Recognizing Visibility Graphs of Uni-monotone Polygons

Paul A. Colley*
) colley@qucis.queensu.ca
Queen’s University, Kingston, Ontario, Canada

June 17, 1992

Abstract

The visibility graph of a simple polygon P is
defined as the graph with a node for each ver-
tex of P, and an edge connecting pairs of nodes
if and only if the corresponding vertices can see
each other inside P.

In 1985, ElGindy characterized a class of
graphs, mazimal outer-planar graphs, as being
the visibility graphs of polygons. We extend
ElGindy’s result to a larger class of graphs,
which we term tree of cligses graphs. We show
that tree of cliques are a strict subset of visibil-
ity graphs of uniform uni-monotone polygons.

Then, using linear programming, we de-
velop a recognition algorithm for the visibil-
ity graphs of uniform uni-monotone polygons
(but the algorithm requires that the outside
face of the polygon be fixed).

A strong relationship is discovered between
the visibility graphs of uni-monotone polygons
and the visibility graphs of staircase polygons
(also called orthogonal convez fans).

The problem of recognizing visibility graphs
of general uni-monotone polygons where the
Hamilton cycle is not given remains open.

*These results were part of my Master’s Thesis done
at Univenityoanerloounderthelupeﬂhionof
Anna Lubiw. Funding was provided by NSERC

1 Introduction

Given a simple polygon in the plane, two ver-
tices u and v of the polygon are mutually
vertez-visible (see each other) if the straight
line connecting them does not intersect the ex-
terior of the polygon. We will use “visible” and
“visibility” to mean vertex-visibility.

The visibility graph of a polygon is a graph
with a node for each vertex of the polygon, and
an edge joining two nodes if and only if the two
corresponding vertices can see each other.

The problem of visibility graph recognition,
“Given an arbitrary graph G, does there exist
a polygon P such that G is the visibility graph
of P?” has known results for only a handful of
special cases. Characterizing visibility graphs,
and finding algorithms to recognize them, re-
mains an open question [8, pp. 165, 171] [5,
pp. 14-34].

Any complete graph is a visibility graph. A
convex polygon has the property that all ver-
tices can see each other, so a complete graph
on n nodes corresponds to the visibility graph
of a convex polygon with n vertices. For a
fixed number of vertices, complete graphs have
the most edges of any visibility graph.

Any mazimal outer-planar graph is a visi-
bility graph (ElGindy (8, pp. 169-171] gives a
linear time recognition and construction algo-
rithm). A graph is outer-planar if it has a pla-

29

30

nar representation with all the vertices on the
outer face. A graph is mazimal outer-planar
if, in addition, no more edges can be added.

One notable aspect of ElGindy’s algo-
rithm is that the constructed polygon is uni-
monotone. A polygon is monotone if the out-
side face of the polygon can be broken into
two chains of edges, such that the vertices of
each chain are monotone increasing with re-
spect to some direction line, which we call the
direction of monotonicity. There is a pair of
vertices which is common to both chains. A
uni-monotone polygon is a monotone polygon
where one chain consists of a single edge, the
long edge. A uniform uni-monotone polygon
has the vertices evenly spaced with respect to
the direction of monotonicity.

Every visibility graph contains a maximal
outer-planar graph. Therefore, for a fixed
number of vertices, maximal outer-planar
graphs have the fewest edges of any visibility
graph.

A staircase polygon consists of only horizon-
tal and vertical line segments from the positive
Y axis down and right to the positive X axis,
plus the parts of the axes needed to complete
the polygon. If the vertices are equally spaced
with respect to the X axis, the polygon is
called a uniform step length staircase polygon.
James Abello and Omer Egecioglu give a poly-
nomial time recognition algorithm using linear
programming (1] to recognize visibility graphs
of uniform step length staircase polygons

2 Tree of Cliques

We define a new class of graphs, tree of cligues
graphs as follows: Let H be any two-connected
outer-planar graph. We' construct a tree of
cliques H' by replacing each face of H (except
the outer face) with a clique on the same ver-
tices. Both maximal outer-planar graphs and
complete graphs are subsets of this new class.

The following theorem gives a full character-
ization of tree of cliques graphs. This charac-
terization gives both useful properties of tree
of cliques graphs, and a practical test to de-
termine if a given graph is a tree of cliques.

Theorem 1 A graph G is a tree of cligues if
and only if:

1. G is two-connected.

2. Each separation pair (two vertices whose
removal disconnects G) is joined by an
edge, and breaks G into exactly two pieces.

3. Each three-conneclted component is a
cligue.

4. Within a three-connected component, the
edges common with other three-connected
components form a subset of a Hamilton
cycle on the vertices of the component.

Proof of Sufficiency:

Suppose we have a graph G that satisfies the
conditions listed above. We will show that G
is a tree of cliques.

First, G has a Hamilton cycle. This follows
from the hypothesis that each three-connected
component has a Hamilton cycle which uses
the edges that are common to other compo-
nents (condition 4). Two cycles which have
exactly one edge in common, and no other ver-
tices in common, can be joined into a larger
cycle which uses all the vertices of both cycles
by removing the common edge. In our case,
the individual cycles are the Hamilton cycles
on each three-connected component. Doing a
merge once for each separation pair will com-
bine these cycles to form a Hamilton cycle
for G.

We then embed this Hamilton cycle into the
plane, with the vertices along the circumfer-
ence of a circle. Adding the edges correspond-
ing to separation pairs never causes crossing

edges, because if the edges crossed, the ver-
tices of each of the crossing edges would not
be a separation pair.

This gives an outer-planar graph in the
plane: Outer, because all the vertices are along
the outside of a circle; planar, because no
edges cross.

Each face of this outer-planar graph corre-
sponds to a three-connected component of G,
because the borders of the faces are the sepa-
ration pairs. But, by hypothesis, each three-
connected component is a clique.

We conclude that G is formed from a two-
connected outer-planar graph with faces re-
placed by cliques, and thus G is a tree of
cliques graph.

Proof of Necessity:

Suppose G is a tree of cliques graph. We
know G is two-connected because of the un-
derlying two-connected outer-planar graph.

Since each face of the outer-planar graph
corresponds to a clique on at least three ver-
tices, the components corresponding to the
faces are three-connected, and separation pairs
can only occur where the components corre-
sponding to two faces join. The removal of
the edge joining two faces (and the two ver-
tices of that edge) separates the graph into
two components, since the faces of the outer-
planar graph form a tree structure. The sep-
aration pairs of G are then precisely the joins
between faces, and the three-connected com-
ponents of G are determined by the faces of
the underlying outer-planar graph, with the
vertices corresponding to each face forming a
clique.

Finally, condition 4 is trivially satisfied by
using the face itself as the Hamilton cycle in
each component. .

Given the characterization developed above,
a recognition algorithmn follows directly by ver-
ifying the individual properties. This can be
done in O(n + m) time, giving a linear time
algorithm.

Note that two-connectedness can be checked
in linear time [3, pp. 185-187], and there is
an O(n + m) time algorithm to find three-
connected components [6] which also gives the
separation pairs of the graph.

Checking of the remaining conditions in lin-
ear time is straight forward.

We prove that all tree of cliques graphs
are visibility graphs by giving an extension
to ElGindy’s algorithm which creates a uni-
form uni-monotone polygon with the required
visibility?.

However, not every uniform uni-monotone
polygon has a visibility graph which is a tree
of cliques, Take a six-vertex convex uni-
monotone polygon, and move one of the ver-
tices in just enough to cut one line of sight.
The resulting polygon is still uni-monotone,
but has a visibility graph of K¢ with one edge
deleted. This graph is not a tree of cliques.

For the embedding algorithm, we assume
that the recognition algorithm has already
been used, so that the three-connected compo-
nents, common edges, and a particular Hamil-
ton cycle have been identified.

Let G be a tree of cliques graph,
with m three-connected components (cliques)
G1,Gy, . ..,Gm, and a particular Hamilton cy-
cle as output by the recognition algorithm.

Without loss of generality, let G be a clique
containing an edge of the Hamilton cycle and
let e be an edge of G; belonging to the Hamil-
ton cycle. Label the vertices with integers
from 1 to n around the Hamilton cycle so that
e = (v,0y).

The algorithm will start with clique G1, and
with vertices v; and v, embedded in the plane
at (1,0) and (n,0) respectively, with an edge
connecting them.

Since e is on a Hamilton cycle, v; and v,

1Parts of these results for tree of cliques graphs
may have been discovered independently, as reported
by V. Madhaven at the 1990 Canadian Computational
Geometry conference.

31

32

are not a separation pair of G, and the edge ¢
is not in common with any other clique of G.

The following recursive algorithm POLY-
GONIZE takes a three-connected component
(clique) and an already embedded edge of the
clique, and embeds the remaining vertices so
that they can see each other and the previ-
ously embedded edge of the clique, but are po-
sitioned high enough so that they can not see
any other embedded vertices of the polygon.
The new vertices are embedded in the cor-
rect left-to-right order as determined by their
labelling, by embedding each vertex v; along
z=1i.

POLYGONIZE is initialized with the long
edge (v;, v,) already embedded, and initial pa-
rameters (vy,v,, G1).

POLYGONIZE(q, b, H)

Let the coordinates of a vertex v be denoted
(ve, vy).

The parameters a and b are two previously
embedded vertices connected by an edge, with
a to the left of b. H is a k-clique of G contain-
ing the edge (a,b). POLYGONIZE also uses
global information about the input graph G.

1. Remove the edge (a,b) (unless this is the
edge (v1,vs), which occurs only on the
first call to POLYGONIZE).

2. Let u be the previously embedded vertex
to the left of a (u; < a.), if any, that
maximizes the slope r, = (ay —u,)/(a; -
tz). Because the base vertex v, lies below
and to the left of all other vertices, r, is
always non-negative.

Similarly let v be the previously embed-

3.

lies below and to the right of all other ver-
tices.

We choose the height of the new ver-
tices to be placed to be at least y, the
maximum height that a previously placed
vertex can see in the horizontal range
from a to b. In precise terms, let y =
max{ay, by,a, + ra(b: — az), by — rp(b; —
a:)}. If either or both of u or v are miss-
ing, then remove the corresponding unde-
fined terms from the maximum.

Vertices placed horizontally between a
and b with Y coordinates greater than y
will be not be visible to any previously
placed vertices except a and b.

. The next objective is to place the vertices

of H vertically above y and in order hor-
izontally between a, and b., so that they
can see a, b, and each other.

We place the new vertices along a semi-
circle above the horizontal line at height
y, facing downward. Let v;, = ¢ and
v, = y+sin (7(v;, — a;)/(b; — a:)). The
diameter of this semi-circle extends hori-
zontally the width between a and b, and
above both a and b, so a, b, and all the

-vertices on the semi-circle are mutually

visible.

. Add k - 1 edges

(ﬂ, vl)) ("l, ”2)7 sy (”k-zy b)'
For each of these edges (u,v) which is

common with another clique Gj, recur-
sively call POLYGONIZE(u, v, G;).

Proof of correctness omitted.

ded vertex to the right of b (v. > b;), 3 Linear Programming

if any, that minimizes the slope r, =

(vy = by)/(vz — bz). The vertex v, guar- We develop a different approach using linear

antees that r, is never positive, since v,

programming, to recognize all visibility graphs

of uniform uni-monotone polygons. This lin-
ear programming approach was discovered in-
dependently by Abello and Egecioglu for deal-
ing with uniform step length staircase poly-
gons [1]. We will latter show the strong re-
lationship that exists between uni-monotone
polygons and staircase polygons.

Unfortunately, constructing the linear pro-
gram requires that the Hamilton cycle corre-
sponding to the outside face of the polygon be
known. Finding a Hamilton cycle is an NP-
complete problem in general; it is not known
if this problem is simpler for visibility graphs.

Given a graph G, a Hamilton cycle of G,
and an edge of the Hamilton cycle as the long
edge (if the edge isn’t specified, try each of
the n choices), we fix the X coordinates of the
vertices (using the Hamilton cycle and long
edge information), and represent the Y coor-
dinates as variables. Linear inequality con-
straints are then determined, based on the vis-
ibility graph, and the result is an n variable,
O(n®) constraint linear program which cap-
tures all the conditions necessary for a uniform
uni-monotone polygon to have the given graph
as its visibility graph. Constructing the linear
program is done in O(n3) time, followed by a
single call to solve the linear program. Since
linear programming problems can be solved in
polynomial time [7, p. 170}, this gives a poly-
nomial time recognition and embedding algo-
rithm.

For each vertex v;, we have a variable y;
representing the vertical position of the vertex
in the plane. The horizontal position is z; =
(i-1)/(n-1).

We now show how to construct the inequal-
ity constraints.

The vertices vy,...,v,—; of the polygon
must lie strictly above the line from v, to v,:

i1 .
yi>y1+(’-;_—1)(y,.-y1),l<a<n. (1)

In addition, we need up to n more con-

straints for each pair of vertices v, and vs.
Without loss of generality, assume v, lies to
the left of vg, so a is less than S.

How the constraints corresponding to an
edge (vq, vg) are constructed varies depending
on whether the edge is in G.

Case 1: Edge (va,vp) exists in G

Clearly, if v, and vg are mutually visible,
the top edge of the polygon does not inter-
sect the line of sight between them. This
is true when the vertices between v, and
vp lie above the line connecting them.
For all values of i between a and 3, we
need that the vertex v; lies above the line
Vavp, giving the inequality

W2t e —va) ()

for each such value of 1.

Case 2: Edge (va,vs) does not exist in G
Let v; be the “rightmost” vertex between
va and vg such that v; is visible from v, .
We can compute i as max{j : @ < j <
B (ve, v5) € E(G)}.
The vertex v; blocks the line of sight from
va to vg, leading to the inequality

Y% < Yo + ;:Z(w —¥) (3)

There are O(n®) constraints from case 1;
each constraint is constructed in constant
time. Constructing each of the constraints
from case 2 takes time O(n), but there are
only O(n?) such constraints. The total num-
ber of constraints is O(n%), and constructing
them takes time O(n3).

The constructed linear program has a so-
lution if and only if G is a visibility graph
of some uniform uni-monotone polygon (proof
omitted). -

33

34

This does not recognize all uni-monotone
polygons, even if the Hamilton cycle corre-
sponding to the outside face is specified. There
exists a seven vertex uni-monotone polygon
whose visibility graph (with the outer face
specified) cannot be embedded uniformly. Ex-
ample (derived from a staircase polygon in [1])
and proof omitted. -

4 Staircase
Polygons and Monotone
Polygonal Chains

If we remove the long edge from a uni-
monotone polygon, we get a monotone polyg-
onal chain. We define the visibility of such a
chain to be along a distinguished side of the
chain (analogous to the interior of a polygon).
The linear programming approach presented
above works equally well for recogonizing visi-
bility graphs of monotone polygonal chains; a
uni-monotone polygon is just the special case
where the ends of the chain are mutually visi-
ble.

The strong relationship between the visibil-
ity graphs of the two classes of polygons turns
up in the recognition problems. For staircase
polygons, the recognition problem is “Given a
graph G, is there a staircase polygon with vis-
ibility graph G?” An instance of this recog-
nition problem can be reduced in linear time
to a specialized recognition problem for mono-
tone polygonal chains, “Given a graph G and a
vertex ordering «, is there a monotone polygo-
nal chain with visibility graph G, and ordering
=7

The reverse reduction is also linear time.
For uni-monotone polygons (instead of chains)
the Hamilton cycle and long edge take the
place of the ordering x, and the correspond-
ing staircase polygon will have the axis ver-
tices mutually visible. The reductions work

the same.

In the visibility graph of a staircase poly-
gon, the Hamilton cycle is unique, and can be
determined in linear time. The correspond-
ing feature to the long edge of a uni-monotone
polygon, namely the axis vertices, can also be
found in linear time.

Details and proofs of the reductions omit-
ted.

References

[1] James Abello, Omer Egecioglu, Visibility
Graphs of Staircase Polygons with Uni-
form Step Length, manuscript 1991.

[2] James Abello, Omer Egecioglu, Krishna
Kumar, Recognizing Visibility Graphs of
Staircase Polygons, manuscript 1991.

[3] Alfred V. Aho, John E. Hopcroft, Jef-
frey D. Ullman, The Design and Analysis
of Computer Algorithms, Addison-Wesley
Publishing Company (1974)

[4] Paul Colley, Visibility Graphs of Uni-
montone Polygons, Master’s thesis, Uni-
versity of Waterloo, 1991.

[5] Hazel Everett, Visibility Graph Recog-
nstion, Ph.D. dissertation, University of
Toronto; also University of Toronto tech-
nical report 231/90 (January 1990)

[6] J.E. Hopcroft, R.E. Tarjan, Dividing
a Graph into Triconnected Components,
SIAM J. Computing 2:3, pp. 135-158,
1973.

[7] Christos H. Papadimitriou, Kenneth Stei-
glitz, Combinatorial Optimization, Pren-
tice Hall, 1982.

[8] Joseph O’Rourke, Art Gallery Theorems
and Algorithms, Oxford University Press
(1987)

