473

Robust Construction of the Voronoi Diagram of a Polyhedron

Victor Milenkovic*
Harvard University
Division of Applied Sciences
Center for Research in Computing Technology
Cambridge, Massachusetts 02138

Abstract

This paper describes a practical algorithm for the con-
struction of the Voronoi diagram of a three dimensional
polyhedron using approximate arithmetic. This algo-
rithm is intended to be implemented in floating point
arithmetic. The full two-dimensional version and sig-
nificant portions of the three-dimensional version have
been implemented and tested.

The running time' of this algorithm is O(n,n, log? b),
where n, is the size of the input polyhedron, n, is the
size of the output Voronoi diagram, and b is the num-
ber of desired bits of precision. This algorithm can be
made more practical with the use of a binary partition
of space. In the worst case, binary partition does not
improve the running time, but it should reduce the run-
ning time to O(n,b) on well-behaved inputs. Since b is
constant, this eliminates a factor of n,. The algorithm
can be generalized to higher dimensions and the order
k Voronoi diagram.

1 Introduction

This author has been approached by researchers from
companies who have a great need for a practical pro-
gram that can construct the Voronoi diagram of a poly-
hedron. They require the Voronoi diagram for purposes
of computing good decompositions of polyhedra for fi-
nite element analysis. The Voronoi diagram is also use-
ful for e-fattening the surface of a polyhedron which in
turn might be useful for comstructing approximations
to polyhedra with the smallest number of triangles (see
[20] and [8]). Another application is robotic path plan-
ning [13] [14]. The order k Voronoi diagram [11] [21]
can be used to rapidly determine the k nearest sites
(vertices, faces, or edges) to a point inside a polyhe-
dron. This can be useful to a physical simulation of the
properties of a potential function based on the bound-

“Supported by NSF grants NSF-CCR-91-157993 and NSF-
CCR-~90-09272

1This is expected time since a hash table is used to store
the Voronoi vertices and to enable the algorithm to avoid
duplication.

ary of the polyhedron. At present, there is no efficient?
exact algorithm for constructing the Voronoi diagram,
and no one has a good working implementation. Cur-
rently, only the Voronoi construction for point sites in
the plane [22] and in space [10] have been treated ro-
bustly, and the only other robust algorithms are for pla-
nar arrangements of lines [7], line segments [18], alge-
braic curves [19], for the maintenance of planar triangu-
lations [5], for the construction of convex hulls of points
in the plane [5, 15], and for performing set operations on
polygonal regions in the plane [9, 16]. There has been
no robust treatment of the numerical issues inherent
in any geometric construction in more than two dimen-
sions involving quantities of higher than linear algebraic
degree-such as the Voronoi diagram of a polyhedron.

The ordinary Voronoi diagram [4] of a set of point sites
is a subdivision of space into convex cells, each cell rep-
resenting the set of points closer to a particular site
than any other. The faces, edges, and vertices of the
diagram are the faces, edges, and vertices of the con-
vex cells. Each face is shared by two cells; each edge
is shared by three cells (in general position); and each
vertex is shared by four cells (in general position). The
Voronoi diagram of the interior of a polyhedron gener-
alizes the notion of site to mean a vertex, edge, or face
of the polyhedron. The cell is the set of points in the
interior which are closer to one site (vertex, edge, or
face) than any other. The cells of a Voronoi diagram
are not necessarily convex; the faces can be quadratic
surfaces; the edges can be fourth degree curves; and the
vertices can be eighth degree algebraic points. These
facts, unfortunate from the point of view of computa-
tional complexity, follow from the observation that the
locus of points equidistant from a point and a plane is
a paraboloid and the locus of points equidistant from
two lines is a hyperbolic sheet. Any exact algorithm for
constructing the Voronoi diagram of a polyhedron would
have to perform computations on quantities of high al-
gebraic degree. It would be very difficult to make such
an algorithm practically efficient.

This paper describes a simple, -easy to implement, nu-
merically stable algorithm for computing the Voronoi

20(nv log™ nv) where nv is the size of the Voronoi diagram.

474

diagram of a polyhedron using approximate arithmetic.
The robust Voronoi diagram algorithm visits the graph
of Voronoi vertices and edges (the medial azis [1]) in a
breadth-first fashion. Just as gift wrapping requires lin-
ear time (in the size of the input) to step from one face
of a convex hull to another, the robust Voronoi diagram
algorithm requires linear time (in the size of the poly-
hedron) to follow a Voronoi edge to a Voronoi vertex.
Hence the running time is proportional to npny where
np is the size of the input and nv is the size of the
output. We give a few details on how to use the output
of this algorithm to support numerical primitive for fast
point location and other applications (Section 3.3).

Section 2 describes an efficient and numerically stable
algorithm for reliably calculating all points (the incen-
ters) inside a given tetrahedron and equidistant from
four sites, each of arbitrary variety: vertex, edge, or
face (triangle). This low level algorithm is the engine
which drives the construction of the Voronoi diagram,
a.nd the total time to find an incenter is proportlona.l to
log? b, where b is the number of bits of accuracy in the
output. Section 3 describes how to follow an edge out
of a Voronoi vertex to another Voronoi vertex without
accidentally hopping to another branch of the incenter

curve. Finding the next vertex requires time linear in-

the number of sites. Section 4 describes a subdivision
technique for speeding up the Voronoi diagram algo-
rithm and the numerical computation. This technique
has running time in O(nvbd). In the worst case, it might
not speed up the a.lgonthm at all, but in practical cases
it reduces the overall running time from npnv log? b to
O(nvb), which is nearly the optimal running time of
nv log b.

For the generalization to d dJmenswns, the cost of the
algotithm grows proportionally to d>npnyv log? b. In the
order k Voronoi diagram, each cell is labeled by a set
of k sites {s:,, Sy, Sis;s-- ., 8i }, which are the k closest
sites to each point in the cell. The cost of comput-
ing the order k Voronoi diagram is also proportional to
npnv log? b where ny is now the complexity of the or-
der k Voronoi diagram. This abstract discusses only the
order 1 version in three dimensions.

The graph-traversal approach to generating the Voronoi
diagram necessarily has a running time a factor of n
(size of the input) away from optimal in the worst case.
Subdivision techniques can reduce this factor to a con-
stant in practice. Fortune [6] gives a sweepline algo-
rithm for the two-dimensional version of the problem,
but it would be very difficult to efficiently maintain the
planar structure for a three-dimensional sweep. An in-
cremental approach generalizing the Clarkson-Shor al-
gorithm [3] for point-sites is a better candidate for near-
optimal worst-case running time. However, there are
two obstacles. First, as one randomly inserts trian-
gles (the faces of the polyhedron), parts of the Voronoi
vertex-edge graph may be disconnected and therefore
hard to locate. It is simple to prove that the Voronoi
diagram of the interior of a closed polyhedron is con-
nected, but because of the non-linearity, the Voronoi
diagram of an arbitrary set of points, line segments, and

triangles might contain “loops,” Voronoi edges without
any vertices. The second difficulty is that little is known
about the complexity of the Voronoi diagram of a poly-
hedron. It is possible that the complexity of a partially
constructed Voronoi diagram could be n or n* times the
complexity of the final result. In any case, the numer-
ical primitives developed here for the graph-traversal
algorithm will be necessary for more sophisticated algo-
rithms.

2 The Incenter Function

The most essential primitive in the calculation of the
Voronoi diagram of a polyhedron is the incenter func-
tion. An incenter of a set of sites S is defined to be a
point p equidistant from all sites in S. Given a set of
sites S and a tetrahedron T, Incenter(S, T) returns one
of the following:

I. a proof that there are no incenters of S in T}
IL. all k distinct incenters {c1,¢2...,ck} of Sin T;

III. an incenter p and k vectors {v1,v2,...,vx} (k < d,
the number of dimensions) such that the set

k
{P+Ztivi | t1,t2,...,tx € R}

=1

is the maximum dimension k—ﬂat in T tangent to
the set of incenters.of S in 7.2

Implemented in rounded arithmetic, Incenter(S,T’) re-
turns approximate instead of exact incenters in all three
cases. Thus, if §(p, s) is the distance from point p to site

8 € S, define the disparity of p with respect to S

Disp(p, S) = max 5(p, s) — min 5(p, 3)-

An approximate incenter p of S satxsﬁes Disp(p,S) < r
for some tolerance 7. On the other hand, if a tetrahe-
dron T is supposed to have no incenters of S inside it,
then Disp(u,S) > 0 for all u € T

2.1 Linear Upper and Lower Bounds

For purposes of ca.lculatlon, it is easier to work with the
square of the distance §%(p, s) from a point p to a site
s. The calculation of Incenter(S,T) as defined above
is based on linear upper and lower bounds on 6 (»,9)
inside tetrahedron T'.

Let T have vertices po, p1,p2,p3. If u € T, then there are
unique weights (called barycentric coordmates) wi(u),
1=0,1,2,3, such that 0 < wi(u) <1

Zw.-(u) =1 and Z wi(u)pi = u.

=0 =0

3Actually, there may be more than one connected component
of the set of incenters. In this case, Incenter return a point p
and a set of vectors {v1,v2,...} for each component.

. Each wi(u) is a linear function of u (e.g. w2(u) =
det(PO,Pl,m,Ps)/det(Po,Ph'“,Pa))-

The squared distance §%(u,s) for a site s is a convex
quadratic function. Therefore for all u € T,

3
8(2,9) < wilw)6 (i, s).
=0
This is a linear upper bound UP(x,s,T) on 6*(u,s) in
T.

To determine a lower bound on 6%(x, s) in T, we expand
the function about some point p in T. Let n(u,s) and
7(p, s) be the projections of u and p onto (the flat of)
8: ’

8(ws) = &(ps)+2(u—p)-(p—7(p,s)) +
((u = p) = (x(u, 5) = x(p, 9))).

The last term can be thought of as the square of the
component of u — p perpendicular to s. It follows that,

8(u,8) > 6°(p,8) +2(x —p) - (p — x(p, 8)).

This is a linear lower bound LO(u, s,p) on 6*(u, s).

2.2 Incenter Location Step

Define the square disparity of a point p with respect to
a set of sites S,

s 2 — 2 rein 82
Disp (p,S)—glg6 (», s) r;leusus(p,s).

The incenter location step maps a point p € T to another
point p’ = Step(p, S,T) € T which has smaller square
disparity. In particular, Step(p,S,T) can have three
possible values:

e p' € T such that Disp?(p’, S) < Disp?(p, S);
¢ p when location step cannot improve disparity;

¢ a proof that S has no incenter inside 7.

Step(p, S,T) is the solution to a linear program based
on the lower and upper bound of the previous section.
The five variables are rr, I and u = (uz,uy,u;). For
each s € S, the linear constraints are as follows:

o for each s € S, u € T and the projection of « onto
the flat of s lies in s;

o for each s € S, I < LO(«, s,p) and LO(u, s,p) <
rr < UP(u, s, p);

o for every pair s1,s; € S of vertices or planes, u
lies in the bisecting plane of these two sites;

o for each 31,32 € S such that s; is incident on s
(for example, s; is a vertex of triangle 82), u lies
in the line or plane through s; perpendicular to
s2. (This is very important to guarantee quadratic
convergence.)

475

The objective is to minimize rr — I. In effect, solving
this linear program finds a point u in 7" at which all the

" upper bounds are greater than all the lower bounds. It

also minimizes the estimated square disparity,

EstDisp®(u, S, p) = max LO(u, s, p) — min LO(u, s, p).
. SES SES

If the linear program is infeasible, then there can be
no incenter of S in T. On the other hand, if p is suf-
ficiently close to an incenter and if Disp*(p,S) = ¢
then Disp?(Step(p, S,T), S) € O(€?). Finally, if p is
outside the region of convergence of an incenter, then
it is possible that Disp?(u,S) > Disp?(p,S) for the
value of » which minimizes the estimated square dis-
parity. In this case, an addition calculation is necessary
to determine a point p’ with smaller square disparity.
Since EstDisp? is a linearization of Disp?, it follows that
f(t) = Disp?(p + t(u — p), S) has negative derivative at
t = 0. The function f(t) is piece-wise quadratic. We
can find its minimum on ¢ € [0,1] by constructing its
upper and lower envelope (using time in |S|log |S]). In
practice, it is easier to use binary subdivision of the in-
terval [0, 1] since we only need an approximation to the
minimum.

The location step can return its input p when p is on
the boundary of T and the nearest incenter is outside
T.

2.3 Algorithm for Incenter(S, T)

This section describes how to use the incenter location
step to compute Incenter(S,T). The basic idea is to
set p equal to the centroid of tetrahedron T" and then
iterate p « Step(p, S, T) until it converges or reports
no solution. In practice, we stop the iteration when the
square disparity fails to diminish by at least a factor of
two.

If the iteration converges to a point p that is not an
incenter (Disp?(p,S) > 7), it is necessary to subdivide
T. Let pip; be the longest edge of T and let pip; be the
edge joining the other two vertices of T. The incenter
algorithm cuts T by the plane through pi/ p;s and (p: +
2;)/2 and recurses on the two halves. This recursion
descends until T is small enough and 6%(u, S) is “flat”
enough inside T. In the worst case, a constraint similar
to that described in Section 4 stops the recursion. Let
P be the centroid of T, and let r be the distance from ?
to the farthest vertex of T. There can be no incenter of
S in T when Disp(p, S) > r.

2.4 Locating Multiple Incenters

Suppose that a tetrahedron contains a point p which is
equidistant from a set S of sites. We want to locate
other incenters or prove there are none. First we sub-
divide the tetrahedron into four tetrahedra with p as a
vertex. Assume we have a tetrahedron T = pop:paps
with p = po. To show that T does not contain another
incenter, we employ a volume elimination step. The

476

function VES(T, s;, s;) returns a tetrahedron pogig2gs
such that gig2¢s C pi1p2ps and such that no incenter
of sites s; and s; lies inside pogi1g293. We will describe
VES shortly, but first we summarize how to use it to
locate all incenters of S inside popip2ps.

Applying VES eliminates a portion of T. We can com-
pute VES(T, si, s;) for every pair of different sites s;, s; €
S. If any portion of T remains, we subdivide it by
a plane parallel to pip2ps and halfway between that
face and vertex po. We then subdivide the results into
tetrahedra and apply the Incenter function recursively
to each. A few subdivision should suffice because the
bisectors of pairs of sites will appear flatter as the tetra-
hedra become smaller.

The region VES(T,s;,s;) for si,s; € S is computed
as follows. We have already defined =(p,s) to be the
point of projection .of p onto (the flat of) site s. Define
I(p, s) to be the plane through =(p, s) perpendicular to
segment px(p, 8). It is easy to see that for any point u

6(u, II(p, 8)) < 6(u, 8) < 8(u, 7(p,).
Consider the paraboloid
P(p, si, 85) = {u|é(u, %(p, 5:)) = 6(u, I(p, s5)) -
and its convex interior
P<(p,si,85) = {u| 8(u, 7(p, 1)) < 8(u, TL(p, 55))-
For any point u € P<(p, s:, s;),
8(u, 8:) < 6(u, 7(s:)) < 8(u, T(s)) < 8(u,s5),

and therefore u is not an incenter of S. Since p = po,
Po € P(p, si,8;). We can compute intersections of the
edges of p1p2ps with P(p, s, s;) by parameterizing each
edge and solving a quadratic equation. Suppose p;p2
and pips intersect P(p, si,s;) at g and ¢s and p; €
P<(p,si,s;). In this case, it follows from convexity
that the interior of popi1g2gs lies inside P<(p, s, s;) and
therefore does not contain an incenter. The tetrahe-
dron pop1¢29s is returned from VES(T, s;, s;). There are
other cases depending on the number of times P(p, s, s;)
intersects each edge of p1p2ps.

3 Following a Voronoi Edge

A Voronoi vertex is an incenter of a set of sites, four
sites except in degenerate cases. Let V(4 pc,p} be a
vertex for sites A, B, C, D. There will be a Voronoi edge
E{a,8,0} out of V(4 p ¢ p} which will follow a curve of
incenters of sites A, B, D. This section describes how to
use the incenter function of the previous section to find
the site £ such that V4 p p g} is the Voronoi vertex
at the other end of E¢4 p,p} from V4 5 c p}-

3.1 Constructing a §-Tetrahedron about E(4 5 p)

Let p be an incenter of {A, B, D} on edge E(4 5 p}-
We can construct a vector v tangent to E(4 5 p} at p

by intersecting the planes LO(u, p, s) = 0 (Section 2.1)
for s € {A, B, D}. A 0-tetrahedron T(p, v, 6, {A, B, D})
for p and v has vertices p, p1,p2,ps with the following
properties:

o for 1 =1, 2,3 the angle between v and pp; is 6;

e for 1 < i < j < 3 the angle between v x p; and
v X p; is 120 degrees;

o Only one other incenter of A, B, D (other than p)
appears on the boundary of
T(p,»,9, {4, B, C})'

The algorithm for constructing T(p, v, 8, {A, B, D}) first
constructs a large tetrahedron satisfying the first and
second properties. If this tetrahedron has incenters of
A, B, D in one or more of the sides incident on p (pp1p2,
Pp2p3, ppap1), then the tetrahedron is truncated by a
planée perpendicular to v and passing through the in-
center nearest to p in the direction of v. The resulting
tetrahedron will have incenters of A, B, D only at p and
in the face opposite p. We rename p;,p2,p3 to be the
vertices of this face. : ’

At this point, triangle pip.ps will contain an odd num-
ber of incenters of A, B, D: one for the curve E(4 5 p}
emanating from p and a pair for every other branch of
the incenter curve that enters and leaves the tetrahedron
through pi1p2ps. There is a technique for determining
the points on these other branches that are closest to
p along the direction of v. Practically speaking, it is
simplest to perform a binary search on the set of planes
perpendicular to v to determine one which has only one
incenter of A, B, D in its intersection with the interior
of the tetrahedron. Truncating the tetrahedron by this
plane yields the desired T'(p, v,6, {A, B, D}).

3.2 Locating the Next Voronoi Vertex

We construct a sequence of -tetrahedron that follow the
curve of E¢4 p p}. First, set p equal to V(4 5 c p} and
set v equal to the tangent vector pointing away from site
C. Construct T(p,v,6,{A, B,D}). Set p equal to the
“exit point” of E(4 p,p}: the incenter of A, B, D in the
face pip2ps of the tetrahedron, and repeat. The value
of § is arbitrary to start with (say 30 degrees). If the
exit point is on an edge of pip2ps, this means that the
tetrahedron was truncated because E(, p,p} initially
exited “out the side.” In this case, § should be made
larger. If the exit point is interior to p;p2ps, then the
tetrahedron was truncated because it hit another branch
of the incenter curve of A, B, D. In this case § should
be made smaller. A good value of 4 can be selected by
binary search as the #-tetrahedra are constructed.

The sequence of §-tetrahedra is stopped when one is dis-
covered that contains an incenter for A, B, D, s, where
s is some other site. This requires linear time per tetra-
hedron because each other site must be considered, al-
though in practice the subdivision technique of Section 4
greatly reduces the number of sites s to be considered.

The current §-tetrahedron is truncated by a plane through
the incenter of A, B, C, s nearest to p along v. Each re-
maining site s’ is examined to determine if an incenter
of A, B, D, s’ lies inside the current tetrahedron. If so, it
is truncated. The result is a §-tetrahedron ppip2ps and
a site E such that A, B, D, E has an incenter on p; p2ps3
and no other site s has an incenter with A, B, D in-
side the tetrahedron. The incenter for 4, B, D, E is the
Voronoi vertex V(4,5,p,£) connected to V4 5 c, D} by
edge E{A,B,D} .

3.3 Degenerate Cases and Applications

There are extra techniques required to handle singular
cases and detect Voronoi faces. Basically, these involve
constructing a tetrahedron about a Voronoi vertex and
computing the intersection of the Voronoi diagram with
the surface of the tetrahedron. The same techniques
can be used to construct the intersection of the Voronoi
diagram with a plane: one simply adds the plane re-
striction to the linear program described in Section 2.2.
In general these techniques are sufficient to implement
data structures for fast point location and other appli-
cations.

Here is a rough sketch of a very simple point location
strategy. Once we have computed the Voronoi diagram,
we select a plane that roughly bisects the set of Voronoi
regions. We then compute the set of regions to the left
or intersecting the plane and the set of regions to the
right or intersecting the plane. We apply this bisec-
tion process recursively to each set. Repeated plane
queries rapidly locates the Voronoi cell containing a
query point. Determining the Voronoi cells intersect-
ing a plane is equivalent to constructing the intersection
of the Voronoi diagram with the plane, which we know
how to do.

4 Subdivision Techniques

This section shows how to use a binary subdivision of
space to speed up the computation of the Voronoi dia-
gram.

4.1 Some Theory

Given a point p, define s(p) to be the site of the poly-
hedron closest to p which p lies over (the projection of
p onto the flat of s(p) lies in s(p)). Given a rectangular
parallelopiped “box” R, define

nearest-sites(R) = {s(p) |p € R}.

The set nearest-sites(R) is difficult to calculate, but it
is easy to calculate a superset near-sites(R) in the fol-
lowing manner.

Define | R| to be the length of the diameter of R (the ma-
jor diagonal). Let ¢(R) be the center of R, and let s(R)
is the nearest site to ¢(R) (s(R) = s(c(R))); and let d(R)

477

be the distance from c(R) to s(R). Define near-sites(R)
to be the set of sites s with the following properties:

e the (point-set) distance from c(R) to s is less than
or equal to d(R) + |R];

o the projection of ¢(R) onto the flat of s is no far-
ther than |R|/2 away from s.

A simple proof shows that near-sites(R) is a superset of
nearest-sites(R).

A standard binary subdivision, starting with the axis-
parallel bounding box of the polygon can be used to
speed up the detection of the vertex at the end of a
Voronoi edge. We create a binary tree of boxes rooted
at the bounding box. Each node box can be split along
its longest dimension to yield the boxes corresponding
to its children in the tree. The set near-sites(R) can
be computed recursively for each box in the tree. As a
6-tetrahedron is checked for new incenters (Section 3.2)
all boxes R in the subdivision tree which intersect it
are determined by a recursive search, and the set of
sites considered. for incenters are limited to those in
near-sites(R).

4.2 Cost

What is the cost of the subdivision procedure? Assume
the subdivision tree is expanded in breadth-first fashion.
In the worst case, no branches can be pruned, and the
expansion must stop before the total cost grows greater
than npny. -

Practically speaking, we expect the subdivision to prune
off branches not leading to a Voronoi vertex. In this case
the tree can be computed in time proportional to nyb.

5 Conclusion

This Voronoi diagram algorithm is very likely to be of
great practical importance. A two-dimensional version
has been implemented and tested by Rajan and Mayya
at IBM Watson Research Center. It will become part
of automatic meshing software. The incenter algorithm
has been implemented (by the author) in three dimen-
sions, and it converges in four steps to an incenter. It
also reliably determines multiple incenters. We are cur-
rently implementing the reliable edge following of Sec-
tion 3.

Our next goal will be to determine if the set of reliable
incenter and curve primitives can be used to create an
incremental Voronoi algorithm.

References

[1] H. Blum. A transformation for extracting new de-
scriptors of shape. In Proceedings of the Symposium

478

on Models for the Perception of Speech and Vi-
sual Form. Weiant Whaten-Dunn, Ed. MIT Press,
Cambridge, MA, pp. 362-380, 1967.

[2] D.R. Chand and S.S. Kapur An Algorithm for Con-
vex Polytopes. JACM 17(1): 78-86, January, 1970.

{3] K. Clarkson and P. Shor. Applications of random
sampling in computational geometry, II. Discrete
and Computational Geometry, Vol. 4, pp. 387-421,
1989.

[4] H. Edelsbrunner. Algorithms in Combinatorial Ge-
ometry, Springer-Verlag, 1987.

[5] Steven Fortune. Stable Maintenance of Point-
Set Triangulation in Two Dimensions, manuscript,
1990, ATT Bell Laboratories. An abbreviated ver-
sion appeared in 30th Annual Symposium on the
Foundations of Computer Science, IEEE, October
1989.

[6] S.J. Fortune. A sweepline algorithm for Voronoi
diagrams. Algorithmica, 2:153-174, 1987.

[7] S.J. Fortune and V. Milenkovic. Numerical Stabil-
ity of Algorithms for Line Arrangements. Proceed-
ings of the Seventh Symposium on Computational
Geometry, ACM, pages 334-341, June 1991

[8] L. J. Guibas, J. E. Hershberger, J. S. B. Mitchell,
and J. S. Snoeyink. Approximating polygons and
subdivisions with minimum link paths. Proc. 2nd
Annu. SIGAL Internat. Sympos. Algorithms, Lec-
ture Notes in Computer Science, Vol. 557, Springer-
Verlag, 1991, pp. 151-162.

[9] C. Hoffmann, J. Hopcroft, and M. Karasick. To-
wards Implementing Robust Geometric Computa-
tions, Proceedings of the Fourth Annual Sympo-
sium on Computational Geometry, 1988, ACM,
pages 106-117.

[10] H. Inagaki, K. Suglhara,, and N. Sugie. Numeri-
cally Robust Incremental Algorithm for Construct-
ing Three-Dimensional Voronoi Diagrams. Proceed-
ings of the Fourth Canadian Conference on Com-
putational Geometry, St. John’s, Newfoundland,
1992.

[11] D.T. Lee. On k-nearest neighbor Voronoi diagrams
in the plane. JEEE Transactions on Computing C-
31:478-487, 1982.

[12] D.T. Lee and R.L. Drysdale III. Generalization of
Voronoi diagrams in the plane. SIAM Journal of
Computing 10:73-87, 1981.

[13] D. Leven and M. Sharir. Intersection and Proxim-
ity Problems and Voronoi Diagrams. Adv. Robotics
Vol. 1, pp. 187-228, 1986.

[14] D. Leven and M. Sharir. Planning a purely transla-
tional motion of a convex robot in two-dimensional
space using Voronoi diagrams. Discrete and Com-
putational Geometry, Vol. 2, pp. 9-31, 1987.

[15] Z. Li and V. Milenkovic. Constructing Strongly
Convex Hulls using Exact or Rounded Arithmetic,
Proceedings of the Sizth Symposium on Computa-
tional Geometry, pages 235-243, ACM, June 1990.

[16] Victor Milenkovic. Verifiable implementations of
geometric algorithms using finite precision arith-
metic, Artificial Intelligence, 37:377-401, 1988.

[17] Victor J. Milenkovic. Verifiable Implementations of
Geometric Algorithms using Finite Precision Arith-
metic, Ph.D. Thesis, Carnegie-Mellon, 1988. Tech-
nical Report CMU-CS-88-168, School of Computer
Science, Carnegie Mellon Umversnty, Pittsburgh,
PA 15213, July 1988.

[18] Victor Milenkovic. Double Precision Geome-
try: A General Technique for Calculating Line
and Segment Intersections Using Rounded Arith-
metic, Proceedings of the 30th Annual Symposium
on the Foundations of Computer Science, IEEE,
pages 500-506, October 1989.

[19] V. Milenkovic. Calculating approximate curve ar-
rangements using rounded arithmetic. Proceedings
of the Fifth Annual Symposium on Computational
Geometry, pages 197-207, 1989.

{20] J. S. B. Mitchell and S. Suri. Separation and
approximation of polyhedral surfaces. Proc. 3rd
ACM-SIAM Sympos. Discrete Algorithms, 1992,
pPp. 296-306.

[21] M.I. Shamos and D: ﬁoey. Closest-point problems.
Proceedings of the 16th Annual IEEE Symposium
on Foundations of Computer Science, pp. 151-162,
1975.

[22] K. Sugihara and M. Iri, Construction of the
Voronoi Diagram for One Million Generators in
Single Precision Arithmetic. Proceedings of the
First Canadian Conference on Computational Ge-
ometry, Montreal, Canada, 1989.

