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On Delaunay Oriented Matroids.

F. Santos B!

Abstract: The fact that for any finite set S of points in the Euclidean plane E? one can define
an oriented matroid in terms of how spheres partition it is well-known and easy to proof via the
lifting property of Delaunay triangulations (cf. [1] and [2]) . Here we give a new definition of
these oriented matroids (that we call Delaunay oriented matroids) which trivially generalizes to
arbitrary dimension and explicitly show the precise relation of Delaunay oriented matroids with
not only the usual Voronoi diagrams and Delaunay triangulations, but with Voronoi diagrams of
arbitrary order k.

Moreover we show that the existence of these Delaunay oriented matroids is not really
dependent on the lifting property of Delaunay triangulations but on some nice properties of
Euclidean spheres. In fact, we generalize the definition to smooth, strictly convex distances in
the plane (cf. §2) which have not the lifting property as we also show and to any metrics whose
“spheres” have some nice properties (cf. §3). The difference is that, in these cases, the resulting

orier.ted matroids can be non-realizable.

Keywords: Oriented matroid, Delaunay triangulation, Voronoi diagram, convex distance func-

tions.

1. The Euclidean case.

One of the fields where the theory of oriented matroids has an application is in Voronoi diagrams
and their dual Delaunay triangulations. If S is a finite set of points (to be called sites) in the Eu-
clidean d-space E¢, an oriented matroid can be constructed that contains the vicinity information
between points of S in much the same way that Delaunay triangulations do. For this reason we
call them Delaunay oriented matroids.

These oriented matroids where first introduced by Bland and Las Vergnas [2] (see also [1],
where their relation with Delaunay triangulations is explicitly mentioned) but there only the two
dimensional case is considered. In this section we give a general definition for arbitrary dimension

and study their main properties.

An oriented matroid in N points can be defined as a collection M of signed partitions
(C*,C%C™), called covectors, of a finite set S of cardinality N with the collection M verify-
ing some conditions. These conditions (or azioms) were devised to abstract how linear or affine
hyperplanes partition a finite set of points in the real vector space R? or in the Euclidean space
E“. Nevertheless some oriented matroids exist which cannot be realized in this way, the so-called
non-realizable or non-representable oriented matroids.

In the oriented matroids that we are going to consider, S is a finite set of points in the Euclidean
space E< and covectors describe how S is partitioned by Euclidean spheres and hyperplanes, where
a sphere is meant to be a scaled translation of the unit sphere. More explicitly:
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Definition 1.1 Let S be a finite set of points in E%. A signed partition C = (C_-,Co,C4) is
a covector of the Delaunay oriented matroid DOM(S) of § if either C = (C_-,Co,C4) = (8,5,0),
or there exists a sphere or a hyperplane C such that Co = C N S and C- and Cy lie respectively
in the two connected components of E¢\ C.

For this definition to make sense one must verify that the described set of covectors actually
satisfies the axioms for an oriented matroid. This can be made in an elegant way via an indirect
construction similar to the one used by Brown ([3]) to derive Delaunay triangulations from convex
hulls of a lifted set of sites. Consider the lifting map f : E* — E%*! defined by f(z1,...,%4) =
(zl, ,Zdy 2 Z7) and call S the image of § by f. Note that f(E?) is a paraboloidal hypersurface
in E‘“‘1 whose intersection with any hyperplane projects down onto a sphere or a hyperplane in
E?. From this it is easy to deduce that the covectors of DOM(S) lift to the signed partitions of
S obtained by hyperplanes in E%t!, and thus that DOM(S) coincides with the usual hyperplane
oriented matroid defined from §.

Incidentally, the fact that Euclidean Delaunay triangulations can be derived from lower en-
velopes of some lifted sites via the above construction will be referred to as the lifting property
of the Euclidean distance. The lifting property also shows that DOM(S) is a realizable oriented
matroid. Some additional properties of DOM(S) are summed in the following statement.

Proposition 1.2 Let S be a finite set of points in E¢ and let k be the dimension of the affine
subspace spanned by S. Then the Delaunay oriented matroid DOM(S) of S is acyclic, polytopal
and realizable. Its rank equals k + 1 if S is contained in a sphere and k + 2 otherwise.

The definition of the Delaunay oriented matroid of S in terms of spheres suggests its connection
with the Voronoi diagram of § and its dual the Delaunay diagram. We use the term Delaunay
diagram to refer to the topological dual of the Voronoi diagram (as opposed to the term Delaunay
triangulation which is not well defined if d +2 points of S are co-spherical). The Delaunay diagram
of S is a polyhedral complex in E¢ whose cells are the convex hulls < T > of those subsets T' of
S for which a sphere exists passing through all the points in T and having § \ T’ outside. Then,
for any set T C S whose convex hull is a cell in the Delaunay diagram of S, the Delaunay oriented
matroid DOM(S) must contain a covector (8,T,5 \ T).

Unfortunately the converse is not true and thus the Delaunay oriented matroid does not
contain all the information to recover the Delaunay diagram. In fact, a covector as described
above associated to a subset T' can be produced by a sphere passing through T but having S\ T
inside. Technically speaking we can say that the Delaunay oriented matroid DOM(S) completely
describes the Delaunay complez as introduced in [6], but not the Delaunay dxagra.m We recall
that the Delaunay complex is the convex hull of the lifted set S in E*+! that appears in the lifting
property. Its lower part projects down onto the Delaunay diagram and its upper part projects onto
the furthest site Delaunay triangulation.

An oriented matroid containing all the combinatorial information of the Delaunay diagram
can be obtained from the Delaunay oriented matroid by just introducing a new point co which is
considered to lie in any hyperplane and in the exterior region of any sphere. The signed partitions
" of S U {co} induced by all spheres and hyperplanes are again the covectors of an oriented matroid
that we call the eztended Delaunay oriented matroid EDOM(S) of S. It has almost the same

properties as the Delaunay oriented matroid.

Proposition 1.3 Let S be a finite set of points in E% and let k be the dimension of the affine
subspace spanned by S. Then the ertended Delaunay oriented matroid EDOM(S) of § is acyclic,
polytopal and realizable and has rank k + 2. Its deletion at oo is the Delaunay oriented matroid
DOM(S) of S and its contraction at oo is the usual affine oriented matroid of S.
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This new oriented matroid EDOM(S) contains the combinatorial information of the Voronoi
and Delaunay diagrams, in the following sense.
Proposition 1.4 Let S be a finite set of points in E% and consider their extended Delaunay
oriented matroid EDOM(S). Then,

i) The Voronoi regions of two points A, B € S are adjacent (i.e, their boundaries intersect) if
and only if EDOM(S) contains a covector (Cy,Co,C-) with C; =0 and A, B € Cy.

i) The convez hull < T > of a subset T C S is a cell in the Delaunay diagram of S if and
only if EDOM(S) contains the covector (9,T,S U {oo0} \ T).

Even more, EDOM(S) contains also the combinatorial information for the higher order Voronoi
diagrams as defined by Shamos and Hoey ([12]). For a set S of sites, the order k£ Voronoi diagram
k-Vor(S) partitions the plane in regions having the same k nearest points among S. Thus, a
subset T C § of cardinality k defines a nonempty region in k-Vor(S) if and only if a sphere exists
containing T and having S \ T outside. Thus:

Proposition 1.5

i) A subset T of cardinality k defines a non-empty region k-Reg(T) in k-Vor(S) if and only
if the signed partition (T,0,(S U oc0) \ T) is a covector in EDOM(S).

ii) A collection k-Reg(T}),...,k-Reg(T:) of such non-empty regions in k-Vor(S) have a com-
mon boundary point (i.e. are adjacent) if and only if the signed partition (Tn, Tu\Tn, (SU{o0})\Tu)
is a covector in EDOM(S), where Ty = UT; and T = NT;.

2. The case of convex distance functions

The study of Voronoi diagrams for metrics other than the Euclidean one is of interest in many
applications. See, for example, [8] for some developments in this area. The class of metrics that
we are going to study in this section are the so-called convez distance functions. Convex distance
functions were introduced in the context of Voronoi diagrams by Chew and Drysdale [4] who gave
an algorithm for computing the Voronoi diagrams produced by them and some of their applications.
See also [5], [7] and [10] for some properties of convex distance functions.

Let K be a convex body in the Euclidean space E? containing the origin in its strict interior.
We can use K to measure “distances” in E< in the following way. Let A and B be two arbitrary
points in E¢. The K-distance §x(A, B) from A to B is the only scaling factor A that makes the
scaled translation K + AA have B on its boundary. The distance function dx so defined is called
a convez distance function. If K is centrally symmetric then dx is actually a Minkowski metrics.

An alternative (axiomatic) definition stressing their properties is:

Definition 2.1 A convez distance function in the Euclidean d-space E¢ (d > 2) is a map
6 : E4 x E? — R »¢ satisfying the following properties.

(D0) 6(A,B)>0 VA,B€E?and§(4,B)=0if A=B. .

(D1) 6(A,B) + 6(B,C) > §(A,C) VA, B,C € E*? (triangle inequality).

(D2) 6(A,B) = 6(A+v,B+v) VYA,B € E? Yv e R? (invariance under translations).

(D3) 6(A,B)+46(B,C) = 8(A,C) VB € [A,C], where [4,C] denotes the line segment between
A and C (additivity on segments).

Additional conditions on the defining convex K give additional properties of the convex dis-
tance:

i) If K is strictly convex, (i.e. contains no line segments on its boundary) then the triangle

_inequality is strict: §x(A4,B) + §x(B,C) = ék(A,C) iff B € [A,C]. We say in this case that §x

is strictly convez.
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i) If 5 is smooth (i.e. it has a unique supporting hyperplane at every boundary point) then
every d + 1 points not lying in any hyperplane are 6x-cospherical (the proof of this can be found
in [9]). We say then that éx is smooth.

Reciprocals of both are easy to proof. If K is not strictly convex or not smooth one can find
violations of the strict triangle inequality, or d+ 1 points neither co-hyperplanar nor §-cospherical.
In the plane, property (ii) is even stronger. Only one §x-sphere passes through any three given non-
collinear points. This makes Voronoi and Delaunay diagrams for smooth, strictly convex distances
in the plane very similar to Euclidean ones, but does not hold in higher dimensions (see [7]).

Moreover, as a result of these nice properties, smooth, strictly convex distances in the plane
produce Delaunay oriented matroids in the same way as the Euclidean distance does, except
for their realizability (which in the Euclidean case comes from the lifting property of Euclidean
Delaunay triangulations). Proofs of results 2.2-2.5 will be given in [11].

Proposition 2.2 Let 6§ be a smooth, strictly convez distance function in E?. For any set
S of sites call DOMs(S) the collection of signed partitions of S defined by all hyperplanes and
Sxc-spheres. Then DOMy(S) is an oriented matroid for all possible sites S if and only if K is
strictly convez and smooth. In this case the extension of this oriented matroid to the infinity point

is again an oriented matroid EDOM;(S).

Proposition 2.3 All the properties described in Propositions 1.2-1.5 for Delaunay oriented
matroids with the Euclidean distance are still true for smooth, strictly convez distances in the plane,

ezcept for their realizability.

Concerning realizability we have the following negative result, very similar in its formulation
to the negative Theorem 3 of [5]. The condition of K being centrally symmetric in Proposition
2.4 is a technical one used in the proof but probably not needed in the statement. In the contrary,
the fact of K not being an ellipse is needed because otherwise éx is an affine transform of the
Euclidean distance and it can only produce Delunay diagrams and oriented matroids equivalent to
Euclidean ones.

Proposition 2.4 Let K be a symmetric smooth strictly convez body in the plane, but not an
ellipse. Then, the Delaunay oriented matroid of some set S of eight points with respect to 0k is
not realizable.

The proof of Proposition 2.4 consists on finding eight points whose Delaunay diagram contains
the eight triangles shown in figure 1, and such that points {1,3,5,7} and {2,4,6,8} are collinear.
This two facts prevent the corresponding Delaunay oriented matroid from being realizable. Let us
mention that our 8-points example is minimal because any oriented matroid in less then 8 points

is realizable.

Figure 1

An interesting corollary comes from the fact that such a diagram is not regular (i.e. cannot be
the projection of the lower envelope of any lifting of the eight points into 3-space). Thus, Delaunay
triangulations for these distances cannot be derived from convex hulls in the way of [3].
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Corollary 2.5 The only (symmetric) convez distance functions in the plane which have the
lifting property are affine transforms of the Euclidean distance.

3. A more abstract setting.

The purpose of this section is to stress how the fact that smooth, strictly convex distance

functions in the plane produce Delaunay oriented matroids comes from nice geometrical properties
between their Sx-spheres. We are going to abstract these properties and generalize them (in
Definition 3.1) in such a way that they still permit to obtain Delaunay oriented matroids from
spheres. :
We will work in the compactified space E? U {oo} homeomorphic to a sphere S ¢ in order
to unify the description of hyperplanes and spheres. A tamely embedded topological sphere S*
(k= 0...d) in §%is said to be a pseudo-sphere. Our idea is to cover the sphere S¢ by a family
of pseudo-spheres S¢~! with the same combinatorial properties that the Euclidean spheres and
hyperplanes, where the role of hyperplanes will be played by pseudo-spheres passing through the
distinguished infinity point, although this point has no special role in the axioms we pose for our
pseudo-spheres. These axioms are:

Definition 3.1 A Delaunay system of spheres in S¢ (d > 2) is a collection S of dimension
d — 1 pseudo-spheres in §¢ (to be called S-spheres) satisfying the following axioms.

(S1) Through any d + 1 points in § 2 there passes at least one S-sphere.

(52) Two any non disjoint S-spheres C and D intersect either in a (d — 2)-dimensional tame
sphere or in a point. We say that they intersect transversally and tangentially, respectively.

(S3) For any S-sphere C, the collection of (d — 2)-dimensional spheres S¢ := {CnD|De
S, C and D intersect transversally } is a Delaunay system of spheres in C.

(S4) For any two points P and Q and any S-sphere C passing through P but not through Q
there exists one only S-sphere D passing through Q and intersecting C tangentially at P.

(S5) For any two disjoint S-spheres C and D and any point p “between” them (i.e. in the
component of §¢\ C which contains D and in the component of 5%\ D which contains C) there
exists an S-sphere Z passing through p and separating C and D (i.e. with C and D respectively
contained in the two components of §¢\ Z).

Remarks: ‘
- the definition is inductive on the dimension d, because of axiom (S3). For d = 1 we define the

collection S; = {{P,Q} | P,Q € S'} to be the only Delaunay system of spheres in S1. In this case
we will say that two S;-spheres C and D intersect tangentially if they have a common point, that
they “intersect” transversally if they do not have any common point but each component of S1\C
contains one of the points of D and that they do not intersect otherwise. With these definitions
Sy satisfies axioms (S1), (52), (S4) and (S5). The inductive axiom (83) is somehow satisfied if we
consider Sp = {0} to be the only possible matroidal system of spheres in §° = {—1,+1}, with the
usual convention S~! = 0.

- axioms (S4) and (85) hold for smooth, strictly convex distances in any dimension and prob-
ably for any metrics whose spheres are smooth, strictly convex hypersurfaces, not necessarily
homothetical to one another.

- in the planar case (d = 2), axioms (S1) and (52) are equivalent to “through any three points
there passes one and only one S-sphere” and axiom (S3) is redundant. Thus, they they hold for
smooth strictly convex distances. In higher dimension axioms (S2) and (S3) imply that through
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any d + 1 points there passes at most one S-sphere and they do not hold, in general, for smooth,
strictly convex distances (because of the results in [7]).

Our main result in this section says that whenever a metrics has spheres satisfying the axioms

above (in the compactified S¢, then Delaunay oriented matroids can be defined as those for the
Euclidean distance. For the last part of the statement to make sense we need the fact that an
arbitrary intersection of S-spheres satisfying our axioms is a pseudo-sphere and thus has a well-
defined dimension.
Proposition 3.2 Let S be a Delaunay system of spheres in S and let P = {1,.., N} represent
N points in S®. Consider the collection V of signed subsets of P consisting on the empty signed
set (0, P,0) and those which are respectively positive and negative in the two sides of a certain
S-sphere. Then, V is the set of covectors of a certain oriented matroid M, which is acyclic and
polytopal. This oriented matroid has rank equal to 2 plus the dimension of the intersection of all
S-spheres containing S.
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