cut, and exactly one ui is
cut. In terms of the dual tree T4, this means that the
hexagon is a leaf node, surrounded by a band path of
length 5, as in the figure. Clearly there are 62 such dual
tree patterns leading to Hexagon Overlap (6 choices for
ei and 6 for uj), when one banded hexagon is considered
in isolation.

a0
a5

a4

a1

a3

a2

b0
b5

b4

b1

b3

b2e2 u2

e5
u1

e4

u0

e1

u5
e0

u4
e3

u3

Figure 5: e0 is not cut and u3 is cut. All other ei are
cut and all other uj are not cut. Dual tree T4 is shown.

Tiling Clusters. Now we consider a group of 16 banded
hexagons, which together form a nearly equilateral tri-
angular cluster, as shown in Fig. 6. Let h be the central

h

x
2

x
3

x
1

x
4

Figure 6: C: 16 banded hexagons, with central h.
x1, . . . , x24: surrounding quadrilateral nodes.

banded hexagon in a cluster C. The choice of the size
and shape of C is somewhat arbitrary. Our specific
choice is motivated by two concerns: (1) The surface
of PL is nearly an equilateral lattice tiling of banded
hexagons, and so can itself be tiled by copies of the
nearly equilateral C, for appropriate L. (2) The central
h is sufficiently “buffered” from the boundary of C, in
this case by the 15 other banded hexagons of C, for a
counting argument to go through. Both of these points
will be revisited below.

Counting Overlapping Trees. We now argue that
there are at least a positive fraction ρ > 0 of trees span-
ning C that induce local overlap.

Let T4 be a dual spanning tree of P , and denote by
G4 the forest with all nodes in C deleted. There are
in general many ways to complete G4 to be a span-
ning tree of P . The exact number of completions is
difficult to count because it depends on the structure
of G4. However, we can easily obtain a crude upper
bound as follows. Let EC be the number of dual edges
in C; an explicit count shows that EC = 228. Any
completion must either use or not use each dual edge
in C. Of course many of these “bit patterns” will not
complete G4 to a tree, or not to a spanning tree. But
every valid completion corresponds to one of these bit
patterns. Therefore, the total number of completions m
satisfies m ≤ 2EC .

Let o be the number of completions of G4 that lead to
unfolding overlap. Again it would be difficult to count
o exactly, but we know that the 36 patterns leading to
Hexagon Overlap in h must be avoided, for each forces
local overlap. Moreover, because of the buffer around
h in C, all of these 36 patterns are part of some valid
completion, regardless of the structure of T4 outside C.
We justify this last claim below, but for now proceed
with the argument, assuming o ≥ 36.

Let ρ = o/m be the fraction of completions of G4

that lead to overlap. We have a lower bound on o and
an upper bound on m, so together they provide a lower
bound on the ratio ρ: ρ ≥ 36/2228 ≈ 10−67. The exact
value of this fraction ρ is not relevant to the argument;
we only need that ρ > 0 so that 1−ρ < 1.

Buffering. We return to the claim that h is sufficiently
buffered within C so that for each tree that spans C,
there are at least the 36 overlapping variants identified
above. First we explain why the more natural choice of
C = h does not suffice. Suppose the forest G4 has a
structure such that choosing an edge dual to ui within
h creates a cycle. Then it is not a option to select this
edge to complete G4 to a tree. If this occurs for two
or more of the ui, then the Hexagon Overlap pattern
of Fig. 5 cannot occur within h. Thus, the structure of
G4 outside C forces avoidance of the Hexagon Overlap
property inside C. Thus, not every C contains a hazard
to be avoided, so to speak. We now show that our choice
for C provides sufficient buffering.

Let x1, x2, . . . , x24 be the 24 quadrilateral nodes sur-
rounding and just outside C, each with a dual edge that
crosses into C. Each can be viewed as the root of a tree
in the forest G4. We now show that the 36 critical pat-
terns are part of some completion of G4 to a tree that
spans C and therefore all of PL. We first connect up
all these trees in the forest into one tree via connections
through the quadrilaterals incident to the border of C.
One way to do this is to proceed sequentially from x1 to
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x23, connecting xi to xi+1 if their two subtrees are not
yet connected, but not making the connection if they
already are part of the growing connected component.
(For example, in Fig. 6, perhaps x1 does not need to be
connected to x2, but {x2, x3, x4} should receive connec-
tions.) This connects all of G4 into a single tree without
employing any of the nodes of the central h. For each
of the 36 overlap patterns for h, we are free to connect
up the remainder of C into a spanning tree structure,
which clearly can be done in many ways. Therefore,
for any tree that spans PL and C, there are at least 36
variants inside C that overlap, and so o ≥ 36.

Global Argument. Let H = 20·4L be the number of
hexagons in the polyhedron PL. We showed above that
at most 1−ρ of the dual cut tree patterns inside a given
cluster avoid overlap there (for if we fall into the ρ frac-
tion, overlap is forced).

Imagine now constructing a complete tree T4 cluster-
by-cluster in the tiling, by choosing all the nodes and
arcs in T4 that span one cluster C, before moving to the
next cluster. This is would be an odd way to build the
tree, but with appropriate foresight, any tree could be
constructed in this manner. Selecting the subforest to
span a particular C leads us into the analysis of above:
no matter what the structure of G4 already fixed out-
side of C, there is a fraction ρ of subforests that must
be avoided inside C.

In order to avoid overlap in the complete unfolding,
one of these overlap-avoiding patterns must be selected
for each of the bH/16c clusters that tile the surface.
Thus, the fraction of trees that avoid overlap within all
clusters simultaneously is at most (1−ρ)bH/16c.

Finally, as L→∞, H→∞, and the overlap-avoiding
fraction of all unfoldings goes to 0, while the overlap
fraction goes to 1. This is the main claim of this note.

6 Empirical Data

The argument above only establishes a (very) loose up-
per bound on the ratio of the overlap-avoiding unfold-
ings to the total number of unfoldings. The looseness
of the argument is dramatically revealed by empirical
results. For the L=0 banded geodome, our bound says
that the overlap fraction is at least 10−67, whereas we
found that out of 5.5 million random cut trees, 99.9998%
of the corresponding unfoldings overlap.

Some understanding of this high frequency of overlap
is provided by the empirical observation that, in our
random unfoldings, about 70% unfolded the seven faces
of a banded hexagon connected together as a unit. This
fraction is stable and apparently independent of L (and
therefore of n).4 And when a banded hexagon is un-
folded as a unit, the empirically observed frequency of
local overlap is about 50%. Thus, we would expect the

4We have not attempted a theoretical explanation for this data.

fraction 1 − (1−0.7·0.5)H of all unfoldings to overlap.
For L=0, H=20, this formula (using more accurate fre-
quencies) evaluates to 99.97%. This suggests that local
overlap (within one banded hexagon unit) accounts for
the majority of overlaps, for counting all overlaps only
increases the frequency to 99.9998%.

Another test establishes the empirical difficulty of un-
folding banded polyhedra. In Fig. 7 we compare the
percentages of random unfoldings that overlap among
banded simplicial polyhedra, with the similar percent-
age for random convex polyhedra with the same num-
ber of faces. Although both curves approach 100% as
F increases (in accord with the [SO87] conjecture), the
banded curve approaches 100% much more rapidly.

40 60 80 100 120 140
F

20

40

60

80

100

Percent Overlap

Banded Polyhedra

Random Convex Polyhedra

Figure 7: Percent of random unfoldings that overlap,
for banded polyhedra and for random convex polyhe-
dra (convex hulls of random points on a sphere). The
F=140 point corresponds to the L=0 geodome.
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Polynomial irreducibility testing through Minkowski summand computation

Deepanjan Kesh and Shashank K Mehta∗

Abstract

In this paper, we address the problem of deciding ab-
solute irreducibility of multivariate polynomials. Our
work has been motivated by a recent work due to Gao
et. al. [1, 2, 3] where they have considered the prob-
lem for bivariate polynomials by studying the integral
decomposability of polygons in the sense of Minkowski
sum. We have generalized their result to polynomials
containing arbitrary number of variables by reducing
the problem of Minkowski decomposability of an in-
teger (lattice) polytope to an integer linear program.
We also present experimental results of computation of
Minkowski decomposition using this integer program.

1 Introduction

Let f =
∑

α cαXα be a polynomial where α ∈ Nn and
the coefficients cα are from a field, say K. The lat-
tice polytope New(f) = conv({α|cα 6= 0}) is called
the Newton polytope of f . A lattice polytope P is
integrally decomposable if there exist non-trivial lattice
polytopes Q and R such that P is their Minkowski
sum, denoted as Q + R. Ostrowski [4] observed that
if f, g, h are polynomials such that f = g · h, then
New(f) = New(g) + New(h). This gives a simple irre-
ducibility criterion for polynomials [2].

Lemma 1 Let f ∈ K[x1, . . . , xn] and it is not divisible
by any xi for any i. If the Newton polytope of f is inte-
grally indecomposable, then f is absolutely irreducible.

Thus the integral indecomposability of the Newton
polytope is a sufficient condition for testing the absolute
irreducibility of a polynomial. Efficient decomposition
algorithms are given by Silverman and Stein [9] and
Emiris and Tsigaridas [8] for polygons and by Mount
and Silverman [7] for 3-dimensional polytopes. Gao and
Lauder [1] showed that the problem is NP-complete even
in two-dimensions. They gave a pseudo-polynomial time
algorithm to solve the integral decomposition of poly-
gons, and a randomized heuristic algorithm for poly-
topes of higher dimensions [1, 3]. We present an exact
criterion for integral decomposition of arbitrary dimen-
sional lattice polytopes. We show that an integral de-
composition of a polytope exists if and only if its edge-
graph has a graph-minor satisfying certain conditions.

∗Department of Computer Science and Engineering, IIT Kan-
pur, Kanpur - 208016, {deepkesh, skmehta}@cse.iitk.ac.in

The criterion is general and applies to non-lattice poly-
topes as well. In the rest of the discussion, polytopes or
convex polytopes would refer to lattice convex polytopes
unless stated otherwise.

2 Oriented Walks and Oriented Weights

An oriented walk in an undirected graph G = (V,E) is
a non-empty sequence of vertices w = v0, . . . , vk, not
necessarily distinct, such that ei = vivi+1 is an edge
of G for all 0 ≤ i < k. The orientation of ei in w
is in the direction −−−→vivi+1. We denote the walk in the
reverse orientation, vk, vk−1, . . . , v0, by wr. If v0 = vk,
then the oriented walk is said to be closed. An oriented
closed walk v0, . . . , vk−1, v0 with k ≥ 3 is said to be a
simple if vi 6= vj for all 0 ≤ i < j ≤ k−1. Simple closed
walks are also called cycles. All closed walks of the form
v0, v1 . . . , vk−1, vk, vk−1, . . . , v1, v0 are called zero-walks.

We define the oriented sum of two oriented closed
walks (or two sets of oriented closed walks) to be that
collection of oriented closed walks which results after
canceling each pair of occurrences of an edge which are
in opposite orientations. The traditional concept of cy-
cle space in algebraic graph theory is defined over the
finite field F2 [5]. In this sense, the sum cancels each
pair of occurrences of an edge without consideration of
their orientations. For example, let abcda and abdca be
two closed walks in a graph. Then the oriented sum
of the two is {abca, abda} while the algebraic sum is
acbda. Observe that the oriented sum is a commutative
and associative operation.

The oriented weight W for a graph G, is a map-
ping from the oriented edges of G to Kn for some
fixed n such that W (xy) = −W (yx) for each edge
xy. We extend this mapping to oriented walks as fol-
lows. Let w = v0v1 . . . vk be an oriented walk, then
W (w) =

∑k−1
i=0 W (vivi+1). Thus W (wr) = −W (w) and

the oriented weight of every zero-walk is zero. An ori-
ented weight W for a graph is said to be non-singular if
W (w) = 0 for each oriented closed walk w in the graph.

Observation 1 If w1 and w2 are oriented closed walks
(or sets of walks) in a graph on which an oriented weight
W is defined, then W (w1 + w2) = W (w1) + W (w2).

Proposition 2 Let G be any graph with oriented weight
W . Let w be any non-zero oriented closed walk in G,
not necessarily simple, then there exists oriented cycles
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w1, . . . , wk, possibly with multiplicity, such that W (w) =
W (w1) + · · ·+ W (wk).

A trivial consequence of this result is that the oriented
weight of any oriented walk can be expressed as the
linear sum of the oriented weight of some oriented cycles
with integer coefficients.

A subset of oriented cycles, B, is called an oriented
basis if the weight of every closed non-zero walk can be
expressed as the sum of the oriented weights of some of
the oriented cycles in B, with integer coefficients.

Through out this paper we will only deal with ori-
ented walks, oriented sum, oriented weight, and oriented
basis. Therefore for simplicity we may often drop the
adjective oriented.

3 Oriented Bases

In this section we describe two oriented bases. The first
is applicable only to the edge-graphs of polytopes and
the second is for general graphs.

Theorem 3 Let G be the edge graph of a polytope.
Then 2-face cycles of the polytope, each oriented in any
one direction, form a basis of G.

Next we show that a set of fundamental cycles of a
graph also forms a basis. Let G = (V,E) be a graph
and T ⊆ G be one of its spanning trees. Let ←→ce denote
the unoriented cycle in the graph T ∪{e} for some non-
tree edge e of G. Then the set of fundamental cycles
(w.r.t. T ) is the collection {ce|e ∈ E(G) \E(T )}, where
ce is ←→ce oriented in any one direction. We assign a
unique integer between 1 and |E(G)| to each edge in G
such that the integer assigned to any edge in E(G) \
E(T ) is greater than all the integers assigned to edges
in E(T ). Let c be a cycle or a set of cycles of G. Then
le(c) denotes that edge in c which has the largest integer
assignment.

Observation 2 For every cycle c, le(c) ∈ E(G)\E(T ).

Theorem 4 Fundamental cycles, each orieted in any
one direction, form an oriented basis.

Proof. In view of Proposition 2 it is sufficient to show
that the weight of every set of cycles can be expressed
as the sum of the weights of some fundamental cycles
with integer coefficients. Assume that it is not true. So
there is at least one set of oriented cycles whose weight
cannot be expressed as the sum of weights of funda-
mental cycles. Let c be such a set such that label of
le(c) is smallest. Let e = le(c). Then, by observation 2,
e ∈ E(G) \ E(T ) where T is some fixed spanning tree.
Let the fundamental cycle of e in G w.r.t. T be ce, ori-
ented in one of the two ways. Suppose e occurs in c
for k1 times in the same orientation as in ce and for k2

times in the opposite orientation. Define a new set of

oriented cycles c′ as c+k1.c
r
e +k2.ce, where k.x denotes

the sum of k copies of x.
The new set c′ of cycles has the property that the

label of le(c′) is strictly less than the label assigned
to e. From the assumption W (c′) can be expressed
as the sum of the weights of fundamental cycles, say,
W (c′) = W (c1) + · · · + W (cm) where each ci is an ori-
ented fundamental cycle. Then W (c) = W (c1) + · · · +
W (cm)+(k1−k2).W (ce). This contradicts the assump-
tion that weight of c cannot be expressed as the sum of
the weights of oriented fundamental cycles. �

4 Convex polytopes

In this section, we state a few basic facts about convex
polytopes. The reader can find more details in [6].

A polytope is the convex-hull of a set of points in
Rn. In this paper a polytope refers only to the “shape”
and the orientation of a polytope so its position in the
space is ignored. Let P be a polytope in Rn. Then
faceω(P) denotes the face of P with an outer normal
ω, given by {x ∈ P|ω.x ≥ ω.y ∀y ∈ P}. The set of
all the outer normals of a face f of P is denoted by
NP(f) and is called the normal cone of the face f . The
Minkowski sum of polytopesQ andR is the object given
by Q + R = {x + y : x ∈ Q, y ∈ R} which is also
a polytope. The locations of Q and R only affect the
location of Q+R, not its shape or orientation. Polytope
Q is said to be a Minkowski summand of a polytope P
if there is a polytope R such that P = Q +R. Let P
be a polytope in Rn. Then GP = (VP , EP) is called the
edge-graph of P where VP is the set of vertices (0-faces)
of the polytope and EP is the set of its edges (1-faces).
We shall use the same symbol, to denote the position
vector of a polytope vertex and the corresponding graph
vertex.

Lemma 5 For any direction ω, faceω(Q + R) =
faceω(Q) + faceω(R).

Lemma 6 Let P = Q + R. Let f1 and f2 be faces
of Q and R respectively with NQ(f1) ∩ NR(f2) 6= ∅,
then f1 + f2 is a face of P with the normal cone being
NQ(f1) ∩NR(f2)

Lemma 7 Let P = Q+R and f ⊂ P be a face. Then
there exists unique faces f1 ⊂ Q and f2 ⊂ R such that
f = f1 + f2.

Lemma 8 For every face f of a polytope in Rn,
dim(f) + dim(N(f)) = n, where dim(·) denotes the di-
mension.

Lemma 9 Let v be a vertex of a face faceω(P)
and u0 be any other vertex of a polytope P.
Then there is a monotonic path in the edge graph
u0, u1, . . . , uj , . . . , uk(= v) such that (ui+1 − ui).ω > 0
for all 0 ≤ i ≤ j and (ui+1−ui).ω = 0 for all j ≤ i < k.
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4.1 Geometric Weight and Derived Weight

The oriented weight W = {wuv = v−u}uv∈EP assigned
to GP is called the geometric weight of GP , where v−u
is the displacement vector from vertex u to vertex v in
the space.

Observation 3 The geometric weight of an edge graph
of a polytope is non-singular.

Consider a graph G with non-singular weight
W = {wxy}xy∈E(G). Then the weight Wα =
{αxy.wxy}e∈E(G), where 0 ≤ αxy = αyx ≤ 1 for
all xy ∈ E(G), is referred as derived weight of W if
it is also non-singular. Further, the weight given by
{(1− αxy).wxy}xy∈E(G) is denoted by W1−α. Since α’s
are independent of the orientation of the edge, we may
express αxy = αyx by αe where e denotes the corre-
sponding edge.

Observation 4 Let W be a non-singular weight of
some graph G. Then Wα is a derived weight iff W1−α

is also a derived weight.

4.2 Polytope of embedding

Let G be a connected graph with a non-singular weight
W where the vectors in the weight belong to Rn. Let
v0 be a fixed vertex of G. We embed each vertex of
G into Rn by a mapping φW : V (G) → Rn as follows.
φW (v0) = ~0; and for all u ∈ V (G) − {v0}, φW (u) =
W (Pu) where Pu is any arbitrary walk from v0 to u
in G. The mapping φW is well defined as W is non-
singular. The convex-hull of the point set {φW (u) : u ∈
V (G)} defines a polytope denoted by φW (G). Vertices
of this polytope are obviously from the set {φW (u) : u ∈
V (G)}. We show that the converse is also true. It may
be noted that the choice of v0 is immaterial since it does
not affect the shape or the orientation of the resulting
polytope.

Let GP be the edge graph of polytope P and W its
geometric weight. Let Wα be a derived weight from W .
Then the polytope φWα

(GP) is called a derived polytope
of P and denoted by Pα. For simplicity we shall use
φα in place of φWα , where W should be clear from the
context. We have the following important result.

Lemma 10 For each vertex v of P, φα(v) is a vertex
of Pα.

Lemma 11 Every derived polytope is a Minkowski
summand of the original polytope.

Proof Sketch If Pα is a derived polytope of P, then
we show that P = Pα + P1−α. �

Next we will show the converse.

Lemma 12 Let Q be a Minkowski summand of a poly-
tope P then it is a derived polytope of P.

Proof Sketch Let P = Q + R. If e is an edge of P,
then there exists unique edge-edge or edge-vertex pair
e′ ∈ Q and e′′ ∈ R such that e = e′ + e′′. Let W be the
geometric weight of GP and Wα be its derived weight
with αe = |e′|/|e| for all e ∈ EP . Then Q is equal to
the derived polytope Pα. �

Combining lemma 11 and 12 we have the main result.

Theorem 13 For any polytope P, a polytope Q is a
Minkowski summand iff Q is some derived polytope of
P.

The theorem can be equivalently stated as following.

Corollary 14 A polytope has a proper Minkowski sum-
mand iff its edge graph has a proper derived weight (nei-
ther all αe are 0 nor are all 1).

Corollary 15 For any lattice polytope P, a lattice poly-
tope Q is a Minkowski summand iff Q is a derived poly-
tope Pα such that all components of αe.(~v − ~u) are in-
tegers for all edges e = uv ∈ EP .

5 Computation of Minkowski summand

The Corollary 14 suggests that to discover a Minkowski
summand of a polytope we only need to find if its edge
graph has a derived weight. In this section we formulate
a linear program (LP) which is feasible if and only if a
derived weight exists.

Let P be a polytope. Each edge of the polytope e =
uv, has the geometric weight wuv = ~v − ~u (equivalently
wvu = ~u−~v). To compute a derived weight, we define a
variable xe for each edge e. The weight {w′uv = xe.(~v−
~u) would be a derived weight if and only if the weight
of each basis cycle is zero (Theorem 3). The problem
can be stated as a linear feasibility program.

Let B be a basis of GP . Let c ∈ B be denoted as
u0, u1, . . . , um, um+1(= u0), where uj are the vertices
on the cycle and let the edge ujuj+1 be denoted by ej .
Then the linear feasibility program (LP) is∑

j xej .( ~uj+1 − ~uj) = ~0, ∀c ∈ B, [P1]
subject to
0 ≤ xe ≤ 1, ∀e ∈ EP ;

∑
e∈EP

xe > 0;
and

∑
uv∈EP

(1− xuv) > 0.

The solution of the LP gives a derived weight of GP .
The corresponding polytope, which is a summand of P,
can be computed using the embedding described in the
previous section. A trivial solution of this LP is xe = c
where c is a constant in the interval (0, 1). This gives
Minkowski summands, both of which are similar to the
original polytope.

If P is a lattice polytope and the summand should
also be a lattice polytope, then we need to satisfy an
additional condition that xe(~v−~u) has all integral com-
ponents, i.e., xe.gcd(~v − ~u) must be an integer (recall
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that gcd(~a) is the gcd of all the components of ~a). This
additional condition transforms the LP into the follow-
ing linear integer feasibility program (IP) by defining
integral variables ye for xe.gcd(~v − ~u).∑

j yej
.( ~uj+1 − ~uj)/gcd( ~uj+1 − ~uj) = ~0, ∀c ∈ B, [P2]

subject to
0 ≤ yuv ≤ gcd(~v − ~u), ∀e ∈ EP ;∑

e∈EP
ye > 0; and

∑
e∈EP

(gcd(~v− ~u)− ye) > 0, where
ye are integer variables.

The number of variables in the IP is equal to the
number of the edges in the polytope, |EP |. The num-
ber of equations is n times the number of cycles in the
basis, which is |EP | − |VP | + 1 in case B is the set of
fundamental cycles.

6 Experimental Results

We have discussed earlier that Gao and Lauder [1] have
shown that the Minkowski decomposition of convex lat-
tice polytope is an NP-complete problem even in 2 di-
mensions. Therefore no exact method is expected to be
polynomial in complexity. In this section we show that
the proposed solution based on solving an integer linear
program is a reasonably practical approach.

Given positive integers d and an n, we randomly gen-
erate n lattice points in Rd. In the first step we compute
the edge-graph of the convexhull of these points. In the
second step we solve the integer program P2. The edges
of the polytope are computed by solving a linear pro-
gram for each pair of vertices, checking whether the line
segment connecting them is a face or not. We use GLPK
(GNU linear programming kit) to solve the LP’s and the
IP. The experiments were carried out on a 32-bit ma-
chine running on Intel Pentium 4 processor with 2 GB
RAM and the code was written in the C programming
language.

We ran ten instances of each case and reported the
average time in the Tables 1 and 2. As the method
is exact the success rate is always 100%. The times
consumed in the two steps are reported separately to
highlight the fact that the first step used up most of the
time. This is because we could not find an efficient al-
gorithm to compute the edges of a polytope. From Gao
and Lauder’s experiments [3] we see that their method
is more reliable for higher dimensions (d) and smaller
point-sets (n). In lower dimensions our method is com-
petative with their method in terms of the time. Since
our method is exact, we believe its complements their
algorithm.

7 Conclusion

We have presented a criterion for Minkowski decom-
position, general as well as integral. This reduces the
problem of computing Minkowski summand into a lin-
ear (integer) program. We have reported experimental

Table 1: Time(secs) to find the edges
Points, n

Dimension, d 10 50 100 200

2 0.13 0.38 0.49 0.54

5 0.46 9.24 30.39 106.76

10 0.49 16.93 89.17 590.94

20 0.50 18.88 113.93 851.37

Table 2: Time(secs) to decide indecomposability, i.e.,
time to solve IP

Points, n
Dimension, d 10 50 100 200

2 0.00 0.01 0.01 0.01

5 0.01 0.08 0.17 0.35

10 0.01 0.42 1.72 6.48

20 0.02 0.81 3.74 18.70

results. The performance of this approach can be im-
proved significantly by using an efficient algorithm to
compute the edges of the polytope. We believe this
would give a performance comparable with the heuris-
tic method proposed in [1].
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Convex Hull of the Union of Convex Objects in the Plane:

an Adaptive Analysis

Jérémy Barbay∗ Eric Y. Chen†

Abstract

We prove a tight asymptotic bound of Θ(δ log(n/δ)) on
the worst case computational complexity of the convex
hull of the union of two convex objects of sizes summing
to n requiring δ orientation tests to certify the answer.
Our algorithm is deterministic, it uses portions of the
convex hull of input objects to describe the final convex
hull, and it takes advantage of easy instances, such as
those where large parts of two objects are horizontally
or vertically separated.

1 Introduction

An adaptive analysis of the computational complexity
of a problem considers more parameters than the mere
size n of the instance to be solved, such as the size of
the result, or more sophisticated measures of the dif-
ficulty of the instance. A particular case of this ap-
proach has been applied to some fundamental problems
in computational geometry, under the name of “output-
sensitive” complexity analysis, where instances with a
small output are considered easier, such as for the com-
putation of the intersection points of a set of line seg-
ments [1, 2, 5, 6], or of the convex hull, discussed here.

The computational complexity of the convex hull has
been studied in the worst case over instances of size
n [11], over instances of size n and output size h [7],
and over instances formed by polygonal chains with a
parameterized number of self intersections [9]. Nielsen
and Yvinec [10] studied the computation of the convex
hull of the union of convex objects in the plane such
that the convex hull of any pair of objects can be com-
puted in constant time (such as discs or simple convex
objects). Under those conditions, they proposed an al-
gorithm which complexity is expressed as a function of
the output size and of the maximum number of inter-
sections of each object with others [10, page 4].

We also consider the computational worst case com-
plexity of the convex hull of the union of convex objects
in the plane, but in a different context than Nielson and
Yvinec, where the convex hull of any pair of objects can

∗DCC (Departamento de Ciencias de la Com-
putación), Universidad de Chile, Santiago, Chile,
jeremy.barbay@dcc.uchile.cl

†CSCS (Cheriton School of Computer Science) University of
Waterloo, Canada. y28chen@uwaterloo.ca

be much more difficult to compute, sometime as much
as to require linear time. Since the computation of the
planar convex hull can be reduced to the computation
of the lower and upper hulls, which can then be merged
in constant time, we focus on the computation of the
planar upper hull of the convex hull of the union of up-
per hulls. Let I = {A1, A2} be an instance composed
of two upper hulls in the Euclidean plane, of respective
sizes n1 and n2 and each given as an array containing
the coordinates of its points, ordered in clockwise order:
we consider the problem of computing the upper hull of
the minimal convex hull containing every point from the
instance I, which we call the merged hull of I for short.

In this paper, we describe our algorithm, the adap-
tive analysis of its complexity and the matching adap-
tive computational lower bound, all in a model where
only orientation tests (testing which side of a line is
a point, in clockwise order) are allowed on the input.
Our algorithm (Section 2) computes the merged hull
taking advantage of the ordered representation of the
upper hulls in sorted arrays. The analysis of this algo-
rithm introduces the notion of certificate of an instance,
from which we define our measure of difficulty over the
instances. We highlight other application of our tech-
niques in Section 4.

2 Convex Hull Problem

Before introducing our algorithm and its analysis, we
introduce the concept of certificate of an instance, and
some basic techniques on upper hulls.

2.1 Notion of Certificate

An orientation test is a constant time operation, which
can determine which side a point lies to a line. Whereas
an algorithm will perform many orientation tests to
solve an instance, only a few are required to check that
the result is correct. There is a similar situation in
the comparison model: the binary search algorithm per-
forms ⌈lg n⌉+1 comparisons to search for the insertion
rank of an element in a sorted array, whereas at most
two comparisons are required to check the validity of
the answer.

Given two upper hulls A and B, the merged hull is
easier to compute for some instances than for some oth-
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ers. For example, Figure 1 show two instances, each
composed of two hulls A and B at various distances
from each other. The two instances have exactly the
same input size n, and exactly the same output (the
hull A), but they are much different in difficulty: one
can verify that the edges of A exactly form the merged
hull in two orientation steps in the first case, while n
orientation steps are required in the second case.

We define the notion of certificate of an instance as
a set of orientation tests which permit to check the va-
lidity of the result of the algorithm, not only justifying
the presence of each point of the output, but also the
exclusion of the other points:

Definition 1 Consider k upper hulls A1, . . . , Ak of re-
spective sizes n1, . . . , nk and their merged hull A, ex-
pressed as intervals on A1, . . . , Ak. A certificate of A
is a set of orientation tests “Ai[p] is right to the line
−−−−−−−→
Aj [q]Aj [k]”, such that the convex hull of any instance
satisfying those orientation tests is given by the descrip-
tion of A. The size δ of a certificate is the number of
orientation tests composing it.

δ = 2 δ = O(n)

Figure 1: The same output, different difficulty

2.2 Basic Operations

An easy type of instances (i.e. of small size of certificate
δ) is that where a large section of one of the components
of the instance can be “eliminated” by a simple orien-
tation test, in the sense that the corresponding points
will not contribute to the merged hull.

Observation 1 Given a line
−→
l and an upper hull A, if

the point A[p] is right to
−→
l and the slope of A[p]A[p+1]

is smaller than the slope of
−→
l , then all points right of

A[p] are right to
−→
l ; if the point A[p] is right to

−→
l and

the slope of A[p−1]A[p] is greater than the slope of
−→
l ,

then all points left of A[p] are right to
−→
l .

Another characteristic which can make instances eas-
ier, is that it is not necessary to perform a binary search
for the two edges of a hull intersecting a line on the
whole upper hull at each search: a doubling search [3]
algorithm permits to amortize the cost of each search
over the whole hull:

Observation 2 Given a line
−→
l and an upper hull A,

the edge (A[p], A[p+1]) which intersects
−→
l , if any, can

be found in O(log p) orientation tests.

The same holds when searching for the tangent of a
hull passing by a specific point: once again a doubling
search [3] algorithm permits to amortize the costs of
each search over the whole hull.

Observation 3 The tangent (x, A[p]) of a point x with
an upper hull A, if any, can be found in O(log p) orien-
tation tests.

Many convex hull algorithms depend on computing
the common tangent between two convex hulls in linear
time. Using the previous observations, we show that if
the upper hulls are horizontally separated, this common
tangent can be found in time logarithmic not only in the
size of the convex hulls [8], but even in time adaptive in
the positions of the endpoints of the common tangent
(i.e. closer to the left extremity is easier).

Lemma 2 Given upper hulls A and B of respective
sizes n and m, horizontally separated by a vertical line
l, the common tangent (A[p], B[q]) from A to B can be
computed in O(log p + log q) orientation steps.

Proof. This idea is inspired by the prune-and-search
method proposed by Kirkpatrick and Snoeyink [8],
where the common tangent between two non-
intersecting hulls can be computed in O(log n1 +log n2)
time.

Without loss of generality, suppose that A is to the
left of l and that B is to its right. The basic opera-
tion performed by the algorithm considers the edge in
clockwise order (a, a′) ∈ A and an edge (b, b′) ∈ B:

1. If both a′ and b′ are left of the line
−→
ab, then the

points of B at the left of b (inside points of B) can
be ignored.

2. Symmetrically, if both a′ and b′ are right the line
−→
ab, then the points of A at the right of a (inside
points of A) can be ignored.

3. If a′ is right to
−→
ab and b′ is left to it, then the points

of A at the right of a and the points of B at the
left of b (inside points) can be ignored.

4. If a′ is left to
−→
ab and b′ is right to it, which hull

gets reduced depends of the slopes of (a, a′) and
(b, b′). If the line (a, a′) cuts l above the line (b′, b)
then the points of A at the left of a can be ignored.
Otherwise, the points of B at the right of b′ can be
ignored.

�
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The result of Lemma 2 is still useful when only large
parts of the upper hulls (and not the upper hulls them-
selves) are horizontally separated. Such parts which are
separated from each other can be found using Observa-
tions 2 and 3.

3 Convex Hull of the Union of two objects

Beside the pedagogical interest to expose a simpler algo-
rithm before the more complicated one, the algorithm
for the union of two convex object is of independent
interest:

• We prove that the certificate it finds is always op-
timal (which is not the case for the more general
algorithm).

• It can be used as a building block for other union
algorithms.

3.1 Adaptive Algorithm

Theorem 3 The description of the merged hull of two
upper hulls of respective sizes n1 and n2 can be computed
in O(δ(log(n1/δ)+ log(n2/δ))) orientation tests, for an
instance of certificate size δ.

Proof. Let be A and B the two hulls forming the in-
stance, of respective sizes n1 and n2. Without loss of
generality, we prolongate each hull at each extremity by
one vertical edge going to −∞: hence all lines intersect-
ing exactly once a hull are tangents to it, and other lines
intersecting a hull once will intersect it a second time.

The algorithm 1 computes a description of the merged
hull as a sequence of intervals over 1, . . . , n1 and
1, . . . , n2, representing consecutive points in A and B.
To compute this description, the algorithm traverses the
two hulls from left to right through doubling searches,
searching for crossing points and discarding whole in-
tervals of points in each hull, after certifying that they
cannot contribute to the merged hull.

The invariant is quite simple: each iteration of the
loop reduces the instance by discarding more points in
each hull, and identifies the rightmost point yet certi-
fied to be in the merged hull, a, and its hull of origin A.
In particular, all the points on the left of a in A which
have not been output yet are certified to be part of the
merged hull. Figures 2, 3 and 4 illustrate how the algo-
rithm reduces the instance depending on the position of
the intersection of A with the tangent from a to B:

• If a = a′, as all the points left of a in A are certified
to be in the merged hull, and the points immedi-

ately on the right of a in A are right to
−→
ab, the next

point confirmed to be in the merged hull is b, hence
reducing the instance by one point.

Algorithm 1 Convex Upper Hull of Two Objects

Identify the starting point a, and its hull A.
repeat

Search in the other hull B for the tangent (a, b).
Search in the hull A for its rightmost intersection
a′ with the line (a, b).
if a = a′ then

Output and further ignore points of A left of a.
Switch (a, A) to (b, B).

else if a′ is on the right of b then

Further ignore points of B left of b.
Update a to a′ (not ignoring its predecessors).

else

Find the common tangent (c, d) between the
points of A left of a′ and the points of B right of
b, separated by the vertical line passing by b.
Output and further ignore points of A left of c.
Switch (a, A) to (d, B).

end if

until no point is left in any other hull than A.
Output all remaining points of A.

• If a′ is on the right of b, as B is right to its tangent
−→
ab, it is below the arc from A between a and a′:
the points of B between a and a′ (or at least those
between a and b, which have already been identi-
fied) can be further ignored, and all points on the
left of a′ (included) are certified to be part of the
merging hull.

• If a′ is on the left of b, A crosses and goes to

the right of
−→
ab before potentially crossing B: some

points in the right of b in B will contribute to the
merged hull, and Lemma 2 indicates how to find
them.

The algorithm outputs interval of points from the in-
put hulls to describe the merged hull, performing ex-
actly δ iterations because it computes the shortest cer-
tificate.

Each iteration corresponds to at most two doubling
searches in each hull. As none of the δ doubling searches
ever overlap, the number of orientation test in each hull
of size n sums up to less than δ log(n/δ), by concavity
of the log, hence the result. �

3.2 Optimality of Certificate

Lemma 4 To determine the upper hull of two upper
hulls, Ω(δ) orientation tests are required.

Proof. The certificate used in Algorithm 1 contains δ
orientation tests. We prove that any certificate verifying
the merged upper hull requires δ/4 orientation tests.

Based on three testing cases in Algorithm 1, we cat-
egorize orientation tests into three types. In case 1 and
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a=a’

b

Figure 2: a = a′

b a’a

Figure 3: a′ is on the right of b

b

a

a’

b

a a’

Figure 4: a′ is on the left of b

3, the line in the orientation test is from a common tan-
gent between A and B, and, in case 2, it is a tangent
from a vertex in A to B. Grouping every 4 adjacent
orientation tests together, we can have δ/4 groups.

Then we prove the result by an adversary argument.
Consider the vertical strip covered by 4 orientation tests
in a group. The merged upper hull between A and B
cannot be verified with only two orientation tests. We
need at least one extra orientation tests in each group.
Therefore, we need at least δ/4 orientation tests. �

4 Conclusion

Convex hull instances with a very large set of points
will not appear “out of nowhere”: most likely, they will
be formed of several objects from a library, for each of
which a convex hull can be precomputed. In this con-
text, we have given an algorithm to compute a descrip-
tion of the convex hull of the union of two convex objects
which can be used recursively to merge k convex objects.
Our algorithm takes advantage of instances where the
relative positions of the objects makes the convex hull
easier to compute.

As the basic operations are clearly identified in
each algorithm, our results are easily generalizable
to the transdichotomous computational model as
well: each of the basic operation can be supported
in time O(log n/ log log n) using a precomputed in-
dex [4], changing the complexity of the algorithm to
O(δk log n/ log log n).

Acknowledgements: Many thanks to Alejandro
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to Timothy Chan and Alejandro Salinger for pointing
to previous works.
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Polar Diagram of Moving Objects

Mojtaba Nouri Bygi∗ Mohammad Ghodsi†

Abstract

Many important problems in Computational Geometry
needs to perform some kind of angle processing. The
Polar Diagram [4] is a locus approach for problems pro-
cessing angles. Using this structure as preprocessing,
one can eliminate exhaustive searches to find objects
with smallest angle.

Handling data in change is a significant concept in
Computer Science. One of the design and analysis tools
used in the modeling of moving geometric objects is
the kinetic data structure (or KDS) framework Kinetic
Data Structure is a framework for maintaining a certain
attribute of a set of objects while moving in a continuous
manner.

In this paper, we use the notion of kinetic data struc-
ture to model the dynamic case of the Polar Diagram,
i.e we maintain the the Polar Diagram of a set of contin-
uously moving objects in the scene. We show that our
proposed structure meets the main criteria of a good
KDS.

1 Introduction

Although most of the Geometric problems have optimal
solutions, most of them are only optimum in the worst
case. If the size of result is small or we have to answer
many instances, these solutions may not be suitable for
us. For these reasons, algorithms that preprocess the
scene and then answer to each query with a better per-
formance are widely used in this field.

C. I. Grima et al. [4, 5] introduced the concept of
the Polar Diagram. The Polar Diagram of the scene
consisting of n objects is a partition of plane to polar
regions. Each object creates a polar region representing
the locus of points with common angular characteristics
in a starting direction. If point p lies in the polar region
of object o, we know that o is the first object found af-
ter performing an angular scanning from the horizontal
line crossing p in counterclockwise direction. The com-
putation of the Polar Diagram can be done using the
Divide and Conquer or the Incremental methods, both

∗Department of Computer Engineering, Sharif Univer-
sity of Technology, P.O. Box 11365-9517, Tehran, Iran,
nouribaygi@ce.sharif.edu

†Department of Computer Engineering, Sharif University of
Technology, and IPM School of Computer Science (No. CS1382-
2-02), P.O. Box 19395-5746, Tehran, Iran, ghodsi@sharif.edu

working in Θ(n log n), which is optimum. By using this
tessellation as preprocessing, we can avoid other angu-
lar sweeps by locating a point into a polar region in
logarithmic time [4].

Kinetic Data Structure is a framework for maintain-
ing a certain attribute of a set of objects while mov-
ing in a continuous manner. For example, KDS has
been used for maintaining the convex hull of moving
objects, or the closest distance among moving objects.
A KDS is mainly consists of two parts: a description
of the attribute with some certificates such that as long
as these certificates do not change, the attribute does
not change. It is assumed that we can compute the fail-
ure time of each of these certificates. In such events
that a certificate fails, the KDS must be updated. Until
the next event, the KDS remains valid. See the survey
by Guibas [3] for more background on KDSs and their
analysis.

In this paper, we first propose an improved algo-
rithm for computing the Polar Diagram of a set of line-
segments or polygons. Then we use the notion of kinetic
data structure to model the dynamic case of the Polar
Diagram, i.e we maintain the Polar Diagram of a set
of continuously moving objects in the scene. We Show
that our proposed structure meets the main criteria of
a good KDS.

Figure 1: The Polar Diagram of a set of points in plane.

The rest of this paper is organized as follows: In sec-
tion 2 we define our kinetic configuration for the Polar
Diagram, and in section 2.2 we see what happens when
the objects move in the plane.
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2 Kinetic Configuration

In this section we present a model for kinetic behavior
of the Polar Diagram for different situations. Given a
set of points moving continuously, we are interested in
knowing at all times the Polar Diagram of the scene.

2.1 Proof Scheme

For simplicity of discussions, we assume that our objects
are points in 2D. We state that each edge of the Polar
Diagram is called a polar edge. We also define a pivot of
an object to be the second object that lies on the polar
edge passing through it, e.g., if Figure 1 the pivot of s4

is s2 and the pivot of s2 is s0.
We claim that if we have the sorted list of objects

according to their y-coordinates, and the pivot of each
object, we will have a unique Polar Diagram.

Suppose there are n points in the scene. For our proof
scheme, we maintain two kinds of information about the
scene: we maintain the vertically sorted list of objects,
and for each object its current pivot. As we will show
shortly, these data is sufficient for the uniqueness of our
polar data, i.e. only if one of these conditions change,
the polar structure of the scene will change.

So we will have two kinds of certificates: n − 1 cer-
tificates will indicate the sorted list of objects. For in-
stance, if the sorted list of objects is si0 , si1 , . . . , sin−1 ,
we need the certificates 1.

si0 < si1

si1 < si2

. . .

sin−2 < sin−1

(1)

For stating the pivot of each object, we need n more
certificates, each indicating a object and its pivot in the
Polar Diagram. In total, our proof scheme consists of
2n− 1 certificates.

2.2 Events and Event Handling

Once we have a proof system, we can animate it over
time as follows. As stated before, each condition in the
proof is called a certificate. A certificate fails if the cor-
responding function flips its sign. It is also called an
event happens if a certificate fails. All the events are
placed in a priority queue, sorted by the time they oc-
cur. When an event happens, we examine the proof and
update it. An event may or may not change the struc-
ture. Those events that cause a change to the struc-
ture are called exterior events and those not interior
events. When the motion of an object changes, we need
to reevaluate the failure time of the certificates that in-
volve that object (this is also called rescheduling.).

As there are two kinds of certificates in our proof
scheme, it is obvious that there must be two kinds of
event:

• pivot event, when three objects, which one of
them is pivot of another one, become collinear.

• horizontal event, when two objects have a same
y-coordinate (have a same horizontal level)

In the former case, we must update the certificates re-
lating to sorted sequence of two neighbor points, which
is at most three certificates (two, if one of the points is
a boundary point, i.e. top most or button most points).
In the latter case, one certificate becomes invalid and
another certificate (indicating the new pivot of the ob-
ject) is needed. As we will show, other certificates will
remain still.

Lemma 1 When an event is raised, the objects above
the object(s) which raised the event do not change their
polar structures.

Proof: From the incremental method used for the con-
struction of the Polar Diagram of a set of points [4] we
know that there is no need to know about the state of
objects below a object to determine its pivot object, so
when an object change its state, it will not affect the
above objects.

We can also say that an angular sweep that starts
from the horizontal direction would never intersect any
objects below this initial horizontal line (by definition,
the top most object has no pivot). ¤
Pivot event:

First, we consider the simplest case, i.e. when the
lowest object is moving. Figures 2 and 3 show these
cases, where s2 is moving. In Figure 2, s0 is the pivot of
s2. While s2 is moving left, the line segment s0s2 is co-
incide with the object s1 (note that there may be other
objects between s0 and s2, but we are only interested
in s1). At the moment that three objects s0, s1, and s2

become collinear, the s1 will occlude s0 from s2 and it
no longer can be its pivot. From now on, s1 becomes
the new pivot of s2. Similarly, in Figure 3, s1 is the
pivot of moving object s2. When three objects s0, s1,
and s2 become collinear (again, there may be other ob-
jects between each pair of these objects, but we are not
interested in them), s2 needs to change its pivot which
becomes s0.

As we assumed that no other object other than s2

is moving, form lemma 1 we know that there will be
no change in other objects, so at this event, only one
certificate becomes invalid and it must be replaced by
another certificate indicating the new pivot of the mov-
ing object. It is clear that upon occurring this event,
the processing of the event and changing of proof scheme
can be done in O(1) and O(log n), respectively (we need
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Figure 2: A pivot event. As s2 moves left, s0, s1 and s2

become collinear.
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Figure 3: A pivot event. As s2 moves right, s0, s1 and
s2 become collinear.

to find the corresponding certificate in the certificates
list).

Now we see what happens to the second lowest object
(see Figures 4 and 5, where s2 is moving right). In
Figure 4, s1 is the pivot of s2, and also the pivot of the
lower object s3. While moving, there will be a time that
s2 occlude the lower object s3 from its pivot. In Figure 4
it is when the objects s1, s2 and s3 become collinear. At
this time, although there is no change in polar structure
of moving object s2, there is a change in the lower object
s3, and we must update the proof scheme accordingly.
If s2 continues its motion, there will be a pivot event
(see Figure 5) that its polar structure is changing.

0

1

2

3

0

1

2

3

Figure 4: While moving, s2 can change the pivot of each
of its below objects by occluding their initial pivots.

Lemma 2 The changes in the structure of an object
caused by moving an above object, would not cause any
other changes in other objects.

Proof: The Structure of each object is determined by
the first object that encountered by an angular sweep.
As we assumed that no other objects is moved, this
encountered object would not change. ¤

From above discussions, we can deduce that if an ob-
ject is moving in the scene and there are k other objects
below it, there can be up to k pivot events changing the
structure of below objects, and one pivot event changing
its own structure. Each of these events can be processed

0

1

2

3

Figure 5: For each moving object, there is one pivot
event when its own pivot will change.

in O(1) time and the change in proof scheme can be done
in O(log n).
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Figure 6: When two objects s1 and s2 lay on a same
horizontal level, a horizontal event is occurred and the
polar structure will change.
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Figure 7: In a horizontal event, only one of the objects
will change its pivot.

Horizontal event:
In these events, one of the situations of Figures 6 and

7 will happen. As we can see, only one of the objects
will change its pivot (set it to the third object). This
change of configuration is equal to changing three or
four certificates in proof scheme: one for a change in
one of the object’s pivot, and three or two for change in
vertical order of objects.

Now we show that no more changes is needed. As-
sume that in a small interval before and after the hori-
zontal event, no other pivot events would occur. From
lemma 1 we know that there would be no change in the
above objects. What about the below objects? We can
see that for a change in the pivot of an object, there
must be an occlusion between the objects and its previ-
ous pivot, and it means that three objects must lay on
a same line, i.e. we need a pivot event (see Figure 8).

Theorem 3 Each of the events in the kinetic Polar Di-
agram of a set of points takes O(log n) time to process
and causes has O(1) changes in proof scheme.
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Figure 8: Only upon occurring a pivot event the struc-
ture of other objects will change.

Proof: For horizontal events, we need to update at
most three certificates, we just need to find these cer-
tificates in the proof scheme and replace them with the
new ones, which takes O(log n) time. We also need to
update one pivot certificate with the same cost. The
same thing is holds for pivot events, which we need to
find and update O(1) pivot certificates. ¤

Theorem 4 The initial event list can be built in
O(n log n) time, using a suitable event queue.

Proof: As there are O(n) certificates in our proof
scheme, and for each moving object. we can find the
first certificate that it will violates by a simple O(log n)
search, the proof is straightforward. ¤

3 KDS Evaluation

In this section we evaluate our kinetic model accord-
ing to the criteria of a good KDS. Similar to other al-
gorithms, a good KDS should take small space, small
initialization cost, and efficient update time. In KDS,
an update may happen in two cases. One is when a cer-
tificate fails and an event happens. The other is when
the motion of an object changes. In first case, we need
to update the certificate set, and in the second case we
must recompute the failure times for all the certificates
that involve that object. These requirements induce the
following quality measurements for KDSs [2].
Compactness the size of the proof.
Responsiveness the time to process an event.
Locality the number of certificates that a single object
involves in.

Another crucial efficiency factor of a KDS is the num-
ber of events processed. This factor determines how
many times we need to stop to check our proof and
structure. This factor is expressed by efficiency:
Efficiency the number of events processed.

Now, we consider each of the above criteria in our
kinetic model.
Compactness The structure clearly takes linear space.
As we stated in Section 2.1, for a set of n point ob-
jects, the proof scheme consists of n− 1 certificates for
sorted vertical order of objects and n certificates for
maintaining the pivots of each object, so in total, our
proof scheme have 2n− 1 certificates.

Responsiveness O(log n) for processing an event as
there are O(1) certificates need to reschedule. Each
reschedule takes O(log n) time.
Locality Each object is involved in at most three cer-
tificates.
Efficiency All the events are exterior – the ordering
changes once a horizontal event happens, or the pivot
of an object changes once a pivot event happens. The
number of events is bounded by O(n2) as any two points
can exchange their ordering only constant number of
times for constant degree algebraic motions, and any
point is a potential candidate for being the pivot of an-
other point.

4 Conclusion and Future Work

In this paper we studied the concept of the Polar Dia-
gram, which is a new locus approach for problems pro-
cessing angles, and KDS, which is a structure that main-
tains a certain attribute of a set of continuously moving
objects among moving objects. We used KDS to model
the behavior of a the Polar Diagram when our scene is
dynamic, i.e. we maintain the Polar Diagram of a set
of continuously moving objects. We showed that our
proposed structure meets the main criteria of a good
KDS.

Following our defined model for the kinetic Polar Di-
agram, we can use it in direct applications of the Polar
Diagram to maintain the computed attributes. For ex-
ample, we can use the kinetic Polar Diagram for main-
taining the convex hull of a set of moving objects with
a very low cost.
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Isometric Morphing of Triangular Meshes ∗
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Abstract

We present a novel approach to morph between two isomet-
ric poses of the same non-rigid object given as triangular
meshes. We model the morphs as linear interpolations in
a suitable shape space S. For triangulated 3D polygons, we
prove that interpolating linearly in this shape space corre-
sponds to the most isometric morph in R3. We extend this
shape space to arbitrary triangulations in 3D using a heuris-
tic approach.

1 Introduction

Given two isometric poses of the same non-rigid object as
triangular meshes S(0) and S(1) with known point-to-point
correspondences, we aim to find a smooth isometric defor-
mation between the poses. Interpolating smoothly between
two given poses is called morphing. We achieve this by find-
ing shortest paths in a shape space similar to the approach by
Kilian et al. [5]. We propose a novel shape space.

A deformation of a shape represented by a triangular
mesh is isometric if and only if all triangle edge lengths
are preserved during the deformation [5]. We call a morph
S(t), 0 < t < 1 between two (possibly nonisometric) shapes
S(0) and S(1) most isometric if it minimizes the sum of the
absolute values of the differences between the correspond-
ing edge lengths of two consecutive shapes summed over all
shapes S(t), for t in [0, 1]1. In this paper, we examine isomet-
ric morphs of general triangular manifold meshes in 3D and
of triangulated 3D polygons, which are triangular meshes
with no interior vertices. We introduce a new shape space S
for triangulated 3D polygons that has the property that in-
terpolating linearly in shape space corresponds to the most
isometric morph in R3. We then extend this shape space
to arbitrary triangulations in 3D using a heuristic approach.
Note that self-intersections may occur when morphing.

Computing a smooth morph from one pose of a shape in
two or three dimensions to another pose of the same shape
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metric to measure most isometric morphs.

has numerous applications. For example in computer graph-
ics and computer animation this problem has received con-
siderable attention [7, 1].

Recently, Kilian et al. [5] used shape space representations
to guide morphs and other more general deformations be-
tween shapes represented as triangular meshes. Each shape
is represented by a point in a high-dimensional shape space
and deformations are modeled as geodesics in shape space.
The geodesic paths in shape space are found using an energy-
minimization approach. Before Kilian et al. [5] presented the
use of a shape space for shape deformation and exploration
of triangular meshes, shape space representations were de-
veloped to deform shapes in different representations. Cheng
et al. [2] proposed an approach that deforms shapes given in
skin representation, which is a union of spheres that are con-
nected via blending patches of hyperboloids, with the help of
a suitable shape space. Furthermore, algorithms for deform-
ing curves with the help of shape space representations were
proposed by Younes [10] and Klassen et al. [6]. Eckstein et
al. [3] propose a generalized gradient descent method similar
to the approach by Kilian et al. that can be applied to de-
form triangular meshes. All of these approaches depend on
solving a highly non-linear optimization problem with many
unknown variables using numerical solvers. It is therefore
not guaranteed that the globally optimal solution is found.

2 Theory of Shape Space for Triangulated 3D Poly-
gons

This section introduces a novel shape space for triangulated
3D polygons with the property that interpolating linearly in
shape space corresponds to the most isometric morph in R3.
The dimensionality of the shape space is linear in the number
of vertices of the deformed polygon.

We start with two triangulated 3D polygons P (0) and P (1)

corresponding to two almost isometric poses of the same
non-rigid object. We assume that the point-to-point corre-
spondence of the vertices P (0) and P (1) are known. Fur-
thermore, we assume that both P (0) and P (1) share the same
underlying mesh structure M . Hence, we know the mesh
structure M with two sets of ordered vertex coordinates V (0)

and V (1) in R3, where M is an outer-planar graph. We will
show that we can represent P (0) and P (1) as points p(0) and
p(1) in a shape space S, such that each point p(t) that is a
linear interpolation between p(0) and p(1) corresponds to a
triangular mesh P (t) isometric to P (0) and P (1) in R3.

Let M consist of n vertices. As M is a triangulation of a
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3D polygon with n vertices, M has 2n− 3 edges and n− 2
triangles. We assign an arbitrary but fixed order on the ver-
tices, edges, and faces of M . We eliminate rigid transforma-
tions by positioning P (0) and P (1) such that the first vertex v
is incident to the origin, the first edge e of M incident to v is
aligned along the positive x-axis, and the first triangle con-
taining e lies on the x, y plane. The shape space S is defined
as follows. The first 2n−3 coordinates are the lengths of the
edges in M in order. The final 2(n − 2) coordinates are the
outer normal directions of the triangles in M in spherical co-
ordinates, in order. Hence, the shape space S has dimension
2n− 3 + 2(n− 2) = 4n− 7 = Θ(n).

In the following, we prove that interpolating linearly be-
tween P (0) and P (1) in shape space yields the most isometric
morph. To interpolate linearly in shape space, we interpo-
late the edge lengths by a simple linear interpolation. That
is, p

(t)
k = tp

(0)
k + (1 − t)p(1)

k , where p
(x)
k is the kth coor-

dinate of p(x). The normal vectors are interpolated using
geometric spherical linear interpolation (SLERP) [8]. That
is, p

(t)
k = sin(1−t)Θ

sin Θ p
(0)
k + sin tΘ

sin Θ p
(1)
k , where Θ is the angle

between the two directions that are interpolated.
To study interpolation in shape space, we make use of the

dual graph D(M) of M . The dual graph D(M) has a node
for each triangle of M . We denote the dual node correspond-
ing to face f of M by D(f). Two nodes of D(M) are joined
by an arc if the two corresponding triangles in M share an
edge. We denote the dual arc corresponding to an edge e of
M by D(e). Note that because M meshes a 3D polygon, it
is an outer-planar triangular graph and so the dual graph of
M is a binary tree. An example of a mesh M with its dual
graph D(M) is shown in Figure 1.

M

D(M)

Figure 1: A mesh M with its dual graph D(M).

Theorem 1 Let M be the underlying mesh structure of the
triangulated 3D polygons P (0) and P (1). The linear inter-
polation p(t) between p(0) and p(1) in shape space S for
0 ≤ t ≤ 1 has the following properties:

1. The mesh P (t) ∈ R3 that corresponds to p(t) ∈ S is
uniquely defined and has the underlying mesh structure
M . We can compute this mesh using a traversal of the
binary tree D(M) in Θ(n) time.

2. If P (0) and P (1) are isometric, then P (t) is isometric to
P (0) and P (1). If P (0) and P (1) are not isometric, then

each edge length of P (t) linearly interpolates between
the corresponding edge lengths of P (0) and P (1).

3. The coordinates of the vertices of P (t) are a continuous
function of t.

Due to page restrictions, the proof of this theorem is omit-
ted in this abstract, but can be found in [9]. Note that Theo-
rem 1 implies that the most isometric morph is found as all
edge lengths are linearly interpolated.

Because D(M) has complexity Θ(n), we can traverse
D(M) in Θ(n) time. Hence, we can compute intermediate
deformation poses in Θ(n) time each.

Using the proposed algorithm, we deform the polygon
shown in Figure 3 (a) to the polygon shown in Figure 3 (i).
The morph is illustrated in Figures 3 (b)-(h). All of the inter-
mediate poses are isometric to the start and end poses. The
overlayed poses are shown in Figure 2.

Figure 2: Most isometric morph of a simple polygon. The
start polygon is a 3D polygon obtained by discretizing the
curve y = sin(x) and by adding thickness to the curve along
the z-direction. The end polygon is similarly obtained from
y = − sin(x).

3 Generalization to Triangular
Meshes

This section extends the shape space from the previous sec-
tion to arbitrary connected triangular meshes. We can no
longer guarantee the properties of Theorem 1, because the
dual graph of the triangular mesh M is no longer a tree.

Given two triangular meshes S(0) and S(1) corresponding
to two almost isometric poses of the same non-rigid object
with known point-to-point correspondence, we know one
mesh structure M with two sets of ordered vertex coordi-
nates V (0) and V (1) in R3. As before, we can represent S(0)

and S(1) as points s(0) and s(1) in a shape space S using the
same shape space points as in Section 2. Let s(t) be the linear
interpolation of s(0) and s(1) in S, where the linear interpo-
lation is computed as outlined in Section 2. The existence
of a mesh S(t) ∈ R3 that has the underlying mesh struc-
ture M and that corresponds to s(t) is no longer guaranteed.
This can be seen using the example shown in Figure 4. Fig-
ure 4(a) and (b) show two isometric meshes S(0) and S(1).
The dual graph D(M) of the mesh structure M is a sim-
ple cycle. Note that although the start and the end pose are
isometric, we cannot find an intermediate pose that satisfies
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(a) (b) (c) (d) (e) (f) (g) (h) (i)

Figure 3: Most isometric morph of a simple polygon from pose (a) to pose (i) obtained using the polygon algorithm.

(a) (b)

Figure 4: Example of isometric triangular meshes where
most isometric intermediate poses do not exist.

all of the interpolated normal vectors and that is isometric to
S(0) and S(1).

Let M consist of n vertices. As M is a planar graph, M
has Θ(n) edges and Θ(n) triangles. The shape space S is de-
fined using the same shape space points as in Section 2. The
shape space S has dimension Θ(n). As before, we interpo-
late linearly in shape space by interpolating the edge lengths
by a simple linear interpolation. The following observation
is illustrated in Figure 4.

Observation 1 Given a triangular mesh S(t) with underly-
ing mesh structure M , point s(t) in S is uniquely determined.
However, the inverse operation, that is computing a triangu-
lar mesh S(t) given a point s(t) ∈ S, is ill-defined.

To compute a unique triangular mesh S(t) given a point
s(t) ∈ S that linearly interpolates between s(0) and s(1), such
that S(t) represents the information given in s(t) well, we use
the dual graph D(M) of M . Unlike in Section 2, D(M) is
not necessarily a tree. Our algorithm therefore operates on
a minimum spanning tree T (M) of D(M). The tree T (M)
is computed by assigning a weight to each arc e of D(M).
The weight of e is equal to the difference in dihedral angle
of the supporting planes of the two triangles of M corre-
sponding to the two endpoints of e. That is, we compute the
dihedral angle between the two supporting planes of the two
triangles of M corresponding to the two endpoints of e for
the start pose S(0) and for the end pose S(1). The weight
of e is then set as the difference between those two dihedral
angles, which corresponds to the change in dihedral angle
during the deformation. The weight can therefore be seen as
a measure of rigidity. The smaller the weight, the smaller
the change in dihedral angle between the two triangles dur-
ing the deformation, and the more rigidly the two triangles
move with respect to each other. As T (M) is a minimum
spanning tree, T (M) contains the arcs corresponding to the
most rigid components of M .

We compute S(t) by traversing T (M). However, unlike
in Section 2, setting the vertex coordinates of a vertex v of
S(t) using two paths from the root of T (M) to two triangles

containing v can yield two different resulting coordinates for
v. An example of this situation is given in Figure 5, where
the coordinates of v can be set by starting at root(T (M)),
and traversing the arcs e2 and e3 of T (M) or by traversing
the arcs e1, e4, and e5 of M . We call the different coordinates
computed for v in T (M) candidate coordinates of v. Our
algorithm computes the coordinates of each vertex v ∈ S(t)

as the average of all the candidate coordinates of v.

M

T (M)

v

e1

e5

e2

e3
e4

root(T (M))

Figure 5: A mesh M with its dual tree T (M).

To analyze the maximum number of candidate coordinates
that can occur for a vertex in S(t), let e denote an edge of
M such that D(e) is in T (M). Let v denote the vertex of
S(t) opposite e in the triangle corresponding to an endpoint
of D(e), such that the coordinates of v are computed when
traversing D(e). This is illustrated in Figure 6. Let d1 and d2

denote the total number of candidate coordinates of the two
endpoints of e. As we compute d1d2 candidate coordinates
for v by traversing D(e), we can bound the number of candi-
date coordinates of v computed using the path through D(e)
by d1d2. The number of candidate coordinates for the two
endpoints of the edge corresponding to the first edge is one.
Furthermore, each vertex v can be reached by at most deg(v)
paths in T (M), where deg(v) denotes the degree of vertex
v in M . As each path in T (M) has length at most m − 1,
where m = O(n) is the number of triangles of M , we can
bound the total number of candidate coordinates in S(t) by∑

v∈V 2m−1deg(v) = 2n2m−1, where V is the vertex set.
Our algorithm finds a triangular mesh S(t) corresponding

to s(t) that is isometric to S(0) and S(1) if such a mesh ex-
ists, because all of the candidate coordinates are equal in this
case and taking their average yields the desired result. If
there is no isometric mesh corresponding to s(t), our algo-
rithm finds the nearly isometric morph as a unique mesh that
weighs all the evidence given by T (M) equally. By choosing
T (M) as a minimum spanning tree based on weights repre-
senting rigidity, we allocate rigid parts of the model more
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(a) (b) (c) (d) (e) (f) (g) (h) (i)

Figure 7: Nearly isometric morph of a cycle from pose (a) to pose (i) obtained using the exponential algorithm.

e

D(e)
v

Figure 6: Illustration of how to bound the number of candi-
date coordinates of v computed using the path through D(e).

emphasis than non-rigid parts. The reason for this is that in
most morphs, triangles close to non-rigid joints are deformed
more than triangles in mainly rigid parts of the model. We
conclude with the following.

Proposition 2 Let S(0) and S(1) denote two isometric con-
nected triangular meshes and let s(0) and s(1) denote the
corresponding shape space points, respectively. We can
compute a unique triangular mesh S(t) representing the in-
formation given in the linear interpolation s(t), 0 ≤ t ≤ 1 of
s(0) and s(1), in exponential time. We find a triangular mesh
S(t) corresponding to s(t) that is isometric to S(0) and S(1)

if such a mesh exists.

The algorithm can easily be extended to work for a non-
connected triangular mesh M by removing rigid transforma-
tions for each connected component of M using local coor-
dinate systems. We can then adapt the algorithm by finding
the dual graph D(M) and a minimum spanning tree T (M)
for each connected component of M . With this information,
we can traverse the graph as described above.

Using the proposed algorithm, we deform the model
shown in Figure 7. We aim to smoothly and isometrically
deform the pose shown in Figure 7(a) to the pose shown in
Figure 7(i). As mentioned previously, there is no isomet-
ric deformation between the poses that interpolates the tri-
angle normals. The result of our algorithm is shown in Fig-
ures 7(b)-(h). Note that all triangle normals are interpolated
and the symmetry of the model is preserved. Furthermore,
all edge lengths with the exception of the edges of the four
top faces are interpolated.

4 Conclusion

We presented a novel approach to morph efficiently between
isometric poses of triangular meshes in a novel shape space.
The main advantage of this morphing method is that the most

isometric morph is always found in linear time when trian-
gulated 3D polygons are considered. For general triangular
meshes, the approach cannot be proven to find the optimal
solution. However, this paper presents a heuristic approach
to find a morph for general triangular meshes. More efficient
heuristics are explored in the accompanying report [9].

A direction for future work is to find an efficient way of
morphing triangular meshes while guaranteeing that no self-
intersections occur. For polygons in two dimensions, this
problem was solved using an approach based on energy min-
imization [4].
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Computing the Stretch Factor of Paths, Trees, and Cycles in Weighted

Fixed Orientation Metrics

Christian Wulff-Nilsen∗

Abstract

Let G be a graph embedded in the L1-plane. The stretch
factor of G is the maximum over all pairs of distinct ver-
tices p and q of G of the ratio LG

1 (p, q)/L1(p, q), where
LG

1 (p, q) is the L1-distance in G between p and q. We
show how to compute the stretch factor of an n-vertex
path in O(n log2 n) worst-case time and O(n) space and
we mention generalizations to trees and cycles, to gen-
eral weighted fixed orientation metrics, and to higher
dimensions.

1 Introduction

For t ≥ 1, a t-spanner for a set of points is a network
interconnecting the points such that the distance in the
network between any pair of the given points is at most
t times longer than the shortest possible distance be-
tween them. The smallest t for which the network is a t-
spanner is called the stretch factor of the network. Com-
puting networks with small stretch factors is an active
area of research. For more on spanners, see e.g. [3, 2, 4].

An interesting dual problem is the following: given a
network interconnecting a set of n points, what is the
stretch factor of this network?

Fast algorithms for this problem are known only for
simple graphs in the Euclidean plane. It has been
shown that the stretch factor of a path in the Eu-
clidean plane can be found in O(n log n) expected time
and that the stretch factor of a tree and a cycle can
be found in O(n log2 n) expected time [1]. Using para-
metric search gives (rather complicated) O(npolylog n)
worst-case time algorithms for these types of networks.

In the plane, a weighted fixed orientation metric [5, 6]
is specified by a fixed set V of vectors and the distance
between a pair of points is defined as the length of a
shortest path between them consisting of line segments
all with weighted orientations from V .

To our knowledge, the problem of efficiently comput-
ing the stretch factor of networks in weighted fixed ori-
entation metrics has not received any attention. Since
these metrics may be used to approximate other metrics
and due to their applications in VLSI design, we believe
this problem to be an important one.

∗Department of Computer Science, University of Copenhagen,

koolooz@diku.dk

In this paper, we give an O(n log2 n) worst-case time
algorithm for computing the stretch factor of an n-
vertex path embedded in the L1-plane and we men-
tion generalizations to trees and cycles, to arbitrary
weighted fixed orientation metrics, and to higher dimen-
sions. Compared to the complicated worst-case time al-
gorithms for the Euclidean metric, our algorithms are
relatively simple and should be easy to implement.

The organization of the paper is as follows. In Sec-
tion 2, we make basic definitions and introduce some
notation. In Section 3, we consider the problem of com-
puting the stretch factor of paths in the plane equipped
with the L1-metric and present an algorithm for this
problem. In Section 4, we mention generalizations of
our algorithm and we make some concluding remarks in
Section 5.

2 Basic Definitions

For points p = (px, py) and q = (qx, qy), the L1-distance

L1(p, q) between p and q is |qx − px|+ |qy − py|.
Let G be a connected graph embedded in the plane.

To distinguish between a vertex of G and its location in
the embedding, we write its location in boldface.

For two vertices u and v of G, define LG
1 (u, v) as

the length of a shortest path between u and v in G,
where the length of a path is measured as the sum of
L1-lengths of the edges on the path in the embedding.

For distinct vertices u and v in G, the detour δG(u, v)
between u and v in G is defined as LG

1 (u, v)/L1(u, v).
The stretch factor δG of G is the maximum detour over
all pairs of distinct vertices of G. If u = v for two
distinct vertices u and v of G, we define δG = ∞.

For p ∈ R2 and r ≥ 0, we let B1(p, r) denote the
closed disc in (R2, L1) with center p and radius r.

3 Stretch Factor of Paths

In the following, let P = p1 → p2 → · · · → pn be
an n-vertex path embedded in (R2, L1). In this sec-
tion, we show how to compute the stretch factor of P
in O(n log2 n) time and O(n) space.

We will make the simplifying assumption that all ver-
tices of P have distinct locations. For otherwise, we
would have δP = ∞ and checking whether all vertices
have distinct locations can be done in O(n log n) time.
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In all the following, let N = {1, . . . , n}. For i ∈ N
and δ > 0, let Bi(δ) denote the disc B1(pi, ri(δ)), where
radius ri(δ) = LP

1 (pi, pn)/δ. The following lemma re-
lates these discs to the stretch factor of P .

Lemma 1 The stretch factor of P is δP = inf{δ >
0|Bj(δ) * Bi(δ) for all i, j ∈ N, i 6= j}.

Proof. Let δ > 0. For any i, j ∈ N ,

LP
1 (pi, pj)

δ
=
|LP

1 (pi, pn)− LP
1 (pj , pn)|

δ
= |ri(δ)− rj(δ)|.

Hence,

δP < δ ⇔ ∀i, j ∈ N, i 6= j : L1(pi, pj) > |ri(δ)− rj(δ)|

⇔ ∀i, j ∈ N, i 6= j : L1(pi, pj) > ri(δ) − rj(δ)

⇔ ∀i, j ∈ N, i 6= j : L1(pi, pj) + rj(δ) > ri(δ)

⇔ ∀i, j ∈ N, i 6= j : Bj(δ) * Bi(δ).

�

The idea of our algorithm is to see how much the size of
the above defined discs can be increased before at least
one of them includes another disc. By Lemma 1, this
will then give us the stretch factor of path P .

For each i ∈ N and for w = 1, 2, 3, 4, define Pw(i)
as the set of vertices of P \ {pi} belonging to the wth
quadrant of pi. Lemma 1 gives

δP = max
w=1,2,3,4,i∈N

inf{δ > 0|Bj(δ) * Bi(δ)∀pj ∈ Pw(i)}.

Hence, δP is the maximum of four δ-values, one for
each value of w. By symmetry, we may restrict our
attention to computing

max
i∈N

inf{δ > 0|Bj(δ) * Bi(δ)∀pj ∈ P1(i)}. (1)

The following lemma gives a useful way of determin-
ing whether Bj(δ) is contained in Bi(δ) when pj belongs
to the first quadrant of pi.

Lemma 2 Let pi be a given vertex and let pj ∈ P1(i).
For δ > 0, define ri(δ) and rj(δ) as the rightmost points

in Bi(δ) and Bj(δ), respectively. Then

Bj(δ) ⊆ Bi(δ) ⇔ ri(δ) · (1, 1) ≥ rj(δ) · (1, 1).

Proof. The point rj(δ) is to the right of pj and belongs
to the first quadrant of pi, implying that L1(pi, rj(δ)) =
L1(pi, pj) + rj(δ). Since Bj(δ) ⊆ Bi(δ) if and only if
L1(pi, pj) + rj(δ) ≤ ri(δ), we have

Bj(δ) ⊆ Bi(δ) ⇔ L1(pi, rj(δ)) ≤ ri(δ)

⇔ rj(δ) ∈ Bi(δ)

⇔ (rj(δ)− ri(δ)) · (1, 1) ≤ 0,

since vector (1, 1) is normal to the part of the boundary
of Bi(δ) in the first quadrant of pi. �

(b)(a)

fi

fj

fk

1/δ
1/δ1 1/δ2

li

pi

pj
pk

(0, 0)

Figure 1: Illustration of Lemma 3. (a): L1-discs Bi(δ),
Bj(δ), and Bk(δ) for two values of δ: δ1 (bold bound-
aries) and δ2. (b): The corresponding functions fi, fj ,
and fk. Lower envelope li is shown in bold. The dis-
tances in (a) between the dotted line and the black parts
of L1-discs correspond to values of functions fi, fj, and
fk at 1/δ1 and 1/δ2 in (b). Note that Bk(δ2) ⊆ Bi(δ2).
For all 1/δ < 1/δ2, Bj(δ) * Bi(δ) and Bk(δ) * Bi(δ).

Recall that, for any i ∈ N , ri(δ) = LP
1 (pi, pn)/δ.

Hence, the dot product ri(δ) · (1, 1) of Lemma 2 is an
affine function of 1/δ, i.e. on the form a(1/δ)+ b, where
a and b are constants. Denote this function by fi.

Associate with each pi a lower envelope function li of
1/δ, defined by

li(1/δ) = min{fj(1/δ)|pj ∈ P1(i)}.

Our goal is to compute (1). The following lemma relates
this value to the intersection between fi and li.

Lemma 3 There is at most one intersection point be-

tween fi and li on interval ]0,∞[. If 1/δ′ is such a point

then

δ′ = inf{δ > 0|Bj(δ) * Bi(δ)∀pj ∈ P1(i)}.

If there is no intersection point then for any δ > 0 and

any pj ∈ P1(i), Bj(δ) * Bi(δ).

Proof. Figure 1 illustrates the lemma.
For any point p in the first quadrant of pi, the value

p · (1, 1) is minimized when p = pi. It follows that
fi(1/δ) < li(1/δ) for all sufficiently small 1/δ. Hence,
since the graph of li on ]0,∞[ is a chain of line segments
(and one halfline) whose slopes decrease as we move
from left to right, there is at most one intersection point
1/δ′ between fi and li on interval ]0,∞[.

If intersection point 1/δ′ exists, the above shows that,
on interval ]0,∞[, fi(1/δ) < li(1/δ′) if 1/δ < 1/δ′ and
fi(1/δ) > li(1/δ′) if 1/δ > 1/δ′. And if no intersection
point exists then fi is below li on interval ]0,∞[.

Lemma 2 shows that Bj(δ) ⊆ Bi(δ) if and only if
fi(1/δ) ≥ fj(1/δ). Hence, Bj(δ) * Bi(δ) for all pj

in the first quadrant P1(i) of pi if and only fi(1/δ) <
li(1/δ). This shows the lemma. �
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For each i ∈ N , let δi = 1/xi, where xi is the inter-
section point between fi and li. If no such point exists,
set δi = 0. Lemma 3 shows that (1) equals maxi∈N δi.

What remains therefore is the problem of computing
the intersection (if any) between fi and li for all i. In
the following, we describe an algorithm for this problem.

3.1 The Algorithm

To simplify the description of the algorithm, we will
leave out some of the details and return to them in Sec-
tion 3.2, where we show how to obtain O(n log2 n) run-
ning time and O(n) space requirement.

The algorithm stores vertices of P in a balanced bi-
nary search tree T of height Θ(log n) which is similar to
a 1-dimensional range tree. Let V be the set of vertices
of P . If V contains exactly one vertex, the root r of T
is a leaf containing this vertex. Otherwise, r contains
the median m of x-coordinates of vertices of V (in case
of ties, order the vertices on the y-axis) and the subtree
rooted at the left resp. right child of r is defined recur-
sively for the set of vertices of V with x-coordinates less
or equal to resp. greater than m.

Each node v of T corresponds to a subset Sv of ver-
tices of P , namely those vertices stored at the leaves
of the subtree of T rooted at v. We refer to these Sv-
subsets as canonical subsets.

Note that each vertex pi of P belongs to Θ(log n)
canonical subsets, namely those corresponding to ver-
tices visited on the path from the root of T to the leaf
containing pi.

In addition to a median, we associate with each node
of T a lower envelope of line segments. This lower en-
velope is initially empty and will be updated during the
course of the algorithm.

After having constructed T , the algorithm makes a
pass over the vertices of P in order of descending y-
coordinate. In case of ties, vertices are visited from
right to left.

The following invariant will be maintained through-
out the course of the algorithm: for each vertex v of T ,

the lower envelope associated with v is the lower enve-

lope of fi-functions of vertices in Sv visited so far.
When a vertex pi of P is visited, the invariant is

maintained by adding fi to the Θ(log n) lower envelopes
associated with vertices on the path from the root of T
to the leaf containing pi.

When the algorithm visits a vertex pi, it needs to find
the intersection between fi and li. However, explicitly
computing li is too time-consuming.

Instead, we make use of our invariant which ensures
that lower envelopes of visited vertices of all canonical
subsets are given. The vertices in the first quadrant
of pi have all been visited and the set P1(i) of these
vertices is therefore the union of visited vertices of the
canonical subsets to the right of pi. So the intersection
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Figure 2: (a) Eight points shown with x-coordinates
1, . . . , 8. The set of points with x-coordinate greater
than 3 is the union of two canonical subsets. (b) The
two canonical subsets are found by picking right children
(black) on the path from the root of the range tree to
the leaf with median 3.

between fi and li is the leftmost of the intersections be-
tween fi and the lower envelopes associated with these
canonical subsets.

Since canonical subsets may overlap, not all canonical
subsets to the right of pi are needed. The idea is to pick
a small number in order to minimize running time.

The algorithm picks canonical subsets (or more pre-
cisely, nodes of T corresponding to canonical subsets)
as follows. Let vi be the leaf of T associated with pi.
For each vertex v on the path from the root r of T to
vi, the canonical subset associated with the right child
of v is picked unless this child itself is on the path from
r to vi, see Figure 2.

It is easy to see that the visited vertices in the union
of the picked canonical subsets are exactly the vertices
of P1(i). Since the height of T is Θ(log n), the number
of picked canonical subsets is O(log n).

A fine point: if there are vertices of P above pi and
with the same x-coordinate as pi, they may not all be-
long to the picked canonical subsets even though they
belong to P1(i). We may ignore these however, since
they will be picked when second quadrants are handled.

Intersections between fi and each of the lower en-
velopes of the picked canonical subsets are then com-
puted and the leftmost of these is picked as the inter-
section between fi and li.

From these intersections, the value (1) is obtained.
This is repeated for the other three quadrants, giving
the stretch factor of P .

3.2 Running Time and Space Requirement

In the description of the algorithm above, we left out
some details. We now focus on them in order to analyze
the running time of the algorithm.

It is easy to see that tree T can be constructed top-
down in O(n log n) time. In the y-descending pass over
the vertices of P , maintaining our invariant requires
adding each fi-function to O(log n) lower envelopes.
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Finding these lower envelopes takes O(log n) time by
a traversal from the root to a leaf of T using the me-
dians at vertices to guide the search. It is easy to see
that an fi-function may be inserted in a lower envelope
in O(log n) amortized time. Thus, the total time spent
on maintaining the invariant is O(n log2 n).

Next, we need to analyze the time it takes to com-
pute the intersection between fi and li for each i. This
involves picking O(log n) canonical subsets and comput-
ing the intersection between fi and the lower envelopes
associated with these subsets.

Clearly, the time it takes to find the canonical sub-
sets is bounded by the height of T which is Θ(log n).
Since each lower envelope l is a monotonically increas-
ing function and its graph consists of line segments (and
one halfline), computing the intersection between fi and
l can be done in O(log n) time by using an appropri-
ate data structure. It follows that our algorithm has
O(n log2 n) running time.

The algorithm described above has O(n log n) space
requirement. To improve space requirement to linear,
we modify the algorithm so that, instead of making only
one y-descending pass over the vertices of P , it makes
h(T ) passes (for each of the four quadrants), where h(T )
is the height of T . In the kth pass, only lower envelopes
at level k-nodes of T are updated; all other nodes of T
contain empty lower envelopes. And only intersections
between fi-functions and lower envelopes at level k of
T are computed.

This gives the first main result of the paper.

Theorem 4 The stretch factor of an n-vertex path in

(R2, L1) can be computed in O(n log2 n) time and O(n)
space.

4 Generalizations

In this section, we present generalizations of our algo-
rithm. Proofs have been omitted due to space con-
straints.

By using ideas similar to those in [1], we obtain gen-
eralizations to trees and cycles. And by using higher
dimensional range trees in Section 3.1, it is relatively
easy to generalize our algorithm to (Rd, L1). This gives
the following result.

Theorem 5 Let G be an n-vertex graph embedded in

(Rd, L1), d ≥ 2. The stretch factor of G can be com-

puted in O(n logd n) time when G is a path and in

O(n logd+1 n) time when G is a tree or cycle. Space

requirement is O(n).

In two dimensions, we have generalized our algorithm
to weighted fixed orientation metrics. Basically, we lin-
early map cones in such metrics to quadrants and then
apply our algorithm for the L1-metric.

Theorem 6 Let G be an n-vertex graph embedded in

the plane equipped with a weighted fixed orientation met-

ric defined by λ ≥ 2 weighted orientations. The stretch

factor of G can be computed in O(λn log2 n) time when

G is a path and in O(λn log3 n) time when G is a tree

or cycle. Space requirement is O(n).

Suppose that we are not only interested in computing
the stretch factor but also in finding a pair of vertices for
which the detour between them equals the stretch factor
of the graph. The following theorem shows that this can
be done without affecting time and space bounds.

Theorem 7 Within the same time and space bounds,

all algorithms described above can be modified to com-

pute, for every vertex pi, a vertex pj maximizing the

detour between pi and pj in the graph. In particular, a

vertex pair achieving the stretch factor of the graph can

be found within these time and space bounds.

5 Concluding Remarks

Given an n-vertex path in (R2, L1), we showed how to
compute its stretch factor in O(n log2 n) worst-case time
and O(n) space. We mentioned generalizations to cycles
and trees, to higher dimensions and to weighted fixed
orientation metrics in the plane.

An obvious question is whether our algorithms are
optimal with respect to running time. In the Euclidean
plane, an Ω(n log n) lower bound is known for paths
and trees and it is easily seen to hold for the L1-metric.
Thus, there is a gap of log n for paths and log2 n for
trees between our time bounds and this lower bound. Is
it possible to handle more general types of graphs?
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The Focus of Attention Problem Revisited

Manjish Pal∗

Abstract

The Focus of Attention (FOA) Problem is, given a set
of targets and a set of sensors in the plane, to track
the targets with ‘maximum possible accuracy’. The
accuracy is measured in terms of the angle subtended
by the sensor pairs at the assigned targets. In this
paper, we consider a scenario in which we are given
n targets on a line l and 2n sensors on a line m such
that l || m and the objective is to assign sensor-pairs to
the targets such that the minimum angle subtended at
the targets is maximized. We give a polynomial time
algorithm for a restricted version of this problem and
also study some properties of the optimal solution. To
our knowledge, no deterministic and exact polynomial
time algorithm is known for any non-trivial version of
the FOA problem when the accuracy is measured in
terms of the angles subtended by the sensor pairs.

Keywords: Target tracking, Focus of Attention prob-
lem

1 Introduction

The Focus of Attention problem is motivated from
the problem of tracking targets using sensor networks
which is mainly used for the purpose of surveillance
and monitoring tasks [3]. A limitation these sensors
have is that one sensor is not capable of tracking a
target. The sensors for example can be cameras and
they can be used to estimate the position of a target.
In practice, at least two such sensors are required to
estimate the position of a target and for many cases
like pan-tilt-zoom cameras one sensor cannot be used
to track more than one target. For range sensors, three
are required to localize a target [1]. In this paper,
we will only consider the case in which each target
can be tracked exactly by 2 cameras. To estimate the
quality of tracking a good metric is required. The angle
subtended by a camera pair at a target plays a crucial
role in tracking the targets [4]. To have minimum
uncertainty in the position of the targets the best
measure is to assign the cameras to the targets such
that the deviation of the subtented angle at each of

∗Indian Institute of Technology Kanpur, Kanpur-208016, In-

dia, manjish@iitk.ac.in. This work was done during the

CADMO internship programme-2007, at ETH-Zürich, Switzer-

land.

the targets from 90 degrees is somewhat low. In other
words if all the subtended angles are 90 degrees then
the position of the targets is estimated very accurately.
It follows from this that for a good tracking of a
target, the angle subtended at the target should not be
very small. A natural way to make sure that the no
angle is very small will be to maximize the minimum
angle subtended at the targets. In [1] the cameras are
assumed to be on a line and the error associated with
an assignment of cameras ci and cj with target k is
Zk/lij where lij is the distance between the cameras
and Zk is the distance of the cameras from the line
containing the cameras. The objective is to find an
assignment that minimizes the total error. Intuitively,
if we fix Zk and the angle is small then the value of lij
will be small and error will be large. Hence this metric
tries to capture the angles via an approximation. So,
the natural question that arises is, can we work directly
with angles and design efficient algorithms that can
output an assignment that minimizes the maximum
deviation from 90 degrees? Unfortunately, this problem
has been shown to be intractable in [2]. Gfeller et al
[2] have recently shown that given a set of 2n cameras
and n targets in the plane, it is NP-complete to decide
whether there exists an assignment of cameras to track
targets such that each subtended angle is 90 degrees.
They also give approximation algorithms for maximiz-
ing the minimum angle and maximizing the sum of
angles when cameras are placed on a line. An extensive
survey and motivation on this problem is provided in [2].

To our knowledge, no deterministic and exact polyno-
mial time algorithm is known for any non-trivial version
of the FOA problem when the accuracy is measured
in terms of the angles subtended by the camera pairs.
In this paper we achieve such a result for a restricted
version of the problem.

2 Problem Definition

Consider n targets present on a line l1 and 2n cameras
on a line l2, where l1 is parallel to l2. Two cameras ci

and cj are said to subtend an angle θ at a target tk, if
∠citkcj is θ. In an assignment, a camera c can focus
on exactly one target and a target is focussed by exactly
two cameras. Moreover, each camera has to be used in
an assignment. Consider the following version of the
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focus of attention problem:
We have to find an assignment of cameras to targets
such that

• The minimum angle of all possible assignments is
maximized (Parallel-MAX-MIN Problem).

Let LHS denote the set of first n cameras and RHS
denote the set of last n cameras (ordered from left to
right).

3 Parallel-MAX-MIN Problem

We start off by proving a fundamental fact regarding
this optimization problem.

Lemma 1 There always exists an optimal solution O
of the Parallel-MAX-MIN problem such that in O there

are no two camera pairings ci, cj and ck, cl such that

i < j < k < l where i, j, k, l denote the index of the

cameras in the sorted order from left.

Proof Let camera pairs (ci, cj) and (k, l) be assigned
to tp and tq repectively in an optimal solution where
i < j < k < l. If tp is to the left of tq then we can
swap the assignment to get a new assignment with pair-
ings (ci, ck, tp) and (cj , cl, tq) and in this new assignment
the subtended angles for both the assignments increase,
hence the minimum angle in the solution does not de-
crease. Similarly, if tp is to the right of tq then the
pairings (ci, ck, tq) and (cj , cl, tp) will give us a solution
which is optimal as well.
The following can be easily derived from the previous
lemma.

Corollary 1 There exists an optimal solution in which

each camera from the set of first n cameras from left is

paired with a camera in the set of last n cameras.

Consider the following decision version of the prob-
lem:

Given an angle θ does there exist an assignment of

cameras and targets such that all the subtended angles

in the assignment are at least θ
It is clear that if we can solve this problem then we

can solve the MAX-MIN problem just by doing a binary
search on the n3 possible values of θ. If we choose a
camera pair, ci from LHS and cj from RHS then there
exists a validity interval I such that for every point p
in the interval the angle subtented by ci and cj at p is
at least θ. This interval is defined by the intersection of
a ball B with the line containing the cameras such that
the boundary of this ball is that circle passing through i
and j, for which the angle subtented by the chord ij at
its center is 2θ, if θ is acute and 2π − 2θ, if θ is obtuse.
So, the decision problem is equivalent to decide whether
there exists an assignment of cameras and targets such
that if target tk is assigned to camera pair (i, j) then it
lies inside the validity interval of (i, j).

3.1 Some Properties of the Intervals

We first introduce some notations on which the rest of
the paper is based. We label the first n cameras from
left to right as a1, a2, . . . an, the last n cameras from
left to right as bn, bn−1, . . . b1 and the n targets from
left to right as t1, t2, . . . tn. We denote the validity
interval corresponding to camera pairs (ai, bj) for angle
θ by Iθ(ai, bj). The words ‘before’ and ‘after’ will
corresponding to ordering from left to right. We can
now state the following lemmas which are easy to prove:

Lemma 2 If Iθ(ai, bj) and Iθ(ak, bl) are two intervals

with i ≤ k and j ≤ l, then Iθ(ai, bj) is nested within

Iθ(ak, bl).

Corollary 2 If Iθ(ai, bj) covers a target t then it is also

covered by Iθ(ak, bl) for all k ≤ i and l ≤ j.

3.2 Polynomial time Algorithm for a Restricted Case

In this section we describe the conditions that if
imposed on the problem instance can bring some
nice structure to the intervals defined by the cameras
which can be exploited to get a greedy strategy
work for the problem. We call this constraint Inter-
val Property which can be stated in the following way:

For every camera ai ∈ LHS, Iθ(ai, bn) should start

before the interval Iθ(ai+1, b1) and for every camera

bj ∈ RHS, the interval Iθ(an, bj) should end after the

interval Iθ(a1, bj+1).

Given an instance of the Parallel-MAX-MIN Prob-
lem, let Θ be the set of all angles θ such that there exist
ai ∈ LHS, bj ∈ RHS and target tp with ∠aitpbj = θ.
We impose the following constraint C in order to make
our algorithm work:
C: For each θ ∈ Θ the following should hold

1. All the targets are to the left of the right end-point

of the interval Iθ(an, bn).
2. Interval Property is satisfied for each angle θ ∈ Θ.

Next, we derive a geometric constraint under which In-
terval Property is satisfied for a given value of θ.

3.2.1 The Height Condition

Consider the defining circles Ci and Ci
′ corresponding

to the intervals Iθ(ai, bn) and Iθ(ai+1, b1). Let these
circles intersect at 2 points, the one which is above the
line of the cameras let it be called X . Let the distance
of this point from the line containing the cameras be
denoted by Hai

. In order to impose the above restric-
tion on the intervals we would like to have the distance
between the parallel lines to be less than Hai

. So, we
can calculate the critical height for each ai and bj and
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the height hc we choose should satisfy the condition
hc < min{ min

ai∈LHS
Hai

, min
bj∈RHS

Hbj
}. The following cal-

culations are done assuming θ < 90 ◦. These can be
analogously done for obtuse and right angle as well.

A D

P
Q

X

R S

B C

aiai+1 bn b1

Hai

Figure 1: The Height Condition

In figure 1, ∠AXC = ∠BXD = θ. Let the distance
between ai and bn is AC = d1, the distance between
ai+1 and b1 is BD = d3 and BC = d2. We use co-
ordinate geometry to find the value of Hai

. Let the

center of Ci be P and that of C
′

i be Q. It is clear
that the radius of Ci is r1 = (d1 + d2)cosecθ/2 and

that of C
′

i is r2 = (d2 + d3)cosecθ/2. If the rela-
tive positions of the points A, B, C, R, S is as shown
in the Figure 1 then the distance between the centres
of the two circles is RS = BC − SC − BR. Now
SC = BC − BS = d2 − (d2 + d3)/2 = (d2 − d3)/2
and BR = d2 − (d1 + d2)/2 = (d2 − d1)/2. Therefore
RS = (d1 + d3)/2. The equation of Ci is x2 + y2 = r2

1

(taking origin of coordinates at P ) and that of C
′

i is
(x− (d1 + d3)/2)2 + (y − (d3 − d1)cotθ/2)2 = r2

2 . If we
solve for the intersection of these circles we get

x2 + y2
− r2

1 = (x−
(d1 + d3)

2
)2 + (y −

(d3 − d1)cotθ

2
)2 − r2

2

r2

1−r2

2 =
(d1 + d2)

2

4
+x(d1+d3)+

(d3 − d1)
2cot2θ

4
+y(d3−d1)cotθ

Let,

Ai(θ) =
(r2

1 − r2

2 − (d1 + d3)
2/4− (d3 − d1)

2cot2θ/4)

(d1 + d3)

Bi(θ) =
(d3 − d1)cotθ

(d3 + d1)

Then we have x = Ai(θ)+Bi(θ)y. Putting this value in
the equation x2 + y2 = r2

1 we get a quadratic equation
in y whose positive root we denote by ypos. Therefore,
Hai

= ypos + (d1 + d2)cotθ/2. So, in order to force the
aforementioned structure on the intervals we need to
select h ≤ hc.
Before going for the algorithm we state the following
lemmas which are quite easy to see and hence we omit
their proofs.

Lemma 3 Given that interval property is satisfied, if

interval Iθ(ai, bj) is nested by Iθ(ak, bl) then k ≤ i and

l ≤ j.

Lemma 4 Given that interval property is satified, if the

left end-point of Iθ(ai, bj) is to the left of left end-point

of Iθ(ak, bl) and right end-point of Iθ(ai, bj) is to the left

of right end-point of Iθ(ak, bl) then i < k and l < j.

The arrangment of the intervals satisfying interval prop-
erty (n = 3) for a particular instance is shown in Figure
2

Iθ(a1, b1)

Iθ(a1, b2)

Iθ(a2, b1)

Iθ(a2, b2)

Iθ(a3, b1)

Iθ(a3, b2)

Iθ(a1, b3)

Iθ(a2, b3)

Iθ(a3, b3)

Figure 2: Arrangement of Intervals satisfying Interval
Property

3.3 Algorithm

Now the question arises, how can this structure help
us in getting a greedy strategy work. We assume a
restriction on the where the cameras are placed which
is as follows. We suggest a greedy strategy that works
in this case. The strategy is as follows:

Consider the targets from left to right. For the ith

target from the left, let I1, I2, . . . Im be the intervals

in which it lies, assign it to the interval among these

which is ending earliest. If the interval is Iθ(ai, bj)
then remove all the intervals with left camera as ai and

right camera as bj.

It can easily be seen that this algorithm can be
implemented in O(n3 log n) time.

Proof of Correctness of Algorithm

Proof. Let the given settings of cameras and targets
have a solution as an assignment and let a valid
assignment be called a real assignment. There can
be many real assignments possible for an instance
of the decesion problem. In this proof we will fix
a real assignment (if there is any) and refer to that
allthrough. A triple (ai, bj, tp) is said to be a valid
pairing, if the target tp lies inside the interval defined
by camera pair ai, bj . Consider the leftmost target
t1, and let I1, I2, . . . Im be the intervals in which it
lies. Also assume, I1 = Iθ(ai, bj) be the interval that
is finishing earliest among these. Suppose, in the real
assignment, t1 be assigned to the interval I2 = (ak, bl).
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By case analysis we show that we can get a solution
from the real solution which has the triple (ai, bj , t1)
in the assignment. So, we can now remove the triple
(ai, bj, t1) from the real assignment and the rest of the
n− 1 targets and 2(n− 1) cameras will have a solution.
The base case (n = 2) can be verified easily. The
following cases need to be handled:

Case 1. j 6= n. If I1 is one of
Iθ(a1, b1), Iθ(a1, b2), . . . , Iθ(a1, bn−1), say Iθ(a1, bj),
j ≤ n − 1 then only intervals that can cover it are
Iθ(a1, b1), Iθ(a1, b2), . . . , Iθ(a1, bj). So, in the real
assignment it must be covered by Iθ(a1, b1) where
k ≤ j. If k = j we are done, else if Iθ(ai1 , bj) covers
some target tp then we can swap these to get new
pairings as (a1, bj, t1), (ai1 , bk, tp) and this will be a
valid assignment because of above conditions.

Case 2. j = n. The following subcases arise:
(a) k ≤ i. Let k < i, then because of the im-
posed constraint on the intervals, Iθ(ak, bl) will
start before Iθ(ai, bj) and since it is ending after
Iθ(ai, bj) it will be nesting the interval Iθ(ai, bj).
Hence, from lemma 3 we have j ≤ l. Now let
in the real assignment we have the following 3
assignments (ak, bl, t1), (ai, bj

′ , tp), (ai
′ , bj , tq). We

interchange the pairings to get 3 new pairings
(ai, bj, t1), (ak, bj

′ , tp), (ai
′ , bl, tq) which are valid as

Iθ(ai, bj′) is nested in Iθ(ak, bj′) and Iθ(ai′ , bj) is nested
in Iθ(ai′ , 1).

(b) k > i. If k > i, then starting point of
Iθ(ak, bl) will be to the right of that of Iθ(ai, bj)
and hence the intervals Iθ(ai, bj) and Iθ(ak, bl) sat-
isfy the conditions of lemma 4, which implies l <
j = n. Now assume that the real assignment
has the triples (ak, bl, t1), (ai, bj

′ , tp), (ai
′ , bj, tq). Now,

the new pairings we would like to propose are
(ai, bj, t1), (ak, bj

′ , tp), (ai
′ , bl, tq). In this case the

only problematic pair is (ai, bj
′ , tp), (ak, bj

′ , tp) because
Iθ(ak, bj′) is nested in Iθ(ai, bj′). If tp lies in Iθ(ak, bj′)
then we are done. If not, because of the constraint on
the position of cameras tp can lie only to the left of

Iθ(ak, bj′). Since j
′

< n = j, Iθ(ai, bj) will be nested

in Iθ(ai, bj′). Also l cannot be greater than j
′

because
if it is the case Iθ(ak, bl) will be nested in Iθ(ak, bj′)
and since t1 is the leftmost camera tp will lie to the
right of it and hence will be covered by Iθ(ak, bl) as
well, implying that it will be covered by Iθ(ai, bj′) as
well which is contrary to our assumption. Therefore,
l < j

′

. Figure 3 shows the relative position of the in-
tervals in this case. Hence in we can use the pairings
(ai, bj, t1), (ak, bl, tp), (ai

′ , bj
′ , tq) to get a valid new so-

lution. �

Therefore we can state the following theorem

Theorem 5 Under the constraint C, the Parallel-

MAX-MIN problem can be solved in O(n3 log2 n) time.

t1
Iθ(ai, bj′)

tp

Iθ(ai, bn)
Iθ(ak, bl)

Iθ(ak, bj′)

Figure 3: Case 3

Lemma 6 If all the targets are placed to the left of the

right end point of the interval Iθ(an, bn) and the instance

has a solution then there exists a valid assignment in

which the leftmost camera is assigned to the leftmost

target.

Proof. In long version of the paper �

Using the above lemma we can prove a result for the
case when targets can be placed arbitrarily on the line.
For the following lemma assume that the given instance
of the decision problem has a valid assignment.

Theorem 7 When the cameras are positioned such that

the interval property is satisfied then there exists a valid

assignment in which the leftmost camera is assigned to

the leftmost target or the rightmost camera is assigned

to the rightmost target.

Proof. In long version of the paper �

4 Conclusion

We study the Parallel-MAX-MIN version of the Focus
Of Attention Problem and give a polynomial time algo-
rithm assuming a constraint on the positioning of the
cameras and the targets.
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On distinct distances among points in general position
and other related problems

Adrian Dumitrescu∗

Abstract

A set of points in the plane is said to be in general
position if no three of them are collinear and no four
of them are cocircular. If a point set determines only
distinct vectors, it is called parallelogram free. We show
that there exist n-element point sets in the plane in
general position, and parallelogram free, that determine
only O(n2/

√
log n) distinct distances. This answers a

question of Erdős, Hickerson and Pach. We then revisit
an old problem of Erdős : given any n points in the
plane (or in d dimensions), how many of them can one
select so that the distances which are determined are
all distinct? — and provide (make explicit) some new
bounds in one and two dimensions.

1 Introduction

In 1946, in his classical paper [7] published in the Amer-
ican Mathematical Monthly, Erdős raised the following
question: What is the minimum number of distinct dis-
tances determined by n points in the plane? Denoting
this number by g(n), he proved that g(n) = Ω(

√
n),

and showed that g(n) = O(n/
√

log n) by estimating
the number of distinct distances in a

√
n ×

√
n piece

of the integer grid. He also went further to conjec-
ture that the upper bound is best possible, in other
words g(n) = Ω(n/

√
log n). The lower bound estimates

have been successively raised by Moser (1952), Chung
(1984), Beck (1983), Clarkson, Edelsbrunner, Guibas,
Sharir and Welzl (1990), Chung, Szemerédi and Trotter
(1992), Székely (1997), Solymosi and C. Tóth (2001),
Tardos (2003), Katz and Tardos (2004), with the cur-
rent best lower bound standing at g(n) ≈ Ω(n0.8641).
This question has lead to many other variants, some of
which we discuss here.

Throughout this paper, we say that a set S of points
in the plane is in general position if no three of them
are collinear and no four of them are on a circle.1 In

∗Department of Computer Science, University of Wisconsin-
Milwaukee, WI 53201-0784, USA. E-mail: ad@cs.uwm.edu. Sup-
ported in part by NSF CAREER grant CCF-0444188.

1It is not uncommon to find this qualification attached to sets
satisfying only one of the two restrictions. Alternatively, one can
use the term strong general position for sets satisfying both re-
strictions.

our bounds, we denote by c possibly different absolute
constants.

Erdős asked in 1985 whether there exist n points in
general position that determine only o(n2) distinct dis-
tances [9]. Erdős, Hickerson and Pach [13] constructed
such point sets with O(nlog 3/ log 2) distinct distances, a
bound that was later improved by Erdős, Füredi, Pach
and Ruzsa [11] to n2c

√
log n (for some constant c); see

also [25]. It is still an open question whether this num-
ber can be linear in n. These constructions use many du-
plicate vectors, which motivates the further restriction
of no parallelogram—equivalently, that no two vectors
determined by the point set are the same. Erdős, Hick-
erson and Pach [13] raised the following question: Does
there exist a set S of n points in the plane in general po-
sition, such that S does not contain all four vertices of
a parallelogram, but g(S), the number of distinct dis-
tances determined by S, is o(n2)? The question also
appears in a paper [10] from 1988, as well as in the re-
cent collection of open problems [5] (Problem 3, Section
5.5, pp. 215). Here we give a positive answer and thus
show that the above (three) conditions are not enough
to force a quadratic number of distinct distances.

For a prime p, and x ∈ Z, let x̂ := x mod p (we
view x̂ as an element of Zp = {0, 1, . . . , p− 1}). An old
construction of Erdős described below (see also [3, pp.
28–29], and [5, pp. 417]) has proved to be instrumental
in answering several different questions in combinatorial
geometry. Let n be a prime and consider the n-element
point set En = {(i, î2) | i = 0, 1, . . . , n − 1}. En is a
subset of Gn = {0, 1, . . . , n − 1} × {0, 1, . . . , n − 1}}.
An old (still unsolved) question asks how many points
can be selected from the n × n grid Gn so that no
three are collinear. Erdős has shown that En has no
three collinear points, so this gives a first large set with
n points; more complicated constructions approach 2n
from below (obviously 2n is an upper bound). The set
En gives also a first partial answer in the old Heilbronn
problem: What is the smallest a(n) such that any set of
n points in the unit square determines a triangle whose
area is at most a(n)? Using the fact that the minimum
nonzero area of a triangle in Gn is 1/2, after suitable
scaling En to the unit square, one gets the estimate
a(n) ≥ 1

2(n−1)2 , i.e., half of the area of a scaled lattice
square; see [3, 5]. A more complicated construction due
to Komlós, Pintz and Szemerédi [20] yields the current
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best lower bound a(n) = Ω( log n
n2 ).

Here we use the Erdős construction yet one more
time, and show that a suitably large subset Sn ⊂ En is
in general position and parallelogram-free (|Sn| = (n−
1)/4). The fact that Sn determines only o(n2) distinct
distances comes out easily from the old Erdős upper
bound of g(n) = O(n/

√
log n). Let v(n) = min g(S),

where the minimum is taken over all n-element point
sets in the plane in general position, and parallelogram
free.

Theorem 1 For every natural number n, v(n) =
O(n2/

√
log n).

In the second part we discuss another old problem
of Erdős on distinct distances [8, 12, 14]: What is the
largest number h(n) so that any set of n points in the
plane (or in d dimensions) has an h(n)-element subset
in which all

(
h(n)

2

)
distances are distinct? Denote this

number by hd(n), and also write h(n) for h2(n).
The problem on the line (d = 1) turns out to be

related to the classical Sidon sequences [28]. Erdős con-
jectured that h1(n) = (1 + o(1))n1/2 [14], and observed
that the upper bound follows from his 1941 result with
Turán [16] on Sidon sequences. By combining various
number theoretical results (some of them quite old and
possibly forgotten), in particular a powerful result of
Komlós et al. [21], one can show:

Theorem 2 Given a set P of n points in the line, one
can select a subset X ⊆ S of size |X| = Ω(n1/2) in
which all pairwise distances are distinct. This bound is
best possible apart from a constant factor. Thus h1(n) =
Θ(n1/2); more precisely: (0.0805+o(1))·n1/2 ≤ h1(n) ≤
(1 + o(1)) · n1/2.

For the planar variant, a
√

n×
√

n section of the in-
teger grid yields h(n) = O(n1/2(log n)−1/4); see also [5].
From the results in [2], it follows that h(n) = Ω(n1/5).
The lower bound has been subsequently raised by Lef-
mann and Thiele [22] to h(n) = Ω(n1/4). By using their
method in combination with recent results of Pach and
Tardos [26] on the maximum number of isosceles trian-
gles determined by a planar point set, a better bound
can be derived. We have included a short outline of the
argument in Section 3. Letting α = 234−68e

110−32e , where
e is the base of the natural logarithm (α < 2.136),
Pach and Tardos proved that the number of isosce-
les triangles determined by a planar set of n points is
O(nα+ε) = O(n2.136), for any ε > 0; see [5, 19]. Put
now β = 1− α

3 > 0.288. The improved lower bound on
h(n) is:

Theorem 3 For any ε > 0, out of any set P of n points
in the plane, one can select a subset X ⊆ S of size |X| =
Ω(nβ−ε) = Ω(n0.288) in which all pairwise distances are
distinct. Thus h(n) = Ω(nβ−ε) = Ω(n0.288).

For d ≥ 3, the lower bound hd(n) = Ω(n1/(3d−2)) is
known, cf. [22, 30]; see also [5].

2 Proof of Theorem 1

Assume first that n is a prime. Let Sn = {(i, î2) | i =
0, 1, . . . , (n − 1)/4}. Recall that a

√
n ×

√
n piece of

the integer lattice determines O(n/
√

log n) distances
(cf. Erdős, this leads to the upper bound g(n) =
O(n/

√
log n)). Therefore Gn determines O(n2/

√
log n)

distinct distances; obviously this upper bound also holds
for any subset of Gn, En or Sn in particular. Clearly
Sn has no three collinear points (as a subset of En).
Moreover, Thiele has shown that Sn has no four points
cocircular [31]. His result was in the context of finding
large subsets of the n × n grid without four cocircular
points in response to a problem raised by Erdős and
Purdy; see [5, pp. 418].

To conclude our result in Theorem 1 it remains to be
shown that Sn determines no parallelogram. Then the
result follows from standard facts about the distribution
of primes [18], e.g., that there is a prime between k and
2k for any integer k ≥ 1.

Lemma 4 Sn determines no parallelogram.

Proof. Assume (for contradiction) that ABCD is a
parallelogram whose vertices are in Sn. Let A = (a, â2),
B = (b, b̂2), C = (c, ĉ2), D = (d, d̂2). We may assume
that 0 ≤ a < b < c < d ≤ (n − 1)/4. Observe that AD
must be a diagonal, henceforth BC is the other diago-
nal. Denote by x(p) and y(p) the x- and y-coordinates
of a point p. Since the midpoints of the diagonals coin-
cide, we have

x(A) + x(D)
2

=
x(B) + x(C)

2
, and

y(A) + y(D)
2

=
y(B) + y(C)

2
.

The first equality yields a + d = b + c, or equivalently
b−a = d− c, and note that b−a is a nonzero invertible
element of Zn (since n is prime). The second equality
yields â2+ d̂2 = b̂2+ ĉ2, or equivalently b̂2− â2 = d̂2− ĉ2.
Taking this equality modulo n we get

(b− a)(b + a) ≡ (d− c)(d + c) (mod n).

After simplifying by b − a, we obtain a + b = c + d,
obviously a contradiction, since 1 ≤ a + b < 2b < 2c <
c + d < (n− 1)/2. �

3 Further connections and related problems

A Sidon sequence of integers 1 ≤ a1 < a2 < · · · < as ≤ n
is one in which the sums of all pairs, ai+aj , for i ≤ j, are

68
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all different [15, 17, 27]. Suppose that we were to find a
large subset A ⊆ {1, 2, . . . , n} in which all distances are
distinct. It is easy to see that this amounts to finding
a large Sidon sequence in {1, 2, . . . , n}: that is, A is a
Sidon sequence if and only if the differences (distances)
between any two elements are distinct. Indeed, if ai <
aj ≤ ak < al, then aj − ai = al − ak if and only if
ai + al = aj + ak (the case of overlapping intervals is
similar).

Denote by s = s(n) the maximum number of elements
in a Sidon sequence with elements not greater than n.
By a packing argument, it follows that s < 2n1/2, see
[15], and this implies the same upper bound on h1(n):
therefore h1(n) = O(n1/2) (for the moment, we do not
insist on the constant). Sharper bounds (with a better
constant) have been obtained by Erdős and Turán [16]
and Lindström [23]: s(n) ≤ n1/2 + n1/4 + 1. From the
other direction, the existence of perfect difference sets
[29] shows that s(n) ≥ (1− ε)n1/2 [12]. The reader can
find more details in [15]. Let S : 1 ≤ a1 < a2 < · · · < an

be any sequence of n integers. By extending the previ-
ous lower bound (in a very broad setting), Komlós et al.
[21] have proved that S always contains a Sidon subse-
quence of size Ω(n1/2). From their very general theo-
rem, the resulting constant factor is quite small, about
2−15, but this has been later raised by Abbott [1] to
about 0.0805 ' 2/25. Therefore, out of a set of n inte-
ger points, one can always find a subset of size Ω(n1/2),
with all distinct distances, and this is best possible.

3.1 All distinct distances on the line: proof of The-
orem 2

It only remains to show that given n points on the line,
one can select a subset of size Ω(n1/2), with all distinct
distances. Let A = {a1 < . . . < an} be a set of n
points on the line. Using simultaneous approximation
[18] (see other applications in [6, 24]), construct a set
of n rational points A′ = {a′1 < . . . < a′n}, and then
a set of integer points A′′ = {a′′1 < . . . < a′′n}, so that
a′′j − a′′i = a′′l − a′′k holds whenever aj − ai = al − ak

holds. For any positive integer m, there exist n rational
points A′ = {a′1 < . . . < a′n} = {r1/m, . . . , rn/m},
where ri,m ∈ N, and∣∣∣ai −

ri

m

∣∣∣ ≤ 1
m1+1/n

, 1 ≤ i ≤ n.

One can also ensure that the order of the points in A′

is r1/m < . . . < rn/m (i.e., a′i = ri/m, for all i). It
can be shown there exists an m large enough such that
the structure of distinct distances is preserved, and in
particular we have g(A′′) = g(A′) = g(A).

Now select a large Sidon subsequence from A′′ (cf.
with the above result of [21], of size Ω(n1/2)), and con-
struct a subset B ⊂ A by including all corresponding
points from A into B. By the properties of A′′, all

pairwise distances in B are distinct, as desired. Taking
now into account the best constants available, one has
(0.0805 + o(1)) · n1/2 ≤ h1(n) ≤ (1 + o(1)) · n1/2.

3.2 All distinct distances in the plane: proof of The-
orem 3

The method of proof is due to Lefmann and Thiele [22];
see also [25]. Denote by I(P ) the number of isosceles
triangles spanned by triples of P , where each equilateral
triangle is counted three times (this is the same as the
number of weighted incidences between perpendicular
bisectors determined by P and points of P , where the
weight of a bisector is the number of pairs of points for
which it is common).

Lemma 5 (Lefmann and Thiele [22]). Let P be a set
of n points in the plane, which determine t distinct dis-
tances d1, d2, . . . , dt, where di occurs with multiplicity
mi for i = 1, 2, . . . , t. Then

t∑
i=1

m2
i ≤

n

2

(
I(P ) +

(
n

2

))
.

Using the upper bound I(P ) = O(nα+ε) = O(n2.136)
from [26], one obtains from Lemma 5:

t∑
i=1

m2
i = O(n1+α+ε) = O(n3.136). (1)

Let P = {p1, p2, . . . , pn} be a set of n points
in the plane, which determine t distinct distances
d1, d2, . . . , dt, where di occurs with multiplicity mi for
i = 1, 2, . . . , t. Now define a hypergraphH = (P, E3∪E4)
as follows:

Let {pi, pj , pk} ∈ E3 ⊆ [P ]3 if and only if |pi − pj | =
|pi − pk|, that is, ∆pipjpk is an isosceles triangle. Let
{pi, pj , pk, pl} ∈ E4 ⊆ [P ]4 if and only if |pi − pj | =
|pk−pl|, that is, the two segments have the same length.
Let ε > 0 be arbitrary small (but fixed). Clearly, |E3| ≤
c3 · nα+ε, and |E4| ≤

∑t
i=1

(
mi

2

)
≤ c4 · n1+α+ε, for some

constants c3, c4 > 0.
To conclude the proof, one makes an experiment con-

sisting of two steps: random sampling followed by the
deletion method. In the first step, a random subset
X ⊂ P is chosen by selecting points independently
with probability p = c · n−α/3−ε/3, for some constant
c > 0 to be specified later. In the second step, one
point from each “surviving” edge in E ′3 = [X]3 ∩ E3 and
E ′4 = [X]4 ∩ E4 is deleted. It results in an independent
set Y of H with average size

E[|Y |] ≥ (c− c4c4)n1−α/3−ε/3 − c3c3,

see [22] for details. By choosing c sufficiently small, and
after relabeling ε, one gets E[|Y |] = Ω(nβ−ε), where
β = 1− α

3 , as claimed.
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Monochromatic simplices of any volume

Adrian Dumitrescu∗ Minghui Jiang†

Abstract

We give a very short proof of the following result of
Graham from 1980: For any finite coloring of Rd, d ≥ 2,
and for any α > 0, there is a monochromatic (d + 1)-
tuple that spans a simplex of volume α. Our proof also
yields new estimates on the number A = A(r) defined
as the minimum positive value A such that, in any r-
coloring of the grid points Z2 of the plane, there is a
monochromatic triangle of area exactly A.

1 Introduction

The classical theorem of Van der Waerden states that if
the set of integers Z is partitioned into two classes then
at least one of the classes must contain an arbitrarily
long arithmetic progression [20]. The result holds for
any fixed number of classes [17]. Let W (k, r) denote the
Van der Waerden numbers: W = W (k, r) is the least
integer such that for any r-coloring of [1,W ], there is a
monochromatic arithmetic progression of length k. The
following generalization of Van der Waerden’s theorem
to two dimensions is given by Gallai’s theorem [17]: If
the grid points Z2 of the plane are finitely colored, then
for any t ∈ N, there exist x0, y0, h ∈ Z such that the t2

points {(x0 + ih, y0 + jh) | 0 ≤ i, j ≤ t − 1} are of the
same color.

Many extensions of these Ramsey type problems to
the Euclidean space have been investigated in a series of
papers by Erdős et al. [9, 10, 11] in the early 1970s, and
by Graham [12, 13, 14]. See also Ch. 6.3 in the problem
collection by Braß, Moser and Pach [4], and the recent
survey articles by Braß and Pach [3] and by Graham
[15, 16]. For a related coloring problem on the integer
grid, see [6].

In 1980, answering a question of Gurevich, Graham
[12] proved that for any finite coloring of the plane, and
for any α > 0, there is a monochromatic triangle of area
α. In their survey article, Braß and Pach [3] observed
that for any 2-coloring of the plane there is a monochro-
matic triple that spans a triangle of unit area, and asked

∗Department of Computer Science, University of Wisconsin–
Milwaukee, Milwaukee, WI 53201-0784, USA. Email:
ad@cs.uwm.edu. Supported in part by NSF CAREER grant CCF-
0444188.

†Department of Computer Science, Utah State University, Lo-
gan, UT 84322-4205, USA. Email: mjiang@cc.usu.edu. Sup-
ported in part by NSF grant DBI-0743670.

whether this holds for any finite coloring, apparently un-
aware of Graham’s solution [12]. This also brought the
problem to our attention. Graham’s proof was quite in-
volved, and was later simplified by Adhikari [1] using
the same main idea. Adhikari and Rath [2] have subse-
quently obtained a similar result for trapezoids. See also
[8] for discussions on this and other related problems.
Here we present a very short proof of Graham’s result
[12] in the following theorem, which gives new insight
into the problem and also has quantitative implications
(see Theorem 4).

Theorem 1 (Graham [12]). For any finite coloring of
the plane, and for any α > 0, there is a monochromatic
triangle of area α.

As a corollary of the planar result, one obtains a sim-
ilar result concerning simplices in d-space for all d ≥ 2.
This was pointed out by Graham [12] without giving
details. For completeness, we include our short proof of
the following theorem.

Theorem 2 (Graham [12]). Let d ≥ 2. For any finite
coloring of Rd, and for any α > 0, there is a monochro-
matic (d + 1)-tuple that spans a simplex of volume α.

Using a general “product” theorem for Ramsey sets
[12, Theorem 3], Graham extended Theorem 2 to the
following much stronger result that accommodates all
values of α in the same color class. Theorem 3 below
can also be obtained using the same “product” theorem
in conjunction with our short proof of Theorem 2.

Theorem 3 (Graham [12]). Let d ≥ 2. For any finite
coloring of Rd, some color class has the property that,
for any α > 0, it contains a monochromatic (d+1)-tuple
that spans a simplex of volume α.

Let r ≥ 2. Graham [12] defined the number T = T (r)
as the minimum value T > 0 such that, in any r-coloring
of the grid points Z2 of the plane, there is a monochro-
matic right triangle of area exactly T . We now define
A(r) for arbitrary triangles. Let A = A(r) be the mini-
mum value A > 0 such that, in any r-coloring of the grid
points Z2 of the plane, there is a monochromatic grid
triangle of area exactly A. Graham’s proof of Theorem
1 [12] shows that T (r) exists, which obviously implies
the existence of A(r). We clearly have A(r) ≤ T (r).
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Graham [12] obtained an upper bound T (r) ≤ T̂ (r) =
S1 · S2 · · ·Sr, where

S1 = 1, Si+1 = (Si + 1)! ·W (2(Si + 1)! + 1, i + 1)! .

In Theorem 4 below, we derive an upper bound A(r) ≤
Â(r), and show that Â(r) � T̂ (r). While Graham [12]
finds a right monochromatic grid triangle of area ex-
actly T̂ (r), we find an arbitrary monochromatic grid
triangle of area exactly Â(r). However, as far as we are
concerned in answering the original question of Gure-
vich, or the question of Braß and Pach [3], this aspect
is irrelevant.

For the lower bound, we clearly have A(r) ≥ 1/2
because the triangles are spanned by grid points. Let
l.c.m. denote the least common multiple of a set of num-
bers. Graham [12] notes the following lower bound for
T (r) based on cyclic colorings of Z2 (without giving de-
tails):

T (r) ≥ 1
2
× l.c.m. (2, 3, . . . , r) = e(1+o(1))r.

We will show that the same lower bound holds for A(r)
as well.

Theorem 4 Let A = A(r) be the minimum value A > 0
such that, in any r-coloring of the grid points Z2 of the
plane, there is a monochromatic triangle of area exactly
A. Let

H =
⌊

W (r! + 1, 2r − 1)− 1
r!

⌋
, and Â(r) = H! · r!.

Then 1
2 × l.c.m. (2, 3, . . . , r) ≤ A(r) ≤ Â(r), where

Â(r) � T̂ (r) for sufficiently large r.

It is worth noting the connection between the prob-
lems we discussed here and the following old and proba-
bly difficult problem of Erdős [7, 8]: Does there exist an
absolute constant B such that any measurable plane set
E of area B contains the vertices of a unit-area trian-
gle? The answer is known only in certain special cases:
if E has infinite area, or even if E has positive area but
is unbounded, then E has the desired property; see [5,
Problem G13, pp. 182] and [19]. It follows that if in a fi-
nite coloring of the plane each color class is measurable,
then the largest color class, say E, has infinite area, and
hence there is a monochromatic triple that spans a tri-
angle of unit area. But of course, this case is already
covered by Theorem 1.

2 Proof of Theorem 1

Let R = {1, 2, . . . , r} be the set of colors. Pick a Carte-
sian coordinate system (x, y). Consider the finite col-
oring of the lines induced by the coloring of the points:

each line is colored (labeled) by the subset of colors
R′ ⊆ R used in coloring its points. Note that this is a
(2r − 1)-coloring of the lines.

Set N = W (r!+1, 2r−1). By Van der Waerden’s theo-
rem, any (2r−1)-coloring of the N horizontal lines y = i,
i = 0, 1, . . . , N−1, contains a monochromatic arithmetic
progression of length r!+ 1: y0, y0 + k, . . . , y0 + r!k. Let
L = {`i | 0 ≤ i ≤ r!}, where `i : y = y0 + ik for some
integers y0 ≥ 0, k ≥ 1. Each of these lines is colored by
the same set of colors, say R′ ⊆ R.

Set x = 2α/r!k. Consider the r + 1 points of `0 with
x-coordinates 0, x, . . . , rx. By the pigeon-hole principle,
two of these points, say a and b, share the same color,
and their distance is jx for some j ∈ R. Pick any point
c of the same color on the line `r!/j (note that r!/j is
a valid integer index, and this is possible by construc-
tion!). The three points a, b, c span a monochromatic
triangle ∆abc of area

1
2
· jx · r!k

j
=

1
2
· 2jα

r!k
· r!k

j
= α,

as required.

3 Proof of Theorem 2

We proceed by induction on d. The basis d = 2 is
verified in Theorem 1. Let now d ≥ 3. Assume that the
statement holds for dimension d−1, and we prove it for
dimension d.

Consider the finite coloring of the hyperplanes in-
duced by the coloring of the points by a set R of r
colors: each hyperplane is colored (labeled) by the sub-
set of colors R′ ⊆ R used in coloring its points. We
thus get a (2r − 1)-coloring of the hyperplanes. Pick a
Cartesian coordinate system (x1, . . . , xd), and consider
the set of parallel hyperplanes xd = i, i ∈ N. Let π1 and
π2 be two parallel hyperplanes colored by the same set
of colors, say R′ ⊆ R. Let h be the distance between π1

and π2. By induction, π1 has a monochromatic d-tuple
that spans a simplex of volume αd/h. Pick a point of
the same color in π2, and note that together they form
a (d + 1)-tuple that spans a simplex of volume

1
d
· αd

h
· h = α,

as required.

4 Proof of Theorem 4

We note that our short proof of Theorem 1 does not
imply the existence of A(r), since the triangle found
there is not necessarily a grid triangle. We proceed as
in the proof of Theorem 1, but with different settings
for the parameters. Set α = Â(r). We will show that
there is a grid triangle of area exactly α.
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Let R = {1, 2, . . . , r} be the set of colors. Pick a
Cartesian coordinate system (x, y). Consider the finite
coloring of the lines induced by the coloring of the grid
points on the lines: each line is colored (labeled) by the
subset of colors R′ ⊆ R used in coloring its grid points.
Note that this is a (2r − 1)-coloring of the lines.

Set N = W (r! + 1, 2r − 1). By Van der Waer-
den’s theorem, any (2r − 1)-coloring of the N horizon-
tal grid lines y = i, i = 0, 1, . . . , N − 1, contains a
monochromatic arithmetic progression of length r! + 1:
y0, y0 + k, . . . , y0 + r!k. Let L = {`i | 0 ≤ i ≤ r!}, where
`i : y = y0 + ik for some integers y0 ≥ 0, k ≥ 1. Each
of these grid lines is colored by the same set of colors,
say R′ ⊆ R. The common difference of this arithmetic
progression is

k ≤
⌊

W (r! + 1, 2r − 1)− 1
r!

⌋
= H.

Set x = 2α/r!k. Since α = Â(r) = H! · r!, we have
x = 2H!/k ∈ N. Consider the r + 1 grid points on
`0 with x-coordinates 0, x, . . . , rx. By the pigeon-hole
principle, two of these points, say a and b, share the
same color, and their distance is jx for some j ∈ R. Pick
any grid point c of the same color on the line `r!/j (note
that r!/j is a valid integer index, and this is possible
by construction!). The three grid points a, b, c span a
monochromatic triangle ∆abc of area

1
2
· jx · r!k

j
=

1
2
· 2jα

r!k
· r!k

j
= α,

as required. This completes the proof of the existence
of A(r) and the upper bound A(r) ≤ Â(r).

We next show the lower bound for A(r). Consider
(independently) the following r − 1 colorings λj , j =
2, . . . , r. The coloring λj colors grid point (x, y) with
color (y mod j). Observe that the area of a triangle
with vertices (xi, yi), i = 1, 2, 3, is

|x1y2 − x2y1 + x2y3 − x3y2 + x3y1 − x1y3|
2

.

Let ∆ be a monochromatic grid triangle of area A(r)
in this coloring. By symmetry, there is a congru-
ent triangle ∆0 of color 0, whose y-coordinates satisfy
y1 ≡ y2 ≡ y3 ≡ 0 (mod j). Hence 2A(r) is a nonzero
multiple of j. By repeating this argument for each j,
we get that 2A(r) is a nonzero multiple of all numbers
2, . . . , r, hence also of l.c.m. (2, 3, . . . , r). This completes
the proof of the lower bound.

We now prove that Â(r) � T̂ (r). Although our esti-
mates Â(r) also depend on the Van der Waerden num-
bers W (k, r), the dependence shows a much more mod-
est growth rate for Â(r) than for T̂ (r). For instance,
since W (3, 3) = 27, we have Â(2) ≤ 13! ·2! ≈ 1010, while
T̂ (2) ≤ 2W (5, 2)! = 2 · 178! ≈ 10325. We have only very

imprecise estimates on Van der Waerden numbers avail-
able. The current best upper bound, due to Gowers [18],
gives

W (k, r) ≤ 22f(k,r)
, where f(k, r) = r22k+9

.

In particular,

W (7, 7) ≤ 2272
216

, and Â(3) =
⌊

W (7, 7)− 1
6

⌋
! · 6 .

On the other hand, Graham’s estimate

T̂ (3) = 2 · 178!(2 · 178! + 1) ·W (2 · (2 · 178! + 1)! + 1, 3)!

appears to be much larger.
The ratio between the two estimates amplifies even

more for larger values of r. Let now r ≥ 4. We have

Â(r) = H! · r! =
⌊

W (r! + 1, 2r − 1)− 1
r!

⌋
! · r!

≤ W (r! + 1, 2r − 1)! .

Write log(i) x for the ith iterated binary logarithm of x.
Using again very rough approximations such as

r! + 10 ≤ 22r−1
and 2222

r−1

· r ≤ 2222
r

,

we obtain

log(2) Â(r) ≤ W (r! + 1, 2r − 1),

log(2) W (r! + 1, 2r − 1) ≤ f(r! + 1, 2r − 1),

log(1) f(r! + 1, 2r − 1) ≤ 22r!+10
log(2r − 1) ≤ 2222

r

,

log(4) 2222
r

= r.

It follows that
log(9) Â(r) ≤ r. (1)

On the other hand, even if we ignore the predominant
factor W (2(Si +1)!+ 1, i+1)! in the expression of Si+1

when estimating T̂ (r), the inequality Si+1 ≥ (Si +1)! ≥
2Si still implies that

T̂ (r) ≥ 222·
··
2

, a tower of r 2s. (2)

By comparing the two inequalities (1) and (2), we
conclude that Â(r) ≤ T̂ (r) for r ≥ 12, and that Â(r) �
T̂ (r) for sufficiently large r. This gives a partial answer
to Graham’s question1 raised in the conclusion of his
paper [12], and completes the proof of Theorem 4.

Finally, observe that we can replace H! and
r! with the smaller numbers l.c.m. (2, 3, . . . ,H) and
l.c.m. (2, 3, . . . , r), respectively, and thereby obtain:

1The proof by Adhikari [1] gives an alternative upper bound

T (r) ≤ cT ′(r). The reader can check that the same tower of 2s

expression in (2) is also a lower bound on his estimate cT ′(r) for
r ≥ 2.
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Corollary 5 Let

H ′ =
⌊

W (l.c.m. (2, 3, . . . , r) + 1, 2r − 1)− 1
l.c.m. (2, 3, . . . , r)

⌋
.

Then

A(r) ≥ 1
2
× l.c.m. (2, 3, . . . , r) = e(1+o(1))r, and

A(r) ≤ l.c.m. (2, 3, . . . ,H ′)× l.c.m. (2, 3, . . . , r).

It is an easy exercise to show that the above lower
bound is tight for r = 2, that is, A(2) = 1. Consider
two cases:

1. If the 2-coloring of Z2 follows a chess-board pat-
tern, say point (x, y) is colored (x+y) mod 2, then
clearly there is a monochromatic triangle of area 1,
for example the triangle with vertices (0, 0), (1, 1),
and (0, 2).

2. Otherwise, there are two adjacent points of the
same color, say (0, 0) and (1, 0) of color 0. Sup-
pose there is no monochromatic triangle of area 1.
Then (0, 2) and (2, 2) would have color 1. Then
(0, 1) and (2, 1) would have color 0. Then the tri-
angle with vertices (0, 0), (0, 1), and (2, 1) would
have color 0 and area 1, a contradiction.
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[7] P. Erdős: Set-theoretic, measure-theoretic, combi-
natorial, and number-theoretic problems concern-
ing point sets in Euclidean space, Real Anal. Ex-
change, 4(2) (1978/79), 113–138.
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CCCG 2008, Montréal, Québec, August 13–15, 2008

Empty Monochromatic Triangles∗

Oswin Aichholzer† Ruy Fabila-Monroy‡ David Flores-Peñaloza§ Thomas Hackl¶ Clemens Huemer‖

Jorge Urrutia∗∗

Abstract

We consider a variation of a problem stated by Erdös
and Guy in 1973 about the number of convex k-gons
determined by any set S of n points in the plane. In
our setting the points of S are colored and we say that
a spanned polygon is monochromatic if all its points are
colored with the same color.

As a main result we show that any bi-colored set
of n points in R2 in general position determines a
super-linear number of empty monochromatic triangles,
namely Ω(n5/4).

1 Introduction

Erdös and Guy [6] asked the following question. “What
is the least number of convex k-gons determined by any
set of n points1 in the plane?” The trivial solution for
the case k = 3 is

(

n
3

)

. In addition, if we require the tri-
angles to be empty then Katchalski and Meir [8] showed
that for all n ≥ 3 a lower bound is given by

(

n−1
2

)

and that there exists a constant c > 0 such that cn2

is an upper bound. Around the same time Bárány and
Füredi [1] showed that any set of n points has at least
n2 − O(n log n) empty triangles and they also gave an
upper bound of 2n2 if n is a power of 2.

Valtr [12] described a configuration of n points re-
lated to Horton sets [7] with fewer than 1.8n2 empty
triangles and also provided upper bounds on the num-
ber of empty k-gons, e.g. 2.42n2 empty quadrilater-
als. Later Dumitrescu [5] improved the upper bound
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1Throughout, all considered point sets are in general position,
that is, they do not contain three collinear points.

for triangles to ≈ 1.68n2, which then consequently was
further improved by Bárány and Valtr [2] to ≈ 1.62n2,
the currently best bound. It is still unknown whether
the constant could be smaller than 1, that is, whether
there exists a family of n-element sets with fewer than
n2 empty triangles.

We consider a related problem, where the points of
the given set S are colored. A polygon spanned by
points in S is called monochromatic if all its points are
colored with the same color. In contrast to the above
described race for the best constant for the uncolored
case, we are interested in the asymptotic behavior of
the number of empty monochromatic triangles for bi-
colored point sets.

A result in this direction was obtained by Devillers
et al. [4]. They proved that any bi-colored point set
in the plane exhibits at least ⌈n

4 ⌉ − 2 interior disjoint
empty monochromatic triangles. In a generalization Ur-
rutia [11] showed that in any 4-colored point set in R3

there is at least a linear number of empty monochro-
matic tetrahedra.

One might be also interested in the minimum num-
ber of colors so that we can color any given set S of
n points in a way such that S does not determine an
empty monochromatic triangle (or in general an empty
monochromatic convex k-gon). In [4] (Theorem 3.3)
this question has been settled by showing that already
for three colors there are sets not spanning any empty
monochromatic triangle.

The remaining question is to determine the asymp-
totic behavior of the number of empty monochromatic
triangles for bi-colored sets. We show that any bi-
colored set of n points in R2 in general position de-
termines Ω(n5/4) empty monochromatic triangles. To
the best of our knowledge no non-trivial bounds have
been known before.

2 Lower Bound Construction

We start with a technical lemma which shows that for
point sets with a triangular convex hull there exists a
triangulation such that a sufficient fraction of its trian-
gles are incident to vertices of the convex hull.

Lemma 1 Let S be a set of n points in general position
in the plane with 3 extreme points, that is, with a trian-
gular convex hull and m = n− 3 interior points. Then
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S can be triangulated such that at least m+
√

m+1 tri-
angles have (at least) as one of their vertices an extreme
point of S.

Proof. Let ∆ be the convex hull of S, E(∆) the edges
of ∆, and M = S \ ∆ = {q1, ..., qm} the interior points
of S, |M | = m = n− 3.

We first define a partial order ≤e on the elements of
M . Two points p1, p2 ∈ M are comparable with respect
to an edge e ∈ E(∆) if the open triangle formed by e

and p1 is contained in the closed triangle formed by e

and p2 (p1 ≤e p2) or vice versa (p2 ≤e p1), see Figure 1
for an example.

e1

e3

e2

Figure 1: Two points are comparable w.r.t. e1 and e3,
but incomparable w.r.t. e2.

Observe that two fixed points p1, p2 ∈ M are com-
parable w.r.t. exactly 2 out of 3 edges of ∆. This can
be seen by considering the supporting line of the edge
p1, p2, see Figure 1. Two points are comparable w.r.t.
an edge e of ∆ if and only if this supporting line inter-
sects e. This implies that if two points are not compara-
ble w.r.t. e then they are comparable w.r.t. both other
edges.

A chain is an ordered set of (pairwise) comparable
points of M and an anti-chain is a set of pairwise incom-
parable points of M . By Dilworth’s Theorem [3] there
exists a chain or an anti-chain in M w.r.t. a given edge e

of ∆ of size
√

m. Because an anti-chain for e is a chain
for the other two edges of ∆, we may assume w.l.o.g
that there exists a chain qi1 ≤e · · · ≤e qi√m

w.r.t. e.
We obtain a triangulation of ∆ ∪ {qi1 , . . . , qi√m

} by

joining each qij , 1 ≤ j <
√

m, to qij+1
and to the end-

points of e, and qi√m
to the vertices of ∆, see Figure 2,

left. There are 2
√

m + 1 triangles in this triangulation
and all of them have at least one vertex on the convex
hull. We now extend the triangulation to cover the re-
maining points. For each point qi not in the chain there
is precisely one end-point p of e visible to qi and we add
the edge joining qi and p.

We have, so far, a collection of pairwise non-crossing
edges, and we complete this to a triangulation of ∆ ∪
{q1, . . . qm}, see Figure 2, right. There are 2

√
m + m−

√
m + 1 = m +

√
m + 1 triangles in this triangulation

with at least one of its vertices on the convex hull. �

We now generalize the above result to sets with larger
convex hulls. Let CH(S) denote the set of vertices of
the convex hull of S and |CH(S)| its cardinality, that
is, the number of extreme points of S.

Lemma 2 (Order Lemma) Let S be a set of n points in
general position in the plane with h = |CH(S)| extreme
points. Then S can be triangulated such that at least
n +

√
n− h− 2 triangles have (at least) as one of their

vertices an extreme point of S.

Proof. Consider an arbitrary triangulation of the h

convex hull points of S (ignoring inner points). Let
τ1, . . . , τh−2 be the obtained triangles and let si be the
number of points of S interior to τi. By Lemma 1
each triangle τi can be triangulated such that at least
si +

√
si + 1 triangles have one of its vertices on the

convex hull of τi and therefore on the convex hull of S.
Taking the sum over all τi we have:

∑h−2
i=1 (si+

√
si+1) =

∑h−2
i=1 si +

∑h−2
i=1

√
si +

∑h−2
i=1 1 = (n−h)+

∑h−2
i=1

√
si +

(h− 2) ≥ n +

√

∑h−2
i=1 si − 2 = n +

√
n− h− 2. �

For the next result we consider bi-colored sets. We
will show that if the cardinality of the two color classes
differs significantly then this implies the existence of a
large number of empty monochromatic triangles.

Lemma 3 (Discrepancy Lemma) Let S be a set of n

points in general position in the plane, partitioned in
a red set R and a blue set B with |R| = |B| + α,

α ≥ 2. Then S determines at least (α−2)
6 (n + α) empty

monochromatic triangles.

Proof. Consider a red point r ∈ R and the star con-
necting r to all vertices R \ r. Completing this star
to a triangulation of R gives at least |R| − 2 triangles
having r as a vertex. At least α − 2 of these triangles
are empty of points from B, as |B| = |R| − α. Repeat-
ing this process for all points in R we obtain at least
(α−2)

3 |R| = (α−2)
3

n+α
2 = (α−2)

6 (n + α) empty red trian-
gles, since we over-count a triangle at most 3 times. �

Note that for the monochromatic case the Discrep-
ancy Lemma implies the Ω(n2) bound on the number of
empty triangles given in [8], although the constants are
slightly worse.

We are now ready to prove our main result.

Theorem 4 Any bi-colored set of n points in the
plane in general position determines Ω(n5/4) empty
monochromatic triangles.
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Figure 2: A triangulation for a chain and its extended triangulation

Proof. The general idea behind the proof is to itera-
tively peel a monochromatic convex layer of the point
set. For each layer we use the Order Lemma to obtain
roughly

√
n empty monochromatic triangles. If at any

moment the difference of the cardinality of the two color
classes is too large we utilize the Discrepancy Lemma
and terminate the process. Otherwise we stop after at
most 1

3n3/4 steps.
Let S1 be the given bi-colored set of n points, with

R1 the set of red and B1 the set of blue points. Let
ñ = n

6 . For each iteration step we construct smaller
sets Si+1 ⊂ Si, Ri+1 ⊆ Ri, and Bi+1 ⊆ Bi, respectively,
with Si+1 = Ri+1 ∪Bi+1. As an invariant we will have
that in any step |Si| ≥ 2ñ holds. The iteration stops
either if at some step the discrepancy between the two
sets is larger than ñ1/4 or after at most 1

3n3/4 steps.
Consider the i-th step of the iteration and w.l.o.g. let

|Ri| ≥ |Bi|. There are two possible cases.

(a) If |Ri| − |Bi| ≥ ñ1/4 we apply the Discrepancy

Lemma and get at least (ñ1/4−2)
6 (2 ∗ ñ + ñ1/4) =

Ω(n5/4) empty monochromatic triangles.

(b) Otherwise build the convex hull of the red points
and let B′

i ⊆ Bi be the blue points outside of
this convex hull. We denote by ri = |Ri| and
bi = |Bi \B′

i|. We have ri ≥ ñ by our invariant as-
sumption, ri ≥ bi, and ri ≤ bi + ñ1/4, as otherwise
we apply the Discrepancy Lemma to Ri ∪ Bi \ B′

i

and terminate the iteration with Ω(n5/4) empty
monochromatic triangles as above. Note that the
latter inequality implies that |B′

i| < ñ1/4.

We apply the Order Lemma to Ri and get at least
ri +

√

ri − |CH(Ri)| − 2 monochromatic (red) tri-
angles which are by construction a subset of a tri-
angulation of Ri incident to CH(Ri). At most
bi of these triangles may contain a blue point, so
we get at least ri − bi +

√

ri − |CH(Ri)| − 2 ≥
√

ri − |CH(Ri)| − 2 empty monochromatic trian-
gles.

Now we show that |CH(Ri)| < 2ñ1/4. Assume to
the contrary that |CH(Ri)| ≥ 2ñ1/4 and consider

the set (Ri \ CH(Ri)) ∪ (Bi \ B′
i). This set has at

most ri − 2ñ1/4 red points and bi ≥ ri − ñ1/4 blue
points, so the difference is at least ñ1/4 and as above
we apply the Discrepancy Lemma and terminate.

Thus, if we don’t terminate, we get at least√
ñ− 2ñ1/4 − 2 ≥

√
ñ

2 empty monochromatic tri-
angles in step i. Note that the last inequality holds
for sufficiently large ñ.

For the next iteration step let Ri+1 = Ri \CH(Ri),
Bi+1 = Bi \B′

i, and Si+1 = Ri+1∪Bi+1. Note that
all the empty monochromatic triangles we have
constructed in step i had at least one vertex in
CH(Ri), that is, we will not use these vertices for
the next iterations, and therefore we do not over-
count.

The process ends either by applying the Discrepancy
Lemma or after 1

3n3/4 steps. As in each step we obtain

at least
√

ñ
2 empty monochromatic triangles, we get in

both cases a total of Ω(n5/4) empty monochromatic tri-
angles.

It remains to show that the invariant |Si| ≥ 2ñ holds.
In step i we remove |B′

i| + |CH(Ri)| < ñ1/4 + 2ñ1/4 =
3ñ1/4 points. Thus after 1

3n3/4 steps we have at least

n− 1
3n3/4 · 3ñ1/4 ≥ 2ñ points left. �

Note that the constants in the above proof could be
improved, but it is easy to see that the asymptotic be-
havior is tight within this approach.

3 Conclusions and Open Problems

We have not been able to construct a point set with
o(n2) empty monochromatic triangles. Usually Horton
sets are a good candidate to provide minimal examples
with respect to determining empty convex polygons.
But it turns out that every two-coloring of a Horton
set has Ω(n2) empty monochromatic triangles. A brief
sketch of that fact looks as follows. Take any bi-coloring
of the Horton set and note that the upper and lower
part must have a linear number of red and blue points,
as otherwise by the Discrepancy Lemma there would be
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a quadratic number of empty monochromatic triangles.
Now take any triangle of three consecutive points in the
upper part which form a cap. Any edge of this trian-
gle, where at least one is monochromatic, say red, and
any point from the lower part spans an empty triangle.
Thus, together with the Θ(n) red points from below,
it forms a linear number of empty red triangles. Since
there is a linear number of such caps we get a quadratic
number of empty monochromatic triangles for the Hor-
ton set.

Other interesting sets with O(n2) empty triangles,
which are not based on Horton sets, can be found in
the constructions of Katchalski and Meir [8].

Considering results in [2] and [10] one can see that
in the uncolored case and for sufficiently large n there
is always a quadratic number of empty triangles and
empty convex quadrilaterals, there is at least a linear
number of pentagons but the correct bound seems to
be quadratic. The status for convex empty hexagons
was a long-standing open problem and it has recently
been shown that at least one (and thus a linear number)
exists, but the best upper bound is again quadratic.
Finally no empty convex 7-gons may exist. So it seems
that either none, or a quadratic number of empty k-
gons exists, and we believe that somehow this translates
to colored point sets. We therefore state the following
conjecture.

Conjecture 1 Any bi-colored set of n points in R2

in general position determines a quadratic number of
empty monochromatic triangles.

In fact we did not obtain a single family of sets where
the asymptotics of the number of empty triangles and
empty monochromatic triangles differ. What we have
been able to construct are sets which have 5 times fewer
empty monochromatic triangles than empty triangles.
The idea behind the construction is to start with a set
S of n points with t(S) empty triangles. W.l.o.g. S has
no two points on a horizontal line. We then add a copy
of S which is shifted horizontally to the right by some
sufficiently small ε and color the points of S red and
their duplicates blue. For each ε-near pair we get 2n−2
empty bi-chromatic triangles. For each empty triangle
in S we get 3 new bi-chromatic triangles (not using an
ε-near pair of points), but only one empty monochro-
matic triangle. Thus the ratio of empty triangles to

monochromatic ones is 4+ 2n2−2n
t(S) . Taking the sets con-

structed by Bárány and Valtr [2] with t(S) = 1.62n2

empty triangles gives a factor of ≈ 5.23.

Another interesting question is to consider empty
monochromatic convex k-gons for k > 3. Devillers et
al. [4] (Theorem 3.4) showed that for k ≥ 5 and any
n there are bi-colored sets where no empty monochro-
matic convex k-gon exists. So the remaining case are

empty monochromatic convex quadrilaterals. For ex-
ample in [4] they showed that for n ≥ 64 any bi-
colored Horton set contains empty monochromatic con-
vex quadrilaterals. This leads to Conjecture 3.1 in [4]
which states that for sufficiently large n any bi-colored
set contains at least one monochromatic convex quadri-
lateral.

We recently learned that based on our approach the
lower bound on the number of empty monochromatic
triangles can be slightly improved [9].

Let us finally mention that we have been able to
prove an analogous lower bound on the number of empty
monochromatic simplices in Rd. We leave the details of
this extension for the full version of this paper.

4 Acknowledgment

We would like to thank Wolfgang Aigner, Sergio Ca-
bello, Bernhard Kornberger and Birgit Vogtenhuber for
helpful discussions.

References
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Draining a Polygon
–or–

Rolling a Ball out of a Polygon

Greg Aloupis∗ Jean Cardinal∗ Sébastien Collette†∗ Ferran Hurtado‡ Stefan Langerman§∗

Joseph O’Rourke¶

Abstract

We introduce the problem of draining water (or balls repre-

senting water drops) out of a punctured polygon (or a poly-

hedron) by rotating the shape. For 2D polygons, we obtain

combinatorial bounds on the number of holes needed, both

for arbitrary polygons and for special classes of polygons.

We detail an O(n2 log n) algorithm that finds the minimum

number of holes needed for a given polygon, and argue that

the complexity remains polynomial for polyhedra in 3D. We

make a start at characterizing the 1-drainable shapes, those

that only need one hole.

1 Introduction

Imagine a closed polyhedral container P partially filled
with water. How many surface point-holes are needed
to entirely drain it under the action of gentle rotations
of P? It may seem that one hole suffices, but we will
show that in fact sometimes Ω(n) holes are needed for
a polyhedron of n vertices. Our focus is on variants of
this problem in 2D, with a brief foray in Sec. 5 into 3D.
We address the relationship between our problem and
injection-filling of polyhedral molds [BvKT98] in Sec. 4.

A second physical model aids the intuition. Let P be
a 2D polygon containing a single small ball. Again the
question is: How many holes are needed to ensure that
the ball, regardless of its initial placement, will escape
to the exterior under gentle rotation of P? Here the ball
is akin to a single drop of water. We will favor the ball
analogy, without forgetting the water analogy.

Models. We consider two models, the (gentle) Rota-
tion and the Tilt models. In the first, P lies in a vertical
xy-plane, and gravity points in the −y direction. The
ball B sits initially at some convex vertex vi; vertices
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Université Libre de Bruxelles (ULB), CP212, Bld. du Triomphe,
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†Chargé de Recherches du FRS-FNRS.
‡ferran.hurtado@upc.edu Universitat Politècnica de
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are labeled counterclockwise (ccw). Let us assume that
vi is a local minimum with respect to y, i.e., both vi−1

and vi+1 are above vi. Now we are permitted to ro-
tate P in the vertical plane (or equivalently, alter the
gravity vector). In the Rotation model, B does not
move from vi until one of the two adjacent edges, say
ei = vivi+1, turns infinitesimally beyond the horizontal,
at which time B rolls down ei and falls under the in-
fluence of gravity until it settles at some other convex
vertex vj . For example, in Fig. 1, B at v4 rolls ccw

v0

v4

v5

v6

v7

v3

v2

v1
v13

v14

v11

v9

v8

v10

v15

v12

Figure 1: Polygon with several ball paths.

when v4v5 is horizontal, falls to edge v15v0, and comes
to rest at v0. Similarly, B at v10 rolls clockwise (cw) to
v6 after three falls. Note that all falls are parallel, and
(arbitrarily close to) orthogonal to the initiating edge
(in the Rotation model). After B falls to an edge, it
rolls to the endpoint on the obtuse side of its fall path.

The only difference in the Tilt model is that any grav-
ity vector may be selected. Only vectors between ei−1

and ei will initiate a departure of B from vi, i.e., the en-
tire wedge is available rather than just the two incident
edges. For example, in Fig. 1, B at v4 rolls to {v0, v3}
in the Rotation model, but can roll to {v0, v1, v2, v3}
in the Tilt model. The Rotation model more accu-
rately represents physical reality, for rain drops or for
balls. The Tilt model mimics various ball-rolling games
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(e.g., Labyrinth) that permit quickly “tilting” the poly-
gon/maze from the horizontal so that any departure vec-
tor from vi can be achieved. We emphasize that, aside
from this departure difference, the models are identical.
In particular, inertia is ignored, and rotation while the
ball is “in-flight” is forbidden (otherwise we could direct
B along any path).

There are two “degenerate” situations that can occur.
If B falls exactly orthogonal to an edge e, we arbitrarily
say it rolls to the cw endpoint of e. If B falls directly on
a vertex, both of whose edges angle down with respect
to gravity, we stipulate that it rolls to the cw side.

Questions. Given P , what is the minimum number of
point-holes needed to guarantee that any ball, regardless
of starting position, may eventually escape from P un-
der some sequence of rotations/tilts? Our main result
is that this number can be determined in O(n2 log n)
time. In terms of combinatorial bounds, we show that
some polygons require bn/6c and bn/7c holes (in the
Rotation/Tilt models respectively), but dn/4e holes al-
ways suffice. We make a start at characterizing the 1-
drainable polygons, those that only need one hole Fi-
nally we argue that the minimum number of holes can
be computed for a 3D polyhedron in polynomial time.
(Omitted proofs may be found in the full version.)

2 Traps

We start by exhibiting polygons that need Ω(n) holes
to drain. The basic idea is shown in Fig. 2(a) for the
Rotation model. We create traps with 5 vertices forming

(a) (b)

(c) (d)

v2

v4

v3

v0
v2

v4

v3

v0

v5

v1

v6

v5

v1

Figure 2: (a) Trap for Rotation model. (b) Trap for
Tilt model. (c,d) Details of traps.

an “arrow” shape, connected together around a convex
polygonal core so that 6 vertices are needed per trap.
A ball in v4 rolls to fall on edge v0v1, but because of
the slightly obtuse angle of incidence, rolls to v2; and

symmetrically, v2 leads to v4. So there is a cycle (defined
precisely in Sec. 3) that “traps” ball between {v2, v3, v4}
and isolates it from the other two traps. Therefore three
holes are required to drain this polygon. In the Tilt
model, Fig. 2(a) only needs one hole, because B could
roll directly from v3 through the v1−v5 “gap.” However,
the polygon in Fig. 2(b) requires 3 holes. Here the range
of effective gravity tilt vectors from v4 is so narrow that
the previous analysis holds. These examples establish
the necessity half of this theorem:

Theorem 1 (Combinatorial Bounds) In the Rota-
tion (resp. Tilt) model, bn/6c (resp. bn/7c) holes
are sometimes necessary to drain an n-vertex polygon.
dn/4e holes suffice to drain any polygon.
Although we believe that at least two reflex vertices
are needed in every cycle, we were unable to show that
they could not be shared between traps. We neverthe-
less conjecture that dn/5e holes suffice. (A variation
on Fig. 2(a) permits the formation of two traps with
n = 11.)

Proposition 2 bn/28c holes are sometimes necessary
to drain an n-vertex orthogonal polygon, and dn/8e
holes suffice.

3 The Pin-Ball Graph

Let G be a directed graph whose nodes are the convex
vertices of P , with vi connected to vj if B can roll in one
“move” from vi to vj . Here, a move is a complete path to
the local y-minimum vj , for some fixed orientation of P .
We conceptually label the arcs of G with the sequence
of vertices and edges along the path ρ(vi, vj). Thus, the
(v10, v6) arc in Fig. 1 is labeled (v9, e13, v14, e7, v7, e5).
We use GR and GT to distinguish the graphs for the
Rotation and Tilt models respectively, and G when the
distinction is irrelevant.

We gather together a number of basic properties of G
in the following lemma.

Lemma 3 (G Properties)

1. Every node of GR has out-degree 2; a node of GT

has out-degree at least 2 and at most O(n).

2. Both GR and GT have O(n) nodes (one per convex
vertex). GR has at most 2n arcs, while GT has
O(n2) arcs, and sometimes Ω(n2) arcs.

3. Each path label has length O(n) (in either model).

4. The total number of path labels on the arcs of GR

is O(n2), and sometimes Ω(n2).

5. The total number of labels in GT is O(n3), and
sometimes Ω(n3).

We will see below that GT can be constructed more
efficiently than what the cubic total label size in
Lemma 3(5) might indicate.
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Noncrossing Paths. A ball path corresponding to one
arc of G is a polygonal curve, monotone with respect
to gravity −→g . The path is composed of subsegments of
polygon edges, as well as fall segments, each of which is
parallel to −→g and incident to a reflex vertex. A directed
path ρ naturally divides P into a “left half” L = L(ρ) of
points left of the traveling direction, and a “right half”
R = R(ρ), where L and R are disjoint, and L∪R∪ρ = P .
Two ball paths ρ1 and ρ2 (properly) cross if ρ2 contains
points in both L(ρ1) and R(ρ1). For example, in Fig. 1,
ρ(v0, v6) crosses ρ(v10, v6). Let L = L(ρ) ∪ ρ be the
closure of L(ρ), and similarly define R.

Two paths can only cross at a reflex vertex (as do
ρ(v4, v0) and ρ(v6, v3) in Fig. 1) or on fall segments of
each (as do ρ(v0, v6) and ρ(v10, v6)).

Lemma 4 (Noncrossing) Two paths ρ1 and ρ2 from
the same source vertex v0 never properly cross (in either
model). See Fig. 3.

v0

v2

g2

e2

e3

e1g1

v1

L

R

Figure 3: Paths from the same source v0 do not cross.
Fall segments are dashed. L and R indicate polygon
“halves” left and right of the directed paths.

Lemma 5 (Label Intervals) In the Tilt model, a
particular label λ appears on the arcs of GT originating
at one particular vi within an interval [−→g1 ,−→g2 ] of gravity
directions.

Cycles and Strongly Connected Components. The
directed path from any vertex vi of G leads to a cycle in
G, because every node has at least two outgoing edges
by Lemma 3(1). Any maximal cycle in G has length
at least 3. Anything less would involve a pair (vi, vj)
connecting only to each other, which would contradict
Lemma 3(1). Note that any pair of convex vertices ad-
jacent on ∂P form a non-maximal cycle of length 2.

A cycle is a particular instance of a strongly connected
component (SCC) of G, a maximal subset C ⊂ G in
which each node has a directed path to all others.

Define a graph G∗ as follows. Let C1, C2, . . . be the
SCC’s of G. Contract each Ck to a node ck of G∗, while
otherwise maintaining the connectivity of G. Then G∗

is a DAG (because all cycles have been contracted).

Lemma 6 (Sinks) The minimum number m of holes
needed to drain P is the number of sinks of G∗.

Lemma 7 The locations of the minimum number m of
holes needed to drain P can be found in linear time in
the size |G| of G, once G has been constructed.

Construction of G. Our goal is to construct the un-
labeled G. Labels merely represent the paths that re-
alize each arc of G. An example given in the long ver-
sion seems to require Ω(n2) ray-shooting queries in the
Rotation model, and as we do not know how to avoid
this, our goal becomes an O(n2 log n) algorithm. This
is straightforward for GR, so we focus on GT , which by
Lemma 3(5) is potentially cubic.

We first preprocess P for efficient ray-shooting
queries, using fractional cascading to support ray shoot-
ing in a polygonal chain. This takes O(n log n) pre-
processing time and supports O(log n) time per query
ray [CEG+94]. Next we construct the visibility polygon
from each vertex of in overall O(n2) time [JS87]. From
these visibility polygons, for each vi we construct a grav-
ity diagram Di. This partitions all gravity vectors −→g
into angular intervals labeled with the next vertex that
B will roll to from vi with tilt −→g . For example, Fig. 4(a)
shows the gravity diagram for v4 in Fig. 1. Note that

v5

v3

v2
v1

(a) (b)

g1
g0

vi

vi1

vi2

vj vk

v'i2

Figure 4: (a) Gravity diagram for v4 in Fig. 1. (b) Grav-
ity diagrams for paths ρ0 and ρ1.

Di only records the next vertex encountered, not the
ultimate destination. We maintain each diagram in a
structure that permits any −→g to be located in O(log n)
time.

We now argue that we can construct all paths with
source vi, and therefore all arcs of GT leaving vi, in
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O(n log n) time. Compute the path ρ0 for the cw ex-
treme gravity vector −→g0 that leaves vi (perpendicular
to vivi+1). This uses O(n) ray-shooting queries for
the fall segments of ρ0, totaling O(n log n) time. Let
ρ0 = (vi, vi1 , vi2 , . . . , vj). During its construction, we
locate −→g0 within each diagram Dik

. Now we find the
minimum angle between −→g0 and the next ccw event over
all diagrams. This can be done in O(log n) time us-
ing a priority queue. Call the next event −→g1 , and sup-
pose it occurs at vik

in diagram Dik
. We now construct

the path ρ1 from vik
onward, until it terminates at a

new vertex, or rejoins ρ0 (recall from Fig. 3 that paths
might rejoin, i.e., the suffixes from vik

are not necessar-
ily disjoint). In our “update” from ρ0 to ρ1, let V0 be
the set of vertices lost from ρ0, and V1 those gained
in ρ1. The priority queue of minima is updated by
deleting those for V0 and inserting those for V1. The
angular sweep about vi continues in the same manner
until the full gravity vector range about vi is exhausted.
Fig. 4(b) illustrates one step of this process, where vi1

determines the transition event between g0 and g1, at
which point the path changes from ρ0 = (vi, vi1 , vi2 , vj)
to ρ1 = (vi, vi1 , v

′
i2

, vk).
By Lemma 5, each diagram abandoned in this sweep

is never revisited. Thus the number of invocations of
the minimum operation to find the next event is O(n),
or O(n log n) overall. Repeating for each vi we obtain:

Lemma 8 G can be constructed in O(n2 log n) time.

Theorem 9 The locations of the minimum number of
holes needed to drain P can be found in O(n2 log n).

We leave it as a claim that GR can be constructed
(and the holes located) in O(n log n) time for orthog-
onal polygons.

4 1-Drainable Shapes

Define a k-drainable polygon as one that can be drained
with k holes but not with k−1 holes. For example,
Fig. 1 is 1-drainable with a hole at v6. We make a
start here at exploring the 1-drainable shapes under
each model. Note that these shapes do depend on the
model: Fig. 2(a) is 1-drainable in the Tilt model but
3-drainable in the Rotation model.

Our definition of k-drainable polygons is inspired by
the k-fillable polygons of [BvKT98], those mold shapes
that can be filled with liquid metal poured into k holes.
Despite the apparent inverse relationship between filling
and draining, the two concepts are rather different. In
particular, there are star-shaped polygons k-drainable
in the rotation model (Proposition 13 below), but The-
orem 7.2 of [BvKT98] shows that these are all “2-fillable
with re-orientation.” Also, there are 1-drainable poly-
gons that are k-fillable (with or without reorientation).

Proposition 10 Monotone polygons are 1-drainable.

Let the ccw roll from vi be the roll toward vi+1 in the
Rotation model, or equivalently, the tilt according to −→g
perpendicular to vivi+1 in the Tilt model.

Lemma 11 (Kernel) Let P be star-shaped with kernel
K. Then for each arc (vi, vj) ∈ G corresponding to the
ccw roll path ρ from vi, K is in L(ρ), i.e., K is on or
to the left of ρ.
A fan is a star-shaped polygon whose kernel includes a
convex vertex.

Proposition 12 Fans are 1-drainable.
Proposition 12 cannot be extended to star-shaped poly-
gons in the Rotation model:

Proposition 13 For any k > 1, there is a k-drainable
star-shaped n-gon in the Rotation model, with k = Ω(n).

5 3D

Define the Tilt model for 3D polyhedra to permit de-
parture from a vertex v at a direction vector lying in
any of the faces of P incident to v. We do not see how
to mimic the efficient construction of G previously de-
scribed, so we content ourselves with showing (in the
full version) that it can be accomplished in polynomial
time: O(n7 log n).

6 Open Problems

1. Can the upper bound of dn/4e in Theorem 1 be
improved?

2. Are star-shaped polygons 1-drainable in the Tilt
model? More generally, characterize 1-drainable
polygons.

3. Suppose m balls are present in P at the start, and
P is k-drainable. What is the computational com-
plexity of finding an optimal schedule of rotations,
say, in terms of the total absolute angle turn, or in
terms of the number of angular reversals?
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Partial Matching of Planar Polygons Under Translation and Rotation

Eric C. McCreath∗

Abstract

Curve matching is an important computational task for
domains such as: reconstruction of archaeological frag-
ments, forensics investigation, measuring melodic simi-
larity, and model-based object recognition. There are a
variety of measures and algorithmic approaches used to
address the curve matching problem including: shape
signature strings with substring matching, geometric
hashing, and Hausdorff distance approaches. In this pa-
per we propose an approach that uses a turning function
representation of the shape and also uses a L2 measure
for comparing matches. The novel algorithm presented
finds the best match along a fixed length portion of two
polygon’s perimeters where the polygons may be arbi-
trarily translated and rotated. The algorithm’s time
complexity is O(mn(n + m)) where n and m are the
numbers of vertices in the perimeters being matched.
The utility of the algorithm is demonstrated in the re-
construction of a small jigsaw puzzle.

1 Introduction

Reconstruction of a broken object is an important yet
time consuming task for a number of disciplines in-
cluding forensics and archeology. Digitally automat-
ing or semi-automating this process is beneficial. Jig-
saw puzzles, which are a simplistic form of this recon-
struction problem, have been investigated by a num-
ber of researchers over the last 50 years. Freeman and
Garder[6] produced what is generally considered the
first of these investigations. They matched portions
of a piece by comparing features extracted from the
shape of those portions. There has since been a variety
of other approaches in solving this problem including:
curve matching combinatorial optimization[11], use of
critical points[10, 8, 7], shape and image matching[12],
and even an attempt to reconstruct the puzzle via a
robot [4]. In many respects the jigsaw puzzle problem
is a much simpler problem than the more general recon-
struction of a broken fragment due to the well defined
constraints on the shape of jigsaw puzzles, though it is
not a simple problem to solve.

This paper proposes a novel algorithm which takes
two polygons and matches a fixed length portion of the

∗Department of Computer Science, The Australian National
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polygons perimeter. The polygons may be arbitrarily
translated and rotated, however they are not scaled.
This algorithm finds the match which minimizes the L2

distance of the turning functions of the two portions
of the polygons. The novelty of the approach taken in
this paper is how a fixed length portion of two unscaled
polygons can be matched. Such matching is useful for
reconstruction when fragments are matched against the
complement of other fragments.

Arkin et al. [3] proposed using the L2 distance be-
tween turning functions of polygons to compare two
shapes. Their algorithm works in O(mn log mn) time
where n and m are the numbers of vertices in the poly-
gons. The Arkin et al. approach is different to the
contribution made in this paper as they find matches
between two entire polygons which have both been
rescaled to have a perimeter length of 1.

Cohen and Guibas [5] developed an algorithm that
matches a polyline by translation, rotation, and scaling
to a part of another polyline. Their algorithm works in
O(m2n2) time where m and n are the numbers of edges
within the polylines. The approach taken in this paper
is different to the Cohen and Guibas approach, as Cohen
and Guibas finds the shifting and stretching parameters
that minimize a combination of L2 distance of the turn-
ing functions and match length. Whereas, in this paper,
the approach presented finds the two shifting parame-
ters which determine where the matching portions of
the polygons will start.

Aloupis et al. [1, 2] developed an approach that
finds the minimum area between two given orthogonal
melodies with periods of 2π. Their approach runs in
O(n2 log n) time and can be used for matching short
patterns in a database of music. This is the same prob-
lem of matching polygons when a turning function rep-
resentation is used. The problem Aloupis et al. ad-
dress is different to the problem this paper addresses
as Aloupis et al. use an L1 distance and they focus
on comparing either two cyclic melodies (parallels with
Arkin et al.) or a melody which matches a portion of an-
other melody. Whereas, this paper uses the L2 distance
and focuses on fixed length portions as these portions
could occur anywhere along the x-axis of the two turn-
ing functions. If the approach presented in this paper
was applied to the music domain, then the approach
could be used to find common melodies of fixed length
which occur anywhere within two items of music.
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2 Problem Setup

Let A and B denote two planar polygons with n and
m vertices respectively. The vertices of A are points
in the xy-plane denoted {ȧ0, ȧ1, . . . , ȧn−1}. Vertex ȧi is
connected to vertex ȧi+1 by an edge. Also vertex ȧn−1

is connected to vertex ȧ0 by an edge. To simplify the
wrapping of the polygon we also define ȧi+n = ȧi, ∀i ≥
0. Let āi denote the vector from ȧi to ȧi+1, this vector
provides the direction and length of edge i and may
be calculated by āi = ȧi+1 − ȧi. So |āi| is the length
of edge i. Let ai denote the distance from ȧ0 to ȧi

following the perimeter of the polygon. More formally
ai =

∑i−1
j=0 |āj |. Note that a0 = 0 and an is the length

of the perimeter. Let the turning function tA(d) be the
accumulative turning angle at distance d around the
perimeter of A from ȧ0. ḃi, b̄i, bi, and tB(d) are defined
for polygon B in a similar way to that of polygon A.

Figure 1 shows an example of a simple polygon and
its turning function representation. We wish to deter-
mine how well portions of one polygon will fit together
with that of another. The turning function provides an
efficient way of determining if polylines closely follow
each other[3]. This efficiency is due to the translation
invariant nature of the representation. Also, finding the
best rotation of one polygon onto the other can be an-
alytically determined without explicitly searching this
dimension.

An L2 distance is used over a fixed length l of the
perimeter to determine the error in matching a partic-
ular configuration. Given this fixed perimeter length
we must find the minimum error over a 3 dimensional
space, where the dimensions are: the starting location
sA of the matching on the perimeter of polygon A; the
starting location sB on polygon B; and the angle of ro-
tation θ. The start location sA (and sB) is the distance
around the perimeter from a0 (and b0). Thus the error
we wish to minimize over sA, sB , and θ is:

error(sA, sB , θ) =

∫ l

0

(tA(sA + x)− tB(sB + x) + θ)2dx

3 Searching

To search for the values that minimize the error, we first
show how to calculate the θ that minimizes the error
for a given sA and sB . We denote this minimum angle
with the function θ∗(sA, sB). This calculation is done
in the same way as [3]. We set the partial derivative of
error(sA, sB , θ) to zero finding the only critical point at:

θ =
−

∫ l

0
tA(sA + x)− tB(sB + x)dx

l

A second derivative test reveals that this is the mini-
mum. Thus we set:

θ∗(sA, sB) =
−

∫ l

0
tA(sA + x)− tB(sB + x)dx

l

This enables us to reduce the degrees of freedom for
the search down to 2 as:

min {error(sA, sB , θ)} = min {error(sA, sB , θ∗(sA, sB))}

Let:

error∗(sA, sB) = error(sA, sB , θ∗(sA, sB))

=
∫ l

0
(tA(sA + x)− tB(sB + x)

−
R

l

0
tA(sA+x)−tB(sB+x)dx

l
)2dx

=
∫ l

0
(tA(sA + x)− tB(sB + x))2dx−

(
R

l

0
tA(sA+x)−tB(sB+x)dx)2

l

= II(sA, sB)− 1
l
I(sA, sB)2

where

I(sA, sB) =

∫ l

0

tA(sA + x)− tB(sB + x)dx

and

II(sA, sB) =

∫ l

0

(tA(sA + x)− tB(sB + x))2dx

Since both sA and sB are continuous values it is im-
possible to explicitly search all possibilities. However,
this search space may be partitioned by lines into a num-
ber of regions. The lines are either when vertices of the
two polygons line up or when the start or end of the
matching region lines up with a vertice on a polygon.
The minimum of the error function over each region can
be found at the crossing points on the border of the re-
gion. Hence, the minimum over the entire search space
can be found by considering all the points at which these
lines intersect.

As the functions tA and tB are both piecewise con-
stant, both tA(sA + x)− tB(sB + x) and (tA(sA + x)−
tB(sB + x))2 will also be piecewise constant functions
in the variable x. Hence to calculate I(sA, sB) and
II(sA, aB) one can simply sum the length of the con-
tribution of each of the constant sections multiplied by
the value for that section. We let Xij(sA, sB) be the
length of the contribution made by the polygon sides āi

and b̄j . This can be calculated via:

Xij(sA, sB) = |(max{0, ai − sA, bj − sB},
min{l, ai+1 − sA, bj+1 − sB})|

where |(x, y)| = max{y − x, 0}. We also let θij =
tA(ai)− tB(bj). So we now have:

I(sA, sB) =
∑

ij

Xij(sA, sB)θij
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Figure 1: a) A simple polygon. b) The turning function for the polygon shown in a).

and

II(sA, sB) =
∑

ij

Xij(sA, sB)(θ2
ij)

The Xij can be rewritten as a linear function in sA

and sB for 10 different regions of the sA, sB plane. This
can be done by considering: the three different possi-
ble maximums with the three possible minimums; along
with the no overlapping possibility.

Xij(sA, sB) =











































































l if 0 ≥ ai − sA∧
0 ≥ bj − sB∧
l ≤ ai+1 − sA∧
l ≤ bj+1 − sB

ai+1 − sA if 0 ≥ ai − sA∧
0 ≥ bj − sB∧
ai+1 − sA ≤ bj+1 − sB∧
ai+1 − sA ≤ l∧
ai+1 − sA ≥ 0

...
...

0 otherwise

The sA,sB plane can be divide up into regions via the
following lines: 0 = ai − sA, 0 = bj − sB , ai − sA =
bj − sB , l = ai − sA, and l = bj − sB . Within each
of these regions Xij will be linear with respect to sA

and sB. Moreover, within each of these regions both
I(sA, sB) and II(sA, sB) will be linear with respect to
sA and sB . For each region r, let c1, c2, c3, c4, c5, and
c6, be the constants such that:

Ir(sA, sB) = c1sA + c2sB + c3

and

IIr(sA, sB) = c4sA + c5sB + c6

then

error∗r(sA, sB) = IIr(sA, sB)− 1
l
Ir(sA, sB)2

= −
c2

1

l
s2

A −
c2

2

l
s2

B − 2c1c2

l
sAsB+

(c4 −
2c1c3

l
)sA + (c5 −

2c2c3

l
)sB+

c6 −
c2

3

l

It is simple to confirm that the minimum of this function
will be at one of the vertices of the region. Therefore,
to find the minimum of this function over the entire sA,
sB plane, one may simply find the minimum over all the
points at which the lines cross. Fortunately, we do not
need to recalculate I and II for every point, as we can
move from one crossing point to a neighboring crossing
point and evaluate the new error from information from
the previous point in a constant amount of time.

4 The Algorithm

The algorithm works by calculating the error on each
of the crossing points between the lines over the entire
plane. There are at most1 nm sloping lines ai − sA =
bj − sB . These are all parallel with each other and have
a gradient of -1. Also, there are at most 2n horizontal
lines 0 = ai − sA or l = ai − sA. Finally, there are
at most 2m vertical lines 0 = bj − sB or l = bj − sB .
The sloping lines will intersect with both the vertical
and horizontal lines. To calculate the minimum over all
these intersecting points we consider each of the slop-
ing lines in turn. We begin at any point on a line and
calculate I(sA, sB) and II(sA, sB). This may be ac-
complished in n+m steps by moving across the turning
functions of A and B summing contributions to the in-
tegrals. Once this is calculated it is possible to slide
along this sloping line to the next point where a ver-
tical or horizontal line intersects with it. We denote
this new point (s′A, s′B). I(s′A, s′B) and II(s′A, s′B) can
be calculated using I(sA, sB) and II(sA, sB) and sub-
tracting the contributions that no longer overlap and
adding the new overlapping contributions. This may be
achieved in constant time. Therefore, finding the min-
imum over all points which intersect with the sloping
lines is O(mn(m + n)). The other points that must be
considered occur when horizontal and vertical lines in-
tersect. There are at most 4nm of these. The error for

1There could be fewer lines if a number of combinations of i

and j produce the same line.
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each of these can be calculated separately in at most
n + m steps. Hence, the complexity of calculating the
points of intersection for both the horizontal and verti-
cal lines is O(mn(n+m)). Moreover, the time complex-
ity of calculating the configuration that minimizes error
is O(mn(n + m)). Note that the space required for this
algorithm is only O(n + m).

5 Discussion

The matching algorithm was implemented and used
within a puzzle solving program to demonstrate the util-
ity of the matching algorithm. The data sets consisted
of a simple 20 piece puzzle. The puzzle solving pro-
gram used a greedy approach. The minimum error is
found between each fragment and the complement of
another fragment using the algorithm presented in this
paper. The fragments with the minimum error are re-
moved from the set of fragments, then the fragments
are joined forming a new fragment which is then incor-
porated back into the set of fragments. This process is
repeated until all the fragments are joined into a single
fragment. Clearly, this greedy approach is not guaran-
teed to produce either an optimal or correct solution.
However, in the puzzle tested the greedy approach pro-
duced a correct result. Note that, the fixed matching
length was manually tune for this particular puzzle.

A larger class of shapes can be more compactly and
accurately represented by including circular arcs as
edges. In such cases the turning function is piecewise
linear. Arkin et al. [3] considered this for matching
shapes. In a similar way the algorithm presented in this
paper could be extended to include circular arcs. Such
a representation would clearly perform well for shapes
like the puzzle fragments.

In terms of improving the performance of the algo-
rithm it would be possible to use an approach similar to
that of Latecki et al. [9] where polygons undergo a curve
evolution to approximate a polygon with fewer edges.
This approximation would be within some known error
of the turning function. This could be used to prune
large sections of the search, as bounds could be found for
particular regions of the search space. The optimal con-
figuration could then be found on this restricted search
space. Hence, the overall algorithm would produce the
optimal result more quickly. In general it is unlikely
that such a modification would improve the worst case
complexity of the algorithm, however, it could improve
the expected running time of the algorithm.
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Recognition of Largest Empty Orthoconvex Polygon in a Point Set

Subhas C. Nandy∗ Krishnendu Mukhopadhyaya∗ Bhargab B. Bhattacharya∗

Abstract

An algorithm for computing the maximum area empty
isothetic orthoconvex polygon among a set of n points
in a rectangular region, is presented. The worst case
time and space complexities of the proposed algorithm
are O(n3) and O(n2) respectively.

1 Introduction

The problem of finding an empty convex k-gon of max-
imum area or perimeter amidst a point set [4] has sev-
eral applications. A survey paper [2] has been published
very recently, which elaborates several optimization is-
sues related to this problem. In VLSI layout design,
document image processing and shape description, iso-
thetic polygons play a major role. A polygon is said to
be isothetic if its sides are parallel to coordinate axes.
The problem of identifying the largest empty isothetic
rectangle among a set of points has been studied exten-
sively. The best known algorithm for this problem runs
in O(n log2 n) time [1]. The same time complexity holds
if the obstacles are arbitrary polygons [6, 9]. Recently
it is shown that the largest isothetic rectangle inside a
simple polygon can be obtained in O(n log n) time [5].

In isothetic domain, the generalization of this problem
is recognizing the largest empty orthoconvex polygon.
An isothetic polygon is said to be orthoconvex if the
intersection of the polygon with a horizontal or a verti-
cal line is a single line segment. Orthoconvexity has
importance in robotic visibility, and also its discrete
variant appears in other areas like digital geometry [3]
and discrete tomography [8]. Datta and Ramkumar
[7] proposed algorithms for recognizing largest empty
orthoconvex polygon of some specified shapes amidst
a 2D point set. These include (i) L-shape, (ii) cross
shape, (iii) point visible, and (iv) edge visible poly-
gons. The time complexity of these algorithms are all
O(n2). Another variation in this class of problems is
recognizing the largest empty staircase polygon among
point and isothetic polygonal obstacles, which can also
be solved in O(n2) time and space [10]. But, to the
best of our knowledge, the problem of recognizing an
empty orthoconvex polygon of arbitrary shape maxi-
mizing area/perimeter is not studied yet. In this paper,
we propose an algorithm of recognizing an empty ortho-
convex polygon of maximum area, that runs in O(n3)
time using O(n2) space.

∗Indian Statistical Institute, Kolkata - 700 108, India

2 Priliminaries

Let R be a rectangular region containing a set of n

points P = {p1, p2, . . . , pn}. We will assume a coordi-
nate system with bottom and left boundaries of R as
the x- and y-axes respectively. The coordinates of a
point α are denoted as (x(α), y(α)). We assume that
the points in P are in general positions, i.e., for every
two points pi and pj , x(pi) 6= x(pj) and y(pi) 6= y(pj).
Henceforth, we shall use Hi and Vi to denote a hori-
zontal and a vertical line passing through the point pi.

Definition 1 An isothetic curve is a rectilinear path
consisting of alternately horizontal and vertical line seg-
ments. An isothetic curve is a monotonically rising
staircase (R-stair) if for every pair of points α and β

on the curve, x(α) ≤ x(β) implies y(α) ≤ y(β). Sim-
ilarly, for every pair of points α and β on a monoton-
ically falling staircase (F -stair), we have x(α) ≤ x(β)
implies y(α) ≥ y(β). An isothetic polygon is a region
bounded by a closed isothetic curve.

Definition 2 An isothetic polygon Π is said to be or-
thoconvex if for any horizontal or vertical line ℓ, the in-
tersection of Π with ℓ is a line segment of length greater
than or equal to 0. In other words, ℓ either intersects
no edge or exactly two edges of Π.

An orthoconvex polygon is empty if it does not contain
any member of P in its interior. Our objective is to
identify the largest empty orthoconvex polygon in R.

Definition 3 An empty orthoconvex polygon Π is said
to be maximal empty orthoconvex polygon (MEOP ) if
there exists no other empty orthoconvex polygon Π′ that
properly encloses Π.

It is easy to observe that an MEOP is bounded by
two R-stairs Rtℓ and Rbr, and two F -stairs Ftr and
Fbℓ, where Rtℓ spans from the left boundary to the top
boundary, Rbr spans from the bottom boundary to the
right boundary, Ftr spans from the top boundary to the
right boundary and Fbℓ spans from the left boundary
to the bottom boundary of R, and each concave vertex
of these stairs must coincide with a member in P (see
Figure 1). It may be observed that an R-stair (or an
F -stair) may degenerate to a corner point of R.

The number of maximal empty staircase polygons
amidst a point set of size n may be exponential in n;
however, the maximum-area empty staircase polygon
can be computed in O(n2) time [10]. Since a maximal
empty staircase polygon is an MEOP as well, the same
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Figure 1: Orthoconvex polygons

combinatorial explosion holds for MEOP also. We now
present a polynomial time algorithm for computing the
maximum-area MEOP .

3 Algorithm

We shall consider all possible pairs of points pi, pj ∈ P ,
and identify the maximum area MEOP with pi ∈ Fbℓ

as the closest point of the bottom boundary of R, and
pj ∈ Ftr as the closest point of the top boundary of R.
The points pi and pj are said to be the bottom-pivot and
top-pivot respectively, and the corresponding MEOP is
denoted by MEOP (pi, pj). We will use S to denote the
vertical slab bounded by Vi and Vj . The projections of
a point pk ∈ S on Vi, Vj , Hi and Hj are denoted by qk,
q′k, rk and r′k respectively. We now separately consider
two cases: (i) x(pi) < x(pj), and (ii) x(pi) > x(pj).

In Case (i), the lines Vi and Vj split the point set P

into three parts, P1, P2 and P3, where P1 and P3 are
the set of points to the left of Vi and to the right of Vj

respectively, and the points in P2 lie inside the vertical
slab S. If Vi hits the top and bottom boundaries of
R at t1 and b1 respectively, and Vj hits the top and
bottom boundaries of R at t2 and b2 respectively. Now,
the portion of the MEOP inside the vertical slab S,
denoted by M2(b1, t2), is an empty staircase polygon
with diagonally opposite corners b1 and t2 among the
points in P2. The two stairs of M2(b1, t2) are parts of
the rising stairs Rbr and Rtl respectively. If Rtl hits
Vi at qα, then the portion of the MEOP to the left of
Vi, denoted by M1(qα), is an empty edge-visible polygon
with base [pi, qα] among the points in P1 such that every
point inside the polygon is visible from its base [pi, qα].
Similarly, if Rbr hits Vj at q′β then M3(q

′

β) is an empty
edge-visible polygon with base [pj, q

′

β ] among the points
in P3.

In Case (ii), Vj is to the left of Vi. Here M2 is an empty
staircase polygon from pi to pj , and these are the parts
of Fbl and Ftr of the MEOP respectively. If Fbl (resp.
Ftr) hits Vj (resp. Vi) at q′α (resp. qβ), then M1(q

′

α)
(portion to the left of Vj) is an edge-visible polygon with
base [q′α, pj ], and M3(qβ) (portion to the right of Vi) is
an edge-visible polygon with base [qβ, pi]. After fixing pi

and pj as the bottom-pivot and top-pivot respectively,
we need to choose M1, M2 and M3 such that the sum
of areas of these three polygons is maximum among all
such polygons. We shall describe our algorithm for Case
(i) only. Case (ii) can easily be handled using a similar
method. For Case (i), we explain the method of com-
puting the desired M1 and M2. The computation of M3

is the same as that of M1.

3.1 Computation of M1

Let us consider a point pi ∈ P . Let P1 = {pk|x(pk) <

x(pi)} and Q = {pk|x(pk) > x(pi) and y(pk) > y(pi)}.
Q includes the top-right corner of R, and |Q| = m +
1. Let q0, q1, q2, . . . , qm denote the projections of the
points in Q on the vertical line Vi in decreasing order
of their y-coordinates. We create an array EV L(pi)
whose elements are the maximum area empty edge-
visible polygon M1(qk) with [pi, qk] as the base for all
k = 0, 1, 2, . . . , m.

We use vertical line sweep among the points in P1 start-
ing from the position of Vi to create a height-balanced
binary tree T . Its each node v is represented as a 5-tuple
(I, x val, y val, ∆, δ). I is the base of the edge-visible
polygons attached to node v. (x val, y val) is the point
where the node v is generated, and ∆ contains the area
of the largest edge visible polygon rooted at that node.
The ∆ parameters are computed in two passes. In the
forward pass during the sweep, the ∆ parameter of a
node contains the area of the edge visible polygon that
is computed so far at that node. At the end of the
sweep, a backward pass is executed from the leaf level
of T up to its root, and ∆ value of each node is properly
set. The δ value of all nodes are 0 at the time of creation
of T ; it will be set and used during the computation of
M1(qk) for different qk.

Creation of T

The root r of T corresponds to the entire interval
I = [pi, q0]; its x val and ∆ parameters are set to
x(pi) and 0 respectively. A vertical line sweep is per-
formed from x = x(pi) towards left. When a point
p = (x(p), y(p)) ∈ P1 is faced by the sweep line, the
leaf nodes in T are searched. If y(p) lies in the inter-
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val [α, β] of a node v = ([α, β], µ, ν, ∆, δ), we compute
∆∗ = ∆+(µ−x(p))×(β−α). Next, we create two chil-
dren of v, namely va = ([α, y(p)], x(p), y(p), ∆∗, 0) and
vb = ([y(p), β], x(p), y(p), ∆∗, 0). Finally, the backward
pass is executed from leaves towards the root in post-
order manner to set the ∆ values as described above.

Computation of M1(qk)

M1(q0) = ∆ attached to the root node r. While process-
ing qk, we assume that qk−1 is already processed. We
start scaning from the root of T . At a particular node
v = ([α, β], µ, ν, ∆(v), δ(v)) on the search path, one of
the following two situations may happen: (i) ν ≥ y(qk)
and (ii) ν < y(qk).

In Case (i), we compute A = (x(pi) − µ) × (y(qk) −
y(qk−1)). The area A is to be subtracted from all the
edge-visible polygons stored in the the right-child vb of
the node v. We subtract A from ∆(vb). Without en-
tirely traversing the subtree rooted at vb, we add A in
δ(vb). The motivation is that, while processing some
other qℓ, if the subtree rooted at vb is traversed, δ(vb)
will be subtracted from the ∆ value of those nodes. The
search proceeds towards the left child of the node v. At
each move from a node v to its children v′, δ(v) is sub-
tracted from ∆(v′), and added to δ(v′), and then δ(v)
is set to 0.

In Case (ii), the edge visible polygon in the left child va

of the node v does not exist; so we delete the subtree
rooted at va and the node v also; the search proceeds
towards the right child of v. The propagation of δ is
to be performed at each step, but the computation of
excess area A is to be performed when Case (i) arises.
Next, a backward pass is needed to set the ∆ field of all
the nodes in the updated T . Finally, M1(qk) is set with
the ∆ value of the root of the updated T .

Lemma 1 The computation of M1(qk) for all k =
0, 1, . . . , m needs O(n2) time.

Proof. The creation of T needs O(n log n) time. The
lemma follows from the fact that the combinatorial com-
plexity of M1(qk) is O(n) for all k = 0, 1, . . . , m. 2

Similarly, with each point pi ∈ P , an array EV R(pi) is
attached. If the projections of the points {pk|x(pk) <

x(pi) & y(pk) < y(pi)} are denoted by q′0, q
′

1, q
′

2, . . . , q
′

m′ ,
then |EV R(pi)| = m′+1, and the content of its k-th el-
ement is the largest empty edge-visible polygon M3(q

′

k)
with base [pi, q

′

k] among the points to the right of Vi.

Lemma 1 says that EV L(pi) and EV R(pi) for all i =
1, 2, . . . , n can be created in O(n3) time.

3.2 Computation of M2

Consider the processing of a pair of points pi, pj ∈ P

satisfying x(pi) < x(pj). Let Rij be the rectangle with
pi and pj at its diagonally opposite corner, and P ∗

2 be
the set of points in P that lie in Rij . Here M2 can be

split into three parts: the L polygons inside the slab S

below Hi and above Hj , and the empty staircase poly-
gon MESP (pi, pj) from pi to pj inside Rij . The ob-
jective is to choose the staircase polygon such that the
sum of its area along with the area of the corresponding
L polygons in S and the edge-visible polygons M1 and
M3 on two sides of S is maximum.

Computation of L-polygons

Let r1, r2, . . . , rm be the projections of the points in Rij

on Hi in the increasing order of their x-coordinates, and
rm+1 is the intersection of Hi and Vj . We execute a
horizontal line sweep among the points in S from the
floor of R up to Hi to compute the area of the maximal
empty L-polygons LB(rk) for k = 1, 2, . . . , m + 1. The
upper stair of LB(rk) is an L-path with pi at its corner,
and the lower stair is a staircase path from b1 to rk.
The L-polygons LA(rk), k = 0, 1, 2, . . . , m above Hj are
computed in an exactly similar manner; here r0 is the
intersection point of Vi and Hj . This needs O(n) time
in the worst case.

Computation of the staircase polygon

We now describe the last step of our algorithm
for computing the maximal empty staircase polygons
MESP (pi, pj) considering the area of the coresponding
L-polygons and edge-visible polygons such that the total
area of MEOP (pi, pj) is maximum. Let G be a directed
graph with vertices corresponding to the points in Rij

and edges {ekℓ = (pk, pℓ)|pk, pℓ ∈ P ∗

2 with x(pk) < x(pℓ)
and y(pk) < y(pℓ)}. Any path from pi to pj in G corre-
sponds to the lower stair of an MESP (pi, pj); but there
are different choices of the upper stairs corresponding
to the same lower stair. The problem of computing
the maximum area MESP (pi, pj) can be formulated as
finding the maximum weighted path in an weighted di-
rected graph, called the staircase graph [10],.
Definition 4 [10] Let (pa, pb) be an edge of G. The
point (x(pa), y(pb)), where the vertical line Va abuts the
horizontal line Hb, is called the footprint of pb con-
tributed by pa, and is denoted by ba. The footprint of
the point pi is pi itself. We use FP (p) to denote the set
of footprints of the point p ∈ P ∗

2 .

Definition 5 [10] The staircase graph SG = (V, E) is
a weighted digraph with nodes V = ∪pa∈P∗

2
FP (pa). A

footprint ba ∈ FP (pb) has a directed edge to a foot-
print dc ∈ FP (pd) if (pb, pd) is an edge in G, and the
upper stair of the L polygon[ba, pd] meets the horizon-
tal line Hd at the footprint dc. The weight of the edge
(ba, dc), denoted by w(ba, dc) is equal to the area of the
L polygon[ba, pd].

A path in SG corresponds to a unique staircase polygon
from pi to pj. Assuming |P ∗

2 | = m, the worst-case num-
ber of vertices and edges in SG are O(m2) and O(m3)
respectively, and the maximum weighted path in SG

can be found in O(m3) time.
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In our problem, computing the maximum area empty
staircase polygon among the points in P2 will not suffice.
Suppose MEOP (pi, pj) consists of a staircase polygon
MESP (pi, pj), that has edges (pi, qα) along Vi, (pj , qα′)
along Vj , (pi, rβ) along Hi and (pj , rβ′) along Hj , then
it includes (i) an edge-visible polygon with base (pi, q)
to the left of Vi, (ii) an edge visible polygon with base
(pj , q

′) to the right of Vj , (ii) an L-polygon with base
(pi, r) and (iv) an L-polygon with base (pj , r

′). Let q, q′,
r and r′ correspond to pα, pα′ , pβ , pβ′ ∈ P2 respectively.
Thus, in order to compute the MEOP of maximum
area, we need to modify the weight of some edges of the
graph SG as follows, and then compute the maximum
weighted path in the graph SG.

For each α such that pα ∈ P2, change the weight of its
each outgoing edge e to w(e) + area(M1(pi, qα)).

For each edge e′ = (pi, βk′), change the weight of e′ to
w(e′) + area(LB(pi, rβ)).

For each edge α′ such that pα′ ∈ P2, if there ex-
ists an edge e∗∗ from a footprint of α′ to a foot-
print of pj , then change its weight to w(e∗∗) +
area(M3(pj , q

′

α′)).

For each incoming edge e′ on jβ′), change the weight
of e′ to w(e′) + area(LA(pj , rβ′)).

Theorem 2 The largest MEOP among a set of n

points can be computed in O(n5) time and O(n2) space.

In [10], it is also shown that the geometric properties
of the problem can be exploited to design an algorithm
for computing the empty staircase polygon of maximum
area in O(|P2|

2) time and space. Here the results of pro-
cesing a point pj for computing the MESP (o, pj) are
used to compute MESP (o, pk), where x(pk) > x(pj)
and y(pk) > y(pj); The point o is the bottom left cor-
ner of the rectangular floor. We will use the same prin-
ciple to reduce the time complexity of the problem of
computing the maximum area MEOP to O(n3).

4 Further improvement

We will fix a point pi ∈ P , and consider all pj ∈ P

with x(pj) > x(pi) and y(pj) > y(pi). We also use the
the notion of complete processing of a point pj [10]. A
point pj is said to be completely processed if all the edges
incident to pj in the graph G are processed. When a
point pj is completely processed, the weights of differ-
ent paths in the staircase graph (SG) with bottom-pivot
and pi and pj respectively, are available at the foot-
prints of pj . Each of these polygons has included the
corresponding M1(pi, qα) and LB(pi, rβ) for some ap-
propriate pα, pβ ∈ S. In order to get the maximum area
MEOP with a MESP (pi, pj), we need to add the area
of the appropriate M3(pj , qα′) and LA(pj , rβ′), where
pα′ , pβ′ ∈ S. We can compute the array L containing
LA(pj , rk) for all the points pk ∈ S above Hj in O(n)
time. The values of area(M3(pj , qk)) are all available

in the array EV R(pj). Now we can use EV R(pj), L,
and the area attached to the different footprints of pj

to compute the largest MEOP (pi, pj) in O(n) time.

We process the points above Hi in S by sweeping a
horizontal line upwards. After complete processing of
pj, we compute MEOP (pi, pj) as described above, and
then process the outgoing edges of pj in G. Thus, we
have the following theorem:

Theorem 3 The largest MEOP among a set of n

points can be computed in O(n3) time and O(n2) space.

Proof. For a fixed pi, the generation of footprints for
all pj ∈ P with x(pj) > x(pi) and y(pj) > y(pi) needs
O(n2) time [10]. The additional time required to process
each pj ∈ P is O(n). Since we need to fix each pi, the
time complexity result follows.

The space complexity result follows from the fact that
the preprocessed arrays M1(pi) and M3(pi) are of size
O(n) in the worst case. Moreover while processing a
point pi, the number of footprints generated is O(n2)
in the worst case. These need to be stored during the
processing of pi. 2
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Minimum blocking sets of circles
for a set of lines in the plane
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Abstract

A circle C is occluded by a set of circles C1, . . . , Cn if ev-
ery line that intersects C also intersects at least one of the
Ci, i = 1, . . . , n. In this paper, we focus on determining
the minimum number of circles that occlude a given circle
assuming that all circles have radius 1 and their mutual dis-
tance is at least d. As main contribution of this paper, we
present upper and lower bounds on this minimal number of
circles for 2 ≤ d ≤ 4, as well as the algorithms we used to
derive them.

1 Introduction

A set of circles C1, . . . , Cn occludes a circle C if every line
that intersects circle C also intersects at least one of these
circles. Such a set of circles is called a blocking set of circles.
In this paper, we discuss the case where all the circles have
radius 1 and the distance between the circles’ centers is at
least d. We present the algorithms we used to determine the
upper and lower bounds on the minimum cardinality of the
blocking sets of circles for different values of d, as well as
the results we obtained.

The problem of an occluded convex shape in a two-
dimensional plane arises in the process of detecting objects
using light beams from arbitrary directions. Here, we limit
ourselves to circular objects of equal size in the plane.

In the literature there is related work on blocking sets in
a projective plane. [4] defines a similar problem and some
solutions are proposed by [2, 1]. Explaining the difference
to the problem in a projective plane is beyond the scope of
this paper. The related literature indicates that this work is
entirely novel - to the best of our knowledge the problem we
investigate has not been studied before.

2 Problem Description

Let C be a unit circle in a two-dimensional plane with its
center positioned at point p0 and let LC be the set of all lines
∗Department of Mathematics and Computer Science, Eindhoven Univer-

sity of Technology, n.jovanovic@tue.nl
†Philips Research Europe, jan.korst@philips.com
‡Philips Research Europe, A.J.E.M.Janssen@philips.com

that intersect C.

Definition 1 (blocking set) Given a set of lines L, a set B
of unit circles is called a blocking set for L if and only if each
line l ∈ L intersects at least one of the circles in B.

A blocking set for L is denoted as B(L).

Definition 2 (d-apart blocking set) Given circle C at po-
sition p0, a blocking set B(L) of n unit circles positioned
at p1, . . . , pn is called d-apart if and only if for each pair
i, j ∈ {0, 1, . . . , n} with i 6= j, the Euclidean distance
d(pi, pj) ≥ d, for a given distance d.

Note that not only the mutual distance between the centers
of the circles in B(L) needs to be at least d, but also the
distance to the center of circle C.

Problem 1 (Minimum blocking set problem) Given a unit
circle C, corresponding set LC of lines and distance d, find
a d-apart blocking set B(LC) of minimum cardinality.

The cardinality of a minimum blocking set for given d is
denoted as Nd.

Let d be a given distance with 2 ≤ d ≤ 4. The Minimum
blocking set problem has a simple solution [3] of cardinal-
ity 4 for d = 2; see Figure 1. Each line that has at least
one intersection point with the circle C in the middle, also
has non-empty intersections with at least one of the 4 circles
around it.

Figure 1: Minimum blocking set for d = 2.

Another example of a blocking set is shown in Figure 2.
For d = 4, the 15 light shaded circles positioned at points
of a regular triangular grid, as illustrated below, block all the
lines that intersect the circle in the middle.

Figure 2: Example of a blocking set: 15 circles block all
lines that intersect the dark circle in the middle.

The problem of determining Nd for an arbitrary distance
d > 2 is difficult. We derive upper and lower bounds on Nd
using two different approaches that we explain in detail in
Section 3 and Section 4, respectively.
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Next, we elaborate on the properties of a blocking set.
Let a d-apart blocking set B(LC) be positioned at points
p1, p2, . . . , pn. We say that the position pi of a circle in
B(LC) is closest if and only if d(p0, pi) ≤ d(p0, p) for all
points p on the line through p0 and pi for which it holds that
d(p, pj) ≥ d, j = 0, . . . , n, j 6= i .

Definition 3 (maximally shrunk blocking set) A d-apart
blocking set B(LC) is maximally shrunk if and only if every
circle of B(LC) is on of its closest positions.

A setB of circles is said to dominate another set of circles
B′ if and only if all lines that are blocked by B′ are also
blocked by B.

Lemma 1 Any d-apart blocking set B(LC) is dominated by
a maximally shrunk d-apart blocking set B′(LC).

Proof. Let pi be the position of an arbitrary circle of the
blocking set B(LC) and let p′i be the corresponding closest
position of the circle of the maximally shrunk blocking set
B′(LC) (see Figure 3).

By elementary calculus it can be shown that every line
blocked by the circle at pi is also blocked by the circle at p′i.

�

Figure 3: Every line blocked by the circle at pi is also
blocked by the circle at p′i.

As a consequence of Lemma 1, there are optimal solu-
tions of the minimum blocking set problem within the class
of maximally shrunk blocking sets.

3 Deriving upper bounds

In this section, we construct a special class of blocking sets
providing upper bounds on Nd. We focus on blocking sets
that have an even number k of circles at a distance d from
the center of the given circle C, such that they form a regular
polygon, with either k = 4 or k = 6.

Each of these first k circles blocks some lines from the
given set LC . The remaining set of lines, denoted as L′C , can

be subdivided into disjunct bundles of lines. For k = 4 and
k = 6, we obtain 2 and 3 bundles, respectively (see Figure
4).

Figure 4: The remaining sets of lines grouped as disjunct
bundles of lines.

Definition 4 (bundle of lines) A bundle of lines L(pi, pj)⊂
L′C between two adjacent circles positioned at pi and pj con-
tains a line l ∈ L′C if and only if l intersects the line segment
pipj and d(pi, l) ≥ 1, d(pj , l) ≥ 1.

Note that the pairs of diametrically opposite circles from
the first k circles define identical bundles of lines.

Let L(pi, pj) be a bundle of lines and let l′ be a line such
that p0 ∈ l′ and l′ /∈ L(pi, pj). The two lines t and t′ of
the bundle L(pi, pj) that form the largest and the smallest
angle with the line l′ are called extremal lines and the angle
between them is denoted as θ. Note that the lines t and t′ are
tangent to the circles Ci and Cj positioned at pi and pj .

We can now define a subproblem of the minimum block-
ing set problem as follows.

Problem 2 (Bundle blocking problem) Given a bundle of
lines L(pi, pj)⊂L′C , find a blocking set B(L(pi, pj)) of min-
imum cardinality, such that the blocking set B(L(pi, pj)) ∪
{Ci, Cj} is d-apart.

Given the restriction on the mutual distance, for each of
the circles we define a boundary circle that determines the
region in which it is not possible to place any additional cir-
cles. Therefore, a blocking set for a bundle of lines can be
chosen to consist of the circles positioned between the ex-
tremal lines and on or outside the boundary circles (see the
shaded area in Figure 5 as an example).

Figure 5: An example of a bundle of lines.

Every additional circle that we place in the shaded area
reduces the set of lines of the bundle. However, depending
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on the position of the added circle, the non-blocked lines can
all be in one bundle or can be separated into two disjunct
bundles. In both cases, the angle(s) between the extremal
lines of the new bundle(s) is/are strictly smaller than the an-
gle between the extremal lines before placing the additional
circle.

Next we propose a heuristic algorithm that tries to block a
given bundle of lines L(pi, pj) by 1, 2, 3, 4, or 5 circles. We
discuss each of the cases separately.

Blocking a bundle by 1 circle. To test whether or not
one circle can block all the lines, we use a simple procedure.
Let t and t′ be the two extremal lines of L(pi, pj) and let θ
be the angle between them. Let p̄ be the intersection point
of the bisector of the angle θ and a boundary circle, such
that p̄ is not in the interior of any other boundary circle. If
d(p̄, t) ≤ 1, it is possible to block the bundle with one circle
(see Figure 6 - left).

Figure 6: Blocking bundles of lines by one circle (left) and
two circles (right).

Blocking a bundle by 2 circles. The essential part of the
test whether or not two circles can block a given bundle is
the observation that the first added circle can be chosen to
be tangent to one of the extremal lines. Otherwise, it would
separate the bundle into two disjunct bundles, requiring at
least two additional circles for the blocking. Therefore, we
add one circle to the closest position such that one of the
extremal lines is tangent to the circle and test whether or not
the rest of the lines (new bundle) can be blocked by one circle
(see Figure 6 - right).

To test whether a bundle can be blocked by 3 or more cir-
cles, we need an additional construction method: find the
closest position of one circle such that one of the new bun-
dles of lines defined by that circle can be blocked by ex-
actly one circle. The specific positions of the two circles can
be found using analytic geometry and considering different
cases, but we leave out the discussion in the interest of space.

Different positions of the first added circle result in dif-
ferent bundles of non-blocked lines. Therefore, we consider
some cases of that positioning for testing whether the given
bundle can be blocked by 3 or more circles.

Blocking a bundle by 3 circles. The analysis is by con-
sidering two cases. In the first case, we add the first circle
such that it is tangent to one of the extremal lines. Then, the

non-blocked lines are in one bundle, and we test whether or
not these can be blocked by 2 circles.

In the second case, we use the construction method men-
tioned above to find the position of the first circle such that
one of the two new bundles of lines can be blocked by ex-
actly one circle. Then, we check whether the non-blocked
bundle of lines can be blocked by 1 circle.

Blocking a bundle by 4 circles. This test consists of
checking two cases, as in the test with 3 circles. In the
first case, we add one circle such that it is tangent to one
of the extremal lines and check whether the new bundle can
be blocked by 3 circles.

In the second case, we add two circles using the construc-
tion method and check whether the remaining bundle can be
blocked by 2 circles.

Blocking a bundle by 5 circles. Besides the two cases
similar to those in tests with 3 and 4 circles, we have an addi-
tional one: we place the first circle at the intersection point of
the angle bisector and a boundary circle and check whether
both new bundles of lines can be blocked by 2 circles.

Blocking the lines by 6 or more circles has been consid-
ered. However, experimental results show that the bundles
of lines defined by the first 4 or 6 circles on regular polygon
positions can be blocked by at most 5 circles for 2 ≤ d ≤ 4.

4 Deriving lower bounds

In this section, we explain the approach we use to obtain
lower bounds on Nd. For this, we consider the set L ⊂ LC

that consists of all the lines from LC that pass through the
center p0 of the given circleC. The cardinality of a minimum
blocking set B(L) represents a lower bound on Nd since
L ⊂ LC . A minimum blocking set B(L) can be constructed,
since one can prove that in the set of minimum blocking sets
for L, there are always non-overlapping ones, i.e. blocking
sets for which the intersection of lines blocked by any two
pairs of circles consists of at most one (tangent) line. The
number of non-overlapping blocking sets for L of cardinal-
ity N can be reduced to a few cases, where for each case, we
can determine the largest value of d possible for that case.
The example in Figure 7 shows the optimal non-overlapping
blocking set B(L) for k = 5. The maximum distance d for
which 5 circles can block the lines from L is simply derived
as d = 1/ sin π

10 .

5 Upper and lower bounds - results

In this section we present the upper and lower bounds on
minimum blocking sets that we obtained by the methods ex-
plained in Sections 3 and 4.

In Figure 8, d is given on the horizontal axis. The number
of circles is given on the vertical axis. For example, for d =
3, we have 5 ≤ Nd ≤ 9.

Obviously, Nd is a monotonic function of d with non-
negative integer values. Table 1 gives the d-values of the
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Figure 7: Every line passing through the center of the middle
circle is blocked by at least one of the 5 circles around it.

Figure 8: Upper and lower bounds on the cardinality of min-
imum blocking sets.

points where the bounds on that function change value. The
d-value of the lower bound point L4 is

d4 =1/
√

9
16−

1
16y−

1
2

√
9
32 + 1

16 3√18
x+ 1

8x 3√12
+ 3

32y ,

where x= 3
√

81−
√

6549 and y=
√

9− 4
x

3

√
2
3 − 2x 3

√
4
9 .

i 1 2 3 4 5
Ui 2 2.2361 2.5776 3.0551 3.5914
Li 1/ sin π

6

√
8√

5−
√

13
1/ sin π

10 d4 4 cos π
14

Table 1: Values of d where upper bounds Ui and lower
bounds Li change value.

By randomly generating maximally shrunk blocking sets,
we did not obtain sets with less circles than the correspond-
ing upper bounds. This indicates that probably the lower
bounds can be improved.

6 Conclusions

In this paper we investigated the two-dimensional geomet-
rical problem of “blocking” lines that intersect a given unit
circle with unit circles. The circles are positioned in such a
way that the distance between every two circles is at least a
given distance d. We focused on the minimum number Nd
of circles that block the lines under given conditions.

The given problem is difficult and we did not find straight-
forward solutions for it. Our approach has been to consider
examples of some simple positionings of circles and down-
size the problem to the point where we can easily deter-
mine the minimum number of circles needed for the com-
plete blocking. In that way, we provided upper bounds on
Nd. We also proposed provable lower bounds on Nd.

The main challenge of this work still remains - finding the
minimal number of circles that can cause occlusion for given
minimal mutual distance between the circles. The prob-
lem can be generalized and investigated in three-dimensional
space, as the problem of minimum blocking sets of spheres
for a set of lines. Furthermore, one can investigate the
asymptotic behavior of Nd (for d → ∞), generalize to
shapes other than circles, or to blocking half-lines instead
of lines. Additionally, one can investigate to what extend
values of Nd are affected, if circle positions are restricted to
points in a grid.
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1 Introduction

Background. Consider a cellular network consisting of
a set of base stations, where the signal from a given base
station can be received by clients within a certain dis-
tance from the base station. In general, these regions
will overlap. For a client, this may lead to interference
of the signals. Thus one would like to assign frequen-
cies to the base stations such that for any client within
reach of at least one base station, there is a base station
within reach with a unique frequency (among all the
ones within reach). The goal is to do this using only
few distinct frequencies. Recently, Even et al. [5] intro-
duced conflict-free colorings, as defined next, to model
this problem.

Let S be a set of n objects, and let R be a, possibly
infinite, family of ranges. In this paper, we only consider
objects and ranges that are subsets of R2, or sometimes
of R1. For a range r ∈ R, let S(r) be the subset of
objects from S intersecting the range r. A conflict-free
coloring (CF-coloring) of S with respect to R is a color-
ing of S with the following property [5]: for any range
r ∈ R for which S(r) 6= ∅ there is an object o ∈ S(r)
with a unique color in S(r), that is, with a color not used
by any other object in S(r). Trivially, a conflict-free col-
oring always exists: just assign a different color to each
object. However, one would like to find a coloring with
only few colors. This is the conflict-free coloring prob-
lem. Note that if we take S to be a set of disks—namely,
the regions within reach of each base station—and we
take R to be the set of all points in R2, then we get
exactly the range-assignment problem discussed earlier.
However, other versions—for example the dual version,
where S is a point set and R is the family of all disks—
are interesting as well.

Related work. The CF-coloring problem for points
with respect to disks was studied by Even et al. [5].
They showed that for this setting one can always find
a CF-coloring using O(log n) colors, which is tight in
the worst case. They also studies CF-colorings for
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points with respect to disks. Har-Peled and Smorodin-
sky [7] extended those results by considering other range
spaces. In particular, they gave sufficient conditions
for a range space to allow a CF-coloring with few col-
ors. Recently, Smorodinsky [8] improved several results
from [5] by providing deterministic coloring algorithms.
Chen et al. [4] and Bar-Noy et al. [2] studied various
CF-coloring problems in an on-line setting. Here the
objects are given one by one, and each object has to be
colored when it arrives, in such a way that the coloring
remains conflict-free at all times.

Our results. Base stations in cellular networks are of-
ten not completely reliable: every now and then some
base station may (temporarily or permanently) fail to
function properly. This leads us to study fault-tolerant
CF-colorings: colorings that remain conflict-free even
after some objects are deleted from S. More precisely,
a k-fault-tolerant CF-coloring (k-FTCF-coloring) is a
coloring that remains conflict-free after an arbitrary col-
lection of k objects is deleted from S. Thus a k-FTCF-
coloring for k = 0 is simply a standard CF-coloring.

Such colorings for points with respect to disks were
also studied by Abellanas et al. [1], who showed that any
set of n points admits a k-FTCF coloring with respect
to disks that uses O(k log n) colors—see Section 2. We
show that this is tight, and we obtain upper and lower
bounds on the worst-case number of colors needed in
fault-tolerant colorings for various other types of range
spaces. We also obtain results on region-fault-tolerant
CF-colorings (region-FTCF-colorings): colorings that
remain conflict-free after the objects intersecting a geo-
metric fault region are deleted from S.

2 k-FTCF coloring of points with respect to disks

In this section we study conflict-free colorings of a point
set P = {p1, . . . , pn} in the plane with respect to the
family D of all disks in the plane.

The algorithm for k = 0 from Even et al. [5] for this
case works as follows. Compute a maximal independent
set of the Delaunay triangulation of P; assign all points
in the independent set color 1; recursively assign colors
to the rest of the points, not using color 1 anymore.
(Thus in the i-th recursive call, the color i is assigned
to the points in the independent set.)

As observed by Abellanas et al. [1], generalizing this
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algorithm to k > 1 is rather easy: we only need to
replace the Delaunay triangulation by the set of all k-
order Delaunay edges [6]. (Two points p, q ∈ P form
a k-order Delaunay edge if and only if there is a disk
containing p and q and at most k other points.) This
results in the following theorem.

Theorem 1 For any set P of n points in the plane,
there is k-FTCF coloring with respect to disks that uses
O(k log n) colors, and this is tight in the worst case.

Proof. The correctness proof and analysis of the num-
ber of colors1 of the method described above were al-
ready given by Aballenas et al. For completeness, we
summarize their argument.

To show that the algorithm produces a k-FTCF col-
oring, let D be a disk containing at least one point. If
every point inside D has a unique color, we are done.
Otherwise, let i be the maximum color appearing in the
disk at least twice. We shrink the disk until it contains
exactly two points p and q of color i. Since p and q
are in the independent set in the i-th step of the algo-
rithm, there must be at least k + 1 points in the shrunk
disk. By the choice of i, all these points have different
colors. Hence, even after deleting k of those points we
still have a unique color inside D. To prove the bound
on the number of colors, we use that there are O(kn)
k-order Delaunay edges [6], which implies there is an in-
dependent set of size Ω(n/k). If C(n) denotes the num-
ber of colors used by the algorithm, we therefore have
C(n) = 1 + C(n− Ω(n/k)). Hence, C(n) = O(k log n).

Next we prove the lower bound (which was not given
in [1]). Consider a set P of n points on the x-axis. Ob-
viously, there must be k + 1 points with a unique color.
We split the points into two roughly equal size subsets,
A and B, such that all points in A are to the left to all
points in B. One subset, say A, must contain at least
d(k + 1)/2e points with a unique color. In particular,
those colors are not used in B and we can recurse on B.
If C(n) denotes the minimum number of colors needed
for P, we thus have C(n) ≥ (k + 1)/2 + C(n/2). Hence,
C(n) = Ω(k log n). �

3 k-FTCF coloring of disks with respect to points

We now turn our attention to the case where we want
to color a set of disks with respect to points. We start
with the 1-dimensional version of this problem, where
the set of objects is a set I = {I1, . . . , In} of n intervals
on the real line. Our algorithm consists of two phases.

Phase 1: We process the intervals one by one, as fol-
lows. To process Ij , we check if every point in Ij is

1Aballenas et al. give a bound of log n/ log(24k/(24k − 1)) on
the number of colors, but it is easy to see that this is O(k log n).

contained in at least k + 1 intervals from the current
set I. If this is the case, we assign color 0 to Ij and
remove Ij from I, otherwise Ij stays in I and does not
get a color yet.

We claim that after Phase 1, every point q is con-
tained in at most 2k + 2 intervals. Indeed, the k + 1
intervals containing q and extending the farthest to the
left, and the k + 1 intervals containing q and extending
the farthest to the right, must cover every other inter-
val containing q. Hence, any such other interval will be
removed in Phase 1.

Phase 2: Now we color the remaining intervals, only
using colors from the set S = {1, . . . , d(3k + 3)/2e +
1}. To this end, we sweep from left to right. When
the sweep arrives at the left endpoint of an interval I,
we assign a color to I, as follows. Let SI be a set of
forbidden colors for I in the sense that if we assign one
of them to I, then the collection of intervals colored so
far is not a k-FTCF anymore. We take an arbitrary
color from S\SI and assign it to I.

Theorem 2 For any set of n intervals on the real line,
there is a k-FTCF coloring with respect to points that
uses d(3k + 3)/2e + 2 colors. Moreover, for any n ≥
2k + 2, there is a set of n intervals such that any k-
FTCF coloring needs at least d(3k + 3)/2e colors.

Proof. To prove the upper bound, consider the algo-
rithm described above. The intervals with color 0 can
be ignored: any point contained in such an interval is
contained in at least k + 1 intervals from the set I pro-
cessed in Phase 2, and we will show that Phase 2 pro-
duces a k-FTCF coloring. To show this, it suffices to
argue that the algorithm does not get stuck. Thus we
must prove that S\SI is not empty when some interval
I is processed. Let p be the left endpoint of I. If p
is contained in at most k other intervals, we are done,
since |SI | ≤ k in this case. Otherwise, let q ∈ I be the
leftmost point that is contained in exactly k+1 intervals
with unique colors. Such a point exists, because (i) p
is contained in at least k + 1 uniquely colored intervals,
(ii) there is a point on I contained in at most k intervals
due to Phase 1, and (iii) the current k-FTCF coloring
is valid. Since at most 2k + 2 intervals contain q and
exactly k + 1 of these intervals have unique colors, the
number of colors which is used to color intervals con-
taining q is at most k + 1 + d(k + 1)/2e = d(3k + 3)/2e.
Hence, there is at least one color, j, not used by an in-
terval containing q. We claim that j is not forbidden.
Indeed, points in I to the left of q have at least k + 2
unique colors by the choice of q, so we do not have to
worry about them. Moreover, an interval that already
has a color and contains a point to the right of q also
contains q, so such an interval will not have color j.
Hence, j is not forbidden.
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CCCG 2008, Montréal, Québec, August 13–15, 2008

To prove the lower bound, it suffices to look at the
case n = 2k+2. Let A be a set of k+1 intervals starting
at x = 1 and ending at x = 2, and let B be a set of k+1
intervals starting at x = 2 and ending x = 3. Consider
a k-FTCF coloring of A ∪ B. At point x = 2, there
must at least k + 1 unique colors. Therefore, one of the
sets, say A, contains at least d(k + 1)/2e unique colors.
Consider the point x = 3. Since exactly k + 1 intervals
contain p, then all of them must have different colors.
Therefore, there are at least k +1+d(k +1)/2e different
colors. �

Now we go back to the 2D problem, namely k-FTCF
coloring of a set D = {D1, . . . , Dn} of n disks with re-
spect to points. Our algorithm is based on a general-
ization of admissible subsets [7], defined as follows. We
say that D̂ is an admissible subset of D if for every point
p ∈ R2 at least one of the following conditions holds:

1. p 6∈
⋃
D̂.

2. p ∈
⋃
D̂, but only one of the disks in D̂ contains p.

3. p ∈
⋃
D̂, and there are k disks in D\D̂ containing p.

We will show that for a set D there is an admissi-
ble subset of size Ω(n/k). Based on this fact, our al-
gorithm is as follows. Compute an admissible subset,
assign to all disks in the admissible subset the color 1,
and color the remaining disks recursively (where in the
i-th step we assign the color i). If C(n) is the num-
ber of colors used by the algorithm, we have C(n) =
1 + C(n − Ω(n/k)) which gives us C(n) = O(k log n).
The following example shows that our algorithm is tight.
Consider n disks with radius 1 whose centers are on a
line and that have a common point on the line. It is easy
to see that for any m (1 ≤ m ≤ n) consecutive disks
there is a point just contained in those disks. There-
fore, the same lower-bound proof given in Section 2 can
be applied here.

Theorem 3 For any set of n disks in the plane, there
is a k-FTCF coloring with respect to points that uses
O(k log n) colors, and this bound is tight in the worst
case.

Proof. (Sketch.) The lower bound has been described
above. To prove the upper bound, we need to prove
our claim that we can always find an admissible subset
of size Ω(n/k). The proof of this fact is similar to the
proof of Har-Peled and Smorodinsky [7] for the non-
fault-tolerant case. Here we sketch the basic steps in
our proof.

Following Har-Peled and Smorodinsky, we randomly
and independently color each disk in D black or white,
each with probability 1/2. We say a point p is unsafe if
it is contained in at least two black disks and at most
k white disks. We construct a graph G over the black

disks, connecting two black disks if there is an unsafe
point in their intersection. Note that any independent
set of G is an admissible subset. As [7] showed, G has at
least n/3 vertices with high probability. We show that
G has O(kn) edges, which implies there is an admissible
subset of size Ω(n/k). To show that G has O(kn) edges,
we proceed as follows. For any point p in the plane,
let d(p) denote the number of disks containing p. The
probability that p is unsafe (for points p with d(p) >

1) is (1/2d(p))
∑k

i=0

(
d(p)

i

)
. We can use this to bound

the expected number of edges created by unsafe points,
which we then use to bound the overall number of edges
in G by O(kn). �

4 Region-FTCF coloring

Let F be a family of regions, which we call the fault
regions. For a fault region F ∈ F and a point set P, we
define P	F to be the set of points that remains after the
points inside F have been removed from P. An F-FTCF
coloring of P with respect to disks is a CF-coloring of
P with respect to disks such that for any F ∈ F , the
coloring is a CF-coloring of P	F with respect to disks.
Unfortunately, when F is the set of convex regions, some
sets P require n colors in any F-FTCF coloring with
respect to disks. To see this, consider a set P of n
points on a line. For any two points p, q ∈ P, there is
a convex region F (which is an interval) containing all
points between p and q. Points p and q are adjacent in
P	F , and so they must have different colors.

The concept of region-FTCF coloring can also be de-
fined for disks with respect to points. Let D be a set
of n disks, and define D	F to be set of disks that re-
mains after the disks from D whose centers are inside F
have been removed from D. An F-FTCF-coloring of D
with respect to points is a CF-coloring of D with re-
spect to points such that for any F ∈ F , the coloring is
a CF-coloring of D	F with respect to points.

Unfortunately this variant does not allow a good so-
lution either: there are sets of disks that do not admit
a F-FTCF coloring with few colors, even if F is the
set of half-planes and the radii of the disks are equal.
Consider n disks with radius 1 whose centers lie on a
parabola very close to each other. Let p1, . . . , pn be
the centers of the disks. For any i and j, there is a
half-plane just containing centers pi+1, . . . , pj−1. After
removing the corresponding disks, there is a point in
the plane just contained in the disks whose centers are
pi and pj , which implies those disks must have different
colors. Therefore, every two disks must have different
colors, which means we need n colors.

However, we can get a coloring with few colors for the
1-dimensional version of this problem. Here we have a
set I of n intervals on the real line, and the goal is to
find an F-FTCF coloring with respect to points, where
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(a) (b) (c)

Figure 1: (a) A set of intervals (b) corresponding vertical segments in the xy-plane (c) cone regions.

F is the set of intervals. How to obtain such a coloring
is explained next.

First we assume that all intervals have a common
point (Fig. 1(a)). We map each interval [p, q] with
center c to the vertical segment in the xy-plane start-
ing at (c, p) and ending at (c, q), as depicted in Fig.
1(b). Since the intervals have a common point, there
is a horizontal line intersecting all vertical segments. A
fault region I = [a, b] ∈ F is mapped to a vertical slab
in the xy-plane, whose boundaries intersect the x-axis
in x = a and x = b. Every point p ∈ R1 is mapped
to the horizontal line y = p in the xy-plane. Now the
problem reduces to the following. The goal is to color
the vertical segments such that for every region depicted
in Fig. 1(c) in gray—namely every region consisting of
two axis-aligned cones whose apexes have the same y-
coordinates—there is a segment with a unique color in-
tersecting the region. To find such a CF-coloring, we
apply the general approach: We construct a graph G
over vertical segments, as follows. We connect two ver-
tical segments if there is such a region intersecting just
these two segments. It is easy to show that G has O(n)
edges. Therefore, it has an independent set of size Ω(n).
We color all vertical segments in the independent set
with color 1 and recursively color the rest of intervals.
Since the size of independent set is Ω(n), the number of
color used by the algorithm is O(log n).

If the intervals don’t have a common point, we first
construct an interval tree on the segments. Then we
apply the above algorithm for the intervals stored in
each internal node of the interval tree, where for each
node we use the same set of colors. We then change
the color assigned to each interval as follows: suppose it
received color i and it is stored in a node in the interval
tree at level `. Then the new color of the interval is (i, `).
Since the tree has depth O(log n), the total number of
colors used by the algorithm is O(log2 n). Moreover,
any two intervals stored at different nodes on the same
level are disjoint, so this produces a valid coloring.

Theorem 4 Let F be the family of all intervals on the
real line. For any set of n intervals on the real line,
there is an F-FTCF coloring with respect to points that
uses O(log2 n) colors.
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A Pumping Lemma for Homometric Rhythms

Joseph O’Rourke∗ Perouz Taslakian† Godfried Toussaint‡

Abstract

Homometric rhythms (chords) are those with the same
histogram or multiset of intervals (distances). The
purpose of this note is threefold. First, to point out
the potential importance of isospectral vertices in a
pair of homometric rhythms. Second, to establish a
method (“pumping”) for generating an infinite sequence
of homometric rhythms that include isospectral vertices.
And finally, to introduce the notion of polyphonic homo-
metric rhythms, which apparently have not been previ-
ously explored.

1 Introduction

Both chords of k notes on a scale of n pitches, and
rhythms of k onsets repeated every n metronomic
pulses, are conveniently represented by n evenly spaced
points on a circle, with arithmetic mod n, i.e., in the
group Zn. This representation dates back to the 13th-
century Persian musicologist Safi Al-Din [Wri78], and
continues to be the basis of analyzing music through
geometry [Tou05] [Tym06]. Such sets of points on a
circle are called cyclotomic sets in the crystallography
literature [Pat44] [Bue78]. It is well-established that
in the context of musical scales and chords, the inter-
vals between the notes largely determine the aural tone
of the chord. An interval is the shortest distance be-
tween two points, measured in either direction on the
circle. This has led to an intense study of the inter-
val content [Lew59]: the histogram that records, for
each possible interpoint distance in a chord, the num-
ber of times it occurs. This same histogram is studied
for rhythms [Tou05] and in crystallography.

Of special interest are pairs of noncongruent
chords/rhythms/cyclotomic sets that have the same his-
togram: the sets are homometric in the terminology of
Lindo Patterson [Pat44], who first discovered them. In
crystallography, such sets yield the same X-ray pattern.
In the pitch model, they are chords with the same in-
terval content. One of the fundamental theorems in
this area is the so-called hexachordal theorem, which
states that two non-congruent complementary sets with

∗Department of Computer Science, Smith College, Northamp-
ton, MA 01063, USA. orourke@cs.smith.edu

†School of Computer Science, McGill University, Montreal,
Canada. perouz@cs.mcgill.ca

‡School of Computer Science, McGill University, Montreal,
Canada. godfried@cs.mcgill.ca

k=n/2 (and n even) are homometric, whose earliest
proof in the music literature is due to Milton Babbitt
and David Lewin [Lew59].

Henceforth we specialize to the rhythm model, with
each (n, k)-rhythm specified by k beats and n−k rests
on the Zn circle; and we specifically focus on the struc-
ture of homometric rhythms. Figure 1 shows a pair of
homometric rhythms with (n, k)=(12, 5).
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Figure 1: Homometric (n, k)=(12, 5) rhythms:
(0, 1, 2, 4, 7) and (0, 1, 3, 5, 6). Vertices 0 and 5
in the first and second rhythms (respectively) are
isospectral.

2 Isospectral Vertices

Let P and Q be two different rhythms, with p ∈ P
and q ∈ Q vertices (onsets) in each. The vertices p
and q are called isospectral1 if they have the same his-
togram of distances to all other vertices in their respec-
tive rhythms. In Figure 1, vertex 0 in the first rhythm,

1The term is used in the literature on Golomb rulers.
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and 5 in the second, are isospectral, with spectrum
{1, 2, 4, 5}.

There are two reasons we consider isospectral vertices
of potential significance. The first is that removal of a
pair of isospectral vertices from a pair of (n, k) homo-
metric rhythms leaves a homometric pair of (n, k − 1)
rhythms. This raises the possibility of shelling : remov-
ing a particular onset from a rhythm while retaining
a certain property. Shellings of Erdős-deep rhythms
are studied in [DGMM+08]. Here we want to perform
shelling by removing an onset from each rhythm while
keeping the pair homometric.

Shellings of rhythms play an important role in mu-
sical improvisation. For example, most African drum-
ming music consists of rhythms operating on three dif-
ferent strata: the unvarying timeline usually provided
by one or more bells, one or more rhythmic motifs
played on drums, and an improvised solo (played by the
lead drummer) riding on the other rhythmic structures.
Shellings of rhythms are relevant to the improvisation
of solo drumming in the context of such a rhythmic
background. The solo improvisation must respect the
style and feeling of the piece, which is usually deter-
mined by the timeline. A common technique to achieve
this effect is to “borrow” notes from the timeline, and
to alternate between playing subsets of notes from the
timeline and from other rhythms that interlock with
it [Ank97][Aga86]. The borrowing of notes from the
timeline may be regarded as a fulfillment of the require-
ments of style coherence, and shellings can be viewed as
capturing a particular type of borrowing that achieves
coherence through homometricity.

Second, as we show in Lemma 1 below, the presence
of an isospectral pair permits “pumping” the rhythms to
homometric pairs based on a larger n′ > n. So isospec-
tral pairs serve as a natural “pivot” from which to gen-
erate new homometric pairs from old ones both by re-
moving or adding onsets.

This naturally raises the question of whether every
homometric pair of rhythms must contain an isospectral
pair of vertices. The answer is no, as illustrated in
Figure 2. We leave further investigation of isospectral
vertices and shellings to future work.

3 The Pumping Lemma

Let P and Q be a homometric pair of (n, k)-rhythms
on Zn, with isospectral vertices p ∈ P and q ∈ Q. We
define an (m, r)-pumping of P and Q, m ≥ 1, r ≥ 0, to
be a new pair of (n′, k′) rhythms P ′ and Q′ on Zn′ , with
n′ = mn and k′ = k + 2r, obtained by replacing p in P ′

with p + {0,±1,±2, . . . ,±r}, and similarly replacing q
in Q′ with q + {0,±1,±2, . . . ,±r}.

Figure 3 shows a (m, r)=(3, 2)-pumping of the homo-
metric pair from Figure 1 based on the isospectral pair
p=0 and q=5. The original (n, k)=(12, 5) rhythms have
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Figure 2: A pair of (n, k)=(16, 9) homometric rhythms
that has no isospectral pair of vertices, but does have a
pair of two-vertex sets that is isospectral, {1, 9} in (a)
and {2, 10} in (b).

been pumped to (n′, k′)=(36, 9) rhythms. The “pump-
ing” occurs both in n → mn and in k → k+2r, although
it may be that m=1 in which case n′=n, or r=0 in which
case k′=k.
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Figure 3: Pumping p=0 and q=5 in Fig. 1 with m=3,
r=2, n′=mn=36. The rhythm is monophonic.

The literature focuses on monophonic rhythms, those
whose vertices form a set with no repeated elements.
The pumping lemma can produce polyphonic rhythms,
ones in which at least one vertex has multiplicity greater
than 1, i.e., the onsets form a multiset. These will be
discussed further in Section 4.
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Lemma 1 (Pumping) Let P and Q be a homomet-
ric pair of (n, k) monophonic rhythms, with isospectral
vertices p ∈ P and q ∈ Q. Then any (m, r)-pumping
of P and Q creates a new homometric pair P ′ and Q′,
also containing an isospectral pair. If m ≥ r + 1, then
the new rhythms are monophonic; if m ≤ r, the new
rhythms could be polyphonic.

Proof. Call the vertices p + {0,±1,±2, . . . ,±r} in P ′

p′−r, . . . , p
′
−2, p

′
−1, p

′
0, p

′
1, p

′
2, . . . , p

′
r

and similarly for the q replacements in Q′.
To prove that P ′ and Q′ are homometric, let (x′, y′)

be a segment between two vertices of P ′. Consider three
cases.

1. Neither x′ nor y′ is among the p′i. Then d(x′, y′) =
md(x, y), where x and y are the corresponding ver-
tices in P .

2. y′ = p′i. Here there are two subcases. Let d(x, y) =
d(x, p) = d. Note that the diameter of the circle
Zn is n/2.

(a) d = n/2; or r ≤ n/2 − d. (Figure 4(a)).
Consider the latter inequality. It means that
d ± r does not extend beyond the diameter
n/2, so that the p′±i points and x′ all fit in-
side a semicircle, as in (a) of the figure. Then
d(x′, p′±i) = md ± i or md ∓ i, depending on
whether the path x → p or p → x is shorter,
respectively. So, what was the distance d in P
between x and y=p becomes the distance set
{md− r, . . . , md− 1,md,md + 1, . . . ,md + r}
in P ′. If d is the diameter n/2, then the dis-
tance set is {md,md−1,md−1,md−2,md−
2, ...,md− r, md− r}.

(b) r > n/2 − d (Figure 4(b)). Here d ± r does
extend beyond the diameter n/2, at which
point its increase or decrease reverses direc-
tion. In (b) of the figure, the new distance set
is {md− 2,md− 1,md,md + 1,md}.

3. Both x′ and y′ are among the p′i. Here we get a
clique of new distances among the p′i.

In any of these three cases, call the new distance set
D = {d(x′, p′±i) : i = 0, . . . , r}.

So now we see, in the P → P ′ transition, either
the change d → md or d → D. But we see exactly
the same distance changes in the Q → Q′ transition.
For the distances not involving q are stretched by m,
and the distances involving q′i get stretched by m ± i,
i = 0, . . . , r. Because P and Q are homometric, all the
former changes are identical between them, and because
p and q are isospectral, all the latter changes are identi-
cal between them. Even in the case where the inflation
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Figure 4: (a) The inflation fits inside a semicircle:
r=2, new distances {md − r, . . . , md − 1,md,md +
1, . . . ,md + r}. (b) The inflation crosses a diameter,
here at (x′, p′−1).

of (x, p) crosses a diameter in the P → P ′ inflation,
there is a point z ∈ Q that achieves the same distance
d(x, p) = d(z, q) (because p and q are isospectral), so the
crossing-diameter behavior, and the distance set D, is
exactly mirrored in the Q → Q′ transition.2 Therefore,
P ′ and Q′ are homometric.

The counterparts of p and q, p′0 and q′0, are isospectral
in P ′ and Q′, because their distance spectra are simply
scaled by m (most clearly seen in Figure 3).

We turn now to the mono- and polyphonic claims
of the lemma. It should be clear that if we inflate by
m ≥ r + 1, then the closest vertices, separated by 1 in
P , become separated by ≥ r + 1 in P ′, which is enough
to accommodate the addition of r new vertices to each
side of p. (If the closest vertices are separated by more
than 1, then even smaller inflation will avoid overlap.)
Continuing our example, inflation by m=r+1=3 suffices
to avoid overlap and so maintain a monophonic rhythm,
as illustrated in Figure 3.

When m ≤ r, there could be overlap of the newly
added vertices on top of the old vertices. So the result-
ing rhythm may be polyphonic. However, the rhythms
are still homometric, where we treat vertices with multi-
plicity more than 1 as if they were distinct vertices (and
distance 0 is ignored). This is illustrated in Figure 5,

2An instance of this behavior is illustrated in Figure 5 below,
where the set D for segments (7, 0) ∈ P and (0, 5) ∈ Q have
inflated distance set D = {3, 4, 5, 6, 5}.

101



20th Canadian Conference on Computational Geometry, 2008

where we have used m=1, i.e., n′=n. �

The inspiration for the transformation described in
this lemma is Property 7 in [AG00], which similarly in-
flates a particular pair of homometric quadrilaterals by
replacing a vertex in each by a sequence of vertices, and
increasing n to accommodate. However, their inflation
does not rely on isospectral vertices, and appears to only
work on that specific quadrilateral pair.

Corollary 2 From any pair of rhythms satisfying the
preconditions of the pumping lemma, we can generate
an infinite sequence of increasingly larger homometric
pairs.

Proof. Because (P ′, Q′) again contain an isospectral
pair, a pumped pair can be pumped again. �

Given the preconditions of the pumping lemma, it
would be useful to characterize the homometric pairs of
rhythms that contain an isospectral pair of vertices.

4 Polyphonic Rhythms

As mentioned in the proof above, if we do not pump
n enough to accommodate the pumping of k without
overlap, i.e., when m ≤ r, an (m, r)-pumping may con-
vert a monophonic rhythm to a polyphonic rhythm. In
general, vertices of a rhythm have integer weights repre-
senting their multiplicity. In Figure 5, two vertices have
weight 2 whereas all others have weight 1. The inter-
val histogram still makes sense by treating a vertex of
weight w as w-distinct colocated vertices. For example,
in the histogram of the first rhythm, the distance 6 is
achieved three times: by (10, 4) and twice by (7, 1) be-
cause vertex 1 has weight 2. And the pumping lemma
still guarantees homometricity.

One could interpret onsets of weight greater than 1
as representing greater emphasis, or several drums with
different timbre, or several voices sounded in unison in
the pitch model, each an octave apart from the oth-
ers (an elementary form of harmony). Homometric-
ity in polyphonic rhythms is an apparently unexplored
topic, which we believe opens new directions for re-
search in music theory. For example, we have estab-
lished that the hexachordal theorem extends to poly-
phonic rhythms (and beyond) [BBGM+08]. Shellings
of polyphonic rhythms are also a natural topic of inves-
tigation.
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Abstract

Let P be the point set in two dimensional plane. In
this paper, we consider the problem of locating two iso-
thetic unit squares such that together they cover maxi-
mum number of points from P . In case of overlapping,
the points in their common zone are counted once. To
solve the problem, we propose an algorithm that runs
in O(n2 log2 n) time using O(n log n) space.

1 Introduction

Encloser problems of many variations involving a point
set P = {p1, p2, . . . , pn} have been extensively studied in
computational geometry. Problems of computing small-
est enclosing circle [15], triangle [4, 11, 14], square and
rectangle [17] are well known. The problem of find-
ing the smallest enclosing convex polygon is the famous
convex hull problem.

Finding the smallest region of given type that contains k
points of P , that is, the problem of computing smallest
k enclosing region is an important variation of enclo-
sure problem. Efrat et al. [9, 12] studied the problem
of computing smallest k-enclosing circle and k-enclosing
homothetic copy of a given convex polygon. Eppstein
and Erickson [10] studied a number of extensions in-
cluding finding subsets of size k from the given set P
that minimize area, perimeter, diameter, and circumra-
dius. Problems of computing k-enclosing rectangles and
squares are also studied [1, 5, 8, 10, 16] extensively.

A closely related problem is to find the placement of
one or more copies of a given region to maximize the
size k of the subset covered. In other words, instead
of fixing k and computing an optimal enclosing region,
the problem is to maximize the number of points cov-
ered by the given region(s) of fixed size and shape. This
type of problem has similar applications as the problems
mentioned above. These so called problems of maximal
covering by convex objects has also received attention of
many researchers. Barequet et al. [2] proposed an algo-
rithm to cover maximum number of points from a planar
point set P by a given convex polygon with m vertices
in O(nk log(mk) + m) time using O(m + n) space. In
the context of bichromatic planar point set, Diaz-Banez
et al. [7] proposed algorithms for maximal covering by
two disjoint isothetic unit squares and circles in O(n2)

∗University of Kalyani, Kalyani, India
†Indian Statistical Institute, Kolkata, India

and O(n3 log n) time respectively. They later improved
the complexities to O(n log n) and O(n8/3log2n) time
respectively [6]. The optimal O(n log n) time algorithm
for the maximal covering by two disjoint isothetic unit
squares was proposed by Mahapatra et al. [13].

In this paper we consider another natural variation of
the maximal covering problem. We study the problem of
computing two isothetic unit squares, which may not be
disjoint, such that together they cover maximum num-
ber of points from P . In case they are overlapping,
points in their common zone are counted once. Our
proposed algorithm for the problem runs in O(n2 log2 n)
time and uses O(n log n) space.

2 Overview

Let P be the set of n points in two dimensional plane
and R1 and R2 be two isothetic unit squares. Our objec-
tive is to compute placement of R1 and R2 such that the
number of points in the region R1 ∪ R2 is maximized.
Number of points contained by a region R is denoted
by |R|. In the optimal placement, following cases may
occur.

• The squares are disjoint.

• The squares are overlapping and the common zone
is empty.

• The squares are overlapping and the common zone
is nonempty.

In case the optimal solution belongs to first two cases,
the solution can be reported using the algorithms pro-
posed by Mahapatra et al. [13]. When the optimal so-
lution is overlapping, our proposed algorithm returns
the optimal pair. We must concentrate in locating the
optimal pair of squares on the region where there is a
possibility of overlap between two squares. Note that, a
pair of squares having same top boundary or same left
boundary cannot be the optimal pair. In case R1 and
R2 have an overlapping region, then depending upon
the position of the overlapped region, the placement of
R1 and R2 can be classified into two types as depicted
in Figure 1. We tackle each case separately.

3 Characterization

Consider two arrays Lx and Ly containing the points
of P in ascending order with respect to their x- and
y-coordinates respectively. Let the x-coordinate of the
i-th entry of Lx be xi and similarly the y-coordinate of
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Figure 1: Placement of R1 and R2

the i-th entry of Ly be yi, 1 ≤ i ≤ n. We use the implicit
grid obtained by drawing vertical and horizontal lines
through each point of the given set P . The grid point
(xi, yj), (1 ≤ i, j ≤ n) is generated by the intersection
of the vertical line through the point in the i-th entry
of Lx and the horizontal line through the point in the
j-th entry of Ly. The coordinate of a generic point p is
denoted by (px, py).

A square can be specified using its top left corner. Here,
S(i, j) denotes a square whose top left corner is at
(xi, yj). Consider a horizontal line lα on the grid hav-
ing y-coordinate yα above the square S(i, j) for some
i, j, 1 ≤ i, j ≤ n. Initially we are trying to identify a
square S′ whose top boundary is aligned with lα such
that the square S′ together with S(i, j) cover maximum
number of points and whenever they overlap, configu-
ration of overlapping region is of Type-1 (See Figure
1(a)). Hence we can obtain the optimal pair by choos-
ing all possible S(i, j) and α. Note that, the placement
of the upper square S′ depends upon the choice of α
and the lower square S(i, j). Upper square S′ has the
following characteristics.

(1) Given α and a lower square S(i, j), the upper
square S′ belongs to the set
{S(1, α), S(2, α), . . . , S(i, α)}

(2) If |S(a, α)| ≥ |S(b, α)| where a < b ≤ i then
|S(a, α) ∪ S(i, j)| ≥ |S(b, α) ∪ S(i, j)|.

3.1 Matching

Given an index α, the matching of S(i, j) with respect
to α (α ≥ j) is defined as a square S(k, α) such that
|S(k, α)∪S(i, j)| > |S(k′, α)∪S(i, j)| for k′ = 1, 2, . . . k−
1 and |S(k, α) ∪ S(i, j)| ≥ |S(k′, α) ∪ S(i, j)| for k′ =
k + 1, k + 2, . . . i.

Lemma 1 For a given α and j, α ≥ j, let the matching
of S(b, j) be S(k, α) and the matching of S(c, j), b < c ≤
n be S(k′, α). Then k ≤ k′.

Proof. As the matching of S(b, j) is S(k, α), |S(t, α)−
S(b, j)| < |S(k, α)−S(b, j)| for t = 1, 2, . . . , k−1. Again
(S(b, j)−S(c, j)) ∩ S(t, α)⊆ (S(b, j)−S(c, j)) ∩ S(k, α).
This implies |S(t, α) − S(c, j)| = |S(t, α) − S(b, j)| +
|(S(b, j) − S(c, j)) ∩ S(t, α)| < |S(k, α) − S(b, j)| +
|(S(b, j) − S(c, j)) ∩ S(k, α)| = |S(k, α) − S(c, j)| for
t = 1, 2, . . . , k − 1. Hence the result follows. ¤

Lemma 2 Given indices α and j, α ≥ j, let the match-
ing of both S(a, j) and S(b, j) be S(k, α), 1 ≤ a, b ≤ n.
If a < b then the matching of each S(i, j), a ≤ i ≤ b is
S(k, α).

Proof. Let the matching of S(i, j) be S(k′, α) for some
i, a < i < b. Since the matching of S(a, j) is S(k, α)
and a < i, from Lemma 1, we get k ≤ k′. Similarly, as
the matching of S(b, j) is S(k, α) and i < b so k′ ≤ k.
This implies k = k′. ¤

Given α and j (α > j), for computing matching of all
S(i, j), 1 ≤ i ≤ n, we can reduce the search space from
the fact stated in Lemma 1. Observe that the matching
of S(i, j), for all i can be computed in O(n log n) time.
This implies, for a given α, the matching of all S(i, j)’s,
1 ≤ i ≤ n and α > j, can be computed in O(n2 log n)
time. Hence the matching of all S(i, j)’s, 1 ≤ i ≤ n and
1 ≤ j ≤ n, can be computed in O(n3 log n) time. In this
paper, we propose an algorithm to compute the match-
ing of all possible squares in O(n2 log2 n) time. Below
we describe some more characterizations to achieve the
sub-cubic complexity of the proposed algorithm.

From Lemma 2, we conclude that for given α and j
(α ≥ j), there exists an interval [a, b] such that all
S(i, j)’s for a ≤ i ≤ b are matched with S(k, α) and
the matching of each S(i, j) for b < i ≤ n or 1 ≤ i < a
is different from S(k, α). Here we denote such an in-
terval [a, b] using notation F(S(k, α), j). An interval
F(S(k, α), j) is empty whenever there does not exist any
square S(i, j), 1 ≤ i ≤ n, whose matching is S(k, α).

Observation 1 (a) Intervals F(S(k, α), j) and
F(S(k′, α), j) are disjoint for k 6= k′, 1 ≤ k, k′ ≤ n. (b)
Moreover, if both the intervals are not ∅ and k < k′

then interval F(S(k′, α), j) is on the right side of the
interval F(S(k, α), j). (c)

⋃n
k=1 F(S(k, α), j) = [1, n].

Proof. (a) Note that for a given α and j, the matching
of S(i, j), 1 ≤ i ≤ n is unique and hence F(S(k, α), j)∩
F(S(k′, α), j) = ∅ for k 6= k′. Statement (b) follows
from Lemma 1. ¤

Lemma 3 For a given α and j, α > (j + 1), if the
matchings of S(i, j) and S(i, j + 1) are S(k, α) and
S(k′, α) respectively then k ≥ k′.

Proof. As the matching of S(i, j) is S(k, α), |S(t, α)−
S(i, j)| ≤ |S(k, α) − S(i, j)| for t = 1, 2, . . . , k − 1, k +
1, . . . , i. Again S(t, α) ∩ S(i, j) ⊃ S(k, α) ∩ S(i, j) for
t = k + 1, . . . , i and S(t, α) ∩ S(i, j + 1) − S(i, j) ⊃
S(k, α)∩S(i, j + 1)−S(i, j) for t = k + 1, . . . , i. Hence,
we have |S(t, α) − S(i, j + 1)| ≤ |S(k, α) − S(i, j + 1)|
for t = k + 1, . . . , i. ¤

Observation 2 For a given α and j, α > (j+1), let the
matching of S(i, j) be S(k, α) and (S(i, j+1)∩S(k, α))−
S(i, j) = ∅. Then the matching of S(i, j + 1) is S(k, α).
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Proof. Matching of S(i, j) is S(k, α) and therefore,
|S(k, α)−S(i, j)| > |S(t, α)−S(i, j)| for t = 1, 2, . . . k−1,
and |S(k, α) − S(i, j)| ≥ |S(t, α) − S(i, j)| for t =
k+1, k+2, . . . i. Now, (S(i, j+1)∩S(k, α))−S(i, j) = ∅
implies |S(k, α) − S(i, j + 1)| = |S(k, α) − S(i, j)|.
Hence, |S(k, α) − S(i, j + 1)| > |S(t, α) − S(i, j)| ≥
|S(t, α)−S(i, j +1)| for t = 1, 2, . . . k−1, and |S(k, α)−
S(i, j+1)| ≥ |S(t, α)−S(i, j+1)| for t = k+1, k+2, . . . i.
Hence the result follows. ¤

Lemma 4 For F(S(k, α), j) 6= ∅, α > j +1, either one
of the following is true.

(1) F(S(k, α), j + 1) = ∅
(2) F(S(k, α), j + 1) = F(S(k, α), j)
(3) F(S(k, α), j + 1) ⊂ F(S(k, α), j)
(4) F(S(k, α), j + 1) ⊃ F(S(k, α), j)

There exists at most one value of k, 1 ≤ k ≤ n, that
satisfy Case (3) and similarly, there exist at most one
value of k, 1 ≤ k ≤ n, that satisfy Case (4).

Proof. Let p(xm, yj+1) be a point in P . Suppose
F(S(k, α), j) = [a, b]. If |(S(i, j+1)∩S(k, α))−S(i, j)| =
0 for some i’s, a ≤ i ≤ b, then |(S(r, j + 1) ∩ S(k, α))−
S(r, j)| = 0 for r = i, i+1, . . . , b. In this case, from Ob-
servation 2, the matching of S(r, j+1) is S(k, α). There-
fore, if p /∈ S(k, α) then i = a and F(S(k, α), j + 1) ⊇
F(S(k, α), j). Moreover, if matching of S(b + 1, j) is
S(k′, α) and |(S(b+1, j+1)∩S(k′, α))−S(b+1, j)| = 0,
the matching of S(b + 1, j + 1) is S(k′, α) and then it
implies F(S(k, α), j + 1) = F(S(k, α), j).

Suppose the matching of S(i, j) and S(i, j + 1) are
S(k, α) and S(k′, α) respectively. From Lemma 3,
k′ ≤ k. Let p be in ((S(i, j + 1) ∩ S(k, α)) − S(i, j).
If F(S(k′, α), j) = (c, d] and k′ < k, then p /∈ S(k′, α)
and the matching of S(r, j + 1) is S(k′, α) for r =
d+1, d+2, . . . i. Here, F(S(k, α), j +1) ⊂ F(S(k, α), j)
and F(S(k′, α), j + 1) ⊃ F(S(k′, α), j). In case, i = b,
F(S(k, α), j + 1) = ∅. Hence the lemma follows. ¤

Suppose the matching of S(i − 1, j) and S(i, j) are
S(k′, α) and S(k, α) respectively with k′ < k. Let the
point p(xm, yj+1) lie inside the region ((S(i, j + 1) ∩
S(k, α))−S(i, j) but not inside the region ((S(i−1, j +
1) ∩ S(k′, α)) − S(i − 1, j). Then using similar argu-
ments as in the proof of Lemma 4, F(S(k′, α), j + 1) ⊇
F(S(k′, α), j) and for all k′′ < k′, F(S(k′′, α), j + 1) =
F(S(k′′, α), j). If F(S(k′, α), j + 1) = F(S(k′, α), j),
then F(S(r, α), j+1) = F(S(r, α), j) for r = 1, 2, . . . , n.
When F(S(k′, α), j + 1) ⊃ F(S(k′, α), j), there exist
an integer v, 0 ≤ v ≤ n, such that the matching of
S(v, j + 1) is S(k′, α) but the matching S(v + 1, j + 1)
is not S(k′, α). Suppose the matching of S(v + 1, j)
is S(h, α), then from Lemma 4 along with similar ar-
guments, we can conclude that F(S(r, α), j + 1) = ∅

for r = k′ + 1, k′ + 2, . . . , h − 1, F(S(h, α), j + 1) ⊆
F(S(h, α), j) and F(S(r, α), j + 1) = F(S(r, α), j) for
r = h + 1, h + 2, . . . , n.

Observation 3 For given indices α and β, α ≥ β, with
(yα − yβ) ≥ 1, all nonempty F(S(k, α), β) can be com-
puted in linear time.

4 Algorithm

Here, we are looking for a pair of overlapping squares
where top boundary of the upper square (R1) is at yα

and top left corner of the lower square (R2) is inside the
interior of upper square such that together they cover
maximum number of points of P . Note that R1 and
R2 may together contain less number of points than a
non-overlapping pair with top boundary of upper square
at yα. Below, we describe the algorithm to report the
maximum number of points covered by a pair of squares
with top boundary of the upper square at yα and the
top boundary of the lower square is above the bottom
boundary of the upper square in O(n log2 n) time.

Let the function left(pxi) output the minimum entry
in Lx, say pxj , such that xi − xj is less than or equal
to unity. Then we can compute left(pxi), 1 ≤ i ≤ n in
O(log n) time. Note that left(px1) = px1 . In a similar
way, we define right(.), bottom(.), and top(.). For or-
thogonal range searching on a given points set P in 2D,
we construct range tree R [3] that reports the number of
points in a query rectangle in O(log n) time. The con-
struction time and the space for range tree R are both
O(n log n).

4.1 Data structure and initialization

Let yγ be the bottom(yα) (1 ≤ α ≤ n). Consider an in-
dex β such that |yα−yβ | ≥ 1 and compute F(S(k, α), β)
for all k, 1 ≤ k ≤ n, which are nonempty. Using
observation 3, this computation can be done in linear
time. Let the intervals be [a1, b1], [a2, b2], . . . , [aν , bν ]
from left to right such that F(S(ki, α), β) = [ai, bi] for
i = 1, 2, , . . . , ν.

Now we initialize β by γ and subsequently the value β
varies from γ + 1, γ + 2, . . . , α− 1.

Consider a balanced binary search tree T constituted
by x1, x2, . . . , xn, where each value xi corresponds to
a leaf node, and the search is guided by the x-values.
The leaf node corresponding to xi keeps information
about |S(i, β) ∪ S(k, α)|, where the matching of S(i, β)
is S(k, α). Two counter variables M and C are attached
with nodes of T for computing the number of points cov-
ered by S(i, β) along with its matching square for all i.
To start with, the variables M and C corresponding to
all nodes are initialized with zero. Given an interval,
Increment operation modifies T such that count of all
squares with top-left corner within the interval is incre-
mented by one. Similarly, we can define the Decrement
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operation. Detail algorithms for Increment and Decre-
ment operations are discussed by Mahapatra et al. [13].
At any instance with α and β, given a lower square X,
Report operation [13] is able to report the maximum
number of points covered by a pair of squares where the
lower square must be X and the upper square have the
top boundary at yα. It can also report the number of
maximum covered points of a pair of squares whose top
boundaries are aligned with yα and yβ .

Construct another balanced binary search tree T ′ con-
stituted by disjoint intervals [xa1 , xb1 ], [xa2 , xb2 ], . . .,
[xaν , xbν ] as leaf nodes. A variable W is attached with
each leaf node to keep information of a square. All
squares having left boundary within the interval corre-
sponding to that leaf node are matched with W . Given
a point p, we can report the interval containing p in
O(log n) time. Insertion, deletion and update of an in-
terval can be done in O(log n) time. We now describe
main steps of the algorithm.

For β = γ + 1, γ + 2, . . . , α − 1, execute the following
steps:

1. Suppose the β-th entry of Ly be the point p with
coordinates, say (xm, yβ).

2. Find the interval [a, b] from T ′ containing p and let
the corresponding square be S(k, α).

3. Find the inorder-predecessor of S(k, α), say
S(k′, α) and the corresponding interval is [a′, b′].
3.1 p /∈ S(k, α): Perform Increment operation for

the interval [left(xm), xm] into T .
3.2 p ∈ S(k, α) and p /∈ S(k′, α): Compute

|S(a, β) ∪ S(k, α)| and |S(a, β) ∪ S(k′, α)| by
rectangular range searching from range tree
R. If |S(a, β) ∪ S(k′, α)| ≥ |S(a, β) ∪ S(k, α)|,

3.2.1 the matching of S(a, β) is S(k′, α);
3.2.2 use divide and conquer method within in-

terval [a, b], select an index c such that
F(S(k, α), β) is [c, b];

3.2.3 update the interval [a, b] in T ′ with [c, b]
and [a′, b′] with [a′, c− 1];

3.2.4 perform Increment operation for the in-
terval [left(xm), xc−1] and update the
current optimal count with the value at
the root of T .

3.3 p ∈ S(k, α) and p ∈ S(k′, α): Identify k′′ such
that p /∈ S(k′′, α) but the inorder successor
S(l, α) of S(k′′, α) contains p. Go to Step 3.2
with k ← l, k′ ← k′′.

Finally, the count of the optimal pair with top boundary
of the upper square at yα can be obtained at the root
of T and the corresponding pair can be identified.

4.2 Complexity of the Algorithm

Theorem 5 Given a set P of n points in R2, two dis-
joint or overlapping isothetic unit squares covering max-
imum number of points can be found in O(n2 log2 n)
time using O(n log n) space.
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Triangulating and Guarding Realistic Polygons
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Abstract

We propose a new model of realistic input: k-guardable
objects. An object is k-guardable if its boundary can
be seen by k guards in the interior of the object. In
this abstract, we describe a simple algorithm for trian-
gulating k-guardable polygons. Our algorithm, which is
easily implementable, takes linear time assuming that k
is constant.

1 Introduction

Algorithms and data structures in computational geom-
etry often display their worst-case performance on intri-
cate input configurations that seem artificial or unrealis-
tic when considered in the context of the original prob-
lem. In “practical” situations, many algorithms and
data structures—binary space partitions are a notable
example—tend to perform much better than predicted
by the theoretical bounds. An attempt to understand
this disparity and to quantify “practical” or “normal”
with respect to input are realistic input models [5]. Here
one places certain restrictions on the shape and/or dis-
tribution of the input objects so that most, if not all, hy-
pothetical worst-case examples are excluded. Analyzing
the algorithm or data structure in question under these
input assumptions tends to lead to performance bounds
that are much closer to actually observed behavior.

Many realistic input models have been proposed.
These include low-density scenes [5], where it is as-
sumed that the number of “large” objects intersecting
a “small” volume is bounded, and local polyhedra [7],
where it is assumed that the ratio of lengths between
edges coming from a single vertex is limited by a con-
stant. One of the most widely studied realistic input
models assumes that input objects are fat, that is, they
are not arbitrarily long and skinny. There are several
ways to characterize fat objects—see the full paper for
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formal definitions.
We propose a new model defining realistic input: the

number of guards that are required to see the boundary
of an input object. We use the term k-guardable to
denote any object whose boundary can be seen by k
guards. A rigorous definition of what it means for a
guard to see can be found in the next section.

In the full paper, we discuss the connection between
k-guardable polygons and other measures of realistic in-
put. In particular, we show that (α, β)-covered polygons
are k-guardable. An (α, β)-covered polygon is a type of
fat polygon designed to model the intuitive notion of
fatness for non-convex input. This is a type of polygon
P that has the property that every point p ∈ ∂P admits
a triangle with minimum angle at least α and minimum
edge length at least β · diam(P ) for given constants α
and β. In the full paper we prove:

Theorem 1 The boundary of any (α, β)-covered poly-
gon can be guarded with ⌈32π/(αβ2)⌉ guards.

In this abstract we describe an algorithm for triangu-
lating k-guardable polygons. Our algorithm, which was
designed with simplicity in mind, takes O(kn) time, that
is, linear time assuming that k is constant. We also show
that, if the link diameter—see the next section for a for-
mal definition—of the input polygon is d, this algorithm
takes O(dn) time—a slightly stronger result. In the full
paper we describe a second algorithm which also trian-
gulates k-guardable polygons in O(kn) time. That algo-
rithm uses even easier subroutines than the one given in
this abstract, but it requires the actual guards as input,
which might be undesirable in certain situations.

In 1991 Chazelle [2] presented a linear time algo-
rithm to triangulate any simple polygon. However,
after all these years it is still a major open problem
in computational geometry to design an implementable
linear-time algorithm for triangulation. There are sev-
eral implementable algorithms which triangulate poly-
gons in near-linear time. For example, Kirkpatrick et
al. [11] describe an O(n log log n) algorithm and Sei-
del [15] presents a randomized algorithm which runs
in O(n log∗ n) expected time. We contend that our al-
gorithm is conceptually simpler than the O(n log log n)
algorithm and that it has a slight advantage over the
Seidel algorithm because it is deterministic. It is also
interesting to note that the Seidel algorithm requires
Ω(n log n) random bits, which makes it theoretically un-
desirable in some models.
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Relationships between shape complexity and the
number of steps necessary to triangulate polygons have
been investigated before. For example, it has been
shown that monotone polygons [17], star-shaped poly-
gons [14], and edge-visible polygons [16] can all be trian-
gulated in linear time by fairly simple algorithms. Other
measures of shape complexity that have been studied in-
clude the number of reflex vertices [9] or the sinuosity
[3] of the polygon.

Several algorithms and data structures exist for col-
lections of realistic objects. For example, the problem of
ray-shooting in an environment consisting of fat objects
has been studied extensively [1, 4, 10]. But there are
few results concerning individual realistic objects. We
hope that our results on triangulating realistic polygons
will encourage further research in this direction.

The following section introduces the definitions used
throughout this abstract and presents several useful
tools. Section 3 describes the triangulation algorithm.
We conclude in Section 4 with some open problems.

2 Tools and definitions

Throughout this paper let P be a simple polygon with
n vertices. We denote the interior of P by int(P ),
the boundary of P by ∂P , and the diameter of P by
diam(P ). The boundary is considered part of the poly-
gon, that is, P = int(P )∪ ∂P . We say that a point p is
in P if p ∈ int(P ) ∪ ∂P .

The segment or edge between two points p and q is
denoted by pq. The same notation implies the direction
from p to q if necessary. Two points p and q in P see
each other if pq∩P = pq. If p and q see each other, then
we also say that p is visible from q and vice versa. We
call a polygon P k-guardable if there exists a set G of k
points in P called guards such that every point p ∈ ∂P
can see at least one point in G.

p

w
P Pw

Figure 1: The visibility polygon VP (p, P ) is shaded. Pw

is the pocket of w with respect to VP (p, P ).

A star-shaped polygon is defined as a polygon that
contains a set of points—the kernel—each of which can
see the entire polygon. If there exists an edge pq ⊂ ∂P
such that each point in P sees some point on pq, then P
is weakly edge-visible. The visibility polygon of a point

p ∈ P with respect to P , denoted by VP (p, P ) is the
set of points in P that are visible from p. Visibility
polygons are star-shaped and have complexity O(n).

VP (p, P ) can be computed in O(n) time [6] with an
algorithm that is non-trivial but fairly simple. It in-
volves a single scan of the polygon and a stack. See
O’Rourke’s book [13] for a good summary.

A concept related to visibility in a polygon P is the
link distance, which we denote by ld(p, q) for two points
p and q in P . Consider a polygonal path π that con-
nects p and q while staying in int(P ). We say that π is
a minimum link path if it has the fewest number of seg-
ments (links) among all such paths. The link distance
of p and q is the number of links of a minimum link path
between p and q. We define the link diameter d of P
to be maxp,q∈P ld(p, q). The link diameter of a polygon
may be much less than the number of guards required
to see its boundary, and is upper bounded by the num-
ber of guards required to see the boundary. This can
be seen in the so-called “comb” polygons that generally
have a low link diameter but need a linear number of
guards.

Let Q be a subpolygon of P , where all vertices of Q
are on ∂P . If all vertices of Q coincide with vertices of
P , then we call Q a pure subpolygon. If ∂P intersects
an edge w of ∂Q only at w’s endpoints, then w is called
a window of Q. Any window w separates P into two
subpolygons. The one not containing Q is the pocket of
w with respect to Q (see Fig. 1).

The edge-visibility polygon, EVP (e, P ) of an edge e
with respect to polygon P consists of all points in P
that are visible from at least one point on e. We define
an extended edge-visibility polygon of e with respect to
P , denoted by EEVP (e, P ), to be the smallest pure sub-
polygon of P that contains EVP (e, P ). These concepts
are illustrated in Figure 2.

(a) (b)

x

y

P (wi)
wi

q

p

Figure 2: (a) The shaded area is the edge-visible poly-
gon of the dashed edge; (b) the associated extended edge
visible polygon.

The geodesic between two points in P is the shortest
polygonal path connecting them that is contained in P .
The vertices of a geodesic (except possibly the first and
last) belong to ∂P .
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Lemma 2 Let x be a vertex of polygon P and let y be
a point on edge vw ∈ P . If y sees x, then the geodesic
between x and v: (a) is a convex chain and entirely
visible from y, and (b) can be computed in O(n) time.

Proof. Property (a) holds trivially if x sees v. Consider
the case where x does not see v. Then, the triangle
(x, y, v), denoted by T , must contain at least one vertex
of P in its interior. Let I be all the vertices of P inside
T and let CH(I) be the convex hull of I. The path
S = CH(I) \ xv is the geodesic from x to v. Any other
path from x to v inside T can be shortened. Thus,
Property (a) holds.

To prove property (b), note that since the geodesic
we seek is entirely visible from y by part (a) it is fully
contained in VP (y, P ). We compute VP (y, P ) in lin-
ear time. Let z be the first intersection of ∂P and the
ray emanating from x in the direction yx. Consider
the polygonal chain from x to v along ∂VP (y, P ) that
avoids y. By construction of VP (y, P ), the shortest path
from x to v is part of the convex hull of this path. By
Melkman’s algorithm [12], the convex hull of a simple
polygonal chain can be computed in linear time. ¤

The computation of a geodesic and of an edge-visibility
polygon are the two subroutines that we use to com-
pute the EEVP . Hence, we can compute the EEVP
in linear time. Also, the EEVP is a very structured
type of polygon—the union of an edge-visible polygon
and “fan” polygons—and as such can be triangulated in
linear time.

Lemma 3 EEVP (e, P ) can be computed and triangu-
lated in O(n) time.

3 Triangulating k-guardable polygons

In this section we show how to triangulate a k-guardable
polygon in O(kn) time. The most complicated proce-
dure used in our algorithm is computing the visibility
polygon from an edge in linear time [8]. Our algorithm
relies on computing and triangulating extended edge-
visibility polygons.

We begin with an arbitrary edge e of a polygon P
and compute EEVP (e, P ). When EEVP (e, P ) is tri-
angulated, the diagonals of P that are on the boundary

x

v w
y

z

Figure 3: The geodesic from x to v.

of EEVP (e, P ) become windows of new pockets. Each
such window serves as the edge from which a new visibil-
ity polygon will be computed and triangulated, within
its respective pocket. In this recursive manner we break
pockets into smaller components until all of P is trian-
gulated. The procedure, although straightforward, is
outlined below in more detail. This is followed by the
analysis of the time complexity, where we show that the
recursion depth is of the order of the number of guards
that suffice to guard ∂P .

We will maintain a queue S of non-overlapping poly-
gons (pockets) such that each Pi ∈ S has one edge wi

labelled as a window. Thus elements of S are pairs
(wi, Pi). We start with S := (w,P ), where w is an arbi-
trary boundary edge of P . We process the elements of
S in the order in which they were inserted. The main
loop of our algorithm is as follows:

TriangulateWithoutGuards(P )

1 S := (w,P ) where w is an arbitrary edge of P
2 while S 6= ∅
3 do for each (wi, Pi) ∈ S
4 do remove (wi, Pi) from S.
5 Compute and triangulate EEVP (wi, Pi).
6 Add the edges of the triangulation to P .
7 for each boundary edge wj of

EEVP (wi, Pi) that is a diagonal of
P .

8 do identify Qj as the untriangulated
portion of P whose boundary is
enclosed by wj and ∂P .

9 S := S ∪ {
⋃

j(wj , Qj)}
10 return P .

Theorem 4 The algorithm TriangulateWithout-

Guards triangulates an n-vertex k-guardable polygon
in O(kn) time.

Proof. We first note that a tree T is created by our
algorithm. At the root of T is EEVP (w,P ). For every
window wj of EEVP (wi, Pi), EEVP (wj , Pj) is a child
of EEVP (wi, Pi). The construction of the child nodes
from their parents ensures that no EEVP overlaps with
any other and that the triangulation covers the entire
polygon P .

We now show that T has at most 3k levels (a level
is a set of nodes, each of which has the same distance
from the root), which implies that the main loop of the
algorithm performs at most 3k iterations. Let ℓi, ℓi+1,
and ℓi+2 be three successive levels of T , such that all
nodes in ℓi+1 are descendants of nodes in ℓi, and all
nodes in ℓi+2 are descendants of nodes in ℓi+1. Suppose
that a set of points G is a guarding of P : every point
p ∈ ∂P sees at least one guard of G. Assume, for the
purpose of obtaining a contradiction, that there are no
guards from G in ℓi, ℓi+1, and ℓi+2.
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Let g be a guard which sees into a node ni at level ℓi

through window wi. There are two cases: either g is in
a level higher than ℓi or it is in a lower level. If g is in
a higher level and is visible from a window of ni, then g
can be in only one level: ℓi+1 (because ℓi+1 contains the
union of all the edge-visibility polygons of the windows
of the nodes in ℓi). We have assumed that this can not
happen. Otherwise, if g is in a lower level, it cannot see
into any higher level than ℓi, because wi must be the
window which created ni.

The combination of these two facts implies that no
guard from G can be able to see into ℓi+1. This is a
contradiction to G being a guarding set. Therefore, G
must have at least one guard in ℓi, ℓi+1, or ℓi+2. This
implies that there is at least one guard for every three
levels, or at most three levels per guard.

Each level of the tree can be processed in O(n) time by
Lemma 3, since all nodes of a level are disjoint. Thus the
algorithm terminates successfully in O(kn) time. ¤

As is apparent from the proof of Theorem 4, our al-
gorithm runs in O(tn) time, where t is the number of
iterations of the while-loop. The above argument also
implies a stronger result. The number of iterations, t,
of the while loop is proportional to the link diameter, d,
of the polygon, since any minimum link path between
two points must have at least one bend for every three
levels. This leads to the following corollary:

Corollary 5 The algorithm TriangulateWithout-

Guards triangulates an n-vertex polygon with link di-
ameter d in O(dn) time.

4 Open Problems

Our work raises some open problems. First, can these
techniques be used to design a triangulation algorithm
which does not depend on the number of guards? Sec-
ond, are there other problems that can be solved effi-
ciently for k-guardable polygons? Finally, can we find
similar results for other measures of realistic input?
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Abstract

Simple curves on surfaces are often represented as se-
quences of intersections with a triangulation. However,
topologists have much more succinct ways of represent-
ing simple curves such as normal coordinates which
are exponentially more succinct than intersection se-
quences.

Nevertheless, we show that the following two basic
tasks of computational topology, namely performing a
Dehn-twist of a curve along another curve, and com-
puting the geometric intersection number of two curves,
can be solved in polynomial time even in the succinct
normal coordinate representation. These are the first al-
gorithms that solve these problems in time polynomial
in the succinct representations.

As an application we show that a generalized notion
of crossing number can be decided in NP, even though
the drawings can have exponential complexity.

1 Introduction

In an earlier paper we started investigating algorithms
for basic problems of computational topology [14]; we
extend this work to deal with crossings of curves in sur-
faces which has applications to graph drawing.

One of the driving problems of computational topol-
ogy, long before it acquired the name, has been the prob-
lem of recognizing the unknot. The story begins in 1930
with Kneser [9] who introduced the succinct normal co-
ordinate representation for curves and surfaces. This
led to the theory of normal surfaces which was used by
Haken in 1961 to show that the unknot can be recog-
nized by an algorithm. Haken’s approach was pushed
further by Hass, Lagarias, and Pippenger who exploited
the succinctness of the representation to show that the
unknot can be recognized in NP [8]. To this end they
had to verify in polynomial time that a special type of
normal surface is an essential disk, in particular, that it
is connected. Agol, Hass, and Thurston [1] strengthened
this result by showing that the number of connected
components of a normal surface can be computed in
polynomial time. This immediately implies polynomial

time algorithms for checking whether a normal surface
is connected, and whether it is orientable.

Independently, we developed a set of tools for algo-
rithms on normal curves in [14], that grew out of our
work on the string graph recognition problem [15]. We
showed how to compute connected components, count
them, decide isotopy of curves, and compute the alge-
braic intersection number of two curves. The novel in-
gredient in our approach was that it was based on recent
developments of algorithms over free monoids rather
than groups.

In the current paper we continue the study of curves
by showing how to efficiently perform Dehn twists, a
fundamental topological operation. As a consequence
we obtain an algorithm for computing the geometric in-
tersection number of two curves. The following theorem
summarizes our main results.

Theorem 1 The tasks of performing a Dehn twist of
a curve along another curve on an arbitrary surface,
and computing the geometric intersection number of two
curves on a surface with boundary can be solved in poly-
nomial time in the normal coordinate representation (in
a given triangulation).

These results are very strong, since the normal coor-
dinate representation is very succinct: the length of a
curve is exponential in the size of its representation. As
an application of Theorem 1 we show that a general-
ized notion of crossing number lies in NP, which unifies
several non-trivial complexity results in graph drawing.

There has been previous work on calculating the ef-
fect of a Dehn twist. Penner [12] gave explicit formu-
las describing the action of the Lickorish generators on
the Dehn-Thurston coordinates for the set of all isotopy
classes of simple curves. This solves the problem for a
very restricted case only, the Lickorish generators. Dehn
twists along other curves can be obtained by applying
Dehn twists along Lickorish generators, but exponen-
tially many Dehn twists may be needed.

More recently Hamidi-Tehrani and Chen [7] gave an
algorithm to compute the action of a set of generators on
the space CS(M) given by measured π-train tracks, but
its running time is exponential in the representation.
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Hamidi-Tehrani’s thesis [6] gave an algorithm for the
geometric intersection number running in time polyno-
mial in the length of the curves. Again, this translates
only to an exponential time algorithm in the succinct
representations.

2 Surfaces, Curves, and Words

2.1 Representations of Surfaces and Simple Curves

By a surface M we mean a connected, compact, ori-
entable 2-manifold with boundary ∂M .1 A curve in M
is the image of [0, 1] under some continuous function f ;
it is simple if f is injective with the possible exception
of f(0) = f(1). Intuitively, the curve is simple if it has
no self-intersections; a curve is closed if it has no end-
points, that is, f(0) = f(1). A closed curve is trivial
if it can be contracted to a point (null-homotopic) or a
boundary component. We call a curve a properly em-
bedded simple arc if it is a simple curve with both of its
endpoints on ∂M .

A simple multi-curve α in M is the disjoint union
of any number of non-trivial simple closed curves and
properly embedded arcs.2 Call a simple multi-curve
closed if all its connected components are closed. By
isotopy we mean isotopy rel boundary, i. e., a continu-
ous deformation which leaves ∂M fixed and does not
introduce self-intersections. Let CS(M) be the set of all
isotopy classes of simple multi-curves. Let CS0(M) ⊆
CS(M) be the set of isotopy classes of simple multi-
curves whose components are simple closed curves.

The geometric intersection number, i(α, β) of two
(isotopy classes of) simple multi-curves α, β ∈ CS(M)
is the minimal number of intersections between any of
their representatives.

A triangulation T of a surface M is a set of points V
in M and an embedded collection of arcs E such that
each component of M − E is an open disc bounded by
three curves from E. A triangulation is minimal if the
vertices V are on the boundary ∂M and each boundary
component contains exactly one vertex of V .

Let M be given by a triangulation. A simple multi-
curve γ is normal w.r.t. T if all intersections of γ with T
are transversal and if γ enters a triangle t via an edge e
then it leaves t via an edge different from e. Any simple
multi-curve can be made normal by simple redrawing
moves, so for any simple multi-curve there is a normal
multi-curve isotopic to it. Normal curves are very well-
behaved with respect to the triangulation; in particular,
given a triangle a, b, c the curve segments within the

1In other words, each point in the manifold has a neighborhood
homeomorphic to a disk or a half-disk (if it is on the boundary).

2Formally, it is a proper 1-dimensional submanifold of M such
that no component of α is null-homotopic or homotopic to the
boundary.

triangle fall into three types: segments crossing from ab
to ac, from ab to bc and from ac to bc.

Moreover, the number of segments of each type is
determined by the number of intersections of the multi-
curve with ab, bc and ac: for example there are (|γ ∩
ab|+ |γ ∩ ac| − |γ ∩ bc|)/2 segments crossing from ab to
ac. This allows us to describe a normal curve γ by its
normal coordinates, which is the vector (|γ∩e|)e∈T . The
complexity of the normal coordinates is the number of
bits needed to encode the vector (|γ∩e|)e∈T , by writing
each coordinate in binary. Any two simple multi-curves
with the same normal coordinates are isotopic if they
agree on the boundary. If the triangulation is minimal
then the converse is true—any isotopic curves have the
same normal coordinates. (Note that only surfaces with
non-empty boundary have minimal triangulations.)

Let α be a simple closed curve in M . A Dehn twist
Dα : M → M along α is a homeomorphism of M ob-
tained by cutting M along α, rotating one of the copies
of α by 360 degrees and gluing the two copies back
together. More precisely, if an annular neighborhood
around α is parameterized by {(x, ϕ), 1 ≤ x ≤ 2, 0 ≤
ϕ ≤ 2π} then Dα is (x, ϕ) 7→ (x, ϕ + 2π(x− 1) mod 2π)
on the annulus and the identity elsewhere. If α is a
simple closed multi-curve, we define Dα to be the com-
position of Dα′ for all connected components α′ of α
(note that all α′ are simple closed curves).

2.2 Quadratic Word Equations and Compressed

Representation of Words

Let Σ be an alphabet. A word in Σ∗ can be represented
by a straight-line program (SLP), which is a sequence
of assignments Xi := expr, i = 1, . . . , n, where expr

is a either a symbol from Σ or XjXk, 1 ≤ j, k < i.
The length n of an SLP representing a word w can be
exponentially smaller than |w|, the length of w.

Example 2 Over the alphabet {a, b} the SLP X1 = a,
X2 = b, X3 = X1X2, X4 = X3X3, · · · , Xn =
Xn−1Xn−1 of length n represents the word (ab)2

n−3

.

Equality of two words given by SLPs of lengths m
and n can be tested in deterministic time O(m2n2) [11]
and in randomized time O(m + n) [5].

A word equation with specified lengths is an equation
over a free monoid in which every variable has to be
replaced with a word of a specified length.

Example 3 The word equation XabY = Y baX in vari-
ables X and Y has two shortest solutions: X = ǫ, Y = a
and X = b, Y = ǫ, where ǫ is the empty word. If we
require |X | = 4 and |Y | = 2, the equation has no solu-
tion. However, if we require |X | = 3 and |Y | = 1, then
X = aba and Y = a is a solution.
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Finding a solution of a word equation in general is
NP-hard. However, the word equations arising in our
context all have specified lengths and are quadratic: ev-
ery variable occurs at most twice in the equation. For
quadratic word equations a faster and simple algorithm
is known which also guarantees that the solution can be
expressed as an SLP.

Theorem 4 (Robson, Diekert [13]) The solvability
of a quadratic word equation with specified lengths can
be decided in time linear in the complexity of the equa-
tion. If there exists a solution, a linear-size SLP for any
subword of the solution can be found in linear time.

2.3 Representations of Simple Curves

We have seen that simple curves can be succinctly rep-
resented using normal coordinates, assuming they have
been normalized with respect to some triangulation T .
Another natural way of representing such a simple curve
would be by listing the order in which it crosses the
edges of the triangulation: Arbitrarily fix an orienta-
tion ~e of each edge e ∈ T . Given an oriented simple
curve γ let w be a word obtained by traversing γ and
appending e to w if ~e is crossed from left to right and
appending e−1 is ~e is crossed from right to left. Then
w is called an intersection sequence of γ with the trian-
gulation. (Note that for closed curves the intersection
sequence is only determined up to cyclic permutation.)

An intersection sequence can be exponentially long
compared to the normal coordinates of a simple curve,
but, as it turns out, intersection sequences are highly
compressible since they can be obtained as solutions of
quadratic word equations and can therefore be repre-
sented by SLPs. Moreover, moving from an SLP rep-
resentation of an intersection sequence to normal coor-
dinates is simple: we just need to count the number
of occurrences of each symbol in the compressed word,
a task that can be performed in time O(n) for each
symbol, see [4]. In short, normal coordinate represen-
tation and SLP representation of intersection sequences
are polynomially equivalent.

Theorem 5 Let M be a surface given by a triangula-
tion T . Let α ∈ CS(M) be a simple curve in M . If α is
given by an intersection sequence with T encoded by an
SLP of length n, then the normal coordinates of α can
be computed in time O(n · |T |). If α is given by normal
coordinates in T with complexity n, then an SLP of size
O(n) for an intersection sequence of α with T can be
obtained in time O(n).

We omit the proof of this result, the interesting direc-
tion (from normal coordinates to an SLP for an inter-
section sequence), follows techniques suggested in [14].
Note that while normal coordinates can encode multi-
curves (which can have many connected components),

intersection sequences are restricted to simple curves
(which have a single component).

3 Dehn Twists and Applications

3.1 Computing Dehn Twists

The Dehn twist of a curve given by normal coordinates
can be computed in time polynomial in the size of the
representation. Our algorithm works for all surfaces
(that is, with or without boundary).

Theorem 6 Let M be a surface of genus g given by a
triangulation T . Let be α ∈ CS(M) and β ∈ CS0(M) be
simple multi-curves in M given by normal coordinates
of complexity n. The normal coordinates of a represen-
tative of the Dehn twist Dβ(α) can be computed

• in time O(g · n3) by a randomized algorithm with
small probability of error; and

• in time O(g · n9) by a deterministic algorithm.

We have to omit the proof, but we can give a rough
outline: we first prove the result for a simple closed
curve β. Performing a Dehn twist along a simple closed
curve α can be captured by a quadratic word equation
and therefore Dβ(α) can be represented by a compressed
SLP. There is some subtlety here, since the word ob-
tained as a solution of the quadratic word equation may
not correspond to a normalized simple curve; however,
normalization can be performed on the word (it corre-
sponds to cancellation over a free monoid with inverses);
this step is computationally expensive, since it requires
iterated equality testing. The result can then be gener-
alized to simple closed multi-curves α; this might require
performing an exponential number of Dehn twists, but
this can be done “in parallel” using word equations.

3.2 Computing Geometric Intersection Numbers

For surfaces with a boundary we can compute geomet-
ric intersection numbers in polynomial time once we can
compute Dehn twists in polynomial time. The reason is
that the complexity of Dehn twists is closely related to
the geometric intersection number: Considering repre-
sentatives of β and γ which intersect minimally shows
that for any simple curve α

|Dn
γ (β) ∩ α| ≤ |β ∩ α|+ n · i(β, γ)|γ ∩ α|,

where Dn
γ is the n-fold application of Dγ . Hence, Dn

γ (β)
grows by a rate of at most i(β, γ)|γ ∩ α| in n. For suffi-
ciently large n, it grows exactly at that rate:

Lemma 7 Let M be a surface and α, β, γ simple curves
on M with γ closed. Let n = 2i(α, β). Then

i(γ, β) =
i(α, Dn+1

γ (β)) − i(α, Dn
γ (β))

i(α, γ)
.
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We omit the proof which is based on results by Fathi,
Laudenbach, Poénaru [3] and Luo [10]. Lemma 7 is the
core observation needed to establish the main result:

Theorem 8 The geometric intersection number of two
curves given by normal coordinates on a surface with
boundary can be computed in polynomial time.

3.3 Generalized Crossing Number

We can apply our algorithm for calculating the geomet-
ric intersection number of two curves to a notoriously in-
tractable graph drawing problem: the crossing number.
The crossing number, cr(G), of a graph G = (V, E) is
the smallest number of intersections in a drawing of G in
the plane (making certain standard assumptions about
the drawing). Given a weight function w : E2 → N,
we can define a generalization, crw(G) of the crossing
number as the minimum value of

∑

e,f∈E

iD(e, f) · w(e, f)

over all drawings D of G in the plane. For w(e, f) = 1
we obtain the usual crossing number.

Theorem 9 Deciding whether crw(G) ≤ k lies in NP
for any polynomial-time computable weight function w.

The generalized crossing number is a powerful mod-
eling tool. For example, the weak realizability prob-
lem is a special case, and, therefore, lies in NP. This,
in turn implies that the string graph problem, topo-
logical inference, and several other problems also lie in
NP, see [15]). As another application, we consider the
recently introduced simultaneous graph drawing model
SCM+ introduced by Chimani, Jünger, and Schulz [2]:
given two planar graphs on the same vertex set, a simul-
taneous drawing with fixed edges is a drawing in which
each graph by itself is planar and shared edges are drawn
identically. Now, if we relax the condition that the two
graphs be planar, we get the simultaneous crossing num-
ber, which is the smallest number of crossings in a draw-
ing of the union of the two graphs that occur between
edges of the same graph. If, in addition, we require that
the total number of crossings be minimized, we get the
SCM+ model. It is easy to see that this problem is a
special case of our generalized crossing number problem.
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An Efficient Query Structure for Mesh Refinement

Benoı̂t Hudson∗ Duru Türkoğlu†

Abstract

We are interested in the following mesh refinement problem:
given an input set of points P in Rd, we would like to pro-
duce a good-quality triangulation by adding new points in
P . Algorithms for mesh refinement are typically incremen-
tal: they compute the Delaunay triangulation of the input,
and insert points one by one. However, retriangulating after
each insertion can take linear time. In this work we develop
a query structure that maintains the mesh without paying the
full cost of retriangulating. Assuming that the meshing al-
gorithm processes bad-quality elements in increasing order
of their size, our structure allows inserting new points and
computing a restriction of the Voronoi cell of a point, both in
constant time.

1 Introduction

A central task in scientific computing is to discretize a do-
main of interest into a simplicial mesh. Concretely, we in-
vestigate the following setting: we are given a point cloud P
in [0, 1]d, typically d = 2 or 3. A meshing algorithm must
produce a simplicial decomposition of [0, 1]d (a triangulation
in d = 2), in which all of the input points appear as vertices
of the decomposition. Each simplex should have good aspect
ratio (quality), since that is a necessary or at least sufficient
condition for many scientific computing applications. To en-
sure this, the algorithm must refine the point set, creating
new (Steiner) vertices. But it should not add too many ver-
tices: if the smallest possible mesh of good aspect ratio has
m vertices, the algorithm should output O(m) vertices.

There are two categories of mesh refinement algorithms
with provable guarantees: those based on quadtrees [BEG94,
MV00], and those based on Delaunay triangulations [Rup95,
She98]. Quadtrees can be constructed in O(n log n + m)
time [BET99]. Traditional Delaunay methods produce sub-
stantially smaller meshes in practice, but are quadratically
slow in the worst case. The runtime behaviour of these
algorithms is dominated by the cost of maintaining the
mesh as the output is incrementally computed. Two Delau-
nay refinement algorithms sidestep this cost and match the
quadtree runtime: Har-Peled and Üngör [HPÜ05] hybridize
Delaunay and quadtree methods, while Hudson, Miller, and
Phillips [HMP06] carefully maintain a triangulation that is
always sparse. Here, we extend the hybrid approach to three
or more dimensions.

∗Toyota Technological Institute at Chicago
†University of Chicago

INITIALIZE(P ) O(n log n + m)
APPROXIMATENN(v) O(1)
CLIPPEDVORONOI(v, β) O(1)
ADDVERTEX(p, v) O(1)

Fig. 1: The interface of our data structure, and runtimes
assuming a bottom-up mesh refinement algorithm.

Mesh quality: In a mesh where all simplices have good
aspect ratio, the vertices of the mesh are well-spaced in the
following sense [Tal97]. Denote by NN(v) the distance from
v to its nearest neighbour, and by R(v) the distance from v
to the farthest node of its Voronoi cell. Then we say that v is
ρ-well-spaced if R(v) ≤ ρNN(v).

Mesh spacing: The local feature size lfs(x) is the dis-
tance from x to its second-nearest input point [Rup95]. In
a size-conforming mesh, at every output vertex v, NN(v) ∈
Θ(lfs(v)). A size-conforming mesh has O(m) vertices.

Bottom-up meshing: We say that a mesh refinement
algorithm is bottom-up if it incrementally ensures that
small Voronoi cells are well-shaped before processing large
Voronoi cells. That is, there are constants ρ and γ such
that before the algorithm inserts a new Steiner point p with
a nearest other mesh vertex at distance NN(p), every mesh
vertex v with NN(v) < γ NN(p) is ρ-well-spaced.

Our contribution: Expanding upon the idea of Har-Peled
and Üngör, we provide a data structure for a meshing algo-
rithm to use as a black box to maintain information about the
partial mesh as it is constructed. After initializing our struc-
ture, the algorithm has access to two queries and an update
routine (see Figure 1). CLIPPEDVORONOI(v, β) computes
the nearby portion of the Voronoi cell of a vertex v. We
show in Section 2 that this clipped version of the Voronoi
cell is sufficient to determine where to insert a Steiner vertex
near v. Upon deciding to insert a new Steiner vertex at p,
the algorithm can call ADDVERTEX(p, v) to effect the inser-
tion. We prove in Theorem 7 that both CLIPPEDVORONOI
and ADDVERTEX run in constant time, assuming the al-
gorithm is a bottom-up meshing algorithm that produces
a size-conforming mesh. To help the algorithm produce
the bottom-up ordering, we provide APPROXIMATENN(v),
which returns an approximation of the true distance from v
to its nearest neighbour. Using our structure, a bottom-up
mesh refinement algorithm can mesh a point cloud in Rd in
O(n log n + m) time.
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βNN(v)

u1

u2
u3

u4

v

Fig. 2: The β-clipped Voronoi cell of v and its certificate
region, bounded by neighbours u1 through u4.

2 Choosing Steiner Points

Regardless of runtime considerations, the fundamental ques-
tion in mesh refinement is about where to put the Steiner
points. Traditional solutions compute Steiner points based
on the Delaunay triangulation, which is too expensive to
maintain, so we need a more local way of choosing a Steiner
point. The following region includes the points defined by
two prior proposals for Steiner point choices — the off-
center [Üng04] in 2D, and the CoreDisk [JÜ07] in 3D:

Definition 1 The β-clipped Voronoi cell of a vertex v, de-
noted V β(v), is the intersection of the Voronoi cell of v, and
the ball centered at v with radius β NN(v).

Any point x in V β(v) is in the Voronoi cell of v; therefore,
the open ball centered at x with radius |vx| is empty of any
mesh vertices. We call these certificate balls, and define the
certificate region of V β(v) as the union of these balls (Fig-
ure 2). An algorithm that correctly computes V β(v) must
have verified that the entire certificate region is empty; oth-
erwise, the algorithm could falsely report x as being in the
clipped Voronoi when it lies outside. Furthermore, an algo-
rithm must verify that for all x on the boundary, either x is
equidistant to v and another vertex, or x is at the clipping
distance β NN(v) from v; otherwise, the algorithm could
falsely report the clipped Voronoi cell is smaller than it is.

3 Data structure

Our data structure is based on the leaves of a quadtree. Each
leaf square (or hypercube) stores the set of vertices contained
in the square, and pointers to the neighbouring squares. Also,
each vertex v stores a pointer to the square in which it lies,
which we denote square(v). Our proofs of fast runtime de-
pend on the quadtree having certain properties: (A) Each
leaf square should only have a bounded number of neigh-
bours. (B) Each leaf square should be sized in proportion
to the local feature size of the points in the cell. That is,
if a quadtree square has sides of length l, then for all x in

the square, lfs(x) ∈ Θ(l). The balanced quadtree of Bern,
Eppstein, and Gilbert [BEG94] satisfies our requirements,
though in practice it will be preferable to split the squares
more coarsely.

It takes INITIALIZE O(n log n + m) time to compute the
quadtree leaves [BET99]. The mesh spacing requirement on
the meshing algorithm, and requirement (B) on the quadtree,
together guarantee that the square size is within a constant
factor of NN(v). This allows APPROXIMATENN(v) to re-
turn the size of square(v), in constant time. To implement
ADDVERTEX(p, v), we first look up square(v), then walk
from square to square along the segment pv. Upon reaching
the square that contains p, we add p to its list of vertices. The
description of CLIPPEDVORONOI merits its own section.

4 Clipped Voronoi Computation

We represent the β-clipped Voronoi cell of a vertex v us-
ing a set U of mesh vertices (e.g. U = {u1, u2, u3, u4} in
Figure 2). To find them, we perform a scan starting at v
and growing a ball outward up to a maximum radius: at
time t the ball has radius t < tmax = β NN(v). When
our scan reaches a vertex u at time t, we add u to Ut if
it is a Voronoi neighbour, and |uv| ≤ 2tmax — i.e. u is
on the boundary of the certificate region. At time tmax,
we will know that we have covered the entire certificate re-
gion, and that Utmax is an accurate representation of V β(v).

vd

q

p

u2

u1

Fig. 3: The thick curve
is the set of points p with
distance dU

v (p) = d. No
empty ball reaches q, so
dU

v (q) =∞.

For efficiency, we need to
ensure that the scan does
not exceed the certificate
region. Therefore, we use
a distance function differ-
ent from the Euclidean one.
For any point p, we de-
fine the distance dM

v (p) as
the diameter of the small-
est certificate ball for p. If
no such ball exists then we
say dM

v (p) =∞.
Computing dM

v (p) ex-
actly is inefficient. How-
ever, we can relax the re-

quirement that the balls be empty of any mesh vertices, and
instead at time t compute dUt

v (p) — the diameter of the
smallest ball with v and p on its surface that includes no
vertex of Ut in its interior. This distance function is non-
decreasing in time: adding vertices can only make it harder
for a ball to be empty. Therefore, dUt

v (p) ≤ dM
v (p) for all

t. Interestingly, when the scan reaches p, the efficiently-
computed lower bound is tight:

Lemma 2 If point p has dUt
v (p) ≤ t, then dUt

v (p) = dM
v (p).

Proof. The assumption of the lemma implies that there ex-
ists a ball B of diameter dUt

v (p) that contains no vertex of Ut.
Consider a point q strictly inside B. It has a strictly smaller
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CLIPPEDVORONOI(v, β)
1: Let Q← {square(v)}, tmax ←∞, and U ← ∅
2: while Q contains an element q with dU

v (q) < tmax do
3: q ←Minimum of Q with respect to dU

v

4: if q is a vertex then
5: Add q to U
6: if q is the first vertex then tmax ← β|vq|
7: if q is a quadtree square then
8: Add each vertex in the square to Q
9: Add every unvisited neighbouring square to Q

10: return U

Fig. 4: The CLIPPEDVORONOI algorithm, which performs
a scan through the quadtree and mesh vertices.

ball that is empty: dUt
v (q) < t. Because the computed dis-

tance function is nondecreasing in t, we must already have
visited q, and discovered whether or not q is a vertex of M .
In fact, we know it is not because if it were it would be both a
vertex in Ut and inside B, contradicting that B is empty. This
applies for all q ∈ B: all of B is in fact empty of vertices
of M . Monotonicity further implies that B is the smallest
empty ball, which proves dUt

v (p) = dM
v (p). �

As a corollary, this shows that the Utmax computed by the
scan faithfully represents the β-clipped Voronoi cell: The
scan visits the entire certificate region, because all points in
the certificate region have distance less than tmax. It also
visits no more than the certificate region, because any point
we visit has an empty ball with its center in V β(v).

Implementation (see Figure 4): We discretize the scan
using quadtree squares. Starting at square(v), we explore
outward from v using a queue Q of events — vertices and
squares. Upon processing a vertex, we update the current
Voronoi cell U ; and upon processing a square, we enqueue
the vertices it contains, and the squares it neighbours. We
compute dU

v (p) using a convex program: we find a point c
that is the center of an empty ball of minimum radius.

minimize |cv|
subject to |cv| = |xp|

|cv| ≥ |cui| for all ui ∈ U
For a quadtree square, the distance is the minimum distance
to any p in the square; this corresponds to letting p be free
variables in the above program, and, in dimension d, adding
2d constraints on the coordinates of p.

5 Runtime Proof

We prove that CLIPPEDVORONOI and ADDVERTEX are fast
in two parts. First, we present a basic geometric fact about
empty balls in partially-constructed meshes. This then im-
plies that the certificate region intersects a bounded number
of quadtree squares. From there it is an easy corollary to
show that CLIPPEDVORONOI and ADDVERTEX run in con-
stant time.

5.1 Points in an empty ball have large lfs

Fig. 5: Setup for the
proofs of Section 5.1.

We first show that empty
balls do not contain points
with small local feature
size. We adapt a prior
argument that assumed
the entire mesh was well-
spaced [HMP06]; in the
present version, we only
require that vertices with
small nearest neighbour
distance are well-spaced,
so that our result will apply
in the intermediate stages of a bottom-up algorithm. For
clarity, we define a local mesh size function induced by the
set of vertices the algorithm has output so far (including all
of the input points). We say that lmsM (p) is the distance
from p to the second-nearest vertex of the partial mesh M .
This differs from the local feature size lfs(p) in that the local
feature size only considers input points, not output vertices.
In particular, lfs(p) ≥ lmsM (p).

Theorem 3 Given a mesh M and an empty ball of radius
r, assume every vertex u in M with NN(u) ≤ γr is ρ-well-
spaced. Then there is a constant ε that depends only on γ and
ρ such that at any point p in the empty ball, lmsM (p) ≥ εr.

Proof. If p is at distance at least εr from all vertices, we
are done. Otherwise, we have the situation in Figure 5. Let
c be the center of the empty ball in question. We identify
two points on the ray from c to p: q is at distance r/2 from
the center, and b is on the boundary. Finally, u is the vertex
nearest q: q is in the Voronoi cell of u. Lemma 4 will show
that NN(u) ≥ min(γ, 1

2ρ )r. This then implies Lemma 5: for
appropriate ε, u is also the vertex nearest p. The distance
from any point in the Voronoi cell of u to a second vertex
is minimized at the point x equidistant between u and its
nearest neighbour; there, lmsM (x) = NN(u)/2. Therefore,
lmsM (p) ≥ η

2 r. Since η/2 > ε, the result holds. �

Lemma 4 The vertex nearest u is at distance NN(u) ≥ ηr,
where η = min(γ, 1

2ρ ).

Proof. If NN(u) ≥ γr, we are done. Otherwise, we know
that u is well-spaced: NN(u) ≥ R(u)/ρ. At the same time,
we know that R(u) ≥ |qu| since q is in the Voronoi cell; and
that |qu| ≥ r/2 because u is outside the empty ball. �

Lemma 5 If there is some vertex within εr of p, then u, the
nearest vertex to q, is also the nearest vertex to p.

Proof. We know there is a vertex u′ within distance εr of
p, and we know that |pq| ≤ r/2. By the triangle inequality,
|qu′| ≤ (1/2 + ε)r. Then u lies somewhere within the ball
centered at q, of radius (1/2 + ε)r, since u is nearer to q
than is u′. We also know that u must be outside the ball
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centered at c, of radius r. These two constraints define a
crescent, shown shaded in Figure 5. Consider the plane that
goes through c, b, and u. Said plane also contains q since
c, b, and q are collinear. We can conformally transform the
plane so that c is the origin, q = 〈0.5, 0〉, b = 〈1, 0〉, and u =
〈x, y〉. Under this transformation, r = 1. The farthest u can
be while still lying in the crescent is the point of the crescent
where |cu| = 1 and |qu| = 1/2 + ε. We rewrite the first
equality as x2 + y2 = 1, while the second gives us that x =
1−ε−ε2. Then we can conclude that |bu|2 ≤ 2−2x = 2(ε+
ε2). Recall from the prior lemma that the nearest neighbour
of u is at distance η; therefore, every point at distance η/2
from u is within the Voronoi cell of u. Solving for |bu| =
η/2 we see that by setting ε = 1

4

√
4 + 2η2−1/2, we ensure

that b lies in the Voronoi cell of u. Since both b and q lie in
the same convex set, p also lies in it. �

5.2 Queries and updates are fast

Lemma 6 Assume we are given a size-conforming mesh M ,
a value r with the guarantee that every vertex u in M with
NN(u) ≤ γr is ρ-well-spaced, and a quadtree that satisfies
condition (B). Then the certificate region of any vertex v with
NN(v) ≤ r intersects O(1) leaf squares of the quadtree.

Proof. At any x in the certificate region, there is an empty
ball containing x that has diameter at least NN(v). There-
fore, Theorem 3 shows that lfs(x) ∈ Ω(NN(v)). Any
quadtree square that intersects the query region necessarily
includes at least one such x, which, conjoined with condi-
tion (B) on the quadtree, implies that the squares each have
side length in Ω(NN(v)). Finally, a volume packing argu-
ment applies: within a ball of volume O(β NN(v))d, every
visited quadtree square consumes Ω(NN(v))d volume. �

Theorem 7 When a bottom-up mesh refinement algorithm
calls ADDVERTEX or CLIPPEDVORONOI, our data struc-
ture responds in constant time.

Proof. In ADDVERTEX(p, v), if p lies within the β-clipped
Voronoi cell of v, then every square visited by the call in-
tersects the certificate region. Upon finding the destina-
tion square, ADDVERTEX simply appends to a list. Thus
ADDVERTEX does constant work. When the CLIPPED-
VORONOI algorithm visits a quadtree square, that square ei-
ther intersects the certificate region, or is a neighbour of a
square that intersects the certificate region. Thanks to the
guarantee that squares have a bounded number of neigh-
bours, the latter outnumber the former by at most a constant
factor. Thus CLIPPEDVORONOI visits only O(1) squares.
The function also does work iterating over the vertices each
square contains. By the mesh spacing requirement, a mesh
vertex v has a nearest neighbour no closer than Ω(lfs(x));
meanwhile, the quadtree square that contains v has sides of
length O(lfs(v)). Therefore, each square only hosts O(1)
mesh vertices, and the total work is O(1). �

6 Higher-dimensional input features

In the present work, we showed how to support a class
of mesh refinement algorithms with a search structure that
could find appropriate new Steiner points in constant time,
assuming the input is a point cloud. Typically, engineers and
graphic artists will want the mesh to respect more than just a
point cloud: it should respect some meaningful segments and
polygons, and perhaps also curves and curved surfaces. Of
course, the client application could simply specify a denser
packing of points on the surfaces, but ideally the meshing
algorithm could handle the features directly. Nothing fun-
damental blocks the extension of our structure to handle the
case of higher-dimensional features (even curved, and with
small input angles), although we would need need to enrich
the interface our data structure presents.
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CCCG 2008, Montréal, Québec, August 13–15, 2008

Application of computational geometry to network p-center location
problems

Binay Bhattacharya ∗† Qiaosheng Shi †

Abstract

In this note we showed that a p(≥ 2)-center location
problem in general networks can be transformed to the
well known Klee’s measure problem [3]. This resulted
in an improved algorithm for the continuous case with
running time O(mpnp/22log∗ n log n). The previous best
result for the problem is O(mpnpα(n) log n) where α(n)
is the inverse Ackermann function [9]. When the under-
lying network is a partial k-tree (k fixed), by exploit-
ing the geometry inherent in the problem we showed
that the discrete p-center problem can be solved in
O(pnp log kn) time.

1 Introduction

The network p-center problem is defined on a weighted
undirected network G = (V (G), E(G)), where each ver-
tex v ∈ V (G) has a non-negative weight w(v) and each
edge e ∈ E(G) has a positive length l(e). Let A(G)
denote the continuum set of points on the edges of G.
For x, y ∈ A(G), π(x, y) denote the shortest path in G
from x to y, and d(x, y) denote the length of π(x, y).
Let D(G) be the set of demand points (or the demand
set) and X (G) be the set of candidate facility locations
in G. In a p-center problem, a set X of p centers is to
be located in X (G) so that the maximum (weighted)
distance from a demand point in D(G) to its nearest
center in X is minimized, i.e.,

min
X⊆X (G),|X|=p

{F (X,D(G)) = max
y∈D(G)

{w(y) · d(y, X)}}.

Here d(y,X) = minx∈X d(y, x) and F (X,D(G)) denotes
the cost of serving the demand set D(G) using facilities
in X.

A value r > 0 is feasible if there exists a set of at
most p points (centers) in X (G) such that the distance
between any demand point in D(G) and its nearest cen-
ter is not greater than r. An approach to test whether a
given positive value is feasible is called a feasibility test.

Our study in this paper is restricted to the case where
D(G) = V (G). When p centers are restricted to be
vertices of G, we call it a discrete problem. Accord-
ingly, the problem is called a continuous problem when

∗Research was partially supported by MITACS and NSERC
†School of Computing Science, Simon Fraser University, Burn-

aby B.C., Canada. V5A 1S6, {binay, qshi1}@cs.sfu.ca

X (G) = A(G). The continuous/discrete problems have
been shown to be NP -hard in general networks [5]. But,
center problems are no longer NP -hard when either p
is constant [5, 7, 9], or the underlying network is re-
stricted to be a specialized network, such as a tree [5],
a cactus [1], or a partial k-tree (fixed k) [6]. In the
paper we study p-center problems in general networks
and partial k-trees (k fixed) for a constant p and pro-
vide improved algorithms by exploiting the geometric
properties of the problems.

2 Continuous p-center problem in general networks

The best known algorithms [5, 7, 9] to solve the contin-
uous p-center problem in a general network are based
on the following two simple observations.

Observation 1 [5] There exists a p-center solution
such that all the centers are intersection points of ser-
vice functions of pairs of vertices on edges and therefore,
the optimal objective value is of the form (w(u) · w(v) ·
L(u, v))/(w(u) + w(v)), where L(u, v) is the length of
the shortest path connecting u and v through edge e for
some pair of vertices u, v ∈ V (G).

Therefore, there are at most O(n2) candidate points on
each edge e where centers may be located in an optimal
solution. Also, each candidate point determines a can-
didate optimal cost. Let R denote the set of O(mn2)
candidate values. Based on Observation 1, Kariv and
Hakimi [5] proposed an O(mpn2p−1 log n/(p− 1)!)-time
algorithm for finding an optimal p-center.

The second observation is for feasibility tests of the
continuous p-center problem.

Observation 2 [7] If r is feasible, then there is a p-
center solution in which each center is located at a
(weighted) distance of exactly r from some vertex and
all vertices are covered with service cost ≤ r.

The advantage of Observation 2 is that only O(mn) can-
didate points are needed to be considered for a feasibil-
ity test. Based on this property, Moreno [7] proposed
an O(mpnp+1)-time algorithm to test the feasibility of
a given value r. Since the optimal service cost, denoted
by rp, is an element of a set R (Observation 1), rp can
be found by performing O(log n) feasibility tests.
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Tamir [9] improved Moreno’s result [7] by efficiently
solving a feasibility test for the 2-center problem in
O(m2n2α(n)) time. Here α(n) is the inverse Ackermann
function. Therefore, the O(mpnpα(n) log n) bound is
achieved for the continuous p-center problems.

Next we present an improved algorithm for the con-
tinuous p-center problem in general networks.

2.1 Main idea and overall approach

To achieve a better upper bound, we continue to de-
crease the size of the set that contains an optimal p-
center. Observation 3 shows that instead of O(mn)
candidate points, only m candidate continuous regions
(i.e., edges) and n candidate points (i.e., vertices) are
considered for a feasibility test.

Observation 3 If r is feasible, then there is a p-center
solution in which every edge (not including its two end-
points) contains at most one center and all vertices are
covered with service cost ≤ r.

A local feasibility test of r is to determine if there
exists a set of p centers on a given set Ep′ of p′ (0 ≤
p′ ≤ p) edges {e1, . . . , ep′} (note that each edge contains
one center and does not include its two endpoints) and
a given set of p−p′ vertices such that all vertices can be
served within r. It is easy to see that the feasibility test
of r can be completed by solving O((m+n)p) = O(mp)
local feasibility tests of r on all possible subsets of p′

edges and p− p′ vertices, 0 ≤ p′ ≤ p.
Our algorithm is described as follows.

Step 1: Compute R that contains the optimal cost rp.

Step 2: Perform a binary search over R. At each iter-
ation, test the feasibility of a non-negative value r
as follows. For each set Ep′ ⊆ E(G) of p′ edges and
each set of p− p′ vertices, 0 ≤ p′ ≤ p,

Step 2.1: remove all vertices that can be covered
by p− p′ vertices with service cost ≤ r; and

Step 2.2: for the remaining vertices, execute the
local feasibility test of r on the set Ep′ as de-
scribed in the remaining part of this section.

It is sufficient to show our approach for a local feasi-
bility test of r on a set Ep of p edges. The main idea
is to transform the local feasibility test of r on Ep to a
general geometrical problem called p-dimensional Klee’s
measure problem (for short, KMP) [3].

Definition 1 (Klee’s Measure Problem) Given a
set of intervals (of the real line), find the length of their
union.

The natural extension of KMP to d-dimensional space
is to ask for the d-dimensional measure of a set of d-
boxes. A d-box is the cartesian product of d intervals

in d-dimensional space. It is known that, given a set of
n d-boxes, a d(≥ 2)-dimensional KMP can be solved in
time O(nd/2 log n) using O(n) storage [3], which can be
reduced to O(nd/22log∗ n) [3] (log∗ denotes the iterated
logarithm). Thus, a feasibility test can be solved in
O(mpnp/22log∗ n) time if we are able to transform a local
feasibility test into a KMP. The following theorem is
then implied.

Theorem 2 The continuous p-center problems, for p ≥
2, can be solved in O(mpnp/22log∗ n log n) time.

In the remaining part of this section, we show the
process of transforming a local feasibility test to a p-
dimensional KMP.

2.2 Transformation of a local feasibility test to a
p-dimensional KMP

Let us consider the case where p = 2. The transfor-
mation for the case where p > 2 can be developed in a
similar way. Let e1 : u1v1 and e2 : u2v2 be the two edges
to test the local feasibility of r. A local 2-center solu-
tion is composed of two points (not vertices) in which
one point lies on e1 and the other one lies on e2.
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Figure 1: Mapping a 2-center local feasibility test to a
2-dimensional KMP.

We consider a 2-dimensional space in which xi-axis
represents edge ei, i = 1, 2. Let u1 and u2 be the origin,
as shown in Figure 1(b). In this coordinate system, the
xi-coordinate of a point represents a location on edge
ei with respect to ui, i = 1, 2. Therefore, a point in this
2-dimensional space can be considered as a possible 2-
center solution on edges e1, e2. We denote a point y by
(x1(y), x2(y)). Clearly, only points within the bounded
rectangular area H : {y|0 < x1(y) < l(e1), 0 < x2(y) <
l(e2)} are candidate 2-center solutions on e1, e2.

For a vertex v, there is at most one continuous re-
gion on each edge ei, i = 1, 2, denoted by Ri(v), which
contains all points on ei with (weighted) distance to v
larger than r. It is possible that Ri(v) is empty for
some i (∈ {1, 2}), in which case v can be served by
any 2-center solution on e1, e2 with service cost ≤ r.
In Figure 1(a), the bold (partial) edge of e1 (resp. e2)
is R1(v) (resp. R2(v)). Let ai(v) (resp. bi(v)) be the
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left (resp. right) endpoint of Ri(v), i = 1, 2. Note that
Ri(v), i = 1, 2 must be an open region.

A rectangular area in the 2-dimensional space (the
shadow part in Figure 1(b)) is obtained for every de-
mand vertex v, denoted by H(v), which is constructed
from the two continuous regions R1(v), R2(v). That is,
H(v) = {y|x1(y) ∈ R1(v), x2(y) ∈ R2(v)}. It is easy
to see that any 2-center solution (point) in H(v) cannot
cover v with a service cost ≤ r and any 2-center solution
in H\H(v) can cover v with a service cost ≤ r. In Fig-
ure 1, the 2-center solution X = {α1, α2} can cover v
with a service cost ≤ r, but any solution in the shadow
area cannot. We call H(v) the forbidden area of v. Note
that, the boundary of H(v) is not included in H(v).

We compute such forbidden areas for all remaining
vertices. Thus, the local feasibility test on edges e1, e2 is
transformed into the following question: does the union⋃

v∈V (G)H(v) of forbidden areas cover H? If the answer
is ‘yes’ then r is infeasible on edges e1, e2, otherwise r
is feasible. This question can be answered by solving a
2-dimensional KMP on a new set of rectangles, which
are constructed from these forbidden areas. We have
to be careful since the boundary of a forbidden area is
not forbidden. This is handled by appropriately shrink-
ing/expanding the boundary appropriately. The details
are omitted in this note. Thus a local feasibility test on
edges e1, e2 can be solved in O(n log n) time. Hence we
now have the following theorem.

Theorem 3 The continuous 2-center problems in a
general network can be solved in O(m2n log 2n) time.

The extension of the above approach to the case when
p > 2 is straightforward. Now a local p-center solu-
tion is represented as a point in a p-dimensional box
(p-box) H′ and for each demand vertex v, we obtain a
p-box in H′ containing all p-center solutions that serve
v with a service cost > r. Thus, the local feasibility test
on edges e1, . . . , ep, is transformed into the following p-
dimensional Klee’s measure problem: does the union of
O(n) axis-parallel p-boxes cover H′? Therefore, we have
the following lemma.

Lemma 4 A local feasibility test of the weighted con-
tinuous p-center problem on p edges e1, · · · , ep can be
solved in O(np/22log∗ n) time, for p > 1.

This establishes Theorem 2.

3 Discrete p-center problems in a partial k-tree

A partial k-tree is a graph whose treewidth is k. It is
known that a tree decomposition (of treewidth k) of a
partial k-tree G (fixed k), denoted by T D(G), can be
found in linear time [4].

Given a tree decomposition T D(G) of treewidth k, an
O(p2nk+2) algorithm [6] was proposed to solve the dis-
crete p-center problems, which is based on the dynamic
programming technique.

In fact, the approach of Granot and Skorin-Kapov [6]
can be adopted to solve the continuous p-center problem
by combining the result from Observation 2. Due to
page restrictions the discussions of the continuous p-
center problem in a partial k-tree are omitted here.

Theorem 5 Given a tree decomposition (of treewidth
k) of a partial k-tree, the continuous p-center problem
can be solved in O(p2n2k+3 log n) time.

In this section, we present an O(pnp log kn)-time al-
gorithm for the discrete p-center problem in a partial
k-tree when p is small. Note that the discrete p-center
problem, p ≥ 2, in a general network is trivially solvable
in O(pnp+1) time by testing all possible solutions.

3.1 An O(pnp log kn)-time algorithm

A distance query of a pair of points x, y in a network
is to obtain the distance between x, y. Considering
the tight relationship between the service cost and dis-
tance queries, an efficient approach is to preprocess the
network so that distance queries can be efficiently an-
swered. This approach is particularly promising when
the network is sparse [4]. Chaudhuri and Zaroliagis
[4] gave algorithms for distance queries that depend on
the treewidth of the input network. Their algorithms
can answer each distance query in O(1) time for con-
stant treewidth networks after O(n log n) preprocessing.
Based on this result, we introduced a two-level tree de-
composition structure [1] on a partial k-tree network,
which can be built on any partial k-tree G in O(n log 2n)
time requiring O(n log 2n) storage space for k = 2 and
in O(nk log k−1n) time requiring O(nk log k−1n) storage
space for k > 2. Given such a two-level tree decom-
position structure, the service cost of any set X of p
centers to the demand set V (G), i.e., F (X, V (G)), can
be answered in time O(p log 2n) for k = 2 and in time
O(pk log k−1n) for k > 2. The main idea behind this
two-level tree decomposition data structure is briefly
described below for the case when G is a partial 2-tree.
Recently similar idea has been used in [2] to compute
some graph properties.

Given a subgraph G′ represented by a subtree of
T D(G) and a point x outside G′, there is a 2-
separator in G′, say {u1, u2}, between G′ and x.
The service cost of x to cover v ∈ V (G′) is w(v) ·
min {d(v, u1) + d(u1, x), d(v, u2) + d(u2, x)}. Let a =
d(x, u1)− d(x, u2) and a′ = d(v, u1)− d(v, u2). Clearly
the shortest path π(v, x) goes through u1 if a + a′ < 0,
otherwise π(v, x) goes through u2.

Based on the above observation, we create two lists
of the vertices in G′, J1 and J2. The vertices of J1
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are sorted in the increasing order of χ1(·) where χ1(v)
is the distance difference from a vertex v(∈ V (G′)) to
the 2-separator {u1, u2}, i.e., χ1(v) = d(v, u1)−d(v, u2).
The vertices of J2 are sorted in the increasing order of
χ2(·) where χ2(v) = d(v, u2)−d(v, u1) for all v ∈ V (G′).
These two lists J1 and J2 are associated with u1 and
u2 respectively.

It is not difficult to see that, by constructing a bal-
anced binary search tree over J1 (resp. J2) and ap-
plying the fractional cascading technique, F (x, V (G′))
can be computed in O(log |V (G′)|) time for any point x
outside G′.

A two-level tree decomposition of G Since the tree
decomposition T D(G) of G might not be balanced, we
add another balanced tree structure over T D(G), such
that the height of the new tree T D(G) is logarithmic.
We call such a balanced tree structure T D(G) a two-
level tree decomposition of G. There are several meth-
ods to achieve this, such as centroid tree decomposi-
tion, spine tree decomposition etc. We can see that a
two-level tree decomposition data structure of a par-
tial 2-tree can be computed in O(n log 2n) time requir-
ing O(n log n) storage space and the service cost of a
set of p points in the partial 2-tree can be answered in
O(p log 2n). Thus,

Theorem 6 Given a tree decomposition (of treewidth
2) of a partial 2-tree G, the discrete p-center problem
can be solved in O(pnp log 2n) time.

0
d(v, u2)− d(v, u1)

v ∈ V (G′)

d(x, u1)− d(x, u2)

d(v, u3)− d(v, u1)

d(x, u1)− d(x, u3)

Figure 2: The set of vertices in V (G′) to which the
shortest path from x goes through u1.

In the case when G is a partial k-tree, given a sub-
graph G′ represented by a subtree of T D(G) and a point
x outside G′, there is a k-separator in G′ between G′ and
x. Refer to Figure 2 in which G is a partial 3-tree. All
vertices in V (G′) are embedded in a 2-dimensional space
(note that it is a (k − 1)-dimensional space when G is
a partial k-tree). Given a point x with its distances to
the 3-separator {u1, u2, u3}, all the vertices lying above
and right of the bold line in Figure 2 are the vertices in
V (G′) to which the shortest path from x goes through
u1. The service cost of x to these vertices can be com-
puted in O(log |V (G′)|) time by the combining priority
search tree and the fractional cascading technique after
O(|V (G′)| log |V (G′)|) preprocessing time.

Similarly, when G is a partial k-tree, we can com-
pute F (x, V (G′)) in O(k log k−2|V (G′)|) time after
O(k|V (G′)| log k−2|V (G′)|) preprocessing time. Hence,
for k > 2, a two-level tree decomposition data structure
of a partial k-tree can be computed in O(nk log k−1n)
time requiring O(nk log k−1n) storage space such that
the service cost of a set of p points in the partial k-tree
can be answered in O(pk log k−1n).

We have the following theorem.

Theorem 7 Given a tree decomposition (of treewidth
k > 2) of a partial k-tree G, the discrete p-center prob-
lem can be solved in O(pknp log k−1n) time.

4 Future work

For the general p-center problem in which the demand
set contains all points of the underlying network (i.e.,
D(G) = A(G)), a candidate set containing the optimal
solution value is characterized in Tamir’s paper [8]. In
spite of the nice structure, the size of this set is not
polynomial even for simple structures such as partial 2-
trees. Until now, no efficient algorithm is known for the
problem in a general network or a partial k-tree.
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Generalized Ham-Sandwich Cuts for Well Separated Point Sets

William Steiger∗ Jihui Zhao‡

Abstract

Bárány, Hubard, and Jerónimo recently showed that for
given well separated convex bodies S1, . . . , Sd in R

d and
constants βi ∈ [0, 1], there exists a unique hyperplane h
with the property that Vol(h+ ∩Si) = βi·Vol(Si); h+ is
the closed positive transversal halfspace of h, and h is
a “generalized ham-sandwich cut”. We give a discrete
analogue for a set S of n points in R

d which is parti-
tioned into a family S = P1 ∪ · · · ∪ Pd of well separated
sets and are in weak general position. The combinato-
rial proof inspires an O(n(log n)d−3) algorithm which,
given positive integers ai ≤ |Pi|, finds the unique hy-
perplane h incident with a point in each Pi and having
|h+ ∩ Pi| = ai. Finally we show that the conditions as-
suring existence and uniqueness of generalized cuts are
also necessary.

1 Introduction.

Given d sets S1, S2, ..., Sd ∈ R
d, a ham-sandwich cut is a

hyperplane h that simultaneously bisects each Si. “Bi-
sect” means that µ(Si ∩ h+) = µ(Si ∩ h−) <∞, h+, h−

the closed halfspaces defined by h and µ a suitable,
“nice” measure on Borel sets in R

d, e.g., the volume.
The well known ham-sandwich theorem guarantees the
existence of such a cut. As with other consequences of
the Borsuk-Ulam theorem [10] there is a discrete ver-
sion that applies to sets P1, . . . , Pd of points in general
position in R

d. For example Lo et. al [9] gave a direct
proof of a discrete version of the ham-sandwich theorem
which inspired an efficient algorithm to compute a cut.
More recently Bereg [4] studied a discrete version of a
result of Bárány and Matoušek [2] that showed the exis-
tence of wedges that simultaneously equipartition three
measures on R

2 (they are called equitable two-fans). By
seeking a direct, combinatorial proof of a discrete ver-
sion (for counting measure on points sets in R

2) he was
able to strengthen the original result and also obtained a
beautiful, nearly optimal algorithm to construct an eq-
uitable two-fan. Finally, Roy and Steiger [12] followed
a similar path to obtain complexity results for several
other combinatorial consequences of the Borsuk-Ulam
theorem.

∗Department of Computer Science, Rutgers University,
110 Frelinghuysen Road, Piscataway, New Jersey 08854-8004;
({steiger,zhaojih}@cs.rutgers.edu.)

The present paper is in the same spirit. The starting
point is a recent, interesting result about generalized
ham-sandwich cuts.

Definition 1: (see [8]) Given k ≤ d + 1, a family
S1, . . . , Sk of connected sets in R

d is well-separated if,
for every choice of xi ∈ Si, the affine hull of x1, . . . , xk

is a (k − 1)-dimensional flat in R
d.

Bárány et.al. [1] proved

Proposition 1 Let K1, ..., Kd be well separated convex
bodies in R

d and β1, . . . , βd given constants with 0 ≤
βi ≤ 1. Then there is a unique hyperplane h ⊂ R

d

with the property that Vol(Ki ∩ h+) = βi·Vol(Ki), i =
1, . . . , d.

Here h+ denotes the closed, positive transversal halfs-
pace defined by h: that is the halfspace where, if Q is
an interior point of h+ and zi ∈ Ki ∩ h, the d-simplex
∆(z1, ..., zd, Q) is negatively oriented [1]. Specifying this
choice of halfspaces is what forces h to be uniquely de-
termined. Bárány et. al. give analogous results for
such generalized ham-sandwich cuts for other kinds of
well separated sets that support suitable measures.

We are interested in a version of Proposition 1 for
n points partitioned into d sets in R

d; i.e., points in
S = P1 ∪ · · · ∪ Pd, Pi ∩ Pj = φ, i 6= j, |S| = n. For this
context we use

Definition 2: Point sets P1, ..., Pd are well separated
if their convex hulls, Conv(P1), . . . , Conv(Pn), are well
separated.

We need some kind of general position, and will assume
the following weaker form.

Definition 3: Points in S = P1 ∪ . . . ∪ Pd have
weak general position if, for each (x1, . . . , xd), xi ∈ Pi,
aff(x1, . . . , xd) is a (d − 1)-flat that contains no other
point of S.

This does not prohibit more than d data points from
being in a hyperplane, e.g. if they are all in the same
Pi. For the discrete analogue of a generalized cut we
use

Definition 4: Given positive integers ai ≤ |Pi|, an
(a1, ..., ad)-cut is a hyperplane h for which h ∩ Pi 6= φ
and |h+ ∩ Pi| = ai, 1 ≤ i ≤ d.

As in Proposition 1, a cut is a transversal hyperplane
(here incident with at least one data point in each Pi)
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and h+ its positive halfspace. The discrete version of
Proposition 1 is

Theorem 2 If P1, . . . , Pd are well separated point sets
in R

d, then (i) if an (a1, ..., ad)-cut exists, it is unique.
Also (ii) if the points have weak general position, cuts
exist for every (a1, ..., ad), 1 ≤ ai ≤ |Pi|.

This might be proved using some results of [1] via a
standard argument that takes the average of n proba-
bility measures, one centered at each data point. The
variance of the measures is decreased to zero, and one
argues about the limit (see [7]). Instead we give a direct
combinatorial proof in Section 2. In addition, and of in-
dependent interest, we show that both well-separated
and weak general position are also necessary for every
possible (a1, ..., ad)-cut to exist and be unique. An anal-
ogous converse is likely to hold for Proposition 1.

There is also interest in the algorithmic problem
where, given n points distributed among d well sepa-
rated sets in R

d, and in weak general position, the ob-
ject is to find the cut for given a1, . . . , ad. Our proof
of Theorem 2 leads to the formulation of an efficient,
O(n(log n)d−3) algorithm for generalized cuts. This ap-
pears in Section 3. Throughout, because of space limi-
tations, some details are omitted.

2 Proof of the Discrete Version.

There are several equivalent forms of the well separated
property for connected sets [3], in particular the fact
that such a family is well separated if and only if the
convex hulls are well separated. Others include

1. Sets S1, . . . , Sk, k ≤ d + 1 are well separated if
and only if, when I and J are disjoint subsets of
1, . . . , d + 1, there is a hyperplane separating the
sets Si, i ∈ I from the sets Sj , j ∈ J .

2. S1, . . . , Sd are well separated in R
d if and only if

there is no (d − 2)-dimensional flat that meets all
Conv(Si), i = 1, . . . , d.

In view of Definition 2, they hold for the discrete context
as well.

Given points pi ∈ Conv(Pi), i = 1, . . . , d (not
necessarily data points in S), the hyperplane h ≡
aff{p1, . . . , pd} is a transversal hyperplane of dimension
d−1. As in Bárány et. al. [1], if a unit vector c satisfies
〈c, pi〉 = t for some fixed constant t and for all i, the
unit normal vector v of h can be chosen as either c or
−c. The positive transversal hyperplane arises when v
is chosen so that,

det
∣
∣
∣
∣

p1 p2 · · · pd v
1 1 · · · 1 0

∣
∣
∣
∣ > 0.

We can write h as {p ∈ R
d : 〈p, v〉 = t}, and h+, the

positive transversal halfspace, as

h+ = {p ∈ R
d : 〈p, v〉 ≤ t}.

The relation p ∈ h+ is invariant under translation and
rotation.

Proof of Theorem 2: The proof is by induction. The
base case d = 2 is probably folklore (but see [11]). Well
separated implies that points in P1 may be dualized to
(red) lines having positive slopes and those in P2, to
(blue) lines having negative slope. If a red/blue inter-
section q has a1 red lines and a2 blue lines above it,
vertex q is the dual of an (a1, a2)-cut. It must be the
unique one because the red levels have positive slope
and blue ones have negative slope, proving (i).

If P1 and P2 also have weak general position, every
red/blue intersection in the dual is a distinct vertex,
|P1| · |P2| of them in all, and each is incident with just
those two lines. This implies that each level in the first
arrangement has a unique intersection with every level
of the second, proving (ii). In fact the unique inter-
section can be found in linear time by adapting the
prune-and-search algorithm given in [11] for intersection
of median levels.

Next, suppose the claim holds for dimension j < d.
Let π be a hyperplane that separates P1 from

⋃d
i=2 Pi.

Fix a point x ∈ Conv(P1), project each data point z ∈
⋃d

i=2 Pi onto π, and write P ′
i for the set of images in π

of the points z ∈ Pi.

Fact 1: P ′
2, . . . , P ′

d are d− 1 well-separated sets in π.

If not there is a d − 3 flat ρ ⊂ π that meets all
Conv(P ′

i ), i ≥ 2. But the span of x and ρ is a d − 2
flat that meets all P1, . . . , Pd, a contradiction.

Fact 2: If P1, . . . , Pd have weak general position and
if x ∈ P1 then P ′

2, . . . , P ′
d have weak general position in

π.

A transversal flat ρx ⊂ π has dimension d−2 by Fact 1.
If it contains one point xi from each P ′

i , i > 1 and any
other z ∈ ⋃d

i=2 P ′
i , then x and ρx span a hyperplane that

violates weak general position for P1, . . . , Pd.

Therefore the induction hypotheses apply to P ′
2, . . . , P ′

d.
Given a point x ∈ Conv(P1) and (a2, . . . , ad), a hy-

perplane hx containing x is an (a2, . . . , ad) semi-cut (or
just a semi-cut) if, for each i > 1, it is incident with a
point pi ∈ Pi and |h+

x ∩ Pi| = ai. It’s not hard to prove
the following useful fact.

Lemma 3 Given x ∈ Conv(P1) and (a2, . . . , ad). If
there is an (a2, . . . , ad) semi-cut hx then it is unique.

To advance the induction, fix (a1, . . . , ad) and suppose
hx is a cut with these values, x ∈ P1. By Lemma 3,
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it is the unique semi-cut cut containing x, so suppose
there is an (a2, . . . , ad) semi-cut hy through y ∈ P1, y 6∈
hx. hx and hy cannot meet in Conv(P1) since any such
point would be in two different (a2, . . . , ad) semi-cuts,
violating Lemma 3. But this implies that a1 6= |P1∩h+

y |.
Therefore hx is unique, which proves (i).

Now suppose P1, . . . , Pd have weak general position
and fix x ∈ P1 and (a2, . . . , ad). Projecting from x,
there is a unique (a2, . . . , ad)-cut ρx ⊂ π by the induc-
tion hypothesis and the fact that each z′ ∈ ⋃d

i=2 P ′
i is

the image of a distinct z ∈ ⋃d
i=2 Pi. x and ρx span

a hyperplane hx that is an (mx, a2, . . . , ad)-cut, mx de-
noting |P1∩h+

x |. Lemma 3 implies that there is no other
(mx, a2, . . . , ad)-cut. Also, repeating this procedure for
every x ∈ P1, existence and uniqueness imply that the
integers mx, x ∈ P1 form a permutation of 1, . . . , |P1|.
So for some z ∈ P1 we have the unique (a1, . . . , ad)-cut,
and this proves (ii).

In fact the conditions of the Theorem are also neces-
sary.

Corollary 4 Well separation and weak general posi-
tion are necessary if all (a1, . . . , ad)-cuts exist and are
unique.

Weak general position is necessary for the existence and
uniqueness of all (a1, . . . , ad)-cuts by simple counting.
There are |P1|·|P2| · · · |Pd| different d-tuples (a1, . . . , ad)
and there are this many different transversal hyper-
planes through data points only if we have weak general
position.

Now suppose P1, . . . , Pd are not well separated. By
property 1 at the beginning of this section, there
is a partition I ∪ J of {1, . . . , d}, such that A =
Conv(

⋃
i∈I Pi)∩Conv(

⋃
j∈J Pj) 6= φ. For points in A on

the boundaries of the convex hulls, weak general posi-
tion is violated. For points of A interior to both convex
hulls, any half space containing

⋃
i∈I Pi also contains

at least one point in
⋃

j∈J Pj in its interior. If we set
ai = 1 for i ∈ I, ai = |Pi| for i ∈ J , no (a1, . . . , ad)-cut
can exist.

3 An Algorithm for Generalized Cuts.

From now on we assume weak general position and
well separation. Theorem 2 implies that there is a
unique set of data points p1, . . . , pd, pi ∈ Pi, for which
aff(p1, . . . , pd) is an (a1, . . . , ad)-cut. So we could use
a brute force enumeration and find it in O(nd+1), O(n)
being the cost to test each d-tuple.

A small improvement can be obtained by resorting to
the following algorithmic result of [9] (slightly restated
to reflect new upper bounds on k-sets [6], [13]).

Proposition 2. Given n points in R
d which are par-

titioned into d sets P1, . . . , Pd in R
d, a ham-sandwich

cut can be computed in time proportional to the (worst-
case) time needed to construct a given level in the ar-
rangement of n given hyperplanes in R

d−1. The latter
problem can be solved within the following bounds:

O(n4/3 log2 n/ log∗ n) for d = 3,
O(n5/2 log1+δ n) for d = 4,
O(nd−1−a(d)) for d ≥ 5.

δ > 0 is an appropriate constant and a(d) > 0 a small
constant; also a(d)→ 0 and d→∞.

It is not difficult to verify that the ham-sandwich algo-
rithms given in [9] may be extended to find generalized
cuts for well separated points sets having weak general
position - given that they exist - and in this way, the
complexity of finding generalized cuts may be reduced
to O(nd−1−a(d)).

Finally, we will describe a much more practical al-
gorithm, applying ideas from the proof in Section 2.
We showed there that for each data point x ∈ P1 and
(a2, . . . , ad), there is a unique (mx, a2, . . . , ad)-cut hx

that contains x. Furthermore, for each j, 1 ≤ j ≤ |P1|,
there is a unique x ∈ P1 for which mx = j. Thus
we could loop through all x ∈ P1, project onto π,
find the unique (a2, . . . , ad) cut ρx ⊂ π, and count
mx = |P1 ∩ h+

x | for hx, the hyperplane spanned by x
and ρx. At some stage we will find the z ∈ P1 for which
mz = a1 and hz is the (a1, . . . , ad)-cut. The cost would
be bounded by the cost to solve n (d − 1)-dimensional
problems.

In fact we will find the desired z ∈ P1 by solving at
most O(log n) (d−1)-dimensional problems. The key is
to be able to prune a fixed fraction of remaining points
in P1 after each search step, and uses the fact that if
nx < a1, no point y ∈ h+

x ∩ P1 has ny = a1.

ALGORITHM GEN-CUT

1. choose c > 0, a small, fixed integer (say 10)

2. Find a hyperplane π that separates P1 from
P2 ∪ · · · ∪ Pd

3. C ← P1

4. a← a1

5. WHILE |C| > c DO

• Construct A, an ε-approximation to C

• FOR each x ∈ A DO

(a) Project each y ∈ P2 ∪ · · · ∪ Pd onto π;
let P ′

i denote the projections of the
points in Pi

(b) Find the (a2, ..., ad)-cut ρx ⊂ π for
the projections P ′

2, . . . , P ′
d by solving

a (d− 1)-dimensional problem
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(c) Get hx, the hyperplane that spans x
and ρx.

(d) Compute the number of points of C
in the positive transversal halfspace
h+

x

(e) END FOR

• Prune from C points x ∈ P1 whose mx is
too small or too large, and adjust C and
a

• END WHILE

6. For each remaining data point in x ∈ C,
project, find the (a2, ..., ad)-cut ρx in π for the
projections by solving a (d − 1)-dimensional
problem, get hx and compute mx = |P1 ∩ h+

x |,
stopping when mx = a1.

Finding a separating hyperplane π can be formulated
as a linear programming problem and can be solved in
time O(n), for fixed dimension d. C is the set of candi-
dates for the sought point z ∈ P1; initially C = P1. a
denotes the number of undeleted points in the positive
transversal halfspace of z’s semicut; initially a = a1.

In the while loop we construct an ε-approximation to
C. The range space (C,A), has VC dimension d + 1,
where A denotes the set of all halfspaces in R

d that
contain some points in C. By [5], in O(|C|) time [i.e.,
linear; in fact its O((d + 1)3(d+1)(d+1

ε2 log d+1
ε )d+1|C|)]

we can construct an ε-approximation A ⊂ C, having
constant size [in fact |A| = k = O(d+1

ε2 log d+1
ε )].

The FOR loop is traversed k = |A| times. The cost
of each traversal is dominated by O(Bd−1), the cost of
the (d − 1)-dimensional problem in (b); the cost of (a)
is O(n) and (d) is O(|C|).

At the end of the FOR we have for each x ∈ A, the
value of nx = |h+

x ∩ C|. These distinct values order the
elements x ∈ A, and our target value, a, is less than
the smallest nx, greater than the largest nx, or between
a successive pair in the ordering. In the first case we
delete all y ∈ C, y 6∈ h+

u , where nu = min (nx, x ∈ A).
In the third case we delete all y ∈ C, y ∈ h+

v , where
nv = max (nx, x ∈ A); here we also reduce a by a ←
a − nv. The middle case is similar. Since A is an ε-
approximation, only a constant fraction (< 1/(k + 1) +
2ε) of the points in C remains after pruning.

The geometric decrease in |C| implies that the num-
ber of iterations of the WHILE loop is bounded by
O(log |P1|) = O(log n). Therefore Step 5b contributes
O(Bd−1 log n) to the total cost of the loop, where Bk

denotes the complexity of the present algorithm in di-
mension k. This dominates the total cost of the loop
because all other steps have cost either O(n) or (O|C|)
and contribute a total of O(n log n) to the loop.

When the loop terminates, each remaining point in
C is treated in time O(Bd−1) by executing Steps 5a

through 5d. Then, instead of Step 5e, we test whether
|h+∩P1| = a1; exactly one point will have this property.
Since the base case for dimension d = 2 has linear run-
ning time, the present algorithm will find a generalized
cut in O(n(log n)d−2).

Finally, for d = 3, Lo, et. al. [9] showed how to
find a ham-sandwich cut for well separated point sets in
linear time. That algorithm is easily adapted to gener-
alized cuts. Using this as the base case, the algorithm
just described now has running time O(n(log n)d−3) for
dimensions d ≥ 3.

We tried to find a way to do the inductive step in con-
stant time, similar to the way Lo et. al. did for sep-
arated ham sandwich cuts in R3, but did not succeed.
A main open question is whether there is an O(n) algo-
rithm for this problem.

Acknowledgement: We thank the reviewers for in-
sightful comments.
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CCCG 2008, Montréal, Québec, August 13–15, 2008

Direct Planar Tree Transformation and Counterexample

Selim G Akl, Kamrul Islam, and Henk Meijer
School of Computing, Queen’s University

Kingston, Ontario, Canada K7L 3N6

Abstract

We consider the problem of planar spanning tree trans-
formation in a two-dimensional plane. Given two pla-
nar trees T ′ and T ′′ drawn on a set S of n points in
general position in the plane, the problem is to trans-
form T ′ into T ′′ by a sequence of simple changes called
edge-flips or just flips. A flip is an operation by which
one edge e of a geometric object is removed and an edge
f (f 6= e) is inserted such that the resulting object be-
longs to the same class as the original object. Generally,
for geometric transformation, the usual technique is to
rely on some ‘canonical’ object which can be obtained by
making simple changes to the initial object and then do-
ing the reverse operations that transform the canonical
object to the desired object. In this paper, we present a
technique for such transformation that does not rely on
any canonical tree. It is shown that T ′ and T ′′ can be
transformed into each other by at most n − 1 + k flips
(k ≥ 0) when S is in convex position and we also show
results when S is in general position. We provide cases
where the approach performs an optimal number of flips.
A counterexample is given to show that if |T ′ \ T ′′| = k
then they cannot be transformed to one another by at
most k flips.

1 Introduction

The problem of transforming of a certain class of ge-
ometric objects consisting of straight line segments
and points in the plane, by applying small changes
called flips in the objects, has been studied extensively
[2, 5, 4, 6]. Given any two objects for a certain set of
points, the question is whether the two objects can be
transformed to each other by a sequence of flips and how
many such transformations are required. A flip can be
informally defined as the removal of an edge from, and
insertion of another edge to, the object given. Origi-
nally, triangulations were investigated with positive re-
sults by K. Wagner [8]. Since then the problem has been
studied for other classes of planar graphs such as tetra-
hedrons, linked-edge lists, pseudo-triangulations, planar
spanning trees, crossing-free Hamiltonian paths and so
on. Algorithms for such transformation as well as lower
and upper bounds for achieving transformation results
can be found in [1, 2, 4, 6].

One of the best-known results in the case of pla-
nar tree transformation is by Avis and Fukuda [2] who
showed that for n points in general position every pla-
nar tree T ′ can be transformed into another planar tree
T ′′ by means of at most 2n− 4 flips. Later, the bound
was slightly improved to 2n−m− s− 2 in [7] (which is
better if m + s > 2 otherwise it is at least as good as
that in [2]). Here m is the maximum degree of any ver-
tex v of T ′, where v is a point on the convex hull of the
point set representing the vertex set and s is the degree
of v in T ′′. Both of these approaches rely on the use of
some ‘canonical’ tree. Informally, a canonical tree is a
planar tree that has some particular characteristics such
as, for example, all the vertices are directly connected
to some vertex called the root. Surprisingly, most re-
sults related to transformations of different classes of
graphs are based on the notion of some ‘canonical’ form
of these graphs, as mentioned in [3]. The main idea of
these techniques can be stated as follows: Given two
objects A and B of a certain class of graph, the tech-
nique is to transform A into some canonical object C
of that class by a sequence of transformations. Later,
the sequence of transformations that transform B to C
is reversed to obtain the desired transformation from A
to B. This is an indirect approach. The main prob-
lem with this approach is that it takes a long sequence
of additional flips to obtain the canonical graph even if
the two objects are quite similar or they differ only in
few edges.

Here we study the transformation of planar spanning
trees using flips for a set S of n points in general po-
sition in the plane, avoiding the use of canonical trees.
We provide results when the points are in convex po-
sition. With this approach, trees could be transformed
in a more direct manner. We determine bounds on the
number of transformations needed and show that an
upper bound on the number of flips using this transfor-
mation is n − 1 + k, (k is the number of edges of one
planar tree crossed by edges of the other planar tree
drawn on S). We provide a counterexample where this
direct approach cannot apply when S is in general po-
sition. Our algorithm obtains an optimal bound on the
number of flips when there are no crossings.

The organization of the paper is as follows. In Section
2, we provide the definitions and terminologies that will
be used throughout the paper. The technique of our al-
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gorithm for transformation and the results of the paper
are presented in Section 3 and we conclude in Section
4.

2 Preliminaries

A graph G = (V, E) consists of a set of vertices V ,
and an edge set E = {(vi, vj)|vi, vj ∈ V }. A graph
G is called planar if it can be drawn in the plane so
that no two edges cross, except at their common ver-
tex. If (vi, vj) ∈ E, then vi and vj are adjacent. Let
S = {v0, v1, v2, · · · , vn−1} be a set of n points in gen-
eral position (no three points are collinear) in the two-
dimensional Euclidean plane. Trees are drawn in the
plane where the vertices (V ) and edges (E) of a tree are
represented by points of S and straight line-segments.
Two vertices vi and vj , vi 6= vj in an embedding of G
are visible to each other if the straight line segment
(vi, vj) ∈ E between them does not cross any of the
edges in G. A flip in tree T ′ is the operation of re-
moval of an edge e and addition of an edge f such that
T ′′ = T ′\{e} ∪ {f} is a tree.

Let T (S) denote the set of all trees of S and the geo-
metric tree graph TG(S) denote the graph having T (S)
as vertex set. Two trees T ′, T ′′ ∈ T (S) are adjacent if
T ′′ = T ′\{e} ∪ {f} for some edges e and f . In the rest
of the paper, it is assumed that a tree is planar unless
otherwise mentioned.

3 Tree Transformation

Let T ′ = (V, E′) and T ′′ = (V, E′′) be any two trees
belonging to T (S). It is required to construct T ′′ by
applying a sequence of flips one by one to T ′. In general,
we say that T ′′ can be transformed from T ′ by p flips if
there is a set of trees T0, T1, · · · , Tp where T ′ = T0 and
T ′′ = Tp such that Ti+1 can be obtained from Ti by a
single flip. This implies that for any i, Ti and Ti+1 are
adjacent in TG(S) and it is known that the diameter of
TG(S) is linear. Consider Fig. 1 where the tree T ′′ is
obtained from T ′ by a sequence of flips.

T ′′

T ′

Figure 1: Transformations (shown with thick edges) ap-
plied on T ′ to construct T ′′.

In the following, we outline the main idea of our al-
gorithm which does not rely on any form of canonical
tree but obtains the desired transformation.

We draw two trees T ′ and T ′′ on S in the plane and
obtain the graph G = (V, E ′ ∪ E′′) where E′ and E′′

denote the edge-sets of T ′ and T ′′, respectively. Let
G0 = G = (V, E0 ∪E′′) (where E0 = E′). If there are p
flips that transform T ′ into T ′′, our idea is to apply the
sequence of flips on the edges of E ′ on G such that the
resulting graphs are represented by G1 = (V, E1 ∪ E′′),
G2 = (V, E2 ∪ E′′), G3 = (V, E3 ∪ E′′), · · · , Gp = T ′′ =
(V, E′′) where Gi+1 is obtained from Gi by a single flip.
In Gi = (V, Ei ∪E′′), Ei represents the edge set of Ti =
(V, Ei) being transformed into T ′′. Note that after the
pth flip, the graph Gp turns into tree T ′′, since we expect
that as flips are applied on the edges of T ′, gradually T ′

is turned into T ′′ and each instance of the intermediate
trees Ti = (V, Ei) along with T ′′ = (V, E′′) is reflected
in Gp. In other words, we remember the order and the
set of flips carried on Gi to produce Gp, then we apply
these sequence of flips on T ′ in order to obtain T ′′.

To distinguish the edges of Ei from the edges of E′′ in
Gi, we color them with different colors. Edges (u, v) ∈
Ei\E

′′ are colored in red, edges (u′, v′) ∈ E′′\Ei in blue,
and edges (u′′, v′′) ∈ Ei∩E′′ in purple. Observe that, in
graph Gi, only red edges can cross blue edges and there
will be no crossings between red and purple or blue and
purple edges since T ′ and T ′′ are planar. If a red edge
is crossed by one or more blue edges, then we call it a
crossed red edge. We count the total number of such
crossed red edges after forming G0 = G = (V, E′ ∪ E′′)
at the beginning of our algorithm and denote it by k.

Lemma 1 Suppose Gi = (V, Ei ∪ E′′) is not planar.
The removal of a crossed red edge, e ∈ Ei\E′′ from Gi

splits Ei into two edge sets E ′

i (and vertex set V ′

i ) and
E′′

i (and vertex set V ′′

i ). Assume CH(V ) ∩ V ′

i 6= ∅ and
CH(V ) ∩ V ′′

i 6= ∅ where CH(V ) is the convex hull of
V . There exists an edge f ∈ V × V such that Gi+1 =
(V, Ei\{e}∪E′′∪{f}) where f is an edge on the convex
hull of V connecting a vertex of V ′ to a vertex of V.

Proof. Begin by removing a crossed red edge e =
(vk, v`) from Gi = (V, Ei ∪ E′′) and obtain two edge
sets E′

i and E′′

i . Let V ′

i ⊂ V and V ′′

i ⊂ V denote the
incident vertices of E′

i and E′′

i respectively. The aim is
to connect vi ∈ V ′

i and vj ∈ V ′′

i ((vi, vj) = f) so that
the edge f does not cross any edges in Gi+1.

Color the vertices of V ′

i and V ′′

i black and white, re-
spectively. It suffices now to connect a black vertex
to a white one without yielding any crossing. Select
any of the black vertices vi, vi ∈ V ′

i , on the convex
hull of CH(V ) and start walking along the boundary of
CH(V ) in some order. Once a walk is complete (that
is, we reach the same vertex from which we started), we
get a sequence of white and black vertices. We can in-
sert an edge f by connecting any two consecutive white
and black vertices in the sequence that does not gener-
ate any crossing in Gi+1 since the edge is drawn on the
boundary of CH(V ).
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f

(a)

e

(b) G1 = (V, E1 ∪ E ′′)G0 = (V, E ′ ∪ E ′′)

Figure 2: (a) Graph G0 = (V, E′ ∪ E′′) is drawn with
trees T ′ = (V, E′) and T ′′ = (V, E′′) where thin edges
represent red edges, thick edges denote blue edges and
dashed edges denote purple edges. (b) Edge e is re-
moved and edge f is inserted without making any cross-
ing in the graph. Black vertices belong to V1 while the
rest belong to V2.

�

An illustration of the above lemma is shown in Fig.2.
We identify a case where we can obtain an optimal

number of flips for the desired transformation: this is
given in the following lemma.

Lemma 2 Any tree T ′ = (V, E′) can be transformed
into another tree T ′′ = (V, E′′) with at most n− 1 flips
when the number of crossed red edges is zero.

Proof. Obtain the graph G0 = (V, E0 ∪ E′′), where
E0 = E′. Since there are no crossed red edges, G0

is planar. Begin in the following way. At each step,
remove an arbitrary red edge (u, v) ∈ Ei\E′′ from Gi

and colour the vertices black and white as in the proof
of Lemma 1. Insert a purple edge between a black and a
white vertex, otherwise the purple edge will make a cycle
if the two incident vertices are of the same color. Since
at every step a flip is carried out, we get a new graph
Gi+1 = (V, Ei+1∪E′′), where |Ei+1∩E′′| = |Ei∩E′′|+1
(0 ≤ i < p). The procedure stops when |Ep ∩ E′′| =
n − 1, meaning that T ′ has been transformed into T ′′

and Gp becomes Gp = (V, E′′). Since there can be zero
purple edge in G0 = (V, E0 ∪E′′), the number of flips is
at most n− 1. �

The above two lemmas allow us to formulate the fol-
lowing theorem.

Theorem 3 Any tree T ′ = (V, E′) can be transformed
into another tree T ′′ = (V, E′′) with at most n − 1 + k
flips where k is the number of crossed red edges, provided
that for any flip 1 ≤ i ≤ k, CH(V ) ∩ V ′

i 6= ∅ and
CH(V ) ∩ V ′′

i 6= ∅.

Proof. Consider the graph G0 = (V, E0 ∪ E′′), where
E0 = E′. The graph can be made planar by removing all
the crossings between red and blue edges, as previously

shown. Thus we need at most k flips to make the graph
planar provided for any flip 1 ≤ i ≤ k CH(V ) ∩ V ′

i 6= ∅
and CH(V )∩V ′′

i 6= ∅. As the graph is made planar, we
can now follow Lemma 2 to obtain T ′′. It takes at most
n− 1 + k flips to transform T ′ into T ′′. �

If the set of points are in convex position, then each
flip must reduce the number of crossings between red
and blue edges by at least one, since there will always
be two consecutive black and white points available to
make the flip successful. Now we have the following
corollary:

Corollary 4 When the set of points is in convex posi-
tion we need at most n− 1 + k flips for the above trans-
formation since for any flip 1 ≤ i ≤ k, CH(V )∩V ′

i 6= ∅
and CH(V ) ∩ V ′′

i 6= ∅.

3.1 Counterexample

In this section, we show that there exist two trees de-
fined on the same point set such that there does not
exist any flip in one of the two trees that reduces the
total number of crossings by at least 1 in Gi. Such an
example is shown in Fig. 3 where the tree, T ′ in Fig.
3(a) has three edges different from the tree, T ′′ in Fig.
3(b), that is, |T ′ \ T ′′| = 3. However, there is no way
(as evident from Fig. 3(c)) that any of the trees can be
transformed to the other by three flips. This means that
the direct transformation would fail after looking for all
possible removal of edge crossings and this exhaustive
searching would take time proportional to the number
of crossings. However, once this fails we can then re-
sort to the technique of using a canonical tree [1] which
guarantees to take at most 2n−m− s− 2 flips for such
transformation. The way the algorithm in [1] works is
as follows: Let T ′ be the tree to be transformed into
another tree T ′′. Let m be the maximum degree of any
vertex v of T ′, where v is a point on the convex hull of
the point set representing the vertex set. Similarly s is
the degree of v in T ′′. We can first make T ′ into some
canonical tree Tc where the degree of vertex v is n − 1
by a sequence of n − 1 −m flips and then perform the
flips that transform T ′′ into Tc by having n− 1− s flips
in reverse order. Thus we incur 2n−m− s− 2 flips for
such transformation.

3.2 Remarks

The technique we present in this paper has the obvi-
ous advantage that in some cases it leads to the op-
timal number of flips to complete the transformation.
It is well known that an approach for transforming a
given tree (in general, it is true for other planar graphs
of some class, e.g., planar paths, pseudotriangulations,
etc.) into another via a flip operation which depends
on a canonical tree never leads to the computation of
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(c)

(a) (b)

Figure 3: A counterexample with two trees defined on
the same point where there does not exist any flip in one
of the two trees such that the total number of crossings
is reduced by at least one in Gi.

the optimal number of flips. This is because the two
objects may differ only in a very small number of edges,
whereas to transform them into a canonical form may
take a large number of flips. As can be seen from Fig.
4, transforming any of the trees into the other takes 5
flips via a canonical tree based approach whereas only
one flip suffices.

(a) (b)

Figure 4: Transforming one tree into another takes only
one flip optimally, but 5 flips through a canonical tree.

Finally, we provide a simple average case analysis of
the number of flips of our algorithm. First, we deter-
mine the average number of crossed red edges. The
number of crossed red edges varies from 0 to n−3. Thus,
the total number of crossed red edges is

∑n−3

k=0
k yielding

the average number of crossed red edges,
∑n−3

k=0
k/(n−

2) = 1

n−2
(1+2+3+ · · ·+n−3) = (n−3)/2, where k is

assumed to be uniformly distributed in [0, n− 3]. Then
the average number of flips required by our algorithm
is (n− 1) + (n− 3)/2 = 1.5n− 2.5. The above analysis
is based on the fact that for any flip and for 1 ≤ i ≤ k,

CH(V ) ∩ V ′

i 6= ∅ and CH(V ) ∩ V ′′

i 6= ∅. However,
the average-case analysis is based on the simplifying
assumption that the number of crossings is uniformly
distributed over a given interval. It is an interesting
open problem to derive a more sophisticated value for
the average number of flips required by our algorithm.

4 Conclusion

In this paper, we present a technique for tree trans-
formation through flips when the points are in general
position and also investigate the results when the points
are in convex position. In this approach, we avoid the
use canonical tree and directly transform one tree into
another and show it takes at most n−1+k flips (k ≥ 0)
for such transformation when the points are in convex
position. We also show results when the points are in
general position and provide an upper bound on the
number of flips. If there are no crossings in the union
of edges of the given trees, it is shown that this tech-
nique performs an optimal number of flips. Finally, a
counterexample is given to show that if two planar trees
on the same point set differ by k edges, they cannot be
transformed to one another by at most k flips.
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Partitioning a Polygon into Two Mirror Congruent Pieces

Dania El-Khechen∗ Thomas Fevens∗ John Iacono† Günter Rote‡

1 Introduction

Polygon decomposition problems are well studied in the
literature [6], yet many variants of these problems remain
open. In this paper, we are interested in partitioning
a polygon into mirror congruent pieces. Symmetry de-
tection algorithms solve problems of the same flavor by
detecting all kinds of isometries in a polygon, a set of
points, a set of line segments and some classes of polyhe-
dra [2]. Two open problems with unknown complexity
were posed in [2]: the minimum symmetric decomposi-
tion (MSD) problem and the minimal symmetric par-
tition (MSP) problem. Given a set D in Rd (d ∈ 2, 3),
the goal is to find a set of symmetric (nondisjoint for
MSD and disjoint for MSP) subsets {D1, D2, . . . , Dk}
of D such that the union of the Di is D and k is min-
imum. The following problem is a decision version of
MSP where k = 2:
Problem 1 Given a polygon P with n vertices, compute
a partition of P into two (properly or mirror) congruent
polygons P1 and P2, or indicate such a partition does
not exist.

Erikson claims to solve the aforementioned problem in
O(n3) [4]. Rote observes that a careful analysis of Erik-
son’s algorithm yields a O(n3 log n) running time for
proper congruence and he shows that the combinatorial
complexity of an explicit representation of the solution
in the case of mirror congruence cannot be bounded as
a function of n [7]. Rote also gives a counterexample
where the algorithm fails for a polygon with holes. An
O(n2 log n) algorithm to solve the problem for properly
congruent and possibly nonsimple P1 and P2 was pre-
sented recently [3]. It was also conjectured that the
output can be restricted to simple polygons without an
increase in the runtime [3]. In this paper, we present
an O(n3) algorithm to solve the problem for mirror con-
gruent and possibly nonsimple polygons P1 and P2. In
other words, our algorithm is able to produce solutions
unbounded by n in a time polynomial in n using an
implicit representation of the output. Note that we can
restrict the output to simple polygons if we allow an
additional linear factor for intersection checking.
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2 Preliminaries

Two polygons are mirror congruent (properly congruent)
if they are equivalent up to reflection or glide reflection
(rotations and translations). Note that a glide reflection
is a reflection followed by a translation parallel to the
reflection axis. A reflection along an axis g followed by a
rotation or a translation is a reflection around an axis g′.
In this paper, we focus on mirror congruent polygons.
Congruence transforms involving glide reflection are de-
noted by T = (g,v) where g is the axis of reflection and
v is the vector of translation if any. Let T−1 = (g,−v).
We refer to the boundary of a polygon P by δ(P ) and
we normalize P to have unit perimeter. A polyline that
is a subset of δ(P ) is specified by a start point and an
endpoint on δ(P ) (not necessarily vertices) and is always
considered to be directed clockwise around P . A poly-
line can be viewed as an alternating sequence of lengths
and angles, which always begins and ends with a length.
Two polylines are congruent if they are represented by
the same sequence, two polylines are flip congruent if
they are represented by the same sequence after replac-
ing all of the angles αi in one by 2π − αi and reversing
the order of the sequence, and two polylines are mirror
congruent if they are represented by the same sequence
after reversing the order of the sequence. Let ∠

P
a be the

interior angle of a point a on a polygon P . Let ab be the
line segment with endpoints a and b and P [a . . b] be the
polyline connecting a to b on P in clockwise order. We

use
FLIP∼= to denote flip congruence,

MIRROR∼= to denote mir-

ror congruence. Observe that P [a . . b]
FLIP∼= P [b . . a]. Let

vd(a, b) be the vertical distance between the two points
a and b. A partitioning of P , if it exists, is a solution to
Problem 1 and is denoted by S = (P1, P2). It consists
of polygons P1 and P2 such that there exists a transfor-
mation where TS(P1) = P2. The split polyline, denoted
by Split(S), partitions the polygon P into P1 and P2.
We are interested in a split polyline that has minimum
complexity. When P is symmetric, we call the partition
trivial and the problem reduces to symmetry detection
which has been solved in linear time in [2]. Note if TS is
a reflection it can be determined by one pair of points
(pi, TS(pi)) such that pi ∈ δ(P1) and TS(pi) ∈ δ(P2).
If TS is glide reflection, it can be determined by two
pairs of points (pi, TS(pi)) and (pj , TS(pj)) such that pi

and pj belong to δ(P1) and TS(pi) and TS(pj) belong
to δ(P2). We say that two subsets s1 ⊆ P1 and s2 ⊆ P2
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of congruent polygons P1 and P2 are transformationally
congruent with respect to congruence transformation TS

if TS(s1) = s2.

3 Results

3.1 Preprocessing

Congruence of polylines is detected by string match-
ing. Our string representation of polygons and polylines
yields Lemma 2.

Lemma 2 ([5]) Given a polygon P , with O(n2) prepro-

cessing and space, queries of the form P [a . . b]
?

MIRROR∼=

P [c . . d] and P [a . . b]
?

FLIP∼= P [c . . d] can be answered in
constant time.

Let the length of a polyline P [a . . b] (denoted dP (a, b))
be the sum of the lengths of all the segments that form
this polyline. Let d−1

P (a, x) be the point b such that
dP (a, b) = x. That is, it is the point on δ(P ) obtained
by walking x units clockwise around δ(P ) from a. Note
that d−1

P (a, 0.5) = b is equivalent to d−1
P (b, 0.5) = a.

Lemma 3 ([1]) Given a polygon P , with O(n) prepro-
cessing and space, the functions dP and d−1

P can be
computed in constant time if the endpoints are vertices
of the given polygon, and in O(log n) if they are not,
using standard point location techniques.

3.2 Algorithms

Lemma 4 Assume that P can be nontrivially parti-
tioned into two mirror congruent polygons where S =
(P1, P2) and let b and e denote the endpoints of the split
polyline Split(S) then either P1[b . . e] is disjoint from
the polyline TS (P1[b . . e]), TS (P1[b . . e]) partially over-
laps with P1[b . . e], or P1[b . . e] and P2[e . . b] are line
segments.

Proof. Suppose that TS (P1[b . . e]) = P2[e . . b]. We

know that by definition P1[b . . e]
FLIP∼= P2[e . . b]. There-

fore, the polyline P1[b . . e] and its flip congruent
P2[e . . b] are mirror congruent which obviously can-
not happen unless P1[b . . e] and P2[e . . b] are line
segments. �

In section 3.3, we present an algorithm for the case
where Split(S) is disjoint from TS (Split(S)) (see Fig-
ure 1) and in section 3.4, we present an algorithm for
the case where they partially overlap (see Figure 2). All
the proofs in the following sections are omitted due to
space constraints.

3.3 Disjoint split polyline

In this section, we assume that if a solution exists then
the split polyline Split(S) is disjoint from its mirror image
by the transformation TS . We first show the necessary

c

d

b

ef

a

f d

a b

e

c

Figure 1: Polygons partitioned into two simple mirror
congruent pieces with a nonoverlapping split polyline

conditions for the existence of a solution in Lemma 5,
namely that a solution S = (P1, P2) can be specified by
a six-tuple of points on δ(P ) satisfying some properties.
In Lemma 6, we show how to verify if a given six-tuple
specifies a valid solution or not. In Lemmas 7 and 8,
we show how, given two points of a solution six-tuple,
we can find the rest of the points in the six-tuple. In
Theorem 1, given that (by Lemma 5) at least four points
of a solution six-tuple are vertices, we present an O(n3)
algorithm that solves Problem 1 for the case discussed
in this section.

For Lemmas 5, 6, 7 and 8, assume that P can be
nontrivially partitioned into two mirror congruent poly-
gons P1 and P2 where S = (P1, P2) and Split(S) is
disjoint from TS (Split(S)). Let d = TS(b), c = TS(e),
f = T−1

S (b), and a = T−1
S (e).

Lemma 5 The following facts hold (see Figure 1):
(a, b, c, d, e, f) appear in clockwise order on δ(P ); P [f . .

a]
MIRROR∼= P2[e . . b]; P [c . . d]

MIRROR∼= P1[b . . e]; P [a . .

b]
MIRROR∼= P [d . . e]; P [b . . c]

MIRROR∼= P [e . . f ]; P [f . .

a]
FLIP∼= P [c . . d]; ∠

P
a + ∠

P
c = ∠

P1

e + ∠
P2

e; ∠
P

f + ∠
P

d =

∠
P1

b+∠
P2

b; at least two of the points in {a, c, e} and two of

the points in {b, d, f} are vertices of P ; d−1
P (a, 0.5) = d;

d−1
P (b, 0.5) = e; and d−1

P (c, 0.5) = f .

Lemma 6 Given the preprocessing in Lemma 2 and
the positions of six points (a, b, c, d, e, f) on δ(P ), it can
be checked that the points specify a valid solution S =
(P1, P2) for the disjoint split polyline case of Problem 1
in constant time.

Lemma 7 The points (a, b, c, d, e, f) are as defined in
Lemma 5. Given the position of two points of {a, c, e} or
{b, d, f} and the preprocessing in Lemma 3, the positions
of all six points (a, b, c, d, e, f) can be computed O(log n)
time except in the case where both b and e are not vertices
of P .

Lemma 8 Given the positions of {a, c, d, f}, the fact
that both b and e are not vertices (equivalent to
{a, c, d, f} being all vertices by Lemma 5) and the pre-
processing in Lemma 2, the positions of b and e can be
computed O(n) time.
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Theorem 1 Given a simple polygon P and given that
Split(S), if it exists, is disjoint from TS (Split(S)), a
solution S = (P1, P2) to Problem 1 can be found in
O(n3) time if and only if P can be partitioned into two
congruent polygons.

3.4 Partially overlapping split polyline

In this section, we assume that if a solution S exists then
the split polyline Split(S) is partially overlapping with
its mirror image by the transformation TS . We first show
the necessary conditions for the existence of a solution
in Lemma 9, namely that a solution S = (P1, P2) can
be specified by a six-tuple of points on δ(P ) that obey
one of two sets of properties (which we call case 1 and
case 2). In Lemma 10, we show how to verify if a given
six-tuple specifies a valid solution or not. In Lemmas 11
and 12, we show how, in each one of the two cases, given
two points of a solution six-tuple, we can find the rest
of the six-tuple points. In Theorem 2, given that (by
Lemma 9) at least four points of a solution six-tuple
are vertices, we present an O(n3) algorithm that solves
Problem 1 for the case discussed in this section.

For Lemmas 9, 10, 11 and 12, assume that P can be
nontrivially partitioned into two mirror congruent poly-
gons P1 and P2 where Split(S) is partially overlapping
with TS (Split(S)). Let TS(e) = c, T−1

S (b) = f . Assume
without loss of generality that the axis of glide reflection
g is vertical.

Lemma 9 The following facts hold (see Figure 2):

P [e . . f ]
MIRROR∼= P [b . . c]; P1[f . . e]

MIRROR∼= P2[c . . b];
there exists two points a and d on δ(P ) such that ei-

ther P [f . . a]
MIRROR∼= P [c . . d], P [a . . b]

FLIP∼= P [d . . e],
∠
P

(2π − ∠
P

d)+∠
P

f = ∠
P1

b+ ∠
P2

b and ∠
P

c+∠
P

(2π − ∠
P

a) =

∠
P1

e + ∠
P2

e (this is case 1, see the left polygon in Fig-

ure 2) or P [f . . a]
FLIP∼= P [c . . d], P [a . . b]

MIRROR∼= P [d . . e],
∠
P

d+∠
P

f = ∠
P1

b+ ∠
P2

b and ∠
P

c+∠
P

a = ∠
P1

e+ ∠
P2

e (this is

case 2 see the right polygon in Figure 2); at least two of
the points in {a, c, e} and two of the points in {b, d, f}
are vertices of P ; if x = (vd(b, e)/vd(f, b)) mod vd(c, d)
then for case 1, x is an odd number and for case 2, x is
even; (a, b, c, d, e, f) appear in clockwise order on δ(P );
d−1

P (a, 0.5) = d; d−1
P (b, 0.5) = e and d−1

P (c, 0.5) = f .

Lemma 10 Given the preprocessing in Lemma 2 and
the positions of six points (a, b, c, d, e, f) on δ(P ), it
can be checked that the points specify a valid solution
S = (P1, P2) for the partially overlapping split polyline
case of Problem 1 in constant time.

Lemma 11 The points (a, b, c, d, e, f) are as defined in
Lemma 9. Given the position of any two of {a, c, e} or
{b, d, f} and the preprocessing in Lemma 3, the posi-
tions of all six points (a, b, c, d, e, f) can be computed in

e
d

f

c

b

a

d

f

c

b

a

e

Figure 2: Polygons partitioned into two simple mirror
congruent pieces with an overlapping split polyline.

a

d
e

c

bb

c

d

b

f

a

f

e

Figure 3: Case 1a (left) where {a, c, d, f} are vertices
and {b, e} are not. Case 1b (right) where {a, b, e, d} are
vertices and {c, f} are not.

O(log n) time except in the cases where either both b and
e or both c and f are not vertices (Figures 3 and 4).

Lemma 12 Given the positions of {a, c, d, f} and the
preprocessing in Lemma 2, the positions of b and e can
be computed in O(n) time for case 1a and 1b. Similarly,
given the positions of {a, b, d, e} and the preprocessing
in Lemma 2, the positions of c and f can be computed
in O(n) time in cases 2a and 2b.

Theorem 2 Given a simple polygon P and given
that Split(S), if it exists, is partially overlapping with
TS (Split(S)), a solution S = (P1, P2) to Problem 1 can
be found in O(n3) if and only if P can be partitioned
into two congruent polygons.
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f

a
b

c

a

f

e

d
c

e

b

d

Figure 4: Case 2a (left) where {a, b, e, d} are vertices
and {c, f} are not. Case 2b (right) where {a, c, d, f} are
vertices and {b, e} are not.

4 Conclusion

Theorem 3 Given a simple polygon P , we can decide if
it can be partitioned into two mirror congruent polygons
and find a solution S = (P1, P2) to Problem 1, if it exists,
in O(n3) time.
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The Embroidery Problem

Esther M. Arkin∗ George W. Hart† Joondong Kim∗ Irina Kostitsyna†

Joseph S. B. Mitchell∗ Girishkumar R. Sabhnani† Steven S. Skiena†

Abstract

We consider the problem of embroidering a design pat-
tern, given by a graph G, using a single minimum length
thread. We give an exact polynomial-time algorithm for
the case that G is connected. If G has multiple con-
nected components, then we show that the problem is
NP-hard and give a polynomial-time 2-approximation
algorithm. We also present results for special cases of
the problem with various objective functions.

1 Introduction

Figure 1: Embroidery
of a girl with basket.

An embroidery is a deco-
rative design sewn onto a
fabric using one or more
threads. The artist guides
the thread with a needle
as it alternates between the
top and the bottom of the
fabric. The exposed thread
on the top of the fabric
is the desired design; the
thread on the bottom of the
design is needed only to in-
terconnect the needle holes
as the design is sewn. We
study the single-thread embroidery problem in which
the goal is to minimize the total length of thread.

Model. We require that the complete embroidery must
be done with a single continuous piece of thread and
that the thread must form a cycle, returning to the start-
ing point (where a knot will be tied). The embroidery
problem is graph traversal optimization problem, as we
now formally state.

Problem Statement. Given a graph G(V,E), with ver-
tices V and edges E embedded in the Euclidean plane,
find a minimum-length closed tour T with alternating
edge types (front and back), such that front edges ex-
actly cover E (without repetition) and back edges form

∗Department of Applied Mathematics and Statistics, Stony

Brook University, {estie,jdkim,jsbm}@ams.sunysb.edu
†Department of Computer Science, Stony Brook University,

{ikost,george,gk,skiena}@cs.sunysb.edu

an arbitrary subset of the edges of the complete graph
on V , with possible repetitions. We assume that V is
a finite set of n points in the plane and that E is a set
of m straight line segments joining pairs of points in V .
The length of an edge is its Euclidean length; the total
length of a tour or a set, X, of edges is denoted |X|.

Figure 2: An embroidery graph, with red (solid) edges
representing the front edges, E, of the embroidery de-
sign and blue (dashed) edges representing the back
edges.

We refer to a tour T satisfying the above constraints
as an embroidery tour for G. The front edges of T are
denoted F , the back edges are denoted B. A single
continuous piece of thread following T gives exactly the
desired embroidery design E = F (without repeating
any edge) on the front of the cloth, and the back edges
B of T represent “wasted” thread length. Since the
edges F exactly cover E, the length of any feasible em-
broidery tour is simply |T | = |E|+ |B|, so, for given E,
exactly minimizing |T | is equivalent to minimizing |B|.
However, in terms of approximation ratio, the problem,
OPTT , of minimizing |T | is different from the problem,
OPTB , of minimizing |B|.

We also consider the Steiner version of the embroi-
dery problem in which we allow the set V to be aug-
mented by a set of Steiner points that lie along edges
E of the design; i.e., in the Steiner embroidery problem
the set F of front edges must form an exact cover of the
edges E, but each edge e ∈ E may be (exactly) covered
by a set of segments in F , with endpoints that may lie
interior to e.

Related Work. The rural postman is most closely re-
lated to our problem: Given an undirected graph G =
(V,E) with edge weights, and a subset E′ ⊆ E, find
a closed walk of minimum weight traversing all edges
of E′ at least once. The stacker-crane problem is also
similar, but the required edges to be traversed are di-
rected. The main distinction between the embroidery
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Graph G OPTT OPTB

Connected poly-time poly-time
Section 2.1 Section 2.1

Arbitrary NP-hard, 2-apx NP-hard, 3-apx
Section 2.2 Section 2.2

Indep Segments NP-hard, 1.5-apx, NP-hard, 2-apx
Section 2.3 Section 2.3

Table 1: Summary of results: No Steiner points allowed.

Graph G OPTT OPTB

Connected poly-time poly-time
Section 3.1 Section 3.1

Arbitrary NP-hard, 2-apx, PTAS NP-hard, 3-apx
Section 3.2 Section 3.2

Table 2: Summary of results with Steiner points.

problem and these related problems is that in the em-
broidery problem the tour is not allowed to traverse two
of the required edges in a row; it must alternate between
the front (specified) and back edges. The rural post-
man has a (Christofides-like) 3/2-approximation [3] and
the stacker-crane has a 9/5-approximation [4]. Biedl [2]
studies the special case of the embroidery problem in
which only “cross-stitches” are used.

Summary of Results. Table 1 summarizes our results
on the OPTT and OPTB problems for different types of
input embroidery graphs G: (i) connected, (ii) arbitrary,
with possibly many connected components, and (iii) an
independent set of edges – no two edges of E share an
endpoint (however, the line segments that embed E may
cross arbitrarily). Table 2 lists our results for the Steiner
embroidery problem.

2 Embroidery Without Steiner Points

An embroidery tour T alternates between front edges
and back edges. Hence ∀v ∈ V the number of back
edges incident to v must be exactly equal to the number
of front edges incident to v. See Theorem 1.

Theorem 1 T is an embroidery tour for G(V,E) if and
only if G(V, T ) is connected and ∀v ∈ V : dF (v) = dB(v),
where dF (v) is the degree of vertex v in G(V, F ).

Proof. If: Since T is an embroidery tour (using sin-
gle continuous thread) G(V, T ) must be connected. If
there exists a vertex v such that dB(v) < dF (v), by the
pigeon-hole-principle on entry and exit type of edges on
v, T must have two consecutive front edges ei, ej ∈ F

sharing v, hence contradicting that T is embroiderable.
A similar contradiction holds if dB(v) > dF (v).

Only If: Since G(V, T ) is connected and dT (v) is even
there exists an Euler tour in G(V, T ). We show how to

construct an Euler tour that alternates edges from F

and B. First, we show that G(V, T ) must contain an
edge-alternating circuit. Start an edge-alternating walk
W = {a, . . . , v, x . . . , y, v} from an arbitrary vertex, un-
til a vertex v repeats. This defines an edge-alternating
circuit, unless edges (v, x) and (y, v) belong to the same
side. But if so, W can be continued, as there remains at
least one unused alternate side edge incident on v. Thus,
we can decompose G(V, T ) into a set of edge-disjoint, al-
ternating circuits. Any two such circuits (say c1 and c2)
incident on a common vertex v′ can be merged to form
a larger alternating circuit, since both c1 and c2 contain
front and back edges at v′. Repeated merging opera-
tions reduce the set of alternating circuits to a single
alternating tour. �

2.1 One Connected Component

If G is connected, then the embroidery problem can be
solved as follows: Find a minimum-length set of back
edges B such that the degree requirement ∀v ∈ V :
dB(v) = dE(v) is satisfied. By Theorem 1 E ∪ B

is an embroidery tour for G. Since B is minimum-
length, the resulting tour is optimal. Thus, the selec-
tion of an optimal B is exactly the minimum-weight b-
matching problem on V , with vertex weights (degrees)
b(v) = dE(v), ∀v ∈ V , which is solvable in polynomial
time [1].

2.2 Multiple Connected Components

Consider now an arbitrary design G, with possibly many
connected components. As before, we can compute
a minimum-weight b-matching, with vertices weighted
by the degrees, dE(v); however, an optimal b-matching
does not result in a set B of back edges that yields a
complete solution, since the graph G(V,E ∪B) may be
disconnected.

In fact, we show that it is NP-hard to solve OPTT or
OPTB exactly, using a simple reduction from Euclidean
TSP ( [6]):

Theorem 2 The embroidery problem (either OPTT or
OPTB) is NP-hard for arbitrary graphs G, with many
connected components.

Approximating OPTT . We turn now to approximat-
ing OPTT . We define a new graph G′(V ′, E′), where
V ′ is the set of connected components in G(V,E), and
E′ is the set of edges in the complete graph on V ′.
For each edge e(i, j) ∈ E′ , the weight of the edge
w(i, j) = minu∈ Vi,w∈ Vj

dist(u,w). Let MST be a min-
imum spanning tree of G′.

Now initialize B to contain a copy of front edges E

and two copies of each MST edge. Note that each MST
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edge is a minimum-weight edge connecting the appro-
priate vertices in the two different components. Let
Tapx = E ∪ B. Hence, ∀v ∈ V, dTapx

(v) ≥ 2 · dE(v),
implying

|Tapx| = 2 · |E| + 2 · |MST |.

Theorem 3 Tapx can be converted to an embroidery
tour for G(V,E) with length ≤ 2 ·OPTT .

Proof. By the definition of Tapx, G(V, Tapx) is con-
nected (since it uses the MST edges to connect between
different connected components) and dTapx

(v) is even.
Also since ∀v ∈ V , dTapx

(v) ≥ 2 · dE(v), we can find an
Euler tour in G(V, Tapx), such that there are no consecu-
tive front edges. We also try to “avoid” consecutive back
edges, by choosing to leave a node on a front edge, if it
was entered on a back edge, if possible. Note that Tapx

may have consecutive back edges ei(vi, v), ej(v, vj) ∈ B

at a vertex v, in which case we can shortcut using
e′(vi, vj) and update Tapx := Tapx ∪ {e′} \ {ei, ej} with-
out increasing |Tapx| (by triangle inequality). Since all
front edges touching v had already been used, we know
that this shortcut does not disconnect v from the tour.
Thus we can convert Tapx to a tour containing alternate
front and back edges to make it an embroidery tour
without increasing its cost.

Also, OPTT = |Topt| ≥ |E|+ |MST |, since Topt must
cover all the edges in E and must also span all the con-
nected components and by definition of MST , it is the
cheapest way to connect the disconnected components.
Thus, 2 ·OPTT ≥ 2 · (|E|+ |MST |) ≥ |Tapx|. �

Approximating OPTB. We start by finding a
minimum-weight b-matching Mb of V with weight
b(v) = dE(v),∀v ∈ V . Then for all connected com-
ponents V1, V2, . . . , Vk in graph G(V,E ∪ Mb), we find
the MST on graph G′(V ′, E′), as we did in Section 2.2.
Now add a copy of each Mb edge and two copies of
each MST edge to B. Let Tapx = E ∪ B. Again,
∀v ∈ V, dTapx

(v) ≥ 2 · dE(v). Thus,

|B| = |Mb| + 2 · |MST |.

Theorem 4 Tapx can be converted to an embroidery
tour for G(V,E) with back edges of length ≤ 3 ·OPTB.

Proof. By similar arguments as in the proof of Theo-
rem 3, we can convert Tapx to an embroidery tour with
|B| ≤ |Mb| + 2 · |MST |. Now, OPTB = |Bopt| ≥ |Mb|,
since in Topt, Bopt is one b-matching satisfying b(v) =
dE(v) and Mb is a minimum-weight b-matching. Also
OPTB ≥ |MST |, since Topt must span all of the con-
nected components of G(V,E). Note that MST here is
a minimum spanning tree on the connected components
of G(V,E ∪Mb), which has smaller cost as compared to
the minimum spanning tree on connected components of
G(V,E). Thus, 3 ·OPTB ≥ |Mb|+2 · |MST | ≥ |B|. �

2.3 Independent Segments

In the case that the edges E do not share endpoints
(i.e., they form a set of possibly intersecting line seg-
ments), OPTT can be approximated using the 3/2-
approximation algorithm for the rural postman: If the
approximating tour uses two consecutive back edges,
then we simply shortcut, replacing the two edges
with one shorter back edge. This results in a 3/2-
approximation for OPTT .

3 Embroidery with Steiner Points

It may be possible to use a shorter thread if we allow a
front edge to be split into two or more subsegments by
placing Steiner points judiciously along it. In fact, by
placing a Steiner point arbitrarily close to an endpoint
(vertex) of a front edge, we can make the length of back
edges arbitrarily close to zero; see Figure 3. We say
that such a Steiner point doubles the vertex where it is
placed.

Figure 3: Placing a Steiner point near a vertex.

3.1 One Connected Component

Lemma 5 There exists an optimal embroidery tour
Topt (allowing Steiner points) for a connected G(V,E)
that does not have Steiner points on edges other than
those near endpoints that double vertices.

Proof. If s is a Steiner point interior to an edge e ∈
E, with back edges e(a, s), e(s, b) ∈ B incident to s,
then we can simply replace these two edges with a single
(back) edge e(a, b) (and remove Steiner point s) without
increasing the cost of tour |Topt|. See Figure 4. �

Figure 4: An optimal tour T exists without having a
Steiner point s interior to an edge.

Lemma 6 There exists an optimal tour Topt (allowing
Steiner points) for a connected G(V,E) that does not
have two back edges ei, ej ∈ B incident to a common
vertex v ∈ V .

Proof. Similar to the proof of Lemma 5. �
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Since an optimal embroidery tour Topt is an Euler cy-
cle (by definition of T ), the sum of front and back edge
degrees for each vertex is even. Thus, all odd-degree
vertices v ∈ V (if any present) have one back outgoing
edge, and even-degree vertices do not have any outgoing
back edges (using Lemma 5, 6). Therefore, an optimal
solution is a union of front edges and back edges con-
stituting minimum-weight perfect matching edges built
on odd-degree vertices. The problem hence reduces to
finding a minimum-weight perfect matching in a com-
plete graph (of odd-degree vertices in this case), which
can be solved in time O(n3).

3.2 Multiple Connected Components

Clearly, the same NP-hardness reduction for the non-
Steiner version applies also if we allow Steiner points.

Approximating OPTT . The idea is very similar to
Section 2.2, except that the graph G′(V ′, E′) (defined
over different components) has edge weights w(i, j) =
minu∈ G(Vi,E),w∈ G(Vj ,E) dist(u,w),∀e(i, j) ∈ E′ (where
u,w are edges). We refer to this minimum spanning tree
on this new graph G′(V ′, E′) as MSTSt. As before, we
add a copy of front edges, F in this case (since each edge
e from E that contains one or more Steiner points, gets
split and is put as two ore more segments in F ) and two
copies of each MSTSt edge to B. Note that |F | = |E|,
as F exactly covers E. Let Tapx = F ∪B. Thus,

|Tapx| = 2 · |E| + 2 · |MSTSt|

Theorem 7 Tapx can be converted to an embroidery
tour (allowing Steiner points) for G(V,E) with length
≤ 2 ·OPTT .

Proof. We note that every time we introduce a Steiner
point, we create a new vertex v′ with dF (v′) = 2. Since
the introduction of a Steiner point is only because of
some MSTSt edge and because we double the MSTSt

edge, dTapx
(v′) ≥ 2 · dE(v′) for all new Steiner points

v′. Excluding other details (which are similar to those
in Theorem 3), Tapx can be converted to an embroidery
tour without increasing its cost.

Also, as before, OPTT = |Topt| ≥ |E| + |MSTSt|.
Thus, 2 ·OPTT ≥ 2 · (|E|+ |MSTSt|) ≥ |Tapx|. �

Approximating OPTB. This idea is also very similar
to Section 2.2, except that, instead of Mb, it uses a
perfect matching M on odd-degree vertices in G(V,E).
It also uses MSTSt defined in Section 3.2. We add a
copy of each edge of M and two copies of each MSTSt

edge to B. Let Tapx = F ∪B, where F is the front edge
cover of Steiner point split edges in E. Then,

|B| = |M | + 2 · |MSTSt|.

Theorem 8 Tapx can be converted to an embroidery
tour (allowing Steiner points) for G(V,E) with back
edges of length ≤ 3 ·OPTB.

Proof. We apply shortenings to B as in Lemmas 5, 6.
The result is a perfect matching of odd-degree vertices of
G(V,E). Thus, OPTB ≥ |M |, since the cost of any per-
fect matching is at least as much as the cost of the mini-
mum weight perfect matching. Also OPTB ≥ |MSTSt|,
since Topt must span all of the connected components of
G(V,E). Thus, 3 ·OPTB ≥ |M |+2 · |MSTSt| ≥ |B|. �

3.3 A PTAS

By using the m-guillotine method for geometric network
approximation [5], we obtain a PTAS for the problem:

Theorem 9 The embroidery problem with Steiner
points and an arbitrary input graph G has a PTAS for
OPTT .

3.4 OPTSt vs OPTNSt

We analyze how much one actually gains by allowing
Steiner points to be inserted on front edges:

Theorem 10 OPTSt ≥
1
2OPTNSt.
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Computational Balloon Twisting:
The Theory of Balloon Polyhedra

Erik D. Demaine∗ Martin L. Demaine∗ Vi Hart†

Abstract

This paper builds a general mathematical and algorith-
mic theory for balloon-twisting structures by modeling
their underlying edge skeleta, evolving classic balloon
animals into the new world of balloon polyhedra.

What if Euler were a clown?

1 Overview

Balloon twisting (or balloon modeling) is a form of
sculpture rooted in the magic community starting in the
1930s [1]. Modern balloon twisters gather at the annual
Twist & Shout convention1 and are the subject of an ex-
cellent documentary [5]. In this paper, we investigate
the geometric and algorithmic nature inherent in this art
form, founding the new field of computational balloon
twisting. We use this perspective to design a new class
of balloon-twisted sculpture called balloon polyhedra.

We begin with the basics of practical balloon twisting
(Section 2) and their mathematical idealizations called
“bloons” (Section 3). Then we consider the mathemat-
ics of three such models in turn: simple twisting (Sec-
tion 4), pop twisting (Section 5), and equalizing bloon
lengths (Section 6). Finally, we find optimal construc-
tions for Platonic and Archimedean solids (Section 7).

In addition to artistic applications, computational bal-
loon twisting has potential applications to building ar-
chitectural structures. Our results suggest that a long,
low-pressure tube (called an air beam in architecture)
enables the temporary construction of inflatable shelters,
domes, and many other polyhedral structures, which can
be later reconfigured into different shapes and re-used at
different sites.

2 Balloon Basics

The majority of balloon twisting starts from a long, nar-
row balloon, the most common being the “260” which
measures 2 inches in diameter and 60 inches in length

∗MIT Computer Science and Artificial Intelligence Laboratory,
32 Vassar St., Cambridge, MA 02139, USA, {edemaine,mdemaine}
@mit.edu

†Stony Brook University, Stony Brook, NY 11794, USA, vi@
vihart.com

1http://www.balloonconvention.com/

Figure 1: Classic dog (one balloon).

Figure 2: Octahedron (one balloon).

when fully inflated. Normally the balloonist only par-
tially inflates such a balloon, however, leaving one end
deflated as in Figure 3(a). This deflated end leaves
room for the air to spread out when twisting the balloon
along a circular cross-section, forming a vertex as in Fig-
ure 3(b). The vertex holds its shape if wrapped around
another vertex, as in Figure 3(c). The figure shows the
vertex coming from another balloon, but it could just as
well come from another part of the same balloon, as in
the middle of Figure 3(d). Indeed, one theme in bal-
loon twisting is designing complex figures (often ani-
mals) from a single balloon, and in this paper we often
aim for this goal or for minimizing the number of bal-
loons. Vertex joints can also be bent, similar to joints in
a linkage, and will hold their shape if the linkage forces
them to remain bent by a nontrivial angle, as on the right
of Figure 3(d).

3 Twistable Tangles: Bloon Models

Inflated balloon segments and their twisted end vertices
naturally form a graph. Our central problem is to de-
termine which graphs are twistable under a variety of
abstract models of physical balloons, which we refer to
as “bloons” for contrast.
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(a) A balloon.

(b) Twisted.
(c) Two balloons,
twisted.

(d) Balloon
twisted into
a triangle.

Figure 3: Twisting balloons.

In general, a bloon is a segment which can be twisted
at arbitrary points to form vertices at which the bloon
can be bent like a hinge. The endpoints of a bloon are
also vertices. Two vertices can be tied to form perma-
nent point connections. A twisted bloon is stable if ev-
ery vertex is either tied to another vertex or held at a
nonzero bending angle.

We distinguish two main models of bloon twisting:

1. (Simple) twisting: Every subsegment of a bloon be-
tween two vertices form an edge in the associated
graph, representing an inflated portion of a balloon.

2. Pop twisting: Some subsegments of a bloon be-
tween two vertices can be marked as deflated, caus-
ing them not to appear in the associated graph.
Such deflated segments can be achieved with phys-
ical balloons by squeezing the air down the bal-
loon or by popping a segment between two exist-
ing vertices (a practice common in balloon twist-
ing, though requiring some care and skill).

Two other parameters shape the model:

3. Number of bloons: In general we allow structures
consisting of any number k of bloons. Of particu-
lar interest are the case k = 1 and minimizing the
number of bloons. A graph has bloon number k if it
can be simply twisted from k bloons and no fewer.

4. Bloon lengths: For multibloon structures, we prefer
the bloons to have the same or similar lengths. In
particular, this constraint helps us avoid the need
for extremely long balloons (which are difficult to
obtain). An `-bloon is a bloon of length `. We often
consider graphs whose edges have unit length, and
hence particular cases like doubloons (` = 2) and
demidoubloons (` = 1) are of interest.

4 Euler Outgrowth: Bloon Number

Simple twisting of a single bloon naturally forms an Eu-
lerian tour of the constructed graph. Thus single-bloon
graphs must have vertices of even degree, except possi-
bly for two odd degrees, and must be connected. Indeed,
such graphs are always twistable:

Theorem 1 A graph has bloon number 1 if and only if
the graph is Eulerian.

More interesting from a technical standpoint is the
case of k bloons (of arbitrary lengths). Here we can
exactly characterize bloon number:

Theorem 2 A graph with o > 0 odd vertices has bloon
number o/2.

Proof. Every odd-degree vertex must have an odd num-
ber of bloon ends, and each bloon has only two ends,
so o/2 bloons are necessary. To see that o/2 bloons
suffice, consider adding o/2 edges connecting the odd-
degree vertices in pairs. (Recall that every graph has
an even number of odd-degree vertices.) The resulting
graph has all even degrees and hence an Euler tour. Re-
moving the o/2 added edges from the tour results in o/2
paths, which are the desired bloons. �

5 Chinese Connection: Pop Twisting

Pop twisting is of course the more general model: it al-
lows building any graph (without straight degree-2 ver-
tices) from a single bloon. In this context, the natural
objective is to minimize the total deflated length of the
bloon, or equivalently, the total length of the bloon.

This problem is similar to the Chinese Postman Prob-
lem: given a graph, find a tour of minimum length that
visits all edges. This problem has a classic polynomial-
time solution based on adding to the graph a minimum-
cost perfect matching of the complete graph Ko on the
o odd-degree vertices, resulting in the cheapest Eulerian
supergraph. The costs in the complete graph can be de-
fined by shortest paths in the graph (for hiding deflated
segments against inflated segments), or to include short-
cuts available to the bloon in 3D.

The difference is that a pop twisting of a polyhedron
requires a path, while the Chinese postman finds the
optimal tour (cycle). To find the optimal path, we in-
stead add the minimum-cost (o/2 − 1)-edge matching
in Ko, leaving exactly two odd vertices. More gener-
ally, if we are given k bloons instead of one, we can
add a minimum-cost (o/2 − k)-edge matching, leav-
ing exactly 2k odd vertices; by Theorem 2, the resulting
graph can be traversed by k paths. Such a matching can
be computed as a minimum-cost maximum flow in the
complete bipartite graph Ko,o, with edge costs defined
as in Ko, together with a source of capacity o/2 − k
attached to one side of the bipartition via edges of ca-
pacity 1, and a sink attached to the other side of the bi-
partition via edges of capacity 1.

Theorem 3 There is a polynomial-time algorithm that,
given a graph and a desired k ≥ 1, finds the k bloons of
minimum total length that pop-twist the graph.
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6 Length Limitations: Holyer’s Problem

Given a graph simply twistable from k bloons, how sim-
ilar in length can the k bloons be? In particular, when
can the lengths all be identical? We can specialize fur-
ther to obtain a clean combinatorial problem by suppos-
ing graph edges all have unit length, as in regular poly-
hedra, and the bloons have integer length `. What graphs
can be simply twisted from `-bloons?

This problem is closely related to Holyer’s problem:
decide whether the edges of a graph can be decomposed
into copies of a fixed graph H . In 1981, Holyer [8] con-
jectured that this problem is NP-complete if H has at
least three edges. This conjecture turns out to be cor-
rect when H is connected. In fact, the problem is NP-
complete if H has a connected component consisting of
at least three edges [3], and otherwise it can be solved
in polynomial time [2]. Of particular relevance is an old
result that every graph with an even number of edges
can be decomposed into length-2 paths [11]:

Theorem 4 Every graph with unit edge lengths can be
twisted from doubloons and possibly one demidoubloon
(when the graph has an odd number of edges).

For ` > 2, however, there is a discrepancy between
Holyer’s problem and simply twisting from `-bloons.
On the one hand, each `-bloon can be twisted into any
Eulerian graph on ` edges. On the other hand, Holyer’s
problem assumes all bloons form the same such graph,
e.g., a path of ` edges or a cycle of ` edges. Therefore the
known NP-hardness for Holyer’s problem beyond two
edges does not immediately imply NP-hardness for sim-
ple twisting beyond doubloons. Fortunately, one NP-
hardness proof for Holyer’s problem also establishes
NP-hardness of simple twisting:

Theorem 5 It is NP-complete to decide whether a pla-
nar bipartite graph with unit edge lengths can be simply
twisted from `-bloons.

Proof. Dyer and Frieze [4, Theorem 3.4] prove NP-
hardness of Holyer’s problem when the graph to decom-
pose is planar and bipartite and the pattern graph H is
a path of length ` > 2. Their reduction has the addi-
tional feature that all cycles have length larger than `,
and hence no `-bloon could form a structure other than
a path of length `. �

We can specialize even further and still obtain NP-
hardness. Theorem 2 characterizes the fewest bloons
required for simple twisting. When can these fewest
bloons have the same length?

Theorem 6 It is strongly NP-complete to decide
whether a planar 3-connected graph with o odd vertices
can be simply twisted from o/2 equal-length bloons.
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Figure 4: NP-hardness of using the fewest possible
equal balloons.

Proof. Figure 4 shows a reduction from 3-partition:
given integers a1, a2, . . . , an, partition into triples of
equal sum. The light portion of the graph just makes the
graph 3-connected. The dark portion consists of n/3
odd-degree vertices on the left, L1, L2, . . . , Ln/3, and
n/3 odd-degree vertices on the right, R1, R2, . . . , Rn/3.
All other vertices will have even degree. We can imag-
ine building n/3 paths between corresponding Li and
Ri, for 1 ≤ i ≤ n/3, and then pinching these paths
together at n + 1 meeting points. Then a left-to-right
path has a choice at each meeting point of which path
to follow. Exactly one path can follow an edge of
length ai; the others follows paths of total length B.
Here B > a1 + a2 + · · · + an. Thus each path must
visit an equal number of B’s, i.e., n− n/3 + 2 of them.
The path including L1 has a special edge of length ε
less. Here ε < min{a1, a2, . . . , an} and the total length
of the light portion of the graph is ε. Thus only this path
can visit light edges, and must visit all. Therefore the
graph can be twisted by n/3 equal-length bloons if and
only if the 3-partition instance has a solution. �

By suitable scaling, we can make all edge lengths in-
tegers, and then subdivide edges into unit lengths. It
seems somewhat difficult, however, to make the graph
3-connected by adding a suitable light Eulerian graph.

Some positive results are known for special cases of
Holyer’s problem. For example, every 4-regular con-
nected graph whose number of edges is divisible by 3
can be decomposed into paths of length 3, and hence
simply twisted from tribloons [7]. The same decompo-
sition and twisting results hold for triangulated (maxi-
mal) planar graphs with at least four vertices [6]. It is
conjectured that every simple planar 2-edge-connected
graph whose number of edges is divisible by 3 can be
decomposed into paths and cycles of length 3, and hence
simply twisted from tribloons [9]. See also [10]. But
relatively few results are known for sizes larger than 3.

7 Polyhedral Projects: Balloon Polyhedra

In contrast to the hardness result of Theorem 6, we
show that every Platonic and Archimedean solid can be
twisted using the bloon number of bloons, o/2, all of
equal length. Furthermore, these solids can be twisted

141



20th Canadian Conference on Computational Geometry, 2008

(a) Tetrahedron construction. (b) Octahedron construction.

Figure 5: Constructing two Platonic solids.

so that the component bloon units are all isomorphic and
arranged in a symmetric manner. This property makes
these polyhedra particularly easy to construct, and lends
itself well to color patterns. See Figure 6.

Figure 5 shows how to construct two Platonic solids:
the tetrahedron and octahedron. We consider the icosa-
hedron below because it can also be viewed as a snub
tetrahedron. The cube and dodecahedron are both pos-
sible with tribloons, and together with the tetrahedron
are special in that the bloon units can have only dihe-
dral symmetry. In contrast, the icosahedron construction
has pyrite symmetry, while the Archimedean construc-
tions below (and the octahedron) have the same symme-
try group as the original polyhedron.

The Archimedean solids can be categorized into three
different groups for our purposes: Eulerian, truncated,
and snub. The Eulerian case is of course trivial. For
truncated polyhedra, the optimal bloons are tribloons,
because each original edge truncates to create two ver-
tices and three edges, yielding a 2 : 3 vertex-edge ratio.
The tribloons can be embedded as Zs (or Ss, as the result
is chiral), where each center edge aligns with an edge
of the original (untruncated) polyhedron, with the arms
bending to form the truncated faces. The snub polyhedra
(including the icosahedron) can be made from a com-
mon unit, namely, a quintibloon twisting into the shape
of two triangles sharing an edge.

Of course, not all polyhedra can be made from the
bloon number of bloons, o/2, of equal length. The pen-
tagonal pyramid is a simple example. It has ten edges
and six vertices, all of odd degree, yielding a bloon num-
ber of 3. Unfortunately, 10 is not divisible by 3, so one
bloon must have length 4. In the realm of polyhedra with
icosahedral symmetry, the simplest counterexample is
the rhombic triacontahedron, with 60 edges and 32 ver-
tices, which again do not divide evenly. It remains open
whether any polyhedron fails to have a twisting from a
bloon number of equal-length bloons but not by virtue of
indivisibility. It also remains open whether some sym-
metric polyhedron can be twisted only from nonidenti-
cal units or only from units arranged asymmetrically.

Acknowledgments. We thank the anonymous refer-
ees for helpful comments.

(a) Tetrahedron
(two balloons).

(b) Cube
(four balloons).

(c) Octahedron
(one balloon).

(d) Icosahedron
(six balloons).

(e) Dodecahedron
(six balloons).

Figure 6: Balloon polyhedra.
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Abstract

Given a collection of points representing geographic
data we consider the task of delineating boundaries
based on the features of the points. Assuming that the
features are binary, for example, red or blue, this can be
viewed as determining red and blue regions, or states.
Due to regional anomalies or sampling error, we may
find that reclassifying, or recolouring, some points may
lead to a more rational delineation of boundaries. In
this note we study the maximal length of recolouring
sequences where recolouring rules are based on neigh-
bour relations and neighbours are defined by a geomet-
ric graph. We show that the difference in the maxi-
mal length of recolouring sequences is striking, as it can
range from a linear bound for all trees, to an infinite
sequence for some planar graphs.

1 Introduction

Given a set of planar points partitioned into red and
blue subsets, a red-blue separator is a boundary that
separates the red points from the blue ones. There has
been considerable investigation of methods for obtain-
ing such red-blue separating boundaries. In his PhD
thesis, Seara [8], examines various means for red-blue
separation. For the case of red-blue separation with the
minimum perimeter polygon the problem is known to
be NP-hard [3, 1]. A somewhat related topic is to ob-
tain a balanced subdivision of red and blue points, that
is, faces of the subdivision contain a prescribed ratio
of red and blue points. Kaneko and Kano [4] give a
comprehensive survey of results pertaining to red and
blue points in the plane, including results on balanced
subdivisions.

For some applications one is willing to reclassify
points by recolouring them so as to obtain a more rea-
sonable boundary. For example Chan [2] shows that
finding a red-blue separating line with the minimum
number of reclassified points takes O((n + k2) log k) ex-
pected time, where k is the number of recoloured points.

In Reinbacher et al. [7] a heuristic algorithm is pre-
sented for obtaining a better delineating boundary that

∗Supported by an NSERC of Canada Discovery Grant

recolours points. The input is a triangulated set of n
planar red-blue points. For a point p to be recoloured
it needs to be “surrounded” by points of the opposite
colour. Reinbacher et al. show experimental results on
delineating boundaries after recolouring.

A surrounded point is realized when there is a con-
tiguous set of oppositely coloured neighbours of p, in
the triangulation, that span a radial angle greater than
180◦. As the recolouring occurs in an iterative sequence
it is not clear that the process will ever come to an
end. However, Reinbacher et al. show that no se-
quence that iteratively recolours surrounded points will
ever visit the exact same colouring of the points more
than once. Thus the maximum number of recolourings
is bounded by the total number of possible colourings
which is 2n − 1. This bound was improved by Núñez-
Rodŕıguez and Rappaport [5] by proving that any re-
colouring sequence has O(n2) length. This bound is, in
fact, tight.

In this note, we present bounds on recolouring for
other types of geometric graphs. Our main results in-
clude bounds on the number of recolourings for graphs
of maximum degree 3, bounds on the number of re-
colourings of trees, and examples of infinite recolouring
sequences on planar and non-planar graphs. Some of
our proofs have been omitted because of space limita-
tions.

In the next section we precisely describe the recolour-
ing problem. We follow, in the subsequent section, with
our new results on the length of recolouring sequences
of geometric graphs, such as planar graphs, non-planar
graphs, and trees. The last section discusses some ex-
tensions of our results.

2 Preliminaries

We are given as input a drawing of a graph, D = (S,E),
where S is a set of points in the plane partitioned into
blue points and red points and E ⊆ S × S is the set
of edges of the graph. The edges are represented by
straight line segments. An edge incident to points p
and q is denoted as pq. We assume throughout, for
simplicity of exposition, that the points are in general
position. We colour the edges of D red if its two incident
points are red, and blue if its two incident points are
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blue. If one of the incident points is red and the other
is blue we mix the colours to obtain a magenta edge.

Definition 1 Let the edges of D be coloured as above.
Then the magenta angle of a point p ∈ S is:

• 0◦, if p has at most one radially consecutive inci-
dent magenta edge,

• 360◦, if p has degree greater than one and is only
incident to magenta edges,

• the maximum angle between two or more radially
consecutive incident magenta edges, otherwise.

Notice that, according to the previous definition, a
point with only one neighbour in D has magenta angle
0◦ regardless of the colour of its neighbour (See Figure
1). A surrounded point is one with magenta angle larger
than 180◦. Therefore, a point of degree zero or one is
never surrounded nor recoloured. We say an edge is in
the magenta angle of a point if it is incident to the point
and falls within the span of the magenta angle.

pp

pp
p

(a) (b) (c)

(d) (e)

Figure 1: Examples of magenta angles α of point p.
Magenta angles larger than 0◦ are represented by arcs:
(a), (b) α = 0◦, (c) α = 360◦, (d), (e) 180◦ < α < 360◦.

The strategy of reclassification by recolouring, re-
colours a surrounded point p at a time. The sequence in
which surrounded points are recoloured can be driven
by a mixed criterion, such as recolouring the surrounded
point with the largest magenta angle, or with the largest
number of edges in the magenta angle. According to
Reinbacher et al. [7], there exist mixed criteria that
always produce recolouring sequences of linear size. In
the sequel, we assume surrounded points are recoloured
in an arbitrary manner, in order to find bounds for any,
and all, possible recolouring strategies. The recolour-
ing process stops when there are no more surrounded
points.

3 Bounded and Unbounded Recolouring Sequences

At all times the graphs are assumed to be connected
because, in general, each connected component can be
considered independently. We use the term drawing, to
refer to the drawing of a graph as defined in the pre-
vious section. There are families of drawings for which
every recolouring sequence is finite and others that allow

infinite recolouring sequences. We characterize some of
these families. A family of drawings with finite recolour-
ing sequence comes from graphs with maximum degree
3.

Theorem 1 Let D be a drawing with n bi-chromatic
points. If D has maximum point degree 3, then the
length of any recolouring sequence of D is O(n).

The proof of Theorem 1 only relies on the number
of point neighbours and the fact that the number of
magenta edges decreases with every recolouring. Thus,
the result also holds for non-planar and more general
drawings with maximum degree 3.

3.1 Planar Drawings

As opposed to triangulations, planar drawings may have
non-convex faces and points of degree one. One may
think of obtaining bounds for planar graphs based on
the fact that a planar graph is a subgraph of a triangu-
lation. However, this does not seem to help since there
are simple examples where a subgraph can have either a
larger or a smaller number of recolourings in the worst
case over all initial colourings.

In fact, a recolouring sequence of a planar graph can
be infinite. Figure 2 shows an example of a graph and a
colour configuration that lead to an infinite recolouring
sequence. Observe from Figure 2 that the initial colour-
ing repeats after a number of steps (recolourings). No-
tice that only certain recolouring sequences are infinite
in this example. The drawing in Figure 2 can be made
2-connected and the minimum point degree can be in-
creased by carefully adding more edges incidents to the
points of degree one, without affecting the recolouring
sequence.

3.2 Non-Planar Drawings

At this point, it is obvious that one can also construct
non-planar drawings with infinite recolouring sequences
since planar drawings allow so. Nevertheless, the exam-
ples shown for infinite recolouring sequences on planar
drawings include points that never change colour. We
show an example of a non-planar drawing with infinite
recolouring sequence where every point changes colour
infinitely many times (see Figure 3). If similar exam-
ples can be built for planar drawings, these have not yet
been found.

3.3 Trees

In this subsection we use the term tree drawing to re-
fer to a straight line drawing of a tree (not necessarily
planar). A trivial example of a tree drawing that has
O(n) recolouring sequence is a “jigsaw” path with points
alternately coloured. In such example, all blue points
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Figure 2: Planar drawing D with infinite recolouring
sequence. Points represented by smaller circles never
change colour. Top: initial colouring of D. Bottom:
D after 28 recolourings. The labels indicate the order
in which points are recoloured. Notice that the bottom
drawing is a rotation of the top drawing. This indicates
that the recolourings can repeat infinitely many times.

1
2

34

Figure 3: Non-planar drawing D with infinite recolour-
ing sequence. Left: initial colouring of D. Right: D
after 4 recolourings. The labels indicate the order in
which points are recoloured. Notice that the right draw-
ing is a rotation of the left drawing. This indicates that
the recolourings can repeat infinitely many times.

can be coloured to red, leading to approximately n/2
recolourings.

It is not hard to prove that the number of recolourings
of tree drawings is O(n2) by the same arguments used

for triangulations (Theorem 9 [5]), with minor modifica-
tions. However, this bound is not tight. As a corollary
of Theorem 1 we have that binary tree drawings have
a linear number of recolourings. In the remainder of
this section we prove that the number of recolourings of
general tree drawings is also linear.

In order to prove a tight bound (Theorem 4) for the
recolouring of tree drawings, we define a partial order
on the recolourings involved in a recolouring sequence.
Then we bound the total number of recolourings based
on the number of minimal elements (sinks) of such par-
tial order. This idea is explained and formalized in what
follows.

We denote a recolouring event r, or simply a recolour-
ing, as the event of a certain point p changing colour.
Let R = (r1, . . . , rk) be a recolouring sequence where
ri denotes the recolouring at step i, 1 ≤ i ≤ k, k > 0.
We also denote p(r) as the point that changes colour at
recolouring r, and N(r) the number of times that p(r)
has changed colour in R prior to event r.

Definition 2 Let T be a tree drawing and let R be a
recolouring sequence of T . The history graph of R
is a directed graph H = (R, I), I ⊆ R × R such that
(rj , ri) ∈ I if and only if p(ri)p(rj) is in the magenta
angle associated to rj.

Observation 1 By the definition of history graph all
the edges are directed from later recolourings to earlier
ones. Therefore, a history graph is a directed acyclic
graph (DAG) and defines a partial order on the elements
of the recolouring sequence.

The following lemma formally states that for two con-
secutive recolourings of a point p to occur, it is required
that at least two neighbours of p change colour in be-
tween.

Lemma 2 Let T be a tree drawing with n bi-chromatic
points, let R be a recolouring sequence of T , and let H =
(R, I) be the history graph of R. Consider a recolouring
r ∈ R with N(r) > 0. Then the outdegree of r is at least
2. Moreover, there exist two distinct neighbours of p(r),
p1, p2 ∈ T , with recolourings s1, s2 ∈ R, respectively,
such that (r, s1) ∈ I and (r, s2) ∈ I.

Proof. Obviously, if a point is recoloured red (similarly
blue) and was recoloured earlier in the sequence, the
previous recolouring was to blue (red). The intersection
between the magenta angles at the time it is surrounded
by red (blue) and previously by blue (red) contains at
least two edges since the corresponding magenta angles
are greater than 180◦. Therefore, there are at least two
neighbours of p, p1, p2 ∈ T that are recoloured at least
once between two consecutive recolourings of p. ¤

In the light of Lemma 2, we can state the following
definition.
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Definition 3 Let R be a recolouring sequence of a tree
drawing T and H = (R, I) be the corresponding his-
tory graph. The binary history graph of R, BH =
(R, BI), BI ⊆ I, is a subgraph of the history graph
where nodes have outdegrees 2 or 0: nodes with outde-
gree 0 correspond to first time recolourings; nodes with
outdegree 2 correspond to subsequent recolourings. Con-
sider a node rk of degree 2 in the binary history tree.
From Lemma 2 we know that there are two distinct
neighbours of p(rk) that have been previously recoloured.
Thus we choose the two outgoing edges of rk (rk, ri),
(rk, rj), such that i and j are the largest indices smaller
than k for neighbours of rk in the history graph where
p(ri) 6= p(rj).

The motivation to define the binary history graph is
to obtain a cycle-free subgraph of the history graph that
involves all the recolourings. This is formalized in the
next lemma.

Lemma 3 Let T be a tree drawing, and R a recolouring
sequence of T with binary history graph BH. BH has
no directed or undirected cycles. Therefore, BH is a
forest of trees.

To obtain a bound on the size of binary history trees
we show that the number of nodes is linear in the size
of the corresponding tree drawing. This will lead us to
conclude the results of the following theorem.

Theorem 4 Let T be a tree drawing with n bi-
chromatic points. The length of any recolouring se-
quence of T is O(n).

4 Extensions

4.1 Surrounded Threshold Greater Than 180◦

Thus far we have assumed that a point is surrounded
when its magenta angle is any value greater than 180◦.
Reinbacher et al. [7] show that a threshold value smaller
than 180◦ allows for infinite recolouring sequences on
very simple graphs –trees included. Some of our results
hold for threshold values α > 180◦. Trees, for exam-
ple, have linear recolouring sequences for any threshold
180◦ < α < 360◦. Also Theorem 1 holds for any thresh-
old α > 0◦. Other results do not seem to hold for any
threshold value. For instance, it is not clear how large
the value of α can be such that infinite recolouring se-
quences exist on planar graphs.

4.2 More than two colours

Suppose that the points come in more than two colours.
We define the colour of an edge as the mixture of the
colours of its endpoints. In a multi-coloured scenario
we say that p is surrounded by a set of edges of a sin-
gle mixed colour if the edges define a continuous angle

greater than 180◦. As we may intuitively observe, in-
creasing the number of colours only lowers the chances
of a point being surrounded without changing the fun-
damental nature of the problem. In fact, inspection
shows that all of our previous results hold in a multi-
coloured scenario. Thus, our recolouring bounds for a
bi-chromatic set of points carry over to multi-coloured
point sets.

5 Conclusions

We have re-examined a point recolouring method useful
for reclassifying points to obtain reasonable subdividing
boundaries. We show tight (linear) bounds on trees and
graphs of maximum degree 3 for the longest possible
sequence of recolourings. Planar and non-planar graphs
have been shown to have infinitely many recolourings.

Some interesting questions remain open. First, can
planar drawings have sequences of recolourings where all
the points change colour infinitely many times? Also,
what is the complexity of point recolouring in planar
drawings and other geometric graphs when the thresh-
old to consider a point as surrounded is greater than
180◦?
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CCCG 2008, Montréal, Québec, August 13–15, 2008

Improved Bounds on the Average Distance to the Fermat-Weber Center of
a Convex Object

A. Karim Abu-Affash∗ Matthew J. Katz∗

Abstract

We show that for any convex object Q in the plane,
the average distance between the Fermat-Weber center
of Q and the points in Q is at least 4∆(Q)/25, and at
most 2∆(Q)/(3

√
3), where ∆(Q) is the diameter of Q.

We use the former bound to improve the approximation
ratio of a load-balancing algorithm of Aronov et al. [1].

1 Introduction

The Fermat-Weber center of an object Q in the plane is
a point in the plane, such that the average distance from
it to the points in Q is minimal. For an object Q and a
point y, let µQ(y) be the average distance between y and
the points in Q, that is, µQ(y) =

∫
x∈Q

‖xy‖ dx/area(Q),
where ‖xy‖ is the Euclidean distance between x and y.
Let FWQ be a point for which this average distance
is minimal, that is, µQ(FWQ) = miny µQ(y), and put
µ∗Q = µQ(FWQ). The point FWQ is a Fermat-Weber
center of Q.

It is easy to verify, for example, that the Fermat-
Weber center of a disk D coincides with the center o
of D, and that the average distance between o and the
points in D is ∆(D)/3, where ∆(D) is the diameter of
D. Carmi, Har-Peled, and Katz [3] studied the rela-
tion between µ∗Q and the diameter of Q, denoted ∆(Q).
They proved that there exists a constant c1, such that,
for any convex object Q, the average distance between
a Fermat-Weber center of Q and the points in Q is at
least c1∆(Q), and that the largest such constant c∗1 lies
in the range [1/7..1/6].

In this paper, we both improve the above bound on
c∗1, and tightly bound a new constant c∗2; see below.
More precisely, we first significantly narrow the range
in which c∗1 must lie, by proving (in Section 2) that
4/25 ≤ c∗1 ≤ 1/6. Next, we consider the question what
is the smallest constant c∗2, such that, for any convex
object Q, µ∗Q ≤ c∗2∆(Q). We prove (in Section 3) that
1/3 ≤ c∗2 ≤ 2/(3

√
3). A useful corollary obtained from

these results is that the average distance to the center

∗Department of Computer Science, Ben-Gurion University, Is-
rael; {abuaffas, matya}@cs.bgu.ac.il. A.K. Abu-Affash was
partially supported by the Lynn and William Frankel Center for
Computer Sciences.

of the smallest enclosing circle of a convex n-gon P is
less than 2.41 times µ∗P .

The Fermat-Weber center of an object Q is a very
significant point. The classical Fermat-Weber problem
is: Find a point in a set F of feasible facility locations,
that minimizes the average distance to the points in a
set D of (possibly weighted) demand locations. If D is a
finite set of points, F is the entire plane, and distances
are measured using the L2 metric, then it is known that
the solution is algebraic [2]. See Wesolowsky [8] for a
survey of the Fermat-Weber problem.

Only a few papers deal with the continuous version
of the Fermat-Weber problem, where the set of demand
locations is continuous. Fekete, Mitchell and Wein-
brecht [4] presented algorithms for computing an opti-
mal solution for D = F = P where P is a simple polygon
or a polygon with holes, and the distance between two
points in P is the L1 geodesic distance between them.
Carmi, Har-Peled and Katz [3] presented a linear-time
approximation scheme for the case where P is a convex
polygon.

Aronov et al. [1] considered the following load bal-
ancing problem. Let D be a convex region and let
P = {p1, . . . , pm} be a set of m points representing m
facilities. One would like to divide D into m equal-area
subregions R1, . . . , Rm, so that region Ri is associated
with point pi, and the total cost of the subdivision is
minimized. Given a subdivision, the cost κ(pi) associ-
ated with facility pi is the average distance between pi

and the points in Ri, and the total cost of the subdivi-
sion is

∑
i κ(pi).

Aronov, et al. discussed the structure of an op-
timal subdivision, and also presented an (8 +

√
2π)-

approximation algorithm, under the assumption that
the regions R1, . . . , Rm must be convex and that D is
a rectangle. Our improved bound on the constant c∗1,
allows us (in Section 4) to improve the above approxi-
mation ratio.

2 4/25 ≤ c∗1 ≤ 1/6

Carmi, Har-Peled and Katz [3] showed that there exists
a convex polygon P such that µ∗P ≤ ∆(P )/6. This
immediately implies that c∗1 ≤ 1/6. We prove below
that c∗1 ≥ 4/25. Our proof is similar in its structure to
the proof of [3].
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Theorem 2.1. Let P be a convex object. Then µ∗P ≥
4∆(P )/25.

Proof: Let FWP be a Fermat-Weber center of P . We
need to show that

∫
x∈P

‖xFWP ‖ dx ≥ 4∆(P )
25 area(P ).

We do this in two stages. In the first stage we show
that for a certain subset P ′ of P ,

∫
x∈P ′ ‖xFWP ‖ dx ≥

4∆(P )
27 area(P ). This implies that for any convex object

Q, µ∗Q ≥ 4∆(Q)/27. In the second stage we apply this
intermediate result to a collection of convex subsets of
P − P ′ that are pairwise disjoint to obtain the claimed
result. This latter stage is essentially identical to the
second stage in the proof of [3]; it is included here for
the reader’s convenience.

We now describe the first stage. Let s be a line seg-
ment of length ∆(P ) connecting two points p and q on
the boundary of P . We may assume that s is horizon-
tal and that p is its left endpoint, since one can always
rotate P around, say, p until this is the case.

p q

P

R2 R1R′

1

p q

P

R2R′

3
R3

R4R′

4

(a) (b)

Figure 1: Proof of intermediate result.

Let Pα be the polygon obtained from P by shrinking
it by a factor of α, that is, by applying the transforma-
tion f(a, b) = (a/α, b/α) to the points (a, b) in P . We
place a copy R1 of P 3/2, such that R1 is contained in P
and has a common tangent with P at q. Similarly, we
place a copy R′1 of P 3/2, such that R′1 is contained in
P and has a common tangent with P at p; see Figure
1(a). Clearly, area(R1) = area(R′1) = 4

9area(P ).
Let R2 = R1 ∩ R′1. We place a copy R3 of R2, such

that R3 is contained in R1 and has a common tangent
with R1 at q. Similarly, we place a copy R′3 of R2,
such that R′3 is contained in R′1 and has a common
tangent with R′1 at p. Let R4 = R1 − (R2 ∪ R3) and
R′4 = R′1 − (R2 ∪R′3); see Figure 1(b).

We know that, regardless of the exact location of
FWP , the distance between FWP and the points in
R3 plus the distance between FWP and the points in
R′3 is greater than 2∆(P )

3 area(R3), and the distance be-
tween FWP and the points in R4 plus the distance
between FWP and the points in R′4 is greater than
∆(P )

3 area(R4). More precisely,

∫

x∈R3

‖xFWP ‖ dx +
∫

x∈R′3

‖xFWP ‖ dx ≥ 2∆(P )
3

area(R3)

and
∫

x∈R4

‖xFWP ‖ dx +
∫

x∈R′4

‖xFWP ‖ dx ≥ ∆(P )
3

area(R4) .

Since area(R4) = area(R1) − (area(R2) ∪ area(R3)) =
4
9area(P )−2area(R3), we obtain our intermediate result

∫

x∈P

‖xFWP ‖ dx ≥
∫

x∈R3

‖xFWP ‖ dx+

+
∫

x∈R′3

‖xFWP ‖ dx +
∫

x∈R4

‖xFWP ‖ dx+

+
∫

x∈R′4

‖xFWP ‖ dx ≥ 2∆(P )
3

area(R3)+

+
∆(P )

3

(
4
9
area(P )− 2area(R3)

)
=

4∆(P )
27

area(P ) .

This intermediate result immediately implies that for
any convex object Q, µ∗Q ≥ 4∆(Q)/27. In the second
stage we show that the 27 in the denominator can be
replaced by 25.

p qR2 R1R′

1

ea b

c d

g hR5

R′

5

l

l′

Figure 2: Proof of improved result.

Consider Figure 2. We draw the axis-aligned bound-
ing box of P . The line segment s (whose length is ∆(P ))
divides the bounding box of P into two rectangles, abqp
above s and pqdc below s. We divide each of these rect-
angles into two parts (a lower part and an upper part),
by drawing the two horizontal lines l and l′. Let R5

denote the intersection of P with the upper part of the
upper rectangle, and let R′5 denote the intersection of
P with the lower part of the lower rectangle.

Let e be any point on the segment ab that also lies on
the boundary of R5. We mention several facts concern-
ing R5 and R′5. R5∩R′5 = φ, R5∩R1 = φ, R5∩R′1 = φ,
R′5∩R1 = φ, and R′5∩R′1 = φ. Notice also that ∆(R5),
∆(R′5) ≥ ∆(P )/3, since, e.g., the line segment l ∩ R5

contains the base of the triangle that is obtained by in-
tersecting the triangle peq with R5, and the length of
this base is ∆(P )/3.

We observe that area(R5) + area(R′5) ≥ area(P )/9
by showing that area(R5) ≥ area(P ∩abqp)/9 (and that
area(R′5) ≥ area(P∩pqdc)/9). Let g, h be the two points
on the line l that also lie on the boundary of R5. Let
l(s) be the line containing s, and let T be the triangle
defined by l(s) and the two line segments connecting e to
l(s) and passing through g and through h, respectively.
Let T2 denote the triangle geh.
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Clearly T2 ⊆ R5. Put Q = R5−T2. Then, area(R5) =
area(T2) + area(Q) = area(T )/9 + area(Q). Therefore,
area(R5) ≥ (area(T ) + area(Q))/9 ≥ area(P ∩ abqp)/9.
We show that area(R′5) ≥ area(P ∩ pqdc)/9 using the
“symmetric” construction. Since (P ∩ abqp) ∪ (P ∩
pqdc) = P we obtain that area(R5) + area(R′5) ≥
area(P )/9.

It is also easy to see that ∆(R2) = ∆(P )/3 and
area(R2) ≥ area(P )/9. This is because P 3 ⊆ R2 and
area(P 3) = area(P )/9, where P 3 is the polygon ob-
tained from P by shrinking it by a factor of 3.

Now using the implication of our intermediate result
we have
∫

x∈R5

‖xFWP ‖ dx +
∫

x∈R′5

‖xFWP ‖ dx+

+
∫

x∈R2

‖xFWP ‖ dx ≥ 4∆(R5)
27

area(R5)+

+
4∆(R′5)

27
area(R′5) +

4∆(R2)
27

area(R2) ≥

≥ 4∆(P )
81

(area(R5) + area(R′5) + area(R2)) ≥

≥ 8∆(P )
729

area(P ) .

Therefore
∫

x∈P

‖xFWP ‖ dx ≥
∫

x∈R3

‖xFWP ‖ dx+

+
∫

x∈R′3

‖xFWP ‖ dx +
∫

x∈R4

‖xFWP ‖ dx+

+
∫

x∈R′4

‖xFWP ‖ dx +
∫

x∈R5

‖xFWP ‖ dx+

+
∫

x∈R′5

‖xFWP ‖ dx +
∫

x∈R2

‖xFWP ‖ dx ≥

≥ 4∆(P )
27

area(P ) +
8∆(P )

729
area(P ) =

=
116∆(P )

729
area(P ) .

At this point we may conclude that for any convex
object Q, µ∗Q ≥ 116∆(Q)/729. So we repeat the cal-
culation above using this result for the regions R5, R′5
and R2 (instead of using the slightly weaker result, i.e.,
µ∗Q ≥ 4∆(Q)/27). This calculation will yield a slightly
stronger result, etc. In general, the result after the k-th
iteration is µ∗Q ≥ ck∆(Q), where ck = 4/27 + 2ck−1/27
and c0 = 4/27. It is easy to verify that this sequence of
results converges to µ∗Q ≥ 4∆(Q)/25.

Corollary 2.2. Let P be a non-convex simple polygon,
such that the ratio between the area of a minimum-area
enclosing ellipse of P and the area of a maximum-area
enclosed ellipse is at most β, for some constant β ≥ 1.
Then µ∗P ≥ 4∆(P )/(25β2).

Proof: As in [3], except that we apply the improved
bound of Theorem 2.1.

3 1/3 ≤ c∗2 ≤ 2/(3
√

3)

As mentioned in the introduction, the average distance
between the Fermat-Weber center of a disk D (i.e., D’s
center) and the points in D is ∆(D)/3, where ∆(D)
is the diameter of D. This immediately implies that
c∗2 ≥ 1/3. We prove below that c∗2 ≤ 2/(3

√
3).

We first state a simple lemma and a theorem of Jung
that are needed for our proof.

Lemma 3.1. Let R,Q be two (not-necessarily convex)
disjoint objects, and let p be a point in the plane. Then,
µ(R∪Q)(p) ≤ max {µR(p), µQ(p)}.
Proof:

µ(R∪Q)(p) =

∫
x∈R∪Q

‖px‖ dx

area(R ∪Q)
=

=

∫
x∈R

‖px‖ dx +
∫

x∈Q
‖px‖ dx

area(R) + area(Q)
=

=
area(R) · µR(p) + area(Q) · µQ(p)

area(R) + area(Q)
≤

≤ (area(R) + area(Q))max {µR(p), µQ(p)}
area(R) + area(Q)

≤

≤ max {µR(p), µQ(p)} .

Theorem 3.2 (Jung’s Theorem [5, 6]). Every set of
diameter d in Rn is contained in a closed ball of radius
r ≤ d

√
n

2(n+1) . In particular, if R is a convex object

in the plane, then the radius of the smallest enclosing
circle C of R is at most ∆(R)/

√
3, where ∆(R) is the

diameter of R.

Theorem 3.3. For any convex object R, µ∗R ≤
2∆(R)/(3

√
3).

Proof: Let R be a convex polygon. Let C be the small-
est enclosing circle of R, and let o and r denote R’s cen-
ter point and radius, respectively. Notice that o ∈ R,
since R is convex. We divide R into 8 regions R1, . . . , R8

by drawing four line segments through o, such that each
of the 8 angles formed around o is of 45◦; see Figure 3(a).
Clearly, for each Ri, o ∈ Ri and ∆(Ri) ≤ r.

We first prove that for each region Ri, µRi(o) ≤
2∆(Ri)/3. (This is done by adapting the proof of
Lemma 3.1 of Aronov et al. [1].) Consider Figure 3(b).
Let p ∈ Ri be the farthest point from o. Draw the cir-
cular sector ocd centered at o of radius ‖op‖. Let a and
b be as in Figure 3(b). Let f be the point on the arc cd,
such that the regions Q1 and Q2 obtained by drawing
the segment of are of equal area. (Q1 is the region oxb
and Q2 is the difference between the sector opf and the
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Figure 3: Illustrating the proof of Theorem 3.3.

region opx, where x is the intersection point between of
and the boundary piece pb.) Similarly, let e be the point
on the arc cd, such that the regions Q3 and Q4 obtained
by drawing the segment oe are of equal area. (Q3 is the
region oay and Q4 is the difference between the sector
oep and the region oyp, where y is the intersection point
between oe and the boundary piece ap.)

Now, on the one hand, since opb is convex, x is the
farthest point from o in Q1, and, on the other hand, x
is the closest point to o in Q2. Hence, any point in Q2

is farther from o than any point in Q1. Thus we get
that µopb(o) = µ(Q′1∪Q1)(o) ≤ µ(Q′1∪Q2)(o) = µopf (o) =
2 ‖op‖ /3 = 2∆Ri/3. We show that µoap(o) ≤ 2∆Ri/3
using the “symmetric” analysis. Since opb and oap are
disjoint convex objects, then, by Lemma 3.1, µRi(o) =
µ(opb∪oap)(o) ≤ 2∆Ri/3.

We now show that µR(o) ≤ 2∆(R)/(3
√

3), imme-
diately implying that µ∗R ≤ 2∆(R)/(3

√
3). By The-

orem 3.2, we know that r ≤ ∆(R)/
√

3. We also
know that for each Ri, ∆(Ri) ≤ r. Thus, µRi(o) ≤
2∆(Ri)/3 ≤ 2r/3 ≤ 2∆(R)/(3

√
3).

We now apply Lemma 3.1 to obtain that

µR(o) ≤ max
{
µ(R1∪R2∪R3∪R4)(o), µ(R5∪R6∪R7∪R8)(o)

} ≤
≤ max

{
max

{
µ(R1∪R2)(o), µ(R3∪R4)(o)

}
,

max
{
µ(R5∪R6)(o), µ(R7∪R8)(o)

}} ≤
...

≤ max {µR1(o), µR2(o), µR3(o), µR4(o) ,

µR5(o), µR6(o), µR7(o), µR8(o)} ≤
≤ 2∆(R)/(3

√
3) .

Corollary 3.4. Let P be a convex n-gon. Then one
can compute in linear time a point p, such that µP (p) ≤
25

6
√

3
µ∗P .

Proof: We apply Megiddo’s linear-time algorithm for
computing the smallest enclosing circle C of P [7]. Let
p denote the center of C, then, by Theorem 2.1

µP (p)
µ∗P

≤ 2∆(P )/(3
√

3)
4∆(P )/25

=
25

6
√

3
.

Corollary 3.4 gives us a very simple linear-time
constant-factor approximation algorithm for finding an

approximate Fermat-Weber center in a convex polygon.
A less practical linear approximation scheme for finding
such a point was presented by Carmi et al. [3].

4 Application

We consider the load balancing problem studied by
Aronov et al. [1]. Let D be a convex region and let
P = {p1, . . . , pm} be a set of m points representing m
facilities. The goal is to divide D into m equal-area con-
vex regions R1, . . . , Rm, so that region Ri is associated
with point pi, and the total cost of the subdivision is
minimized. The cost κ(pi) associated with facility pi is
the average distance between pi and the points in Ri,
and the total cost of the subdivision is

∑
i κ(pi).

Assuming D is a rectangle that can be divided into m
squares of equal size, Aronov et al. present an O(m3)-
time algorithm for computing a subdivision of cost at
most (8+

√
2π) times the cost of an optimal subdivision.

By applying Theorem 2.1 in the analysis of their algo-
rithm, we obtain a better approximation ratio, namely,
( 29

4 +
√

2π). For further details, see the full version of
this paper.
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[6] H.W.E. Jung. Über den kleinsten Kreis, der eine
ebene Figur einschließt. J. Angew. Math. 137 (1910),
310–313.

[7] N. Megiddo. Linear-time algorithms for linear pro-
gramming in R3 and related problems. SIAM Jour-
nal on Computing, 12(4) (1983), 759–776.

[8] G. Wesolowsky. The Weber problem: History and
perspectives. Location Science, 1(1) (1993), 5–23.

150
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On the nonexistence of dimension reduction for `2
2 metrics

Avner Magen∗ Mohammad Moharrami ∗

Abstract

An `22 metric is a metric ρ such that
√

ρ can be em-
bedded isometrically into Rd endowed with Euclidean
norm, and the minimal possible d is the dimension as-
sociated with ρ. A dimension reduction of an `22 metric
ρ is an embedding of ρ into another `22 metric µ so that
distances in µ are similar to those in ρ and moreover,
the dimension associated with µ is small. Much of the
motivation in investigating dimension reductions in `22
comes from a result of Goemans which shows that if such
metrics have good dimension reductions, then they em-
bed well into `1 spaces. This in turn yields a rounding
procedure to a host of semidefinite programming with
good approximation guarantees.

In this work we show that there is no dimension re-
duction `22 metrics in the following strong sense: for
every function D(n) and for every n there exists an n
point `22 metric ρ such that for all embeddings of ρ into
an `22 metric µ with distortion at most D(n), the asso-
ciated dimension of µ is at least n − 1. This stands in
striking contrast to the Johnson Lindenstrauss lemma
which provides a logarithmic dimension reduction for `2
metrics.

1 Introduction

The theory of finite metric spaces has attracted a lot
of attention from algorithm designers in recent years.
In fact, many substantial steps in approximation algo-
rithms were achieved using embeddings of one metric
space into another and estimating the distortion of the
embedding.

We quickly review the needed background. Let f :
(X, d) → (X ′, d′) be a mapping from metric space (X, d)
into metric space (X ′, d′). The distortion of f is the
minimum D such that α · d(x, y) ≤ d′(f(x), f(y)) ≤
D · αd(x, y) holds for some α ≥ 0 and for any x, y ∈ X.

One of the most useful ways embedding results are ap-
plied is in the context of Linear Program and Semidef-
inite Programming relaxations for combinatorial prob-
lems. By viewing optimal solutions of such relaxations
as finite metric spaces and then embedding these metric
spaces with low distortion into `1 one effectively obtains
a rounding procedure (see [12, 7, 14]), namely, a proce-
dure that maps a set of vectors into a {0, 1} assignment.

∗Department of Computer Science, University of Toronto

The groundbreaking work of Arora, Rao and Vazirani
[4] used this idea to provide an improved approximation
of O(

√
log n) to Sparsest Cut.

Metric spaces emerging from semidefinite relaxations
can be typically described as follows. Consider a finite
set of point in Rp endowed with the square Euclidean
distance, that is, for vectors v1, . . . ,vn ∈ Rp the result-
ing distance function is dij = ‖vi − vj‖2. A distance
function d obtained this is called an `22 distance func-
tions. If in addition d satisfies triangle inequalities, we
say that d is an `22 metric, or a Negative Type Metric.
Notice that semidefinite relaxations may enforce such
(linear) constraints.

Unlike `p metrics, i.e., metrics that embed in `p space
with no distortion, the class of `22 metrics does not in-
herit the structure of a host normed space. This, to
a great extent, explains why analyzing such metrics
proved to be notoriously hard. The aforementioned re-
sult of Arora et al. [4], while not directly about met-
ric spaces, shows that `22 metrics are well embeddable
into `1 and `2 in some appropriately defined average
sense. The result was later extended to show that
every `22 metric is embeddable into `1 with distortion
O(
√

log n · log log n) [3]. Finding the smallest distor-
tion needed to embed such metrics in `1 has become
an intriguing open question, attracting attention from
both geometers as well as complexity theorists. The
best lower bound known so far is due to Khot and Vish-
noi [9] that show that Ω(log log n) distortion is required.

Another theme of interest in the theory of metric
spaces is dimension reduction: to what extent can the
dimension associated with a metric be reduced without
changing the distances by much? Such reductions are
well understood in Euclidean space. While represent-
ing the metric of n points in Euclidean space isomet-
rically requires dimension n − 1, much less is sufficient
for near isometries. In a seminal paper [8], Johnson
and Lindenstrauss show that every n-point set in `2 can
be embedded into O(log n)-dimensional Euclidean space
with constant distortion. Alon [2] recently showed that
this dimension is essentially the best possible. Explor-
ing the possibility of a similar phenomenon in `1 spaces,
Brinkman and Charikar [5] and later Lee and Naor [11]
showed that there is no dimension reduction in these
spaces: they exhibited an n point metric in `1 such that
embedding it with constant distortion in m-dimensional
`1 space is only possible for m = nΩ(1).

The following result due to M. Goemans presented
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in a workshop on methods in discrete mathematics [6]
relates the themes distortion and dimension, with re-
spect to `22 metrics. As such, it suggested an alternative
avenue to low-distortion embeddings for such metrics.
First, we need a slight restriction in the definition of
the metrics spaces in question.

Definition 1 A distance function on n points is called
NEGsym if there are vectors v1,v2, . . . ,vn ∈ Rp such
that dij = ‖vi−vj‖2, and ‖x−y‖2+‖z−y‖2 ≥ ‖x−z‖2

for all x, y, z ∈ {±vi}i. The smallest possible p above is
the dimension associated with d.

Notice that NEGsym metrics are special cases of `22 met-
rics. We also observe that since ‖x − y‖2 + ‖z − y‖2 −
‖x − z‖2 = 2(x − y) · (z − y), the condition above says
that (x − y) · (z − y) ≥ 0, i.e., no three points among
{±vi}i span an obtuse angle. Similarly to `22 metrics,
it is possible to optimize a linear objective functions in
the distances over NEGsym metrics.

Theorem 1 (Goemans, 2000) Every NEGsym met-
ric on p dimension can be embedded into `2 with distor-
tion O(

√
p).

Notice that if one could get a logarithmic dimen-
sion reduction for NEGsym metrics á la Johnson-
Lindenstrauss, then Theorem 1 would imply that
such metrics are embeddable into `2 with distortion
O(
√

log n). In fact, it follows from [13] that applying
Johnson Lindenstrauss lemma for an `22 metric would
result in a low-dimensional `22 metric that cannot vio-
late triangle inequality by a large margin. So it would
seem reasonable to expect that such dimension reduc-
tions are possible. An O(

√
log n) distortion achieved

this way would improve the results of Arora, Lee and
Naor [3], and would greatly simplify [4, 3], being based
on purely geometrical principles rather than combina-
torial and geometrical ones. This question of whether
such dimension reductions exist was raised in a work-
shop on metric geometry at Texas A&M, Summer 2006
[1].

In this work we show that there is no dimension re-
duction in `22 (or even for NEGsym) in a strong sense:
whenever the distortion depends only on the number
of points, one cannot reduce the dimension below the
trivial n− 1. Specifically, we show

Theorem 2 For any real function D(n), there exists
an n-point metric space X in `22 (or NEGsym) such
that for every metric space Y in `22 that is associated
with less than n − 1 dimension, the distortion required
for embedding X into Y is greater than D(n).

2 The construction

Recall that if ρ is an `22 metric then
√

ρ is a metric that is
obtained by taking points in Euclidean space where no

three of them spans an obtuse angle. Therefore, dimen-
sionality reduction in `22 metrics amounts to dimension-
ality reduction of a set of points in Euclidean space that
span no obtuse angle, with the additional requirement
that the image of the points do not span such angles as
well.

The previous results on the minimum required dimen-
sion of a metric were due to Brinkman and Charikar [5]
and to Lee and Naor [11] in the `1 case.

An obvious first attempt would be to use random pro-
jections as in the Johnson Lindenstrauss lemma. Doing
so certainly preserve distances approximately, and in
fact allows for only small changes in angles: the sine
of the angles change by an arbitrary small factor [13];
but that is not strong enough when the angles in ques-
tion are close to π/2. Indeed, it is easy to see that
under a random projection a right angle will become
obtuse with probability 1/2. In particular, the Johnson-
Lindenstrauss Lemma itself is not a good approach to
the question of dimension reduction for `22 metrics. With
this in mind, it is not surprising that the bad example
we exhibit contains many right angles.

Let c > 1 be a constant, let p0 = − 1
2

∑n
i=1 ci−1ei,

and recursively define

pj = pj−1 + cj−1ej.

Let X(n, c) be the (n+1)-point metric space given by
the squared Euclidean distances between the points pi.
Notice that X(n, c) is simply the line metric on points
spaced at intervals with lengths that increase exponen-
tially (as power of c). Further, since all the pis lie on
vertices of a box centred at the origin, no three points
among ±pi span an obtuse angle. Therefore X(n, c) is
a NEGsym metric. We will show that there is a large
enough constant c depending on D, such that in every
embedding of X(n, c) with distortion ≤

√
D(n) into `2

the vectors f(pi)−f(pi−1) are arbitrarily close to being
orthogonal. Since a set of vectors that are sufficiently
close to being orthogonal must have full dimension, the
dimension lower bound then follows.

Let f be an embedding from {p0,p1, . . . ,pn} into Rd,
and let α be a positive number such that for every i, j, k

‖pi − pj‖ ≤ ‖f(pi)− f(pj)‖ ≤ α‖pi − pj‖,

and
(f(pi)− f(pj)) · (f(pk)− f(pj)) ≥ 0.

Denote the vector f(pi)−f(pi−1) by wi. Much of the
argument we need is captured by the following lemma
bounding the angles between the vectors wis.

Lemma 3 For i 6= j, |wi ·wj| ≤ α
c−1‖wi‖‖wj‖

Proof. Assume without loss of generality that i < j.
Focusing on the points pi−1, pi and pj we get that
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CCCG 2008, Montréal, Québec, August 13–15, 2008

0 ≤ (f(pi−1)− f(pi)) · (f(pj)− f(pi)) =

−wi ·
( j∑

k=i+1

wk

)
,

therefore

wi ·wj ≤ −wi ·
( j−1∑

k=i+1

wk

)
.

The distortion condition implies that ‖wj‖ ≥ cj and
that ‖wk‖ ≤ αck for every k. Therefore

wi ·wj ≤ −wi ·
( j−1∑

k=i+1

wk

)
≤ ‖wi‖

j−1∑
k=i+1

αck−1 ≤

α‖wi‖cj/(c− 1) ≤ α‖wi‖‖wj‖/(c− 1). (1)

To lower bound wi ·wj we consider the angle between
the same three points, with i − 1 as the center point.
We get

0 ≤ (f(pi)− f(pi−1)) · (f(pj)− f(pi−1)) =

wi ·
( j∑

k=i

wk

)
.

Now we have

wi ·wj ≥ −wi ·
( j−1∑

k=i

wk

)
and similarly to (1)

wi ·wj ≥ −wi ·
( j−1∑

k=i

wk

)
≥ −‖wi‖

j−1∑
k=i

αck−1 ≥

−α‖wi‖cj/(c− 1) ≥ −α‖wi‖‖wj‖/(c− 1).

We refer the reader to Figure 1 which illustrates the
geometrical intuition of the lemma.

�

Given any function D(n), we set c = n
√

D(n) + 1.
Assume that X(n, c) can be embedded into an `22 metric
with dimension less than n and distortion at most D(n).
Then there must be a function f from {p0, . . . ,pn} that
satisfies the conditions of Lemma 3 with α =

√
D(n)

and the vectors wis are in Rd with d < n. Let wi
′ =

wi/‖wi‖ be the normalized vector wi. Then

|wi
′ ·wj

′| = |wi ·wj|/‖wi‖‖wj‖ ≤

α

c− 1
=

α

n
√

D(n)
= 1/n.

f(pi)

f(pj)

f(pj−1)

f(pi−1)

Figure 1: f(pj−1) and f(pj) must lie in the slab between
f(pi−1) and f(pi); since wj = f(pj)−f(pj−1) has norm
much larger than the width of the slab, wi and wj must
be almost orthogonal.

But now we have a set of n unit vectors which are
almost orthogonal. It is a well known fact that such
a set must have full rank; for completeness we show it
here. Let A be the gram matrix of wi’s that is Ai,j =
wi

′wj
′. Then Aii = 1 and |Ai,j | ≤ 1/n for i 6= j. Thus,

‖A− I‖∞ < 1
n , and for any vector x 6= 0,

‖Ax‖∞ ≥ ‖x‖∞ − ‖(A− I)x‖∞ ≥

‖x‖∞ − (n− 1)(1/n)‖x‖∞ > 0.

So A is nonsingular and therefore the dimension
spanned by the wi

′ (and so by their original counter-
parts wi) is n. We have therefore shown that

d ≥ n = |X(n, c)| − 1

which proves Theorem 2.
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The Steiner Ratio for Obstacle-Avoiding Rectilinear Steiner Trees

Anna Lubiw∗ Mina Razaghpour†

Abstract

We consider the problem of finding a shortest rectilinear
Steiner tree for a given set of points in the plane in the
presence of rectilinear obstacles that must be avoided.
We extend the Steiner ratio to the obstacle-avoiding
case and show that it is equal to the Steiner ratio for
the obstacle-free case.

1 Introduction

Given a set of points (also called terminals) and a set of
obstacles in the plane, an obstacle-avoiding rectilinear
Steiner minimum tree (OAR-SMT) is a tree of short-
est length, composed solely of vertical and horizontal
line segments, connecting the points and avoiding the
interior of the obstacles. The OAR-SMT problem has
important applications in VLSI design. For extensive
surveys of Steiner tree problems, refer to [5] and [7].

A Steiner tree may contain vertices different from the
points to be connected, namely Steiner points. If we do
not allow Steiner points, then the problem becomes the
minimum spanning tree problem. Whereas the Steiner
problem has been proven to be NP-hard in both Eu-
clidean and rectilinear metrics [3, 2], it is easy to de-
termine the minimum spanning tree. Consequently, we
are interested in the quality of a minimum spanning
tree as an approximation to the minimum Steiner tree
for various versions of the problem. The Steiner ratio
is defined to be the maximum, over all instances, of the
ratio of the length of a minimum spanning tree to the
length of a Steiner minimum tree (SMT). For every met-
ric space, the Steiner ratio is between 1 and 2 [4]. For
the Euclidean Steiner tree problem (obstacle-free case),
the Steiner ratio is 2√

3
. This was conjectured by Gilbert

and Pollack in 1966 [4] and was proved in 1992 by Du
and Hwang [1]. For the rectilinear Steiner tree problem,
Hwang [6] proved earlier that the Steiner ratio is 3

2 .
What is the most natural generalization of this to

the case of obstacles? An edge of a spanning tree must
walk around the obstacles in this case. It seems natural
to allow Steiner points at corners of obstacles. This
does not lead to a polynomially solvable problem but,
as we show here, does lead to interesting Steiner ratio

∗School of Computer Science, University of Waterloo,
alubiw@uwaterloo.ca

†School of Computer Science, University of Waterloo,
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(a) (b)

Figure 1: Two canonical forms of full Steiner trees.

results. We call an Steiner point anchored if it is at the
corner of an obstacle. An anchored-OAR-SMT is then
defined as an obstacle-avoiding rectilinear SMT in which
all Steiner points are anchored. Note that when there
are no obstacles, an anchored-OAR-SMT is a minimum
spanning tree. We define the obstacle-avoiding Steiner
ratio as the worst case ratio of the length of an anchored-
OAR-SMT to the length of an OAR-SMT. We show that
this ratio is 3

2 , which is the same as the Steiner ratio for
the obstacle-free case.

Note that if we do not allow Steiner points, we do not
get an interesting ratio in the case of obstacles. The
worst case ratio between the lengths of an obstacle-
avoiding minimum spanning tree and a Steiner mini-
mum tree is 2, which is equal to the Steiner ratio in a
generic metric space.

In the remainder of this paper, we use Steiner tree to
mean a rectilinear obstacle-avoiding Steiner tree, unless
otherwise specified.

2 Canonical Trees

In this section we show that it suffices to prove our
Steiner ratio result for canonical Steiner trees, which
have the forms shown in Figure 1. This was proved for
the case without obstacles by Hwang [6] and we follow
his approach. A canonical Steiner tree is defined as
follows:

Definition 1 (Canonical Trees) A rectilinear mini-
mum Steiner tree is canonical if it has one of the fol-
lowing forms, possibly after a rotation:

i. All Steiner points and the leftmost terminal lie on a
horizontal line. All Steiner points are connected to
exactly one terminal by a vertical edge. These ver-
tical edges alternatingly extend up and down. The
rightmost and leftmost Steiner points are connected
to a second terminal by a horizontal edge or a cor-
ner (Figure 1(a)).
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x y

x′ y′

y

xα

α′
l1 l2

(a) (b)

Figure 2: (a) Shifting. (b) Flipping.

ii. As above except that the two rightmost Steiner
points are connected together by a corner (Figure
1(b)).

Hwang’s first step is to reduce to full Steiner trees,
which are Steiner trees in which terminals appear only
as leaves. To justify this, note that we can cut a Steiner
tree at any non-leaf terminal to obtain full Steiner sub-
trees. Similarly, we can cut an obstacle-avoiding Steiner
tree at non-leaf terminals and at obstacle corners to ob-
tain full obstacle-avoiding Steiner trees, in which ter-
minals and obstacle corners appear only as leaves. It
is sufficient to prove the ratio result for full subtrees
(this is justified more formally below). Note that ob-
stacle corners are then regarded as terminals in the full
subtrees.

Hwang’s next step is to apply shifting and flipping op-
erations (Figure 2) to transform any minimum Steiner
tree to one whose full subtrees are canonical. In a shift,
a segment xy incident to two parallel lines l1 and l2 and
containing no terminals or Steiner points other than
possibly x and y is replaced by segment x′y′ also in-
cident to l1 and l2 and parallel to xy. In a flip, two
segments xα and yα meeting at the corner α and con-
taining no terminals or Steiner points other than possi-
bly x and y are replaced by segments xα′ and yα′, such
that xαyα′ is a rectangle. These operations do not in-
crease the length of a Steiner tree, and therefore map
an SMT to another SMT. Two Steiner trees are said to
be equivalent if one can be transformed to the other by
shifting and flipping. To deal with obstacles, we first
perform shifts and flips to bump into as many obsta-
cles as possible. We then claim that further shifts and
flips, as performed in Hwang’s reduction, can ignore the
obstacles. More formally:

Lemma 1 Let T be an OAR-SMT such that, among
all equivalent OAR-SMTs, T has the maximum num-
ber of full subtrees. Then shift and flip transformations
can be done on T as if there were no obstacles, without
violating the obstacle-avoiding property.

Proof. Assume by contradiction that there exists a
transformation H mapping T to T ′ such that T ′ vio-

x y

x′ y′

y

xα

α′

c d c

Figure 3: Shifting and flipping in the presence of obsta-
cles.

lates the obstacle-avoiding property. Let H be a shift
from segment xy to x′y′ such that x′y′ intersects an ob-
stacle (Figure 3). Then, there must exist at least one
obstacle corner inside the rectangle xyy′x′. Let c be
the closest such obstacle corner to xy. We can shift xy
to c to increase the number of full subtrees by at least
one, thus contradicting the assumption that T has the
maximum number of full subtrees. Next, let H be a
flip from the corner xαy to the corner xα′y such that
either xα′ or yα′ intersects with an obstacle. Since the
obstacles are rectilinear, there must exist an obstacle
corner inside the rectangle xαyα′. Let c be the closest
such obstacle to α. We can flip α to c and increase the
number of full subtrees by at least one, again leading to
a contradiction.

�

Starting with an OAR-SMT with the maximum num-
ber of full subtrees, we can therefore apply Hwang’s
proof steps and reductions to get a canonical OAR-
SMT:

Theorem 1 For any terminal set P and obstacle set O
there is an OAR-SMT whose full subtrees are in canon-
ical form.

Notation We call the horizontal line connecting the
Steiner points the spine and denote it by E. We call the
vertical lines connecting the terminals to the spine the
ribs. Let nu and nl be the number of the ribs above and
below the spine, respectively (nl = nu or nl = nu ± 1).
Let R1, . . . , Rnu

and r1, . . . , rnl
denote the ribs above

and below the spine, in the order of x coordinate, re-
spectively. Let Ti and ti denote the terminals located
on Ri and ri, respectively. Denote by Si and si the
Steiner points at which Ri and ri meet the spine, re-
spectively. The rightmost rib and the leftmost rib (of
length zero) meet the the spine at a corner point or a
terminal, which for convenience of notation, we also de-
note by Si and si for i = 1, nl, nu. We define a pocket
as a subtree connecting three terminals consecutive in
x-ordering. Without loss of generality, we assume that
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Ti−1
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r2

Snurnl

Rnu

Tnu

tnl

snl

Figure 4: (a) A canonical Steiner tree. (b) Upper pocket
Pi. (c) Lower pocket pi.

the second leftmost rib is an upper rib. Then the ith
upper pocket, denoted by Pi, connects Ti−1, ti and Ti

via si and the ith lower pocket, denoted by pi, connects
ti, Ti and ti+1 via Si. These notations are illustrated in
Figure 4.

3 Rectilinear Steiner Ratio With Obstacles

Let T ∗ and AT ∗ denote an OAR-SMT and an anchored-
OAR-SMT for a terminal set P , respectively.

Theorem 2
|AT ∗|
|T ∗|

≤ 3
2

Proof. The proof only needs to be established for
canonical Steiner trees. To see why, consider an OAR-
SMT T ′ equivalent to T ∗ whose full subtrees are canon-
ical. Such a tree exists by Theorem 1. Assume that
Theorem 2 holds for each full subtree Fi. Therefore,
there exists an anchored OAR-SMT Gi for the terminal
set spanned by Fi such that |Gi| ≤ 3

2 |Fi|. The union
of all Gi’s, denoted by G, is an anchored Steiner tree
spanning P that is no longer than 3

2 times the length of
T ∗.

We therefore assume that T ∗ is a canonical Steiner
minimal tree. We will build a pair of anchored Steiner
trees on P whose lengths add up to 3|T ∗|. The smaller
tree will therefore have length at most 3

2 |T
∗|.

We use the notation given at the end of Section 2.
First, we assume that T ∗ is a type (i) canonical tree.
We identify a subset of obstacle corners, called critical
corners, and use them as Steiner points in the construc-
tion of the two trees. All other obstacle corners can be
ignored.

For each upper (lower) pocket consider the set of all
obstacle corners located above (below) the spine and
between the two upper (lower) ribs. The height of such
an obstacle corner is defined as its distance from the
spine. We can restrict attention to the obstacles whose
heights are less than the length of the shorter rib of
their pocket. We define a U-critical (L-critical) corner
as the obstacle corner with the minimum height in this
set, breaking ties arbitrarily. If there is no such obstacle
corner, the critical corner is the terminal located on the

Ti−1

Ti

Ti−1

Ti

ti ti

Oi

Si−1
Si SiSi−1

si siIO
i

Figure 5: The Green Tree.

shorter upper (lower) rib and we refer to it as a virtual
critical corner. Note that the length of the shortest path
between a critical corner and a terminal in its pocket is
equal to their rectilinear distance. Let Oi (oi) denote
the U-critical (L-critical) corner in the upper pocket Pi

(lower pocket pi), and let IO
i (Io

i ) be its image projected
on the spine. Let HO

i (Ho
i ) be the height of Oi (oi).

3.1 The green tree

For each upper pocket, we connect the three terminals
ti, Ti−1 and Ti to the U-critical corner Oi. See Figure
5. The length of the subtree is:

|TPi | = |Ri−1|+ |Ri| − |Ho
i |+ |ri|+ |Si−1Si|+ |siI

O
i |

We connect the boundary terminals, if not included
in any upper pocket, directly to the next terminal in the
x-ordering. Summing over all upper pockets, the length
of the green tree is:

|Tgreen| = 2
nu∑
i=1

|Ri|+
nl∑

i=1

|ri|−
nu∑
i=1

|HO
i |+|E|+

nu∑
i=1

|siI
O
i |

3.2 The red tree

A U-critical corner Oj is involved in a lower pocket pi,
if Oj ’s image on the spine, IO

j , is located between the
boundary Steiner points si and si+1. Oj can be either
involved in the pocket pj or pj−1.

For each lower pocket pi, there can be 0, 1 or 2 U-
critical corners involved in the pocket. We consider
three cases:

Case 1: There is one U-critical corner, Oj (j = i or
i+1), involved in pi. We connect ti, Ti−1 and Ti to Oj .
See Figure 6 (a) and (b). In this case, the length of the
subtree is:

|Tpi
| = |Ri|+ |ri|+ |ri+1|+ |HO

i |+ |sisi+1|+ |SiI
O
j |

≤ |Ri|+ |ri|+ |ri+1|+ |HO
i |+ 2|sisi+1| − |sjI

O
j |
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Figure 6: The Red Tree: (a) one (non-virtual) upper
critical corner. (b)Virtual upper critical corner. (c)Two
upper critical corners. (d) No upper critical corner, at
least one (non-virtual) lower critical corner. (e) No up-
per critical corner, virtual or no lower critical obstacle.

Case 2: There are two U-critical corners, Oi and Oi+1,
involved in pi. We connect ti, Ti−1 and Ti to Oi+1. See
Figure 6(c). The length of the subtree is:

|Tpi | = |Ri|+ |ri|+ |ri+1|+ |HO
i+1|+ |sisi+1|+ |SiI

O
i+1|

We want the term |HO
i | − |siI

O
i | to appear exactly

once for each U-critical corner Oi, so that it is canceled
by the term |siI

O
i | − |HO

i | in the green tree’s length.
Therefore, we re-write the length of the subtree as:

|Tpi
| ≤ |Ri|+ |ri|+ |ri+1|+ |HO

i |+ |HO
i+1|

+ 2|sisi+1| − |siI
O
i | − |si+1I

O
i+1|

Case 3: There are no U-critical corners involved in pi.
In this case, we use the L-critical corner in the pocket,
oi, as a Steiner point and connect the three terminals
ti, Ti−1 and Ti to oi. See Figure 6 (d) and (e).

The length of the subtree is:

|Tpi | ≤ |Ri|+ |ri|+ |ri+1|+ 2|sisi+1|

We connect the boundary terminals, if not included
in any lower pocket, directly to the next terminal in x-
ordering. Summing over all lower pockets, the length of
the red tree is :

|Tred| ≤
nu∑
i=1

|Ri|+2
nl∑

i=1

|ri|+
nu∑
i=1

|HO
i |+2|E|−

nu∑
i=1

|siI
O
i |

Now we add up the lengths of the two trees together:

|Tgreen|+ |Tred| ≤ 3
nu∑
i=1

Ri + 3
nl∑

i=1

ri + 3|E| = 3|T ∗|

This proves that the length of the shorter tree is at
most 3

2 times the length of T ∗.
Now assume that T ∗ is a type (ii) canonical tree.

First, we ignore the exceptional terminal, call it u, and
build the red and green trees as above. Then, we mod-
ify the red tree so that the path between tnl

and Tnu

passes through u, and in the green tree, we connect u to
Tnu

. It is easy to see that the lengths of the two trees
still add up to less than 3 times the length of T ∗.

Finally, the 3
2 bound for the obstacle-avoiding Steiner

ratio is tight, since it clearly cannot be less than the
Steiner ratio for the obstacle-free case.

�

4 Future work

We are working on an approximation algorithm to com-
pute the anchored-OAR-SMT. We conjecture that in
the Euclidean case, the obstacle-avoiding Steiner ratio
is 2√

3
, the same as the Steiner ratio for the Euclidean

obstacle-free case.
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Core-Preserving Algorithms

Hamid Zarrabi-Zadeh∗

Abstract

We define a class of algorithms for constructing coresets
of (geometric) data sets, and show that algorithms in
this class can be dynamized efficiently in the insertion-
only (data stream) model. As a result, we show that for
a set of points in fixed dimensions, additive and mul-
tiplicative ε-coresets for the k-center problem can be
maintained in O(1) and O(k) time respectively, using a
data structure whose size is independent of the size of
the input. We also provide a faster streaming algorithm
for maintaining ε-coresets for fat extent-related prob-
lems such as diameter and minimum enclosing ball.

1 Introduction

The data stream model of computation has recently
attracted considerable interest due to growing applica-
tions involving massive data sets. In this model, data is
presented to the algorithm one by one as a stream over
time, and the algorithm must compute a function over
the stream in only one pass, using a limited amount of
storage.

The coreset framework is a fundamental tool for de-
signing algorithms in the data stream model as it al-
lows to compute a function approximately over the data
stream by keeping only a small-size “sketch” of the in-
put, called a coreset. Roughly speaking, a subset Q of
the input set P is called an ε-coreset of P with respect
to an optimization problem, if solving the optimization
problem on Q gives an ε-approximate solution to the
problem on the whole input set, P .

Several streaming algorithms have been developed
over the past few years for various geometric prob-
lems using the notion of coresets [1, 6, 9, 14]. For
all these problems, coresets defined satisfy the follow-
ing two properties:

a) If Q is an ε-coreset of P and Q′ is an ε-coreset of
P ′, then Q ∪Q′ is an ε-coreset of P ∪ P ′;

b) If Q is an ε-coreset of S and S is an δ-coreset of P ,
then Q is an (ε + δ)-coreset of P .

Using the above two properties and based on the general
dynamization technique of Bentley and Saxe [5], Agar-
wal et al. [2] obtained the following result in the data

∗School of Computer Science, University of Waterloo, Water-
loo, Ont. N2L 3G1, Canada; hzarrabi@uwaterloo.ca

stream model: If there is an ε-coreset of size f(ε) for
a problem, then one can solve the problem in the data
stream model using O(f(ε/ log2 n) log n) overall space,
where n is the number of elements received so far in the
stream.

In this paper, we show that for a special class of al-
gorithms which we call core-preserving, the space com-
plexity of the corresponding streaming algorithms can
be reduced to f(ε), using a simple bucketing scheme.
The importance of this result is that the dependency of
the space complexity to the input size, n, is removed.
(Such a result was previously known only for the ε-
coresets with respect to the extent measure [6, 4].) This
independency to the input size is very important as the
input size in the data streams is usually huge.

Our framework leads to improved algorithms for a
number of problems in the data stream model, some of
which are listed below. In the following, the input is
assumed to be a stream of points in Rd, where d is a
constant.

• (Additive) coreset for k-center: We show
that an additive ε-coreset for the k-center prob-
lem can be maintained in O(k/εd) space and O(1)
amortized update time, improving the previous
algorithm attributed to Har-peled [12] which re-
quires O(poly(k, 1/ε, log n)) space and similar time.
This is indeed the first streaming algorithm main-
taining an ε-coreset for this problem using a total
space independent of n.

• Multiplicative coreset for k-center: For the
k-center problem, we show that a multiplicative ε-
coreset (as defined in Section 2) can be maintained
in O(k!/εkd) space and O(k) amortized update
time. This is again the first streaming algorithm
for this problem whose space is independent of the
input size. This result immediately extends to a
variant of the k-clustering problem in which the
objective is to minimize the sum of the clusters
radii [7, 10].

• Coreset for fat measures: For “fat” measures
such as diameter and radius of the minimum en-
closing ball, one can easily maintain an ε-coreset by
just keeping the extreme points along O(1/ε(d−1)/2)
directions. The time and space complexity of
this näıve algorithm is O(1/ε(d−1)/2). In two-
dimensions, using the recent algorithm of Agarwal
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and Yu [4], one can improve the update time from
O(

√
1/ε) to O(log(1/ε)). We show that the update

time in 2D can be further reduced to O(1) using our
framework. Moreover, the update time in three di-
mensions is reduced from O(1/ε) to O(log(1/ε)) us-
ing our algorithm. A slight improvement in higher
dimensions is implied as well.

2 Preliminaries

Let P be a set of points in Rd. A k-clustering of P
is a set B of k balls that completely cover P . We
denote by rad(b) the radius of a ball b, and define
rad(B) = maxb∈B rad(b). A δ-expansion of B is ob-
tained by increasing the radius of each ball of B by an
additive factor of δ.

Definition 1 A set Q ⊆ P is called an additive ε-
coreset of P for the k-center problem, if for every k-
clustering B of Q, P is covered by an (ε · rad(B))-
expansion of B.

We denote by (1 + ε)B a clustering obtained from B

by expanding each ball b ∈ B by a factor of ε · rad(b).

Definition 2 A set Q ⊆ P is called a multiplicative
ε-coreset of P for the k-center problem, if for every k-
clustering B of Q, P is covered by (1 + ε)B.

Given two points p, q ∈ Rd, we say that p is smaller
than q, if p lies before q in the lexicographical order of
their coordinates. Throughout this paper, we denote by
bxc2 the largest (integer) power of 2 which is less than
or equal to x.

3 Core-Preserving Algorithms

In this section, we formally define the notion of core-
preserving algorithms, and show how it can be used to
efficiently maintain coresets in data streams.

Definition 3 Let A be an (offline) algorithm that for
every input set P , computes an ε-coreset A(P ) of P .
We call A core-preserving, if for every two sets R and
S, A(R ∪A(S)) is an ε-coreset of R ∪ S.

For R = ∅, the above property implies that A(A(S))
is an ε-coreset of S. It means that repeated calls to
a core-preserving algorithm on a set S always returns
an ε-coreset of S. This is why the algorithm is called
“core-preserving”.

Theorem 1 Let A be a core-preserving algorithm that
for any set S, computes an ε-kernel of S of size
O(SA(ε)) in time O(α|S| + TA(ε)). Then for ev-
ery stream P , we can maintain an ε-coreset of P of
size O(SA(ε)) using O(SA(ε)) total space and O(α +
TA(ε)/SA(ε)) amortized time per update.

Proof. The function Insert described below inserts a
date item p into the stream P and returns an ε-kernel
of P . Initially, Q and R are empty sets.

Insert(p):

1: R← R ∪ {p}
2: if |R| > SA(ε) then
3: Q← A(R ∪Q)
4: R← ∅
5: return Q ∪R

The algorithm divides the input stream P into buck-
ets of size dSA(ε)e. At any time, only the last bucket is
active which is maintained in the set R. Let S = P \R.
The algorithm maintains an ε-coreset of S in Q. Upon
arrival of a new item p, it is first added to the active
bucket R, and if R is full, algorithm A is invoked to
compute an ε-coreset of R ∪ Q. The correctness of
the algorithm immediately follows from the facts that
A is core-preserving and Q is an ε-coreset of S; thus,
A(R ∪Q) is an ε-coreset of R ∪ S = P .

The total space used by the algorithm is bounded by
|Q|+ |R| = O(SA(ε)). Algorithm A is invoked once per
dSA(ε)e inserts. Since each call to A requires O(α|S|+
TA(ε)) time, the amortized update time per input is
O(α + TA(ε)/SA(ε)). �

Theorem 1 yields two major improvements over
the general Bentley-Saxe method used in [2]: First
of all, the total space required is reduced from
O(SA(ε/ log2 n) log n) to O(SA(ε)), which is indepen-
dent of n. Secondly, the running time in the worst case
is reduced from O([αSA(ε/ log2 n)+TA(ε/ log2 n)] log n)
to only O(α|P |+ TA(ε)), again independent of n.

4 Additive Coreset for k-Center

In this section, we provide an efficient streaming
algorithm for maintaining an additive ε-coreset for the
k-center problem in fixed dimensions.

Lemma 2 There is a core-preserving algorithm that for
any given point set P ⊆ Rd, computes an additive ε-
coreset for the k-center problem of size O(k/εd) in time
O(|P |+ k/εd).

Proof. Let r∗(P ) be the radius of the optimal k-
clustering of P , and r̃(P ) be a 2-approximation of r∗(P ),
i.e., r∗(P ) 6 r̃(P ) 6 2r∗(P ).

We first define some notations: Let Gα be a uniform
grid of side length α, and Xα(P ) be the set of all p ∈ P ,
such that p is the smallest point in a non-empty grid
cell of Gα. Let δ(P ) =

⌊
εr̃(P )/(4d1/2)

⌋
2
. Our core-

preserving algorithm is as follows: given a point set P ,
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we first compute δ = δ(P ), and return Xδ(P ) as the
output. It is easy to observe that any k-clustering of
Xδ(P ), when expanded by a factor of εr∗(P ), covers all
the grid cells containing at least one point from P , and
therefore, Xδ(P ) is an ε-coreset of P [3, 13].

Let R and S be two arbitrary point sets in Rd, and
let Q be an ε-coreset of S computed by our algorithm.
To show that our algorithm is core-preserving, we need
to prove that for any input of the form P = R ∪Q, the
algorithm returns an ε-coreset of R ∪ S.

Let δ = δ(P ), σ = δ(S), and ρ = max{δ(P ), δ(S)}.
Obviously, Xρ(R ∪ S) is an ε-coreset of R ∪ S, be-
cause both P and S are subsets of R ∪ S, and hence,
max{r̃(P ), r̃(S)} 6 2r∗(R ∪ S). We claim that Xρ(R ∪
S) ⊆ Xδ(R∪Q). Since ρ/δ (resp., ρ/σ) is a non-negative
power of 2, every grid cell of Gδ (resp., Gσ) is completely
contained in a grid cell of Gρ (see Figure 1). Let p be
the smallest point of R ∪ S in a grid cell c of Gρ. Two
cases arise:

• p ∈ R: in this case, p is the smallest point of a
cell c′ ∈ Gδ (otherwise, there is a point p′ smaller
than p in c′, which is smaller than p in c as well, a
contradiction). Therefore, p ∈ Xδ(R ∪Q).

• p ∈ S: here, p is simultaneously the smallest point
of a cell c′ ∈ Gσ and a cell c′′ ∈ Gδ (otherwise, if
there is a smaller point p′ in either c′ or c′′, it would
be picked instead of p as the smallest point of c, a
contradiction). Since p is the smallest point in c′,
we have p ∈ Q, and since p is the smallest point of
c′′, we conclude that p ∈ Xδ(R ∪Q).

Therefore, any p ∈ Xρ(R ∪ S) is contained in Xδ(R ∪
Q) = Xδ(P ), which completes the proof.

For the space complexity, note that every ball of an
optimal k-clustering of P intersects O(1/εd) grid cells
of Gδ. Therefore, the size of the resulting ε-coreset
is O(k/εd). We can use a linear-time implementa-
tion of Gonzalez’s algorithm [11, 12] to compute a 2-
approximation of r∗(P ), and therefore, the total run-
ning time required is O(|P |+ k/εd). �

σ = ρδ

Figure 1: Additive coreset for k-center. The points of
R, Q, and S \Q are shown in white, black, and gray,
respectively.

Plugging Lemma 2 into the general framework provided
in Theorem 1, we immediately get the following result.

Theorem 3 Given a stream of points P in Rd, an ad-
ditive ε-coreset for the k-center problem of size O(k/εd)
can be maintained using O(k/εd) total space and O(1)
amortized time per update.

The above results also hold for any Lp metric: it just
suffices to replace d1/2 by d1/p in the definition of δ(P ).
The algorithm for multiplicative ε-coresets is omitted in
this extended abstract.

5 Coresets for Fat Extent-Related Problems

Given a point set P ⊆ Rd, let B(P ) denote the minimum
axis-parallel hyperbox enclosing P . We denote by `(P )
the length of the longest side of B(P ). A subset Q ⊆ P
is called an additive ε-kernel of P , if for all u ∈ Sd−1,

w(Q, u) > w(P, u)− ε`(P ),

where w(P, u) = maxp,q∈P 〈p− q, u〉.
A function µ(·) defined over subsets of Rd is called

a fat measure, if there exists a constant α > 0 such
that for any additive ε-kernel Q of P , αµ(P ) 6 µ(Q) 6
µ(P ). Examples of fat measures are diameter, radius of
the minimum enclosing ball, and width of the smallest
enclosing hypercube. Obviously, if Q is an additive ε-
kernel of P and µ is a fat measure, then Q is an (ε/α)-
coreset of P with respect to µ.

Given a point set P ⊆ Rd, an additive ε-kernel of P
can be computed efficiently using an adaptation of the
simple grid-rounding method proposed in [6, 15] based
on Dudley’s construction [8]. The algorithm is described
in the following lemma.

Lemma 4 There is a core-preserving algorithm that for
every point set P ⊆ Rd, computes an additive ε-kernel
of P of size O(1/ε(d−1)/2) in O(|P | + 1/εd−(3/2)) time
for d > 2, or in O((|P | + 1/εd−2) log(1/ε)) time for
d > 3.

Proof. We assume w.l.o.g. that conv(P ) contains the
origin. Let B(P ) be the smallest hypercube centered at
the origin containing P . If `′(P ) denotes the side length
of B(P ), then obviously `(P ) 6 `′(P ) 6 2`(P ).

Let B = B(P ). By a simple scaling, we may assume
that B = [−1, 1]d. Let R be the set of points of a

√
ε-

grid over the boundary of the cube [−2, 2]d, and let pr

denote the nearest neighbor of a point r ∈ R in the set P
(see Figure 2). Let Q = {pr | r ∈ R}. Obviously, |Q| 6
|R| = O(1/ε(d−1)/2). Moreover, Q is an additive ε-kernel
of P with the argument provided below. The running
time follows immediately from the fast implementation
of Chan using the discrete nearest neighbor queries [6].
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R

B

P

r

pr

Figure 2: Construction of additive ε-kernel.

Consider two arbitrary point sets R and S in Rd,
and let Q be an additive ε-kernel of S computed by
our algorithm. In order for our algorithm to be core-
preserving, we need to show that for any input of the
form P = R ∪ Q, the algorithm returns an additive ε-
kernel of R ∪ S.

We adapt the proof from [6]. Fix a unit vector u ∈
Sd−1 and a point p ∈ R∪S. Obviously, there is a point
r ∈ R such that ∠(r − p, u) 6 arccos(1 − ε/8) (See [6],
Observation 2.3). If pr ∈ S, then by our construction
there is a point q ∈ Q such that ‖r−q‖ 6 (1+cε)‖r−pr‖
(details omitted). If pr ∈ R, we simply set q = pr.
Therefore,

‖r − q‖ 6 (1 + cε)‖r − p‖
⇒ (1− ε/8) 〈r − q, u〉 6 (1 + cε) 〈r − p, u〉
⇒ 〈r − q, u〉 − 3

√
dε/8 6 〈r − p, u〉+ 3c

√
dε

(since ‖r − p‖ 6 3
√

d and ‖r − q‖ 6 3
√

d)

⇒ 〈p, u〉 6 〈q, u〉+ 3
√

d(c + 1/8).

It means that the projections of p and q in direction
u differ by at most O(ε). Since `(P ) > 1/2, we conclude
that 〈p− q, u〉 = O(ε)`(P ) in every direction u, which
completes the proof. �

Combining Lemma 4 with Theorem 1, we get the fol-
lowing result:

Theorem 5 Given a stream of points P in Rd and
a fat measure µ, an ε-coreset of P with respect
to µ can be maintained using O(1/ε(d−1)/2) total
space and max {O(1), O((1/ε(d−3)/2) log(1/ε))} amor-
tized time per update.

Remark. Using our framework to maintain ε-coresets
of fat sets as a subroutine, we have recently succeeded to
obtain a streaming algorithm for maintaining ε-coresets
with respect to the general extent measure using near
optimal space [16]. This leads to improved streaming
algorithms for a wide variety of geometric optimization
problems, including width, minimum enclosing cylinder,
minimum-width enclosing annulus, minimum-width en-
closing cylindrical shell, etc.
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Achieving Spatial Adaptivity while Finding Approximate Nearest Neighbors

Jonathan Derryberry Don Sheehy Daniel D. Sleator Maverick Woo∗

Abstract

We present the first spatially adaptive data structure that
answers approximate nearest neighbor (ANN) queries
to points that reside in a geometric space of any con-
stant dimension d. The Lt-norm approximation ratio
is O(d1+1/t), and the running time for a query q is
O(d2 lg δ(p, q)), where p is the result of the preceding
query and δ(p, q) is the number of input points in a
suitably-sized box containing p and q. Our data struc-
ture has O(dn) size and requires O(d2n lg n) preprocess-
ing time, where n is the number of points in the data
structure. The size of the bounding box for δ depends on
d, and our results rely on the Random Access Machine
(RAM) model with word size Θ(lg n).

1 Introduction

The problem of finding the nearest neighbor to a query
point is a fundamental data structure problem with
numerous applications in areas such as computational
geometry and machine learning. Unfortunately, finding
the exact nearest neighbor seems difficult in dimensions
3 or higher as there is no known data structure that
achieves nearly-linear preprocessing time and nearly-
logarithmic query time. Hence, researchers turned to the
approximate version of the problem, achieving significant
performance gains by permitting the data structure to
return merely a near neighbor, a point whose distance
to the query is at most a constant times the distance
from the nearest neighbor.

A large number of papers have sought to improve
the performance of ANN data structures (see references
in [2]), but none has shown how nonrandom patterns
in query sequences might be exploited to improve run-
ning time. Examples of exploiting such nonrandomness
abound in the 1D version of the exact nearest neighbor
problem, for which data structures whose query perfor-
mance depends upon the locality of queries in space
and/or time have long been known (see references in [4]).
Results in 2D, however, have only started to appear in
recent years. For example, [12, 3] have shown how to
exploit temporal locality in a random query sequence if
the distribution is known, whereas [10, 13] have shown

∗Department of Computer Science, Carnegie Mellon University,
jonderry,dsheehy,sleator,maverick@cs.cmu.edu. This research
was sponsored by the National Science Foundation under contract
no. EIA-9706572, CCR-0122581, CNS-0435382 and CCF-0635257
and Appalachian Regional Commission under contract no. CO-
14574.

how to achieve dynamic-finger-like bounds in the 2D
point search and point location problems.

Contribution. We extend ideas from [14, 9] to present
the first ANN data structure to achieve, in any constant
dimension, a provable speedup according to the degree
of spatial locality in the query sequence. More specif-
ically, in the RAM model with word size w = Θ(lg n),
we are given a set P of n points in d-dimensional space,
each represented as a tuple of d words. We show how
to preprocess P in O(d2n lg n) time to build an O(dn)-
sized data structure that serves a sequence of queries for
which each query q costs O(d2 lg δ(p, q)), where p is the
result of the preceding query and δ(p, q) is the number
of input points in a suitably-sized box containing p and
q. The Lt-norm approximation ratio is O(d1+1/t), and
the bounding box size for δ depends on d. While our
description of the data structure does not include inser-
tions or deletions, they are straightforward to support as
long as spatially adaptive time bounds are not required.

Outline. Section 2 briefly discusses related work, in-
cluding results in 1D on which we rely as a black box
and Section 4 discusses the notion of “distance” we use
in this paper in the context of other notions of distance
that have been used by previous spatially adaptive data
structures. We describe and analyze the data structure
and the search algorithm in Sections 5 and 6 and we
conclude in Section 7.

2 Related Work

Finger Search in 1D. There exists a variety of 1D
nearest neighbor data structures that exploit spatial
locality in a query sequence. Here we merely highlight
two optimal results and we refer the reader to these
two papers for references to previous works. Let q be
the number of points between the previous and current
queries. For Pointer Machines, Brodal et al. [6] have
designed finger search trees with O(lg q) query time and
O(1) update time. With the added power of the RAM
model, Andersson and Thorup [1] have shown how to
achieve a query time of O(

√
lg q/ lg lg q). The running

times above are all worst-case.
In this paper, we will be making use of a 1D finger

search data structure as a black box. Any finger search
data structure can be used as long as it does not re-
structure during a search. (This requirement will be
explained in Section 5.) When updates are not required,
we can simply use a sorted array as our black box and
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perform finger search in the obvious manner. Only when
updates are required do we need to employ more sophis-
ticated data structures such as level-linked 2-3 trees by
Brown and Tarjan [7] or several other finger search data
structures that were designed later.

Finger Search in 2D. Though most of the work on
spatially adaptive data structures is restricted to 1D,
there has been some recent work on developing such
distance-sensitive data structures in 2D. In particular,
Demaine et al. [10] have shown how to preprocess a set
of points P to permit a sequence of membership queries
to points in P with a time bound of O(lg δPPS (p, q)),
where δPPS (p, q) represents the distance between the
previous query p and the current query q as measured
by counting the number of points in a triangle-shaped
region that contains both p and q. Subsequently, Iacono
and Langerman [13] have shown how to achieve a similar
distance-sensitive bound for point location in 2D.

Previous Work on ANN. The literature on the ANN
problem is rich and we refer the reader to [11, Chapter
11] for numerous references. However, in the next section
we will expand on the two previous works [14, 9] that
are most relevant to this paper.

3 ANN and Space Filling Curves

Space filling curves (SFCs) provide a natural mapping
from a high-dimensional space to an 1D curve and the
ordering of points on SFCs has been used extensively as
a meaningful order of points. In particular, the problem
of finding ANNs and related proximity problems can be
solved by SFC methods [14, 9]. Here we will describe a
well-known algorithm for computing ANNs using SFCs
from Liao et al. [14]. This algorithm is based on a similar
algorithm that uses quadtrees. The quadtree version is
due to Chan [8] and can be seen as a derandomization
of an algorithm by Bern [5].

Let us consider a particular SFC known as the Z-order
curve. Points are easily mapped onto this curve by a
simple bit shuffling operation. Let pi:j represent the jth
bit of the ith coordinate of point p ∈ Zd, assuming that
each coordinate can be represented in a w-bit word. The
shuffle operation σ : Zd → Z is defined as the binary
number σ(p) = p1:w · · · pd:w · · · p1:1 · · · pd:1, which we call
the “shuffled value of p”. For any pair of points p, q,
we can order p and q on the curve by comparing their
shuffled values. For a set of points P = {p1, . . . , pn},
their Z-order is exactly their order in an in-order traversal
of a quadtree constructed from the points in P . Figure 1
depicts this relationship and gives some intuition for the
name “Z-order”.

The algorithm for ANN is as follows. Observe that
the Z-order depends on the placement of the origin and
that for a particular Z-order, the nearest neighbor to a
query is not necessarily the predecessor or the successor.

Figure 1: The in-order traversal of the quadtree leaves
corresponds to the ordering of the points in Z-order.

Fortunately, one can show that there is a shift of the
origin such that either the predecessor or the successor in
the resulting Z-order is an ANN. In particular, consider a
set of s shifts v(j) = (j/s, . . . , j/s) for j = 0, 1, . . . , (s−1)
and let s be (d+ 1). Construct a set of search structures,
one for each of the (d + 1) shifts. We compare p to q
under the shift v(j) by comparing σ(p+v(j)) to σ(q+v(j))
and insert each input point into each of the structures.
For a query q, do all (d+ 1) searches for q and return
the closest of the results. This algorithm gives an O(d

3
2 )

approximation in L2 as shown in [8].

Chan’s Comparison Procedure. We remark that in
both the algorithm above as well as our algorithm in
Section 5, we merely need the ability to compare the shuf-
fled values. This can be done using a clever comparison
procedure by Chan [9] that, given two points, compares
their shuffled values using O(d) exclusive-or word opera-
tions. This technique allows us to avoid computing and
storing shuffled values at a cost of O(d) slowdown and
also mitigates the concern that a shuffled value may not
fit inside a word.

4 Combinatorial Distance Measures for Point Sets

The goal of a geometric data structure supporting the
dynamic finger property is to be distribution-sensitive
so that sequences of geometrically close queries can be
answered quickly. The ideal guarantee is that a query
for a point q following a query for a point p takes time
O(lg dist(p, q)) for some distance measure dist. For 1D
problems, the distance between two points is simply the
number of points between them. Unfortunately, such a
combinatorial distance measure has no ready analogue
in geometric spaces of dimension 2 or higher.

As the purpose of the finger p is to limit the search
space to points that are geometrically close to p and q,
a natural way to define a distance measure is to count
the number of points in a suitable restriction of the
search space. This intuition guided previous works in
geometric finger search to use the notion of a region
counting distance, in which dist(p, q) is defined as the
number of input points in some carefully defined region
containing both p and q [10, 13]. Formally, a region
counting distance is defined by a triple (x, y,R) where
x and y are points and R is a region whose membership
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can be decided in O(1) time. Given this triple, dist(p, q)
is the number of points in the image of R under the
affine transformation that takes x to p and y to q. The
two previous works [10, 13] only applied to 2D where
this transformation is unique.

Here we propose a new combinatorial distance measure
similar to a region counting distance. Let c be a constant
to be chosen later and let U be some axis-aligned box
containing p and q with side length c|p − q|∞. The
distance is defined as δ(p, q) = |P ∩U∗|, where U∗ is the
choice among all such U that maximizes the distance
measure. It should be clear that the points counted all
have the desired property that their distances from p and
q are bounded by a constant times the distance between
p and q and therefore we have a distance measure that
captures a notion of geometric locality in any dimension.

5 The Data Structure and Search Algorithm

Compared to the data structure in Section 3, our data
structure uses (2d+1) shifts versus (d+1), and therefore
consists of (2d + 1) 1D structures. Each of the 1D
structures stores pointers to the input points in its nodes
using the Z-ordering defined by the corresponding shift.
Note that we do not store the keys, which are the shuffled
values of the shifted points. Instead, we use Chan’s
comparison procedure on the points directly. For each
input point xi, we also maintain a circularly linked list
comprising the (2d+1) nodes that represent xi in the 1D
structures. The preprocessing time is O(d2n lg n) since
there are (2d+ 1) 1D structures to build, each requiring
O(n lg n) comparisons that use O(d) word operations
each. The size of the data structure is O(dn).

Given a query q, a search for an ANN is straightfor-
ward. Let p be the result of the previous query. We
perform (2d+ 1) finger searches from p in parallel, one
for each shift. Let x1, . . . , xd+1 be the results found
by the first (d+ 1) searches that complete. We return
the xi that is closest to q as an ANN and abandon the
other d searches. Finally, we update the 1D structures
to prepare for the next query by re-establishing their
finger pointers to point at xi using the circularly linked
list associated with xi. (The reason why we do not allow
restructuring during a search in the 1D structures is to
support the abandon and the re-establish steps.)

6 Algorithmic Guarantees

6.1 Centering Points in Quadtree Boxes

Chan [8] proved that (d+1) shifts of the quadtree suffice
to guarantee that for any point p and scale r, there is a
shift that puts p roughly in the center of the quadtree
square corresponding to that shift at scale r. This is the
key lemma to prove that some quadtree will return an
O(d

3
2 )-ANN.

For finger search to work, we need it to be true that
for two different points, p, p′ and two different scales r, r′,
there is a shift that puts p near the center of a square

at scale r and p′ near the center of a square at scale
r′. Two guarantees rather than one are needed so that
both the finger search will run quickly and the result
will be a good approximation. The usual (d+ 1) shifts
would suffice if we were willing to accept only one of
these guarantees, but we will show that (2d+ 1) shifts
suffice to get both.

To maintain consistency with the work we are ex-
tending, we assume the input points are scaled to finite
precision real numbers in [0, 1)d.

Say that p is α-central at scale r if for all i = 1, . . . , d,
we have (pi + α) mod r ≥ 2rα. The following is a slight
extension of [8, Lemma 3.3] and its proof follows the
same pattern as the original.

Lemma 1 Let s > d be an odd integer representing the
number of shifts v(j) = ( j

s , . . . ,
j
s ), j = 0, . . . , (s − 1).

For a point p ∈ [0, 1)d, and scale r = 2−`, there are at
most d shifts v(j) such that p+ v(j) is not 1

2s -central at
scale r.

Proof. We will prove that at most one shift is bad
for each dimension. Formally, we prove that for each
i ∈ {1, . . . , d}, there is at most one shift v(j) such that(

pi +
j

s
+

1
2s

)
mod r <

r

s
, (1)

or equivalently, by multiplying through by s/r,(
2`spi + 2`j + 2`−1

)
mod s < 1. (2)

Suppose on the contrary that we have distinct j, j′ ∈
{0, . . . , s − 1} for which (2) holds. Letting z = 2`spi +
2`−1, we have (z+2`j) mod s < 1 and also (z+2`j′) mod
s < 1. So, for integers q, q′ and remainders 0 ≤ x, x′ < 1,
the above inequalities imply z + 2`j = qs + x, and
z+2`j′ = q′s+x′. It follows that 2`(j− j′)− (q−q′)s =
x−x′. Since the LHS here is an integer and 0 ≤ x, x′ < 1,
it must be that in fact x = x′ and thus 2`j ≡ 2`j′

(mod s). We can divide both sides of this congruence by
2` because 2` and s are relatively prime (s is odd). The
result is j = j′, a contradiction. �

6.2 Query Time and Approximation Ratio

To analyze query time we must first choose the constant
for our distance measure. Say δ(p, q) = |{x ∈ P : |x −
p|∞ ≤ (8d+ 4)|p− q|∞}|.

Using Lemma 1 for a scale r, we know that of the
(2d+ 1) shifts, p is 1

4d+2 -central in at least (d+ 1) shifts.
In particular, we are interested in the smallest scale
r ≥ (4d + 2)|p − q|∞. At this scale, p has distance at
least |p − q|∞ from the boundary of any box Bi for
which it is 1

4d+2 -central. So q is also in each of these
(d+ 1) boxes Bi. The SFC touches each point in a box
B before leaving, so each finger search will take time
O(d lg |P ∩Bi|). As all points in P ∩Bi are counted in
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δ(p, q), we see that (d+ 1) different shifts are guaranteed
to finish in O(d2 lg δ(p, q)) time. Choosing the best of
these (d+ 1) answers can be done in O(d2) time. Thus,
the total running time is O(d2 lg δ(p, q)).

Second, we need to show that the returned point is
indeed a good ANN and this also follows from Lemma 1.
Let q∗ be the nearest neighbor of q. The lemma implies
that at the smallest scale r′ ≥ (4d+ 2)|q − q∗|∞, there
can be at most d shifts for which q is not 1

4d+2 -central.
Therefore one of the (d+1) shifts that finished searching
found q in a box for which it is central at scale r′. The
search returned a point x in that box, and thus |q−x|∞ <
(8d+4)|q−q∗|∞. So, x is an O(d)-ANN in the L∞ norm
and therefore an O(d1+1/t)-ANN in the Lt norm.

7 Concluding Remarks

In this paper, we showed how to achieve spatial adaptiv-
ity for the ANN problem in any constant dimension by
extending prior work based on SFCs. Here we describe
an enhancement and discuss some future research.

Using the Quadtree to Speed Up Search. Recall that
the Z-ordering of the input points corresponds to the in-
order traversal of the leaves in a quadtree. For any two
points p, q in a quadtree, there is a unique path along
the link structure. Let us call the length of this path the
quadtree distance. The quadtree distance approximates
the log of the Euclidean distance after normalization
by the empty space around p and q. One can imagine
building a quadtree that supports finger search in time
proportional to the quadtree distance by walking up and
down within the quadtree.

However, observe that even when using a compressed
quadtree, in which paths of degree two nodes of the tree
are collapsed, the quadtree distance may still be linear
in the number of input points. Furthermore, even with a
good shift, this distance could still be significantly worse
than the distance computed by the measure in Section 4.
On the other hand, it is also not hard to construct
examples in which the quadtree distance is o(lg δ(p, q)).
As an example, consider the effect of adding a dense set
of points between p and q while p and q each remains in
its own, relatively sparse region. This example not only
shows that there is no strict ordering of geometric and
combinatorial distance measures, but it also suggests
that one can exploit using both the structure of the
quadtree and our data structure to speed up searches.

Future Work. A good enhancement to make in the
future would be to improve the approximation ratio to
(1 + ε), though it is not clear how to do this without the
exponential blowup incurred by analogous enhancements
to other SFC-based data structures for ANN. A more
modest enhancement would be to shrink the distance
measure so that the distance between two successive
queries to p and q would be the number of points inside
a smaller box that more tightly bounds p and q. We can

achieve this to a degree by using a constant number of
shifts independently in each dimension at the expense of
an exponential factor in d to space usage, but perhaps
there other methods. We may also try to more thor-
oughly exploit the power of RAM. For example, if we use
the finger search structure by Andersson and Thorup [1]
as the 1D structure, then we get an improved running
time. However, we do not know how to avoid computing
the shuffled values explicitly when using this. Finally,
a general direction for future work would be to extend
other ANN techniques—or even algorithms for serving
exact nearest neighbor queries in high dimensions—to
allow spatial adaptivity, temporal adaptivity, or a com-
bination of the two.
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Smallest enclosing circle centered on a query line segment

Prosenjit Bose ∗, Stefan Langerman†, and Sasanka Roy ‡

Abstract

Given a set of n points P = {p1, p2, . . . , pn} in the plane,
we show how to preprocess P such that for any query
line segment L we can report in O(log n) time the small-
est enclosing circle whose center is constrained to lie on
L . The preprocessing time and space complexity are
O(n log n) and O(n) respectively. We then show how to
use this data structure in order to compute the smallest
enclosing circle of P whose center is restricted to lie in
one of several polygons having a total of m edges, in
O((m + n) log n) time, a significant improvement over
previous known algorithms.

1 Introduction

The problem of computing the smallest enclosing cir-
cle of a set P of n points in the plane was originally
posed in 1857 by Sylvester [11]. Many solutions have
appeared in the literature (see [9] or [8] for a brief his-
tory of the problem) culminating in the optimal linear
time algorithm by Megiddo [7].

In recent years, several constrained variants of this
problem have been studied, where restrictions are
placed on the location of the center of the smallest en-
closing disk. Already in his original paper and as a step
towards the general solution, Megiddo [7] studied the
situation where the center of the smallest enclosing cir-
cle is restricted to lie on a given straight line. Hurtado
et al. [4] generalized Megiddo’s technique to provide an
O(n + m) time algorithm for finding smallest enclosing
circle whose center is constrained to lie in the intersec-
tion of m linear inequalities.

Bose et al. [1] considered a generalized setting of the
problem where the center of the smallest enclosing circle
of P is constrained to lie inside a simple polygon of size
m. Their algorithm runs in O((n + m) log(n + m) + k)
time, where k is the number of intersections of the
boundary of the polygon with the farthest point Voronoi
diagram of P . In the worst case, k may be O(n2).
This result was later improved to O((n + m) log m) by
Bose and Wang [2]. In a further generalization of this
problem, where r (≥ 1) simple polygons with a total of
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m vertices are given, locating the center of the small-
est enclosing circle of P with its center inside one of
the given polygons was studied by Bose and Wang [2].
The time complexity of this version of the problem is
O((m + n) log n + (n

√
r + m) log m + m

√
r + r

3
2 log r)

and which has further improved to O(n log n+m log2 n)
by Roy et al. [10].

The query version of the smallest enclosing circle
(QSEC) where the center is constrained to lie on a
query line was originally posed by Roy et al. [10].
The preprocessing time and space complexity of their
algorithm is O(n log n) and O(n) respectively. The cen-
ter of the minimum enclosing circle can be reported in
O(log2 n) time. Very recently, Karmakar et al. [5] pro-
posed an optimal O(log n) query time algorithm for the
query version of the problem. However, the improved
query time comes at an increased cost in both prepro-
cessing time and space. The preprocessing time and
space complexity for their algorithm is O(n2).

In this paper we show how to achieve an optimal
query time of O(log n) for the query version of the prob-
lem with O(n log n) preprocessing time and O(n) space.
Using our result, we show how to find the smallest en-
closing circle where the center is restricted to lie in a set
of polygons with a total of m vertices, in O((m+n) log n)
time. This is a significant improvement over the previ-
ous best algorithm.

2 Preliminaries

Given a set P of n points in the plane, the only points
that can be on the boundary of any enclosing circle lie on
the convex hull of P (because a disk is convex and by the
definition of the convex hull). Thus, we will assume that
the points P = {p1, p2, . . . , pn} are in convex position.

Let V (P ) denote the furthest point Voronoi diagram
of P (see [8] for a survey on Voronoi diagrams and their
furthest point counter-part). The diagram V (P ) par-
titions the plane into n unbounded convex regions, de-
noted R(p1), R(p2), . . . , R(pn), such that for any point
p ∈ R(pj), d(p, pj) ≥ d(p, pk) for all k = 1, 2, . . . , n, and
k 6= j. Here, d(., .) denotes the Euclidean distance be-
tween a pair of points. This structure can be computed
in O(nlogn) time and O(n) space (see [9]). Furthest
point Voronoi diagrams play an important role when
studying enclosing disks, because of the following.
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Lemma 1 [6] The smallest (unconstrained) enclosing
circle of a set P of points in the plane always has at
least two points of P on its boundary.

Lemma 1 implies that the center c of the smallest
enclosing circle of P always lies on an edge e of V (P ).
It is this property that allows for the discretization of
the problem.

In this paper, for simplicity of exposition, we first as-
sume that the points are in general position (i.e. no four
points in P are co-circular). We then show how a minor
modification to our solution allows the removal of this
general position assumption. We begin by describing
how our data structure answers queries when the query
object is a line. Then, we show how the algorithm works
for query line segments.

a1

a2 a3 = c′

a4

pipj

L

Figure 1: ρ(ai) values are unimodal

It has been shown in [10] how to solve the query prob-
lem in O(log n) time with O(n log n) preprocessing time
and O(n) space when the solution has exactly one point
of P on its boundary. If the smallest enclosing circle
with center c′ constrained to lie on a line segment L has
exactly one point of P on its boundary, then c′ is either
the orthogonal projection of the furthest point to L onto
L, or c′ must lie on an endpoint of L. Thus, the solu-
tion can be found in O(log n) time by building a point
location structure on top of the furthest point Voronoi
diagram. The main difficulty is to solve the query prob-
lem when the smallest enclosing circle has more than
one point of P on its boundary. We present a solution
to this problem in the next section.

Lemma 2 [10] If the smallest enclosing circle with cen-
ter c′ constrained to lie on a segment L has more than
one point of P on its boundary, then c′ lies on an inter-
section point of L with an edge of V (P ).

Note that in a degenerate case, c′ may be a vertex of
V (P ) and in this case we can say that c′ coincides with
the end points of the edge of V (P ).

Let ρ(q) denote the radius of the smallest enclosing
circle of P with center at point q. Note that if q ∈ R(pi)
then pi is on the boundary of the smallest enclosing
circle centered at q. Our algorithms will heavily rely on
the following:

Lemma 3 The function ρ(q) is convex.

Proof. The value of ρ(q) is the maximum distance of q
to the points of P , thus ρ(q) is the upper envelope of a
set of cones. So it is convex. �

In particular this implies that the restriction of ρ(q)
to some line L is a convex function as well.

3 The Data Structure

We now have all the tools to describe our method. Re-
call our initial assumption that no four points in P are
co-circular. Given this assumption, we note that V (P )
is a binary tree, denoted T . Let |T | denote the number
of vertices of T . Each edge e of T separates two un-
bounded Voronoi cells. Note that from any point inside
an unbounded cell, any ray in an unbounded direction
will be entirely contained in the cell. We augment the
tree T by associating with each edge such a ray from
the midpoint of e for each of the two adjacent cells.

The removal of a Voronoi edge e = (a, b) would split T
into two subtrees which we denote by Ta and Tb where
Ta is the subtree that contains a and Tb the subtree
containing b. The edge e is called a centroid edge if Ta

and Tb each contain no more than (2/3)|T | vertices. For
any binary tree, a centroid edge is known to exist and
can be found in linear time [3].

A centroid decomposition of T is a binary tree whose
nodes are associated with edges of T , whose root is a
centroid edge e = (a, b) and whose two subtrees are
recursively defined as centroid decompositions of Ta and
Tb. It is known that a centroid decomposition of any
binary tree T with n vertices has depth O(log n) and
can be constructed in O(n) time [3].

The data structure will be composed of a centroid de-
composition of T (see Figure 2) augmented with the rays
as described above, and a point location data structure
for V (P ).

Lemma 4 The above preprocessing algorithm requires
O(n) time and space for a given V (P ).

Lemma 5 Using the above structure, given a query line
L and an edge e = (a, b) of T , we can determine in O(1)
time whether the smallest enclosing circle with center
constrained to lie on L has its center in e, Ta or Tb.

Proof. Assume the Voronoi edge e = (a, b) separates
the two Voronoi regions R(pi) and R(pj). Let `1 and
`2 be the two rays associated with e. Note that for any
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CCCG 2008, Montréal, Québec, August 13–15, 2008

v2 v3

v4
v5 v6 v7

v8 v9 v10
v11 v12 v13 v14 v15

v1

e1 e2

e3

e4 e5
e6

e7
e8 e9 e10 e11

e12 e13 e14

(a)

v2

v3

v4

v5
v6

v7v8v9

v10

v11

v12

v13
v14

v15
v1

e1

e2

e3

e4 e5

e6

e7

e8

e9

e10 e11

e12
e13

e14

(b)

Figure 2: (a) Binary tree T and (b) Centroid decomposition
of T

point q on `1 or `2, we know the cell that contains q,
and so which is the furthest point to q. Therefore we
can compute the value and the gradient of ρ(q) in O(1)
time.

The two rays `1 and `2 divide the plane into two re-
gions and the two subtrees Ta and Tb are each wholly
contained in one of these regions. Let A be the re-
gion containing Ta and B the region containing Tb. The
query line L may have three different types of intersec-
tions with `1 and `2, which form the basis of our case
analysis:

a
a

a

b

`1
`2

`1
`2

`1
`2

b

b

L

L

L

(c)

(a) (b)

x
x

x

Figure 3: Illustration of pruning

Case 1. L intersects both rays `1 and `2 (See Figure 3(a))

Case 2. L intersects only one ray, say `1 (See Figure 3(b))

Case 3. L intersects neither of the two rays (See Figure
3(c))

For each of the three cases, we show how to eliminate
one of the subtrees Ta or Tb from the search.

Case 1: Let y and z be the intersection of L with `1 and
`2, respectively (See Figure 3). By determining the

value and the gradient of ρ at y and at z, we can
determine if the answer lies on the segment [yz] or
if it lies on L outside [yz], since by Lemma 5, we
know that the function is convex. If the solution
lies on [yz], then the solution lies in T \Tb, otherwise
it lies on T \ Ta.

Case 2. Without loss of generality let L intersect `1 at y
(See Figure 3(b)). Again, by finding the value and
the gradient of ρ at y, and by Lemma 5, we can
determine if the solution lies in A or B. If the
solution lies in A then we know it lies in T \ Tb.
Otherwise, it lies in T \ Ta.

Case 3. If L does not intersect `1 and `2 (See Figure 3(c)),
then L lies completely inside A or B. We can dis-
card the sub-tree of the region that does not inter-
sect the line L. In the Figure 3(c) the solution lies
in T \ Ta.

�

Lemma 6 Using the above preprocessed data structure
the QSEC problem can be solved in O(log n) time.

Proof. In the worst case we may have traverse the
worst case depth of centroid decomposition tree which
is O(log n). Each step in this traversal costs O(1) time.
Hence the query time complexity result follows. �

4 QSEC for Query Line Segment

Here, the query object L = [f, g] is a line segment. We
first solve QSEC for the query line L that contains the
line segment L. Let α be the center of the QSEC for line
L. If α lies inside [f, g], then report α. Otherwise, by
Lemma 5, the center c′ of the desired constrained small-
est enclosing circle is one of the endpoints f or g, which
is closest to α. Let f be the closest point of α. Then
α = c′ and the radius of the desired smallest enclosing
circle is d(p, c′), where p ∈ P is the point whose corre-
sponding Voronoi cell contains c′. The Voronoi cell that
contains α can be found in O(log n) time. Thus QSEC
for the query line segment can be solved in O(log n)
time.

5 Solution when P is in general position

When P is in general position then T may not be a
binary tree. So, Lemma 4 is not true anymore. Now
we will describe a method to split the nodes of T whose
degree are greater than 3 by adding some virtual edges
and construct a virtual binary tree V T . We will show
that the number of edges thus inserted is no more than
O(n). Then it is easy to observe that solving QSEC
problem in V T is same as solving this problem for T
and QSEC of V T is QSEC of T . Let us consider a
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vertex v of T with degree greater than 3. For simplicity,
the degree of v is k > 3.

We will add k − 1 virtual edges as follows to make it
a binary tree of size O(k):

Let (e1, e2, . . . , ek) (see Figure 4(a)) be the Voronoi
edges adjacent to vertex v. We will insert k − 1 virtual
edges (ve1, ve2, . . . , vek−1) between the pair of edges
(e1, e2, . . . , ek) (see Figure 4(b)). The edge vej keep the
coordinates of the vertex v and the equation of Voronoi
edges ej and ej+1. Intuitively, the implication of vir-
tual edge vej is that we can always draw two rays such
that one half-plane, say HP1, contains the sub-tree that
has edges e1, e2, . . . , ej and has root at v. Other half-
plane HP2 contains the sub-tree that contains the edges
ej+1, ej+2, . . . , ek and has root at v.

v

e1

e2

ek−2

ek−1 ek

v

e1

e2 ek−1

ek

v

v

v

ve1

vek−1

(a) (b)

Figure 4: Splitting a vertex of degree greater than 3

6 Constrained Smallest Enclosing Circle Problem
with Center in a given Set of Polygons

Now for the problem where we have to find the center in-
side r simple polygons with a total of m edges. Compute
the farthest point Voronoi diagram V (P ) and identify
the center c′ of the unconstrained smallest enclosing cir-
cle. If it is inside one of these polygons, we report the
answer. Otherwise, the center will be on the boundary
of one of these polygons. For each edge (line segment),
we compute the center of the constrained smallest en-
closing circle with center on that edge, and report the
radius of the smallest one. Thus, the overall time com-
plexity becomes O((n + m) log n), where |P | = n. Thus
it improves the previous running time proposed Roy et
al. [10]. There may exist more than one such circle at-
taining the smallest radius [1]. We can report all these
circles with the same time complexity.
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Abstract

Given a set of polyhedral cones C1, · · · , Ck ⊂ Rd, and a
convex set D, does the union of these cones cover the set
D? In this paper we consider the computational com-
plexity of this problem for various cases such as whether
the cones are defined by extreme rays or facets, and
whether D is entire Rd or an affine subspace Rt. As a
consequence, we show that the problem of checking if
the union of a given set of convex polytopes is convex is
coNP-complete, thus answering a question of Bemporad
et al. [3].

1 Introduction

Let S ⊆ Rd be a set of points in Rd. The conic hull of
S, denoted by cone(S), is the set of all non-negative
linear combinations of points in S, i.e., cone(S) =
{
∑

p∈S µpp : µp ≥ 0 for all p ∈ S}. It is well-known
that any polyhedral cone cone(S) can be written equiv-
alently as the intersection of finitely many half-spaces,
i.e., cone(S) = {x ∈ Rd : Ax ≤ 0}, where A ∈ Rm×d.
The two representations are called the V- and the H-
representations, respectively.

In this note we are interested in the complexity of
covering problems of the following form:

ConeCover(C,D): Given a collection of cones C =

C1, . . . , Ck, and a convex set D, does
⋃k

i=1 Ci + D?

A polytope P is the convex hull of a finite set S of
points in Rd, and it can also be written in one of two
equivalent forms: P = conv(S) = {

∑

p∈S µpp : µp ≥
0 for all p ∈ S,

∑

p∈S µp = 1} (V-representation), or

P = {x ∈ Rd|Ax ≤ 1}, where 1 is the vector in which
each component is 1 (H-representation)1. A polyhedron
Q is the Minkowski sum of a polytope P and a cone C:

Q = P +C
def
= {x+y|x ∈ P, and y ∈ C}. Similarly, one

can also consider the problem PolytopeCover(P,D):
Given a collection of polytopes P = P1, . . . , Pk, and a
convex polytope D, does

⋃k

i=1 Pi 6+ D?

∗Max Planck Institut für Informatik, Saarbrücken, D-66123
Germany

†Universität des Saarlandes, Saarbrücken, D-66123 Germany
1possibly after moving first the polytope so that its relative

interior contains the origin

Our motivation for studying the above covering prob-
lems comes from two other related problems on poly-
topes. The first is the well-known vertex-enumeration

problem of finding the vertices of a polytope given its
facet defining inequalities, to be described in more de-
tails in the next section. The second problem is to check
whether the union of a given set of polytopes is convex.
Bemporad, Fukuda and Torrisi [3] gave polynomial-time
algorithms for checking if the union of k = 2 polyhedra
is convex, and if so finding this union, no matter whether
they are given in V orH representations. They also gave
necessary and sufficient conditions for the union of a fi-
nite number of convex polytopes in Rd to be convex, and
asked whether these conditions can be used to design a
polynomial time algorithm for checking if the union is
convex. Bárány and Fukuda give slightly stronger con-
ditions in [2]. It will follow from our results that, if both
d and k are part of the input, then these conditions can
not be checked in polynomial time unless P=NP.

Unless otherwise specified, all the cones considered
throughout the paper will be assumed to be pointed,
i.e., contain no lines, or equivalently, have a well defined
apex, namely the origin. As we shall see, the complexity
of the above problem depends on how the cones are
represented, and whether they are disjoint or not. We
consider 3 different factors, namely:

(f1) whether the cones in C are given in V- or H-
representations, or both representations (VH),

(f2) what the set D is: we consider D = Rd and D = Rt

for some arbitrary k ≤ d.

(f3) whether the cones in C are

– (f3)-(I): pairwise disjoint in the interior and
intersect only at faces;

– (f3)-(II): pairwise disjoint in the interior , but
can intersect anywhere on the boundaries; and

– (f3)-(III): not necessarily pairwise disjoint.

We denote by ConeCover[F1, F2, F3] the different
variants of the problem, where F1 ∈ {V,H}, F2 ∈
{Rt, Rd} and F3 ∈ {I, II, III} describes cases (f1)-(I),
(f2)-(II), and (f3)-(III). Our results are summarized in
Table 1.
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Rd Rt

I II III I II III
V VE-hard VE-hard NPC NPC NPC NPC

H P ? NPC P ? NPC

VH P P NPC P ? NPC

Table 1: Complexity of Cone Covering problem for var-
ious input representations.

2 Results

Converting the H-representation of a polytope to its
V-representation and vice versa, is a well studied prob-
lem. Despite years of research, it is neither known if an
output-sensitive algorithm exists for this problem, nor
is it known to be NP-hard. The following decision ver-
sion of this problem is known to be equivalent to the
enumeration problem [1].

VertEnum(P, V ): Given an H-polytope P ⊆ Rd and
a subset of its vertices V ⊆ V(P ), check whether
P = conv(V ).

Let P be the polytope defined as {x|Ax ≤ 1}, where
A ∈ Rm×d. Every rational polytope can be brought into
this form by moving the origin in its relative interior and
scaling the normals of the facet-defining hyperplanes ap-
propriately. For any vertex v of P , consider the cone of
all vectors c such that v is the solution of the following
linear program: max cT x s.t. Ax ≤ 1. For every vertex
v of P , this cone is uniquely defined. We call this cone
the maximizer cone of v. Such a maximizer cone can be
defined for every proper face of a polytope. The union
of all such cones is also known as the normal fan of a
polytope [8]. It is easy to see that if A′ is the maximal
subset of rows of A such that A′v = 1, then the maxi-
mizer cone of v is the conic hull of the rows of A′ treated
as vectors in Rd.

Theorem 1 Problem ConeCover[V, Rd, I] is

VertEnum-hard.

Proof. Given an H-polytope P and a subset of its ver-
tices V , the V-representation of the maximizer cone for
each vertex in V can be computed easily from the facets
of P . Clearly, the union of these cones covers Rd if
and only if P = conv(V ). To see this, note that if
P 6= conv(V ) then P has a vertex v not in V and any
vector in the relative interior of the maximizer cone of
v does not lie in any of the cones corresponding to the
given vertices. �

Theorem 2 Problem ConeCover[V, Rt, I] is NP-

complete.

Proof. ConeCover[V, Rt, I] is clearly in NP. Now,
given an H-polytope P ⊂ Rd, an affine subspace Rt

and a V-polytope Q ⊂ Rk, it is NP-complete to decide
whether Q is the projection of P onto the given subspace
[7]. We give a polynomial reduction from this problem
to ConeCover[V, Rt, I].

Every vertex v of Q is an image of some (possibly
more than one) vertices of P . If this is not the case
then Q clearly can not be the projection of P . Since the
vertices of Q are known this condition can be checked
in polynomial time. To see why this is true, consider a
vertex v of Q and choose any direction α in the affine
space of Q such that αT x is maximized at v for all points
in Q. If we use the same vector α as objective function
over the points in P then the maximum is achieved at
the face containing all vertices whose image under pro-
jection is v.

Now, Pick any such vertex and call it v′. We associate
the maximizer cone of v′ with v and refer to it as C(v).
The V-representation of C(v) for every vertex v of Q can
be easily computed from the matrix A of the normals
of facet defining hyperplanes of P .

It is not difficult to see that if Q is not the projection
of P onto the given subspace Rt, then one can find a
direction c parallel to the given subspace such that a
vertex that maximizes cT x in P is such that its pro-
jection is a vertex of the projection of P but not of Q.
Hence, the union of cones C(v) for each vertex v of Q

covers Rt if and only if Q is the projection of P . Also,
all these cones intersect each other only at some proper
face. �

For a given set of H-cones, if the union does not cover
Rd then there is a facet with normal a ∈ Rd, of at least
one of these cones such that picking a point p in the
interior of this facet, p + ǫa lies outside every cone, for
some ǫ > 0. Let us call this facet a witness facet, and p

a witness point of the fact that Rd is not covered.

Theorem 3 There is a polynomial time algorithm for

solving ConeCover[H, Rd, I].

Proof. If the cones are allowed to intersect only at com-
mon faces, then every point in the interior of a witness
facet is a witness point. Thus, one can determine in
polynomial time whether the union of the given cones
cover Rd or not, by picking a point in the interior of ev-
ery facet, with normal a, of every cone and using linear
programming to check if p + ǫa lies outside every cone
for sufficiently small ǫ > 0. �

Theorem 4 There is a polynomial time algorithm for

ConeCover[VH, Rd, II].

Proof. It is easy to see that if the cones are allowed to
intersect only on the boundary, and if the union of the
given cones does not cover Rd, then the extreme rays2 of

2formally, an extreme ray of a hole in R
d is defined by d −

1 linearly independent facets defining the boundary of the hole,
whose intersection lies inside the hole
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any (possibly non-convex) “hole” are also the extreme
rays of some cone. For any such extreme ray w, if one
considers a d-dimensional ball of radius ǫ centered at
some point on w, then for small enough ǫ some part of
this ball is not covered by any of the given cones.

Consider all the halfspaces {x| ax ≤ 0} corresponding
to the facets of the input cones that contain w, i.e.,

aw = 0. Let A be the matrix with each row the normal
vector of such a halfspace. The union of the given cones
does not cover Rd if and only if {x| Ax ≥ 0} defines a
full-dimensional region. This can be easily checked via
linear programming. �

Fact 1 For any t ∈ N, we can write Rt = ∪k+1
i=1 Ri,

where R1, . . . , Rk+1 are pointed cones, pairwise-disjoint

in the interior, whose H- and V-representations can be

found in in polynomial time.

Let C1 = {x ∈ Rm | A1x ≤ 0} = cone(S1) and
C2 = {x ∈ Rn | A2x ≤ 0} = cone(S2), where
A1 ∈ Rl×m, A2 ∈ Rr×n and S1 ⊆ Rm, S2 ⊆ Rn, be
two polyhedral cones. The direct-sum of C1 and C2, is
defined as:

C1 ⊕ C2 = {(x, y) ∈ R
m × R

n| A1x ≤ 0, A2y ≤ 0}

= cone

„„

v

0

«

: v ∈ S1

ff

[

„

0

v

«

: v ∈ S2

ff«

Theorem 5 Problem ConeCover[VH, Rd, III] is NP-

complete.

Proof. Clearly the problem is in NP since a direction
exists outside the union of the given cones if they do not
cover Rd. We can easily check if such a given direction
indeed lies outside each of the cones since the facets of
each cone are known. For proving its NP-hardness, we
use a reduction from the following problem:

Sat(V,F ,G): Given a finite set V and two hyper-
graphs F ,G ⊆ 2V , is there a set X ⊆ V such that:

X 6⊇ F for all F ∈ F and X 6⊆ G for all G ∈ G. (1)

When F = G, this problem is called the saturation prob-

lem in [4], where it is proved to be NP-complete. Given
F ,G ⊆ 2V , we construct two families of cones CF and
CG in RV , such that there is a point x ∈ RV \ (CF ∪ CG)
if and only if F and G are not saturated (i.e. there is a
set X ⊆ V satisfying (1)).

For X ⊆ V , denote respectively by RX
≥ and RX

≤ the

cones cone{ei : i ∈ X} = {x ∈ RX : x ≥ 0} and
cone{−ei : i ∈ X} = {x ∈ RX : x ≤ 0}, where ei

denotes the standard ith unit vector. Let X = V \X,

and
⋃|X|+1

i=1 Ri(X) = RX be the partition of RX given
by Fact 1. For each F ∈ F , we define |V |−|F |+1 cones
Ci

F = RF
≥⊕Ri(F ), for i ∈ [|F |+1], and for each G ∈ G,

we define |G|+1 cones Ci
G = RG

≤⊕Ri(G), for i ∈ [|G|+1].

Finally, we let CF = {Ci
F : F ∈ F , i ∈ [|F | + 1]},

CG = {Ci
G : G ∈ G, i ∈ [|G| + 1]}, and C = CF ∪ CG .

Then it is not difficult to see that all the cones in C are
pointed.

Suppose that X ⊆ V satisfies (1). Define x ∈ RV by

xi =

{

1, if i ∈ X,

−1, if i ∈ V \X.

Then x 6∈ ∪C∈CC. Indeed, if x ∈ Ci
F , for some F ∈ F

and i ∈ [|F | + 1], then xi ≥ 0 and hence xi = 1, for all
i ∈ F , implying that X ⊇ F . Similarly, if x ∈ Ci

G, for
some G ∈ G and i ∈ [|G| + 1], then xi ≤ 0 and hence
xi = −1, for all i ∈ G, implying that X ⊆ G.

Conversely, suppose that x ∈ RV \ C. Let X = {i ∈
V : xi ≥ 0}. Then we claim that X satisfies (1).
Indeed, if X ⊇ F for some F ∈ F , then xi ≥ 0 for all
i ∈ F , and hence there exists an i ∈ [|F |+ 1] such that
x ∈ Ci

F (since the cones R1(F ), . . . , R|F |+1(F ) cover

RF ). Similarly, if X ⊆ G for some G ∈ G, then xi < 0
for all i ∈ G, and hence there exists an i ∈ [|G|+1] such
that x ∈ Ci

G. In both cases we get a contradiction. �

Corollary 1 ConeCover[V, Rd, III],
ConeCover[H, Rd, III] and ConeCover[H, Rt, III]
are all NP-complete.

Proof. NP-completeness of ConeCover[V, Rd, III]
and ConeCover[H, Rd, III] follow immedi-
ately from Theorem 5. NP-completeness of
ConeCover[H, Rt, III] is an immediate consequence
of the NP-hardness of ConeCover[H, Rd, III] and the
fact that for an H-cone, the intersection of this cone
with any affine subspace can be computed easily. �

An interesting special case of problem Sat is when
the hypergraphs F and G are transversal to each other:

F 6⊆ G for all F ∈ F and G ∈ G, (2)

in which case, the problem is known as the hypergraph

transversal problem, denoted HyperTrans. Even
though the complexity of this problem is still open,
it is unlikely to be NP-hard since there exist algo-
rithms [5] that solve the problem in quasi-polynomial
time mo(log m), where m = |F| + |G| + |V |. Improving
this to a polynomial bound is a standing open ques-
tion. We observe from our reduction in Theorem 5 that
ConeCover includes HyperTrans as a special case.

Corollary 2 Consider a family of cones C that can be
partitioned into two families C1 and C2 such that

int(C1) ∩ int(C2) = ∅, for all C1 ∈ C1 and C2 ∈ C2. (3)

Then ConeCover(C, Rd) is HyperTrans-hard.
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Proof. We note in the construction used on the proof
of Theorem 5 that if the hypergraphs F and G satisfy
(2), then the families of cones CF and CG satisfy (3).
Indeed, if x ∈ Ci

F ∩ C
j
G, for some F ∈ F , i ∈ [|F | + 1],

G ∈ G, and j ∈ [|G|+ 1], then xk ≥ 0 for all k ∈ F and
xk ≤ 0 for all k ∈ G. Thus for any k ∈ F \ G (which
must exist by (2)), we have xk = 0, implying that x is
not an interior point in either Ci

F or C
j
G. �

Freund and Orlin [6] proved that, for an H-polytope
P and a V-polytope Q, checking if Q ⊇ P is NP-hard.
For all other representations of P and Q, checking P ⊆
Q can be done by solving a linear program. Here we
can show that the union version of this problem is hard,
no matter how the polytopes are represented.

Corollary 3 Given a set of H-polytopes

P = {P1, . . . , Pk} and an H-polytope Q, problem

PolytopeCover(P, Q) is NP-hard.

Proof. We give a reduction from problem
ConeCover[H, Rd, III] which is NP-hard by The-
orem 5. Let Sd be a ”shifted” simplex in Rd such
that 0 ∈ int(Sd). Given cones C1, . . . , Ck, we define
polytopes P1, . . . Pk, where Pi = Ci ∩ Sd. Given
the H-representations of Ci, we can compute the
H-representations of Pi in polynomial time using linear
programming (LP) for removing possible redundancies.

Now one can easily see that ∪k
i=1Ci = Rd iff ∪k

i=1Pi =
Sd. �

Corollary 4 Given a set of V-polytopes
P = {P1, . . . , Pk} and a V-polytope Q, problem

PolytopeCover(P, Q) is NP-hard.

Proof. We give a reduction from problem
ConeCover[V, Rd, III] which is NP-hard by The-
orem 5. Recall that in the proof of Theorem 5, for
each hyperedge F we construct a set of pointed cones
Ci

F = RF
≥ ⊕ Ri(F ), for i ∈ [|F | + 1]. Instead of

constructing multiple cones for each hyperedge let us

just consider one cone CF = RF
≥ ⊕ R|F | per hyperedge.

Similarly for the cones corresponding to the hypergraph

G. It is clear that CF = ∪
|F |+1
i=1 Ci

F . Note that each
such cone is not pointed but instead has a pointed part
RF
≥ corresponding to the vertices in the hyperedge F

and the affine space R|F | corresponding to the vertices
not in F . Also, RF

≥ is one orthant in R|F |.
For such cones checking whether the union covers

Rd or not is NP-hard as well (see proof of Theorem
5). Now consider the d-dimensional cross-polytope βd,
and let C1, . . . , Ck be the cones constructed above. The
cross polytope βd contains the origin in its interior, and
the vertices of Pi = βd ∩ Ci for each cone constructed
above can be easily computed. It is also easy to see that
∪k

i=1Ci = Rd iff ∪k
i=1Pi = βd. �

Theorem 6 Given a set of rational convex polytopes

P1, . . . , Pk ⊆ Qd, it is coNP-complete to check if their

union is convex, for both H and V-representations of the

input polytopes.

Proof. First we show that the problem is in coNP. Let
Q = ∪k

i=1Pi. Given two points x, y ∈ Q, we want to

verify that the line segment [x, y]
def
= {λx+(1−λ)y| λ ∈

[0, 1]} 6⊆ Q. This can be done by iterating the algorithm
for two polytopes in [3]: 1. let P be the polytope Pi such
that x ∈ Pi; 2. find the (last) point z ∈ P on the ray
{x + λ(y − x)| λ ≥ 0} such that λ is maximized; 3. if
there is another polytope Pj such that z ∈ Pj , then set
P ← Pj , x← z, and go to step 2 else output ”No” and
halt; 4. if x = y then output ”Yes” and halt. The reader
can verify that all the above steps can be implemented in
polynomial time, given an oracle for LP, and no matter
how the polytopes are represented.

Consider the H-representation first. Let P =
{P1, . . . , Pk} and Sd be the polytopes used in the con-
struction in Corollary 3. We now reduce problem
PolytopeCover(P, Sd) to checking if the union of a
given set of polytopes is convex. Using an algorithm for
the latter problem, we can check if P = ∪k

i=1Pi is con-
vex. If the answer is ”No”, we conclude that P 6= Sd.
Otherwise, since P ⊆ Sd, either P = Sd, or there is hy-
perplane separating a vertex of Sd from P . The latter
condition can be checked in polynomial time by solving
k linear programs for each vertex.

For the V-representation the same argument as above
works if we use βd instead of Sd. �
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Abstract

Most modern meshing algorithms produce asymptoti-
cally optimal size output. However, the size of the opti-
mal mesh may not be bounded by any function of n. In
this paper, we introduce well-paced point sets and prove
that these will produce linear size outputs when meshed
with any “size-optimal” meshing algorithm. This work
generalizes all previous work on the linear cost of bal-
ancing quadtrees. We also present an algorithm that
uses well-paced points to produce a linear size Delau-
nay mesh of a point set in Rd.

1 Introduction

The goal of meshing is to discretize a geometric domain.
Such discretizations are necessary for a variety of appli-
cations, notably including the finite element method.

We consider the case of meshing a point set P ⊂ Rd of
size n to produce a “quality” simplicial complex, where
quality is a technical condition we describe in Section 3.
The vertices of the output include the input set P and
some number of Steiner points added to achieve quality.

The most powerful theoretical tool for analyzing
meshing algorithms comes from Ruppert[9] in his work
on Delaunay refinement meshing in R2. Define lfsP (x),
the local feature size at a point x in the domain, to
be the distance to the second nearest point in P . The
following theorem is the standard generalization of Rup-
pert’s results to d-dimensions.

Theorem 1 The number of number of vertices in any
optimal-size quality mesh of a domain Ω ⊆ Rd is
Θ(
∫

x∈Ω
1

lfs(x)d dx).

Several known meshing algorithms ([9, 2, 10, 3]
to mention a few) witness to the upper bound in
Theorem 1, terminating with meshes that are O(1)-
competitive.

There is a marked absence of n in Theorem 1. In
fact, the size of the optimal mesh may not be bounded

∗This work was partially supported by the National Science
Foundation under grant number CCF-0635257.

†Department of Computer Science, Carnegie Mellon Univer-
sity, glmiller@cs.cmu.edu

‡Department of Computer Science, Carnegie Mellon Univer-
sity, tp517@cs.cmu.edu

§Department of Computer Science, Carnegie Mellon Univer-
sity, dsheehy@cs.cmu.edu

by any function of n. A guarantee of optimal size output
is not a guarantee that output will even be polynomial
size. This leads one to believe that perhaps optimality
should not be the last word in mesh size analysis.

In this paper, we attack this problem from two direc-
tions. First, we show a general condition on point sets
for which it is possible to show that the optimal mesh
will have linear size. Second, we present an algorithm
called LinearMesh, that produces a linear size mesh
of any point set by weakening the quality guarantees
in regions where the Ruppert lower bound requires a
superlinear number of Steiner points.

2 Previous Work

Previous work in simplicial meshing can be roughly di-
vided into two categories, structured and unstructured
as typified by quadtree methods and Delaunay refine-
ment respectively. Structured meshing algorithms are
characterized by three main properties: a fixed coordi-
nate system, strict control over where Steiner points are
added, and predefined mesh templates for filling boxes
or other common shapes. These three properties sim-
plify the implementation and analysis of the algorithms,
but at a cost. Unstructured meshing algorithms pro-
duce meshes that are independent of the coordinate sys-
tem, allow complete freedom for Steiner point insertion,
and have well-defined topology without predefined tem-
plates.

Much recent work has sought to bridge the gap be-
tween these two paradigms[4, 3, 5].

In this paper, we present two unstructured general-
izations of previous results from quadtree meshing. The
cost of balancing a quadtree with n boxes is O(n)[8]. We
present a general class of point sets, of which quadtree
vertices are a special case, and for which any qual-
ity meshing algorithm will only use a linear number of
Steiner points. The algorithm we present in this paper is
an unstructured generalization of a quadtree algorithm
of Bern et al [2]. The key to both results is a powerful
new analytic technique that allows us to analyze opti-
mal mesh size in terms of n without relying on the fixed
structure of the quadtree.

3 Well-paced and well-spaced points

We present some standard definitions and introduce two
new ones, namely θ-medial points and θ-well-paced ex-
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tensions of point sets.
Let Ω ⊆ Rd be some compact, convex set representing

the domain to be meshed. For a point p, denote the
distance of p to its nearest neighbor by rp. The gap ball
of a point p is the largest empty ball with center in Ω
and p on its surface. Let Rp denote the radius of the
gap ball of p. A point set P is ρ-well-spaced if for every
point p ∈ P , Rp

rp
≤ ρ.

Say that a point x is θ-medial with respect to a point
set P if NNP (x) ≥ θ lfsP (x) where NNP (x) denotes
the nearest neighbor of x in P . A 1-medial point is
equidistant from both nearest neighbors and is thus on
the medial axis of P . In general, medial points are near
the medial axis where near is defined in terms of θ.

An ordered point set p1, . . . , pn ⊂ Ω is a θ-well-paced
extension of a set Q if each pi is θ-medial with respect to
{p1 . . . , pi−1}∪Q. We call the ordered points pi θ-well-
paced. The term “well-paced” is motivated by the way
large changes in the local feature are paced out over the
sequence of insertions, because any one insertion can
only change lfs by a constant factor depending on θ.

In unstructured Delaunay meshing, the topology of
the mesh is determined by the location of the points so
it is customary to speak of a mesh and a set of points
interchangeably. Moreover, properties of point sets have
a natural correlation with properties of meshes. For this
paper, we will say that a quality mesh is simply the
triangulation of a well-spaced point set. Usually, mesh
quality is defined in terms of some properties of the
mesh triangles, but for all of the meshing algorithms we
are considering, quality and well-spaced are equivalent
notions.

4 Two examples of well-paced point set extensions

The two classic methods for adding points to a mesh
are splitting quadtree cells and adding circumcenters
of Delaunay triangles. Both methods fit neatly in the
theory of well-paced points. In fact, both methods pro-
duce 1-well-paced extensions of a constant sized mesh.
In Section 5, we show how to bound the cost of meshing
such point sets.

Consider the following very simple quadtree construc-
tion. Start with a single box. At each step, pick some
box and split it in half along each axis. When viewed
as a cell-complex, the vertices or 0-faces in this con-
struction form a 1-well-paced extension of the vertices
of the initial box. Each time we split a box, we split
the corresponding faces in increasing order by dimen-
sion. The edge bisectors are 1-medial because the two
nearest neighbors must be the endpoints. Likewise, the
points splitting higher dimensional faces have nearest
neighbors on each lower dimensional face and all are
equidistant, so every insertion is 1-medial.

Our second example of a well-paced point set is the

case of circumcenter meshes. Start with some Delaunay
triangulation of a point set Q ⊂ Rd. At each step,
pick a Delaunay triangle and add its circumcenter. The
d + 1 nearest neighbors of a circumcenter at the time
of insertion are all the same distance away (they are
on the circumsphere), so the circumcenter is 1-medial.
Thus, any sequence of circumcenter insertions forms a
1-well-paced extension of Q.

5 The cost of going from well-paced to well-spaced

Running a meshing algorithm on a point set P will add
Steiner points until the resulting set P ′ is well-spaced.
The cost of cleaning a point set P , denoted by Cost(P )
is defined as |P ′|, the size of the well-spaced output. In
this section, we prove that adding an n point well-paced
extension of Q will only increase the cost of cleaning by
O(n). In Section 4, we showed that inserting points in a
quadtree a special case of well-paced points. Balancing
a quadtree involves splitting cells to achieve well-spaced
vertices. Thus, the result of this section generalizes pre-
vious work on the linear cost of balancing quad trees [8].

In particular, if the cost of cleaning Q is O(1) (as is
the typical case when Q is a well-spaced bounding box,)
then the output mesh will have size O(n).

Theorem 2 If P is a θ-well-paced extension of Q, then
Cost(Q ∪ P ) = O(Cost(Q) + |P |).

Proof. The proof will be by induction on n = |P |.
Let lfs(i) be the local feature size function induced by
Q ∪ {p1, . . . , pi}. Let Ψi = c1

∫
x∈Ω

1
lfs(i)(x)d dx, where

c1 is the constant from the upper bound in Theo-
rem 1. In general, c1 will depend on the particu-
lar meshing algorithm used. Theorem 1 says that
Cost(Q ∪ {p1, . . . , pi}) ≤ Ψi and Ψ0 = O(Cost(Q)),
the base of our induction.

By induction, we assume Ψn−1 ≤ Cost(Q)+c2(n−1)
for some constant c2. It will suffice to show that Ψn −
Ψn−1 < c2. We can split the Ruppert sizing integral as
follows.

Ψn = c1

∫
x∈Ω

1

lfs(n)(x)d
dx (1)

≤ Ψn−1 + c1

∫
x∈U

1

lfs(n)(x)d
− 1

lfs(n−1)(x)d
dx (2)

where U ⊆ Ω is the set of all points for which the local
feature size was changed by the insertion of pn. Let
R = rpn . The following two inequalities hold for all
x ∈ U , the first is trivial and the second follows from
the definition of well-paced points.

lfs(n)(x) ≥ |pn − x|, and (3)

lfs(n−1)(x) ≤ |pn − x|+ R

θ
. (4)
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We use these inequalities to compute the integral above
using spherical coordinates. Since the integrand is pos-
itive everywhere, we can upper bound the integral by
integrating over all of Rd instead of just U :

Ψn−Ψn−1 ≤ c1

∫
x∈U

1
(|x|)d

− 1
(|x|+ R

θ )d
dV, (5)

≤ c1

∫ ∞

0

∫
Sr

(
1
rd
− 1

(r + R
θ )d

)
dAdr, (6)

≤ c1sd

∫ ∞

0

(
1
rd
− 1

(r + R
θ )d

)
rd−1dr, (7)

where Sr is the sphere of radius r and sd is the surface
area of the unit d-sphere. In the ball of radius R

2 around
pn the lfs is at least R

2 , so the contribution of this region
is to Ψn at most some constant c3.

Ψn−Ψn−1 ≤ c3+ c1sd

∫ ∞

R
2

(
1
rd
− 1

(r+ R
θ )d

)
rd−1dr (8)

By the change variable yR/θ = r and simplifying we
get:

Ψn−Ψn−1 ≤ c3+ c1sd

∫ ∞

θ
2

(
(y + 1)d − yd

y(y + 1)d

)
dy (9)

≤ c3+ c1sd

d−1∑
i=0

(
d

i

)∫ ∞

θ
2

yi

yd+1
dy (10)

≤ c3 + c1sdd
2

(
d

d/2

)
(2/θ)d (11)

The last inequality follows from the fact that each in-
tegral is bounded by d(2/θ)d. Choosing c2 larger than
this constant completes the proof. �

One interpretation of this theorem is that the amor-
tized increase in the cost of cleaning a point set is con-
stant if you add a θ-medial point.

Corollary 3 If Q is a well-spaced point set and P is a
well-paced extension then Cost(Q ∪ P ) = O(|Q|+ |P |).

Proof. Follows from the above theorem and the linear
cost of cleaning points that are already well-spaced. �

6 Algorithm LinearMesh

Psuedocode for the algorithm LinearMesh is shown
in Figure 1. The algorithm takes a set of points I as
input and outputs a superset of points L, such that the
Delaunay triangulation of L is linear in the size of I.

The first call is to a simple routine BoundingBox
that will calculate the diameter of I and place a bound-
ing box around I that is a constant factor β larger in

size. The bounding box is constructed with a constant
number of vertices Nβ . The bounding box controls the
area where new points will be added, and controls in-
teraction with recursive sub-calls.

The WHILE loop then selects a subset of I and adds
it to P . The selection of θ-medial points makes sure
that P is well-paced. The call to DelaunayRefine
can invoke any Delaunay refinement algorithm that will
accept as input points in a bounding box and produce
an optimal quality mesh S. Acceptable algorithms are
prevalent in the literature [2, 9, 10, 3].

The FOREACH loop now partitions the remaining
points from I − P into clusters Iv around the vertices
v ∈ S. Each cluster is then meshed recursively, and
these points Lv (along with S) are all added together to
form L. This is illustrated in Figure 2(d).

6.1 Linearity of LinearMesh

To show that the output of LinearMesh is only linear
in the input I, we must first show that it generates only
a linear number of vertices.

First, the well-paced pointset P has size Nβ + |I ∩P |.
Considering S, by Theorem 2, |S| ∈ O(|P |) ∈ O(|I∩P |).
Now consider the recursive partition. Inductively, the
cluster submeshes have size Lv ∈ O(Iv), so their union
has total size O(|I−P |). It follows that the final answer
has |L| ∈ O(|I|).

Recall that in three or more dimensions, the number
of edges in Del(L) may be Ω(|L|dd/2e), so we must argue
that |Del(L)| is only linear in |L|. We claim that the
degree of every vertex in Del(L) will be constant. We
make use of an established theorem about well-spaced
points [7, 3]:

Theorem 4 If S is a well-spaced point set, then every
vertex of Del(S) has constant degree, so that |Del(S)| ∈
O(|S|) with constants depending on dimension and qual-
ity of the well-spacing.

This theorem guarantees us that every vertex in
Del(S) has constant degree (see Figure 2(e)). Next, L
was constructed by substituting each Lv for its parent v.
Define G as a contraction of Del(L) obtained by collaps-
ing all the vertices of Lv into v (for every choice of v).
Intuitively, this contracted graph G should be almost
exactly the same as Del(S). (Contracting the graph in
Figure 2(f) happens to give exactly Figure 2(e)).

G is not precisely Del(S); its edge structure could be
slightly perturbed. The standard “gap-ratio” analysis
technique employed in [7, 10, 3] can show that G still
has constant degree.

Furthermore, it is straightforward to see the degree
of a vertex in Del(L) is at most Nβ times as large as its
degree in G. Thus Del(L) has constant degree, and so
|Del(L)| ∈ O(|L|).
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LinearMesh(I)
RETURN {} IF I == {}
Initialize P =BoundingBox(I)
WHILE ∃p ∈I−P such that p is θ-medial w.r.t. P

Add p to P
ENDWHILE
Initialize L = S =DelaunayRefine(P )
FOREACH v ∈ S

Iv = {p ∈ I such that NNS(p) = v}
Lv = LinearMesh(Iv)
Add Lv to L

ENDFOR
RETURN L

Figure 1: Pseudocode for LinearMesh.

6.2 Output Quality

Besides linearity, we can also guarantee that simplices
in the the output triangulation have bounded circum-
radius to longest edge ratio (R/E). In two dimensions,
this is equivalent to bounding the largest mesh angle
away from π, which guarantees the quality of the mesh
with regards to interpolation [1]. One might hope that
in higher dimensions, this condition would guarantee
no large dihedral angles, and indeed it does come close,
with only the unfortunate exception of allowing sliver
tetrahedra. We could imagine a variant involving tech-
niques from [6] that might achieve this guarantee while
adding only linearly many new vertices.

7 Conclusions

We have presented a powerful new tool for analyzing
quality simplicial meshing algorithms.

In addition our algorithm, LinearMesh, is a fully
unstructured method for producing linear size meshes
of point sets in Rd. Two potential extensions to this
work are to conform to more complex inputs and to use
common post processing procedures to improve quality
guarantees such as in [6].

It is our hope that this work will fuel new research into
optimal (or mostly optimal) quality meshing algorithms
with polynomial size output.
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Exact Pareto-Optimal Coordination of Two Translating Polygonal Robots on
a Cyclic Roadmap

Hamidreza Chitsaz∗ Steven M. LaValle∗ Jason M. O’Kane†

Abstract

We consider planning optimal collision-free motions of
two polygonal robots under translation. Each robot has
a reference point that must lie on a given graph, called
a roadmap, which is embedded in the plane. The initial
and the goal are given for each robot. Rather than im-
pose an a priori cost scalarization for choosing the best
combined motion, we consider finding motions whose
cost vectors are Pareto-optimal. Pareto-optimal coor-
dination strategies are the ones for which there exists
no strategy that would be better for both robots. Our
problem translates into shortest path problems in the
coordination space which is the Cartesian product of
the roadmap, as a cell complex, with itself. Our al-
gorithm computes an upper bound on the cost of each
motion in any Pareto-optimal coordination. Therefore,
only a finite number of homotopy classes of paths in
the coordination space need to be considered. Our al-
gorithm computes all Pareto-optimal coordinations in
time O(25αm1+5αn2 log(m2αn)), in which m is the num-
ber of edges in the roadmap, n is the number of coordi-
nation space obstacle vertices, and α = 1 + d(5`+ r)/be
where ` is total length of the roadmap and r is total
length of coordination space obstacle boundary and b is
the length of the shortest edge in the roadmap.

1 Introduction

Previous approaches to multiple-robot motion planning
are often categorized as centralized or decoupled. A
centralized approach typically constructs a path in a
composite configuration space, which is formed by the
Cartesian product of the configuration spaces of the in-
dividual robots. A decoupled approach typically gener-
ates paths for each robot independently, and then con-
siders the interactions between the robots. In [9, 15],
an independent roadmap is computed for each robot,
and coordination occurs on the Cartesian product of the
roadmap path domains. The suitability of one approach
over the other is usually determined by the tradeoff be-
tween computational complexity associated with a given
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†Department of Computer Science and Engineering, University
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Cost

(8.9,14.8)

(9.3,14.3)

(14.4,13.7)

(15.1,8.7)

Figure 1: The four Pareto-optimal solutions for a coor-
dination problem in which the robots want to exchange
place.

problem, and the amount of completeness that is lost.
In some applications, such as the coordination of Au-
tomated Guided Vehicles (AGV), the roadmap might
represent all allowable mobility for each robot.

In this paper, we study the problem of planning op-
timal motions of two polygonal robots traveling on a
given roadmap. The robots must be disjoint when they
travel, and as a result, there are tradeoffs between the
robots’ completion times. One approach is to consider
a scalar cost that combines the completion times. Mini-
mizing the average time robots take to reach their goals
[8, 11], and minimizing the time that the last robot
takes have been studied before [14]. The problem with
scalarization is that it eliminates many interesting co-
ordination strategies, possibly even neglecting optimal-
ity for some robots [9]. Rather than impose an a pri-
ori scalarization for choosing the best combined motion,
we consider finding motions whose cost vectors (cost of
robot 1, cost of robot 2) are Pareto-optimal. Pareto-
optimal coordination strategies are the ones for which
there exists no strategy that would be better for both
robots; see [13]. Optimal coordinations according to a
scalar cost impose a predetermined preference between
the robots, whereas having all Pareto-optimal coordi-
nations beforehand gives the freedom to determine the
preference at run-time. It was shown that the num-
ber of Pareto-optimal coordinations for n robots on any
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roadmap is finite [5]; therefore, it is plausible to seek
all of them. A sample problem and its Pareto-optimal
solutions are illustrated in Figure 1.

This work is inspired by previous approaches to multi-
ple robot coordination. O’Donnell and Lozano-Pérez in-
troduced coordination diagrams for planning motions of
two robot manipulators [12]. Alt and Godau used sim-
ilar coordination spaces in a different context to com-
pute the Fréchet distance between two polygonal curves
[1]. LaValle and Hutchinson gave the first approach
to Pareto-optimal coordination of multiple robots [9].
They presented an approximation algorithm based on
dynamic programming in the discretized coordination
space. Ghrist et al. gave a characterization of Pareto-
optimal coordinations of multiple robots using CAT(0)
geometry [6]. They provided an algorithm to shorten
a given coordination to a homotopic, possibly Pareto-
optimal one. In our previous work, we gave an ef-
ficient algorithm for finding Pareto-optimal coordina-
tion strategies for two polygonal robots on an acyclic
roadmap [4]. In this paper, we present an algorithm for
the general case. Due to space limitations, proofs of the
propositions, lemmas, and theorems are eliminated.

2 Problem Formulation

We give a brief formulation of the problem. For a more
detailed exposition, see [4]. Let the robots, R1 and R2,
be polygonal open sets embedded in the plane. They
translate along a roadmap G, which is an embedded
graph in the plane1. Edges of G are piecewise-linear
segments. The roadmap need not be connected, so ef-
fectively each robot can have its own roadmap. Each
edge of G is weighted by its Euclidean length. In this
way, G turns into a metric graph [3]. The robots have
a maximum speed and are capable of instantly switch-
ing to any speed between zero and the maximum. By
scaling the respective metric graphs, we assume without
loss of generality that both robots have unit maximum
speed. Under this assumption, the distance function
d(x, y) gives the minimum amount of time that it takes
Ri to go from x to y on G.

We are given an initial and a goal configuration
qiniti , qgoali ∈ G for each robot Ri. The obstacle region,
denoted by O ⊂ G × G, is the set of configurations at
which R1 and R2 collide. Since the robots are polygo-
nal and roadmap paths are piecewise-linear, the obsta-
cle region is a collection of polygonal, open connected
components. A coordination is a continuous path in the
coordination space G × G, from qinit = (qinit1 , qinit2 ) to
qgoal = (qgoal1 , qgoal2 ), that avoids O.

1If we assume that G is locally embedded in the plane, in which
case its edges may intersect, then our algorithm correctly works
and our results still hold. For the sake of clarity, we preferred to
assume G is embedded.

The vector-valued cost J = (J1, J2) separately mea-
sures the time that each robot takes to reach its
goal and stop. Define d∞ : ((x1, x2), (y1, y2)) 7→
max(d(x1, y1), d(x2, y2)), in which d is the metric in
G. Let L∞ be the functional that gives the length of
each continuous path in G × G according to d∞. For
each coordination γ = (γ1, γ2) : [0, 1] → G × G, let
ti = min{t ∈ [0, 1] : γi([t, 1]) = qgoali }. In that case,
Ji(γ) = L∞(γ|[0,ti]) and J (γ) = (J1(γ), J2(γ)). Let
C be the set of all coordinations. The cost J : C →
[0,∞)2 induces a partial order on the set of all coordi-
nations C. Each minimal element in this partial order
is called a Pareto-optimal coordination. The problem
is to find all Pareto-optimal coordinations for the two
robots.

3 Canonical Pareto-optimal Coordinations

Different paths that have the same end points can
have equal L∞ lengths in the coordination space.
Consequently, there are different coordinations with
equal cost. We fix a canonical form for equivalent
Pareto-optimal coordinations based on Euclidean short-
est paths.

Proposition 1 For every Pareto-optimal coordination,
there is an equivalent coordination that is composed of a
finite sequence of Euclidean shortest segments between
the vertices of the obstacle region, qinit, qgoal, and in
some cases (x, qgoal2 ) or (qgoal1 , x).

The points (qgoal1 , x) and (x, qgoal2 ) that need to be con-
sidered are characterized in [4]. A point (qgoal1 , x) or
(x, qgoal2 ) needs to be considered if there is a collision-
free Euclidean shortest segment, with equal progression
for R1 and R2, from an obstacle vertex or qinit to the
point (qgoal1 , x) or (x, qgoal2 ).

4 Algorithm Presentation

To find canonical Pareto-optimal coordinations, our al-
gorithm computes Euclidean shortest segments between
obstacle vertices, initial and goal configurations, and
some points (qgoal1 , x) and (x, qgoal2 ) in the coordina-
tion space. Fixing the end points in the coordination
space, there is only one shortest path in every homotopy
class, which holds because the space is non-positively
curved [5]. The roadmap can be cyclic, and conse-
quently the universal cover of the coordination space can
be unbounded. An incremental exploration of the un-
bounded universal cover may never stop, because there
are multiple Pareto-optimal coordinations whose max-
imum length is unknown beforehand. Our algorithm
constructs a bounded portion of the universal cover in
which the shortest path algorithm is applied. Using
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e0 × e1

Σ

Figure 2: A coordination cell e0 × e1, and its skeleton
Σ.

shortest path algorithms in the plane such as continu-
ous Dijkstra [7, 10] or visibility graph methods in the
universal cover of the coordination space, one can com-
pute the shortest paths. Using a cost upper bound com-
puted in advance, our algorithm constructs the relevant
part of the universal cover. The rest of the algorithm
is essentially identical to the acyclic case applied to the
universal cover [4].

4.1 Coordination Cost Upper Bound

In a scalar minimization problem, the cost of any feasi-
ble solution is an upper bound for the cost of an optimal
solution. The key idea here is the same. The following
lemma derives an upper bound on the cost of every mo-
tion in any Pareto-optimal coordination.

Lemma 2 Let ∆1,∆2 ⊆ G be such that {qgoal1 }×∆2 =
{qgoal1 } × G − O, and ∆1 × {qgoal2 } = G × {qgoal2 } − O.
Let δi be the diameter of ∆i as a metric graph. Let λ
be the Euclidean length of an arbitrary coordination γ.
Let τ be a Pareto-optimal coordination. In that case,
J1(τ), J2(τ) ≤ λ+ δ, in which δ = max(δ1, δ2).

To compute λ, which is the Euclidean length of an
arbitrary coordination γ, we use the dimension reduc-
tion method of Aronov et al. [2]. Denote the boundary
of obstacle region by ∂O. Define Υ1 = {qinit1 } × G −
O,Υ2 = G × {qinit2 } − O,Υ3 = {qgoal1 } × G − O,Υ4 =
G × {qgoal2 } − O, and Σ = ∂O ∪ (

⋃4
j=1 Υj). We call Σ

the skeleton of G × G − O. See Figure 2 for a simple
example. Note that the skeleton is a one-dimensional
object. It is composed of five pieces: R1 at its initial,
R2 at its initial, R1 at its goal, R2 at its goal, and R1

touching R2. The following lemma follows from Lemma
1 in [2].

Lemma 3 (Aronov et al. [2]) There is a collision-
free path from qinit to qgoal in the coordination space
if and only if there is a path from qinit to qgoal in Σ,
the skeleton of G × G −O.

Our algorithm constructs Σ by gluing ∂O and Υj

along their intersection points. We discussed how to

compute the obstacle region in [4]. To compute Υj ,
first we compute M = R1 ª R2, the Minkowski dif-
ference. By intersecting polygon M positioned respec-
tively at qinit1 and qgoal1 with G, we compute Γ2 =
G − ({qinit1 } ⊕ M) and ∆2 = G − ({qgoal1 } ⊕ M). By
intersecting −M positioned respectively at qinit2 and
qgoal2 with G, we compute Γ1 = G − ({qinit2 } ªM) and
∆1 = G − ({qgoal2 } ªM). It is enough to observe that
Υ1 = {qinit1 }×Γ2, Υ2 = Γ1×{qinit2 }, Υ3 = {qgoal1 }×∆2,
and Υ4 = ∆1 × {qgoal2 }. Dijkstra’s algorithm yields γ
and the minimum distance of qgoal from qinit in Σ which
is taken as λ. Finally, the diameter, or an overestimate
of the diameter, of ∆i yields δi. Recall that the upper
bound is λ+ max(δ1, δ2).

4.2 Universal Cover of G × G

Given the upper bound computed in Section 4.1, we
only need to consider a finite portion of the universal
cover. Here we describe an algorithm to construct it.
Let X be the universal cover of G as a cell complex. In
that case, X ×X is the universal cover of G × G, and it
is enough to build the relevant part of X to construct
the relevant part of X × X .

Since X is composed of disjoint copies of a fundamen-
tal domain glued along identified vertices, we describe
how to build a fundamental domain, denoted by X0. Let
T be any spanning tree of G (a collection of trees if G is
not connected). Let ei = (ui, vi), i = 1, . . . , k be those
edges of G that are not in T . Obtain X0, the funda-
mental domain of X , by adding k new vertices u∗i and
k edges (vi, u∗i ) to T . Note that the length of (vi, u∗i )
is the same as that of (ui, vi). Cycles of G are opened
into paths in X0. Vertices u∗i must be identified with ui
in neighboring copies of the fundamental domain. We
call ui and u∗i gluing spots of X0, because X is obtained
by iteratively gluing disjoint copies of the fundamental
domain to X0 such that ui ∈ X0 is identified with u∗i in
one copy and u∗i ∈ X0 is identified with ui in another
copy. If you want to see an illustration, see the long
version of the paper.

Our algorithm builds X0 first, and initializes Y = X0.
It inserts ui and u∗i onto a list. For every vertex in
the list, the algorithm generates a copy of X0 and glues
it to Y along the relevant vertex. It then inserts the
gluing spots of the newly generated copy in the list. It
iterates over these steps until Y covers the relevant part
of X . For that purpose, the distance between the vertex
and the initial copy of X0 is computed at each iteration.
If that distance is more than the upper bound, then
the vertex is neglected and no copies of X0 is glued.
Eventually, the algorithm stops when there are no more
vertices in the list.
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4.3 Applying the Acyclic Algorithm

We showed how to compute Y, the relevant portion
of the universal cover of G, in Section 4.2. Note that
Y ⊂ X is contractible. Therefore, it is acyclic and we
may now apply our acyclic Pareto-optimal coordination
algorithm to it [4]. The acyclic algorithm computes the
visibility graph in Y×Y among obstacle vertices and the
initial and goal configurations, augments it with some
extra edges, and finds the shortest paths. Obstacles are
computed once in G × G, and they are copied multiple
times to obtain obstacles in Y × Y. There are several
copies of qgoal in Y×Y all of which need to be considered
in the visibility graph. Any collision-free path from qinit

to any qgoal copy is a coordination. Consequently, there
are several copies of visibility graph points (x, qgoal2 ) and
(qgoal1 , x) that need to be considered.

4.4 Complexity Analysis

Let m denote the number of edges in G and let n denote
total number of obstacle vertices in G × G. Let ` be
the total length of G and r the total length of obstacle
boundary. Let b denote the length of the shortest edge
in G. Define α = 1 + d(5`+ r)/be.

Theorem 4 The time complexity of our algorithm is
O(25αm1+5αn2 log(m2αn)).

5 Conclusion

We presented an algorithm to compute all Pareto-
optimal coordinations of two polygonal robots on a net-
work of piecewise-linear paths in the plane. The key
insight was an upper bound on the cost of each motion
in a Pareto-optimal coordination. Our algorithm ap-
plies the previous acyclic algorithm to a finite portion
of the universal cover of the coordination space [4]. This
method can be applied to find all Pareto-optimal coordi-
nations, provided the configuration space of each robot
is G, all paths in G × G are allowed, and the obstacle
regions in G × G are polygonal.
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Open Problems from CCCG 2007

Erik D. Demaine∗ Joseph O’Rourke†

The following is a list of the problems presented on
August 20, 2007 at the open-problem session of the 19th
Canadian Conference on Computational Geometry held
in Ottawa, Ontario, Canada.

Rolling a Sphere Upside-Down
Joseph O’Rourke
Smith College
orourke@cs.smith.edu

Imagine rolling a unit sphere on a plane without
slipping or twisting, so that the point of contact
follows a closed curve C. The south pole touches
the plane at the start. What is the shortest length
L = |C| that results in the north pole touching after
one complete circuit of C? Figure 1 shows a curve
achieving L = 3π. Also, C cannot be shorter than
the geodesic distance between the poles: L ≥ π.
Another C that achieves L = 3π is an equilateral
triangle of side length π. It is established in [Joh07]
that the poles cannot be interchanged by any C that
is a circle.

π/2

π

π/2

π

Figure 1: Rolling a sphere to interchange the north and
south pole. Here |C| = 3π.

∗MIT Computer Science and Artificial Intelligence Laboratory,
32 Vassar Street, Cambridge, MA 02139, USA, edemaine@mit.edu

†Department of Computer Science, Smith College, Northamp-
ton, MA 01063, USA. orourke@cs.smith.edu

Update. At the conference, Jack Snoeyink
found a path with length approximately 2.72 π.
Vishal Verma, a graduate student at UNC Chapel
Hill, joined him [VS07] to improve this to < 2.44 π
for a teardrop-shaped path depicted in Figure 2.

Figure 2: Path of plane/sphere contact in plane (left)
and on sphere (right). Dashed curve at right is the path
of the south pole as the sphere rolls.

Hammersley [Ham83] had posed a more general
form of this problem in the literature on optimal
control: for a unit sphere lying on the plane at
(x0, y0) and having initial orientation C0, deter-
mine the shortest path for it to roll without twist-
ing that brings it to point (x1, y1) with orienta-
tion C1. Although the solution to Hammersley’s
problem does not in general have a closed form,
Arthurs and Walsh [AW86] have given an expres-
sion as a boundary-value problem with ten coupled
partial differential equations that they use to derive
information on the curvature of optimal paths. For
the special case of a closed path above, their result
implies that the curvature is proportional to the
distance along the axis of symmetry, which estab-
lishes that the curve depicted in Figure 2 is optimal
if self-intersections are ruled out.
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Spanning Trees of the Graph of a Polyhedron
Alex Benton
Cambridge University
pb355@damtp.cam.ac.uk

What is the best possible bound on the number
of spanning trees of the 1-skeleton of a polyhedron,
i.e., a 3-connected planar graph?

Update. An upper bound on the number
of spanning trees of a polyhedron graph is de-
rived in [DO07, p. 431], based on a result of
McKay [McK83]: the number is O((16/3)n/n),
which is 2O(n).
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Minimum Length Barrier to X-rays in a Square
Jonathan Lenchner
IBM T.J. Watson Research Center
lenchner@us.ibm.com

Given a unit square, construct a barrier of min-
imum length that intersects every line passing
through a portion of the square. The barrier should
consist of one or more piecewise-smooth curves.
The barrier need not be connected and portions
of the barrier may be located inside, outside, or on
the boundary of the square.

This problem appeared in the July 2007 edition
of IBM’s online puzzle column Ponder This1. Ac-
cording to the column, the problem has also ap-
peared in [Jon64] and in an internal publication of
the Lawrence Livermore National Laboratory.

1See http://domino.research.ibm.com/Comm/wwwr ponder.
nsf/challenges/July2007.html.

The obvious barrier is the entire perimeter of the
square, with cost 4. However, we can also use just
three sides of the square, at cost 3. Even better,
we can use the two diagonals, at cost 2

√
2 ' 2.828.

Better still is to use two adjacent edges of the
square and half of the opposite diagonal, at cost
2 +

√
2/2 ' 2.707, as shown in Figure 3.

Figure 3: A barrier of length 2 +
√

2/2 ' 2.707.

As a final observation, we can do better than us-
ing the two adjacent edges in the previous barrier,
by instead using a three-segment Steiner tree as in
Figure 4, at cost

√
2 +

√
6/2 ' 2.639. This barrier

is conjectured, but not known, to be optimal.

Figure 4: Place the bottom left corner of the square at
(0, 0). Then a barrier consisting of the diagonal segment
[(1/2, 1/2), (1, 1)] together with three segments formed by
joining the corners (0, 1), (0, 0), (1, 0) to a point at ( 1

2 −√
3

6 , 1
2 −

√
3

6 ) yields a barrier of length
√

2 +
√

6
2 ' 2.639.

At the conference, Otfried Cheong suggested that
a lower bound of 2 could be derived from the
Cauchy-Crofton formula, and this was later veri-
fied to be the case.

A clever and even more elementary proof that
2 is a lower bound was found by Ozgur Ozkan, a
student of John Iacono’s at Polytechnic University.
Ozgur’s argument runs as follows:

By a limiting argument, we may assume that the
(approximately) optimal solution is piecewise lin-
ear. Thus let S = {x1, x2, . . .} be the set of line
segments making up a barrier. Let the two diag-
onals of the square be denoted by d1 and d2. In
order to block just the rays which are perpendic-
ular to each of these two diagonals, the projection
of S onto d1 and d2 must cover d1 and d2. Thus, if
θi is the angle xi makes with d1, then |xi| cos θi is
the length of xi’s projection onto d1, and |xi| sin θi
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is the length of xi’s projection onto d2. Therefore

2
√

2 ≤
∑
xi∈S

|xi|(cos θi + sin θi)

≤
∑
xi∈S

|xi|
√

2, so

2 ≤
∑
xi∈S

|xi|.
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Doubly Orthogonal Point Set?
Therese Biedl
University of Waterloo
biedl@softbase.uwaterloo.ca

Is there a point set in 2D that is the vertex set of
an orthogonal polygon such that a rotation of the
point set by a nonmultiple of 90◦ is also the vertex
set of an orthogonal polygon?

Precisely, an orthogonal polygon is a (simple)
polygon whose edges are all either horizontal or
vertical. A vertex is a point on the polygon where
two edges of different slopes meet. (Put differently,
we do not allow “extra” vertices along the edges.)
The open problem is motivated by the question of
whether it is possible to reconstruct an orthogonal
polygon when given only a set of points that is sup-
posed to be its vertex set. (Think of the popular
children’s game connect-the-dots, except that the
numbers on the dots are illegible.)

This problem has been well-studied.
O’Rourke [O’R88] showed that a simple scan-
ning algorithm can recover the orthogonal polygon
in O(n log n) time. Rappaport [Rap86] showed
that, if extra vertices are allowed, then the problem
becomes NP-hard.

We recently started studying the problem where
the given point set is allowed to be rotated before
reconstructing the orthogonal point set ([Gen07];
see also [BG07]). Clearly only O(n) rotations could
possibly yield an orthogonal polygon, because at
least four edges of the polygon have to be on an
edge of the convex hull. Therefore, an O(n2 log n)
algorithm for this problem is trivial. We managed
to improve the time complexity to O(n log n) for
orthogonally convex polygons. The crucial insight
was that, for orthogonally convex polygons, there
can be only one rotation that could possibly work;
and the proof of this insight yielded an algorithm
to find this rotation efficiently.

This raises the natural question of what happens
with orthogonal polygons that are not orthogonally
convex. Our proof very clearly fails for such poly-
gons, hence the open question: is there only one ro-
tation that works? Or could there be two different
rotations for which the set of points is the vertex
set of an orthogonal polygon? The only negative
example that we could find consists of the points
of a regular octagon, which can be interpreted as
the vertex sets of two rectangles in two different
rotations. But this is neither a single polygon nor
simple.

We would also be interested in whether one could
find the rotation efficiently, if there is only one.

Update: Maarten Löffler and Elena Mum-
ford [LM07] resolved this question in the nega-
tive. In fact, they consider a more general prob-
lem: given a set of points in Rd, is it the vertex
set of some connected rectilinear graph (not nec-
essarily a polygon)? They prove that any point
set in Rd has at most one orientation where it is
a vertex set of a connected rectilinear graph. For
contrast, Figure 5 shows an example of two recti-
linear graphs on the same point set, but note that
G′ is not connected (similar to the regular-octagon
example above). For the special case where the
points are in the plane and have rational coordi-
nates, Fekete and Woeginger [FW97, Theorem 4.7]
already proved that at most one orientation is pos-
sible.

G G′

Figure 5: Two rectilinear graphs in the plane with the
same vertex set, but different slopes. Note that G′ is not
connected.

The details of the argument in the planar case
are mostly algebraic, but the main idea is to deter-
mine the “greatest common divisor” in some sense
between the coordinates of the vertices of an axis-
aligned connected rectilinear graph, and argue that,
if there is a connected rectilinear graph in another
orientation, we can use that to travel to a point
that is not a multiple of this divisor away from the
others, which leads to a contradiction. The result
can be extended to arbitrary dimensions by simply
projecting it down to a suitable plane.

To find the right orientation of the graph (in the
planar case), we can improve the O(n2 log n) result
to O(n2) by taking the dual of the problem. A rela-
tively simple algorithm can sweep the arrangement
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of lines and identify potential good orientations, of
which there are at most O(n). We maintain the
sorted order of the other lines, which allows us to
test an orientation in linear time.

If the goal is to find a orientation that allows a
planar connected rectilinear graph (a more general
case than simple polygons), then the problem be-
comes NP-hard. Because we know that there is at
most one such orientation, we can use the algorithm
described above to find it. Then we can compute
the maximal rectilinear graph with this slope. How-
ever, now we need to decide whether this graph has
a planar connected subgraph. Jansen and Woegin-
ger [JW93] proved this problem NP-complete.

The main remaining open question is whether the
(unique) rectilinear orientation can be computed in
less than quadratic time. Also, algorithmic exten-
sions to higher dimensions are open.
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Pushing Cubes Around
Joseph O’Rourke
Smith College
orourke@cs.smith.edu

Dumitrescu and Pach [DP04] have showed that any
configuration of unit squares on the integer lat-
tice can be reconfigured to any other such shape
via two types of moves, while remaining connected
throughout. “Connected” here means 4-connected,
i.e., edge-edge connected. I ask the same question
for a configuration of unit cubes, where connectiv-
ity must be via face-face connections. Such ob-
jects, formed by face-to-face gluing of unit cubes,
are called polycubes. The two moves permitted
are exactly the Dumitrescu-Pach moves, shown in
Figure 6, except now available parallel to any of
the three coordinate planes. Perhaps applying
the Dumitrescu-Pach algorithm to each xy-layer of
cubes will help, but even if this maintains connec-
tivity, in general cubes must be transfered between
layers.

(a) (b)

Figure 6: Cube moves based on Dumitrescu-Pach square
moves.

Update. Zachary Abel and Scott D. Komin-
ers [AK08] have recently announced a solution to
this problem in the affirmative and have given a
generalization to configurations of hypercubes of
any dimension. Their method uses iterative relo-
cation of modules from a configuration V to form
a canonical chain at a distinguished module of V .
They efficiently locate a module on the boundary
of V which can either be relocated to the canonical
chain immediately or can be relocated after recur-
sive modification of the interior V .

Specifically, their methods prove the existence
of a module x on V ’s outer boundary such that
if V \ {x} is not connected then V \ {x} consists
of exactly two components, one of which is disjoint
from the outer boundary of V . Furthermore, this
module x may be located quickly. Indeed, the so-
lution yields an algorithm which requires at most
O(n2) calculation time and at most O(n2) moves;
this is asymptotically optimal.
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Surface Flips
Joseph O’Rourke
Smith College
orourke@cs.smith.edu

Although this problem can be stated with more
generality, I choose to pose it only for a polycube
object P as defined in the previous problem. For
any portion S of the surface P that constitutes a
topological disk, and whose boundary is a cycle C
of edges of P all lying in one plane Π, we define
a surface flip as reflecting S through Π, as long
as this operation maintains weak simplicity of the
resulting surface P ′. See Figure 7.

(b)(a)

Figure 7: Surface flip about red 4-cycle.

Note that, whereas the previous problem pre-
served the volume, this move preserves the surface
area. Also, the combinatorial structure of the sur-
face does not change under these surface flips.

Characterize the class of polycube shapes that
are connected by surface flips. In particular, are
all shapes with the same combinatorial type con-
nected?

Polycube Pops
Joseph O’Rourke
Smith College
orourke@cs.smith.edu

Again this problem is restricted to polycubes, and
the moves preserve the surface area, but now they

will alter the combinatorial structure. My goal is
to define a set of moves that will be able to convex-
ify a polycube, or convert to some other canonical
form, in a manner that will serve in some sense as
a generalization of the vertex pop moves for unit
orthogonal polygons (i.e., polyominoes) explored
in [ABB+07].

There are five moves, two primary moves, and
three moves concerned with collocated faces, which
we will call “fences” (the analog of “pins” in 2D).
They are named as follows:

1. Corner pop.
2. U-pop.
3. Fence walk.
4. Fence pop.
5. Fence corner pop.

The two primary moves are illustrated in Fig-
ure 8. The first move, a corner pop, is the one
most closely inspired by a vertex pop: three faces
incident to the corner of a cube are replaced by the
three other faces of that cube. The second move, a
U-pop, also replaces three faces of a cube by three
others. Note that both moves preserve surface area.

(a) (b)

(c) (d)

Figure 8: Two “pop” moves: (a,b) Corner pop; (c,d)
U-pop.

To complete the definition of these moves, we
need to specify how the adjacent faces are con-
nected. This is shown in Figure 9, which makes
it clear that in an abstract network of quadrilater-
als forming the surface, the two moves replace the
“wirings” internal to a 6- or 8-cycle; all exterior
connections remain in place.

To have hope of reaching an interesting canoni-
cal form, it is important to permit the surface to
become weakly simple, with perhaps several faces
lying back-to-back on top of one another. We call
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(a) (b)

(c) (d)

Figure 9: Combinatorial diagrams corresponding to the
3D moves in Fig. 8. (a,b) Corner pop; (c,d) U-pop.

two collocated faces a fence. It seems that three
fence moves are needed. The fence walk, illustrated
geometrically in Figure 10 and combinatorially in
Figure 11(a,b), can be viewed as replacing three
faces of a cube with three others, but this time two
of the three faces are collocated.

(b)(a)

Figure 10: Fence walk.

A fence pop takes a connected tree of fences all
perpendicular to the same plane Π, and reflects
them through Π. This move involves no combi-
natorial change. Finally, a variation on this is a
fence corner pop, which does involve a combinato-
rial change, shown in Figure 11(c,d).

(c) (d)

(a) (b)

Figure 11: (a,b) Fence walk. (c,d) Fence corner pop.

Figure 12 shows an example of two shapes that
can be connected by these polycube pop moves:

two corner pops, one per dent, two fence corner
pops, and finally a U-pop. Note that the dents
in (a) of the figure consist of 4 faces each, and are
replaced by 2 faces. The extra 4 faces gained are
then enough to build the highest cube in (b).

(a) (b)

Figure 12: Object (a) can be converted to (b) via poly-
cube pops.

There are (at least) two questions here:
(1) Which class of shapes can be convexified (con-
verted to an orthogonally convex polyhedron, e.g.,
Figure 12(b)) via the above five moves? (2) If not
all shapes, then is there a natural set of moves that
does suffice to connect all polycubes of the same
surface area?
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Dice Rolling in a Rectangle
Erik Demaine
MIT
edemaine@mit.edu

When a rectangle R is fully labeled, and so there
are no free nor blocked cells inside R, what is the
complexity of deciding whether a cube can roll
over R compatibly with the labels? For defini-
tions, see [BBD+07]. That paper conjectures this
restricted decision problem is solvable in polyno-
mial time.

Two variants were suggested at the presentation:
(1) What if R is labeled only with a subset of the
six die labels? (2) What if the sides of R are glued
to form a torus (left glued to right, top glued to
bottom)?
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Room Reconstruction from Point/Normal Data
Jack Snoeyink
Univ. North Carolina Chapel Hill
snoeyink@cs.unc.edu

Many sensors, such as the Delta-sphere con-
structed at UNC Chapel Hill, can send out beams
and get range information for scattered points in a
room. Suppose that your sensor gives not only a
point, but also the normal to a plane when it hits
a wall (perhaps by gathering individual point re-
turns and using consensus to reduce error in wall
positioning). You’d like to determine whether you
have seen all the walls in your room. That is, from
just the walls you have seen, can you construct a
room that explains all observations? These ques-
tions are interesting even in the orthogonal case,
where the walls must lie parallel to the coordinate
planes.

This problem is relatively easy with a single sen-
sor of known position in 2D: sort the sensed points
radially and use the corresponding lines to con-
struct a polygon, then check whether it is star-
shaped with the sensor in the kernel. What about
3D, where the walls can have more complex shapes?

There are many variants on this problem:
whether there are one or more sensors, whether you
know each sensor(s) position, whether sensors re-
turn a few or all points (visibility polygon), whether
the room must be orthogonal or simply connected,
and whether the room reconstructed from the walls
is unique.

Update: Biedl and Snoeyink have since been
able to show that it is NP-hard to determine
whether there is a unique reconstruction of an or-
thogonal polygon from a collection of 2D visibility
polygons representing the information from several
sensors.

Wireless Reflections
Boaz Ben-Moshe
College of Judea and Samaria
benmo@yosh.ac.il

Given a transmitter and receiver in an environ-
ment with barries (walls, etc.), and given an integer

c > 1, find all the paths that go from transmitter to
receiver by c billiard reflections (and perhaps also
go through walls via transmission). In general, c
will be small, say, c < 100. The problem arises in
MIMO (Multiple-Input, Multiple-Output) commu-
nications.

Update: Ben-Moshe et al. have in some sense
solved their problem and are implementing an algo-
rithm as part of the Israeli Short Range Communi-
cation Consortium, http://www.isrc.org.il/index.
asp.

Polygon that Projects as Chain
Prosenjit Bose
Carleton Univ.
jit@scs.carleton.ca

Is there a (closed) simple polygon in 3-space that
projects to an open polygonal chain in three or-
thogonal directions? It is known that there is an
open polygonal chain in 3-space that projects to a
(closed) simple polygon in three orthogonal direc-
tions.

This problem was posed by Jack Snoeyink at an
earlier CCCG, reporting a problem originally posed
by Claire Kenyon.

Stretch Factor for Points in Convex Position
Prosenjit Bose
Carleton Univ.
jit@scs.carleton.ca

The stretch factor for a geometric graph G is the
maximum, over all vertices u and v in G, of the ra-
tio of the length of the shortest path from u to v in
G to the Euclidean distance between them, |u− v|.
If G has a stretch factor of t, it is called a t-spanner.
Chew conjectured that the Delaunay triangula-
tion is a t-spanner [Che89] for some constant t.
Dobkin et al. [DFS90] established this for t =
π(1+

√
5)/2 ≈ 5.08. The value of t was improved to

2π/(3 cos(π/6)) ≈ 2.42 by Keil and Gutwin [KG92],
and further strengthened in [BM04]. Chew showed
that t is π/2 ≈ 1.57 for points on a circle, providing
a lower bound. “It is widely believed that, for ev-
ery set of points in R2, the Delaunay triangulation
is a (π/2)-spanner” [NS07, p. 470].

This suggests the following special case: for
points S in convex position (i.e., every point is on
the hull of S), is the Delaunay triangulation of S a
(π/2)-spanner?
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Polygonal Chain Simplification with Small Angle Constraints

Ovidiu Daescu∗ Anastasia Kurdia†

Abstract

We consider the problem of simplifying an n-vertex
polygonal chain with small angle constraints in R2 and
R3, thus closing the gap on the range of angles left in
previous work on the problem. Specifically, we show
that the min-# version of the polygonal chain sim-
plification problem with small angle constraints can
be solved in O(n2) time and space in R2, and in
O(n2 log2 n) time, O(n2) space in R3.

1 Introduction

The problem of simplifying a polygonal chain with an-
gle constraints was introduced in [6], and it was defined
as follows: Given a polygonal chain P = (p1, p2, . . . , pn)
in R2 or R3, find another chain P ′ = (pi1 , pi2 , . . . , pim)
such that (1) 1 = i1 < i2 < . . . < im = n; (2) the
tolerance zone criterion is satisfied for a given tolerance
ε ≥ 0: for every j = 1,m− 1 the vertices of the subpath
(pij , pij+1, . . . , pij+1) of P are within distance ε from the
line segment pij , pij+1 of P ′; (3.min) the turn angle be-
tween any two consecutive line segments pipj and pjpk

of P ′ is at least a specified value δ(pipj) ∈ [0, π) (min
turn angle problem); or (3.max) the turn angle between
any two consecutive line segments pipj and pjpk of P ′

is at most a specified value δ(pipj) ∈ [0, π) (max turn
angle problem).

The problem was solved in [6] only for a subset of
ranges of the turn angle δ, specifically for δ ∈ [0, π/2)
for the (3.min) constraint and for δ ∈ [π/2, π) for
the (3.max) constraint. Solving the problem when
δ ∈ [π/2, π) for (3.min) and δ ∈ [0, π/2) for (3.max)
remained open. In this paper we close the gap in the
range of δ.

Let ray(pipj) be the ray originating at pj , extending
the line segment pipj to infinity and not containing pipj .
The turn angle between two line segments pipj and pjpk

is defined as the smallest angle needed to rotate the
ray ray(pipj) at pj such that it overlaps with the line
segment pjpk [6] (see Fig. 1).

Using the tolerance-zone error criterion, the min-#
problem (given an error-tolerance ε, minimize m) was

∗Department of Computer Science, University of Texas at Dal-
las, daescu@utdallas.edu. Daescu’s research was partially sup-
ported by NSF grant CCF-0635013.

†Department of Computer Science, University of Texas at Dal-
las, akurdia@utdallas.edu
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Figure 1: Angle constraint for the max turn angle prob-
lem in R2: α is a turn angle between pipj and pjpk; the
edges pipj and pjpk satisfy the angle constraint δ(pipj).

solved in [6] in O(n2) time and space in R2, and in
O(n2 log n) time, O(n2) space, in R3. The min-ε prob-
lem (given m, minimize ε) was solved in O(n2 log n)
time and O(n2) space in R2, and in O(n2 log3 n) time
and O(n2) space in R3. These bounds match the best
known bounds for the unconstrained polygonal chain
simplification problem with the tolerance-zone criterion.

A line segment pipj , 1 ≤ i < j ≤ n, is a valid ap-
proximating segment (also called an ε-approximation
segment) if the vertices pi+1, . . . , pj−1 of P are within
distance ε of pipj .

The algorithmic approach in [6] is to construct a di-
rected acyclic graph Gp on P containing all valid ap-
proximating segments for the corresponding subpaths of
P and to compute the shortest p1-to-pn path in Gp satis-
fying the angle constraint using a dynamic programming
algorithm. Gp is constructed in O(n2) time in R2 [3, 5]
and in O(n2 log n) time in R3 [2] using the algorithms
for the unconstrained version. The problem of finding
the shortest p1-to-pn path in Gp satisfying the angle
constraint is solved by reduction to a so called off-line
ball exclusion search problem (OLBES) [6].

Results. In this work we close the gap in the range of
possible turn angles by giving solutions for δ ∈ [π/2, π)
for min turn angle problem and for δ ∈ [0, π/2) for max
turn angle problem. As is the case in [6], the min turn
and max turn problems can be solved using the same
technique, so we discuss the max turn angle version only.
Following the notation of [6], we describe the reduction
of the shortest path problem in Gp to a special instance
of the off-line ball inclusion search problem (OLBIS),
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defined in Section 2. We then give solutions to the 1-
dimensional (1D) and 2-dimensional (2D) OLBIS prob-
lems.

Surprisingly, in R3, the time complexity of the so-
lution for small turn angle constraints (maximum turn
angle δ ∈ [0, π/2)) seems to be inherently higher by
an O(log n) factor than that for large angle constraints
(maximum turn angle δ ∈ [π/2, π)) due to the differ-
ence in time complexity for querying the associated data
structures. Specifically, we solve the min-# problem in
R3 in O(n2 log2 n) time with O(n2) space. Our solution
for small angle constraints in R2 matches the O(n2) time
and space complexities of that in [6].

2 Preliminaries

We use the notations in [6]. Let ACSPj(k) denote the
angle-constrained shortest path from p1 to pk in Gp such
that the last segment of ACSPj(k) is pjpk. At the end
of iteration i, ACSPj(k) is available for j = 1, i and k =
i + 1, n. At iteration i+1, from the available ACSPj(i+
1), j ∈ 1, 2, . . . , i, ACSPi+1(k) is computed for every
k = i + 2, n.

At iteration i + 1 consider ACSPj(i + 1), for some
j ∈ 1, 2, . . . , i. The line segment pjpi+1 is an incom-
ing edge at pi+1 in Gp. Let pi+1 be the center of a
unit sphere Si+1. Let Cone(j, i + 1) be the cone of
directions at pi+1 satisfying the angle constraint for
pjpi+1. An outgoing edge pi+1pk, with i + 1 < k and
k ∈ i + 2, i + 3, . . . , n, can succeed pjpi+1 to extend an
angle constrained (shortest) path in Gp only if pi+1pk

is contained within Cone(j, i + 1).
Each nonempty Cone(j, i + 1) at pi+1, j < i + 1, is

intersected with Si+1; the resulting ball (spherical cap)
is assigned a weight equal to the length of ACSPj(i +
1) (the number of edges of ACSPj(i + 1)). For each
outgoing edge pi+1pk at pi+1, the ray supporting the
line segment pi+1pk is also intersected with Si+1. We
have at most i weighted balls and at most n − i − 1
points. For each point we need to find a minimum-
weight ball on Si+1 such that the point is contained by
the ball. Sorting the balls by their weight and adding
the points at the end of the resulting sequence we obtain
an instance of the OLBIS problem:

OLBIS (Off-Line Ball Inclusion Search): Given
a sequence E = (e1, e2, . . . , en) such that each ei is ei-
ther a ball Bi or a point pi, for every point pk find
the smallest-index ball Bj ∈ {e1, e2, . . . ek−1} such that
pk ∈ Bj , or report no such ball exists.

Note that the OLBIS problem is a more general prob-
lem, since in the chain simplification problem the points
appear after all the balls in E .

The main differences between our solutions and those
in [6] are in the construction and querying of the data
structures associated with the OLBIS problem, versus

those for the OLBES problem.

3 The R2 Problem

In R2, the cone projections correspond to intervals (1-
dimensional balls). The 1-dimensional (1D) OLBIS
problem can be solved by a simple greedy algorithm in
O(n log n) time (see also [1] for the solution to a more
general problem). Specifically, we first sort all points in
the sequence. Then, starting with the first interval in E ,
we locate the left endpoint of that interval in the sorted
list of points and advance along the list until a point
with value greater than the right endpoint of the inter-
val is found. For each encountered point p, if the index
of p in E is greater than the index of the interval we
report p as included in that interval. Otherwise there is
no interval that contains p and has index smaller than
that of p. The points visited are removed from the se-
quence and the procedure is repeated with the next disk
in E .

Lemma 1 Given a sequence E of n intervals (1-
dimensional balls) and n points on the real line, the
OLBIS answers for all points in E can be determined
in O(n log n) time and O(n) space.

For the special case that arises in the min-# problem
we can actually do better.

Lemma 2 For a sequence E of n intervals (1-
dimensional balls) and n points on the real line such
that (i) the left and right endpoints of the intervals form
sorted sequences and (ii) the points appear after all the
intervals in E and are sorted by their values, the OLBIS
answers for all points in E can be found in O(n) time
and space.

Proof. First discard all the points that appear before
the leftmost endpoint of the first interval, as they do
not belong to any interval in E . Then fix the left end-
point of the first interval I1 and move along the real line
until the right endpoint of I1 is found; during this scan,
enqueue the left endpoints of other intervals as they are
encountered. I1 is a minimum-index interval including
all the points in E encountered so far. Next, dequeue
the right endpoint r2 of the next interval and report all
query points encountered before reaching r2 as belong-
ing to the second interval. If the queue is empty and
there are query points that have not yet been reported,
advance to the first left endpoint available while dis-
carding all encountered query points. This procedure is
repeated until all query points are processed. It requires
one pass along the input sequence and takes O(n) time
and space. 2

We then have the following result for the polygonal
chain simplification problem.
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Theorem 3 The polygonal chain simplification prob-
lem with small angle constraints in R2 can be solved
in O(n2) time and space.

4 The R3 Problem

We start by addressing the OLBIS problem. The key
idea is to decide whether a query point is inside the
union of a set of disks. The combinatorial complexity
of the boundary of the union of n disks in R2 is known
to be O(n) [9], and it can be computed in O(n log n)
time. However, as we will see below, there is no need
to explicitly compute the union of disks to answer the
queries. To decide whether a point is inside the union of
disks, we use a standard transform that lifts a disk onto
the unit paraboloid [7]. The image on the paraboloid of
the circle bounding the disk defines a plane. A point is
inside the disk if and only if its image on the paraboloid
(the point lifted to the paraboloid) is below the plane.
We call the halfspace defined by this plane and contain-
ing the image of the points inside the disk a proper half-
space. Consider the union of the corresponding proper
halfspaces. Its intersection with the paraboloid and pro-
jected back to the plane gives the union of disks. The
complement of this union is the intersection of a set of
halfspaces, that is, a convex polytope. A point is inside
the union of disks if it is outside this convex polytope.

Lemma 4 Given a sequence E of n disks and n points,
the OLBIS answers for all points in E can be determined
in O(n log2 n) time and O(n log n) space.

Proof. We construct a complete binary tree T . Each
leaf of T is associated with the complement of the proper
halfspace for a disk Dj from E in order (i.e., the half-
space for D1 is associated with the leftmost leaf, the
second leaf from left is for the halfspace for D2, and so
on). At each internal node v we compute and store I(v),
the intersection of the halfspaces stored at the leaves of
the subtree of T rooted at v. We also compute and store
the index i(v) of the rightmost leaf of the subtree rooted
at the left child of v.

The intersection of half-spaces associated with the
root of T is computed in divide-and-conquer fashion
using the linear-time algorithm for intersecting three-
dimensional convex polyhedra [4] and corresponds to
a bottom-up computation in T . The intermediate re-
sults of the divide-and-conquer algorithm are intersec-
tions of halfspaces associated with internal nodes of T
and are stored at those nodes. Thus, over all internal
nodes v ∈ T , we can compute and store the intersec-
tions of halfspaces in O(n log n) time using O(n log n)
space. Assigning i(v) to each node v ∈ T can be done
in O(n) time by a simple traversal of T . An n vertex
polyhedron can be preprocessed for O(log n) time point

inclusion queries in O(n) time and space [8]. We pre-
process the polyhedra associated with the nodes of T
for point location queries.

The OLBIS queries for the points in E are answered as
follows (all points are queried simultaneously). Let root
be the root of T , let left(root) be the left child of the
root, and let right(root) be the right child of the root.
We select the points that fall outside I(root) (i.e. the
points that are inside of at least one disk) and partition
the selected points based on inclusion in I(left(root)).
The points that are outside I(left(root)) are given to
the search on the subtree rooted at left(root); the re-
maining points become input for the search on the sub-
tree rooted at right(root) with the only reservation that
if a query point in the input set for right(root) has a
smaller index than the index of the rightmost leaf in the
subtree rooted at left(root) then this point does not be-
long to any disk preceding it in E and can be dropped.

Using point location queries it takes O(log n) time
to answer an inclusion query in I(v) at each level of
T . There are O(log n) levels in T , giving O(log2 n)
query time for one point. Then, the general 2D
OLBIS problem can be solved in O(n log2 n) time with
O(n log n) space. 2

Notice that the extra O(log n) factor in time complex-
ity, when compared to [6], is due to the query processing.
We then obtain the following result for the polygonal
chain simplification problem.

Theorem 5 The min-# problem with angle constraints
in R3 can be solved in O(n2 log2 n) time and O(n2)
space.

For the related min-ε problem we obtain:

Theorem 6 The min-ε problem with angle constraints
can be solved in O(n2 log n) time and O(n2) space in R2

and in O(n2 log4 n) time, O(n2) space in R3.

5 Conclusions

In this paper we presented solutions for the polygo-
nal chain approximation problem with small angle con-
straints, thus closing the gap on the range of angles
left in previous work [6]. Our solution for small angle
constraints in R2 matches the O(n2) time and space
complexities of that in [6].

Surprisingly, in R3, the time complexity of the so-
lution for small turn angle constraints is higher by an
O(log n) factor than that for large angle constraints [6]
due to an extra O(log n) factor in processing queries.
We leave the elimination of the extra O(log n) factor in
this case as an open problem.
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Memory Requirements for Local Geometric Routing and Traversal in
Digraphs

M. Fraser ∗ E. Kranakis † J. Urrutia ‡

Abstract

Local route discovery in geometric, connected, undi-
rected plane graphs is guaranteed by the Face Routing
algorithm. The algorithm is local and geometric in the
sense that it is executed by an agent moving along a
network and using at each node only information about
the current node (incl. its position) and a finite num-
ber of others (independent of graph size). Local ge-
ometric traversal algorithms also exist for undirected
plane graphs. In this paper we show that no compa-
rable routing or traversal algorithms exist for the class
of strongly connected plane directed graphs (digraphs).
We construct a class of digraphs embedded in the plane
for which either local routing or local traversal requires
Ω(n) memory bits, where n is the order of the graph.
We discuss these results in light of finding a suitable
model for mobile ad hoc networks with uni-directional
edges, showing in the extended version of this paper
that digraphs for which the Ω(n) lower bound holds oc-
cur even in the class of embedded digraphs arising out
of a very conservative model.

1 Introduction

Face Routing was proposed in [9] as an algorithm that
accomplishes discovery of routes locally in geometri-
cally embedded, connected, undirected planar graphs.
It guarantees delivery in time O(n) where n is the or-
der of the graph. Since its introduction in 1999, there
have been various studies extending the class of graphs
over which variations of this algorithm can be applied.
In the 2D undirected case, these are enough to handle
most graphs occuring as models of 2D mobile adhoc
networks: Quasi-Planar graphs, Unit Disk Graphs (see
survey in [11]) and so called Quasi-Unit Disk Graphs
(with radial coefficient d > 1√

2
).

Traversal algorithms have also been well studied for
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undirected graphs in the plane. For example, for planar
embedded graphs [4] and quasi-planar subdvisions [3]
local geometric algorithms are known.

In the 3D case relatively little has been done un-
til now. Recently M. Fraser extended Face Routing
to undirected graphs embedded on known surfaces of
higher genus [8] and Durocher et al. [5] extended it to
Unit Ball Graphs (UBG’s) with nodes bounded within a
relatively thin slab of space (of thickness at most 1/

√
2).

Also a recent paper by R. Wattenhofer [6] proposes a
partially randomized routing algorithm for 3D ad hoc
networks.

There has also been little progress on the 2D directed
case. Some special classes of 2D directed graphs for
which local geometric routing algorithms are known in-
clude Eulerian and Outerplanar digraphs [2]. The ques-
tion of existence of local geometric algorithms for gen-
eral geometric digraphs has remained open.

It is important to note that there are several varia-
tions in the use of the term “local” in the ad-hoc com-
munity. In this paper, by a local algorithm we mean a
deterministic algorithm in which an agent moving along
the network uses at each node only information stored
at that node concerning the node itself and its neigh-
bours (including current position) together with a cer-
tain amount M of memory which is carried as overhead
in the message. No further information regarding the
rest of the network is available to the agent, e.g. nei-
ther the number of nodes, where they are located, the
topology of the network, nor any other global informa-
tion. The agent is not allowed to alter the state of a
node.

By local routing algorithm, we mean a local algorithm
as defined above where the agent should reach a node t
started from a node s, given the position or ID of t.

In Face Routing, messages are allowed to carry with
them the ID’s (or typically the positions) of sender and
destination as well as two other nodes and a number
representing a distance. This means M has typically
been restricted to O(log n) as part of the definition of
“local”. Upon arrival to a node, a message can use the
local information stored at a node plus the information
it carries along.

We show that planar embedded directed graphs (di-
graphs), unlike their undirected counterparts, do not
admit local geometric routing or traversal algorithms
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with carried memory M ∈ O(log n) (for non-geometric
digraphs the corresponding result for traversal was
shown by Fraigniaud and Ilcinkis [7]). We show this by
constructing a class C of embedded digraphs for which
either geometric traversal or route discovery requires
Ω(n) memory bits.

It is important to notice that in practice, many wire-
less and ad-hoc networks do have oriented links. If a
network has transmitters with different broadcast pow-
ers, it may happen that a node can receive messages
from a node to which it cannot send.

In the extended version of this paper we describe a
Face-Routing-like routing algorithm which is correct for
plane digraphs and is executed by an agent carrying
O(n) memory.

Our main objective in this paper is to prove the fol-
lowing result:

Theorem 1 There is a class of bounded degree (i.e.,
both in-degree and out-degree) strongly connected em-
bedded digraphs in the plane for which no deterministic
local traversal or routing algorithm (even a geometric
one) exists. In particular, if n is the number of vertices
of a graph in this class then every traversal or routing
algorithm on the graph requires Ω(n) bits of memory.

Here we use the term traversal in its weakest sense:
namely requiring only that all nodes must be visited
and making no assumption about return to start.

The result of Fraigniaud and Ilcinkas [7] addressed
only non-geometric graphs and so hope remained that
the use of geometry might make possible an O(log n)
algorithm for at least planar embedded digraphs. We
settle this issue in the negative.

We remark that in the absence of planar geometry the
routing problem is, loosely speaking, equivalent to that
of traversal since an adversary may connect a destina-
tion node to any other graph node; however, this is no
longer the case for planar embedded graphs, since not
all nodes are reachable from a given destination position
without introducing edge-crossings.

We also note that while Face Routing provides a lin-
ear time, O(log n) memory local routing algorithm for
planar embedded, undirected graphs, when it was intro-
duced in 1999 there was by contrast no known O(log n)
local routing algorithm for abstract undirected graphs.
In 2005, one was established by Reingold (using univer-
sal exploration sequences, [10]). But, not only is this
method much more complicated than Face Routing, its
time still remains polynomial with high exponent. Pla-
nar geometry thus has a significant impact in reducing
the complexity of the routing problem in the undirected
case. The point of the present paper is to show that
the benefit of geometry is insuficient to reduce mem-
ory requirements of local routing to logarithmic in the
directed case.

2 Main Result

To construct a class with the properties stated in The-
orem 1, we define for each n ∈ N an embedded digraph,
called a random lock, which is a “randomized” embed-
ding of a variation on the combination lock (combina-
tion locks have unbounded in-degree, i.e., Θ(n), see [7],
and this variation just bounds the degree by merging
wigs, albeit in a random way). To this end we first
define a kinked embedded lock.

Definition 2.1 [Kinked Embedded Lock] Let x =
x1x2 · · ·xn−1 be any bit string of length n−1 (notational
warning: we start with index 1). Suppose the 1 bits of
x occur for indices i0, . . . , ik and the 0 bits for indices
j0, . . . , jK . A kinked embedded lock determined by x is
an embedded digraph ϕ(Hx) where Hx = (V̄x, Ēx ∪ {e})
is an abstract digraph with

• set of vertices V̄x =
{u0, u1, u2, . . . , un−1, un, w, v1, v2, . . . , vn−1},

• set of directed edges Ēx = E′
n ∪ E′′

n where, E′
n =

{(ui, ui+1) : 0 ≤ i ≤ n − 1} ∪ {(ui, vi) : 1 ≤
i ≤ n − 1} and E′′

n = {(un, vik
), (un, vjK

)} ∪
{(viq , viq−1) : 1 ≤ q ≤ k} ∪ {(vjq , vjq−1) : 1 ≤ q ≤
K} ∪ {(vi0 , u0), (vj0 , u0)}1,

• and one bi-directional edge e = (un, w),

and ϕ is any embedding ϕ : Hx → R2 satisfying the
following recursive relation:

• ϕ(u0) = (0, 0), ϕ(u1) = (1, 0) and

• for 1 ≤ i ≤ n− 1 if ui has coordinates (a, b) then:

ϕ(ui+1) = (a + 1, b + 1), ϕ(vi) = (a + 1, b− 1)
for xi = 0, and

ϕ(ui+1) = (a + 1, b− 1), ϕ(vi) = (a + 1, b + 1)
for xi = 1,

and ϕ(w) = (n + 1, 0), with all edges being straight
line segments. We denote by Kx the kinked embedded
lock determined by x.

Note that the order of the kinked embedded lock Kx

determined by an (n− 1)-bit string x is |Kx| = 2n + 1.
It is easily checked that ϕ as described is an embedding
(i.e. that there are no edge crossings).

An example of the requirements on ϕ for the string
x = 0111 is depicted in Figure 1. This figure includes
only the edges ϕ(E′

n).
The full embedded digraph ϕ(Hx) is obtained from

the one shown in Figure 1 by adding embedded directed
edges from ϕ(E′′

n), namely adding edges “all along the
top” and “all along the bottom” (to connect subsequent

1where undefined elements are assumed omitted
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Figure 1: An example of the requirements on ϕ(E′
n) for

the string x = 0111.

upper vertices viq and subsequent lower vertices vjq as
given by E′′

n) and then adding the bi-directional edge e
connecting w to un. This is depicted in Figure 2. Note
that the position of ϕ(w) does not depend on the actual
bit string x, just on n.

Figure 2: The kinked embedded lock Kx determined by
the bit string x = 0111.

We will now show that if we use random bit strings
to construct kinked embedded locks we obtain a class
of geometrically embedded digraphs – random locks –
which satisfy the requirements of the theorem. The idea
is that any traversal or routing algorithm, A, on such
graphs must be able to reach w from u0 knowing at
most the positions of these two points and local infor-
mation. To do so, it must be able to reach un using only
this data. This allows one to generate the underlying
random bit string and the desired lower bound follows.

Proof. (of Theorem 1) Let x be an infinite Kol-
mogorov random (i.e. algorithmically random) bit
string x = x1x2 . . . (notational warning: we start with
index 1). Then for any n ∈ N, xn := x1x2 · · ·xn has
Kolmogorov complexity at least n. In other words, any
algorithm which can generate this string has space com-
plexity at least n.

Let C = {Kxn : n ∈ N} be the set of kinked embedded
graphs determined by all finite initial substrings of x. C
consists of bounded-degree embedded digraphs. We call
these random locks. Recall that |Kxn−1 | = 2n + 1, so
the order of these graphs is linear in n.

Assume that A is a correct geometric traversal or
routing algorithm for C using memory M(n) bits of
(transported and working) memory for the random lock
Kxn−1 ∈ C determined by the (n − 1)-bit string xn−1.
Since the size of these graphs is linear in n we need only
show M(n) ∈ Ω(n).

Starting at u0, A must in particular be able to reach
w using only local geometric data (coordinates of cur-
rent node and its neighbours) plus M(n) bits of mem-
ory, which may include local geometric data gathered
along its route (coordinates of vertices visited and their
neighbours) or even coordinates of w (in the case of a
routing algorithm) . Note that knowing the coordinates
of w just corresponds to knowing n + 1.

To reach w from u0, A must eventually – i.e. at some
time T – be at u1 and then follow exactly the path
u1, u2, . . . un, w. To be precise, let T be the time just
before computing an exit vertex at u1 and let ST be
the state of A at this time, i.e. the stored memory at
this moment including the current line number LT that
has just been executed at this time in the program P
encodingA. Storing ST requires memory at most M(n).

Let G be an efficient algorithm which given a pair of
positive integers (x, y) and a bit b calculates (x, y), (x+
1, y+1−2b), (x+2, y+2−2b), (x+2, y−2b). We may as-
sume G has space complexity linear in the size of (x, y).
If we assume the numbers x, y ≤ n, then the space com-
plexity of G is O(log n). Note that G is essentially a
geometry simulator for A as long as A travels along a
path consisting of only ui’s. More precisely, whenever
A is at some ui for which it will next advance to ui+1, if
it passes to G the coordinates of ui and the value 0 or 1
indicating its decision at ui (to turn respectively up or
down) then G will output the coordinates of ui+1 and
of all its neighbours. This is in fact all the geometric
data that the algorithm A can use to make its decision
at ui+1.

Using A and G, we now define an algorithm B of
space complexity M(n) + O(log n) which generates the
bit string xn. This includes the constant overhead to
store instructions for all three algorithms (incl. passing
of data between them, conversion of left/right instruc-
tions to bits etc...).

The algorithm B takes input ST, F = n− 1. Its work-
ing data will include the coordinates of four points in
the plane: ucurr and uleft, urightUp, urightDn. It ini-
tializes these to (1, 0), (0, 0), (2, 1), (2,−1) respectively,
these being the coordinates of u1, u0 and the upper then
lower of u2, v1. The algorithm then proceeds as follows:

1. Set i = 1. Place A in state ST.
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2. Run A for a single iteration giving it local pseudo-
geometric data ucurr, uleft, urightUp, urightDn
in order to generate a bit b encoding whether it
will turn upwards or downwards (b = 0 or 1 respec-
tively). This corresponds to deciding which of the
two neighbours to the right is labelled u2.

3. Output b. If i ≥ F , exit; else increment i by one.

4. Call G with input ucurr and b. Let its output be
used to set uleft, ucurr, urightUp, urightDn re-
spectively. Go to 2.

Recall that when the algorithm A is started in state ST

using local geometric data from u1, it performs exactly
the run u1, u2, . . . , un−1. Thus the output of B will be
exactly the bit string xn. Since the complexity of B
is M(n) + O(log n), and xn is Kolmogorov random we
must have M(n) ∈ Ω(n). �

k-Locality We remark that a k-local version of The-
orem 1 also holds: namely, even a geometric routing
or traversal algorithm with access to geometric data
k hops away from its current location (k, any fixed
positive integer) requires Ω(n) memory bits. This is
proved by inserting k extra vertices on each of the edges
{(u0, u1), (ui, vi), (ui, ui+1) : i ∈ N, 1 ≤ i ≤ n − 1} (i.e.
k-subdividing these edges) in the random locks above
and adjusting the geometry simulator accordingly so as
to generate these extra points as well.

Remark In fact, it is easy to construct another class C′
of digraphs which can be used to prove Theorem 1 and
which consists of plane digraphs arising from wireless
networks with just two different broadcast radii. We
discuss this further in the extended version of this paper.

3 Conclusions

Since the introduction of Face Routing, considerable ef-
forts have been made trying to extend it to wider fami-
lies of networks. The robustness and simplicity of Face
Routing make it a tantalizing model to strive for, as
the computational requirements in network communi-
cations are thus greatly reduced, e.g. drastic reduc-
tions on the amount of traffic, and the elimination of
costly mechanisms such as routing tables that have to
be updated periodically [11]. It is worth mentioning
here that the locality condition, as stated here, implies
a robustness beyond existing modes; since a message is
not aware of the existence of most nodes of a network,
it is unaffected by their potential failures (as long as the
network remains connected).

Especially, it would be desirable to achieve these
properties of Face Routing for cellular networks in R3 or

directed networks as these settings are a reality in tele-
phony and sensor networks nowadays. Unfortunately,
extending Face Routing beyond undirected networks in
the plane has proved to be a formidable task, and all
the evidence suggests it may not be possible. As far as
we know, this is the first result that proves some intrin-
sic limitations of the model. The results presented here
might give a hint as to why previous attempts have been
unsuccessful, and might in fact dictate restrictions that
should be imposed on wireless and, in general, commu-
nication networks to take full advantage of the benefits
of Face Routing.
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Abstract

We study the problem of computing Voronoi diagrams
distributedly for a set of nodes of a network modeled
as a Unit Disk Graph (UDG). We present an algorithm
to solve this problem efficiently, which has direct ap-
plications in wireless networks. Comparing with some
existing algorithms, our algorithm correctly computes
the complete Voronoi diagram and uses a significantly
smaller number of transmissions. Furthermore, useful
geometric structures such as the Delaunay triangula-
tion and the convex hull can be obtained through our
algorithm.

1 Introduction

With the recent wave of research in wireless networks,
geometric structures like the Voronoi Diagram (VD)
have been studied in different computational platforms
such as mobile devices and sensors [11, 10, 2]. These de-
vices have limited battery power and usually cooperate
with each other without a centralized control. Given a
set of n points in the plane, it is known that the VD can
be computed in O(n log n) time in a centralized fash-
ion (see Fortune’s algorithm for an example [6]). In a
distributed setting, computing the VD introduces new
challenges [4, 5, 10, 11, 2].

We investigate the problem of distributedly comput-
ing the VD of a network where the nodes are modeled
as points in the plane. Our main goal is to compute the
accurate VD while minimizing the communication cost.
The communication cost is proportional to the number
of transmissions between two adjacent nodes. We pro-
pose a distributed algorithm to compute the VD of a
connected network. Our approach is purely based on
cooperation among nodes. A preliminary version of our
work has been announced in [1].

Throughout this paper, a network is modeled as a
Unit Disk Graph (UDG). According to this model, an
edge between two nodes v and w exists if and only if
the Euclidean distance between v and w is not greater
than one unit (normalized). We assume that the in-
duced UDG is connected. The nodes are also assumed
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Figure 1: Voronoi diagrams of a set of nodes. Edges
between nodes are represented by dashed lines. The
bounded VD (left) and the complete VD (right).

to know their geographic locations. This is usually
achieved through GPS or other techniques [9, 7]. The
communication of the network is not required to be syn-
chronous.

In recent attempts to design distributed algorithms
for computing the VD, Bash and Desnoyers [2] proposed
an algorithm to compute the bounded VD (see Figure 1)
utilizing the GPSR routing protocol ([3, 8]) for wireless
sensor networks. The basic idea is to successively refine
the approximations of the Voronoi cells upon discovery
of other sensors in the network. Given a sensor s, their
algorithm starts with the entire bounded region as the
approximation of the Voronoi cell of s. A probing mes-
sage is then sent to each of the vertices of the current
Voronoi cell using GPSR, which will be delivered to a
sensor t that is the nearest to the probed vertex. Sen-
sor t replies to s and the current Voronoi cell of s is
refined with respect to t. No more probes are sent by
s once it becomes the nearest sensor to all its Voronoi
vertices. Bash and Desnoyers’ algorithm [2] is referred
to as BD071 in this paper.

In the following, we describe our distributed algo-
rithm for computing the VD and prove its correctness.
We further discuss more practical environments where
the correctness of our algorithm holds. Some of our sim-
ulation results in comparison with BD07 are presented
in Section 4.

1Limited by the space, optimizations of BD07 are not reviewed
here.

199



20th Canadian Conference on Computational Geometry, 2008

2 Distributed Computation of Voronoi Diagram

We propose a distributed algorithm, namely the com-
pletely cooperative (CC) algorithm, for computing the
VD of a set of nodes in the plane. Recall that the net-
work is modeled as a UDG. The nodes are assumed to
be in general position2.

2.1 The CC algorithm

The basic idea behind the CC algorithm is that nodes
do not need to send out queries to discover their Voronoi
neighbours; instead, nodes are informed about possible
Voronoi neighbours by other neighbours. We adopt the
following terminology. Let S be a set of nodes embedded
in the plane and let G = (S,L) be the connected UDG
induced by S, where L ⊆ S × S contains pairs of nodes
that are within unit distance. Let V D(G) be the VD
of G. We refer to an element of S as a node and an
element of L as a link, saving the terms vertex and edge
for the corresponding elements in the VD. Similarly, we
refer to nodes that share a link as adjacent and to nodes
that share a Voronoi edge as neighbours.

Let s be a node that receives a message about a po-
tential (Voronoi) neighbour, t, at some point during the
computation. Then s computes the intersection of its
current cell, C, with the half plane defined by the bisec-
tor between itself and t. We call this step the refinement
of a cell. If the new cell C ′ resulting from the intersec-
tion is equal to C, t is ignored; otherwise (C ′ ⊂ C), t
becomes a neighbour of s. In the latter case, new ver-
tices appear on C ′ and some vertices of C fall outside of
C ′. Figure 2a illustrates the refinement process. Two
adjacent vertices that fall outside of C ′, define a piece
of bisector for a node t2 that is then discarded. A new
vertex v on C ′ is created by the intersection of the bisec-
tor between s and t, and the bisector between a certain
node t1 and s. Therefore, t and t1 may be neighbours
of each other since they have a common Voronoi vertex
according to the cell of s. Consequently, s informs both
t and t1 about each other. This way, the information
about possible neighbours flows towards the correspond-
ing nodes until each node finds all its neighbours.

Initially, the cell of any node s is equal to the entire
plane. Then all nodes broadcast their locations trigger-
ing the entire computation as explained above.

Algorithm 1 is a pseudocode description of the
CC algorithm. In the description of the algorithm,
node s has location s.loc, a field s.cell that stores
the description of its Voronoi cell, and a message
queue s.q. The refinement of s.cell with respect
to t is done through s.refine(t.loc). The method
send message(t1.loc, t2.loc) sends a message to node t1

2No three nodes are collinear and no four nodes fall on the
same circle

(a) Cell Refinement (node s
discovers node t)

(b) Disconnected Node

Figure 2: Illustration of the CC algorithm.

containing the location of t2 and results in t2.loc be-
ing added to the message queue of t1 (i.e., t1.q). Ver-
tices in s.cell can be accessed through s.cell.verts. A
vertex v of a Voronoi cell is equipped with a method
v.third(s.loc, t.loc) that returns the location of the third
node associated to v that is neither s nor t.

Algorithm 1: Completely Cooperative (CC)
// Initialize the cell
s.cell = ENTIRE_SPACE
// Broadcast the node location to all adjacent nodes
s.send_message( BROADCAST, s.loc )
// Process each (node) message in the queue
while( t.loc = s.q.get_message )

old_Cell = s.cell
s.cell = s.refine( t.loc )
for each( v in s.cell.verts and not in old_Cell.verts )

// Notify each pair of possible neighbours about each other
s.send_message( t.loc, v.third( s.loc, t.loc ) )
s.send_message( v.third( s.loc, t.loc ), t.loc )

end
end

2.2 Proof of correctness

Theorem 1 Let G be the induced UDG of a set of
nodes in the plane. The CC algorithm computes the
correct Voronoi cell of every node in G.

Proof. The reader is referred to Figure 2b for a graph-
ical description of this proof. It is not hard to see that
the algorithm terminates after a finite number of steps
given that every message sent is the result of the refine-
ment of a cell whose area has decreased. Therefore, the
computation ends as the approximations of the Voronoi
cells converge to the correct cells.

In order to prove that the algorithm determines the
correct cells, suppose, for the sake of contradiction, that
the Voronoi cell corresponding to a node s0, was not
properly determined. This means that s0 did not find
at least one of its (Voronoi) neighbours. Let s1 be a
neighbour of s0 that was not discovered by the applica-
tion of Algorithm 1 to s0. It would be a contradiction
that (s0, s1) ∈ L since adjacent nodes know about each
other and must have been neighbours from the initial
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refinements. Therefore, we assume that there is no link
between s0 and s1.

Let b(s0, s1) be the edge of V D(G) corresponding to
the bisector between s0 and s1. Note that VD edges
are segments, lines, or semilines. b(s0, s1) can be a line
only if |S| = 2, but since there is no link between s0
and s1, G would not be connected, which is a contradic-
tion. Therefore, b(s0, s1) must be a segment or a semi-
line. In both cases b(s0, s1) has at least one end point
(v(s0, s1, s2)) that is a Voronoi vertex of the cells asso-
ciated to s0, s1, and a third node s2. The CC algorithm
guarantees that s2 informs s0 and s1 about each other
once the corresponding bisectors have been considered
and the intersection point (v(s0, s1, s2)) has been found.
Since s0 and s1 were not informed about each other, one
of three possible cases must have occurred: s2 did not
find s0, or s1, or both. Without loss of generality, we
assume that s2 did not find s1. The same reasoning ap-
plied to s0 and s1 can be applied to s1, s2 and a third
node s3 6= s0. This process can be repeated until one
of two stop conditions is satisfied: (1) a cycle is created
when a vertex is involved twice, (2) a semiline bisector
in V D(G) is reached. If this process ends with a semi-
line between two unbounded cells, the same procedure
is applied starting at the other endpoint of b(s0, s1), if
any. This process again ends because of condition (1)
or (2).

In the end, this process leads to a cycle or path P
consisting of missing Voronoi edges that partitions the
plane into two disjoint regions and is not crossed by any
link between neighbours. It is not hard to see that if P
is not crossed by any link between neighbours, it can
not be crossed by any other link, given that G is the in-
duced UDG. Therefore, G would have two disconnected
subgraphs (one in each region) which contradicts the
initial assumption. �

2.3 Optimizations

The CC algorithm is described in its simplest form.
Some optimizations can be introduced to make it more
efficient. First of all, before the initial refinements, ev-
ery node s broadcasts its adjacency list. Every message
that involves s includes its adjacency list. If a node r,
that is about to inform two nodes s and t about each
other, finds s (resp. t) in the adjacency list of t (resp.
s), no notification is sent. This remarkably reduces the
number of transmissions. However, some lists of ad-
jacency can be significantly large. So only the infor-
mation of a bounded number of adjacent nodes is sent
along. We have set this bound to 6 for our experiments.
The second key optimization consists in not sending two
messages simultaneously to possible neighbours s and t
while trying to inform them about each other. Instead,
a message is first sent to s and then it is s that informs
t, if required. This also reduces the number of messages

since s and t may already be neighbours by the time s
receives the notification and, consequently, there is no
need to inform t.

3 Discussion and Extensions

Compared to BD07, the CC algorithm computes the
complete VD. The CC algorithm also provides the com-
plete Delaunay triangulation and the convex hull with-
out additional communication. After the computation
of the VD, a node that has two consecutive neighbours
separated by an angle larger than π is on the outer face
of the Delaunay triangulation and, therefore, on the con-
vex hull.

The CC algorithm does not rely on any specific rout-
ing algorithm. Also, according to experimental results
(see Section 4), the CC algorithm uses a smaller number
of transmissions. Recall BD07 relies on the GPSR rout-
ing protocol. For the sake of fairness, we use GPSR as
the underlying routing protocol for the CC algorithm as
well. We believe that with a better routing algorithm,
the CC algorithm may further reduce the number of
transmissions.

From a practical point of view, it is desirable to ex-
tend the underlying model beyond UDG. We can ex-
tend the scope of Theorem 1, with slight modifications,
to more general graphs. Let G′ be an arbitrary network
obtained from G by removing links, and let DT (G′) be
the subgraph of G′ that contains only the links of G′

that are edges of the Delaunay triangulation of S. The-
orem 2 shows that as long as DT (G′) is connected, the
CC algorithm computes the VD correctly.

Theorem 2 Let G′ be a subgraph of G, such that
V (G′) = S and DT (G′) is connected. The CC algo-
rithm computes the correct Voronoi cell of every node
in G′.

Proof. The proof is similar to the proof of Theorem 1.
Once the cycle or path P is found, by assuming that the
VD was not properly constructed, a contradiction arises
with respect to the connectivity of DT (G′). In this case
no link of DT (G′) crosses P while DT (G′) should be
connected. �

4 Simulation Results

We have conducted intensive simulations on randomly
generated networks to study the performance of the CC
algorithm and compare the results with the BD07 algo-
rithm [2].

Experiments were done with test sets consisting of
100 nodes randomly placed in a 100 × 100 unit grid.
The density of the graph is controled by different trans-
mission ranges (14 to 30 units). Also two different error
rates, 0% and 20% are considered. The error rate is
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the probability of a transmission to fail. Hence, when
a link temporarily fails, the transmission is repeated.
For each transmission range and each error rate two al-
gorithms (CC and BD07) are run with 1000 randomly
generated networks as defined above. We also incorpo-
rate 50 randomly placed opaque obstacles in the form
of bars of length 5. Special care is taken such that each
graph generated contains a connected subgraph of the
Delaunay triangulation as required by Theorem 2.

The entire number of simulations per algorithm is
equal to [number of networks] × [number of transmis-
sion ranges] × [number of error rates] = 1000×17×2 =
34, 000.

The graphs shown in Figures 3a and 3b provide the
total number of transmissions in average for each trans-
mission range with 0% and 20% error rates. For small
values of the transmission range, BD07 requires a much
larger number of transmissions than the CC algorithm.
This is because the network is sparser and the GPSR
protocol performs poorly. Because the CC algorithm
does not require probing, it is not as affected as BD07
by small transmission ranges.
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Figure 3: Simulation results.

5 Conclusion

We propose a novel distributed algorithm to compute
the VD of a given network. The CC algorithm of-
fers two significant advantages over previous works: (1)
it computes the complete VD, and thus, can provide

other useful structures such as the Delaunay triangula-
tion and the convex hull; (2) it is more efficient in terms
of the number of transmissions as verified through a
large number of simulations.

Interesting problems remain open regarding the dis-
tributed construction of the VD. A natural question is
whether it is possible to find a non-trivial efficient dis-
tributed algorithm for constructing the VD of arbitrar-
ily connected networks.
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A Framework for Multi-Core Implementations of Divide and Conquer

Algorithms and its Application to the Convex Hull Problem ∗

Stefan Näher Daniel Schmitt †

Abstract

We present a framework for multi-core implementations
of divide and conquer algorithms and show its efficiency
and ease of use by applying it to the fundamental geo-
metric problem of computing the convex hull of a point
set. We concentrate on the Quickhull algorithm intro-
duced in [2]. In general the framework can easily be
used for any D&C-algorithm. It is only required that
the algorithm is implemented by a C++ class imple-
menting the job-interface introduced in section 3 of this
paper.

1 Introduction

Performance gain in computing is no longer achieved
by increasing cpu clock rates but by multiple cpu cores
working on shared memory and a common cache. In
order to benefit from this development software has to
exploit parallelism by multi-threaded programming. In
this paper we present a framework for the parallelization
of divide and conquer algorithms and show its efficiency
and ease of use by applying it to a fundamental geomet-
ric problem: computing the convex hull of a point set
in two dimensions.

In general our framework supports parallelization of
divide and conquer algorithms working on on linear con-
tainers of objects (e.g. an array of points). We use the
STL iterator interface ([1]), i.e., the input is defined by
two iterators left and right pointing to the leftmost and
rightmost element of the container. The framework is
generic. It can be applied to any D&C-algorithm that is
implemented by a C++ class template that implements
a certain job interface defined in section 3.

The paper is structured as follows. In Section 2
we discuss some aspects of the parallelization of D&C-
algorithms, Section 3 defines the job-interface which has
to be used for the algorithms, such that the solvers pre-
sented in Section 5 can be applied. Section 6 presents
some experimental results, in particular the speedup
achieved for different numbers of cpu cores and differ-
ent problem instances. Finally, Section 7 gives some
conclusions and reports on current and ongoing work.

∗This work was supported by DFG-Grant Na 303/2-1
†Department of Computer Science, University of Trier, Ger-

many. {naeher, schmittd}@uni-trier.de

2 Divide and Conquer Algorithms

Divide and conquer algorithms solve problems by di-
viding them into subproblems, solving each subprob-
lem recursively and merging the corresponding results
to a complete solution. All subproblems have exactly
the same structure as the original problem and can be
solved independently from each other, and so can eas-
ily be distributed over a number of parallel processes
or threads. This is probably the most straightforward
parallelization strategy. However, in general it can not
be guaranteed that always enough subproblems exist,
which leads to non-optimal speedups. This is in partic-
ular true for the first divide step and the final merging
step but is also a problem in cases where the recur-
sion tree is unbalanced such that the number of open
sub-problems is smaller than the number of available
threads.

Therefore, it is important that the divide and merge
steps are solved in parallel when free threads are avail-
able, i.e. whenever the current number of sub-problems
is smaller than number of available threads. Our frame-
work basically implements a management system that
assigns jobs to threads in such a way that all cpu cores
are busy.

3 Jobs

In the proposed framework a job represents a (sub-
)problem to be solved by a D&C-algorithm. The first
(or root) job represents the entire problem instance.
Jobs for smaller sub-problems are created in the divide
steps. As soon as the size of a job is smaller than a
given constant it is called a leaf job which is solved di-
rectly without further recursion. As soon as all children
of a job have been solved the merge step of the D&C-
algorithm is applied and computes the result of the en-
tire problem by combining the results of its children.

In this way jobs represent sub-problems as well as
the corresponding solutions. Note that the result of
a job is either contained in the corresponding interval
of the input container or has to be represented in a
separate data structure, e.g. a separate list of objects.
Quicksort is an example for the first case and Quickhull
(as presented in Section 4) for the second case.

The algorithm is implemented by member functions
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of the job class which must have the following interface.

class job

{ job(iterator left, iterator right);

bool is_leaf();

void handle_leaf();

list<job> divide();

void merge(list<job>& L);

};

In the constructor a job is created by storing two iter-
ators (e.g. pointers into an array) that define the first
and last element of the problem. If the is leaf pred-
icate returns true recursion stops and the problem is
solved directly by calling the handle leaf operation. The
divide operation breaks a job into smaller jobs and re-
turns them in a list, and the merge operation combines
the solutions of sub-jobs (given as a list of jobs) to a
complete solution. There are no further requirements
to a job class.

4 Quickhull

We show how to define a job class qh job implementing
the well-known Quickhull algorithm ([2]) for computing
the convex hull of a point set. For simplicity we consider
a version of the algorithm that only computes the upper
hull of the given point set and we assume that the input
is give by a pair of iterators left and right into an
array of points such that left contains the minimal
and right the maximal point in the lexicographical xy-
ordering. The result of a qh job instance is the sequence
of points of the upper hull lying between left and right.
In this scenario any job of size two (only the leftmost
and rightmost point) represents a leaf problem and has
the empty list as result. Consequently, the handle leaf
operation is trivial (keeping an empty result list).

The divide operation is using two auxiliary func-
tions: farthest point(l,r) computes a point between
l and r with maximal distance to the line segment (l, r)
and partition triangle implements the partition step
of quickhull as shown in Figure 1 and returns the gen-
erated sub-problems as a list of jobs. We tried different
variants of this partition function. In particular, one us-
ing only one thread and one using all available threads.
The latter version is similar to the parallel partition
strategy proposed in [4] for a multi-core implementation
of Quicksort. In the experiments in Section 6) we will
see that this can have a dramatic effect on the speedup
achieved.

Finally, the merge operation takes a list of (two) jobs
as input, concatenates their result lists, and inserts the
right-most point of the first problem in between. The
complete implementation is given by the following piece
of C++ code.

template<class iterator> class qh_job {

left rightpivot

left rightlh rh

A BC

A C C B

A B

C

partition triangle

Figure 1: The partition step of Quickhull.

iterator left;

iterator right;

list<point> result;

public:

qh_job(iterator l, iterator r): left(l),right(r) {}

int size() { return right - left + 1; }

bool is_leaf() { return size() == 2; }

void handle_leaf() {}

list<qh_job> divide()

{ iterator pivot = farthest_point(left,right);

iterator lh,rh;

partition_triangle(pivot,left,right,lh,rh);

list<qh_job> L;

L.push_back(qh_job(left,lh));

L.push_back(qh_job(rh,right));

return L;

}

void merge(list<qh_job>& children)

{ qh_job j1 = children.front();

qh_job j2 = children.back();

result.conc(j1.result);

result.push_back(j1.right);

result.conc(j2.result;

}

};
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5 Solvers

Our framework provides different solvers which can be
used to compute the result of a job. As a very basic
and simple example we give the code for a generic serial
recursive solver. It can simply be implemented by a
C++ function template.

template <class job>

void solve_recursive(job& j)

{ if (j.is_leaf()) j.handle_leaf();

else { list<job> Jobs = j.divide();

job x;

forall(x,Jobs) solve_recursive(x);

j.merge(Jobs);

}

};

Note that solve recursive is a generic dc-solver. It
accepts any job type job that implements the dc job

interface. We can now use it easily to implement a serial
quickhull function taking an array of points as input.

list<point> QH_SERIAL(array<point>& A)

{ int n = A.size();

qh_job<point*> j(A[0],A[n-1]);

solve_recursive(j);

list<point> hull = j.result;

hull.push_front(A[0]);

hull.push_back(A[n-1]);

return hull;

};

It is an easy exercise to write a non-recursive ver-
sion of this serial solver: simply push all jobs created
by divide operations on a stack and use an inner loop
processing all jobs on the stack.

5.1 Parallel Solvers

A parallel solver is much more complex. It maintains
unsolved jobs, builds the recursion tree of jobs while the
algorithm proceeds and checks for the mergeability of
sub-jobs. It also has to administrate all parallel working
threads.

We implement parallel solvers by C++ class tem-
plates. The constructor takes as argument the number
of threads to be used for solving the problem. There are
more parameters that can be changed by corresponding
methods of the class. For instance, a limit d for the
minimal problem size for any thread. If a the size of job
gets smaller than d it will not be divided into new jobs
but solved by the same thread using a serial algorithm.
Using this limit the overhead of starting a huge num-
ber of threads on very small problem instances can be
avoided.

template <class Job>

class dc_parallel_solver {

public:

dc_parallel_solver(int thread_num);

void set_limit(int d);

void run(Job& j)

};

We now can use the parallel solver template to imple-
ment a parallel version of the quickhull function.

list<point> QH_PARALLEL(array<point>& A, int thr_n)

{ int n = A.size();

dc_parallel_solver<job<point*> > solver(thr_n);

job<point*> j(A[0],A[n-1]);

solver.run(j);

list<point> hull = j.result;

hull.push_front(A[0]);

hull.push_back(A[n-1]);

return hull;

};

6 Experiments

All experiments were executed on a Linux PC with an
Intel quad-core processor running at a speed of 2.6 GHz.
As implementation platform we used a thread-safe ver-
sion of LEDA ([3]). In particular, we used the exact ge-
ometric primitives of the rational geometry kernel and
some of the basic container types such as arrays and
lists. All programs were compiled with gcc 4.1.
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Figure 2: Quickhull: Speedup with 2 cores.

For the experiments we used three different problem
generators: random points lying in a square, random
points near a circle, and points lying exactly on a circle.
Figures 2 and 3 show that we our framework achieved
a good speedup behavior for points on or near a circle,
which is the difficult case for Quickhull because only a
few or none of the points can be eliminated in the par-
titioning step. Note that the 1.0 baseline indicates the
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performance of a serial version of the algorithm (using
only one thread). It turned out that n/100 was good
choice for the limit mentioned in section 5.1.
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Figure 3: Quickhull: Speedup with 4 cores.

For random points in a square Quickhull eliminates
almost all of the input points in the root job of the al-
gorithms (with high probability), i.e. almost the entire
work is done here. In this case the achieved speedup is
not optimal. However, Figure 4 shows that without par-
allelization of the partitioning step we have no speedup
at all. We have some ideas to improve the parallel par-
titioning and hope to improve the results for this kind
of problem instances.
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We also want to mention here that we ran experi-
ments with different D&C algorithms for convex hulls.
In particular, a recursive version of the gift wrapping
method where the merge step does most of the work by
constructing two tangents. Figure 5 shows the speedup
behavior of this algorithm for the same set of input in-
stances.
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Figure 5: Tangent Search: Speedup with 4 cores.

7 Conclusions

We have presented a framework for the implementation
and parallelization of divide and conquer algorithms.
The framework is generic (by using C++ templates)
and can be used very easily. The experiments show
that a considerable speedup can be achieved by using
two or four threads on a quad core machine. We have
some ideas to improve the parallel partitioning of the
quickhull algorithm and hope to be able to improve the
efficiency in cases where most of the work is done in the
root job. In this short version of the paper we could
not present all experiemental results. In particular, our
framework shows a very good performance also on ba-
sic D&C algorithms such as Quicksort (see the online
version of the paper for more details). We also work
on the parallelization of incremental algorithms for geo-
metric problems and higher dimensional problems. One
of the major problems is the need of more complicated
thread-safe dynamic data structures such as graphs or
polyhedra.
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Guaranteed Voronoi Diagrams of Uncertain Sites

William Evans∗ and Jeff Sember†

Abstract

In this paper we investigate the Voronoi diagram that is
induced by a set of sites in the plane, where each site’s
precise location is uncertain but is known to be within a
particular region, and the cells of this diagram contain
those points guaranteed to be closest to a particular site.
We then examine the diagram for sites with disc-shaped
regions of uncertainty, prove that it has linear complex-
ity, and provide an optimal O(n log n) algorithm for its
construction. We also examine the diagram for polygo-
nal regions of uncertainty, and prove that it has linear
complexity as well. We then describe a generalization
of these diagrams, in which each Voronoi cell is associ-
ated with a subset of the sites, and each point in a cell
is guaranteed to be closest to some site in the subset
associated with the cell.

1 Introduction

Suppose we do not know the precise locations of n sites
(n points in the plane) and yet we would like to de-
termine, for every point in the plane, the closest site
to that point. If we know the approximate location of
each site, say, that the ith site lies in a subset Di of the
plane, then we might be able to answer this question
perhaps not for every point but for many points in the
plane. Our goal is to find, for each site i, the set of
points that are guaranteed to be closer to that site than
to any other. In other words, no matter where each site
lies (as long as the jth site is in Dj for every j) the clos-
est site to the point is always site i. For some points,
we cannot guarantee a closest site. These points form a
subset of the plane that we call the ‘neutral zone’.

In this paper, we first formally define the partition of
the plane into cells of guaranteed closest points and the
neutral zone and state some properties of this partition.
We then consider the special case when the uncertain
regions (i.e. the subsets Di) are discs and show that
the complexity of the partition in this case is linear in
the number, n, of sites, and that it can be calculated in
O(n log n) time.

We also consider the case where each Di is a polygon,
and show that the complexity of the resulting partition

∗UBC Computer Science,Vancouver, B.C., Canada, V6T 1Z4;
will@cs.ubc.ca

†UBC Computer Science,Vancouver, B.C., Canada, V6T 1Z4;
jpsember@cs.ubc.ca; research is supported by NSERC

is linear in the total number of polygon edges.
We then consider a finer partition of the neutral zone

into regions of points that we can guarantee are closest
to some site in a set of sites. For example, points that
may be closest to sites 1 or 2 form the region for the
set {1, 2}. We show that the complexity of this finer
partition is at most O(n4) for uncertain discs.

An applet demonstrating these diagrams is available
at http://www.cs.ubc.ca/~jpsember/gv.html.

2 Related work

Voronoi diagrams are a fundamental data structure in
computational geometry; see [2] for a survey. Voronoi
diagrams involving uncertain sites were investigated
with respect to the probabilistic concepts of expected
closest site and probably closest site in [3].

The guaranteed Voronoi diagram of a set of uncer-
tain regions is closely related to the standard Voronoi
diagram of those regions. Thus our results rely heav-
ily on properties of standard Voronoi diagrams such as
diagrams for circles [8] and diagrams for segments [6].

One of the biggest differences between the guaranteed
Voronoi diagram and traditional variants of Voronoi di-
agrams is that the union of the regions associated with
uncertain sites does not cover the plane. The guar-
anteed Voronoi diagram contains a neutral region that
contains those points that are not guaranteed to be clos-
est to any particular site. Zone diagrams also have this
property. In zone diagrams, for a point to be in a site’s
region, it must be closer to the site than to any point
in any other site’s region. The recursive nature of this
definition raises the question of the uniqueness and exis-
tence of zone diagrams; a question that Asano et al. [1]
answered (positively).

Some properties of guaranteed Voronoi diagrams of
uncertain polygons are given in [5], including a proof
of the diagrams’ computability, though no complexity
claims are made.

3 Properties

We are given a set of regions in the plane D =
{D1, . . . , Dn}, called uncertain regions, each containing
a site. Let H(i, j) be the set of points in the plane that
are guaranteed to be at least as close to site i as site j.
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That is,

H(i, j) = {p | ∀x ∈ Di ∀y ∈ Dj d(p, x) ≤ d(p, y)}

where d(·, ·) is Euclidean distance. We denote the
boundary of H(i, j) by 〈i, j〉; formally,

〈i, j〉 = {p | max
x∈Di

d(p, x) = min
y∈Dj

d(p, y)} .

The cell for site i, denoted R〈i〉, is

R〈i〉 =
⋂
j 6=i

H(i, j) . (1)

The boundaries of all such cells R〈i〉 form the guar-
anteed Voronoi diagram for the set D, and we denote it
by V (D).

An edge of 〈i, j〉 in V (D) is a maximal connected set
of points p ∈ 〈i, j〉 that lie on the boundary of cell R〈i〉.

Some properties of V (D) are easy to show.
If every uncertain region is a single point, V (D) is the

standard nearest-point Voronoi diagram for the regions,
which we denote by V ◦(D). In general, for arbitrary
uncertain regions, every cell R〈i〉 of V (D) is a subset of
the corresponding cell R〈〈i〉〉 of V ◦(D).

It is possible for a cell boundary to not be a one-
dimensional curve. Consider Di = {(x, 0) | x ∈ [0, 2]}
and Dj = {(x, 0) | x ∈ [2, 4]}. In this case, 〈i, j〉 is the
halfplane {(x, y) | x ≤ 1}, and R〈i〉 = 〈i, j〉. To gener-
alize, if Dj intersects CHi, the convex hull of Di, then
H(i, j) = 〈i, j〉; and if this intersection is not confined
to vertices of CHi, then H(i, j) = 〈i, j〉 = ∅. From this
point on, we assume that any nonempty intersection of
two regions Di and Dj is not confined to vertices of CHi.

A site whose cell is empty can still influence the cell of
another site. For example, if the interiors of Di and Dj

intersect, then R〈i〉 = ∅, yet an edge of 〈k, i〉 for some
other site k can still appear in V (D).

A connected subset of the plane S is inside-tangent
to another such subset C (or C has inside-tangent S)
if S ⊆ C and the boundary of C intersects S; and S
is outside-tangent to C (or C has outside-tangent S) if
S ∩ C is a non-empty subset of the boundary of C.

Lemma 1 Every point p on an edge of 〈i, j〉 in V (D)
is the center of a unique disc Cp that has inside-tangent
Di, outside-tangent Dj, and intersects the interior of
no Dk ∈ D for k /∈ {i, j}.

Proof. This follows immediately from the definition of
an edge of 〈i, j〉. �

Consider a point p on an edge of 〈i, j〉 in V (D), and
its disc Cp from Lemma 1. Let b be a point of tangency
of Cp with Dj . Define δ(p) to be the (unique) point
on segment pb that is the center of a disc C◦ that has
outside tangent Dj (at the point b) and outside tangent

Di. Since C◦ ⊆ Cp, C◦ also intersects the interior of no
Dk ∈ D for k /∈ {i, j}. Thus δ(p) lies on an edge of the
bisector 〈〈i, j〉〉 between Di and Dj that is part of the
standard Voronoi diagram V ◦(D) for the regions D. In
fact, δ(p) is on the boundary of region R〈〈i〉〉.

Note that if more than one region Dj is outside-
tangent to Cp (or if Dj is tangent to Cp at more than
one point), then there is more than one candidate point
of tangency b. To make δ(p) well-defined, we select a b
according to some total order on possible b’s.

We now show that the ordering of points p on the
boundary of a cell R〈i〉 in V (D) agrees with that of
points δ(p) on the boundary of R〈〈i〉〉 in V ◦(D). To do
this, we will need the following lemma.

Lemma 2 If b is a point on the boundary of disc P
centered at p, and d a point on the boundary of disc Q
centered at q, and line segments pb and qd intersect at
a single point, interior to both, then either b is in the
interior of Q or d is in the interior of P .

Proof. Assume such an intersection point w exists.
Without loss of generality, assume d(w, b) ≤ d(w, d).
By the triangle inequality,

d(q, b) < d(q, w) + d(w, b)
≤ d(q, w) + d(w, d)

which implies b is in the interior of Q. �

We denote a point p being encountered before point q
as we traverse the boundary of a convex region counter-
clockwise (ccw) from starting point s by p ≺s q.

Lemma 3 If p, q, and s are points on the boundary
of cell R〈i〉 (with nonempty interior), and p ≺s q, then
δ(p) ≺δ(s) δ(q).

Proof. Each point p on the boundary of cell R〈i〉 is
mapped to a point δ(p) on the boundary of cell R〈〈i〉〉.
Note that segment pδ(p) does not intersect the interior
of R〈i〉, since for every point p′ on this segment, the disc
with center p′ that has outside-tangent Dj does not con-
tain all of Di except when p′ = p. Note also that this
disc does intersect Di (and no other Dk), thus pδ(p) is
within R〈〈i〉〉. Therefore if p ≺s q and δ(p) �δ(s) δ(q)
then some two of the segments {sδ(s), pδ(p), qδ(q)} in-
tersect. Without loss of generality, assume pδ(p) inter-
sects qδ(q).

By Lemma 1, disc Cp exists which has outside-tangent
some Dj 6=i at b, such that δ(p) ∈ pb. Similarly, disc Cq

exists which has outside-tangent some Dk 6=i at d where
δ(q) ∈ qd. This implies pb intersects qd (since pδ(p) ⊂ pb
and qδ(q) ⊂ qd). The intersection is a single interior
point since p 6∈ qd and q 6∈ pb (otherwise Cp or Cq would
not contain Di), and δ(p) 6= b and δ(q) 6= d (otherwise
Di intersects Dj or Dk, and R〈i〉 has an empty interior).
By Lemma 2, either b is in the interior of Cq or d is in
the interior of Cp, which is a contradiction. �
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4 Uncertain discs

We now consider the case where the uncertain regions
are discs; see Figure 1.

Figure 1: Guaranteed Voronoi diagram

Each disc has a nonnegative radius ri, and a center
Si. Each p ∈ 〈i, j〉 satisfies

d(p, Si) + ri = d(p, Sj)− rj . (2)

Since ri and rj are constants, the points p which satisfy
(2) lie on an arm of a hyperbola with foci at Si and Sj .
If the discs’ radii are both zero, this is the perpendicu-
lar bisector of SiSj ; otherwise, it is the hyperbolic arm
closest to Si.

Some properties of V (D) include the following.
Each cell of V (D) is convex, since the cells are in-

tersections of convex halfplanes bounded by hyperbolic
arms.

It is possible that more than one edge of 〈i, j〉 appears
in V (D).

We will now show that the number of edges in a guar-
anteed Voronoi diagram of n discs is O(n). We will do
this by showing that for each cell R〈i〉 ∈ V (D), there
is a mapping from each edge in R〈i〉 to a distinct edge
in the corresponding cell of V ◦(D), which is known to
have O(n) edges.

Theorem 4 The number of edges in a guaranteed
Voronoi diagram of n uncertain discs is O(n).

Proof. We will show that the number of edges in V (D)
is at most twice the number of edges in V ◦(D). The
theorem then follows from the fact that V ◦(D) has O(n)
edges (property (7) of [8]).

Consider the edges around R〈i〉 in ccw order. We
charge each edge E of 〈i, j〉 ∈ V (D) to the edge F of
〈〈i, j〉〉 on which δ(p) lies, for p the ccw-first point of E
(or any interior point p if E is ccw-infinite). Suppose
two distinct edges E1 and E2 of 〈i, j〉 map to the same
edge F of 〈〈i, j〉〉 in R〈〈i〉〉. Since E1 and E2 are distinct
but both of 〈i, j〉, there must exist an edge E′ of 〈i, k〉
(k 6= j) between them in the ccw traversal of R〈i〉 that
maps to some other edge F ′ of 〈〈i, k〉〉 in R〈〈i〉〉. This
contradicts Lemma 3 since all points of F either precede
or follow the points of F ′ in ccw-order.

Thus each edge in V ◦(D) of 〈〈i, j〉〉 is charged at most
twice: once by an edge of 〈i, j〉, and once by an edge of
〈j, i〉. Hence V (D), like V ◦(D), has O(n) edges. �

We now show how V (D) for a set of discs can be con-
structed by first constructing V ◦(D) for the discs, then
performing a linear-time transformation from V ◦(D) to
V (D).

We can construct I〈i〉, a sequence of neighboring sites
to cell R〈i〉, by starting from an edge containing some
point p on the boundary of R〈i〉 and traversing the
boundary edges in ccw order. We construct I〈〈i〉〉, the
sequence of neighboring sites to cell R〈〈i〉〉, by a similar
ccw traversal, starting from the edge containing δ(p).

Lemma 5 For every cell R〈i〉 ∈ V (D), I〈i〉 is a subse-
quence of I〈〈i〉〉.

Proof. If site j is in I〈i〉 then, since δ(·) maps points
on edges of 〈i, j〉 to points on edges of 〈〈i, j〉〉, j is in
I〈〈i〉〉. Furthermore, the order of sites in I〈i〉 is preserved
in I〈〈i〉〉 since δ(·) preserves this order by Lemma 3. �

Theorem 6 V (D) for n sites can be constructed in
O(n log n) time, and this running time is optimal.

Proof. The running time of any algorithm to construct
V (D) is Ω(n log n), since if the site radii are all zero,
V (D) is the standard Voronoi diagram of n points.

Constructing V ◦(D) for the disc sites D takes
O(n log n) time [4]. We generate the sequence I〈〈i〉〉 of
sites comprising the boundary of cell R〈〈i〉〉 in V ◦(D) for
i = 1, 2, . . . , n from this diagram in linear time by a
simple traversal. From I〈〈i〉〉 we construct the boundary
of R〈i〉 by generating and intersecting the sequence of
hyperbolic arcs it specifies. Lemma 5 ensures that we
consider a correctly ordered super-sequence of the arcs
bounding R〈i〉. This suffices to construct the boundary
of R〈i〉 in time proportional to the length of I〈〈i〉〉.

Since each of the O(n) edges of V ◦(D) appears in two
cell boundaries, the running time for the construction
of the edges of all cells of V (D) is O(n). The time
to construct V (D) is thus dominated by the time to
construct V ◦(D). �

5 Uncertain polygons

We now turn our attention to the case where the re-
gion of uncertainty for each site is a polygon. In this
case, each 〈i, j〉 consists of some number of (possibly un-
bounded) parabolic arcs, each induced by a vertex u of
Di and a vertex1 or open edge v of Dj . We denote such
a parabolic arc by 〈iu, jv〉, and define an edge of 〈iu, jv〉
to be a maximal connected set of points p ∈ 〈iu, jv〉 that
lie on the boundary of cell R〈i〉. We define 〈〈iu, jv〉〉 for

1In this case, the induced parabola degenerates to a line.
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V 4(D), the standard Voronoi diagram of the polygons
D, analogously.

Theorem 7 The number of edges in the guaranteed
Voronoi diagram of D, a set of n polygons with m total
edges, is O(m).

Proof. We show that the number of edges in V (D) is
at most twice the number of edges in V 4(D) plus twice
the complexity of the furthest point Voronoi diagram of
the vertices in Di summed over all i. The theorem then
follows from the fact that V 4(D) has O(m) complexity
[6] and that the total complexity of the furthest point
Voronoi diagrams is O(m) [7].

Let E be an edge of 〈iu, jv〉 on the boundary of R〈i〉
and let p be an interior point of E. Section 3 showed
there must exist a point δ(p) on an edge of 〈〈iw, jv〉〉
where w is a vertex or edge of Di.

Consider the edges around R〈i〉 in ccw order. We
charge each edge E of 〈iu, jv〉 to the edge F of 〈〈iw, jv〉〉
on which δ(p) lies, for p the ccw-first point of E (or any
interior point p if E is ccw-infinite). Now it may hap-
pen that a consecutive sequence of edges around R〈i〉
all map to F . (By Lemma 3, the edges must be consec-
utive if they map to the same F .) Let E1 of 〈iu1 , jv〉
and E2 of 〈iu2 , jv〉 be two successive (adjacent) edges in
this ccw sequence. The point p shared by E1 and E2

lies on an edge of the furthest-point Voronoi diagram
of the vertices of Di that separates the furthest-point
regions for u1 and u2. We charge the edge E2 to this
edge T of the furthest-point Voronoi diagram. We now
show that at most two edges are charged to each T .
Every such p intersecting T is the center of a disc Cp

that has inside-tangent Di (at the two farthest vertices
u1, u2 associated with T ) and outside-tangent Dj . As-
sume by way of contradiction that there are three such
points, p1, p2, p3 in order along T . Observe that Cp2 is
contained within Cp1 ∪ Cp3 ; thus Dj must be outside-
tangent to Cp2 at either u1 or u2 to avoid intersecting
the interior of the other two discs. But then Di ∩Dj is
a nonempty subset of {u1, u2}, both vertices of CHi, a
contradiction.

Thus the number of edges on the boundary of region
R〈i〉 is at most the number of edges on the boundary
of region R〈〈i〉〉 plus twice the number of edges in the
furthest-point Voronoi diagram for the vertices of Di.
The theorem then follows since each edge of V 4(D)
bounds two regions R〈〈i〉〉 and R〈〈j〉〉. �

6 Extension to subsets of closest points

In this section, we look at an extension of the Voronoi
diagram which assigns every point in the plane to a cell,
including points in the neutral zone.

Equation (1) can be generalized so that each point in
a cell is guaranteed to be at least as close to a site in a

particular subset of sites as to any other site. For a set
S ⊆ {1 . . . n}, we define the cell for S (denoted R〈S〉) as

R〈S〉 =
⋃
i∈S

[⋂
j /∈S

H(i, j)
]
−

⋃
S′⊂S

R〈S′〉

where R〈∅〉 = ∅. See Figure 2 for an example of such
a guaranteed subset Voronoi diagram, which we denote
by V {}(D).

Figure 2: Guaranteed subset Voronoi diagram

The cells of V {}(D) are not necessarily connected. In
Figure 2, for instance, the two shaded regions belong to
the same cell.

Lemma 8 The number of edges in a guaranteed subset
Voronoi diagram of n uncertain discs is O(n4).

Proof. The proof follows immediately from the fact
that each edge in V {}(D) is an edge in the arrangement
of the 2 ·

(
n
2

)
possible hyperbolic arcs 〈i, j〉. �
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The Solution Path of the Slab Support Vector Machine

Michael Eigensatz∗ Joachim Giesen† Madhusudan Manjunath‡

Abstract

Given a set of points in a Hilbert space that can be
separated from the origin. The slab support vector
machine (slab SVM) is an optimization problem that
aims at finding a slab (two parallel hyperplanes whose
distance—the slab width—is essentially fixed) that en-
closes the points and is maximally separated from the
origin. Extreme cases of the slab SVM include the
smallest enclosing ball problem and an interpolation
problem that was used (as the slab SVM itself) in sur-
face reconstruction with radial basis functions. Here we
show that the path of solutions of the slab SVM, i.e.,
the solution parametrized by the slab width is piecewise
linear.

1 Introduction

Data structures used in fields like graphics, visualization
and learning often have many free parameters. In most
cases a good choice of these parameters is not obvious.
Computational geometry was facing similar problems:
for example when using alpha shapes [Ede95] for surface
reconstruction or in bio-geometric modeling the ques-
tion arises as to what value to choose for alpha. Com-
putational geometry [Ede95, ELZ02, GCPZ06] gave an
answer to this question that can be seminal also for the
aforementioned areas of computer science, namely, do
not compute the solution for a fixed more or less well
chosen value of the parameter, but compute the whole
spectrum of structures and then look for good solutions
in this spectrum. One method to determine a good
structure is topological persistence pioneered by Edels-
brunner, Harer and Zomorodian [ELZ02].

Here we investigate an optimization problem that has
its roots in machine learning and was also applied in
various forms to the surface reconstruction problem.
The problem is called slab support vector machine (slab
SVM) [SGS04] and takes as input a set of data points
in a Hilbert space that can be separated from the ori-
gin and aims at finding a slab (two parallel hyperplanes
whose width is essentially fixed as δ > 0) that encloses
the points and is maximally separated from the origin.

∗Applied Geometry Group, ETH Zürich,

eigensatz@inf.ethz.ch
†Institut für Informatik, Friedrich-Schiller-Universität Jena,

giesen@minet.uni-jena.de
‡Max-Planck Institut für Informatik, manjun@mpi-inf.mpg.de

The slab SVM has found applications in surface re-
construction [SGS04], and quantile estimation and nov-
elty detection [SS02]. In these applications the data
points reside in d-dimensional Euclidean space but are
mapped by a feature map into another (often infinite
dimensional) Hilbert space. The structure of the slab
SVM is such that the feature map does not have to
be given explicitly, but only implicitly through a posi-
tive kernel: the dual optimization problem of the slab
SVM depends only on the pairwise inner products of
the data points. A positive kernel can be used to re-
place these inner products without changing the nature
(convex quadratic program) of the optimization prob-
lem.

The parameter we are interested in is δ, which essen-
tially fixes the width of the slab. In the applications,
it is difficult to tell beforehand what a good choice of δ
is. Hence in the spirit of the computational geometry
approach we want to compute the solution to the slab
SVM for all values of δ. Once we have this spectrum of
solutions other methods can be employed to find good
choices for δ. Here we do not want to discuss how such
methods could look like, but focus on the structure of
the solution spectrum. We show that the solution path
of the slab SVM, i.e., the solution parametrized by δ
is piecewise linear. Our arguments provide a complete
geometric characterization of the turning points (nodes)
of the solution path.

Our results are in spirit similar to results of Hastie
et al. [HRTZ04] who obtained the piecewise linearity
of the solution of the classification support vector ma-
chine [SS02]. Though both results give piecewise linear
solution paths, the parameters are different in nature
and so are the means to establish the results. Our proof
is of geometric nature, whereas Hastie et al. use alge-
braic arguments.

2 The slab SVM

Given data points X = {x1, . . . , xn} ⊂ H, where H
is a Hilbert space with inner product 〈·, ·〉, such that
the data points can be separated from the origin by a
hyperplane, i.e., there exists w ∈ H\{0} and ρ 6= 0 such
that

〈w, xi〉 ≥ ρ for all i = 1, . . . , n.

The distance of the hyperplane {x ∈ H : 〈w, x〉 = ρ}
to the origin of H is given as ρ/‖w‖, where the norm of
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w in H is defined as usual by ‖w‖ =
√

〈w, w〉.
The slab SVM is the following convex quadratic op-

timization problem that aims at finding the slab (the
space between two parallel hyperplanes) with width
δ/‖w‖ that contains all the data points and minimizes
1

2
‖w‖2−ρ, i.e., essentially maximizes the distance of the

slab to the origin (see also Figure 1):

minw,ρ
1

2
‖w‖2 − ρ

s.t. ρ ≤ 〈w, xi〉 ≤ ρ + δ for all i = 1, . . . , n

o

o

w

o

o

o

o

o

||w||ρ/

.

||w||(ρ+δ)  /

Figure 1: The geometric set-up for the slab SVM.

Note that the slab SVM problem is always feasible
since (w, ρ) = (0, 0) is always contained in the constraint
polytope.

The Lagrangian dual to this problem can be derived
from the saddle point condition for the Lagrangian

L(w, ρ, α, β) =
1

2
‖w‖2 − ρ−

n
∑

i=1

αi(〈w, xi〉 − ρ)

+

n
∑

i=1

βi(〈w, xi〉 − ρ− δ),

where αi, βi ≥ 0. The saddle point condition gives
∂L/∂w = 0 which implies w =

∑n

i=1
(αi − βi)xi and

∂L/∂ρ = 0 which implies
∑n

i=1
(αi−βi) = 1 from which

the dual follows

minα,β
1

2

∑n
i,j=1

(αi − βi)(αj − βj)〈xi, xj〉+ δ
∑n

i=1
βi

s.t. αi, βi ≥ 0 for all i = 1, . . . , n.
∑n

i=1
(αi − βi) = 1

In most applications [SS02] the data points are ob-
tained from applying a feature map φ to input data
points y1, . . . , yn ∈ R

d, i.e., xi = φ(yi) ∈ H, where the
feature map is not given explicitly, but implicitly in form
of a positive kernel function k : R

d × R
d → R, i.e.,

〈xi, xj〉 = 〈φ(yi), φ(yj)〉 = k(xi, xj).

and H is the kernel reproducing Hilbert space. Since
the dual of the slab SVM only depends on the inner
products of the data points, we can replace 〈xi, xj〉 by
k(xi, xj). A popular positive kernel is the Gaussian

k(xi, xj) = exp

(

−
‖xi − xj‖

2

2σ2

)

,

which is an example of a so called radial basis function
kernel, i.e., a kernel that only depends on the distance
‖xi − xj‖. The data points xi = φ(yi) are linearly in-
dependent and the Gram matrix

(

k(xi, xj)
)

associated
with the Gaussian kernel is positive, i.e., it has full rank
and thus is invertible. In the following we always assume
that the data points xi are linear independent.

3 Surface reconstruction

Figure 2: An example surface reconstruction (Max-
Planck Head: 2022 points) using the slab SVM for a
fixed (small) value of δ.

Let us briefly recapitulate how the slab SVM can be
used directly for surface reconstruction [SGS04]. Given
are sample points y1, . . . , yn ∈ R

3 from a smooth surface
embedded into R

3. These sample points are mapped
into the feature space associated with the Gaussian ker-
nel. The reconstruction is given implicitly as f−1(0),
where f : R

3 → R is the kernel expansion

f(x) = 〈w, φ(x)〉−ρ =

n
∑

i=1

(αi−βi) exp

(

−
‖xi − x‖2

2σ2

)

−ρ,

where x ∈ R
3, φ(·) is the feature map associated with

the Gaussian kernel, and α and β are the solutions to
the dual SVM. Note that ρ can also be computed from
the solution to the slab SVM (or its dual). See Figure
2 for an example and also note that especially in the
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presence of noise one probably does not want to have an
interpolating solution (as one gets it from the slab SVM
for δ = 0 and a related method proposed in [CBC+01]),
but would like to allow small slack in terms of a small
value of δ > 0. Note that the slab SVM works the same
for surface reconstruction in dimensions beyond three.

4 States and events

For a given value of δ ∈ (0,∞) let (w, ρ) be the optimal
solution of the slab SVM. We associate states with the
data points xi, i = 1, . . . , n:

(1) lower supporting, if 〈w, xi〉 = ρ

(2) upper supporting, if 〈w, xi〉 = ρ + δ

(3) non-supporting, if neither lower- nor upper sup-
porting

An event occurs when while decreasing δ the state
of any data point changes. We distinguish two types
of events: a supporting data point becomes non-
supporting, or a non-supporting data point becomes
supporting. We call the first type of event a lose event
and the second type of event a gain event.

5 The Solution Path

From the constraints
∑n

i=1
(αi − βi) = 1 and αi, βi ≥ 0

of the dual of the slab SVM we can conclude that there
exists αi > 0. This in turn allows us to conclude using
the Karuhn-Kuhn-Tucker condition αi

(

〈w, xi〉 − ρ
)

= 0
that for any δ there always exists a lower supporting
data point. For a given δ′, let xi be a lower supporting
data point. The continuous dependence of the coeffi-
cient αi on the parameter δ implies that αi > 0 for
some neighborhood of U(δ′) ⊂ (0,∞). Hence xi is a
lower supporting data point for all δ ∈ U(δ′). We use
this insight to locally, i.e., for δ ∈ U(δ′), transform the
slab SVM into an equivalent distance problem. Note
that we have ρ = 〈w, xi〉. Thus we can write the objec-
tive function of the slab SVM as

1

2
‖w‖2 − ρ =

1

2
‖w‖2 − 〈w, xi〉 =

1

2
‖w − xi‖

2 −
1

2
‖xi‖

2.

Since 1

2
‖xi‖

2 is constant, i.e., does not depend on w or
ρ, we can drop it from the objective function. This gives
if we set w′ = w− xi and reformulate the constraints in
the new variable w′ accordingly the following version of
the slab SVM:

minw,ρ
1

2
‖w′‖2

s.t. 0 ≤ 〈w′, xj − xi〉+ 〈xi, xj〉 − ‖xi‖
2 ≤ δ

for j 6= i

This problem asks for the shortest vector w′ in the con-
straint polytope or equivalently the distance of the con-
straint polytope to the origin. Note that this distance
problem is also always feasible, i.e., the constraint poly-
tope does not become empty. To see this observe that
w′ = −xi is always in the polytope. The gain and lose
events can be nicely illustrated for the distance problem,
see Figure 3.

w’ w’

Figure 3: The lower (non-moving) constraints are shown
by thick solid lines and the upper (moving) constraints
are shown by thin solid lines. On the left: when the
moving constraint hits w′ this constraint becomes bind-
ing (gain event) and the solution is no longer stationary.
On the right: once the moving constraint becomes or-
thogonal to w′ we lose the non-moving constraint (lose
event).

The formulation of the slab SVM as a distance prob-
lem allows to make some observations.

Lemma 1 The solution to the slab SVM is unique.

Proof. There is always a unique point in the convex
constraint polytope of an equivalent distance problem
that realizes the distance of the polytope to the ori-
gin. �

Lemma 2 There exists a δ0 such that for all δ > δ0

the solution to the slab SVM is stationary, i.e. does not
vary with δ.

Proof. The proof is via the distance problem. Let xi

be one of the (lower) supporting data points of the open
slab SVM. We use this xi to formulate the distance
problem. The solution of the distance problem at δ = ∞
is finite (we can conclude this from the properties of the
open slab SVM). Coming from small values of δ the
constraint polytopes of the distance problem for these
values of δ sweep the constraint polytope of the distance
problem at δ = ∞. Since the solution to the latter is
finite the sweep needs to hit the point that realizes this
finite distance at some finite value δ0 of δ. That is, for
all δ > δ0 the point xi is lower supporting for the slab
SVM and we can conclude that the solution of the slab
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SVM can be derived from this stationary solution of the
distance problem as w = w′ + xi and ρ = 〈w, xi〉. �

Lemma 3 For all 0 < δ < δ0 the slab SVM has an
upper supporting data point.

Proof. By the proof of Lemma 2 we have that at δ0, the
slab SVM needs to have an upper supporting data point,
because only the upper constraints sweep the constraint
polytope of the distance problem at δ = ∞. Assume
there exists 0 < δ < δ0 such that at δ the slab SVM
has no upper supporting data point. Let ∆ be the set
of all δ with this property and let δ′ = sup ∆. At δ′

the slab SVM needs to have an upper supporting data
point. To see this note that there exists a data point xj

that is upper supporting at δ+ε for all sufficiently small
ε > 0. At δ′ we can derive a distance problem that is
equivalent to the slab SVM for some neighborhood of δ′.
The data point xj needs to be upper supporting also for
this distance problems at δ′ + ε for all sufficiently small
ε > 0. The constraint hyperplane given by

〈w′, xj − xi〉+ 〈xi, xj〉 − ‖xi‖
2 = δ′ (1)

for the data point xj has all the constraint hyperplanes
given by

〈w′, xj − xi〉+ 〈xi, xj〉 − ‖xi‖
2 = δ′ + ε (2)

on one side. The latter hyperplanes all contain a point
that realizes the solution of the corresponding distance
problem. By the continuity of the distance problem in
δ any sequence in the latter point set converges to the
solution of the distance problem at δ′. Hence this solu-
tion needs to be contained in the constraint hyperplane
given by Equation (1) and xj is an upper supporting
data point for both the distance- and the slab SVM
problem at δ′. By our assumption there needs to ex-
ist some neighborhood U of δ′ such that the distance
problem does not have an upper supporting data point
for all δ ∈ U ∩ (0, δ′). This means that the family of
hyperplanes given by Equation (2) sweeps with ε → 0,
i.e., at δ′, out of the constraint polytope given by the
constraints

〈w′, xj − xi〉+ 〈xi, xj〉 − ‖xi‖
2 = 0.

But this can only happen if the constraint polytope of
the distance problem grows while sweeping the hyper-
plane given by Equation (2) from δ′ + ε to δ′− ε, which
is a contradiction. �

Corollary 1 For all 0 < δ < δ0 the solution to the slab
SVM is non-stationary.

We can conclude that the solution path of the slab
SVM is piecewise linear (since w′ the point that realizes
the distance of the constraint polytope to the origin is
a piecewise linear curve parametrized by δ).

Theorem 4 The solution path of the slab SVM, i.e.,
the optimal coefficients αi and βi (in the dual) and w
and ρ (in the primal) are piecewise linear functions of
δ.

Corollary 2 The optimal solution w to the slab SVM
is a piecewise linear path that connects the point closest
to the origin on the convex hull (solution at δ = ∞) of
the data points with the point closest to the origin on
the affine hull (solution at δ = 0) of the data points.

6 Conclusions

Theorem 4 characterizes the solution path, but does
not immediately suggest an algorithm to compute
it. But algorithms for parametrized convex quadratic
programs (such as the slab SVM) are known, see for
example [Rit81].
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Adaptive Searching in One and Two Dimensions

Reza Dorrigiv∗ Alejandro López-Ortiz∗

1 Introduction

Searching in a geometric space is an active area of re-
search, predating computer technology. The applica-
tions are varied ranging from robotics, to search-and-
rescue operations in the high seas [24, 23] as well as
in land, such as in an avalanche [5] or an office space
[12, 7, 13], to scheduling of heuristic algorithms for
solvers searching an abstract solution space for a specific
solution [16, 17, 22, 2, 19]. Within academia, the field
has seen two marked boosts in activity. The first was
motivated by the loss of weaponry off the coast of Spain
in 1966 in what is known as the Palomares incident and
of the USS Thresher and Scorpion submarines in 1963
and 1966 respectively [24, 26]. A second renewed thrust
took place in the late 1980s when the applications for
autonomous robots became apparent.

Geometric searching has proved a fertile ground
within computational geometry for the design and anal-
ysis of search and recognition strategies under various
initial conditions [14, 12, 6, 7, 8, 18, 20].

The basic search scenarios consist of exploring a one
dimensional object, such as a path or office corridor,
usually modeled as the real line, and of exploring a two
dimensional scene, such as a room or a factory floor,
usually modelled as a polygonal scene. However, in spite
of numerous advances in the theoretical understanding
of both of these scenarios, so far such solutions have
generally had a limited impact in practice.

Over the years various efforts have been made to ad-
dress this situation, both in terms of isolated research
papers attempting to narrow the gap, as well as in
organized efforts such as the Algorithmic Foundations
of Robotics conference and the Dagstuhl seminars on
on-line robotics which bring together theoreticians and
practitioners. From these it is apparent that the cost
model and hence the solutions obtained from theoretical
analysis do not fully reflect real life constraints. Several
efforts have been made to resolve this, such as including
the turn cost, the scanning cost, and error in navigation
and reckoning [9, 10, 15, 20, 18].

In this paper we address one more shortcoming of
the standard model. Consider for example a vacuuming
robot—such as Roomba(TM). Such a robot explores the
environment using sophisticated motion planning algo-
rithms with the goal of attaining complete coverage of

∗Cheriton School of Computer Science, University of Waterloo,

{rdorrigiv,alopez-o}@cs.uwaterloo.ca

the floor surface within a reasonable amount of time.
It is not hard to devise worst case floor plans (such as
complex mazes) which would not be covered very effi-
ciently. In practice this is not a concern since (i) most
rooms are relatively simple and (ii) if the robot ever en-
counters such a complex scene a drop in performance is
only to be expected and users would not mind a severe
degradation in performance. This naturally leads to the
concept of adaptive algorithms, in which on simpler in-
puts the robot must perform more efficiently than on
more complex ones.

In this paper we consider adaptive analysis of two
basic geometric primitives: searching on the real line
and looking around the corner.

Searching on the real line consists of finding a tar-
get t on the real line located at an unknown distance
d (in either direction) from a search robot. The robot
detects t upon contact. The optimal strategy visits the
rays under a doubling strategy with competitive ratio
of 9 [4, 11, 3, 21]. We refer the reader to the survey of
Alpern and Gal [1] for a thorough discussion. However
upon being presented by the optimal doubling strategy
practitioners routinely report that they find the answer
non-intuitive and generally “not optimal”. This holds
for the optimal strategy for either the average or the
worst case. There are several non-mutually exclusive
explanations for this disparity. In particular we incorpo-
rate the observation that in some settings, exploration
is a valuable task in which case the goal is to simulta-
neously minimize the time to the target, and maximize
the amount of information gained during the search. For
this case we obtain an optimal strategy that is, subjec-
tively, more pleasing to practitioners.

For the second case study we consider searching
around a corner. Icking et al. [14] provided an algo-
rithm with competitive ratio c ≈ 1.21218 and proved
that this is the best competitive ratio possible. We ex-
tend this result by applying adaptive analysis to this
problem.

2 Searching on the Real Line

Without loss of generality, we assume the robot searches
starting from the origin x1 units to left, then it returns
to the origin and moves past it x2 units to the right. In
general in the ith phase, it goes xi units from origin to
left or right (depending on the parity of i) and returns
to the origin. The search ends when the robot finds the
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target. In the doubling strategy we have xi = 2i−1. In
the standard cost model, we minimize the ratio of the
distance travelled by the robot to the straight distance
from the target to the origin, which is termed the com-
petitive ratio. As stated before, the doubling method
has competitive ratio 9, which is optimal.

In order to reflect the “waste” of robot when travers-
ing a region that has already been explored, we pro-
pose a dual cost model. It costs one unit whenever the
robot traverses one unit of distance of unknown ter-
ritory, while it costs c units (c ≥ 1) when the robot
traverses a region that has already been explored.

In order to find the worst case for doubling method
under the new cost model, assume that the target is
located at distance 2k + ε from the origin, for some
integer k. Therefore robot will find the target at phase
k + 3. For 3 ≤ i ≤ k + 2, let C(i) be the cost robot
incurs at phase i. At phase i, the robot goes 2i−1 units
away from the origin and then returns to the origin.
Of the first 2i−1 units, 2i−3 units are already explored
and 2i−1−2i−3 = 3×2i−3 units are newly explored. All
2i−1 units on the robot’s return to the origin are already
explored. Therefore we have C(i) = 2i−3(5c + 3). Thus
the total cost of the first k + 2 phases is (1 + c) + (2 +

2c)+
∑k+2

i=3 2i−3(5c + 3) = (5× 2k− 2)c+3× 2k. In the
last phase, the robot finds the target at distance 2k + ε,
incurring cost 2kc + ε. Thus the competitive ratio of

doubling is (6×2k−2)c+3×2k+ε
2k+ε which becomes arbitrarily

close to 6c + 3 as k grows. Note that for c = 1 we get
the standard competitive ratio of 9.

Observe that the doubling might no longer be the
optimal strategy under the new model. As usual we
consider the family of geometric search strategies Ar:
we have xi = ri−1 for an arbitrary real number r > 1
(the doubling strategy corresponds to A2). Using argu-
ments similar to the analysis of the doubling method,
the cost of robot at phase 3 ≤ i ≤ k + 2 is C(i) =
ri−3((r2 + 1)c + (r2 − 1)) and the total cost of Ar

is (r + 1 + (r2 + 1)( rk−1
r−1 ) + rk)c + (r2 − 1)( rk−1

r−1 ) +
ε. Thus the competitive ratio of Ar for this case is

CR(Ar) =
(r+1+(r2+1)( r

k
−1

r−1
)+rk)c+(r+1)(rk−1)+ε

rk+ε
, which

becomes arbitrarily close to ( r2+r
r−1 )c + r + 1 as k grows.

Through symbolic manipulation, we find out that the

competitive ratio is minimized for r = 1 +
√

2c+2c2

c+1 . As

c goes to ∞, this optimal value of r goes to 1 +
√

2 =
2.414213 . . . with a search cost of (3+2/

√
2)c+2+

√
2 ≈

5.83c+ 3.41. This improves over the 6c + 3 cost of dou-
bling for large c.

Furthermore, this is optimal, as it can be shown us-
ing the Gal-Schuierer functional theorem [11, 25] as fol-
lows. For any given strategy, let X = x0, x1, x2, . . .
denote the (infinite) sorted sequence of turn points
incurred by the strategy. Then using ideas similar
to [22] we can lower bound the competitive ratio by

CR ≥ cost(ALG)/cost(OPT ), where cost(ALG) =
(x0+cx0)+(x1+cx1)+(x2−x0+cx0+cx2)+. . .+(xk+1−
xk−1 + cxk−1 + cxk+1) + cxk, and cost(OPT ) = xk.
Therefore, we have that

CR(X, k) ≥ (c + 1)
∑k+1

i=0 xi + (c− 1)
∑k−1

i=0 xi + cxk

xk
(1)

Let X+i = (xi, xi+1, . . .) denote the suffix of a se-
quence X = (x0, x1, . . .) starting at xi.

Theorem 1 ([25]) Let X = (x0, x1, . . .) be a se-
quence of positive numbers, r an integer, and a =
lim supn→∞(xn)1/n, for a ∈ R ∪ {+∞}. If Fk, k ≥ 0,
is a sequence of functionals which satisfy
(1) Fk(X) only depends on x0, x1, . . . , xk+r,
(2) Fk(X) is continuous, ∀xi > 0, with 0 ≤ i ≤ k + r,
(3) Fk(αX) = Fk(X), ∀α > 0,
(4) Fk(X + Y ) ≤ max(Fk(X), Fk(Y )), and
(5) Fk+i(X) ≥ Fk(X+i), ∀i ≥ 1,
then sup0≤k<∞ Fk(X) ≥ sup0≤k<∞ Fk(Ar).

It is not hard to verify that the hypothesis of the theo-
rem holds for the modified cost model, and hence it suf-
fices to consider xi of the form ri−1 in the expression for
CR(X, k) above. Note that the left-hand side of inequal-
ity 1 above is precisely the expression we derived when
upper-bounding the competitive ratio. Therefore, sub-
stituting r with 1+

√
2 yields a lower bound on CR(X, k)

which is identical to the upper bound, which in turn im-
plies that the geometric strategy with r = 1 +

√
2 is in

fact optimal.
We can extend our dual cost model to cases in which

c < 1, i.e., revisiting is less expensive than discovering.
As suggested by an anonymous reviewer, the case c = 0
can also be used to model two sequential communicat-
ing searchers. If c < 0, the robot can reduce its cost
by revisiting the discovered territories forever and no
optimal strategy exists. For 0 < c < 1, we can use an
analysis analogous to the case c ≥ 1 to show that Ar

with r = 1 +
√

2c+2c2

c+1 is optimal. For c = 0, the optimal
strategy is Ar with r = 1 + ε for a very small constant
ε and this leads to the competitive ratio 2 + ε.

3 Looking Around a Corner

In this particular case we consider the setting in which
the robot is exploring a man made setting in which there
is a preferential occurrence for orthogonal and near or-
thogonal angles. We wish to explore the change in the
nature of the solution when this assumption is made.

We follow the same approach as [14] and formulate
the problem using a differential equation. Therefore we
use similar terminology and notation and just highlight
the differences between the methods; refer to [14] for
omitted details. First we formally define the problem.
Figure 1 shows a typical instance of the problem. The
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ϕ

O

W

M(ϕ)

sin(ϕ)

1

Figure 1: A typical instance of the corner problem.

corner is placed at the origin O and one of its halflines
coincides with the negative y axis. The other halfline of
the corner makes an angle 0 ≤ ϕ ≤ π with the positive
y axis. A mobile robot is located at point W = (0,−1)
and is equipped with an on-board vision system facing
O. When ϕ > 0, the robot cannot see the other halfline
(wall) of the corner and his goal is to discover that (in-
visible) halfline by minimum movement. The robot sees
the invisible line the first time it visits any point on the
prolongation M(ϕ) of the invisible line. Let a(ϕ) be the
distance between W and M(ϕ). We have

a(ϕ) =

{

sin ϕ if 0 ≤ ϕ ≤ π/2

1 if π/2 < ϕ ≤ π
(2)

If the robot knows ϕ then it can discover the invisible
wall by the optimal movement a(ϕ). However this is not
the case and the robot should come up with a strategy
S that works for all 0 ≤ ϕ ≤ π. Let AS(ϕ) be the length
of the path generated by S from W to the first point on
M(ϕ). Then the competitive function of S is defined as

fS(ϕ) = AS(ϕ)
a(ϕ) and the competitive factor of S is defined

as cS = supϕ∈(0,π] fS(ϕ).
In practical robot navigation most corners have angles

close to π/2 and usually we do not have angles close to
0 or π. As a first attempt for applying adaptive analysis
ideas we consider d(ϕ) = 1/

√
sin ϕ as difficulty measure.

Figure 2 shows the behaviour of d(ϕ) for 0 < ϕ < π.
We normalize the competitive function further by d(ϕ)
and the new competitive function is defined as gS(ϕ) =

fS(ϕ)
d(ϕ) =

{

AS(ϕ)√
sin ϕ

if 0 ≤ ϕ ≤ π/2

AS(ϕ)
√

sinϕ if π/2 < ϕ ≤ π

Icking et al. [14] describe the strategies by curves of
form S = (ϕ, s(ϕ)) in polar coordinates about O that
satisfy certain properties, e.g., s(0) = 1. They show
that the optimal competitive strategy is given by the
solution to

fR(ϕ) =
AR(ϕ)

sinϕ
= c,

for all ϕ ∈ [0, π/2] and for some constant c (the smallest
c if there are several solutions). For our cost model, the

2

4

6

8

10

0.5 1 1.5 2 2.5 3
x

Figure 2: Plot of d(ϕ) = 1√
sin ϕ

for 0 < ϕ < π.
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Figure 3: Robot’s Optimal Path in the New Model.

corresponding equation becomes gR(ϕ) = AR(ϕ)√
sin ϕ

= c.

We have AR(ϕ) = c
√

sin ϕ ⇒ c cos ϕ
2
√

sin ϕ
= A

′

R(ϕ) =
√

r′2(ϕ) + r2(ϕ) ⇒ r′(ϕ) = −
√

c2 cos2 ϕ
4 sin ϕ − r2(ϕ). We

take the negative square root because in an optimal
strategy the robot should always come closer to the cor-
ner. By replacing r(ϕ) by cu(ϕ) we get the differential
equation

u′(ϕ) +

√

cos2 ϕ

4 sinϕ
− u2(ϕ) = 0, (3)

with initial condition u(0) = 1/c. Therefore, our prob-
lem reduces to:

Problem Find the minimum c > 1, such that the or-
dinary differential equation (3) has a solution on some
interval [0, σ] ⊆ [0, π/2], subject to the following con-
straints:

u(0) = 1/c u(ϕ) > 0 for ϕ ∈ [0, σ] u(σ) = 0

Since this type of differential equations generally do
not have a closed form we use numerical methods to
compute the solution c ≈ 1.08. The strategy with this
competitive factor is shown in Figure 3. We can prove
the optimality of this strategy using arguments analo-
gous to [14].
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Figure 4: Robot’s optimal path in the previous model.

The optimal strategy in the standard model is shown
in Figure 4. It has competitive factor ≈ 1.21 [14]. Ob-
serve that since less weight is given to small angles the
solution takes a shorter path to reach sightlines for an-
gles around π/4.
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Competitive Search for Longest Empty Intervals

Peter Damaschke∗

Abstract

A problem arising in statistical data analysis and pat-
tern recognition is to find a longest interval free of data
points, given a set of data points in the unit interval. We
use the inverse length of the empty interval as a parame-
ter in the complexity bounds, since it is small in statisti-
cally relevant cases. For sorted point sets we get nearly
optimal strategies. While the asymptotic complexities
are trivial, achieving an optimal number of operations
appears to be difficult. Constant factors can be of prac-
tical interest for huge data sets. We derive determin-
istic and randomized upper and lower bounds. Match-
ing bounds and smooth trade-offs between the different
operations (reads, comparisons, subtractions) are open
questions. For unsorted point sets, the complexity is at
least linear. Therefore we also use statistical inference
to get approximate solutions in sublinear time.

1 Introduction

Given a set of n data points in a finite-size part of a
geometric space, we call a subset of this space (with
prescribed shape) free of data points an empty region.
Searching for largest empty regions is a natural prob-
lem in, e.g., data mining [10]. It has been considered
for rectangles in the plane [1, 2, 5, 8, 11] and boxes in
d dimensions. Usually, the complexity of algorithms is
expressed as a function of input size n. However, empty
regions are statistically relevant only if they are large
compared to the expected size if the data point set were
drawn from a uniform distribution. Then, large empty
regions may be found faster than in the worst case. Thus
it is sensible to measure complexity as a function of both
n and a parameter inverse to the size of the empty re-
gion. Here we study, as a first step, the 1-dimensional
case: empty intervals between n data points in the unit
interval. While the worst-case complexity is trivially
Θ(n), the parameterized problem has a different nature.
Still, its optimal asymptotic complexity is easy to de-
termine by standard arguments, but the exact number
of operations appears to be a surprisingly difficult ques-
tion. Constant factors make a difference in practice,

∗Department of Computer Science and Engineering, Chalmers
University, 41296 Göteborg, Sweden, email: ptr@cs.chalmers.se.
Supported by the Swedish Research Council (Vetenskapsr̊adet),
grant no. 2007-6437, “Combinatorial inference algorithms – pa-
rameterization and clustering”.

when huge data sets are processed. Analyzing the num-
ber of operations (e.g., comparisons) without ignoring
constant factors is quite common for sorting, searching,
and order statistics.

We state our problem Longest Empty Interval
more formally. A sorted set of real numbers 0 = x0 <
x1 < . . . < xn = 1 is given. An empty interval is an
interval delimited by two consecutive xi, xi+1. We can
access xi through index i in constant time. (The xi

are either stored in an array or delivered by an oracle.)
Our goal is to find a longest empty interval, that is,
one with largest difference maxi(xi+1 − xi). This can
be trivially done by n read operations (reads for short),
subtractions, and comparisons, respectively, and linear
time is optimal due to an obvious adversary argument.
Define r := 1/maxi(xi+1− xi). Supposing that a “very
long” empty interval is expected, with r ¿ n, we want
an algorithm that takes advantage of the small r.

Throughout the paper, logarithms are base 2. We call
the xk values data points. In our complexity bounds we
neglect minor-order terms. To avoid clumsy notation we
also silently suppress factors 1 + o(1) where o(1) tends
to 0 as n grows.

We show that Longest Empty Interval can be
solved optimally with r log(n/r) reads. However, in
order to keep the number of other operations within
O(r log(n/r)) we need some more reads. We have to
add factor 2 (deterministic) or 1.4427 (randomized). We
also study the case of unsorted data point sets, called
Longest Empty Interval (unsorted). Amazingly,
n and r almost switch their roles: We give an algo-
rithm with roughly n log r comparisons, while the num-
ber of reads is trivially n. We remark that a rather obvi-
ous RAM algorithm using n equidistant buckets solves
Longest Empty Interval (unsorted) in O(n) time,
but for comparison-based algorithms Θ(n log r) is opti-
mal, and the simple scheme also fails for similar prob-
lems in higher dimensions. The problem is also known
as max gap and has an Ω(n log n) lower bound in the al-
gebraic decision tree model [3, 9]. Our algorithms do not
assume prior knowledge of r. Another practical advan-
tage is their simplicity, however, several details leading
to the constant factors are a bit tricky, and there re-
main gaps between the current upper and lower bounds.
In the unsorted case, approximate solutions, i.e., large
regions with few data points, can still be obtained in
sublinear time. We give a grid-based method to an-
alyze the performance of an obvious sampling method.
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The last section informally discusses extensions to other
geometric set families.

We conclude the introduction with some motivations
and further related literature.

In the sorted case one may argue that the longest
empty interval could have been computed on the fly,
when the set has been sorted, and this makes up a
minor part of the calculations. But what if distances
in our huge sorted point sets have not been computed
earlier, simply because there was no interest in such
analysis? Then we want to solve the actual problem
as efficiently as possible. There may also arise machine
learning problems where we know that some unknown
“empirical” function is monotone, values are not explic-
itly stored but can be queried by experiments, and we
are mainly interested in large jumps of this function.
In fact, Longest Empty Interval exhibits striking
similarities to a well-known problem in combinatorial
search: competitive group testing [6, 7].

In [4] we gave algorithms for finding at most s dis-
joint intervals of maximum total length that contain at
most p data points (s, p are fixed parameters). Finding
longest empty intervals in sorted point sets is part of
the preprocessing. Then, it is proved that the optimal
solutions are composed of such intervals from a certain
candidate set whose size depends only on s and p, and it
can be computed by dynamic programming. Only the
time for preprocessing depends on n, therefore we save
a significant fraction of the overall running time by log-
time preprocessing. In range prediction applications as
in [4], the data points come as previously sorted sets.

2 The Sorted Case

Theorem 1 Longest Empty Interval can be solved
using r log(n/r) reads, and this bound is optimal.

Proof. The optimality argument is omitted.
The proposed algorithm maintains, in a linked list,

the ordered sequence of data points xk already read.
In every step we take two consecutive data points in
this list with currently largest distance, say xa and xb,
read the data point xb(a+b)/2c and insert it in our list.
We stop as soon as a + 1 = b. Since xb − xa is the
maximal distance in the sequence, we have found the
longest empty interval at this moment.

To analyze the number of reads, think of this split-
ting process as a binary tree of segments of data points,
in the obvious sense. One read is associated with ev-
ery non-leaf node. Consider the tree upon termination
of the algorithm. A long node represents an interval of
length at least 1/r, other nodes are called short. We
prune the tree as follows. Any pair of short leaf siblings
is removed, making their parent a leaf. The parent node
is always long, since the algorithm has considered inter-
vals by decreasing lengths and stopped at 1/r. After

pruning, one read is associated with every long node.
Since the leaves represent pairwise disjoint intervals, at
most r leaves are long nodes. Every long non-leaf node
is on some path from the root to some long leaf (oth-
erwise we could continue pruning). It follows that all
reads are associated with nodes on paths to at most r
of the leaves. The path length in the tree is trivially
bounded by log n. At most r nodes have depth log r,
and the remaining subpaths from level log r to the leaves
have length at most log n− log r. Since at most r such
paths exist, we get the claimed bound. ¤

However we have to worry about the other operations,
too. Upon every read we also need two subtractions to
get the lengths of the two new intervals. Thus, the
method needs 2r log(n/r) subtractions. The catch is
that we need to know the longest interval for the next
split. Using a heap for at most r interval lengths (the
current leaves of the tree), we make, for every read, up
to 4 log r length comparisons to include the two new
interval lengths in the heap (and also 5 log r copy oper-
ations in the heap). Thus the method in this form costs
4r log r log(n/r) comparisons. An optimal number of
reads is good if data access is very expensive, e.g., if
data reside in some external memory. But usually the
costs of reads, comparisons, and subtractions should be
similar. Thus we will next aim at O(r log(n/r)) oper-
ations in total, with small constant factors. We now
propose a method that still uses binary search, but on
the range of values rather than indices. The number of
reads is only doubled.

Theorem 2 Longest Empty Interval can be solved
using 2r log(n/r) reads, 2r log(n/r) comparisons, and
O(r) subtractions.

Proof. In the jth phase (j = 1, 2, 3 . . .), we declare
every i/2j (i odd, 0 < i < 2j) a grid point. For every
new grid point g, binary search finds k with xk ≤ g <
xk+1. We call [xk, xk+1] the empty interval around g.
We compute the lengths of empty intervals around all
grid points and determine the longest one.

Let p be the exponent with 1/2p ≤ 1/r < 1/2p−1.
Then, a longest empty interval (of length 1/r) contains
a grid point in phase p. Since we have computed the
lengths of empty intervals around all grid points, 1/r
is among these values, and it is the maximum length.
Since every empty interval without grid points is en-
tirely between two consecutive grid points, its length is
at most 1/2p ≤ 1/r, hence we know at this moment that
a longest empty interval is found.

In order to find the empty interval around any new
grid point introduced in phase j, it suffices to do binary
search on the data points between the two neighbored
old grid points. (Recall that we already know the indices
of the leftmost and rightmost data point in this range.)

220
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Since all these search spaces do not overlap, we perform
2j−1 binary search procedures on a total of n elements in
phase j. By concavity of log, the total number of search
steps in phase j is maximized if all search spaces have
equal size n/2j−1. Summation over all phases yields the
number of operations:

∑p
j=1 2j−1(log n

2j−1 + O(1)) =
2p(log n− p + O(1)).

The worst case is 1/r < 1/2p−1, with an arbitrarily
small difference. Now 2p < 2r yields the upper bound of
2r log(n/r) search steps. Every search step requires one
read and one comparison. Subtractions are only used
to compute the lengths of empty intervals around the
O(r) grid points. Only O(r) comparisons are needed to
determine the maximum length among them. ¤

The worst case in the above analysis suggests that
randomization on the grid size might improve the con-
stant factor in the number of reads. In fact, we obtain:

Theorem 3 Longest Empty Interval can be solved
using an expected number of (1/ ln 2)r log(n/r) reads,
(1/ ln 2)r log(n/r) comparisons, and O(r) subtractions.
(Remark: 1/ ln 2 < 1.4427.)

Proof. We sample a random t ∈ [1, 2) according to
some probability density function q that we specify be-
low, multiply the grid point distances by t, and continue
deterministically as in Theorem 2. For formal clarity:
We construct the grid on an interval of length t including
[0, 1], but then we ignore all grid points outside [0, 1].

As in Theorem 2, let p be the exponent with 1/2p ≤

1/r < 1/2p−1. If t ≤ 2p/r then we also have
t/2p ≤ 1/r < t/2p−1. Now we argue, as in Theo-
rem 2, that an empty interval of length 1/r is identi-
fied in phase p. However, since grid points outside the
unit interval are ignored, we perform only 2j−1/t bi-
nary search procedures on disjoint subsets of a set of
n elements, in phase j. The total number of search
steps in phase j is maximized if all search spaces have
equal size tn/2j−1. Summing over all phases we get
1
t

∑p
j=1 2j−1

(

log tn
2j−1 + O(1)

)

= 2p

t (log n− p + O(1)).

If t > 2p/r then t/2p+1 ≤ 1/r < t/2p. Still we can
argue as above, but with p + 1 in the role of p, which
yields the result (2/t)2p(log n− p + O(1)).

Define x := 2p/r, and note that 1 ≤ x < 2.
We express the number of reads as (x/t)r log(n/r) if
t ≤ 2p/r, and 2(x/t)r log(n/r) if t > 2p/r. Specif-
ically, we use density q(t) = 1/(t ln 2) for sampling.

(In fact, q is a density function, due to
∫ 2

1
dt/t =

ln 2). Thus we obtain in front of r log(n/r) the fol-

lowing expected factor: x
(

∫ x

1
1
t q(t)dt + 2

∫ 2

x
1
t q(t)dt

)

=

x
ln 2

(

∫ x

1
1
t2 dt + 2

∫ 2

x
1
t2 dt

)

= x
ln 2

(

1
1 −

1
x + 2

x −
2
2

)

=
1

ln 2 . The other bounds follow as in Theorem 2. ¤

It remains open, even in the randomized case,
whether r log(n/r) reads are sufficient together with

O(1)r log(n/r) other operations. More generally, a
smooth trade-off between reads and comparisons would
be nice. Apparently this would require to “bridge”
somehow between binary search on indices and values.

3 The Unsorted Case

In order to solve Longest Empty Interval (un-
sorted), we have to read all n data points xi, since
any missing xi could fall into the largest empty interval
of the rest of the data set. Hence the number of reads is
not interesting. We focus on comparisons and subtrac-
tions. Trivially, sorting the xi solves the problem by
n log n comparisons and n subtractions, but for r ¿ n
we can avoid sorting and save almost a log n factor:

Theorem 4 Longest Empty Interval (unsorted)
can be solved using n(log r + 3) + 4r comparisons and
O(r) subtractions, and n log r is a lower bound for the
number of comparisons.

Proof. Again we perform binary search on [0, 1], insert-
ing grid points i/2j (i odd) in phase j, but this time we
divide the data points recursively into subsets situated
between any two neighbored grid points. If j phases are
needed, this costs altogether nj comparisons between
data points and grid points. After each phase we check
which of the mentioned subsets became empty. This
step is simple: To every new grid point we attach a dis-
crete variable that tells us whether some data point went
to the left and to the right subset. As soon as we get
some empty subset(s) in our partitioning, we know that
the largest empty interval is formed by the rightmost
data point in some nonempty subset and the leftmost
data point in the next nonempty subset to the right. All
candidates are found by n comparisons in total, because
the linear order of subsets is known, and minimum resp.
maximum search is done on disjoint subsets. If j is the
final phase, at most 2j subtractions yield the interval
lengths, and 2j further comparisons return the result.

Once more, let p be the exponent with 1/2p ≤ 1/r <
1/2p−1. We detect an empty subset when two grid
points hit the largest empty interval, which happens
in phase j ≤ p + 1. Hence j < log r + 2, furthermore
2j ≤ 2p+1 < 4r. Summation of comparisons in binary
search and candidate selection yields the bound. The
lower bound argument is omitted. ¤

It is not possible to find exactly the largest empty in-
terval in sublinear time. On the other hand, for statis-
tical inference and data mining, a relaxed optimization
goal is still appropriate: Find a large interval containing
at most a given fraction of data points (as in [4]). Then
we can sample from the data points and estimate the
point numbers in intervals. The question is how reliable
the inferred “sparse” intervals are.
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For technical reasons we further modify the problem
statement in two ways, without changing its “essence”:
Firstly, instead of a huge set of data points we assume an
unknown continuous probability distribution on [0, 1] to
sample from. Secondly, instead of searching for an inter-
val with given probability mass q and maximum length
L, we search for an interval with given L and minimum
q. (Note that the length of an interval is “observable”,
whereas probability mass can only be estimated.) Now
we can measure the performance simply by the compet-
itive ratio qA/q, where qA is the probability mass of the
interval selected by the algorithm, and q is the minimal
probability mass among all intervals of length L. We
get the following trade-off, with δ = qA/q − 1:

Theorem 5 Given some L < 1 and an unknown proba-
bility distribution on the unit interval, let q be the mini-
mum probability mass of the intervals of length L. Then
one can, in O(m log m) time, sample an expected num-
ber of m points and specify an interval of length L with
probability mass smaller than (1+ δ)q, subject to an er-
ror probability less than
h
q (1 + 1/δ) exp(−mq (δ−2/h)2

4+2δ ), for any positive δ and h.

Proof. Sample m points and take an interval A of
length L with least number of sampled points. The
probability of qA > (1+δ)q is limited by a union bound,
applied to a finite “grid” of intervals G so that every too
heavy A contains some G. Details are omitted. ¤

After a slight refinement of the proof we can replace
factor h

q with the smaller h
L . The free parameter h may

be choosen so as to minimize the error bound. In par-
ticular, taking h = mqδ gives the best asymptotics for

large m. Here we obtain m(1 + δ) exp(−mq δ2

4+2δ ). For
a given sample size m, the bound can also be used to
compute 1 + δ that are achievable with high probabil-
ity, depending on q. For very small q, these δ are large,
however, the “absolute” probability mass q(1+δ) of the
returned interval is more interesting than the competi-
tive ratio in this case.

4 Further Research: Other Geometric Set Families

It remains to improve the various complexity and prob-
ability bounds and to close the gaps. In this paper
we have focused on intervals, but the ideas are much
more general. In the final remarks we sketch some ex-
tensions to be considered in further research. The k
longest empty intervals, as needed in [4], can be found
by slight modifications of our strategies. Bounds are
similar, when 1/r is redefined as the length of the k-
th longest empty interval. For analoguous problems
in d-space, e.g., the largest empty (axis-parallel) box
in [0, 1]d, a scheme as in Theorem 4 still works, with
some relaxation: Since we lack total order, we cannot

get optimal results in o(n log n) time, but (1 − 1/s)-
approximations in O(n(log r+log s)) time, where 1/r is
the volume of the result. Hidden factors depend on d.
The sampling approach of Theorem 5 works similarly
for other geometric set families F , too, once there is an
efficient algorithm for finding large sets in F with few
data points. A technical difficulty of the analysis is to
define suitable “grids”: For any probability distribution
we need a finite family G so that every set of F has a
subset in G with small loss of probability mass. Granu-
larity can be chosen so as to minimize the union bound.
The cardinality of G appears as a factor, but loss affects
the negative exponent in the exp term. For unions of
s intervals (s fixed) we can proceed as in Theorem 5,
only the loss is multiplied by s, since we cut intervals
at each end, and the cardinality of G goes as (h/q)2s−1.
For boxes in d-space we can simply use slices in the d
axis directions. For families F like disks or balls, grid
construction is possible, too, but more complex, since
“heavy” borders of sets in F must be sliced.
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Erratum for “Disjoint Segments have Convex Partitions
with 2-Edge Connected Dual Graphs”

Nadia M. Benbernou∗ Erik D. Demaine† Martin L. Demaine‡ Michael Hoffmann§

Mashhood Ishaque¶ Diane L. Souvaine‖ Csaba D. Tóth∗∗

A set of n disjoint line segments in the plane and
a permutation π of the 2n segment endpoints define a
partition of the plane into convex faces: extend the seg-
ments beyond their endpoints one-by-one in the order
given by π until they hit another segment, a previous
extension, or infinity. If no three segment endpoints
are collinear, then every permutation π produces n + 1
convex faces.

For convex partition, the dual graph is defined where
the n + 1 convex faces correspond to the vertices, and
every segment endpoint corresponds to an edge between
the two incident faces on opposite sides of the segment.

In [1], we presented a partition algorithm (see below)
that, for a set S of n disjoint line segments, computes
a nonempty subset S′ ⊆ S and a convex partition P ′

of S′ such that each remaining segment in S \ S′ lies in
the interior of a face of P ′. We claimed that the dual
graph of P ′ is 2-edge connected. This claim is false.
Sometimes the dual graph of P ′ has a bridge (Fig 1).

Partition Algorithm. Input S.
• Pick a segment s0 = a0b0 with an endpoint b0 along

conv(∪S). Set s := s0, p := a0, γ := 0, S′ := {s0},
and i := 1.

• Repeat while p 6= b0:
Extend s beyond p into a ray −→r until it hits another
segment, a previous extension, or to infinity.

– If −→r hits a segment in S\S′, denote it by si =
aibi such that ∠(−→r ,

−−→
aibi) < 0 < ∠(−→r ,

−−→
biai),

let γi = γ + ∠(−→r ,
−−→
aibi), put S′ := S′ ∪ {si},

s := si, p := ai, γ := γi + π, and i := i + 1.
– Else, over all integers j, 0 ≤ j < i, such that

sj ∈ S′ has not been extended beyond bj , pick
one where the turning angle γj is maximal.
Set s := sj , p := bj , and γ := γj .
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Figure 1: Steps of our partition algorithm for five input
segments, and the resulting dual graph.

Specifically, the last phrase in the “proof” for our
Lemma 4 is false. It is not true that after a ray −→r hits
a segment aibi, no extension can hit −→r from the right
before the extension aibi beyond bi is drawn.
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Barbay, Jérémy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
Benbernou, Nadia . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15, 223
Benton, Alex . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
de Berg, Mark . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
Bhattacharya, Bhargab B. . . . . . . . . . . . . . . . . . . . . . . . . . 87
Bhattacharya, Binay . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .119
Bose, Prosenjit . . . . . . . . . . . . . . . . . . . . . . . . . . .55, 107, 167
Bremner, David . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

Cardinal, Jean . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
Chen, Eric Y, . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
Chitsaz, Hamid Reza . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179
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