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Optimally Tracking Labels on an Evolving Tree

Aditya Acharya∗ David M. Mount†

Abstract

Motivated by the problem of maintaining data struc-
tures for a large sets of points that are evolving over the
course of time, we consider the problem of maintaining a
set of labels assigned to the vertices of a tree. We study
the problem in the evolving data framework, where la-
bels continuously change over time due to the action
of an agent called the evolver. An algorithm, which
can only track these changes by explicitly probing the
individual vertices, is tasked with maintaining an ap-
proximate sketch of the underlying tree. Such a frame-
work necessitates an algorithm which is fast enough to
keep up with the changes, while simultaneously being
accurate enough to maintain a close approximation. We
present an algorithm that allows for both randomized
and adversarial evolution of the data, subject to allow-
ing a constant speedup factor over the evolver. We show
that in the limit, it is possible to maintain labels to
within an average distance of O(1) of their actual loca-
tions. We also present nearly matching lower bounds,
both on the distance, and the speed-up factor.

1 Introduction

Many modern data sets are characterized by two quali-
ties: massive size and dynamic variation with time. The
combination of size and dynamics makes maintaining
them extremely challenging. Algorithms that recom-
pute the structure can be prohibitively expensive, owing
to scale of the data set. Standard models for dynamic
structures (e.g., [6]) may not be applicable because we
may not know where or when changes occur within the
structure. These qualities together challenge the tradi-
tional single-input/single-output model used in the field
of algorithm design.
Anagnostopoulos et al. [1] proposed the evolving data

framework to capture the salient aspects of such data
sets. In this framework, the structure varies continu-
ously through the actions of an evolver, which makes
small, random changes to the structure behind the
scenes. Instead of taking a single input and produc-
ing a single output, an algorithm judiciously probes the

∗Department of Computer Science, University of Mary-
land,College Park MD, USA, adach@umd.edu

†Department of Computer Science and Institute for Advanced
Computer Studies, University of Maryland, College Park MD,
USA, mount@umd.edu

current state of the structure and attempts to continu-
ously maintain a view of the structure that is as close
as possible to its actual state.

In this paper, we consider the problem of maintain-
ing a tree with n distinct labeled nodes in this frame-
work. The tree topology is assumed to be fixed over
time, but the evolver changes label locations by swap-
ping the labels of two adjacent vertices. We consider the
problem both in the classical evolving framework, where
swaps are chosen uniformly at random, and an adversar-
ial framework, where the evolver’s swaps are arbitrary.
To probe the structure’s current state, we assume the
existence of an oracle, which given a pair consisting of
a label and a vertex, either reports that the label truly
resides at this vertex, or it returns an edge incident to
the vertex indicating the first edge along the path lead-
ing from the probed vertex to the vertex where the label
currently resides.

We model our current state by means of a hypothe-
sized labeling, that is, a mapping of labels to the vertices.
Unlike the actual labeling, the mapping need not be 1–1.
Our update algorithm is extremely simple. With each
step, it queries a label-vertex pair. If the label is not
at this vertex, it moves the label hypothesis one vertex
closer to its actual location in the tree. To measure how
close our hypothesis is to the truth, we define a distance
function, which is just the sum of distances over all the
labels between their hypothesized and true locations.
Note that the evolver moves two labels with each step,
while our algorithm moves only one. For this reason
we provide our algorithm with a speedup factor c ≥ 1
(not necessarily an integer), which allows our algorithm
to perform multiple steps for each single action of the
evolver. (Further details are given in Section 2.)

We present four main results. We first show that,
even in the most benign case of a uniform random
evolver and any constant speedup, the steady-state dis-
tance over a bounded degree tree is Ω(n) (Theorem 3).
Second, we show that given a speedup factor of c = 2
and a uniform random evolver, there exists a simple al-
gorithm that achieves a steady-state distance of O(n),
for any bounded degree tree (Theorem 7). Next, we
show that given a speedup factor of c > 2, for any
evolver, the same simple algorithm achieves a steady-
state distance of O(n) (Theorem 9). Finally we show
that for any speedup c < 2, there exists a tree, and an
adversarial evolver, such that the steady state distance
is not in o(n2) (Theorem 10).

1
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1.1 Related Work

The problem we consider here falls under the general
category of pebble motion problems. Given a graph
G = {V,E}, a set of labels L = {l1, l2, . . . , lk}, a labeling
configuration is defined as a mapping M : L→ V , such
that M(li) ̸= M(lj), for li ̸= lj . A single move of a
label l, where M(l) = v, can be defined as updating the
mapping to M(l) = u, where u is a neighbor of v.

Given two such label assignments M1 and M2 on a
common graph, the problem of deciding whether there
is a sequence of moves to transform M1 to M2, was first
referred to as the pebble motion problem by Kornhauser
et al. [9]. Under the restriction that a label can only be
moved to an unmapped neighboring vertex, Goraly and
Hassin et al. [7] show that the feasibility problem can
be decided in linear time. Ratner et al. [13] proved that
the associated problem of finding the optimal sequence
of moves is NP-hard.

A variant of pebble motion that is more closely re-
lated to this paper is the problem of token swapping.
Again we have a graph with n vertices, and there are
n distinct labels. A single move involves swapping the
labels of two neighboring vertices. It is easy to see that
on a simple path, transforming one configuration to an-
other is akin to sorting the path, and therefore such a
sequence of swaps can be generated by a variant of bub-
ble sort. Yamanaka et al. [14] showed that there exists
a polynomial time 2-approximation when the graph is
tree. Miltzow et al. [11] generalized this to a polynomial
time 4-approximation on general graphs. Graf consid-
ered a very similar problem of moving objects along a
tree by a robot and presents an excellent collection of
similar problems [8, Section 6].

Another related line of work involves algorithms for
evolving data sets, which was first introduced by Anag-
nostopoulos et al. [1]. In their framework, the input
data set is constantly changing through the actions of a
random evolving agent, or evolver, and an algorithm is
tasked with maintaining an output that is close to the
one corresponding to the current data. The algorithm
can only access the data set through a series of probes,
each of which returns some relevant local information.
They considered the problem of maintaining a sorted or-
der of points, where the true ranking of points evolves
over time. Besa et al. [4] gave an optimal algorithm that
maintains an approximate ordering with only O(n) in-
versions. They showed that a repeated run of an O(n2)
time sorting algorithm like the insertion sort suffices.

Researchers have considered other problems in the
evolving context, including path connectivity, minimum
spanning trees [2], shortest paths [16], and page rank [3],
among others. A common theme across these papers is
the evolution of the list of edges of the graph, either
through introducing a new edge, and deleting an exist-
ing one, or by changing the ranking of the edge weights.

1.2 A New Framework for Evolving Data

Our framework differs from the standard evolving data
framework in few significant aspects. The first involves
the behavior of the evolver. An important characteris-
tic of the evolving model introduced in [1] is that the
evolver acts randomly, and algorithms in this model ex-
ploit the fact that the evolver will occasionally improve
matters. In this paper we consider both uniformly ran-
dom evolvers as well as evolvers that are non-uniform,
possibly deterministic, which may act in an adversarial
manner.

The second difference is that our structure is more
general in that the mapping of labels to vertices need
not be 1–1. We think of the structure that the evolver
acts on as a “real world” object, which has capacity con-
straints on the number of labels each vertex can hold.
In contrast, we think of our hypothesized labeled point
set as a theoretical model of this real-world structure,
which is not constrained by real-world limitations. We
also provide our algorithm with a constant speed-up fac-
tor, to handle cases when each step of the evolver effects
a bigger change than that of the algorithm. In compen-
sation for this asymmetry, our algorithms and analyses
are much simpler.

The final difference is the nature of the oracle. We
can view our problem as a generalization of evolution-
ary sorting, but where the domain is a tree structure,
rather than a linear list. In sorting, the oracle deter-
mines whether two objects are out of order, but this is
not really meaningful in our tree-based setting. Instead,
our oracle provides a directional pointer to the current
location of the label.

2 Problem Formulation

In this section we provide the specifics of our evolving
token/label swapping problem. We are given a fixed
undirected tree T = (V,E) with n vertices and max-
imum degree k. Each vertex of the tree is assigned a
unique label from the set of labels L = {l1, . . . , ln}, that
is, there is a bijective mapping MT : L → V . At any
time, let T = {T,MT } denote the current “true” labeled
tree (see Figure 1(a)).

The evolver, denoted E , introduces changes to the
labelings. Each time it runs it selects a pair of adjacent
vertices in T and swaps their labels. The evolver may
either be random or adversarial. In the former case the
pair to be swapped is chosen uniformly at random, and
in the latter the adjacent pair can be chosen arbitrarily,
deterministically or adversarially. In Figure 1(a) and
(b), the evolver swaps labels X and G.

Our algorithm maintains a model of current labeled
tree in the form of a structure we call a hypothesis tree,
denoted H = {T,MH}, where T is the same tree, and
MH : L → V is a (not necessarily bijective) mapping

2
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Figure 1: The action of the algorithm on a labeled tree
T , evolver E , a labeled hypothesis tree H, and oracle
O. (a): The current state of the underlying labeled
tree T . (b): The state of T after the evolver swapped
labels across a pair of adjacent nodes. (c): A single step
in our algorithm A on H—Query label X, find that the
oracle is pointing us to the location of X on T , and then
move the label X to the adjacent node in the returned
direction. (d): The final state of our hypothesis tree H
after a single step of A.

from labels to vertices. Note that MH may assign mul-
tiple labels to a vertex of T (see Figure 1(c)).

In order to probe the current actual state, we assume
the existence of oracle, denoted O. Each query to the
oracle is presented in the form of a pair (li, u), where li
is a label and u is a vertex. If li is currently located at
u, the oracle returns a special value null. Otherwise, it
returns the edge incident to u that lies on the shortest
path from u to MT (li), the vertex that contains li in
the true labeling. (In Figure 1(c), the query O(X, u)
returns the edge (u, v) because in the actual tree, the
path to the node w containing X contains this edge.)

Each single step of algorithm A involves the following
actions: A selects a label l and a vertex u. Then queries
the oracle to find O(l, u) and then is free to move the
label l from MH(l) to any adjoining node in the tree. A
step of one such algorithm is illustrated in Figure 1(c)
and (d), where the algorithm is applied to label X. The

query O(X, u) returns (u, v), and the algorithm moves
label X to v. We define C as the class of such algorithms,
and throughout this paper we only consider algorithms
from this class.

To measure how close our hypothesized labeling is to
the true labeling we introduce a natural distance func-
tion. Given two vertices u and v in T , define their dis-
tance d(u, v) = dT (u, v) to be the tree distance, i.e.,
the length (number of edges) of the path between them.
Given the true labeling T and the hypothesized labeling
H and any label li, let Di = d(MT (li),MH(li)) denote
the distance between the assigned label positions. De-
fine the overall distance to be D(T ,H) =

∑
li∈L Di.

Remark: D(T ,H) is a metric since it is the sum of tree
distances, which are themselves metrics for a particular
label.

Observe that with each step the evolver can affect
the overall distance by at most 2, moving each of the
labels being swapped one node farther from our current
hypothesis. Since we have n vertices and the maximum
distance between two nodes on the tree is n−1, we have
D(T ,H) ∈ O(n2). It is easy to see that there exists a
tree T and a sequence of swaps by the evolver, which
results in D(T ,H) ∈ Ω(n2). Specifically, consider the
case where T is a path and the labels are swapped in
a sequence to result in a labeled path with the labels
sorted in the opposite order. On the other hand, our
algorithm clearly satisfies the following invariant: Every
step of an algorithm from class C reduces the overall
distance D(T ,H) by at most 1.

Given the disparity between the evolver’s and our al-
gorithm’s effect onD(T ,H), we will allow our algorithm
a modest speedup factor. We denote this by a constant
c ≥ 1. This means that the time taken by a single step
of the evolver is c times as that of the algorithm. Or
in other words, over a large enough time interval if the
algorithm takes m steps, the evolver takes m/c steps.

The problem considered for a given speedup factor
c and any arbitrary starting configuration of H: Does
there exist an algorithm with this speedup factor such
that, in the steady state, after arbitrarily long execution
sequences, D(T ,H) = o(n2)? We will in fact show that
(depending on the nature of the evolver) that there ex-
ists a deterministic algorithm and an associated speedup
factor such that D(T ,H) = O(n) from the underlying
labeled tree, after some sufficiently large time and with
high probability.

3 Probabilistic Tools

In this section we mention the probabilistic tools we
use through out the paper. First, as a concentration
bound, we use a weak version of Chernoff’s inequality
(Theorem 4.5 in [12]).
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Lemma 1 (Chernoff Bound) Let X1, X2, . . . , Xn be
independent random indicator variables, let X =

∑
i Xi,

and let µ = E[X]. Then, Pr
[
X ≤ µ

2

]
≤ exp(−µ

8 ).

Next we use a concept called Poisson approximation.
Suppose X1, X2, . . . , Xn, are the random variables indi-
cating the number of balls in the ith bin, when m balls
are thrown into n bins uniformly at random. We call
this the exact case.

Let Y1, Y2, . . . , Yn be independent Poisson random

variables with Pr[Yi = k] = e−λ λk

k! , where λ = m/n.
In other words, Yi represents the load in a bin, when
the number of balls in each of them is a Poisson dis-
tribution with parameter λ. We note the following on
any event that is a function of the loads of each bin.
(Corollary 5.9 [12].)

Lemma 2 (Poisson Approximation) Any event
that takes place with probability p in the Poisson case
takes place with probability at most p e

√
m in the exact

case.

4 Lower Bounds on the Distance

We first prove a lower bound on D(T ,H), when the
maintaining algorithm is in the class C(A) as defined in
Section 2 and for any constant speedup factor c. Our
proof follows the same structure as a similar proof by
Anagnostopoulos et al.[1]. We prove the following for
D(T ,H)(t), for a sufficiently large t, where D(T ,H)(t)
denotes D(T ,H) at time t.

Theorem 3 For any speedup factor c ≥ 1 and for
all sufficiently large t, irrespective of the algorithm A,
D(T ,H)(t) = Ω(n) with high probability, even in the
case of a random evolver.

Proof. For ease of analysis we let our algorithm A run
a single step every time unit, and the evolver, which
runs c times slower perform a swap every c time units.
Consider the time interval [t−n/w, t], where w is a large
constant. The algorithm and the evolver can reduce
D(T ,H) by at most n/w and 2n/cw during this time
interval, respectively. So if D(T ,H)(t−n/w) was at least

n/w + 2n/cw +Ω(n), then D(T ,H)(t) remains Ω(n).

Next, let us assume D(T ,H)(t−n/w) is at most n/w+

2n/cw + o(n). That implies there are at most n/w +
2n/cw+o(n) labels displaced from their true location at
time t− n/w. Let L′ denote the set of displaced labels,
that is, L′ = {li | Di > 0}. We define V ′ = {MT (li) |
li ∈ L′}, as the set of corresponding vertices on T . And
then the set of incident edges as E′ = {(u, v) | u ∈
V ′ ∨ v ∈ V ′}. Since the degree of the T is k, we have
|E′| ≤ k(n/w + 2n/cw + o(n)).
In the same time frame, the algorithm A can act on

at most n/w labels. Call that set of labels LA. Define

VA = {MT (li) | li ∈ lA}, as the set of corresponding
vertices on T . And then the set of incident edges as
EA = {(u, v) | u ∈ VA ∨ v ∈ VA}. Now, |EA| ≤ kn/w.

Next we look at the set of edges that were unaltered
at time, t−n/w, and were not affected by the algorithm
throughout the time interval. Call it E∗ = E\(E′∪EA).
Now, |E∗| ≥ n − 2kn/w − 2nk/cw − k · o(n) ≥ nγ, for
some sufficiently large w, and γ = (1− 2k/w− 2k/cw−
k/w). The evolver picking any edge from E∗ exactly
once, guarantees that the labels stay swapped at the
end of the time interval.

Let Xe be the indicator variable, representing the fact
that e is picked by the evolver exactly once. We use
the Poisson approximation scheme from Lemma 2. The
evolver chooses n/cw edges at random from the n avail-
able ones. Therefore λ = (n/cw)/n = 1/cw, which is a
constant. Hence, Pr[Ye = 1] = λe−λ = s, a constant.
That implies, E[

∑
e∈E∗ Ye] ≥ sγn. Using a Chernoff

bound (Lemma 1), we have

Pr

[ ∑
e∈E∗

Ye ≤ sγn/2

]
≤ e−Ω(n).

Using Lemma 2 again, we have

Pr

[ ∑
e∈E∗

Xe ≤ sγn/2

]

≤ e

√
n

cw
Pr

[ ∑
e∈E∗

Ye ≤ sγn/2

]

≤ e

√
n

cw
e−Ω(n) ≤ e−Ω(n)

Therefore with exponentially high probability, the
evolver picks at least sγn/2 edges from E∗, ensuring
that those edges stay swapped at the end of the interval.
Therefore, D(T ,H)(t) ≥ sγn ∈ Ω(n), as desired. □

5 Algorithm

Here, we describe a simple algorithm to track the la-
bels. We use the same algorithm in both the cases of
a random and an adversarial evolver. Recall the set of
labels L = {l1, . . . , ln}, and the definition of the oracle
from Section 2.

Intuitively, the algorithm works as follows. For each
li ∈ L, we query the oracle on (li,MH(li)) and update
its location by moving it one step in the direction re-
turned by the oracle. We keep doing this until the oracle
returns null, that is, when li is in its true location. We
then move on to the next label, repeating the process
indefinitely. A single pass over all the labels is called an
iteration of the algorithm.
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Algorithm 1 Tracking Labels

/*Continuously run the algorithm*/
for j ← 1, 2, . . . ,∞ do

/*For every label in order*/
for i← 1 to n do

/*Until the label is in its true location*/
while (O(li,MH(li)) ̸= null) do

/*Query the oracle to find the direction*/
(u, v)← O(li,MH(li))
/*Update the location of the label*/
MH(li)← v

end while
end for

end for

6 Analysis

Again for ease of analysis, we let our algorithm A run a
single step every time unit, and the evolver, which runs
c times slower, perform a swap every c time units.
Let t0 be the time when the algorithm starts. Let

tj be the time when the jth iteration of the algorithm
ends. Let D(T ,H) at the start of the jth iteration be
D(T ,H)j . And for a specific label li we denote the
distance at the start of the jth iteration to be Di,j .

We set the total number of moves effected on li, by
the algorithm in the jth iteration as Ai,j . Therefore
the total decrease in Di, the distance with respect to
label li, in the jth iteration is Ai,j . We define the total
decrease in D(T ,H) due to the algorithm, in the jth

iteration as Aj , Aj =
∑

li∈LAi,j .
We note the following about ∆tj , the time taken by

the jth iteration.

Lemma 4 ∆tj = tj − tj−1 = n+Aj.

Proof. Every step of the algorithm either moves a label
in the direction of its true location, or fixes it, i.e., finds
the label is in its true location. Since there are n labels,
and Aj is the total moves effected by the algorithm, we
have the result □

Next we show a lower bound for the time taken by
the jth iteration.

Lemma 5 ∆tj ≥ c
2+c (D(T ,H)j + n).

Proof. For a specific label li, our algorithm reduces
its distance by Ai,j , then finds that the label is at its
true location, and then moves on to the next label.
This implies that for some subset of steps taken by the
evolver, the distance associated with li was reduced by
Di,j − Ai,j . Otherwise, the algorithm would not have
moved on to the next label.
This further implies that in the jth iteration for some

subset of its steps, the evolver reduced the overall dis-
tance by at least

∑
i(Di,j−Ai,j) =D(T ,H)j−Aj . That

takes the evolver at least (D(T ,H)j − Aj)/2 steps, or
at least (c/2)(D(T ,H)j −Aj) time.
Therefore we have ∆tj ≥ (c/2)(D(T ,H)j −Aj). Us-

ing Lemma 4, we have ∆tj ≥ c
2 (D(T ,H)j − ∆tj + n).

Simplifying the inequality gives us the desired result □

6.1 Random Evolver and Speedup 2

In this section we prove the following: In the case of a
random evolver, where the evolver E picks an edge at
random and swaps its labels, an algorithm that runs at
least twice as fast as the evolver maintains an optimal
distance. Or in other words, we show that for c ≥ 2,
our algorithm ensures D(T ,H) ∈ O(n) with high prob-
ability. Using Theorem 3, we can conclude that our
algorithm is optimal for c ≥ 2 and a random evolver.
As in [4], we first prove an interesting result about

the random evolver. We show that a constant fraction
of the steps taken by the random evolver do not increase
the overall distance D(T ,H).

Lemma 6 For c = 2 and degree k, there exists a con-
stant ϵ, 0 < ϵ < 1, such that for all j, the random
evolver does not increase the overall distance in at least
ϵ∆tj steps in the jth iteration, with high probability.

Proof. From Lemma 4, we know ∆tj is at least n. We
look at the first n/10k steps of this particular iteration.
The algorithm can process at most n/10k nodes in this
time. The number of edges incident on these nodes is
at most n/10. Let E′ denote the set of edges left un-
altered by the algorithm in this time interval. Then
|E′| ≥ 9n/10. In the same time period, the evolver picks
edges at random from the edge set E, n/20k times with
replacement.

For every edge e in E, we set Xe = 1, if e ∈ E′, and
the evolver picks e, at least twice in the time-frame, but
picks none of the edges incident on e.

We use the Poisson approximation scheme from
Lemma 2. The evolver chooses n/20k edges from the
n available ones. Therefore λ = (n/20k)/n = 1/20k,
which is a constant. Now let Ye be the independent
Poisson approximations of Xe, with λ = 1/20k.
Next we find Pr[Ye = 1]. That represents the event

when e is picked from E′, and e is picked twice but none
of the edges incident on e are picked. In the Poisson
approximation scenario, each edge is picked j times with
a probability e−λλj/j!. Therefore, the probability that
an edge is picked at least twice is (1− e−λ−λe−λ), and
the probability that it is not picked whatsoever is e−λ.
Since at most 2k edges can be incident on e, we have

Pr[Ye = 1] ≥ 9

10

(
1− e−λ − λe−λ

)
e−2kλ.

Since the right hand side is a constant, there ex-
ists s = O(1) such that Pr[Ye = 1] ≥ s. Therefore,

5
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E[
∑

e∈E Ye] ≥ sn. Using a Chernoff bound (Lemma 1),
we have

Pr

[∑
e∈E

Ye ≤ sn/2

]
≤ e−Ω(n).

Using Lemma 2 again, we have

Pr

[∑
e∈E

Xe ≤ sn/2

]
≤ e

√
n

20k
Pr

[∑
e∈E

Ye ≤ sn/2

]

≤ e

√
n

20k
e−Ω(n) ≤ e−Ω(n).

We note that if Xe = 1, then e is left unaltered by the
algorithm, but it is altered at least twice by the evolver.
That further means, one of those steps by the evolver
either decreases the overall distance D(T ,H) or leaves
it unchanged. And since the number of such edges e,
with Xe = 1, is at least sn/2 with exponentially high
probability, we conclude that in at least sn/2 of the
evolver steps, in the first n/10k steps of the iteration,
D(T ,H) does not increase. Dividing the iteration into
chunks of n/10k steps, we obtain the desired result. □

Finally we prove one of the main theorems of this
paper, that for a long enough passage of time, D(T ,H)
converges to O(n), in the case of c = 2, and a random
evolver.

Theorem 7 Given a tree of size n and a constant de-
gree, and a random evolver, there exists z (a function
of n) such that for all j > z, Algorithm 1 achieves
D(T ,H)j ∈ O(n), with a speed-up factor c = 2.

Proof. Consider the jth iteration. From Lemma 6, the
evolver increases D(T ,H) by at most (1− ϵ)∆tj . In the
same iteration the algorithm reduces D(T ,H) by Aj .
Therefore, with high probability:

D(T ,H)j+1

≤ D(T ,H)j + (1− ϵ)∆tj −Aj

≤ D(T ,H)j + n− ϵ∆tj [Lemma 4]

≤
(
1− ϵ

2

)
D(T ,H)j +

(
1− ϵ

2

)
n

[c = 2 in Lemma 5]

=
(
1− ϵ

2

)j

D(T ,H)0 +
j∑

s=1

(
1− ϵ

2

)j

n

≤
(
1− ϵ

2

)j

n2 +O(n). [since D(T ,H) ≤ n2]

By choosing z = log1/(1−ϵ/2) n, we have D(T ,H)z+1 ∈
O(n). □

Remark: We showed that for large enough j,
D(T ,H)j ∈ O(n). Can we conclude the same about

D(T ,H) throughout the jth iteration as well? In par-
ticular we look at D(T ,H)i,j . We note that in our Algo-
rithm 1 we could have started with processing the label
li first (instead of l1), li+1 next, and so on. Therefore
for a large enough j, D(T ,H)i,j ∈ O(n) as well. Since
D(T ,H)i+1,j ≤ D(T ,H)i,j + O(n), we conclude that
for a large enough passage of time D(T ,H) converges
to O(n).

In our labeled hypothesis tree H multiple labels could
reside at a particular node. We show a simple result on
the maximum number of labels that could be mapped
to single vertex in T .

Corollary 8 Let LH,v be the set of labels residing at a
node v in H, after a long enough passage of time. Then,
|LH,v| ∈ O(

√
n)

Proof. Let |LH,v| = w. For li’s, li ∈ LH,v, we consider
the corresponding distances Di’s. Consider that set as
Dv, Dv = {Di|li ∈ LH,v}. Since the tree has degree has
k, there can be at most k 1’s in Dv, similarly k number
of 2’s, and so on. At most one member of Dv can be
zero. Therefore

D(T ,H) ≥
∑
x∈Dv

x ≥ k(1+2+· · ·+(w−1)/k) ∈ Ω(w2).

Since D(T ,H) ∈ O(n) after a long enough time from
Theorem 7, we conclude w ∈ O(

√
n). □

6.2 Adversarial Evolver and Speedup > 2

We conclude with the case when the evolver is adver-
sarial. That means we cannot rely on a result similar
to Lemma 6. We show that for a speedup factor of
c > 2, or in other words, if there exists δ ∈ R, such that
c = 2 + δ, we can still maintain an optimal distance.

Theorem 9 Given a tree of size n, an adversarial
evolver, there exists z (a function of n) such that for
all j > z, Algorithm 1 achieves D(T ,H)j ∈ O(n), with
any speed-up factor c > 2.

Proof. Consider the jth iteration. The evolver in-
creases D(T ,H) by at most

2∆tj
c . Therefore

D(T ,H)j+1

≤ D(T ,H)j +
2∆tj
c
−Aj

= D(T ,H)j +
2∆tj
c

+ n−∆tj [Lemma 4]

= D(T ,H)j + n−
(
1− 2

c

)
∆tj .

6
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By applying Lemma 5, we have

D(T ,H)j+1

≤ D(T ,H)j + n− c− 2

2 + c

(
D(T ,H)j + n

)
[Lemma 5]

=
4

2 + c
D(T ,H)j +

4

2 + c
n

≤
(

4

2 + c

)j

D(T ,H)0 +
j∑

s=1

(
4

2 + c

)j

n

≤
(

4

2 + c

)j

n2 +O(n). [c > 2, D(T ,H) ≤ n2]

For c > 2 , and by choosing j > log c+2
4

n, we have

D(T ,H)j+1 = O(n). □

6.3 Adversarial Evolver and Speedup < 2

We adapt a construction from Biniaz et al. [5] to prove
a lower bound on the required speed-up to ensure
D(T ,H)(t) ∈ O(n). Construct two configurations of
a labeled tree T0, and T1 as in Figure 2. On such a
tree: D(T1, T0) ∼ 2 OPT , where OPT is the number
of optimum swaps required to go from one configura-
tion to the other. Intuitively, an algorithm running at
a speed-up factor less than 2, will fail to catch up with
an adversarial evolver that takes OPT swaps to modify
T0, to T1. We can show that any algorithm from class C
running with speed-up 2− δ, where δ is a small positive
constant, cannot achieve D(T ,H) ∈ O(n). In fact we
can prove something stronger:

Theorem 10 (Lower bounds on speed-up) Given
any time instant t0, there exists a tree T , an ad-
versarial evolver E, and a time instant t > t0 s.t.
D(T ,H)(t) ∈ Ω(n2), for any algorithm from class C,
which runs with a speedup 2 − δ, where δ is a positive
constant

Proof. Suppose we have access to an algorithm A from
the class C, as defined in Section 2, with a speed-up
factor of c = 2−δ, δ is a positive real constant. We show
the existence of a tree, and an adversarial evolver, where
such a speed-up is not sufficient for D(T ,H) ∈ O(n).
We adapt a construction from Biniaz et al. [5]. See

Figure 2. Let T0 be a uniquely labeled tree, with β
wings, α tails, and a central vertex. Each wing contains
α nodes. For our purposes, we let α ∈ Ω(n). n =
αβ + α + 1. Let T1 be another labeled instance of the
same tree, where the labels of the wings, are cyclically
permuted. The order of the labels on a wing remains
the same, as do other labels of the tree. This gives us
D(T1, T0) = βα(α+ 1).

Biniaz et al. [5] show that the optimal number of
adjacent swaps to go from T0 to T1 is opt(α, β) =

α

α ∈ Ω(n)

β

T0 T1

Figure 2: T0 is a n-node tree with β wings, α tails, and a
central vertex. Each wing contains α nodes. T1 has the
labels of the wings of T0 cyclically permuted. Adapted
from [5].

(β + 1)(α(α+ 1)/2 + 2α). Consider a time t0, where T0
is the labeled configuration of the tree, with our hypoth-
esis tree H0 being exact, i.e., D(T0,H0) = 0. Next, con-
sider an adversarial evolver E , which performs opt(α, β)
number of swaps such that at time t1 = t0 + opt(α, β),
T1 is the true labeling.

Let H be the hypothesized labeling at time t1. Since
A has a speed-up of 2 − δ, and can affect the dis-
tance by at most 1 every step, we have D(H1, T0) ≤
(2− δ) opt(α, β). Considering β = 2/δ, and α = Ω(n)
we have the following:

D(H1, T1)
≥ D(T1, T0)−D(H1, T0) [D(·, ·) is a metric]

≥ βα(α+ 1)− (2− δ) (β + 1)

(
α(α+ 1)

2
+ 2α

)
≥

(
2

δ
− (2− δ)(2 + δ)

2δ

)
α(α+ 1)− s(δ)α

[Set β = 2
δ , s(δ) is a constant]

≥ δ

2
α(α+ 1)− s(δ)α ∈ Ω(n2).

[For α ∈ Ω(n), and constant δ]

□

7 Concluding Remarks

In this paper, we have presented an efficient algorithm
for tracking vertex labels in a tree in the evolving data
framework. Our algorithm allows for both randomized
and adversarial evolution of the data, subject to allow-
ing a constant speedup factor over the evolver. Our
analysis showed that in the limit, it is possible to main-
tain labels to within an average distance of O(1) of their
actual locations. We also presented nearly matching
lower bounds, both on the distance and the speed-up
factor.
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This raises the question whether the evolving data
framework can be fruitfully applied to tracking the
movement of objects through more complex spaces and
structures. Applications include real-time tracking of
moving agents through GPS tracking of unmanned
aerial vehicles [15] and tracking disease hot-spots that
evolve over the course of time [10].

We would like to thank Michael Goodrich for intro-
ducing us to the evolving data framework and for in-
spiring discussions on this topic.
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Discretization to Prove the Nonexistence of
“Small” Common Unfoldings Between Polyhedra

Elena Arseneva∗ Erik D. Demaine† Tonan Kamata‡ Ryuhei Uehara‡

Abstract

We show that no < 300-gon is a common unfolding be-
tween any two doubly covered triangles whose angles are
rationally independent algebraic numbers. Here an un-
folding of a polyhedron is a polygon obtained by cutting
anywhere on the polyhedron’s surface and unfolding it.

1 Introduction

An unfolding of a polyhedron Q is a simple polygon
obtained fromQ by cutting anywhere on the surface and
unfolding it flat. A common unfolding between two
polyhedra Q0 and Q1 is a polygon that is an unfolding
of Q0 and of Q1. It is open whether any pair of Pla-
tonic solids have a common unfolding [4] (though O(1)
“refoldings” suffice [3]). For other classes of polyhedra,
there are some positive results showing common unfold-
ings [1, 2, 4, 5, 6]. However, there are no results proving
nonexistence of common unfoldings. In other words, it
is not known whether there is a pair of polyhedra having
no common unfolding.

One difficulty in proving the nonexistence of common
unfoldings is that we cannot check by a simple exhaus-
tive search whether two polyhedra have a common un-
folding. When we unfold a convex polyhedron Q to a
simple polygon P, the cutting lines on the surface form a
tree structure spanning all vertices of Q, called the cut-
ting tree . A cutting tree can have vertices and edges
anywhere on the surface of Q. Thus there are uncount-
ably many cutting trees, and the number of obtained
unfoldings is also uncountable.

We develop a new algorithmic method to prove the
nonexistence of common unfoldings, when we bound the
number of vertices in the unfolding, between two polyhe-
dra in the class of doubly covered triangles whose angles
are rationally independent algebraic numbers.

In Section 2, we define unfolding and the class of poly-
hedral which we handle in this paper.

In Section 3.1, we show necessary properties of any
common unfolding P between polyhedra Q0 and Q1.
First, we consider a correspondence between the bound-

∗St Petersburg State University, ea.arseneva@gmail.com
†CSAIL, MIT, USA, edemaine@mit.edu
‡Japan Advanced Institute of Science and Technology,

kamata@jaist.ac.jp, uehara@jaist.ac.jp

ary of P on Q when a polyhedron Q is unfolded to a
polygon P. Next, we define automorphism maps on the
boundary, which are called gluing maps, induced by
two ways of gluing when P is folded into Q0 and Q1. Fi-
nally, we focus on sequences of points on the boundary
of the polygon, which are called spreading sequences
and have an essential role in common unfoldings.

In Section 3.2, we introduce a form form of common
unfoldings. First, we define the standard-form com-
mon unfolding using the notion ad sequence. Next, we
show that it is sufficient to consider only standard-form
common unfoldings for checking the existence of com-
mon unfolding. Finally, we show that the number of
standard-form common unfoldings is finite for a given
number of vertices in the unfolding. Moreover, we give
an algorithm to enumerate the candidates of standard-
form common unfoldings.

In Section 3.3, we give a necessary condition and an
algorithm to decide whether a candidate standard-form
common unfolding represented by a sequence of angles
is feasible.

We implement these algorithms and show that, for
n < 300, there is no n-gon that is a common unfolding
between any two doubly covered triangles whose angles
are algebraic and rationally independent.

2 Preliminaries

We consider the common unfolding between two doubly
covered triangles (DCT). DCT is a class of polyhedra
made by gluing the corresponding edges of two copies
of a triangle; see Figure 1. It can be regarded as a kind

Figure 1: Doubly covered triangle.

of polyhedron whose volume is zero. Let Q0 and Q1 be

9
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a pair of DCTs and vertices of Qi be vi0, v
i
1, and v

i
2. We

define the sum of angles gathering at vij by θ
i
j . In other

words, the angle on a face of Qi is
θij
2 ; see Figure 2. We

assume that edge lengths of Q0 and Q1 are adjusted so
that the surface areas are the same because it is trivially
necessary.

￼12 θ00 ￼12 θ01

￼12 θ02

￼12 θ10 ￼12 θ11

￼12 θ12

￼𝒬0

￼v02

￼v00 ￼v01

￼v12

￼v10 ￼v11

￼𝒬1

Figure 2: The interior angles of Q0 and Q1.

Moreover, we impose the following restrictions on the
angles of Q0 and Q1.

1. A DCT Qi is algebraic if θi0 and θ
i
1 ∈ Q∗ where Q∗

is the algebraic closure on Q. (Here we note that
θi2 = 2π − (θi0 + θi1), and θ

i
2 /∈ Q∗ if θi0, θ

i
1 ∈ Q∗.)

2. A pair of DCTs Q0 and Q1 are (rationally) inde-
pendent if ∀mi(̸= 0) ∈ Q, m0θ

0
0 +m1θ

0
1 +m3θ

1
0 +

m4θ
1
1 ̸= 0.

Hereafter, we assume that Q0 and Q1 are algebraic and
independent. Therefore, each of Q0 and Q1 is not an
isosceles triangle and has no angle that is a rational
multiple of π. Here we note that we introduce these re-
strictions not to avoid a counterexample but to support
the proof technique. We treat θij as symbols and do not
care about the concrete values until Section 3.3. When
we consider an assignment of the values of θij , we use

map λ : {θ00, θ01, θ02, θ10, θ11, θ12} → R>0.

Example 1 If (λ(θ00), λ(θ
0
1), λ(θ

0
2), λ(θ

1
0), λ(θ

1
1), λ(θ

1
2)) =

(
√
2,
√
3, 2π−

√
2−

√
3,
√
5,
√
7, 2π−

√
5−

√
7), Q0 and

Q1 are algebraic and independent.

When we unfold a polyhedronQ to a polygon P, cutting
lines on the surface form a tree structure [4]. We denote
it by T . Conversely, points on the boundary of P are
glued and make a point on T when we fold P to Q.
We call it a folding map and write it by f : ∂P → T
where ∂P is the boundary of P; see Figure 3.

Let P be the unfolding of a DCT Q by T . The topol-
ogy of T can be classified into two cases, as illustrated
in Figure 4: a Y-form is a tree with a single point bi

of degree 3 (and with leaves at the vertices of Q), and
a V-form is just a path (through all vertices of Q).

Unfold

Figure 3: Unfolding a polyhedron.

V-formY-form

￼bi

￼vi0

￼vi2

￼vi1￼vi0

￼vi2

￼vi1

Figure 4: Topologies of cutting trees of doubly covered
triangles.

3 Nonexistence of Small Common Unfoldings for
Q0 and Q1

In this section, we assume there is a polygon P that is
a common unfolding of Q0 and Q1 by T 0 and T 1 with
folding maps f0 and f1.

Hereafter, we consider only the case that both T 0

and T 1 are Y-form. It can be shown that in other cases
existence of a common unfolding would contradict our
assumption that Q0 and Q1 are algebraic and indepen-
dent (see the proof in Appendix A).

3.1 Gluing Map

On ∂P, there are three points li0, l
i
1, l

i
2 corresponding

to vi0, v
i
1, v

i
2, such as f i(lij) = vij . Moreover, there are

three pointsmi
0,m

i
1,m

i
2 corresponded to bi, such as bi =

f i(mi
0) = f i(mi

1) = f i(mi
2). We define Li := {li0, li1, li2}

and M i := {mi
0,m

i
1,m

i
2}; see Figure 5. Let Iij be the

intervals on ∂P betweenmi
j ,m

i
j+1. The following holds.

Observation 2 For p ∈ ∂P, let α(p) be the interior
angle at p.

• α(lij) = θij.

• α(mi
0) + α(mi

1) + α(mi
2) = 2π.

Without loss of generality, we can assume that lij andm
i
j

appear in counterclockwise order mi
0, l

i
0,m

i
1, l

i
1,m

i
2, l

i
2

around ∂P for each i = 0, 1.

Definition 3 We define a gluing map gli : ∂P → ∂P
by the map returns the point to which is glued by the
mapping as follows.

• If p ∈ Li ∪M i, then gli(p) := p.

10
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￼li1

￼mi0

￼mi1

￼mi2
￼bi

￼li2

￼li0
￼Ii0

￼Ii1

￼Ii2

Figure 5: Li = {li0, li1, li2}, M i = {mi
0,m

i
1,m

i
2}.

• Otherwise, gli(p) := p′ such that f i(p) = f i(p′); p′

is determined uniquely.

Observation 4 Let p ̸∈ Li ∪M i. The following holds:

• p ∈ Iij ⇒ gli(p) ∈ Iij.

• p ∈ Iij ⇒ lij is the midpoint of (p, gli(p)) on ∂P.

• α(p) + α(gli(p)) = 2π where α(p) is the interior
angle of p ∈ ∂P.

Definition 5 (spreading sequence spr(lij))

For each lij ∈ Li, we define the spreading sequence

spr(lij) by the sequence of points obtained by alternative

iterations of gli and gli+1,

(lij , gl
i+1(lij), gl

i(gli+1(glij)), gl
i+1(gli(gli+1(lij)), . . . ),

until same points are repeated.1 In other words, a
spreading sequence ends at a point in

⋃
i,j L

i ∪M i.

￼θ2

￼l00

￼l02

￼l01

￼m01

￼m 02

￼m 00

￼l10

￼l11
￼l12

￼m11

￼gl0(gl1(gl0(gl1(l00 )))) = m 12

￼gl1(l00 )

￼gl0(gl1(l00 ))

￼gl1(gl0(gl1(l00 )))

￼m 10

Figure 6: The spreading sequence of l00.

Observation 6 The interior angles of odd-numbered
points of spr(lij) are θij, and even-numbered ones are

θij where θij := 2π − θij.

1The superscript indices are taken modulo 2 in this paper.
Specifically, gli+1 means gl0 for i = 1 because gli defined for
i = 0, 1.

Lemma 7 If i ̸= i′ or j ̸= j′, spr(lij) and spr(l
i′

j′) share
no point.

Proof. If a point appears in both of spr(lij), spr(l
i′

j′), by

Observation 7, θij = θi
′

j′ , θ
i
j = θi

′
j′ , θ

i
j = θi

′

j′ , or θ
i
j = θi

′
j′

holds. In any case, it contradicts the independence of
the angles. □

Lemma 8 For any lij ∈ Li, the length of spr(lij) is fi-
nite.

Proof. Because the angles are algebraic and indepen-
dent, θij ̸= π. It means that all points included in some
spreading sequence are vertices of P. By the definition
of the spreading sequence, a point does not appear twice
or more in a spreading sequence. Therefore if there is a
spreading sequence whose length is infinite, it produces
infinite vertices of P. It is a contradiction. □

Lemma 9 For any lij ∈ Li, there exists unique mi+1
k ∈

M i+1 such that spr(lij) = (lij , . . . ,m
i+1
k ).

Proof. The endpoint of a spreading sequence belongs
to M0 ∪M1 ∪ L0 ∪ L1. If the endpoint belongs to L0

or L1, it contradicts the independence of the angles.
Therefore, the endpoints belong to M0∪M1. Inversely,
each of M0 ∪ M1 is the endpoint of some spreading
sequence because the numbers of L0 ∪L1 and M0 ∪M1

are the same. Let us consider the spreading sequences
that end at m0

0,m
0
1, or m

0
2. The sum of the angles of

m0
0,m

0
1, or m

0
2 must be 2π, and it will be realized by

only θ00+θ
0
1+θ

0
2 and θ10+θ

1
1+θ

1
2 by their independence.

(Note that θi0+θ
i
1+θ

i
2 = 6π−(θi0+θ

i
1+θ

i
2) = 4π ̸= 2π.)

Therefore, the length of each of the spreading sequences
is odd by Observation 6. By considering the parity, we
can see that these spreading sequences must start from
l10, l

1
1, or l

1
2. □

Lemma 10 Let Sij := {p : p ∈ spr(lij)}.
Then

⋃
i,j S

i
j divides into ∂P equilateral intervals.

Proof. Let d+(p) and d−(p) be the distance between
p and its counterclockwise and clockwise nearest point
of

⋃
i,j S

i
j respectively. We prove that d+(p) and d−(p)

are uniform for any p in
⋃
i,j S

i
j . Let s ∈

⋃
i,j S

i
j be the

clockwise nearest point ofm0
0, and c := d−(m

0
0); see Fig-

ure 7. Let take l1j ∈ L1 such that spr(l1j ) = (l1j , . . . ,m
0
0).

If there is a point p′ ∈ S1
j such that d+(p

′) = c′ < c
or d−(p

′) = c′ < c, by using Observation 4 induc-
tively, there is a point p′′ such that the distance between
p′′,m0

1 is c′; see Figure 8. It contradicts that s is the
nearest. Therefore, c = d+(p) = d−(p) for any point
p ∈ S1

j . Especially, d+(m
0
0) = c. Next, we focus on

d+(m
0
1), d−(m

0
1), d+(m

1
2), and d−(m

1
2). It is easy to see

that d+(m
0
0) = d−(m

0
1), d+(m

0
1) = d−(m

0
2), d+(m

0
2) =

d−(m
0
0); see Figure 7. Thus, we can check that c =

11
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d+(p) = d−(p) for any point p ∈
⋃
j S

0
j by repeat-

ing the same discussion for m0
1 and m0

2. There exist
p ∈

⋃
j S

0
j , p

′ ∈
⋃
j S

1
j such that p and p′ are adjacent,

and they share the distance to the nearest. Therefore,
c = d+(p) = d−(p) for any point p ∈

⋃
j S

1
j . □

￼l00

￼l01
￼l02

￼m01

￼m 02

￼m 00

￼s

￼l1
j

Figure 7: The nearest distances next to mi
j .

￼l00

￼m 00

￼s

￼l1
j

￼p′￼

￼p′￼′￼

Figure 8: c = d+(p) = d−(p) for any point p ∈ S1
j .

3.2 standard

Definition 11 If all vertices of P are included in⋃
i,j S

i
j, we call P is a standard-form common unfold-

ing.

Lemma 12 If Q0 and Q1 have a common unfolding,
Q0 and Q1 have a standard-form common unfolding.

Proof. By Lemma 10, the points of
⋃
j S

0
j and

⋃
j S

1
j

are lined up alternately on ∂P. Let take a pair of ad-
jacent points and m be the interval between them. Let
(p0, p1, p2, . . . , pk) be the vertices of P on m′. Because
m is glued to another interval m′, (p0, p1, p2, . . . , pk)
make vertices (p′0, p

′
1, p

′
2, . . . , p

′
k) such that α(pi) = 2π−

α(p′i). In the same way as the proof of Lemma 10, it
spreads into all intervals. On the boundary of P ex-
cept

⋃
i,j S

i
j , the interior angles are α(p0), . . . , α(pk) and

2π−α(pk), . . . , 2π−α(p0) alternately; see Figure 9. We
focus on the cutting tree T into one side polyhedron.
Let T ′ be the cutting tree replacing each interval of T

with a straight line segment. T ′ is kept the interior an-
gles at

⋃
i,j S

i
j ; see Figure 10. Let P ′ be the unfolding

by T ′. Then P ′ is a standard-form common unfolding
of Q0 and Q1. □

￼p0
￼p1
￼p2

￼p′￼0
￼p′￼1
￼p′￼2

￼p′￼0

￼p′￼1￼p′￼2￼p0
￼p1

￼p2

￼m
￼m′￼

ざ

Figure 9: (p0, p1, . . . , pm) on the interval m.

￼v

￼α(v)

￼v′￼
￼α(v′￼) = α(v)

Figure 10: The reduction of a common unfolding into
a standard-form common unfolding.

By Lemma 12, if there is no standard-form common
unfolding between two polyhedra, there is no common
unfolding.Therefore, we can search the common unfold-
ing in the standard-form common unfoldings, whose
edges are isometric and vertices are included in

⋃
i,j S

i
j .

The standard-form common unfoldings are represented
by a sequence of interior angles. By fixing n, we can
enumerate the sequences of interior angles of length n
to be candidates of standard-form common unfolding.
Details of the algorithm are given in Algorithm 1. Be-
cause the length of each spreading sequence is odd, n
should be an integer that is not a multiple of 4 but even.
First, we prepare a cyclic array of length n to store the
interior angles. Next, we choose six array positions to
store the interior angles of lij . It causes O(n5) combina-
tions. Next, we compute the spreading sequences and
determine the interior angles. If distinct angles are as-
signed to one point, we return to the step of choosing
positions of lij . After the placement of lij is determined,
the construction of the spreading sequences takes O(n)

12
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time because the length of each spreading sequence is
at most n. If we obtain a feasible array, we output this
one as the candidate of a standard.

Algorithm 1: Enumerating candidate angle
squares for standard-form common unfoldings

input : The number of vertices n
output: Sequences of interior angles

1 Let C be a cyclic array of length n.
2 m0

0 := 0
3 forall m0

1,m
0
2,m

1
0,m

1
1,m

1
2 such that 0 = m0

0 <
m0

1 < m0
2 < n, 0 < m1

0 < m1
1 < m1

2 < n do
4 for i = 0, 1 and j = 0, 1, 2 do
5 if mi

j+1 −mi
j are odd then

6 Return to line 3.
7 end

8 lij := mi
j +

1
2 (m

i
j+1 −mi

j) mod n

9 end
10 Define gl0, gl1 by Definition 3.
11 for i = 0,1 and j = 0, 1, 2 do
12 p := lij
13 k := (j + 1) mod 2
14 C[lij ] := θij .

15 while p ̸= glk(p) do
16 p := glk(p)
17 if C[p] is not yet defined then
18 if k = 1 then
19 C[p] := θij
20 else

21 C[p] := θij
22 end

23 else
24 Return to line 3.
25 end
26 k := (k + 1) mod 2

27 end

28 end

29 if {C[mi
0], C[m

i
1], C[m

i
2]} = {θi+1

0 , θi+1
1 , θi+1

2 }
for each i then

output: C
30 end

31 end

3.3 Checking Polygon Closure

For example, Algorithm 1 outputs the following se-
quence (see Figure 11):

ϕ = (θ12, θ
0
2, θ

1
2, θ

0
2, θ

1
1, θ

0
1, θ

1
0, θ

0
0, θ

1
2, θ

0
2).

It remains to check whether the sequence of interior
angles corresponds to a simple polygon. First, we fix the

￼θ00

￼θ02

￼θ02

￼θ01
￼θ10

￼θ11

￼θ12

￼θ12

￼θ12
￼θ02

Figure 11: ϕ = (θ12, θ
0
2, θ

1
2, θ

0
2, θ

1
1, θ

0
1, θ

1
0, θ

0
0, θ

1
2, θ

0
2); solid

lines represent spreading sequences, and dotted lines
connect mi

j

values of θij by λ like Example 1. We view the polygonal
line as lying in the complex plane C. We define an
equilateral polygonal line Polyϕ,λ = (p0, p1, . . . , pn) by
the following:

p0 = 1, p1 = 0 ∈ C,

pi+1 − pi = (pi−1 − pi)e
√
−1ϕi .

Here, we remark that e
√
−1 θ = cos θ +

√
−1 sin θ holds

by Euler’s Formula. In order to be the common unfold-

￼θ12

￼θ02

￼θ12

￼θ02
￼θ11

￼θ01

￼θ10
￼θ00

￼θ12

￼p0￼p1

￼p2

￼p3

￼p4
￼p5

￼p6

￼p7
￼p8

￼p9

￼p10

Figure 12: Polyϕ,λ where ϕ = (θ12, θ
0
2, θ

1
2, θ

0
2, θ

1
1, θ

0
1, θ

1
0,

θ00, θ
1
2, θ

0
2) and λ{θij} = (

√
2,
√
3, 2π −

√
2−

√
3,
√
5,
√
7,

2π −
√
5−

√
7).

ing, Polyϕ,λ must satisfy closure p0 = pn and not have
self-intersection. We consider only the closure condition
of p0 = pn because it suffices here to prove the nonexis-
tence of common unfoldings. We can check whether the
polygon is closed using the following lemma:

Lemma 13 For a sequence ϕ = (ϕ0, ϕ1, . . . , ϕn−1) of

the angles θij or θij and an angle assignment λ, Polyϕ,λ
satisfies p0 = pn if and only if the following condition
holds:

13
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(∗) For each 0 ≤ i ≤ n, there exists j uniquely such that
ϕi+ϕi+1+ · · ·+ϕj−1+ϕj is an integer multiple of
2π and j − i is odd.

Proof. Let w⃗i be the vector along the edge (pi, pi+1).
Here, p0 = pn is equivalent to

∑
i w⃗i = 0. The slope of

w⃗i is ϕ0+ϕ1+· · ·+ϕi or ϕ0+ϕ1+· · ·+ϕi−π depending on
whether i is odd or even. Thus, the difference between
the slopes of two vectors w⃗i and w⃗j is ϕi+ϕi+1+· · ·+ϕj+
π or ϕi+ϕi+1 + · · ·+ϕj depending on whether i is odd
or even. By the independence of the angles, w⃗i = −w⃗j
holds if and only if j−i is odd and ϕi+ϕi+1+· · ·+ϕj−1+
ϕj is an integer multiple of 2π. It is easy to see that
p0 = pn if the condition (∗) holds because all vectors
are canceled with these inverses. We show p0 = pn only
if the condition (∗) holds. Let w⃗′

0, w⃗
′
1, . . . , w⃗

′
k be the

subset of w⃗0, w⃗1, . . . , w⃗n−1 choosing without the same
or inverse ones. It is sufficient to show w⃗′

0, w⃗
′
1, . . . , w⃗

′
k

are linearly independent on Z.
We use a classical result on transcendental numbers:

Theorem 14 (Lindemann’s Theorem) For any
distinct algebraic numbers a0, a1, . . . , am, the numbers
ea0 , ea1 , . . . , eam are linearly independent on Q∗, where
Q∗ is the algebraic closure on Q.

Let ψi be the slope of w⃗′
i; w⃗′

i is represented by

e
√
−1ψi . Because we choose w⃗′

0, w⃗
′
1, . . . , w⃗

′
k without

the same or inverse ones, ψ0, . . . , ψk are distinct al-
gebraic numbers. Similarly,

√
−1ψ0, . . . ,

√
−1ψk are

distinct algebraic numbers. By Lindemann’s Theorem,
e
√
−1ψ0 , . . . , e

√
−1ψk are linearly independent on Q∗.

On Z, they are also linearly independent. Therefore,
e
√
−1ψ0 + e

√
−1ψ1 + · · · + e

√
−1ψn = 0 only when the

condition (∗) holds. □

Lemma 15 Whether the condition (∗) holds does not
depend on λ.

Proof. From the independence, the sum of angles is an
integer multiple of π only if (θ00+θ

0
1+θ

0
2), (θ

1
0+θ

1
1+θ

1
2),

or (θij+θ
i
j). Therefore, whether ϕi+ϕi+1+ · · ·+ϕj is an

integer multiple of 2π or not depends on only whether
they can be divided into the above pairs or not. □

For a given ϕ, we check that there exists j such that the
condition (∗) is satisfied for each i one by one. It can
be done in O(n2) time.

4 Computational Experiment

By combining Algorithm 1 and the Lemma 15 tech-
nique, we can check that, for given n, there is no n-
gon that is a common unfolding between any two dou-
bly covered triangles whose angles are algebraic and ra-
tionally independent. It requires O(n7) time theoret-
ically. We implemented them and checked that in a

range n < 300. It takes 1.5 hours in a normal lap-
top environment (CPU: 1.4GHz Intel Quad-Core i5, OS:
macOS 12.4, Memory: 16GB, compiler: GCC 11.3.02,
optimize: -O3).

5 Conclusion

In this paper, we proved the nonexistence of common
unfoldings limited in the number of vertices between
two elements in a restricted polyhedral class. The main
next step is to remove the limitation on the number of
vertices. As you can see from the computational exper-
iments, Lemma 13 requires a strong condition to have a
common unfolding. This condition seems not to be sat-
isfied by any sequence obtained by Algorithm 1. If we
can prove this conjecture, then we will obtain nonexis-
tence without the limitation on the number of vertices.
The extension to polyhedra with more than three ver-
tices would also be interesting. In these cases, there are
more possible cutting trees to consider, and we would
have to consider how to relate restrictions of the interior
angles through the spreading sequences.
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A Appendix

Here we consider the case that either or both cutting trees
are V-form. We assume that at least T 0 is V-form, and
that T 0 cuts v00 , v

0
1 by leaves and spans v03 without loss

of generality. There are two points d00, d
0
1 in the bound-

ary of P such that f0(d00) = f0(d01) = v03 . Let L0 :=
{l00, l01},M0 := ∅, D0 := {d00, d01}. If T 1 is also V-form, we
define L1,M1, D1 in the same manner. Otherwise, we let
L1 := {l10, l11, l12},M1 := {m1

0,m
1
1,m

1
2}, D1 := ∅. We modify

the definition of the gluing map.

Definition 16 We define gli : ∂P → ∂P as follows.

• If p ∈ Li ∪M i ∪Di, gli(p) := p

• Otherwise, gli(p) := p′ such that f i(p) = f i(p′); p′ is
determined uniquely.

We consider the spreading sequences of each L0 ∪ L1. The
endpoints belong to M i∪Di by the definition. In both cases,
|L0∪L1| = |M0∪M1∪D0∪D1|. Thus, each ofM0∪M1∪D0∪
D1 is the endpoint of some spreading sequence. Therefore,
v03 is made by gluing two points that are the endpoints of
some spreading sequences. It means that θ03 is represented by

θij +θi
′

j′ , θ
i
j +θi

′
j′ , or θ

i
j +θi

′
j′ . It contradicts the independence

of the angles. Therefore, it is sufficient to consider only the
case that both are Y-form.
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Diamonds are Forever in the Blockchain:
Geometric Polyhedral Point-Set Pattern Matching

Gill Barequet∗ Shion Fukuzawa† Michael T. Goodrich†

David M. Mount‡ Martha C. Osegueda† Evrim Ozel†

Abstract

Motivated by blockchain technology for supply-chain
tracing of ethically sourced diamonds, we study geomet-
ric polyhedral point-set pattern matching as minimum-
width polyhedral annulus problems under translations
and rotations. We provide two (1 + ε)-approximation
schemes under translations with O(ε−dn)-time for d
dimensions and O(n log ε−1 + ε−2)-time for two dimen-
sions, and we give an O(fd−1ε1−2dn)-time algorithm
when also allowing for rotations, parameterized on f ,
which we define as the slimness of the point set.

1 Introduction

A notable recent computational geometry application
is for tracking supply chains for natural diamonds,
for which the industry and customers are strongly
motivated to prefer ethically-sourced provenance (e.g.,
to avoid so-called “blood diamonds”). For example,
the Tracr system employs a blockchain for tracing the
supply chain for a diamond from its being mined as
a rough diamond to a customer purchasing a polished
diamond [23]. (See Figure 1.)

Blockchain transactions

Figure 1: Blockchain transactions in a diamond
supply chain, providing provenance, traceability, and
authenticity of an ethically-sourced diamond.

Essential steps in the Tracr blockchain supply-chain
process require methods to match point sets against geo-
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†Dept. of Computer Science, University of California, Irvine,
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metric shapes, e.g., to guarantee that a diamond has not
been replaced with one of questionable provenance [23].
Currently, the Tracr system uses standard machine-
learning techniques to perform the shape matching
steps. We believe, however, that better accuracy can be
achieved by using computational geometry approaches.
In particular, motivated by the Tracr application, we
are interested in this paper in efficient methods for
matching point sets against geometric shapes, such
as polyhedra. Formalizing this problem, we study
the problem of finding the best translation and/or
rotation of the boundary of a convex polytope, P (e.g.,
defining a polished diamond shape), to match a set
of n points in a d-dimensional (d ≥ 3) space, where
the point set is a “good” sample of the boundary of a
polytope that is purported to be P . Since there may
be small inaccuracies in the sampling process, our aim
is to compute a minimum width polyhedral annulus
determined by P that contains the sampled points. In
the interest of optimizing running time, rather than
seeking an exact solution, we seek an approximate
solution that deviates from the real solution by a
predefined quantity ε > 0.

Related Work. We are not familiar with any previous
work on the problems we study in this paper. Never-
theless, there is considerable prior work on the general
area of matching a geometric shape to a set of points,
especially in the plane. For example, Barequet, Bose,
Dickerson, and Goodrich [12] give solutions to several
constrained polygon annulus placement problems for
offset and scaled polygons including an algorithm for
finding the translation for the minimum offset of an
m-vertex polygon that contains a set of n points
in O(n log2 n + m) time. Barequet, Dickerson, and
Scharf [13] study the problem of covering a maximum
number of n points with an m-vertex polygon (not
just its boundary) under translations, rotations, and/or
scaling, giving, e.g., an algorithm running in time
O(n3m4 log(nm)) for the general problem. There has
also been work on finding a minimum-width annulus
for rectangles and squares, e.g., see [9, 11,19,21].

Chan [15] presents a (1 + ε)-approximation method
that finds a minimum-width spherical annulus of n
points in d dimensions in O(n log(1/ε)+εO(1)) time, and

16



34th Canadian Conference on Computational Geometry, 2022

Agarwal, Har-Peled, and Varadarajan [1] improve this

to O(n+1/εO(d2)) time via coresets [2,3,22,24]. A line
of work has considered computing the spherical annulus
under stronger assumptions on the points samples.
Most notably Devillers and Ramos [17] combine various
definitions for “minimum quality assumptions” by Mel-
horn, Shermer and Yap [20] and Bose and Morin [14]
and show that under this assumption the spherical
annulus can be computed in linear time for d = 2
and present empirical evidence for higher dimensions.
Arya, da Fonseca, and Mount [6] show how to find an ε-
approximation of the width of n points in O(n log(1/ε)+
1/ε(d−1)/2+α) time, for a constant α > 0. Bae [10] shows
how to find a min-width d-dimensional hypercubic shell
in O(n⌊d/2⌋ logd−1 n) expected time.

Our Results. Given a set of n points in Rd, we
provide an O(ε−dn)-time (1+ε)-approximate polytope-
matching algorithm under translations, for d ≥ 3, and
O(n log ε−1 + ε−2) time for d = 2, and we provide
an O(fd−1ε1−2dn)-time algorithm when also allowing
for rotations, where the complexity of the polytope is
constant and for rotations is parameterized by f , which
we define as the slimness of the point set.
The paper is organized as follows. In Section 2, we set

the ground for this work by providing some necessary
definitions. In Section 3, we approximate the MWA
under only translations. In this section, we provide
a constant factor approximation scheme, a (1 + ε)-
approximation scheme and describe how to improve
the running time in two dimensions. In Section 4, we
consider the MWA under rotations.

2 Preliminaries

Following previous convention [4,5,7,8,18], we say that a
point set S is a δ-uniform sample of a surface Σ ⊂ Rd

if for every point p ∈ Σ, there exists a point q ∈ S
such that d(p, q) ≤ δ. Let C ⊂ Rd be a closed, convex
polyhedron containing the origin in its interior. Given
C, and x ∈ Rd, define x + C = {x + y : y ∈ C} (the
translation of C by x), and for r ∈ R, define rC = {ry :
y ∈ C}. A placement of C is a pair (x, r), where x ∈
Rd and r ∈ R≥0, representing the translated and scaled
copy x + rC. We refer to x and r as the center and
radius of the placement, respectively. Two placements
are concentric if they share the same center.

Let C be any closed convex body in Rd containing
the origin in its interior. The convex distance function
induced by C is the function dC : Rd×Rd → R≥0, where

dC(p, q) = min{r : r ≥ 0 and q ∈ p+ rC}

Thus, the convex distance between p and q is deter-
mined by the minimum radius placement of C centered
at p that contains q (see Figure 2). When C is centrally

p

qdC(p, q) =
||q−p||
||a−p||

UC

a

c

MinBall(c)

cS S

MWA(c)

Figure 2: Left: a visual representation of a polyhedral
distance function and the distance between two points.
Center: The MinBall under dC containing all points in
S, centered at c. Right: The MWA of S with all points
within MinBall(c)\MaxBall(c).

symmetric, this defines a metric, but for general C, the
function dC may not be symmetric. We call the original
shape C the unit ball UC under the distance function
dC . Note that dC(a, c) = dC(a, b) + dC(b, c) when a, b
and c are collinear and appear in that order.

Define an annulus for C to be the set-theoretic
difference of two concentric placements (p+RC) \ (p+
rC), for 0 ≤ r ≤ R. The width of the annulus is R− r.
Given a δ-uniform sample of points, S, there are three
placements of C we are interested in:
• Minimum enclosing ball (MinBall): A place-

ment of C of the smallest radius that contains all of the
points in S.

• Maximum enclosed ball (MaxBall): A place-
ment of C of the largest radius, centered within the
convex hull of S, that contains no points in S.

•Minimum width annulus (MWA): A placement
of an annulus for C of minimum width, that contains
all of the points in S.

Note that, following the definition of the MaxBall,
we require that the center of the MWA must also lie
within the convex hull of S. For each of the above
placements, we also refer to parameterized versions, for
example MinBall(p), MaxBall(p), or MWA(p). These
respectively refer to the minimum enclosing ball, maxi-
mum enclosed ball, or minimum width annulus centered
at the point p.
Further, we use |MinBall(p)| and |MaxBall(p)| to

denote the radius of MinBall(p) and MaxBall(p), re-
spectively, and we use |MWA(p)| to denote the width of
MWA(p).
The ratio, F , of the MinBall over the MaxBall of

S ⊂ Rd under distance function dC defines the fatness
of S under dC , such that F := |MinBall|/|MaxBall|.
Also, we define the concentric fatness as the ratio of
the MinBall and MaxBall centered at the MWA, such
that Fc := |MinBall(copt)|/|MaxBall(copt)| where copt
is the center of the MWA. Conversely, we define the
slimness to be f−1 = 1 − F−1

c , which corresponds
to the ratio of the MinBall(copt) over the MWA, i.e.,
f := |MinBall(copt)|/|MWA|.

Remark 1 In order for a δ-uniform sample to rep-
resent the surface, Σ, with sufficient accuracy for a
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meaningful MWA, we assume that the sample must
contain at least one point between corresponding facets
of the MWA. Where corresponding facets refer to facets
of the MinBall and MaxBall representing the same facet
of UC . Therefore, in the remainder of the paper, we
assume we have a δ-uniform sample and that δ is small
enough to guarantee this condition for even the smallest
facets.

In practice, it would be easy to determine a small
enough δ before sampling Σ, since only sufficiently slim
surfaces would benefit from finding the MWA, and very
fat surfaces would yield increasingly noisy MaxBall.
One easy approach would be setting δ to the smallest
facet of the MinBall and scaling down by an arbitrary
constant larger than the maximum expected fatness,
such as 100. This example imposes a very generous
bound on fatness since it would allow the inner shell to
be 1% of the size of the outer shell, practically a single
digit constant would often suffice.
Also, note that, for a given center point c, MWA(c)

is uniquely defined as the annulus centered at c
with inner radius minp∈S dC(c, p) and outer radius
maxp∈S dC(c, p). Further, let us assume that the
reference polytope defining our polyhedral distance
function has m facets, where m is a fixed constant,
since the sample size is expected to be much larger
than m. Thus, dC can be calculated in O(m) time;
hence, MWA(c) can be found in O(mn) time, which is
O(n) under our assumption.

3 Approximating the Minimum Width Annulus

Let us first describe how to find a constant factor
approximation of MWA under translations. Note that,
by assumption, the center c of our approximation lies
within the convex hull of S. Let us denote the center,
outer radius, inner radius, and width of the optimal
MWA as copt, Ropt, ropt, and wopt.
We begin with Lemma 1, where we prove copt is within

a certain distance from the center of the MinBall c,
providing a search region for copt. In Lemma 2, we
bound the width achieved by a center-point that is
sufficiently close to copt. We then use this in Lemma 3
to prove that |MWA(c)| achieves a constant factor
approximation.

Lemma 1 The center of the MWA, copt, is within
distance wopt of the center of the MinBall, c. That is,
dC(c, copt) ≤ wopt.

Proof. Recall our assumption from Remark 1. By
our assumption that at least one sample point lies on
each facet, MinBall cannot shrink past any facets of
MaxBall(copt).
Suppose for contradiction that dC(c, copt) > wopt. Let

s be the point where a ray projected from c through

copt intersects the boundary of MaxBall(copt), and let R
denote the radius of the MinBall. Observe that R must
be large enough for MinBall to contain s and therefore
R ≥ dC(c, s).

R ≥ dC(c, copt) + dC(copt, s) by collinearity

> wopt + dC(copt, s) by assumption

= wopt + ropt by MaxBall(copt).

Thus, since wopt+ ropt = Ropt, we find R > Ropt, which
is a contradiction since R must be the smallest radius
of the MinBall across all possible centers. Therefore, we
have that dC(c, copt) cannot be larger than wopt. □

Lemma 1 helps us constrain the region within which c
must be contained. Let us now reason about how a given
center point, c, would serve as an approximation. For
convenience, let us define R := |MinBall(c)| and r :=
|MaxBall(c)| as the radii of the MinBall and MaxBall
centered at c, respectively.

Lemma 2 Suppose c is an arbitrary center-
point in our search region, and the two directed
distances between c and copt are at most t, i.e.,
t ≥ max{dC(c, copt), dC(copt, c)}. Then, we have that
|MWA(c)| ≤ wopt + 2t.

Proof. Knowing that all sample points must be con-
tained within the MWA, the MWA(c) cannot expand
past the furthest or closest point in MWA from c under
dC . Let us now define these two points and use them to
bound the radii for MinBall(c) and MaxBall(c).

Let p be the point where the ray from c through copt
intersects the boundary of MinBall(copt). MinBall(c)
cannot extend further than p.

dC(c, p) = dC(c, copt) + dC(copt, p) ≤ t+ dC(copt, p)

R ≤ Ropt + t.

Conversely, let q be the intersection point where the ray
projected from copt through c intersects the boundary
of MaxBall(copt), in which case MaxBall(c) cannot
collapse further than q.

dC(c, q) = dC(copt, q)− dC(copt, c) ≥ dC(copt, q)− t

r ≥ ropt − t.

Combining these bounds with the fact that
|MWA(c)| = R − r we find that |MWA(c)| ≤
wopt + 2t. □

For simplicity, let us consider two points a, b to be t-
close (under C) whenever t ≥ max{dC(a, b), dC(b, a)}.

Lemma 3 If c is the center of MinBall, then MWA(c)
is a constant factor approximation of the MWA, that is,
|MWA(c)| ≤ b|MWA|, for some constant b ≥ 1, under
translations.
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Proof. From Lemma 1, we have that dC(c, copt) ≤
wopt. If c and copt are wopt-close, then we can directly
apply the second part of Lemma 2 to find r ≥ ropt−wopt

and R ≤ Ropt, such that |MWA(c)| ≤ Ropt − (ropt −
wopt), thus proving that this is a 2-approximation. If dC
is a metric, then dC(copt, c) = dC(c, copt) and this must
always be the case. However, if dC(copt, c) > wopt, then
we must use the Euclidean distance to find dC(copt, c).
Let vector u := c − copt, and let us define unit vectors
with respect to dC and dC , such that

ûC =
u

dC(copt, c)
, ûC =

u

dC(c, copt)

||ûC ||dC(copt, c) = ||u|| = ||ûC ||dC(c, copt)

dC(copt, c) ≤
||ûC ||
||ûC ||

wopt from Lemma 1.

Under any convex distance function,
||ûC ||
||ûC || is bounded

from above by A = maxv∈Rd
||v̂C ||
||v̂C || , which corresponds to

finding the direction, v, of the largest asymmetry in UC .
Thus, by Lemma 2, |MWA(c)| ≤ (A + 1)wopt. Under
our (fixed) polyhedral distance function, A is constant;
hence, MWA(c) is a constant-factor approximation. □

(1 + ε)-approximation. Let us now describe how to
compute a (1 + ε)-approximation of MWA. We begin
with Lemma 4, which defines how close to copt is
sufficient for a (1 + ε)-approximation. In Theorem 5,
we define a grid of candidate center-points so that any
point in the search region has a gridpoint sufficiently
close to it.

Lemma 4 Suppose copt and c are (εw/(2b))-close,
where w = |MWA(cM )|, cM is the center of MinBall,
and b is the constant from Lemma 3. Then, MWA(c)
is a (1 + ε)-approximation of MWA under translations.

Proof. It suffices to show that the width of our approx-
imation only exceeds the optimal width by a factor of at
most (1+ε). Assuming c and copt are t-close, and using
Lemma 2, we require that wopt + 2t ≤ (1 + ε)wopt, i.e.,
t ≤ εwopt/2. Let us then choose t ≤ εw/(2b), knowing
that w ≤ bwopt from Lemma 3, which is sufficient for
achieving a (1 + ε)-approximation. □

Knowing how close our approximation’s center must
be, we can now present a (1 + ε)-approximation algo-
rithm to find a center satisfying this condition.

Theorem 5 One can achieve a (1 + ε)-approximation
of the MWA under translations in O(ε−dn) time.

Proof. The MinBall can be computed in O(n)
time [16]. By Lemma 1, we have that dC(c, copt) ≤ wopt,
where c is the MinBall center. This implies that copt
must lie within the placement c + woptC or more

generously in P , defined as c + wC. Furthermore,
from Lemma 4, we know that being (εw/(2b))-close
to copt suffices for an (1+ ε)-approximation. Therefore,
overlaying a grid G that covers P , such that any point
in p ∈ P is (εw/(2b))-close to a gridpoint, guarantees
the existence of a point g ∈ G for which MWA(g) is a
(1 + ε)-approximation.

Since P and (εw/(2b))-closeness are both defined
under dC , we translate this to a cubic grid for simplicity.
Let Q be the smallest cube enclosing P and q be the
largest cube enclosed by (εw/(2b))C. Let us now define
a grid, G, to span over Q with cells the size of q.
This grid, G, has O(Fb/ε) gridpoints per direction and
O(F dbdε−d) gridpoints in total, where F corresponds to
the fatness of C under the cubic distance function.

Let us define the cubic distance function, dq, with
unit cube Uq = q · (2b)/(εw), such that Uq is the largest
cube enclosed by C. The grid G guarantees that for
every point p, there exists a gridpoint g ∈ G such that
dq(p, g) ≤ εw/(2b). Since the unit cube is contained
within the unit polyhedron, we have that dC(a, b) ≤
dq(a, b) ∀a, b; and since dq defines a metric, p must
also be (εw/(2b))-close under dC . Finding the gridpoint
providing the (1+ε)-approximation takes O(F dbdε−dn)
time,1 which, under a fixed dC , is O(ε−dn) time. □

Faster grid-search in two dimensions. The algorithm
of Theorem 5 recalculates the MWA at every gridpoint.
However, small movements along the grid should not
affect the MWA much. We use this insight to speed up
MWA recalculations for two dimensions.

Let us first define the contributing edge of a sample
point, p ∈ S, as the edge of C+g intersected by the ray
emanating from a gridpoint, g, towards p. Under this
center-point, p will only directly affect the placement
of the contributing edge. Observe that given vectors
−→v ∈ C, defined as the vectors directed from the center
towards each vertex, the planar subdivision, created by
rays for each −→v originating from g, separates points by
their contributing edge. For any two gridpoints, g1 and
g2, and rays projected from them parallel to −→v , any
points within these two rays will contribute to different
edges under g1 and g2. We denote this region as the
vertex slab of vertex v, and the regions outside of this
as edge slabs. Points within an edge slab contribute to
the same edge under both gridpoints, maintaining the
constraints this imposes on the MWA, can therefore be
achieved with the two extreme points per edge slab. If
we consider vertex slabs for all g ∈ G, we must be able
to quickly calculate the strictest constraints imposed by
points in a subset of vertex slabs. An example of the
planar subdivision for two points is shown in Figure 3.

1For metrics, MinBall provides a 2-approximation, thus b=2.
For non-metrics, we can remove this constant by first using this
algorithm with ε=1 in order to find a 2-approximation in linear-
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vertex

slab

edge

slab edge

slab

C + g1
C + g2

sample points
p ∈ S

−→v

Figure 3: Planar subdivision defining vertex slabs (red)
and edge slabs (blue) for two candidate center-points,
and showing membership of some sample points.

Given a grid G, we write gi,j ∈ G to be the gridpoint
at index (i, j). Consider the set of all grid lines Lv

defined by rays parallel to −→v starting at each gridpoint.
Lv defines a planar subdivision corresponding to the
edge slabs between gridpoints. Before attempting to
identify the extreme points for each edge slab, we first
need to find a quick way to identify the slab in Lv that
contains a given sample-point, p.

Lemma 6 For a specific vector −→v and an m×m grid,
we can identify which slab contains a sample point, p,
in O(logm) time with O(m2)-time preprocessing.

Proof. Consider the orthogonal projection of grid lines
in Lv onto a line −→v⊥ perpendicular to −→v , the order in
which these lines appear in −→v⊥ defines the possible slabs
that could contain p (see Figure 4a). We can project
a given grid line l ∈ Lv onto −→v⊥ in constant time.
With the grid lines in sorted order, we can perform a
binary search through the m2 points in O(logm) time
to identify the slab containing p.
Using general sorting algorithms, we could sort the

grid lines in O(m2 logm) time. However, since these
lines belong to a grid, we can exploit the uniformity to
sort them in only O(m2) time. Consider the two basis
vectors defining gridpoint positions ı̂ = g(1,0) − g(0,0)
and ȷ̂ = g(0,1) − g(0,0), and their sizes after orthogonal
projection onto −→v⊥, |̂ı⊥|, and |ȷ̂⊥|. Without loss of
generality, assume that |̂ı⊥| ≥ |ȷ̂⊥|, in which case grid
lines originating from adjacent gridpoints in the same
row must be exactly |̂ı⊥| away. In addition, any region
|̂ı⊥|-wide, that does not start at a grid line, must contain
at most a single point from each row. Furthermore,
since points in the same row are always |̂ı⊥| away, they
must appear in the same order in each region.
We can therefore initially split −→v⊥ into regions |̂ı⊥|

wide. Sorting the grid lines l ∈ Lv into their region can
therefore be calculated in O(m2) time. Now we can sort
the m points in the region containing points from every

time, and using this approximation for gridding in the main step.

m
...
...
...

m

−→v

C

−→v⊥

. . .
. . .

. . .

...

. . .

p ∈ S

Lv

(a) A demonstration of the
point location problem with
the subdivision, Lv, and a
visualization of the gridpoints
and sample point projections
onto −→v⊥.

Lv

−→e L

−→v
g ∈ Ggrid points

sample points

(b) Finding the extreme
points (red) under −→e L in
subdivision Lv for each re-
gion (solid) and for all re-
gions to its left (dashed).

Figure 4: A visual representation of the projections
involved while point locating within the vertex slabs
and while finding the extreme points in each slab.

row in O(m logm) time. Since each region has the same
order, we can place points in other regions by following
the order found in our sorted region, thus taking O(m2)
preprocessing time for sorting the points. □

Recall that points to the left of a given line l ∈ Lv

contribute to the edge to the left of v, i.e., all points
belonging to slabs to the left of l. We can therefore
isolate the points in these slabs causing the largest
potential change in MWA.

Lemma 7 For a vertex v ∈ C and grid line l ∈ Lv

through gridpoint g, let lL and lR refer to the slabs on
the subdivision imposed by Lv immediately to the left
and right of l, respectively. Assuming lL maintains the
points to the left of l imposing the strictest constraints
on MWA(g), and lR to the right, one can calculate
MWA(g) in O(1) time.

Proof. Finding minp∈S dC(g, p) and maxp∈S dC(g, p)
can now be achieved by optimizing only over the set of
points in {lL ∪ lR, ∀v∈C} and all points in edge slabs.
This set would contain two points per vertex and two
points per edge, yielding a constant number of points.
Thus, MWA(g) can be found in constant time. □

Theorem 8 A (1 + ε)-approximation of the MWA in
two dimensions can be found in O(n log ε−1+ε−2) time
under translations.

Proof. For each vertex, v, we use Lemma 6 to identify
the slab for every sample point. For each slab, we
maintain only the two extreme points for each of the
edges incident on −→v . Let −→e L ∈ C denote the vector
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describing the edge incident on −→v from the left, and
vice versa for −→e R ∈ C incident from the right. For each
slab, we maintain only points which when projected
in the relevant direction, −→e , cause the furthest and
closest intersections with the boundary (shown for −→e L

in Figure 4b). With a left-to-right pass, we update a
slab’s extreme points relative to −→e L to maintain the
extreme points for itself and slabs to its left. With a
right-to-left pass, we do the same for −→e R and maintain
points in its slab and slabs to its right.

Thus, for each vertex, we create the slabs in O(ε−2)
time, place every sample point in its slab in O(n log ε−1)
time, and maintain only the extreme points per slab in
constant time per sample point. With O(ε−2) time to
update each slab after processing the sample points, we
can update the slabs such that they hold the extreme
points across all slabs to their left or right (relative to
−→e L and −→e R, respectively).

For each edge slab, finding the extreme points is much
simpler since finding min dC(g, p) and max dC(g, p) will
always be based on the same contributing facet for all
points within the same edge slab .

Thus, after finding the extreme points in both vertex
slabs, we can calculate MWA(g) in constant time
as described in Lemma 7. Taking O(ε−2) time to
find ming∈G MWA(g), which by Theorem 5 provides a
(1 + ε)-approximation of the minimum width annulus,
and considering the O(n log ε−1) pre-processing time
completes the proof of the claimed time bound. □

4 Approximating MWA allowing rotations

In this section we consider rotations. As with Lemma 4,
our goal is to find the maximum tolerable rotation
sufficient for a (1 + ε)-approximation. Observe that
when centered about the global optimum, the solution
found under both rotation and translation is at least
as good as the solution found solely through rotation
(i.e., under a fixed center). We will therefore first prove
necessary bounds for a (1 + ε)-approximation under
rotation only with the understanding that they remain
when also allowing for translation.

Consider the polyhedral cone around −→v , and define
the bottleneck angle as the narrowest angle between
a point on the surface of the polyhedral cone and −→v .
Let θ be the smallest bottleneck angle across all −→v ∈ C.
Let MWAα(c) denote the MWA centered at c, where C
has been rotated by angle α. Let us also use similar
notations for MinBall and MaxBall.

Lemma 9 Rotating by α causes MinBallα(c) to grow by

at most sin(π−θ−α)
sin θ (and the reciprocal for MaxBallα(c)).

Proof. Similarly to Lemma 2, all sample points must
be contained within MinBall(c). MinBallα(c) can only
expand to the furthest point within MinBall(c) under

α
r1

r2

θ

r2
r1
= sin(π−θ−α)

sin θ

c

vα

v0

(a) A demonstration of the scale increase necessary for a
polyhedron rotated by α to contain the original.

−→v

copt

α

(b) A rotation by α in an arbitrary direction about −→v .

Figure 5: Visual representations for the effect of
rotating by α, demonstrating the scale increase and
demonstrating how a rotation by α is defined for higher
dimensions.

the new rotated distance function. Let us now consider
the triangle formed between c, the vertex v of the
original MinBall, v0, and the rotated vertex vα (shown
in Figure 5a). Since our calculations focus towards the
same vertex, we can work with Euclidean distances. The
quantity |v0 − c| defines the radius r1 of the original
polyhedron, and r2 = |vα − c| the radius of the rotated
one. With γ = π − θ − α as the remaining angle in our
triangle and using the sine rule, we find that

r2
r1

=
sin γ

sin θ
=

sin(π − θ − α)

sin θ
.

Observe that θ is the angle maximizing this scale
difference. This applies to rotating by α in any direction
about −→v (as shown in Figure 5b), and since this direc-
tion need not coincide with θ, the scaled polyhedron
might not touch the original. For MaxBallα(c) to be
contained within MaxBall(c), the same example holds
after switching references to the scaled and original. In
this case, θ minimizes r1/r2. □

Let us now determine the rotation from the optimal
orientation that achieves a (1 + ε)-approximation.
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Lemma 10 Given a center c, we have that MWAα(c)
is a (1 + ε)-approximation when α is smaller than

arcsin

(
sin θ

2f

(
1+ε±

√
(1+ε)2 + 4f(f − 1)

))
− θ.

Proof. Define f as the ratio of the radius of
MinBall(copt) to wopt (i.e., fwopt = |MinBall(copt)|).
Note that f corresponds to the slimness of S under dC
over all rotations of C. Using Lemma 9, we know that

|MWAα(c)| ≤
sin γ

sin θ
|MinBall(copt)| −

sin θ

sin γ
|MaxBall(copt)|

sin γ

sin θ
fwopt −

sin θ

sin γ
(f−1)wopt ≤ (1+ε)wopt (1)

sin γ

sin θ
f − sin θ

sin γ
(f−1) ≤ (1+ε). (2)

For a (1 + ε)-approximation, |MWAα(c)| ≤ (1+ε)wopt

imposing the right side of Relation (1), its left side fol-
lows by definition of f , and Relation (2) by cancellation
of wopt. Since θ is constant, we can rearrange the above
into a quadratic equation and solve for sin γ.

sin γ =
sin θ

2f

(
1+ε±

√
(1+ε)2 + 4f(f−1)

)
. (3)

However, arcsin will find γ ≤ π, whereas we need the
obtuse angle π − γ. Thus, proving this lemma’s titular
bound, and achieving a (1 + ε)-approximation. □

Let us now establish a more generous lower-bound
that will prove helpful when developing algorithms.

Lemma 11 The angular deflection required for a
(1 + ε)-approximation is larger than θε/(2f).

Proof. Observe that γ is of the form arcsin(k sin θ) and
thus, in order for α = γ−θ to be positive, we must have
θ < π/2 and k > 1. We will prove this is the case.

k =
1+ε

2f
+

√(
1+ε

2f

)2

− 1

f
+ 1 (4)√

1

4f2
− 1

f
+ 1 =

∣∣∣∣1− 1

2f

∣∣∣∣ (5)

k >
1+ε

2f
+

∣∣∣∣1− 1

2f

∣∣∣∣ = 1 +
ε

2f
. (6)

Equation (4) follows from Equation (3) after expanding.
Relation (6) follows after using Equation (5) as a
lower bound for the square root term in Equation (4)
since ε > 0 and f > 1. This allows us to bound

arcsin

((
1 +

ε

2f

)
sin θ

)
by using a Taylor’s series ex-

pansion to find (1 + k) · θ ≤ arcsin((1 + k) sin θ), thus
proving that the bound from Lemma 10 is greater than
θε
2f . □

Lemma 12 For fixed rotation of C, assume we have
an O(g(n))-time algorithm for the optimal minimum-
width annulus under translation. We can find a
(1+ ε)-approximation of the MWA under rotations and
translations in O(fd−1ε1−dg(n)) time.

Proof. A d-dimensional shape has a (d−1)-dimensional
axis of rotation. Let us evenly divide the unit circle
into k directions. Let us also define a collection of all
possible direction combinations as a grid of directions.
For each grid direction, rotate C by the defined direction
and calculate the MWA in O(g(n)) time. The optimal
orientation must lie between the (d−1)-dimensional
cube formed by 2d−1 grid directions. Therefore, as
long as the diagonal is smaller than θε

f , there exists

a grid direction within θε
2f of the optimal orientation,

which implies a (1 + ε)-approximation by Lemma 11.
Thus, we can achieve a (1 + ε)-approximation in time

O

(
g(n) ·

(
2πf

√
d−1

θε

)d−1
)
, where d and θ are constant

under a fixed distance function dC . □

With a fixed center, Lemma 12 can be used to
approximate MWA under rotations in O(nfd−1ε1−d)
time.

Theorem 13 One can find a (1 + ε)-approximation
of MWA under rotations and translations in
O(fd−1ε1−2dn) time for d≥3, and O(fnε−1 log ε−1 +
fε−3) time for d=2.

Proof. Consider using an approximation algorithm
(from Theorems 5 or 8) instead of an exact algorithm as
in Lemma 12. Let us define (1+ξ) as the approximation
ratio necessary from the subroutines in order to achieve
an overall approximation ratio of (1 + ε), such that
(1 + ξ)2 = 1+ ε. Since ξ =

√
1 + ε− 1 and 0 < ε < 1, ξ

must be larger than (
√
2−1) ·ε, and thus, we can always

pick a value for ξ which is O(ε) and achieves the desired
approximation. Thus, by following Lemma 12, we can
find a (1 + (

√
2 − 1) · ε)-approximation using the (1 +

(
√
2− 1) · ε)-approximation algorithm from Theorem 5

to find a (1 + ε)-approximation in O(fd−1ε1−d · ε−dn)
time. Alternatively, for two dimensions, we can instead
use the algorithm from Theorem 8 to find a (1 + ε)-
approximation in O(fnε−1 log ε−1 + fε−3) time. □
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Optimally Confining Lattice Polymers

Robert D. Barish* Tetsuo Shibuya�

Abstract

We introduce the Lattice Polymer Confinement Prob-
lem (LPCP), where provided a graph G correspond-
ing to a solid or hole-containing finite lattice, and pro-
vided a finite set of vertex-wise lengths L ⊂ N of lat-
tice polymers modeled as Self-Avoiding Walks (SAWs),
the objective is to delete the fewest possible number
of vertices in G to satisfy a bound S(G,L) ≤ Ω on
a sum over the configuration entropies of each poly-
mer. In this context, we use Boltzmann’s expression
S(G,L) = kB · ln (W + 1) for the system configuration
entropy, where kB ≈ 1.380649 · 10−23 J ·K−1 is Boltz-
mann’s constant, and W corresponds to a sum over the
number of SAWs modeling lattice polymers in a speci-
fied host graph. We also propose a novel Self-Avoiding
Walk (SAW) centrality measure, CSAW (L, vi), for a ver-
tex vi in a lattice or graph as a variation on the standard
notion of betweenness centrality, which for a specified
finite set L ⊂ N, corresponds to the fraction of length
li ∈ L SAWs that cover vi.

Letting G be an input lattice or graph for LPCP
with vertex set VG and edge set EG, we show that
LPCP is NP -hard as well as APX-hard ∀Ω ≥ 0 and
for all finite L ⊂ N≥2. On the other hand, letting
tr (G) be the treewidth of G, letting ζtw = f (tr (G)) ·
O (|VG|+ |EG|) for some computable function f , and
letting Yinit be the initial system configuration entropy,
we prove the existence of an O

(
ζtw · |VG|3 · ln (|VG|)

)
time

(
ln
(
e(Yinit) − eΩ

))
-approximation algorithm for

LPCP. We moreover establish that an O (Ψ) determin-
istic algorithm for SAW centrality with multiplicative
error 1 ± ε, which we remark can be derived from ex-
isting PTAS algorithms for counting bounded-length
SAWs in graphs, correspondingly implies the existence

of an O
(
Ψ · |VG|3 · ln (|VG|)

)
time

(
ln
(
e(Yinit)−eΩ

)
1−2ε

)
-

approximation algorithm for LPCP.

Finally, we briefly analyze variations on LPCP, in-
cluding a variant where we delete edges in lieu of ver-
tices, and variant with “rigid” lattice polymers (e.g.,
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lattice proteins) where every embedding must satisfy a
set of consecutive dihedral angles for adjacent bonds.

1 Introduction

We introduce and analyze what we denote the Lat-
tice Polymer Confinement Problem (LPCP), which con-
cerns minimally modifying a solid or hole-containing
finite lattice G such that, provided a finite set of
vertex-wise lengths L ⊂ N of lattice polymers mod-
eled as Self-Avoiding Walks (SAWs), the system con-
figuration entropy S(G,L) = kB · ln (W + 1) falls be-
low a specified threshold Ω ≥ 0. In this context,
kB ≈ 1.380649 · 10−23 J · K−1 is Boltzmann’s con-
stant,W corresponds to a sum over the number of SAWs
(modeling lattice polymers) of length li ∈ L in a spec-
ified host graph, and Ω should everywhere be assumed
to have units J ·K−1. Briefly, we can observe that the
system configuration entropy is equivalently expressed

as S(G,L) = −kB ·
∑W
i=1

((
1
W+1

)
· ln
(

1
W+1

))
, allowing

us to obtain the expression for Shannon entropy by sub-
stituting kB with the reciprocal of the logarithm of the
number of observed events for a discrete random process

and
(

1
W+1

)
with the probability of a specific event.

We remark that such lattice polymer models have ex-
tensive precedence in the field of protein structure pre-
diction and engineering [14, 22]. For illustrative exam-
ples, we refer the reader to Fig. 1 and Fig. 2, where we
show LatFit [23, 24] generated (semi-rigid) embeddings
of the peptide backbones for the NMR solution struc-
ture of an ShK potassium channel inhibitor toxin from
sea anemone (PDB ID: 1ROO) on a Z2 integer lattice,
and the crystal structure of an antifreeze protein from
notched-fin eelpout (PDB ID: 5XQN) on a 210 “knight’s
tour” lattice, respectively.

Our inspiration for LPCP is a visually stunning ex-
perimental demonstration by Turner et. al. [26] of how
entropy gradients can invoke forces on polymers. To
briefly describe their experiment, Turner et. al. [26] be-
gan by manufacturing a microfluidic cell with two adja-
cent quasi-two-dimensional volumes, which we will re-
fer to as Jopen and Jpillars, where Jopen is an otherwise
open volume and Jpillars is populated with ≈ 35 nm
diameter pillars with a ≈ 160 nm center-to-center spac-
ing. The authors then used an electric field to drag
double-stranded T2-phage genomic DNA (having a con-
tour length of ≈ 51 µm) from Jopen to Jpillars, signifi-
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cantly restricting the polymer’s configuration freedom.
Once the electric field was lifted and one end of a given
polymer diffused into Jopen, a CCD camera was used to
observe the remainder of the molecule rapidly “recoil-
ing” out of Jpillars, acting against a hydrodynamic drag
with a force of ≈ 5.7 fN . The authors then determined
that this force was driven almost entirely by a config-
uration entropy gradient, noted that it was within an
order of magnitude of the ≈ 40 fN force expected by a
≈ ∆1 kB change in configuration entropy per polymer
Kuhn length (i.e., length units of a semi-rigid polymer
that can be approximated as segments of a freely-jointed
chain [16]) moving from Jpillars to Jopen.

We now ask the question: if we treat the configu-
ration entropy S(G,L) for one or more lattice polymers
embedded in a solid lattice as roughly equivalent to the
embedding of real polymers in an open volume akin to
Jopen, how can we minimally modify the lattice (e.g.,
by deleting vertices) to create a volume akin to Jpillars?
Here, the aforementioned LPCP problem, which we for-
mally define below, represents our attempt to formalize
and generalize this problem.

Definition 1 Lattice Polymer Confinement Problem,
LPCP (G,L,Ω)

Input: A graph G with vertex set VG, corresponding
to a solid or hole-containing finite lattice, a finite
set of vertex-wise lengths L ⊂ N of lattice polymers
modeled as Self-Avoiding Walks (SAWs), and an
upperbound Ω for the configuration entropy S(G,L)

of the system. Here, S(G,L) = kB · ln (W + 1), where
kB ≈ 1.380649 · 10−23J ·K−1 is Boltzmann’s constant,
and W corresponds to a sum over the number of
embeddings in G of each lattice polymer corresponding
to a SAW of length li ∈ L.
Objective: Return a minimum cardinality set of
vertices Q ⊆ VG whose deletion converts G into a graph
G′ where we have that S(G′,L) ≤ Ω.

For illustrative examples of LPCP (G,L,Ω) and what
(approximate) witnesses look like, we refer the reader
to Fig. 3, where we show instances of input graphs G
corresponding to: (a) a 6 × 6 induced subgraph of a
Z2 integer lattice; (b) a 3 × 3 × 3 induced subgraph
of a Z3 integer lattice; (c) an induced subgraph of a
triangular lattice; and (d) an induced subgraph of a
honeycomb lattice. In each of the examples from Fig.
3(a–d), we also show a set of (white) vertices that would
be selected in the specified order (first 1, then 2, etc.) for
deletion by a greedy algorithm attempting to minimize
S(G,L). In the Fig. 3(e) table, we show the approximate
configuration entropy for the examples in Fig. 3(a–d)
(recall that kB ≈ 1.380649 ·10−23J ·K−1), as well as the
configuration entropies following each vertex deletion.

As a subroutine of our greedy algorithms for the
LPCP problem, we also introduce a novel Self-Avoiding

Walk (SAW) vertex centrality measure as a variation
on betweenness centrality. This measure assigns a
score to the vertices of a simple undirected graph
based on the fraction of all possible SAW embeddings
of specified lengths li ∈ L they are covered by, and
accordingly allows one to rank vertices in a graph
according to the effect of their deletion on the system
configuration entropy. More specifically, letting G
be a simple graph with vertex set VG, and letting
f(SP,all) (G, va, vb) and f(SP,vi) (G, va, vb) be functions
which return the number of shortest paths from a
vertex va ∈ VG to a vertex vb ∈ VG and the number
of such paths traversing the vertex vi /∈ {va, vb},
respectively, we can recall that the betweenness cen-
trality [17, 18, 27] for a vertex vi ∈ VG is given
by CBetweenness (G, vi) =

∑
(a,b∈[1,|VG|]∧a<b∧a6=i∧b6=i)

(
f(SP,vi)

(G,va,vb)

f(SP,all)(G,va,vb)

)
, f(SP,all) (G, va, vb) 6= 0

0, f(SP,all) (G, va, vb) = 0

.

Now, letting G and VG be defined as before, and letting
f(SAW,all) (G,L) be a function which returns the num-
ber of all simple paths (equiv. SAWs) of all possible
vertex-wise lengths li ∈ L in G, we can define the SAW
centrality for a vertex vi ∈ VG as CSAW (G,L, vi) ={(

f(SAW,all)(G−vi,L)

f(SAW,all)(G,L)

)
, for f(SAW,all) (G,L) 6= 0

0, for f(SAW,all) (G,L) = 0

}
.

To begin our analysis of LPCP, we first establish hard-
ness results. In particular, we show that LPCP is NP -
hard even if G is a subgraph of a Z2 integer lattice and
we have either the constraint that |L| = 1 or the con-
straint that L = {1, 2, . . . , |VG|} (Proposition 1). If G is
allowed to be an arbitrary simple undirected graph, we
moreover show that LPCP is NP -hard as well as APX-
hard ∀Ω ≥ 0 and for all finite L ⊂ N≥2 (Proposition 2).

We next detail approximation algorithms for LPCP.
In particular, letting tr (G) be the treewidth of G, let-
ting ζtw = f (tr (G)) · O (|VG|+ |EG|) for some com-
putable function f , and letting Yinit be the initial
system configuration entropy, we prove the existence
of an O

(
ζtw · |VG|3 · ln (|VG|)

)
time

(
ln
(
e(Yinit) − eΩ

))
-

approximation algorithm (Theorem 3). We additionally
show that an O (Ψ) deterministic algorithm for SAW
centrality with multiplicative error 1 ± ε correspond-
ingly implies the existence of an O

(
Ψ · |VG|3 · ln (|VG|)

)
time

(
ln
(
e(Yinit)−eΩ

)
1−2ε

)
-approximation algorithm (The-

orem 5).

Finally, we show how the aforementioned approxima-
tion algorithms extend to variations on LPCP where we
delete edges in lieu of vertices (Corollary 8), as well as
a variant where we consider the configuration entropies
of “rigid” lattice polymers (e.g., lattice proteins) akin
to those shown in Fig. 1 and Fig. 2 (Remark 1).
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Figure 1: LatFit [23, 24] generated Z2 integer lattice embedding of the backbone for the NMR solution structure of
an ShK potassium channel inhibitor toxin from sea anemone (PDB ID: 1ROO); the lattice embedding of the protein
backbone is illustrated with (blue) vertices and edges, and the original structure of the protein backbone is illustrated
with (white) vertices and edges.

Figure 2: LatFit [23, 24] generated 210 “knight’s tour” lattice embedding of the backbone for the crystal structure
(obtained via X-ray diffraction techniques) of an antifreeze protein from notched-fin eelpout (PDB ID: 5XQN); the
lattice embedding of the protein backbone is illustrated with (blue) vertices and edges, and the original structure of
the protein backbone is illustrated with (white) vertices and edges.

2 Preliminaries

2.1 Graph theoretic terminology

We will generally follow definitions that are more-or-
less standard (see, e.g., Diestel [11]). However, for
some brief clarifications, when we use the term graph
we are everywhere referring to simple undirected and
unweighted graphs. We call a graph cubic if and only
if all of its vertex degrees are uniformly equal to 3, and

subcubic if and only if it has maximum vertex degree
3. Concerning paths and cycles in graphs, a path or
cycle is called simple, or a Self-Avoiding Walk (SAW)
in the case of paths, if it does not revisit either edges
or vertices, called Hamiltonian if it is simple and covers
all vertices, and called induced if it is also an induced
subgraph. Here, the Hamiltonian cycle problem is the
problem of deciding the existence of a Hamiltonian cycle
in a graph, and the st-path problem and st-Hamiltonian
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Out[ ]=

(a) (b)

(c) (d)

(e)
Deleted Vertices: None {1} {1,2} {1,2,3} {1,2,3,4} {1,2,3,4,5} {1,2,3,4,5,6}

(a) 6×6 Integer Lattice, (G,ℒ ) (J·K
-1) · (kB)

-1 : 19.8946 18.2877 16.5245 14.7857 13.0960 11.2828 9.36888

(b) 3×3×3 Integer Lattice, (G,ℒ ) (J·K
-1) · (kB)

-1 : 20.1267 18.0250 16.3276 14.5983 12.8702 11.1030 9.48562

(c) Triangular Lattice, (G,ℒ ) (J·K
-1) · (kB)

-1 : 16.3800 14.2945 12.1922 10.0761 8.51759 6.90174 4.95583

(d) Honeycomb Lattice, (G,ℒ ) (J·K
-1) · (kB)

-1 : 16.5431 15.0823 13.5212 11.9914 10.5050 9.06439 7.23778

3
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Figure 3: Illustrative examples of LPCP (G,L,Ω) problem instances, where letting L be the set of all possible SAW
lengths, for each graph G in (a–d) the order of the first 6 vertices (colored white) selected by a naive greedy algorithm
minimizing the system configuration entropy is shown (with the labels “1” for the first selected vertex, “2” for the
second selected vertex, etc.). The approximate system configuration entropies before and after each successive vertex
deletion event, divided by kB , are given in the table shown in (e). Here, (a) corresponds to a 6×6 induced subgraph
of a Z2 integer lattice (36 vertices and 60 edges), (b) corresponds to a 3 × 3 × 3 induced subgraph of a Z3 integer
lattice (27 vertices and 54 edges), (c) corresponds to an induced subgraph of a triangular lattice (21 vertices and 45
edges), and (d) corresponds to an induced subgraph of a honeycomb lattice (48 vertices and 63 edges).

path problem is the problem of deciding the existence
of a simple path (equiv., SAW) and Hamiltonian path,
respectively, between a pair of vertices vs and vt.

2.2 Fixed-parameter tractability and intractability

A problem can be denoted Fixed-Parameter Tractable
(FPT) if, letting x be a string encoding a given prob-
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lem instance and f(k) be any computable function, its
time complexity can be written as f(k) · |x|O(1). With
regard to parameterized hardness, we concern ourselves
with completeness for the class W [1] of all parameter-
ized languages that can be encoded as Boolean decision
circuits with weft at most 1 (see, e.g., ref. [13]). Here,
a circuit with weft k can have at most k large gates (i.e.
degree ≥ 3 vertices in the finite directed acyclic graph
representation of the circuit) along any given path from
an input node to an output node.

2.3 Approximation tractability and intractability

Concerning approximation tractability, we concern our-
selves with the notion of a Polynomial-Time Approxi-
mation Scheme (PTAS) and Fully Polynomial-Time Ap-
proximation Scheme (FPTAS). Here, for some error pa-
rameter ε > 0, a PTAS is a deterministic algorithm
which produces a solution for a given optimization prob-
lem with a multiplicative error of 1±ε (typically 1−ε and
1 + ε for maximization and minimization problems, re-
spectively), with a running time polynomial in length of
an input string specifying the optimization problem. If a
PTAS also has a running time polynomial in 1

ε , then we
refer to the PTAS as a FPTAS. With regard to approx-
imation hardness, we concern ourselves with hardness
for the class APX of problems admitting a constant-
ratio approximation algorithm. As there are problems
in the class APX that do not admit a PTAS unless
NP = RP , including a number of interesting special
cases of the geometric set cover problem [5], this corre-
spondingly implies that an APX-hard problem cannot
admit a PTAS unless P = NP .

3 Hardness results

Proposition 1 For a subgraph G of a Z2 integer lat-
tice with vertex set VG, we have that LPCP (G,L,Ω) is
NP -hard under both the constraint that |L| = 1 and the
constraint that L = {1, 2, . . . , |VG|}.

Proof. Letting G be a subgraph of a Z2 integer lattice
with vertex set VG, by the proof argument for “Theorem
7” of Lískiewicz et. al. [20] we have that there is an effi-
cient polynomial time counting reduction (more specif-
ically, a polynomial time many-one counting “weakly
parsimonious” reduction) from counting (case 1) SAWs
of a specific length lr ∈ N in G, and (case 2) SAWs
of all possible lengths in G, to counting st-Hamiltonian
paths in a subcubic planar graph H. The aforemen-
tioned proof argument also gives specific polynomial-
time computable formula for the number of SAWs that
must exist in (case 1) and (case 2), which we will denote
T1 and T2, respectively, for there to exist at least one
st-Hamiltonian path in H. We can also observe, as de-
tailed in “Section 3” of Lískiewicz et. al. [20], that H is

constructed via a polynomial time many-one counting
reduction from an instance of #3SAT to the problem
of counting st-Hamiltonian paths in a subcubic planar
graph.

Now, let G1 and G2 correspond to subgraphs of a
Z2 integer lattice constructed from a subcubic planar
graph H for (case 1) and (case 2), respectively, in the
proof argument for “Theorem 7” of Lískiewicz et. al.
[20]. Observe that by specifying parameters L = {lr}
and Ω = kB · ln (T1 + 1), a witness for LPCP (G1,L,Ω)
will be the null set if and only if H possesses an st-
Hamiltonian path. Similarly, observe that by specifying
parameters L = {1, 2, . . . , |VG|} and Ω = kB ·ln (T2 + 1),
a witness for LPCP (G2,L,Ω) will be the null set if and
only if H possesses an st-Hamiltonian path. As the st-
Hamiltonian path problem is NP -complete for arbitrary
instances of the graph H due to the manner in which
the graph is constructed, this yields the proposition. �

Proposition 2 LPCP (G,L,Ω) is NP -hard and
APX-hard ∀Ω ≥ 0 and for all finite L ⊂ N≥2.

Proof. By metatheorems of Yannakakis & Lewis [28,
19] and Lund & Yannakakis [21], we have that the prob-
lem of deleting a minimum set of vertices in a simple
undirected graph G to satisfy a property Π is NP -hard
and APX-hard, respectively, if Π is a nontrivial and
hereditary property. Here, a property being nontrivial
means that it both holds and fails to hold for infinitely
many graphs, and a property being hereditary means
that it is satisfied for a graph if and only if it is satisfied
for all of the graph’s induced subgraphs.

Now, letting L ⊂ N≥2 be some finite set of vertex-
wise lengths for SAWs, observe that there are infinitely
many independent sets having no embeddings of SAWs
of length li ∈ L, and infinitely many finite undirected
graphs having more than an arbitrary number of em-
beddings of SAWs of length li ∈ L. Accordingly, in the
context of the LPCP problem where we model lattice
polymers as SAWs having vertex-wise lengths from a
set L, ∀Ω ≥ 0 we have that there are infinitely many
graphs failing to satisfy and satisfying a property Π that
S(G,L) ≤ Ω. This implies that the aforementioned prop-
erty Π is nontrivial. We also trivially have that Π is
hereditary, as deleting vertices in a graph will cause the
number of embeddings of SAWs with lengths in L to
weakly monotonically decrease.

Putting everything together, and recalling that a
witness for an instance of LPCP (G,L,Ω) is a mini-
mum set of vertices in a simple undirected graph G
whose deletion yields a graph G′ satisfying the property
S(G′,L) ≤ Ω, we have that LPCP (G,L,Ω) is NP -hard
and APX-hard ∀Ω ≥ 0 and for all finite L ⊂ N≥2. �
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4 Approximation algorithms for LPCP

Theorem 3 Letting G is a simple undirected graph
with vertex set VG, edge set EG, and treewidth
tr (G), letting ζtw = f (tr (G)) · O (|VG|+ |EG|) for
some computable function f , and letting Yinit be
an initial system configuration entropy, we have that
LPCP (G,L,Ω) admits an O

(
ζtw · |VG|3 · ln (|VG|)

)
time

(
ln
(
e(Yinit) − eΩ

))
-approximation algorithm.

Proof. Interpreting SAWs in G with lengths drawn
from the set L as a universe of elements, and treat-
ing each vertex in VG as the set of SAWs it is cov-
ered by, observe that we can correspondingly interpret
LPCP (G,L,Ω) as a partial set cover problem wherein
the objective is to cover at least ≈

(
e(Yinit) − eΩ

)
such

elements (i.e., SAW embeddings) with the minimum
possible number of sets (i.e., vertices). Accordingly, we
immediately have a

(
ln
(
e(Yinit) − eΩ

))
-approximation

algorithm as a consequence of the harmonic approxi-
mation guarantee for the greedy algorithm for partial
set cover [15] (see also Slav́ık [25] for a detailed perfor-
mance analysis of the greedy algorithm for the original
set cover problem).

In the current context, we can observe that: (obs.
1) there will be an O

(
|VG|2

)
overhead for the subrou-

tines of the greedy algorithm, where for at most |VG|
iterations, we scan at most |VG| vertices to find the
ones whose deletion will maximize coverage of the el-
ements corresponding to SAW embeddings in G; (obs.
2) the selected vertex for each iteration will necessarily
be a vertex vi ∈ VG having the largest SAW central-
ity, CSAW (G,L, vi) (as defined in the introduction of
the current work); and (obs. 3) that there will be at
most O (|VG|!) SAWs of all possible lengths in G, im-
plying that there will be at most the same number of
elements to cover in the partial set covering formulation
of LPCP (G,L,Ω) =⇒ we will need to read at most
the first O (|VG| · ln (|VG|)) bits of each vertex SAW cen-
trality CSAW (G,L, vi) to determine the largest values.
Letting Ψ be the cost of computing the SAW centrality
for a vertex vi ∈ VG, (obs. 1) through (obs. 3) imply
that the aforementioned approximation algorithm will
have a time complexity of O

(
Φ · |VG|3 · ln (|VG|)

)
.

We can now observe the following lemma concerning
the treewidth fixed-parameter tractability of computing
CSAW (G,L, vi):

Lemma 4 For a simple undirected graph G with ver-
tex set VG and edge set EG, the problem of determin-
ing the SAW centrality values for a vertex vi ∈ VG,
CSAW (G,L, vi), is treewidth FPT, and can be calcu-
lated in ζtw = O (|VG|+ |EG|) time if G has bounded
treewidth.

Proof. It suffices to show there exists a linear time
treewidth FPT algorithm for counting the number of

SAWs between an arbitrary pair of vertices vs and vt in
a graph. Observe that we can simply run this procedure
for an instance of a graph with or without a specified
vertex to determine CSAW (G,L, vi).

We proceed by appealing to an extension of Cour-
celle’s well-known algorithmic metatheorem [6, 7, 8, 9]
to counting and optimization problems [1, 10]. In
particular, we appeal to “Theorem 32” of Courcelle,
Makowsky, & Rotics [9], which states in part that if
we can express the existence of a graph property φ in
the fragment of second order logic denoted “extended”
Monodic Second Order (MS2) (see, e.g., Downey & Fel-
lows [13] for an elaboration), then we are guaranteed
an algorithm for this problem having time complexity
c ·O (|V |+ |E|), where c is a constant that depends only
on φ and the graph treewidth tw(G). Here, this time
complexity is a consequence of the proof being based on
the bottom-up traversal of a tree decomposition for a
finite simple undirected graph G, which has time com-
plexity linear in the size of the tree, and the existence
of an O (|V |+ |E|) algorithm due to Bodlaender [3] for
computing a tree decomposition of G having width at
most tw(G).

To establish the lemma at hand, it now suffices to note
that the existence of a path between an arbitrary pair
of vertices vs and vt in a graph is expressible in first-
order (FO1) logic. In particular, we refer the reader to
“pg. 4” of [7], where Courcelle discusses the use of an
FO1 auxiliary predicate “ QuasiPath’ ” for expressing
reachability between a pair of vertices in an undirected
graph. �

Putting everything together, we can set Φ =
ζtw in the earlier asymptotic time analysis of
the

(
ln
(
e(Yinit) − eΩ

))
-approximation algorithm for

LPCP (G,L,Ω) to yield the time complexity in the
statement of the current theorem. �

Theorem 5 Letting G be a simple undirected graph
with vertex set VG and letting Yinit be an initial sys-
tem configuration entropy, if an O (Ψ) deterministic
algorithm exists for computing the SAW centrality of
a vertex vi ∈ VG, CSAW (G,L, vi) with multiplica-
tive error 1 ± ε, then we correspondingly have that
LPCP (G,L,Ω) admits an O

(
Ψ · |VG|3 · ln (|VG|)

)
time(

ln
(
e(Yinit)−eΩ

)
1−2ε

)
-approximation algorithm.

Proof. Recalling our earlier reformation of
LPCP (G,L,Ω) as a partial set cover problem in
the proof argument for Theorem 3, we begin by
observing the following lemma:

Lemma 6 Letting P be an instance of the partial set
cover problem, where U is the universe of elements, X
is a collection of sets of elements from U , and 0 ≤ p ≤ 1
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is the fraction of elements that must be covered, and
letting fε−greedy be an instance of the greedy algorithm,
which in each iteration selects a set uniformly at random
from all sets in X covering a fraction (1− 2ε) of the
maximum possible number of elements that can covered

in the iteration, we have that fε−greedy will be a
(

ln(p)
2ε−1

)
-

approximation algorithm for P.

Proof. Letting α be the size of the minimum partial set
cover for P, observe that the kth iteration of fε−greedy
will, in the worst case, reduce the number of uncovered
elements in U by a fraction

(
1− 1−2ε

α

)
. Accordingly,

we can express the number of uncovered elements in
U after r iterations of fε−greedy as |U| ·

(
1− 1−2ε

α

)r
, or

equivalently, as |U| ·
((

1− 1−2ε
α

)α) rα .

We next establish that
(
1− 1−2ε

α

)α
will weakly mono-

tonically increase with α for 0 ≤ ε ≤ 1 and α ≥ 1. To
begin, we can note that:

∂

∂α

[(
1− 1− 2ε

α

)α]
≥ 0

⇐=

(
1

α

)
·
(
α+ 2ε− 1

α

)(α−1)

·(
(1− 2ε) + (α+ 2ε− 1) · ln

(
α+ 2ε− 1

α

))
≥ 0

⇐=

(
(1− 2ε) + (α+ 2ε− 1) · ln

(
α+ 2ε− 1

α

))
≥ 0

Now let ω =
(
(1− 2ε) + (α+ 2ε− 1) · ln

(
α+2ε−1

α

))
.

Here, we can observe that ∂
∂ε (ω) = 2 ln

(
α+2ε−1

α

)
, and

accordingly, that for fixed α ≥ 1, the expression ω will
be minimized for ε = 1

2 . As ε = 1
2 =⇒ ω = 0, we

therefore have that ω is non-negative whenever α ≥ 1
and 0 ≤ ε ≤ 1, and therefore that ∂

∂α

[(
1− 1−2ε

α

)α]
will

be non-negative ∀α ≥ 1. It now suffices to note that
α = 1 and 0 ≤ ε ≤ 1 =⇒

(
1− 1−2ε

α

)α ≥ 0.
Putting everything together, we can use the ap-

proximation limα→∞
(
1− 1−2ε

α

)α
= e(2ε−1) to express

the fraction of covered elements after r iterations of
fε−greedy as |U| ·

(
e(2ε−1)

) r
α . Thus, |U| ·

(
e(2ε−1)

) r
α =

p · |U| =⇒ r =
(
α·ln(p)
2ε−1

)
, yielding the lemma.

�

To establish the theorem at hand, following the proof
argument for Theorem 3, it now suffices to observe that
p · |U| from Lemma 6 can be understood to correspond
to
(
e(Yinit) − eΩ

)
, and that fε−greedy from Lemma 6 can

be understood to correspond to the O (Ψ) determinis-
tic algorithm for computing CSAW (G,L, vi) with mul-
tiplicative error 1± ε. �

Corollary 7 There exists an instance of the

O
(
Ψ · |VG|3 · ln (|VG|)

)
time

(
ln
(
e(Yinit)−eΩ

)
1−2ε

)
-

approximation algorithm for LPCP (G,L,Ω) from
Theorem 5, where letting G be a simple undirected graph
with vertex set VG and edge set EG, we have that Ψ ∈
O
(∑|L|

i=1

(
4li+O(

√
li·(ln2(li)+ln2( 1

ε )))
)
· |EG| · ln (|VG|)

)
.

Proof. This result follows directly from a re-
cent result of Björklund et. al. [2] that an

O
((

4k+O(
√
k·(ln2(k)+ln2( 1

ε )))
)
· |EG| · ln (|VG|)

)
time

and polynomial-space deterministic PTAS exists for
counting the number of length k SAWs in a simple
undirected graph G with vertex set VG and edge set
EG. �

Corollary 8 For a variant of LPCP (G,L,Ω) where
we delete edges in lieu of vertices, the time complex-
ities of the Theorem 3 and Theorem 5 approximation
algorithms become O

(
ζtw · |EG| · |VG|2 · ln (|VG|)

)
and

O
(
Ψ · |EG| · |VG|2 · ln (|VG|)

)
, respectively.

Proof. Observe that we can measure the SAW cen-
trality of edges in a lattice or graph G in exactly the
same manner (and with the same time complexity) as
we computed the SAW centrality of vertices – e.g., by
simply computing the change in the number of relevant
SAW embeddings with and without a given edge being
present. Therefore, the only change in the time com-
plexity for the Theorem 3 and Theorem 5 approxima-
tion algorithms comes from having to compute the SAW
centralities of |EG| edges instead of |VG| vertices. �

Remark 1 For a variant of LPCP (G,L,Ω) where we
consider the configuration entropies of “rigid” lattice
polymers (e.g., lattice proteins) where every embed-
ding must satisfy a set of consecutive dihedral angles
for bond edges, for an interpretation of “rigid” lattice
polymers as SAWs required to have a specific geome-
try when embedded in a lattice or graph, the time com-
plexities of the Theorem 3 and Theorem 5 approxima-
tion algorithms becomes O

(
|EG| · |VG|3 · ln (|VG|)

)
and

O
(
|EG| · |VG|3 · ln (|VG|)

)
, respectively.

Proof. It suffices to observe that if we require SAWs
to have a specific geometry, we can trivially enumerate
the number of embeddings of such SAWs in O (|EG|)
time, as any edge of a specific SAW will fix the remain-
ing edges. The stated changes in the time complexities
for the Theorem 3 and Theorem 5 approximation al-
gorithms then follow as a consequence of removing the
cost of computing SAW centralities. �

5 Concluding Remarks

For a universe of elements U , the general set cover prob-
lem is known not to be approximable within a factor of
(1− o (1)) · ln (|U|) unless P = NP [12]. Accordingly, as
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we establish the Theorem 3 and Theorem 5 approxima-
tion algorithms via reduction to equivalent partial set
cover problems, it is unlikely that we can significantly
improve the current approximation guarantees in either
case. However, concerning a future research direction,
we remark that much better performance guarantees
can be achieved for the geometric set cover problem (see,
e.g., Brönnimann & Goodrich [4]). Here, it should be
possible to take advantage of a particular embedding
of a lattice or graph to treat sets of vertices or SAWs
(e.g., in a geometric hitting set formulation) as poly-
gons or other shapes, and in some cases achieve better
approximation guarantees or time complexities.
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Efficiently Enumerating Scaled Copies of Point Set Patterns

Aya Bernstine∗ and Yehonatan Mizrahi†

Abstract

Problems on repeated geometric patterns in finite point
sets in Euclidean space are extensively studied in the lit-
erature of combinatorial and computational geometry.
Such problems trace their inspiration back to Erdős’
original work on this topic. In this paper, we investi-
gate the problem of finding scaled copies of any pattern
within a set of n points, that is, the algorithmic task of
efficiently enumerating all such copies. We initially fo-
cus on one particularly simple pattern of axis-parallel
squares, and present an algorithm with an O(n

√
n)

running time and O(n) space for this task, involving
various bucket-based and sweep-line techniques. Our
algorithm’s running time is worst-case optimal, as it
matches the known lower bound of Ω(n

√
n) on the max-

imum number of axis-parallel squares determined by n
points in the plane, thereby solving an open question for
more than three decades of realizing that bound for this
pattern. We extend our result to an algorithm that enu-
merates all copies, up to scaling, of any full-dimensional
fixed set of points in d-dimensional Euclidean space,
that runs in time O(n1+1/d) and space O(n), match-
ing the more general lower bound due to Elekes and
Erdős.

1 Introduction

The problems of geometric point pattern matching and
the identification of repeated geometric patterns are
fundamental computational problems with a myriad of
applications, ranging from computer vision [12, 10],
image and video compression [1], model-based object
recognition [15], structural biology [11] and even com-
putational chemistry [9]. Such problems were motivated
in part by questions regarding the maximal number of
occurrences of a given pattern determined by a set of
points, a field historically inspired by Erdős’ well-known
Unit Distance Problem (1946) regarding the maximal
number of unit distance pairs induced by such sets [8].
Our paper approaches the computational problems of
identifying patterns using tools and techniques encoun-
tered in the framework of computational geometry, en-
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suring exact, provably correct and efficient solutions.
In this paper, we analyze the problem of identify-

ing and listing all translated and scaled copies of any
point set pattern in Euclidean space, termed homothetic
copies of this set, where the scaling is applied identically
in all axes. We begin with focusing on the problem of
repeated patterns of squares having axis-parallel edges
in the plane, where a square is defined by a subset of
four points that constitute its vertices. As articulated
in 1990 by van Kreveld and de Berg [13], the maximum
possible number of axis-parallel squares determined by
n points in the plane is Θ(n

√
n) (attained, for example,

in a regular
√
n×

√
n grid), and those can be enumerated

in time O(n
√
n log n)1 and space O(n) by an algorithm

whose extension also treats the enumeration of all full-
dimensional axis-parallel d-dimensional hypercubes in
d-dimensional Euclidean space in time O(n1+1/d log n).
This exhibits a logarithmic-factor gap separating this
computational result from the lower bound of a max-
imum of Θ(n1+1/d) possible hypercubes, raising the
challenge of overcoming this gap as an open question.
We remark that in [14], a later journal version of [13],
an algorithm for the planar case that works in time
O(n

√
n log n) is presented. However, as the authors

point out, its approach does not generalize to higher
dimensions.

The combinatorial result from [13] was further ex-
tended by Elekes and Erdős [7], establishing a bound
of Θ(n1+1/d) on the maximum number of copies of any
full-dimensional pattern (i.e., a set of points that gener-
ates the vector space) in Qd. The computational aspect
of it occurs in [4], providing an algorithm that works in
time O(n1+1/d log n), assuming that the pattern and d
are constant, for the task of enumerating all such copies,
exhibiting the same logarithmic-factor gap between the
two results.

1.1 Our Results

Our main result of this paper is an efficient determin-
istic algorithm that enumerates all scaled copies of any
fixed d-dimensional pattern, for any constant d. The
treatment of general patterns appeared, e.g., in [4], but
[13] were the first to raise the question of whether it
is computationally feasible to realize the combinatorial

1The analysis given throughout this paper of time and space
complexities is based on the relatively non-restrictive Pointer Ma-
chine model of computation [3], as mentioned later in this paper.
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bound of Θ(n
√
n) possible axis-parallel squares, thereby

improving their algorithmic result. Our algorithm fully
answers this question which was open for more than
three decades. To this end, we use in our algorithm a
reduction from arbitrary input points to points having
“compressed” coordinates, that is, we relabel the coor-
dinates, allowing the use of linear-time sorting methods.
Second, we deploy a sweep-line scanning sub-procedure
that marks points forming a square, instead of searching
those in a set, avoiding the logarithmic cost of search-
ing a point in a set. Third, we relabel the sum and the
difference of the input coordinates, in addition to the
relabeling of the coordinates themselves. We show why
the last step is crucial for the algorithm to succeed in
Section 2.

Theorem: Given a planar set P of points of size n,
all axis-parallel squares defined by points from P can be
enumerated in time O(n

√
n) and O(n) space.

Our main result for general patterns relies on the
ideas from the previous theorem. Specifically, we relabel
some affine transformations of the input coordinates, a
relabeling that creates a representation of the points for
the purpose of sweep-line scanning them.

Theorem: Given a fixed set Q of points of full dimen-
sion in the d-dimensional Euclidean space, and a set P
of points of size n, all scaled copies of Q determined by
subsets of P can be enumerated in time O(n1+1/d) and
O(n) space.

The running time in this theorem matches the corre-
sponding lower bound of the same magnitude, and im-
proves the best known running time of O(n1+1/d log n)
for the specific case of d-dimensional hypercubes [13],
extended later for general arbitrary patterns [4]. Note
that although the improvement suggested is by a log-
arithmic factor, the upshot is an asymptotically worst-
case optimal algorithm2 in terms of running time analy-
sis, even for the most general case of arbitrary patterns.
This can be compared with [6], where the authors stud-
ied the problem of enumerating all rotated copies of a
given pattern, improving the running time of the trivial
algorithm for this companion task by a logarithmic fac-
tor as well. An excellent survey that covers this variant
of our problem can be found in [2].

Aside from the worst-case optimality of our results,
the techniques deployed form a rather general scheme,
and may therefore be potentially useful to treat other
variants of the problem studied.

2For the task of outputting an explicit representation of all
copies of the pattern, rather than some other representation of
this set of copies, that later needs to be further parsed.

2 Axis-Parallel Squares

In this section, we present an efficient algorithm that
reports all axis-parallel squares defined by a planar set
of n points. A relatively efficient algorithm, devised by
van Kreveld and de Berg [13], works as follows (Note
that we refer, for any x0, to the set of all points whose
x coordinate is x0, as the “column” corresponding to x0.
Moreover, we refer to columns with at most

√
n points

as “short columns”).

Squares-Listing(p1, . . . , pn):

1. Build a balanced search tree T and an array A on
the input, sorted by the x coordinate.

2. For every pair of points p and q in A residing in
a short column, search in T whether they can be
complemented to a square from the right or from
the left. Report each square found unless the other
two vertices defining it are on a short column to
the left of p and q.

3. Delete all short columns from T and A, and convert
each remaining point (x, y) to (y, x).

4. Apply step 2 on the remaining converted points.

It operates correctly with a running time of
O(n

√
n log n) and O(n) space, in essence, since the to-

tal number of searched points defined in each of the two
iterations of step 2 is

O

(∑
i

s2i

)
≤ O

(∑
i

si
√
n

)
=

= O

(
√
n ·
∑
i

si

)
≤ O

(
n
√
n
)

where si denotes the length of the i’th column scanned.
Every pair is scanned during its course, since there are
at most n√

n
original long columns (otherwise there are

more than n points), so the length of each column in
step 4 is at most n√

n
=

√
n. We strive for an algorithm

with a running time of O(n
√
n) and space O(n). As

shown in [13]:

Theorem 1 (van Kreveld, de Berg) For a set P of n
points in d-dimensional space, the maximal number of
2d points that are subsets of P and that form the vertices
of an axis-parallel hypercube is Θ(n1+1/d).

This theorem induces a lower bound on the running
time of the optimal relevant algorithm. Our result
bridges the gap between this bound, and the previously
best known upper bound.
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2.1 Main Ideas Towards an Improvement

Assume that all input points have coordinates in
{1, . . . , n}. Instead of searching in a set for the query
points that complement the pair (x, y), (x, y + δ) to a
square, i.e., the points in the pair (x+δ, y), (x+δ, y+δ)
and those in the pair (x− δ, y), (x− δ, y + δ), we apply
the following procedure: We put all query points along
with the original points in an array, apply radix sort on
it, treating each point as a two-digit number in base n
corresponding to its two coordinates, and then scan and
mark all positive query points. That is, we mark each
query point adjacent to an existing input point sharing
the same coordinates, or to an already marked identical
query point. The resulting marked query points define
the existing squares.
However, we cannot generally assume that all coordi-

nates are taken from {1, . . . , n}. We address this issue
by “shrinking” the coordinates of all input points by re-
labeling their coordinates to values in {1, . . . , n}. The
main caveat, though, is that arithmetical considerations
regarding these labels are invalid, as the proportions are
not necessarily preserved after relabeling.
So, we avoid using arithmetic considerations when

defining the query points q1, q2 that complement the
pair p1 = (x, y), p2 = (x, y + δ) to a square (from the
right, assuming δ > 0). Instead of using the invalid la-
bel x+ δ as a coordinate, we make use of the diagonals
by replacing each point (x, y) with (x, y, x + y, x − y)
and relabel each of those four coordinates for all points
to values in {1, . . . , n}. We call the points after this
relabeling the post-labeled points. Then, the pair q1, q2
(with q2 above q1) is defined using identical labels as
those of p1, p2. The query point q1 is defined having
the same horizontal y label as p1 and the same diagonal
x+ y label as p2. The point q2 is treated similarly, only
with the second diagonal. Searching in this manner, we
can use two out of the four coordinates for each point
we search, leaving the other two as wildcards.
Another related observation is that the linear trans-

formation that rotates a vector (x, y) in the plane by 45o

and stretches it by
√
2 yields the vector (x + y, y − x),

as illustrated in Figure 1. So, this process is in fact a
labeling of the post-rotated points.

2.2 The Efficient Solution

The ideas from the previous subsection lead to our main
theorem of this section. We will first describe our algo-
rithm in full detail, and then analyze its correctness and
its complexity.

Theorem 2 Given a planar set P of points of size n,
all axis-parallel squares defined by points from P can be
enumerated in time O(n

√
n) and O(n) space.

Proof. The following algorithm is considered:

Amplified-Squares-Listing(p1, . . . , pn):

1. Change the representation of each point p = (x, y)
to the representation (x, y, x+ y, y− x). Map each
x coordinate in the input to a value in {1, . . . , n}
according to its ranking, using a sorting algorithm.
Perform a similar procedure for the y coordinates,
the x + y coordinates and the y − x coordinates.
Apply this mapping on the input, to obtain the
post-labeled points.

2. Build an array A on the input points, sorted by the
x coordinate.

3. For each pair of post-labeled points p1 =
(x, y1, w1, z1) and p2 = (x, y2, w2, z2) with y2 > y1,
out of the first n pairs of points in A that reside
in a short column – construct the query points
q1 = (∗, y1, w2, ∗), q2 = (∗, y2, ∗, z1) that comple-
ment p1, p2 to a square from the right, both pointed
by the same pointer R, and the query points q′1 =
(∗, y1, ∗, z2), q′2 = (∗, y2, w1, ∗) that complement to
a square from the left, both pointed by the same
pointer L. The wildcards replace the unknown co-
ordinates.

4. Place each query point defined by its y and w coor-
dinates in an array B1 along with all input points,
and apply radix sort on B1 based on those two co-
ordinates. Perform a similar procedure for points
of the form of q2 and q′1 from step 3 in another array
B2.

5. Scan B1 and mark each query point adjacent to an
input point sharing the same coordinates, or to an
already marked identical query point. Act similarly
on B2. Scan the list of pointers defined in step
3, and report each square found (a pointer with
both points marked), unless the other two vertices
defining it are on a short column and complement
to a square from the left, to avoid reporting the
same square more than once.

6. Perform steps 3-5 iteratively on each subsequent n
pairs of points in A in a short column.

7. Delete all points that are on short columns from
A. Convert each remaining point (x, y) to (y, x).
Apply steps 1-6 on the remaining converted points.

Algorithm’s Correctness: Most of the main ideas
behind the algorithm’s correctness were described in
Subsection 2.1. Some other details: All squares hav-
ing at least one edge on a short column are reported
in step 5 of the algorithm, before applying step 7. The
rest have both edges on long columns, and so they are
reported in step 7.

Given a pair p1 = (x1, y1) and p2 = (x1, y2) with
y2 > y1, the pair q1 = (x2, y1) and q2 = (x2, y2) that
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Figure 1: Illustrating the rotation by 45o and the stretch by a factor of
√
2 applied on four points in the plane. Each

point (x, y) was converted to the point (x+ y, y − x) as a result.

complements to a square from the right (i.e., x2 > x1)
maintains that x2 + y1 = x1 + y2 since

x2 = x1+|y2−y1| ⇒ x2+y1 = x1+(y2−y1)+y1 = x1+y2

As for q2, the latter equality also shows that x2 − y2 =
x1 − y1 by subtracting y1 + y2 from both sides. These
are exactly the query points defined by the algorithm,
up to the labeling that maintains those properties. The
analysis for the pair that complements to a square from
the left is symmetric.

Algorithm’s Complexity: As for the running time,
the first two steps of the algorithm cost O(n log n) us-
ing some standard sorting algorithm, e.g., merging sort.
Each time step 3 is performed, at most 2n query points
are constructed in O(n) time. Each time steps 4-5 are
performed, two arrays, each of size at most n, are sorted
and then scanned in a linear time. Marking the obtained
squares in step 5, based on the marked queries, is also
carried out in O(n) time by scanning the constructed
pointers from step 3. The total number of query points
constructed after finishing step 6 is

O

(∑
i

s2i

)
≤ O

(∑
i

si
√
n

)
=

= O

(
√
n ·
∑
i

si

)
≤ O

(
n
√
n
)

where si denotes the length of the i’th short column, i.e.,
the number of points in it. As mentioned, each batch
of O(n) queries is handled in O(n) time, so the total
running time analysis for steps 1-6 of this algorithm is
O(n

√
n). The analysis for the converted points in step 7

is symmetric. It only remains to notice that the number

of pairs, this time, is

O

(∑
i

d2i

)
≤ O

(∑
i

di
√
n

)
=

= O

(
√
n ·
∑
i

di

)
≤ O

(
n
√
n
)

where di denotes the length of the i’th row out of the
remaining rows, after deleting the short columns. We
used the fact that there are at most n√

n
long columns,

as otherwise there are more than n input points. There-
fore, the length of each remaining row, after deletion, is
at most n√

n
=

√
n, and all points are treated.

As for the space complexity, note that each of the
data structures defined in the above algorithm is of size
O(n), and that each step involving those structures does
not cost more than O(n) space. □

Note that both of these algorithms need not rely on
any random-access operation, as no pointer arithmetic
or tests on pointers other than equality tests need to be
performed. Dereferencing of pointers, along with arith-
metic operations on data and comparisons on data are
performed, but those are allowed in the Pointer Machine
model [3]. The only step which classically involves ran-
dom access to array cells is the one in which radix sort
is used, but even this can be be adjusted to work in the
mentioned model ([5]). This statement is true also for
the algorithms given in the following sections.

3 Axis-Parallel Hypercubes

This subsection discusses the particular case of axis-
parallel hypercubes in d-dimensional Euclidean space.
Although following immediately from Theorem 3 given
in the following section, it presents some of the ideas
behind it in a clearer manner, and can serve as a warm-
up for that theorem. We provide an algorithm with a
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running time complexity of O(n1+1/d) and with a lin-
ear space complexity, addressing the open question of
matching the lower bound from Theorem 1. Our al-
gorithm builds on the techniques and the observations
from Section 2, with some additions and adjustments
so it complies with the properties of the d-dimensional
space.
One observation that is true for the d-dimensional

case, is that any two points with all but one equal co-
ordinate, determine 2d−1 full-dimensional possible hy-
percubes. Denote such a pair of points by t and r.
Each of these hypercubes is uniquely associated with
a vector e ∈ {−1, 1}d−1, in which the j’th coordinate
determines the direction of progress from t and r along
the j’th axis, where j is any coordinate except the one
in which they differ. In a similar fashion to the pla-
nar case, we would like to relabel the input coordinates,
their sums and their differences, place them in an array,
radix sort it and mark the correct vertices that com-
plement to a hypercube in an efficient manner, while
scanning this array. Moreover, we scan only pairs of
points lying on short axis-parallel lines, similarly to the
planar case, only that this time, by “short” we mean
having not more than n1/d point on it.

Proposition: Given a set P of points of size n in
d-dimensional Euclidean space, all axis-parallel full-
dimensional hypercubes defined by points from P can
be enumerated in time O(n1+1/d) and O(n) space.

Proof. The following algorithm establishes the propo-
sition’s statement:

Amplified-Hypercubes-Listing(p1, . . . , pn):

1. For each input point p = (x1, x2, . . . , xd), add the
following additional list of coordinates:

((xi − xj), (xi + xj) | ∀1 ≤ i < j ≤ d)

Map each of those augmented coordinates, includ-
ing the original ones, to a label in {1, . . . , n}.

2. Build an array A on the input points, sorted by
each of their coordinates based on the coordinates’
order, except for the last original coordinate (i.e.,
xd).

3. For each pair of points t, r that lie in the same short
axis-parallel line, having the same coordinates ex-
cept for the last, out of the first n pairs with this
property, add 2d − 2 query points which define to-
gether a hypercube. Do this for all 2d−1 possible
hypercubes in the following manner. First, any
axis-parallel hypercube having t and r as its ver-
tices, is defined using one additional vertex

r′ = (r1 + e1 · δ, . . . , rd−1 + ed−1 · δ, td)

where ri is the i’th coordinate in r (and similarly
for t), δ = rd − td and e ∈ {−1, 1}d−1. The rest of
the vertices in each such hypercube are defined sim-
ilarly, except for replacing all subsets of the coordi-
nates in the vector e by zeros, and using t instead
of r.

Now, define the coordinates that are to be searched
– not in the aforementioned arithmetic manner, but
using the labels from step 1 instead. That is, trans-
late ri + ei · δ to the label of ri + rd if ei = 1, and
to that of ri − rd otherwise. Fill in the unknown
coordinates using wildcards, as those are uniquely
defined anyway, given the others.

4. Place all query points defined by the same coordi-
nates in an array along with all input points. Apply
radix sort on each of those arrays, according to the
known coordinates in it.

5. Scan each array from step 4, and mark each query
point adjacent to an input point sharing the same
coordinates, or to an already marked identical
query point. Report all hypercubes that were found
(by checking that all vertices are present for each
hypercube), except for hypercubes that have two
vertices on a short axis-parallel line of the same
type, only with a smaller index.

6. Perform steps 3-5 on each subsequent n pairs of
points in A on a short axis-parallel line of that type.

7. Delete all points that are on a short axis-parallel
line of a currently analyzed type from A, and
convert each remaining point (x1, x2, . . . , xd) to
(xd, x1, . . . , xd−1). Apply steps 1-6 on the remain-
ing converted points. This step is carried out d− 1
times.

Algorithm’s Correctness: Almost all details re-
garding the analysis of the correctness of this algo-
rithm already appeared in that of Amplified-Squares-
Listing(p1, . . . , pn). As for the phase of searching by
labels, note that if r′j is some unknown coordinate, for
which we only have an undesired arithmetic definition
based on the coordinate rj and on δ, then it holds that

r′j = rj + δ = rj + (rd − td) =⇒ r′j + td = rj + rd

which exactly corresponds to the labels that the algo-
rithm searches (the treatment of positive or negative
values of δ is symmetric), and similarly for subtraction.

Algorithm’s Complexity: The running time anal-
ysis is similar to the running time analysis of Amplified-
Squares-Listing(p1, . . . , pn) with the following differ-
ences. The relabeling in step 1 and the sorting of A
in step 2; the definitions of 2d−1 hypercubes, each con-
sisting of additional 2d − 2 points in step 3; applying
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radix sort on 2O(d) arrays in step 4; the linear scanning
of those arrays in step 5 and applying step 7 for d − 1
times – all of those involve multiplying the complexity
of the planar case by at most a constant factor of 2O(d).
The only major difference concerns the total number of
query points defined each time step 7 in the algorithm is
invoked. In the treatment of the first d− 1 axis-parallel
lines, only short lines are considered, so the cost for each
line is

O

(∑
i

s2i

)
≤ O

(∑
i

si · n1/d

)
=

= O

(
n1/d ·

∑
i

si

)
≤ O

(
n1+1/d

)
where si denotes the length of the i’th short axis-parallel
line of that form. Regarding the treatment of the last
axis-parallel line, we note that all remaining such lines
are short. Assume that there exists a long remaining
line. Then all points on it are on long axis-parallel lines,
with respect to some axis, which induces more points
that are on long lines with respect to another axis, yield-

ing that there are more than
(
n1/d

)d
input points in

total, which is obviously a contradiction. Thus, all in-
put points are treated with the mentioned running time,
so the total running time analysis is indeed O(n1+1/d).
The analysis of the space complexity is similar, with a
constant multiplicative factor of 2O(d) compared to the
analysis of the planar case. Note that although being
exponential in d, as also occurs in the solution from [13],
the running time can be regarded as polynomial in d and
the size of the pattern, as presented in Section 4. □

4 The General Case

In this section, we describe an algorithm that enu-
merates all scaled copies of any fixed arbitrary full-
dimensional pattern in d-dimensions. For general fixed
patterns, where d is fixed, our algorithm works in time
O(n1+1/d) and O(n) space. This answers the open ques-
tion of realizing the lower bound of [7].

Theorem 3 Given a fixed set Q of points of full dimen-
sion in the d-dimensional Euclidean space, and a set P
of points of size n, all scaled copies of Q determined by
subsets of P can be enumerated in time O(n1+1/d) and
O(n) space.

Proof. We first assume that no three points in Q are
on the same line, and present an appropriate algorithm
for this case. Then we describe how this algorithm can
be adjusted to handle the more general case.

Amplified-Patterns-Listing(p1, . . . , pn):

1. Rotate the pattern points such that two of them, p
and q, share afterwards all coordinates except the
last one. Apply this rotation on the input points.

2. For each point r ̸= p, q in Q, compute d − 1 hy-
perplanes of dimension d − 1 that include p and
r, and an additional hyperplane including q and r,
altogether defining r uniquely. Apply each of the
d · |Q| transformations corresponding to those hy-
perplanes on each input point, attach those values
to the original points’ list of coordinates, and label
the resulting values – the augmented coordinates
(original coordinates along with those correspond-
ing to the transformations) using {1, . . . , n}.

3. Build an array A on the input points, sorted by all
original coordinates by their order.

4. Scan A. For each pair r and t on an axis-parallel
line that corresponds to step 1 that also has at most
n1/d points (“short” line), construct the rest of the
|Q| − 2 points that complement to a pattern using
the labels obtained from step 2, until constructing
n such sets of queries. Point each such set that
corresponds to a single copy by the same pointer.

5. Place all query points that are defined by the same
augmented coordinates in an array with all input
points, forming several such arrays. Apply radix
sort on each such array.

6. Scan each array from step 5, and mark each query
point adjacent to an identical input point or an
already marked query point. Scan the list of point-
ers defined in step 4, and report each copy found (a
pointer with all points marked), only after applying
on it the rotation which is inverse to that of step 1.

7. Perform steps 4-6 on each subsequent n pairs of
points in A of the form of step 4.

8. Apply steps 2-7 for each pair among the pat-
tern points that determines a line parallel to that
through p and q, excluding enumeration of dupli-
cate copies (similarly to the identification of dupli-
cate squares, i.e., using an appropriate ordering).
Delete all points on those “short” lines from step
4. Apply steps 1-7 on the remainder, for a different
pair of points from the pattern, and perform this
d− 1 times.

As for the case where at least three points from Q
are collinear: If d ≥ 2, then in step 2 of the above algo-
rithm, if the point r lies on the line that goes through p
and q, it is not uniquely defined as the intersection of a
line that goes through p and a hyperplane of dimension
d − 1 that goes through q. However, since Q is full-
dimensional, there is another point r′ which is not on
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that line. So, instead, define r as the intersection of a
line that goes through p and a hyperplane of dimension
d− 1 that goes through r′, and label the additional ex-
tra coordinate that corresponds to r′ in the augmented
form. However, note that in step 4 of the above algo-
rithm we scan input points that correspond to p and q,
and not to r′, yet for each such a pair (that corresponds
to p and q) we still need to know the value of the corre-
sponding extra coordinate of r′ which is associated with
them, and is unknown at that moment. This is bypassed
by first defining the query points that corresponds to r′

for each such a pair, then marking all of the positive r′

query points that also exist in the input, and only then
defining the query points that corresponds to r based on
the r′ coordinate fetched during the scanning process.

If d = 1, one can use a completely different approach
than that described earlier. We sort the input points on
the line, and then place |Q| pointers on the |Q| leftmost
input points. If the point which is pointed by the third
pointer is too close to the second one in terms of the
proportions from Q, increment the third pointer. If it
is too far, increment to second pointer. If they align
correctly, increment the rest of the pointers until either a
copy of the pattern is found, or until one of the pointers
is too distant. Then continue and advance the second
pointer, and proceed similarly. In this manner, for each
leftmost point, the rest of the pointers only advance
forward with a cost of O ((|Q| − 1) · n). Since this is
performed n times, the desired running time of O(n2)
is obtained.

Analysis: The main ideas behind the correctness
of Amplified-Patterns-Listing(p1, . . . , pn) already ap-
peared in Section 2. Aside from those ideas, note that
step 2, in fact, defines each point as the intersection of
a line and a (d− 1)-dimensional hyperplane, and under
the assumption that no three points are on the same
line, the points are uniquely defined in that manner.

As for the running time, note that there is no remain-
ing long line analyzed at the ultimate iteration. Other-
wise, all points on it are on another long line defined by
a linearly independent vector. This induces more points
on a different long line, and so forth, yielding that there

are more than
(
n1/d

)d
= n input points, a contradic-

tion. Other than that, we did not need the lines to be
axis-parallel, but rather merely that the corresponding
vectors form an independent set.

Compared to the squares or the hypercubes case,
steps 1-3 cost O(poly(d · |Q|) · n log n) using a sorting
algorithm; constructing O(n) sets of queries in step 4
costs O(poly(d · |Q|) ·n) and constructing O(|Q|) arrays
of size O(n) in step 5 has a similar running time; ap-
plying radix sort and then scanning and marking those
arrays also cost O(poly(d · |Q|) · n) (this is multiplied
by |Q| due to pairs among the pattern points which are
parallel). As mentioned, only short lines are scanned

during the algorithm’s course, and since each batch of
size n costs O(poly(d·|Q|)·n), then each dimension costs
O(poly(d · |Q|)) multiplied by

O

(∑
i

s2i

)
≤ O

(∑
i

si · n1/d

)
=

= O

(
n1/d ·

∑
i

si

)
≤ O

(
n1+1/d

)
where si denotes the length of the i’th short line of that
form. This is multiplied by d iterations, and results
in a running time of O(poly(d · |Q|) · n1+1/d), which is
O(n1+1/d) under our assumptions. Space complexity is
linear due to similar arguments to those above, and to
those presented in Section 2. □

5 Conclusion and Further Work

In this paper, we analyzed the problem of enumerating
all scaled copies of a pattern in a set of n points in time
O(n1+1/d), answering open questions from [13] and [4]
by realizing the lower bound due to Elekes and Erdős
[7]. We relied on some existing ideas, amplified using
bucket-based methods, sweep-line scanning and more.
As far as we are aware of, the combinations of these
techniques this way was not noted in the literature so
far for similar tasks. One open question is whether these
techniques can be adjusted for different pattern match-
ing problems. Other questions include comparing the
task of finding one copy of a pattern with the task of
enumerating all copies of it ([13] show a separation be-
tween those for d-dimensional boxes), and similarly for
the task of counting the number of copies instead of out-
putting them. In addition, the existence of an output-
sensitive algorithm for our problem, and the existence
of an efficient enumeration algorithm for patterns not
of a constant size, form another two open questions for
further research.
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A Sub-quadratic Time Algorithm for the Proximity Connected k-center Problem
on Paths via Modular Arithmetic
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Abstract

The k-center problem is one of the most well-known prob-
lems in combinatorial optimization which has been exten-
sively studied in the past. In this paper, we introduce a
generalized version of the k-center problem called proxim-
ity connected k-center (PCkC) problem. In this problem,
we are given a set of demand points in a metric space and
a parameter δ > 0. We are going to locate k center points
such that the maximum distance of a demand point to its
nearest center is minimized and each pair of centers can
communicate with each other either directly or via other
centers assuming that each center can directly communi-
cate with any other center within the range of δ of itself.
Note that when δ is large enough, the problem turns to
the k-center problem and when δ tends to zero, the prob-
lem turns to the 1-center problem. We consider the PCkC
problem when the underlying space is a path and present a
sub-quadratic time algorithm for both the unweighted and
the weighted demand points cases.

1 Introduction

The k-center problem is one of the most important facility
location problems which has been extensively studied in
the past [4, 6, 10, 11, 16]. In this problem, we are given a set
of n demand points U = {v1 . . . , vn} in a metric space such
that each demand point vi ∈ U has a non-negative weight
wi. The objective is to find a k-center (a set of k points in
the space) C such that cost(C) := maxvi∈U{wid(vi, C)} is
minimized, where d(vi, C) := minc∈Cd(vi, c) (here d(vi, c)
is the distance between vi and c in the space). We call
this minimum cost the optimal cost for the problem. If
we have unit weights on all demand points, the problem is
called unweighted. We say that a k-center C satisfies the
proximity connectedness condition (PCC) with respect to
a parameter δ > 0 if the δ-distance graph of C is connected
(the δ-distance graph of C is a graph with the vertex set
C such that there is an edge between c1 an c2 in C if and
only if d(c1, c2) ≤ δ). In the proximity connected k-center
(PCkC) problem, in addition to U , we are also given a
parameter δ > 0 and we are going to find a k-center with
the minimum cost that satisfies the PCC.

In practice, if we consider the centers as facility loca-
tions, the parameter δ can represent the range for which,
each facility can directly communicate with any other fa-

∗School of Computing Science, Simon Fraser University
†amozafar@sfu.ca, corresponding author

cility within the range δ of itself. So, if the centers sat-
isfy the PCC, each pair of facilities can communicate with
each other directly or via other facilities. For example,
suppose that we need to locate k communication/control
equipment to observe n sensors while the equipment need
to send/receive messages between themselves (directly or
via other equipment). Also, each equipment can safely
send/receive data with any other equipment within the
range δ of itself. The problem of locating the equipment as
close as possible to the sensors can be modeled as PCkC
problem in the plane.

Note that if δ is sufficiently large, the problem reduces
to the k-center problem which is known to be NP-hard in
both the plane and metric graphs [6, 13] (a metric graph
is a graph for which each of its edges has a length and the
lengths satisfy the triangular inequality). This implies that
the PCkC problem is also NP-hard in the plane and metric
graphs and so it is not possible to solve it efficiently. In [6],
Kariv and Hakimi showed that the k-center problem can
be solved in polynomial time when the underlying space is
a metric tree and gave an O(n2 log n) time algorithm for
the problem. In 1991, Frederickson [4, 5] showed that the
unweighted k-center problem can be solved in linear time
in trees. Finally, in 2018, Wang and Zhang [16] provided an
O(n log n) time algorithm for the k-center problem in trees.
The PCC condition first appeared in the context of wire-
less networks in 1992 [7]. Later, Huang and Tsai studied
the 2-center problem in the plane, considering the proxim-
ity condition between the centers [8, 9]. As another work,
in 2022, Bhattacharya et al. [2] presented an O(n2 log n)
time algorithm to solve the proximity connected 2-center
problem in the plane improving the previous algorithm for
the problem with O(n5) time complexity [7]. Although
there are some related works in the context of theory of
wireless sensor networks [1, 14], the k-center problem has
not been studied when we have the proximity condition
between the centers. In this paper, we address this prob-
lem by providing a sub-quadratic time algorithm for the
k-center problem on paths having the PCC.

2 PCkC Problem for Unweighted Paths

Let P = (v1, . . . , vn) be the given unweighted path (con-
sisting of both the vertices and the edges between them)
such that the vertices lie on the x-axis from left to right
and v1 lies on the origin. Without loss of generality, we
assume that n is a power of 2. Also, we use the nota-
tion vi (1 ≤ i ≤ n) for both the vertex itself and the
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Figure 1: An example of the PCkC problem on a path with
8 vertices.

x-coordinate of the vertex. Thus, we have an order on the
vertices based on their x-coordinates. Also, if vi < vj ,
we denote the interval between vi and vj on the x-axis by
[vi, vj ]. In this section, we are going to find a k-center C∗

for P such that C∗ satisfies PCC and,

cost(C∗) = min{cost(C) :

C is a k-center for P and satisfies PCC}
We call C∗ an optimal solution and its cost the optimal
cost. We denote the optimal cost by r∗ and the centers in
C∗ by (c∗1, . . . , c

∗
k) from left to right on the x-axis. Figure 1

shows an example of the PCkC problem on a path and its
corresponding optimal solution.

The idea of obtaining an optimal solution for the prob-
lem is first computing r∗ and then, using it to build an
optimal solution. In order to do that, we first design a
feasibility test for the problem which gets a value r ≥ 0
and determines whether it is feasible (r ≥ r∗) or infeasible
(r < r∗). Algorithm UPATH-FT presents such a feasibil-
ity test for the unweighted PCkC problem on a path. Note
that if r ≥ r∗, UPATH-FT(P ,r) also gives us a k-center
with a cost at most r. Using the feasibility test, we can
check whether r∗ = 0. In this case the trivial solution is
putting a center at each vertex. So henceforth, we assume
that r∗ > 0. Note that in Algorithm 1, the vertices in V are

Algorithm 1 UPATH-FT(P, r)

1: Set Counter = 1 and V = (v2, . . . , vn).
2: Put a center at xc = r.
3: while there is an element in V do
4: Eliminate all vertices v ∈ V with d(xc, v) ≤ r.
5: Put a center at xc = min{xc + δ, V [1] + r}.
6: Counter = Counter + 1.
7: if Counter > k then
8: return infeasible.
9: end if

10: end while
11: return feasible.

eliminated in order and so the time complexity of UPATH-
FT would be O(n + k). It is important to mention that
we might have more than one optimal solution for a given
problem instance but, having r∗ (which is unique), the al-
gorithm UPATH-FT gives us a unique optimal solution. In
order to avoid confusion, henceforth we exclusively use the
notation C∗ for this optimal solution. We say that a vertex
v is covered by a center c∗i ∈ C∗ if d(v, c∗i ) = d(v, C∗). Also,
d(v, c∗i ) is called the cost that c∗i induces on v. We say that
a sequence of t points (c1, . . . , ct) (the order is left to right
on the x-axis) is a t-train if ∀ 1 ≤ i < t, d(ci, ci+1) = δ.

Proposition 1 There exists a pair of vertices (vi, vj) such
that the subset C ′ ⊆ C∗ of centers in [vi, vj ] is a t-train (for
some t) and d(vi, C

′) = d(vj , C
′) = r∗.

The reason of the above proposition is that if such a pair
does not exist, for any vertex v with d(v, C∗) = r∗, we can
move the covering center of v (and possibly other centers
to ensure the PCC) towards v to get a solution with a
cost smaller than r∗, which contradicts the optimality of
r∗. We call any pair (vi, vj) satisfying the condition of
Proposition 1, a determining pair for the problem.

Proposition 2 If d(v1, vn) ≥ kδ, then (v1, vn) is a deter-
mining pair for the problem.

Proof. For any vertex v in [c∗1, c
∗
k], d(v, C

∗) should be at
most δ/2 because of the PCC. So, if d(v1, vn) ≥ kδ, the
cost of C∗ should be greater than or equal to δ/2 which
means that (v1, vn) is a determining pair. □

Based on the above proposition, if d(v1, vn) ≥ kδ, we have
d(c∗1, c

∗
k) = (k − 1)δ and d(v1, c

∗
1) = d(c∗k, vn). Therefore,

r∗ = (d(v1, vn) − kδ)/2. Now, UPATH-FT(P, r∗) will
give us C∗. Henceforth in this section, we assume that
d(v1, vn) < kδ and so 0 < r∗ < δ/2 (because of the PCC).
In order to find r∗, we build a set of candidate values C
and iteratively use the feasibility test to discard its values
until r∗ becomes clear. Consider a pair of vertices (vi, vj)
and a t-train T such that d(vi, vj) > (t− 1)δ. We say that
T is fitted in [vi, vj ] if d(vi, T ) = d(vj , T ). Note that if T is
fitted in [vi, vj ], the induced cost of T on vi and vj would
be (d(vi, vj)− (t− 1)δ)/2 and is denoted by ICt(vi, vj). If
d(vi, vj) ≤ (t − 1)δ, we say that (vi, vj) does not accept
a t-train. Note that any pair of vertices accepts 1-train
which is indeed the mid-point of the connecting segment
of vi and vj . Based on Proposition 1, the set of candidate
values C can be considered as follows:

C = {ICt(vi, vj) : (vi, vj) accepts a t-train}

Because each pair of vertices can generate up to O(k)
candidate values, the size of C would be O(n2k). A naive
algorithm to find r∗ is computing the entire C, then sort
it and perform binary search using the feasibility test
to find r∗. It is easy to see that the time complexity
of this approach is O(n2k log(n + k)). In the rest, we
show that how we can reduce this bound and get a
sub-quadratic algorithm but before, it is useful to discuss
about the geometric interpretation of the candidate values.

Geometric View: Let Li and Ri be two half-lines
from vi with angles π/4 and 3π/4 with the positive direc-
tion of the x-axis respectively. Note that the y-coordinate
of the intersection of a vertical line at point x with Li ∪Ri

is the cost that a center at x will induce on vi (this is
because we assumed that the vertices are unweighted).
Based on this observation, for a pair (vi, vj), IC1(vi, vj)
is the y-coordinate of the intersection point of Ri and Lj .
Furthermore, if (vi, vj) accepts a t-train, ICt(vi, vj) would
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Figure 2: The geometric view of the candidate values gen-
erates by (vi, vj1) and the effective candidate value gener-
ated by (vi, vj2).

be the y-coordinate of the horizontal segment with length
(t − 1)δ with sides on Ri and Lj (see Figure 2). Based
on this geometric view, the following observation can be
concluded:

Observation 1 If (vi, vj) accepts a t-train (t > 1) then
ICt(vi, vj) = ICt−1(vi, vj)− δ/2.

Consider a pair (vi, vj) and the non-zero candidate value
ICk′(vi, vj) such that either k′ = k or (vi, vj) does not ac-
cept a (k′ + 1)-train (equivalently, k′-train is the longest
train that can be fitted in (vi, vj)). According to Observa-
tion 1, ICk′(vi, vj) is the only candidate value that (vi, vj)
can generate in (0, δ/2). If (vi, vj) generates a candidate
value in (0, δ/2), we call this candidate value an effective
candidate value. Because r∗ ∈ (0, δ/2), we only need to
search the effective candidates generated by the pairs in
P in order to find r∗. Let us gather all the effective can-
didates into an n × n matrix M such that M [i, j] is the
effective candidate value generated by (vi, vj) if i < j and
zero otherwise. We can see that M is not a sorted matrix
because for a fixed i, by increasing j, the number of centers
in the train that induces M [i, j] might change. Indeed, this
is the main obstacle to get a linear time algorithm like [4, 5]
for the unweighted PCkC problem. Precisely, the k-center
problem is equivalent to the PCkC problem when δ = ∞.
In this case, all the effective candidates are generated by
1-trains. The key point here is that the effective cost gener-
ated by a 1-train on a pair (vi, vi) is an increasing function
of d(vi, vj). This monotonicity makes the matrix M sorted
which plays a pivotal role in obtaining a linear time algo-
rithm.

In order to search M in a sub-quadratic time, we define
an auxiliary matrix M̄ such that applying the feasibility
test on its elements enables us to discard the elements of
M in an efficient way. We define M̄ as an n × n matrix
such that:

M̄ [i, j] = max{M [i, j′] : i < j′ ≤ j}

Note that M̄ is a row sorted (increasing) matrix but may
not be sorted column-wise. We define the remainder func-
tion remδ(x) as follows:

remδ(x) = x−
⌊x
δ

⌋
× δ

Observation 2 If i < j, then we would have M [i, j] =
remδ(d(vi, vj))/2.

This is from the fact that the size of the portion of
[vi, vj ] not covered by the longest train in the interval is
remδ(d(vi, vj)).

Proposition 3 If M [i, j] = r∗ then for all i < j′ < j,
M [i, j′] ≤ r∗.

Proof: We proceed by contradiction. Suppose that
M [i, j] = r∗ and ∃j′ : i < j′ < j such that M [i, j′] > r∗.
Let C ′ = (c∗h1

, . . . , c∗h2
) ⊆ C∗ be the train in [vi, vj ] that

induces r∗ on vi and vj . Also, let C = (c1, . . . , cq) be
the longest train that can be fitted in [vi, vj′ ] that induces
the cost M [i, j′]. Note that |C| < |C ′|, otherwise because
v′j < vj , M [i, j′] could not be greater than M [i, j]. Note
that c∗h1

< c1 because we assumed M [i, j′] > r∗. Now, if
c∗h1+q < vj′ , we can fit a (q + 1)-train in [vi, vj′ ], which
contradicts the way we chose C. So, let us assume that
c∗h1+q > vj′ (see Figure 3).

vi vj0 vjc
∗

h1
c
∗

h2

c1 c
∗

h1+1 c2 c
∗

h1+q−1 cq c
∗

h1+q

: : : : : :

r∗ r∗

M [i; j0] M [i; j0]

δ

δ

δ

Figure 3: Proof of Proposition 3.

Here, c∗h1+q is the center that covers vj′ in C∗. If
d(vj′ , c

∗
h1+q) = r∗, d(vi, vj′) would be a multiple of δ

and so M [i, j′] = 0 which is against our assumption that
M [i, j′] > r∗. Thus, we have d(vj′ , c

∗
h1+q) < r∗ but in

this case we can fit a (q + 1)-train in [vi, vj′ ] which is a
contradiction. □

Example: In Figure 4, the fitted 4-train (c∗1, . . . , c
∗
4)

between v1 and vj induces the optimal cost r∗ for
the problem. In order to have M [i, j′] > r∗ for some
1 < j′ < j, vj′ should lie on a forbidden region, which
are the set of points with distances greater than r∗ to
their closest center (these regions are specified in red in
Figure 4).

v1 vjc∗1 c∗2 c∗3 c∗4

2M[1,x]

2r∗

Forbidden region

δ 2δ 3δvj′

2M [1, j′]

y = remδ(x)

r∗ r∗

Figure 4: An example for Proposition 3.

Observation 3 By applying the feasibility test on M̄ [i, j],
one of the following cases will happen:
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1. M̄ [i, j] is feasible. In this case, we can discard all
M [i, j′] with j′ > j (based on Proposition 3).

2. M̄ [i, j] is infeasible. In this case, we can discard all
M [i, j′] with j′ ≤ j (based on the definition of M̄).

Note that in the part 1 of the above observation, when
M̄ [i, j] is feasible, then either M̄ [i, j] > r∗ or M̄ [i, j] = r∗.
For the former case, if M [i, j′] = r∗ for some j′ > j, it con-
tradicts Proposition 3 and for the later case we still have r∗

in our undiscarded values. According to the above obser-
vation, we can find r∗ by iteratively applying the feasibil-
ity test on the elements of M̄ and discard the elements of
M until r∗ becomes clear. Algorithm DISC-ROUND(M)
shows how we can discard 1/4th of the undiscarded ele-
ments in M at each iteration. We can see that at the be-
ginning of each iteration the undiscarded elements of each
row make a connected region. We call this region the undis-
carded region. Because M̄ is row sorted, if d1 and d2 are
the first and the last indices of the undiscarded region of an
ith-row in M , if we know whether M̄ [i, d1+⌊(d1+d2)/2⌋] is
feasible, we can discard half of the elements in the region.
Note that in Algorithm 2, the variables d1, d2 and wi can be

Algorithm 2 DISC-ROUND(M)

1: for i from 1 to n do
2: Set d1, d2 and ni as the first index, the last index

and the number of elements in the undiscarded region
of the ith-row of M respectively.

3: Set mi as M̄ [i, d1 + ⌊(d1 + d2)/2⌋].
4: end for
5: Compute the weighted median m of {mi : 1 ≤ i ≤ n}

where mi has weight ni.
6: Run UPATH-FT(P ,m).
7: if m is feasible then
8: For each i with mi ≥ m, discard M [i, j′] : j′ > mi.
9: else

10: For each i with mi ≤ m, discard M [i, j′] : j′ ≤ mi.
11: end if

updated after the discarding phase of the previous iteration
(so we don’t need to search the entire matrix to compute
them at the beginning of the current iteration). Also, we
compute the weighted median of the mid-indexes of the
undiscarded region of the rows because at the beginning
of an iteration, the undiscarded region of the rows in M
may not have the same size. We can see that in each itera-
tion, we need to compute the median of O(n) values in M̄ .
The bottleneck of the time complexity of DISC-ROUND
is the cost of obtaining an element of M̄ . Precisely, if the
time complexity of computing an element of M̄ is O(g(n)),
then the total time complexity of DISC-ROUND would be
O(ng(n)+k) and so the overall time complexity of our algo-
rithm for the unweighted PCkC problem on paths would be
O((ng(n)+k) logn) (because we have O(log n) iterations).
In the next subsection, we discuss how we can compute an
element of M̄ efficiently.

2.1 Computing an Element of M̄

In this subsection, we provide a preprocessing phase
that enables us to compute M̄ [i, j] in sub-linear time.
Let Mi,j = {M [i, i + 1], . . . ,M [i, j]} and so, M̄ [i, j] =
max Mi,j . We first build a balanced binary tree T on
top of the vertices in P (we assumed that n is a power
of 2). Thus, each leave of T corresponds to a single vertex.
For a node ν ∈ T , span(ν) is defined as the set of vertices
that have ν as a common ancestor. Note that the root of
T spans the entire P . Also, we denote the first and the last
indexes of the vertices in span(ν) by left(ν) and right(ν)
respectively. In each node ν ∈ T , we store the sequence
σ(ν) obtained from sorting {2M [v1, v] : v ∈ span(ν)} in-
creasingly. It is easy to see that the time complexity of
building T and the sequences in its nodes is O(n log n).

Observation 4 For any two numbers a and b, we have:

remδ(a+ b) = remδ(remδ(a) + remδ(b))

Based on the above observation and Observation 2, for any
j′ ≥ i we can write M [i, j′] as:

M [i, j′] = remδ(d(vi, vj′))/2 =

remδ(d(v1, vj′)− d(v1, vi))/2 =

remδ(remδ(d(v1, vj′))− remδ(d(v1, vi)))/2 =

remδ(2M [v1, vj′ ]− 2M [v1, vi])/2

Now, for each vertex ν with σ(ν) = (s1, . . . , st) and i ≤
left(ν), we define σi(ν) as:

σi(ν) =
(
remδ(s1− 2M [v1, vi]), . . . , remδ(st− 2M [v1, vi])

)
Let µi(ν) be the maximum of σi(ν). Based on the
above argument, we can see max{M [left(ν), left(ν) +
1], . . . ,M [left(ν), right(ν)]} is indeed µi(ν)/2. An impor-
tant observation here is that because the elements of M
are at most δ/2, σi(ν) is a concatenation of two sorted se-
quences namely σ1

i (ν) and σ2
i (ν) (note that one of these

sequences might be empty). So, in order to find µi(ν),
we need to compare the last elements of σ1

i (ν) and σ2
i (ν)

(if they exist) and pick the greater value. Precisely, if
sj′ − 2M [v1, vi] is negative (resp. positive) for some sj′ ∈
σ(ν), remδ(sj′−2M [v1, vi]) belongs to σ1

i (ν) (resp. σ
2
i (ν)).

Thus, we can do binary search to obtain the index of the
last element of σ1

i (ν) and so µi(ν) in O(log |span(ν)|) time.
We can use the above data structure to find M̄ [i, j] as

follows: we first obtain two paths πi and πj and their split
vertex νsplit from the root of T to vi and vj respectively.
Let Vi,j be the set of right (resp. left) children of πi (resp.
πj) from νsplit to its leaf (including vj). Now, Mi,j =
1/2∪ν∈Vi,j

σi(ν) where the multiplication is done element-
wise. Therefore,

M̄ [i, j] = max Mi,j = max{µi(ν) : ν ∈ Vi,j} (1)

because |Vi,j | = O(log n) and computing each µi(ν) in (1)
also costs O(log n), the total complexity of computing
M̄ [i, j] would be O(log2 n) which leads to an overall
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O
(
(n log2 n + k) log n

)
time complexity for the PCkC

problem in unweighted paths.

Further improvements: First, we observe that if
for two nodes ν, ν′ ∈ T , ν′ is a parent of ν then σ(ν)
is a sub-sequence of σ(ν′). This property enables us to
use a technique called fractional cascading [3] to avoid
doing binary search on each of the nodes in Vi,j to find
their maximum. Precisely, we equip each element s of
σ(ν′) with a pointer that points to the smallest element
in ν larger than or equal to s. This structure can be
constructed in O(n log n) time [3]. So, in order to obtain
all {µi(ν) : ν ∈ Vi,j}, we only perform one binary search
on σi(root(T )) with cost O(log n) and follow the pointers
along the paths to obtain each µi(ν) : ν ∈ Vi,j in a
constant time. So, the total complexity of computing
M̄ [i, j] would be O(log n) and so, the total running time
would be O

(
(n log n+ k) logn

)
.

As another improvement, note that we only need to do
binary search on σi(root(T )) once for each row i in the
entire algorithm. Also, by spending O(n log n) time, for
each root-leaf path πi and each ν′ ∈ πi, we can store
max{µi(ν) : ν is right child of a node in πi[ν

′, vi]} in ν′

(πi[ν
′, vi] is the portion of πi from ν′ to vi) by walking along

πi twice. So, having νsplit, we only need to take care about
computing max{µi(ν) : ν ∈ Vi,j and hanging from πj}.
To address this problem, consider a fixed ith-row. Based
on Algorithm 2, at each iteration r, the undiscarded region
of the ith-row corresponds to span(νr) for some νr ∈ T .
Let νrm be the left child of νr (if we are not at the last
iteration) with mr = right(νrm). We can see that mr is
the median of the undiscarded region. Now, νr+1

m is either
the left child of νrm or the left child of the right neighbor
of νrm. Let r0 be the last iteration for which νr0m is on πi.
For iterations r ≤ r0, we only need to consider the maxi-
mum of the values in σi(ν

′) where ν′ the first right child
on πi after ν

r
m. Also, for iterations r > r0, we only need to

have the set of maximum values in the left hanging nodes
of πmr [νsplit, ν

r
m] and νrm itself. Now, it is easy to see that

as r increases to r + 1, these set of values can be updated
in a constant time. Thus, we can conclude that computing
M̄ [i,mr] for all iterations r only takes O(log n) time and
because we have linear number of rows, we would have the
following theorem:

Theorem 1 The unweighted PCkC problem can be solved
in O((n+ k) log n) time.

3 PCkC Problem for Weighted Paths

Let P = (v1, . . . , vn) be the given weighted path such that
wi is the weight of vi. For a point x on P , we define
wd(vi, x) = wid(vi, x). Again each pair of vertices (vi, vj)
generates O(k) candidate values which corresponds to the
trains that can be fitted in [vi, vj ]. Here, because the
weights of vi and vj might be different, a train may not
be required to have the same distance from vi and vj in
order to induce the same cost on them. Again, we denote

the cost that a fitted t-train in [vi, vj ] induces on vi and vj
by ICt(vi, vj). Suppose that d(vi, vj) > tδ for some t > 1.
We define the width of (vi, vj) as ICt−1(vi, vj)−ICt(vi, vj)
and denote it by W (vi, vj). Note that this value is inde-
pendent of t and only depends on wi and wj and so, we can
compute it in a constant time (in the unweighted case, the
width of all pairs in P are δ/2). Because here the widths
of the pairs in P might not be equal, we first need to find
an interval I∗ such that each pair of vertices can gener-
ate at most one cost in I∗. But before going into that, we
need to update our feasibility test to support weighted ver-
tices. Algorithm 3 presents the feasibility test procedure
WPATH-FT(P ,r) which gets a weighted path P and a test
value r and determines whether r ≥ r∗ or r < r∗.

Algorithm 3 WPATH-FT(P, r)

1: Set Counter = 1
2: for i=1 to n do
3: Let xi be the point on the right side vi such that

wd(vi, xi) = r.
4: end for
5: Let X = (x1, . . . , xn).
6: Let xc = x1.
7: while There is an element left in X do
8: Eliminate xis from X corresponding to the vertices

for which wd(vi, xc) ≤ r.
9: Put a center at xc = min{xc + δ,X[1]}.

10: Counter = Counter + 1.
11: if Counter > k then
12: return infeasible.
13: end if
14: end while
15: return feasible.

Note that in the while loop of Algorithm 3, we eliminate
xis according to the order in the sequence X and so, the
running time of the above feasibility test is O(n+ k). The
geometric view for the weighted case is similar to the un-
weighted case but here, for each vertex vi, the magnitude
of the slopes of Ri and Li is wi. For each pair (vi, vj), the
y-coordinate of the intersection point of Ri and Lj is the
cost that a fitted 1-train (single point) in [vi, vj ] induces
on vi and vj which is denoted by IC1(vi, vj). Similarly, if
d(vi, vj) > (t−1)δ, ICt(vi, vj) would be the y-coordinate of
the horizontal segment with length (t− 1)δ and endpoints
on Ri and Lj (see Figure 5).

3.1 Matrix Search for Weighted Paths

First, we need to build an interval I1 = [a, b] such that
r∗ ∈ I1 and it’s interior does not contain any IC1(vi, vj) for
any i < j (note that IC1(vi, vj) is indeed the y-coordinate
of the intersection point of Ri and Lj). If we use Lemma
2.5 [16] on all Ri and Lj (1 ≤ i, j ≤ n), we can get I1 in
O((n+ k) logn) time. Let us define W ∗ as follows:

W ∗ = min{W (vi, vj) : i < j and IC1(vi, vj) ≥ b}
44



34th Canadian Conference on Computational Geometry, 2022

v2 v3 v4

δ

2δ

cost

x
v1

IC1(v2; v4)

IC2(v2; v4)

IC3(v2; v4)

W (v2; v4)

I
∗

y = y0

y = y1

R1R2L3L4

r2 r1 l3 l4

Figure 5: A weighted path (v1, v2, v3, v4), the width of
(v2, v4) and three costs generated by the pair. Note that
only one of them lies inside I∗.

We can see that r∗ ∈ I2 := [b − kW ∗, b] ∩ I1. This is
because r∗ can’t be smaller than the cost that a fitted k-
train induces on the generating pair of W ∗.

Proposition 4 W ∗ can be computed in O(n log n) time.

Proof. We first compute the intersection points of all
Li and Rj for 1 ≤ i, j ≤ n with the horizontal line
y = b. Then, we sort these intersections on the line
from left to right in O(n log n) time. So, each of these
intersections corresponds to a line with a positive or a
negative slope. We traverse these intersections from left
to right and store the minimum positive slope and the
minimum width we have seen in variables min slope and
min width respectively. Finally, we set min width as W ∗.
Precisely, when we visit an intersection point, if it came
from a line with a positive slope, we update min slope
if necessary and if it came from a line with a negative
slope, we compute the width it creates with the line that
generatedmin slope and updatemin width if necessary. □

We can see that the length of I2 is at most kW ∗.
This implies that by applying the feasibility test O(log k)
times at the costs b − iW ∗ (0 ≤ i ≤ k) we get an
interval I3 ⊆ I2 with length at most W ∗ containing r∗.
Because W ∗ is the minimum width, each pair (vi, vj) with
IC1(vi, vj) ≥ b can generate at most one candidate value
in I3.

Consider the set of half-lines {R1, . . . , Rn−1} (all with
positive slopes) and their upper-envelope polygonal chain
as a function fUE (x). We can see that fUE is a piece-wise
linear and an increasing function. Also, fUE (x) is the
cost of covering all the vertices on the left side of x if we
put a center at x. We can compute fUE in linear time
as follows: suppose that we have already computed the
upper-envelope of {R1, . . . , Rj−1} consisting of it’s lines
and break points. Now, when we add Rj and update our
envelope, if Rj is below the last break points, we consider
Rj and the last line of the envelope for a possible new
break point. Otherwise, we find the first break point
below the line (be checking the break points one by one
from the last) and consider the line next to it (on its left)
for a break point. Note that when we check a break point
and it turns out it is below Rj , the line next to it (on
its right) can never be a part of the envelope. Because

we have linear number of lines, the time complexity of
computing fUE is linear.

Let (x1, . . . , xs) be the x-coordinates of the break points
of fUE where s is the number of break points. Then, we can
use our feasibility test to do binary search on {fUE (xi) :
1 ≤ i ≤ s} to find an interval [xq, xq+1] such that r∗ ∈
[fUE (xq), fUE (xq+1)]. Let Rq (generated by vq) be the line
corresponding to the portion of fUE in [xq, xq+1]. Then we
have the following observation:

Observation 5 If c∗1 induces r∗, then vq is the first vertex
of a determining pair.

Based on the above observation, we can consider all pairs
{(vq, vq+1), . . . , (vq, vn)}, obtain the candidate value that
each generates, sort them and do binary search (using our
feasibility test) to get an interval I(1). Now, c∗1 can’t gen-
erate any candidate value in the interior of I(1). Similarly,
we can do the above process on {L2, . . . , Ln} to get an in-
terval I(2) such that c∗k can’t generate any candidate value
in the interior of I(2). Let I∗ = I3 ∩ I(1) ∩ I(2). So, it is
only left to resolve the candidates in the interior of I∗.

Observation 6 If (vi, vj) is a determining pair and a
train (c∗h1

, . . . , c∗h2
) in [vi, vj ] induces r∗ on the interior of

I∗, then

1. 0 < d(vi, c
∗
h1
), d(vj , c

∗
h2
) < δ/2.

2. (c∗h1
, . . . , c∗h2

) is the longest train that can be fitted in
[vi, vj ].

The first part of the above observation comes from the
fact that if r∗ lies on the interior of I∗, then h1 ̸= 1 and
h2 ̸= k. So, if for example d(vi, c

∗
h1
) ≥ δ/2 then because of

the PCC, c∗h1−1 can cover vi in the optimal solution. For
the second part, note that if we are able to fit a longer
train in [vi, vj ] then either d(vi, c

∗
h1
) or d(vj , c

∗
h2
) should be

greater than δ/2 which contradicts the first part.
Based on Observation 6, for any pair of vertices (vi, vj),

we define our matrix M for the weighted case such
that M [i, j] is the cost r induced by the longest train
(c1, . . . , cq) that can be fitted in [vi, vj ] if r ∈ I∗ and
0 < d(vi, c1), d(vj , cq) < δ/2. If we didn’t have either of
these two conditions, we assign M [i, j] = 0. It is clear that
r∗ is an element of M . Similar to the unweighted case,
we define M̄ [i, j] as max{M [i, i + 1], . . . ,M [i, j]}. Again,
we can see that M̄ is a row sorted matrix but may not be
sorted column-wise. Next, we show Proposition 3 is still
valid for our new definition of M and M̄ in the weighted
case.

Proposition 5 If M [i, j] = r∗, then for all i < j′ < j,
M [i, j′] ≤ r∗.

Proof. We proceed by contradiction. Suppose that
(vi, vj) induces r

∗ and ∃i < j′ < j such that M [i, j′] > r∗.
Let C = (c1, . . . , cq) be the longest train that can be fitted
in [vi, vj′ ] and induces the cost M [i, j′] on vi and vj′ . Also,
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let C ′ = (c∗h1
, . . . , c∗h2

) ⊆ C∗ be the train that induces
r∗ in [vi, vj ]. Now, c∗h1+q−1 < cq (because we assumed
that M [i, j′] > r∗) and |C| < |C ′| (because vj > vj′). We
consider two cases:

case 1: c∗h1+q ≤ vj′ : In this case, we could fit a
(q + 1)-train namely C ′′ = (c′1, . . . , c

′
q+1) in [vi, v

′
j ] which

contradicts the fact that C was the longest train in [vi, vj′ ].

case 2: c∗h1+q > vj′ : In this case, vj′ should be
covered from its right in C∗ (because c∗h1+q−1 < cq and
we assumed M [i, j′] > r∗). Also, the cost of covering
vj′ in C∗ should be no more than r∗. So, if wi ≤ wj′ ,
d(vi, c

∗
h1
) ≥ d(vj′ , c

∗
h1+q) and thus, we can fit a (q+1)-train

in [vi, vj′ ] which is a contradiction.
Now, assume that wi > wj′ . Let t1 and t2 be the

points on the right side of vj′ such that wd(vj′ , t1) = r∗

and wd(vj′ , t2) = M [i, j′]. Note that t2 > t1 and t2
is the mirror image of cq with respect to vj′ . Now,
d(c∗h1

, c1) < d(t1, t2) (because wi > wj′ and the cost that
vi induces on c∗h1

and c1 are r∗ and M [i, j′] respectively).
Also, because M [i, j′] ̸= 0, d(cq, vj′) < δ/2 (based on the
definition of M), cq + δ > vj′ + δ/2 which implies that
[t1, t2] ⊆ [c∗h1+q, cq + δ]. This contradicts the fact that
d(c∗h1+q, cq + δ) = d(c∗h1

, c1) < d(t1, t2) (see Figure 6). □

Figure 6: Proof of Proposition 5

The above proposition implies that Observation 3 is valid
for M and M̄ in the weighted case and so we can use Algo-
rithm 2 to find r∗ and get C∗. Based on Algorithm 2, the
time complexity of finding r∗ would be O((ng(n)+k) log n)
where g(n) is the time complexity for computing an ele-
ment of M̄ . In the Appendix, we show how we can compute
an element of M̄ in O(log3 n) time by spending O(n log3 n)
time for preprocessing. This gives us the following theo-
rem:

Theorem 2 The PCkC problem can be solved in
O((n log3 n+ k) log n) time.

References

[1] Ahlberg M, Vlassov V, Yasui T. Router placement in
wireless sensor networks. In 2006 IEEE International
Conference on Mobile Ad Hoc and Sensor Systems 2006
Oct 9 (pp. 538-541). IEEE.

[2] Bhattacharya B, Mozafari A, Shermer TC. An efficient
algorithm for the proximity connected two center prob-
lem. In International Workshop on Combinatorial Al-
gorithms 2022 (pp. 199-213). Springer, Cham.

[3] De Berg M, Cheong O, Van Kreveld M, Overmars
M. Computational geometry: introduction. Computa-
tional geometry: algorithms and applications. 2008:1-7.

[4] Frederickson GN. Parametric search and locating sup-
ply centers in trees. In Workshop on Algorithms and
Data Structures 1991 Aug 14 (pp. 299-319). Springer,
Berlin, Heidelberg.

[5] Frederickson GN. Optimal algorithms for tree parti-
tioning. In Proceedings of the Second Annual ACM-
SIAM Symposium on Discrete Algorithms 1991 Mar 1
(pp. 168-177).

[6] Hakimi SL. Optimum distribution of switching cen-
ters in a communication network and some related
graph theoretic problems. Operations research. 1965
Jun;13(3):462-75.

[7] Huang CH. Some problems on radius-weighted model
of packet radio network, Doctoral dissertation, Ph. D.
Dissertation, Dept. of Comput. Sci., Tsing Hua Univ.,
Hsinchu, Taiwan, 1992.

[8] Huang PH, Tsai YT, Tang CY. A near-quadratic al-
gorithm for the alpha-connected two-center problem.
Journal of information science and engineering. 2006
Nov 1;22(6):1317.

[9] Huang PH, Te Tsai Y, Tang CY. A fast algorithm for
the alpha-connected two-center decision problem. In-
formation Processing Letters. 2003 Feb 28;85(4):205-10.

[10] Jeger M, Kariv O. Algorithms for finding P-centers on
a weighted tree (for relatively small P). Networks. 1985
Sep;15(3):381-9.

[11] Kariv O, Hakimi SL. An algorithmic approach to net-
work location problems. I: The p-centers. SIAM Jour-
nal on Applied Mathematics. 1979 Dec;37(3):513-38.

[12] Megiddo N. Linear-time algorithms for linear pro-
gramming in R3 and related problems. SIAM journal
on computing. 1983 Nov;12(4):759-76.

[13] Megiddo N, Supowit KJ. On the complexity of some
common geometric location problems. SIAM journal on
computing. 1984 Feb;13(1):182-96.

[14] Patel M, Chandrasekaran R, Venkatesan S. Energy
efficient sensor, relay and base station placements for
coverage, connectivity and routing. In PCCC 2005.
24th IEEE International Performance, Computing,
and Communications Conference, 2005. 2005 Apr 7
(pp. 581-586). IEEE.

[15] Toth CD, O’Rourke J, Goodman JE, editors. Hand-
book of discrete and computational geometry. CRC
press; 2017 Nov 22.

[16] Wang H, Zhang J. An O(n log n)-Time Algorithm for
the k-Center Problem in Trees. SIAM Journal on Com-
puting. 2021;50(2):602-35.

46



34th Canadian Conference on Computational Geometry, 2022

eij1 eij2 eij3

L+
ij1

L+
ij3

L+
ij2 L−

ij2

L−
ij1

L−
ij3

D

Dij3

Dij1

Dij2

Eij1

Eij3

Eij2

x

Figure 7: Three points eij1 , eij2 and eij3 located at dis-
tances Eij1 , Eij2 and Eij3 respectively and their generating
points. In this example, (vi, vj1) generates the maximum
of {M [i, j1],M [i, j2],M [i, j3]}.

Appendix: Computing an Element of M̄ for Weighted
Paths

In this section, we build a data structure such that for
any query pair (i, j) (i < j), it enables us to compute
M̄ [i, j] = max{M [i, j′] : i < j′ ≤ j} in a sub-linear time.
Suppose that I∗ = [y0, y1]. We denote the x-coordinates
of the intersection points of Li and Ri (1 < i < n) with
line y = y1 by li and ri, respectively (see Figure 5). Note
that if for a pair (vi, vj′), lj′ < ri, it can not generate any
candidate value in I∗ (because of the way we built I∗) and
so, M [i, j′] = 0. Thus, we only consider the pairs (vi, vj′)
for which lj′ ≥ ri. Let us define the complement function
with respect to δ as:

compδ(x) =
⌈x
δ

⌉
× δ − x

We also denote compδ(li) and compδ(ri) by l̂i and r̂i re-
spectively where 1 < i < n. For any pair (i, j′) with j′ > i

and lj′ > ri, let Eij′ = compδ(lj′ − ri) = remδ(l̂j′ − r̂i)
and Dij′ = Eij′/(w

−1
i + w−1

j′ ) (note that wi and wj′

are the magnitudes of the slopes of Ri and Lj′ respec-
tively). Based on the geometric view, it is easy to see
that M [i, j′] = y1 − Dij′ if Dij′ ≤ |I∗| and zero other-
wise. So, the problem of finding M̄ [i, j] is equivalent to
find Dmin = min{Dij′ : i < j′ ≤ j}. It is convenient to
visualize this set as follows: for each i < j′ ≤ j, we con-
sider eij′ as the point located at (Eij′ , 0) on the x-axis.
Each eij′ has a half-line L+

ij′ attached to it with slope wi

and a half-line L−
ij′ from the origin with slope −wj′ (see

Figure 7). We can see that the distance between the in-
tersection point of L+

ij and L−
ij from the x-axis is indeed

Dij . We call this distance the D-coordinate of the inter-
section (when a point moves downward, its D-coordinate
increases). So, each value Eij′ generates exactly one value
Dij′ call it the D-value of Eij′ . Like the unweighted case,
we build a balanced binary tree T on top of the vertices
and in each node ν ∈ T we store {l̂h : vh ∈ span(ν)} as
an increasingly sorted sequence σ(ν). So, if we preprocess
each ν ∈ T such that for a given vertex vi, we can quickly
compute µi(ν) = min{Dih : vh ∈ span(ν)}, we can decom-
pose the set {vj : i < j′ ≤ j} into ∪ν∈Vi,jspan(ν) (as we

did in Section 2.1) and set Dmin = min{µi(ν) : ν ∈ Vi,j}
Let ν ∈ T be a fixed node. In the rest, we show how

we can preprocess ν such that given a query vertex vi, we
can efficiently compute µi(ν). First, note that the set of
half-lines {L−

ih : vh ∈ span(ν)} is independent of i. Also,
for each i, {Eih : vh ∈ span(ν)} is the union of two sorted
sequences σ1

i (ν) and σ2
i (ν), where σ

1
i (ν) (resp. σ

2
i (ν)) is ob-

tained by a shift (adding a constant value) of the elements
in σ(ν) smaller than (resp. greater than or equal to) r̂i.
Consider the lines L+

ij′(x)=wi(x−eij′) and L−
ij′(x)=−wj′x,

where eij′ is a variable (see Figure 7). When eij′ increases,
the D-value of eij′ (the intersection of L+

ij′ and L−
ij′) in-

creases linearly. Let f(x) be the minimum D-value gener-

ated by {eij′ = l̂j′ + x : j′ ∈ span(ν)}. We can see that
f(x) is the lower-envelope of a set of lines which can be
computed in O(|ν| log |ν|) time (|ν| is the number of ver-
tices in span(ν)) using the divide-and-conquer algorithm
(use the order in σ(ν) for breaking the vertices). Because
we need to work with the sub-sequences of σ(ν), we store
the entire recursion tree [15] (with the solutions of its sub-
problems) of the divide-and-conquer algorithm and denote
this tree by Ri(ν). Based on the above discussion, one way
to preprocess ν is that for each 1 < i < n, we compute and
store Ri(ν). Now, when we are given a vertex vi, we first
use binary search to get σ1

i (ν) and σ2
i (ν). Next, we use

Ri(ν) to get µi(ν). Note that this process costs O(log2 |ν|)
time (one O(log |ν|) factor because of the height of Ri(ν)
and the other for binary search to get the minimum point
of the envelopes in the nodes of Ri(ν) needed to construct
σ1
i (ν)(resp. σ2

i (ν)) at an specific x-coordinate determined
by the shift in σ1

i (ν)(resp. σ
2
i (ν)). Because the height of T

is O(log n), the total time complexity of computing M̄ [i, j]
would be O(log3 n). Note that the values σ(ν) of any (non
root) node ν ∈ T is a subset of the values of its parent
node. So, using the fractional cascading technique, this
cost can be reduced to O(log2 n) time.

The problem here is that if we build Ri(ν) for all
1 < i < n and all ν ∈ T , the time complexity of the prepro-
cessing phase would be O(n2 log2 n). In order to make the
preprocessing cost sub-quadratic, consider an internal node
ω of the recursion tree of ν (note that the vertices in ω are
independent of i). Let τi(ω) be the sequence of points in
ω who generate a line in its corresponding lower-envelope
in Ri(ν) where the order is according to the appearance of
the lines in the envelope.

Proposition 6 If for two indices i1 and i2, wi1 < wi2 ,
then τi2(ω) ⊆ τi1(ω)

The proof of the above proposition is straightforward using
elementary geometry. In order to use the above proposi-
tion, we first sort all the slopes increasingly into a sequence
(wi1 , . . . , win). Now, when we preprocess ω, instead of
building Ri(ω) for all 1 < i < n, we can use a binary tree
structure for the slopes which leads to O(|ω| log n) time
complexity for preprocessing ω. This, reduces the overall
preprocessing time to O(n log3 n) and increases the time
complexity of computing M [i, j] to O(log3 n).
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Drawing complete outer-1-planar graphs in linear area

Therese Biedl∗

Abstract

A complete outer-1-planar graph is a graph that can be
drawn such that every edge has at most one crossing, all
vertices are on the infinite face, and the so-called dual
tree is a complete ternary tree. We show that every
complete outer-1-planar graph has a straight-line grid-
drawing that has area O(n).

1 Introduction

In this paper we consider the question of how to cre-
ate a straight-line grid-drawing of a graph, i.e., we want
to map the vertices to grid points, and draw edges as
straight-line segments between their endpoints such that
vertex-points are distinct and no edge-segment contains
a vertex-point except at its endpoints. If the input
graph is planar (it has a planar drawing without cross-
ing), then we further require that the drawing is likewise
planar. Generally, whenever the given graph comes with
a drawing (not necessarily using straight lines), then we
expect the created straight-line grid-drawing to reflect
the given drawing of the graph.

The objective is usually to achieve small area of the
drawing (i.e., the area of the minimum enclosing axis-
aligned bounding box of the drawing). Let n be the
number of vertices. Any graph can be drawn with area
O(n3) by placing the vertices on the moment-curve. For
planar graphs, it has long been known that O(n2) is
always sufficient [15, 16], and for some planar graphs
Ω(n2) area is required in a planar drawing [14]. For
some subclasses of planar graphs, sub-quadratic area
can be achieved. Of particular relevance to this pa-
per are the results for outer-planar graphs, i.e., graphs
that have a planar drawing where all vertices are inci-
dent with the unbounded region (the outer-face). Such
graphs have straight-line grid-drawings in sub-quadratic
area [9], and very recently the area has been reduced to
O(n1+ε) [13].

We are interested here in drawing 1-planar graphs,
i.e., graphs that have a drawing that is not necessarily
planar but every edge is crossed at most once. Such
graphs do not always have a straight-line grid-drawing
[10] but if they are 3-connected then there is a straight-
line drawing after deleting at most one edge [2] and the

∗David R. Cheriton School of Computer Science, University of
Waterloo, biedl@uwaterloo.ca

area is quadratic. Clearly some 1-planar graphs require
Ω(n2) area since all planar graphs are also 1-planar.

The natural question is now whether there are sub-
classes of 1-planar graphs that have straight-line grid-
drawings in sub-quadratic area? The most obvious
class to consider are outer-1-planar graphs, which are
1-planar graphs with a 1-planar drawing where all ver-
tices are on the outer-face. It is known that outer-1-
planar graphs can be drawn in sub-quadratic area in
the drawing style of “visibility representations” (not
reviewed here) [4]. Straight-line drawings of outer-1-
planar graphs appear to have studied only a little bit.
Dekhordi and Eades showed that they have so-called
RAC-drawings [8] but they did not analyze the area.
Auer et al. [3] showed that they have a straight-line
grid-drawings in quadratic area. Bulatovic [5] achieved
sub-quadratic area in some special situations.

In the pursuit of sub-quadratic-area drawings for
outer-planar graphs [9, 13], one helpful ingredient was
to first study a complete outer-planar graph, i.e., an
outer-planar graph for which the dual graph (minus the
outer-face vertex) is a complete binary tree when root-
ing it suitably. By exploiting its recursive structure, Di
Battista and Frati showed that a complete outer-planar
graph has a straight-line grid-drawing in O(n) area [9].

In the same spirit, we ask here whether we can cre-
ate small straight-line grid-drawings of complete outer-
1-planar graphs (defined formally below). Bulatovic
[5] showed that these have a grid-drawing of area
O(n2·log3 2) = O(n1.26). In this paper, we improve on
this result and show that all complete outer-1-planar
graphs have a straight-line grid-drawing of area O(n).
This fits into a long line of research of achieved opti-
mal O(n) area for straight-line grid-drawings of special
graphs, see e.g. [1, 6, 7, 9].

2 Preliminaries

We assume familiarity with graph theory and planar
graphs, see for example [11]. Assume throughout that
G is an outer-1-planar graph with n vertices that is
maximal in the sense that no edges can be added while
maintaining simplicity and outer-1-planarity. Then G
consists of an n-cycle as the outer-face and chords of
the n-cycle. The skeleton Gs of G is the subgraph of G
formed by the uncrossed edges, i.e., edges without cross-
ing. The inner faces of Gs are the maximal bounded
regions that contain no edges of Gs; it is known that
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x y

Figure 1: The complete outer-1-planar graph of depth
4. The dual tree is orange (striped/dotted).

all inner faces of Gs are triangles or quadrangles if G is
maximal outer-1-planar [8]. The dual tree of G is ob-
tained by creating a vertex for every inner face of Gs

and making them adjacent if the corresponding faces
share an edge. The dual tree of an outer-1-planar graph
is (as the name suggests) a tree and all vertices have
degree at most 4.

We call G a complete outer-1-planar graph if the dual
tree T is a complete ternary tree after rooting it suit-
ably. See Figure 1. The depth D of G is the number of
vertices on the path in T from the root to the leaves.
If D ≥ 2, then G consists of K4 (drawn with one cross-
ing and corresponding to the root of the dual tree) with
three copies of a complete outer-1-planar graph of depth
D−1 attached at three of the four uncrossed edges of
K4. The poles of G are the endpoints of the uncrossed
edge (x, y) of K4 that is on the outer-face of G.

For an uncrossed edge (a, b) not on the outer-face, the
hanging subgraph Hab at (a, b) is the maximal subgraph
that has (a, b) on the outer-face and does not contain
both poles of G. The poles of Hab are a and b.

The complete outer-1-planar graph of G depth D has
Θ(3D) vertices, hence D ∈ Θ(log n). It is very easy to
draw G in a grid of width O(n) and height O(D) [5],
so with area O(n log n). But achieving linear area with
this approach seems hopeless since even the skeleton of
G requires Ω(logn) width and height in any drawing.
(This follows from [12] since its so-called pathwidth is
logarithmic.) Instead for a linear-area drawing we con-
struct a drawing of width and height O(

√
n).

Triangular grids. One ingredient for drawing com-
plete outer-1-planar graph in linear area will be to use
the grid points of a triangular grid (with grid-lines of
slope

√
3, 0,−

√
3), rather than the standard (orthogo-

nal) grid. This makes no difference overall, since the
triangular grid can be mapped to an orthogonal grid
with a shear, but allows us to treat hanging subgraphs

symmetrically.
The following shortcuts will be useful. We use arrows

such as ↗ and ↖ for grid-lines of slope
√

3 and −
√

3,
and so for example speak of a ↗-ray or the distance
in ↖-direction. An axis-aligned equilateral triangle is a
triangle with three equal sides that all lie along grid-
lines. An axis-aligned isosceles triangle is a triangle
where two equal-length sides lie along grid-lines while
the third side connects two grid points and has angle
30◦ on both ends. We will usually drop “axis-aligned”
as we study no other equilateral or isosceles triangles.
A triangle is called upward if it has a unique top cor-
ner, i.e., point with maximum y-coordinate. We use
terms such as top/bottom/left/right side/corner only
when this uniquely identifies the feature.

3 Drawing types

Let G be the complete outer-1-planar graph of depth
D, and let x, y be its poles. We will need three kinds of
drawings of G that will be combined recursively:

A type-A drawing A of G is contained within an equi-
lateral upward triangle T . Vertices x and y are placed on
the left and right side of T , respectively, with distance
exactly D from the top corner. Drawing A occupies no
points on the right side of T except for y. See Figure 2.

Furthermore, A must have the flexibility to move x
as follows. Let the wedge of A be the smaller wedge
between the ↗-ray and the ↖-ray emanating from x.
We require that for any position x′ within the wedge,
moving x to x′ gives a drawing of G for which all edges
are either within T or within the triangle spanned by
x′, y and the left corner of T .

A type-B drawing B of G is contained within an equi-
lateral upward triangle T . Vertices x and y are placed
at the top and right corner of T , respectively, and the
left corner is empty. See Figure 2.

Furthermore, B must have the flexibility to move y as
follows. Let z be the point on the bottom side of T that
has distance exactly D to y (we call this the attachment
point of B). Let the wedge of B be the smaller wedge
between the ↘-ray and the →-ray emanating from y.
We require that for any position y′ within the wedge,
moving y to y′ gives a drawing of G. Furthermore, the
drawing is contained within T and the triangle spanned
by x, y′, z.

We call a type-B drawing a type-B+-drawing if addi-
tionally no point other than x is on the left side of trian-
gle T . With the exception of D = 1 all type-B drawings
that we construct are actually type-B+-drawings.

A type-C drawing C ofG is contained within an isosce-
les upward triangle T where the left and bottom side
have the same length. Vertices x and y are placed at
the top and right corner of T , respectively. Drawing
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Figure 2: Drawings of type A, B and C. The wedge is green (striped).

C occupies no points on bottom side of T except for y
and (possibly) points within unit distance from y. See
Figure 2.

Furthermore, C must have the flexibility to move x
as follows. Let the wedge of C be the smaller wedge
between the ↖-ray and a ray with slope −

√
3/2 (i.e.,

extending xy) emanating from x. For any position x′

within the wedge, moving x to x′ gives a drawing of G.

Define the following function w(·) on positive integers:

w(D) :=

 2 if D = 1
6 if D = 2
3w(D−2) + 4(D−2) + 6 if D ≥ 3

A simple proof by induction shows that

w(D) ≤ 16 · 3D/2−1 − 2D − 5 ∈ O(3D/2).

We will show the following by induction on D:

Lemma 1 The complete outer-1-plane graph of depth
D has drawings of type A, B and C where the shortest
side of the bounding triangle T has length exactly w(D).
It also has a type-B+ drawing where the side-length of
T is at most w(D) + 1.

In the base case (whereD = 1 or 2) these drawings are
easily created, see Figure 3 for some cases and Figure 10
in the appendix for all remaining ones.

x y

w1 w2

x

yz

x

y

Figure 3: The drawings for D = 1 for type A,B,C.

4 The inductive step

Assume that the dual tree T of G has depth D + 2
where D ≥ 1. We can hence split the graph into

the subgraph Q corresponding to the root of T and
and its three children, and the hanging subgraphs that
are attached at the uncrossed edges that bound Q.
(Each hanging subgraph is a complete outer-1-plane
graph of depth D.) Enumerate the outer-face of Q as
〈x, a, b, c, d, e, f, g, h, y〉 in ccw order where x, y are the
poles of G. See Figure 4.

Hxa

Hab

Hbc

Hcd

Hde

Hef

Hfg

Hgh

Hhy

x y

a

b

c

d e

f

g

h

Figure 4: Splitting the graph into Q and nine hanging
subgraphs.

The idea. Building a drawing of G uses the obvious
recursive approach: create drawings of the nine hanging
subgraphs of Q, combine them, and add the edges of Q.
However, there are some intricate details with regards
to placement of poles and spacing of subgraphs. We
therefore first give a rough idea.

Observe that both an equilateral and an isosceles tri-
angle T can be split into 9 equal-area triangles that are
either equilateral or isosceles, see Figure 5. We assign
the hanging subgraphs to these triangles as indicated in
the figure, and plan to draw Q within the thick black
lines (after expanding a bit).

Note that in our plan to place the vertices, some poles
(e.g. vertex c for subgraph Hbc) are far away from the
corresponding triangle; here the flexibility to move one
pole within the wedge of the drawing will be crucial.
However, this comes with the price that we must keep
line segment cz free of other drawings, where z is the
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d
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Figure 5: The idea of combining subgraphs. Locations
for the vertices of Q are approximate.

attachment point of the drawing of Hbc. Therefore sub-
graphs cannot be placed exactly edge-to-edge as Fig-
ure 5 suggests and we must be more careful in spacing
them.

Placing four subgraphs. We first explain how to place
drawings of Hxa, Hab, Hbc, Hcd; this will be the same for
all three constructions below. Consult Figure 6. For
any hanging subgraph Huv, let Γuv be a (recursively
obtained) drawing of Huv—the text below will specify
its type. Sometimes we will rotate Γuv; we use Tuv
(drawn in cyan/light gray) for the bounding triangle of
Γuv after such a rotation has been applied.

• Let Γxa be a type-A drawing for Hxa. The white
circle in Figure 6 shows where pole x would be
within Γxa, but it will actually be placed later
somewhere within the wedge of Γxa.

• Let Γab be a type-A drawing for Hab, rotated by
+60◦. Place the left corner of Tab one unit in ↘-
direction from the top corner of Txa. This puts pole
a within the wedge of Γab as required.

• Let Γbc be a type-B drawing for Hbc, rotated by
+120◦ and placed such that the two locations of b
coincide. Pole c will be placed somewhere within
the wedge of Γbc.

• Let Γcd be a type-C drawing for Hcd, rotated by
−60◦ and placed such that the left corner of Tcd
coincides with the attachment point z of Tbc. Pole
c will be placed somewhere within the wedge of Γcd.

• Consider the point where the ↗-ray from b inter-
sects the ↑-ray from d, and let rc be the ↗-ray
emanating from here. We will later place c some-
where on ray rc, which keeps it within both wedges
of Γbc and Γcd, and keeps line segment cz outside
all other drawings.

Observe that all drawings are disjoint except where
they share a vertex. This holds because in a type-A

rc

w
(D

)

w
(D

)

D

1

a

Γxa

Γab

b

Γcd

d

D

D

w
(D

)

to x

to c

Γbc

z

to c

Figure 6: Placing Hxa, . . . ,Hcd.

drawing the right side only contains the pole, and in
Γcd the shorter side at d contains points only within
distance 1 from d, but these points are not used by Γbc.
Also observe that for any placement of x within the
wedge of Γxa, line segment ax will be outside all other
drawings. Finally observe that the path a-b-c (shown
thick dashed) is drawn with slopes alternating between
[0,
√

3) and
√

3; this will be crucial below.

Completing a type-A drawing. To complete the draw-
ing to a type-A drawing, we copy and flip the existing
drawing along a vertical line. See also Figure 7(a). More
precisely, let `v be a vertical line that has →-distance
D/2 from d. Mirror Γxa, . . . ,Γcd along this line to get
Γef , . . . ,Γhy. The only subgraph missing is Hde, for
which we use a type-A drawing that fits exactly with
the existing points for d and e. One verifies that all
drawings are disjoint except at common poles.

We define the bounding triangle T of the drawing
to be the upward equilateral triangle that touches the
left side of Txa, has ↗-distance one to the bottom side
of Tde, and has ↗-distance three from the right side of
Thy. (This is slightly asymmetric; the line `v does not go
through the top corner of T .) Elementary computation
shows that T has side-length 3w(D)+4D+6 = w(D+2)
as desired. Place x and y (as required for a type-A
drawing) at distance D+2 from the top corner of T ;
this puts x within the wedge of Γxa.
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Figure 7: Creating (a) a type-A drawing and (b) a type-C drawing.

We place c at the start-point of ray rc, which has ↖-
distance D+1 from the left side of T . Let rf be the
copy of ray rc on the right side; we place vertex f on
this ray with ↖-distance D+2 from the left side of T .
With this, fy has slope

√
3 while cf has slightly smaller

slope.

We must argue that we have the flexibility to move x
within the wedge W of the drawing. Consider the path
π = 〈w1, w2, . . . , w2D+1〉 of neighbours of x. [The last
five vertices on π are a, b, c, f, y, and this part is shown
purple/dotted in Figures 3, 7, 10.] Path π connects the
left side of T with the right side, and hence separates
vertex x from all other vertices of the drawing. Also (as
argued directly above or known by induction for the part
of π in Γxa) the slopes along π alternate between a value
in [0,

√
3) and exactly

√
3. For 1 ≤ i ≤ D, letWi be the

smaller wedge between the two rays emanating from w2i

through w2i−1 and w2i+1. By the slopes of the edges,W
is strictly inside Wi. Therefore {w2i−1, w2i, w2i+1, x

′}
forms a strictly convex quadrangle for any location of
x′ ∈ W, and the K4 formed by these four vertices is
drawn with a crossing as required. Also, the quadran-
gles for different values of i are disjoint. So moving x′

within W gives a drawing of G.

Creating a type-B drawing. To create a type-B draw-
ing, we place all hanging subgraphs except Hhy exactly
as in construction for the type-A drawing. Vertex h is
placed as dictated by Γgh. For Hhy we use a type-B+

drawing Γhy that we place such that the two drawings
of h coincide. See Figure 8. One verifies that all draw-
ings are disjoint except where they have common poles
(this holds for Γhy since we use a type-B+ drawing).

We define the bounding triangle T of the drawing to
be the upward equilateral triangle that has ↖-distance
one from the left side of Txa, ↗-distance two from the
line through gh and has side-length 3w(D) + 4D + 6 =
w(D+2). Elementary computation shows that this tri-
angle then includes Γhy since Thy has side-length at
most w(D) + 1. The left side of T is empty, so the cre-
ated type-B drawing is automatically a type-B+ draw-
ing. We place x and y as required at the top and the
right corner of T .
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Figure 8: Creating a type-B drawing.

Let R be the right side of T . Place vertex c on rc
and vertex f on the ↑-ray from e, both with↗-distance
one to R. In particular xy is on R, cf has slope −

√
3

and ↗-distance one to R, and gh has slope −
√

3 and
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↗-distance two to R; with this the complete graphs
{x, y, c, f} and {f, y, g, h} of Q are drawn correctly (al-
beit with very small angles). All other edges of Q are
also drawn correctly, see Figure 8. Also f is above e
and to the right of the ↖-ray from g, hence within the
wedges of Γef and Γfg as required.

Also note that the attachment point of Γhy is the
lowest point of the drawing, and its ↘-projection onto
the bottom side of T has distance D+2 from y. Finally
path x-c-f -g-h is drawn alternating between slopes in
[−∞,−

√
3) and −

√
3. Therefore as for type-A draw-

ings one argues that y has the flexibility to move within
its wedge, as long as nothing is placed between the at-
tachment point z of T and the new location of y.

Creating a type-C drawing. Start with Γxa, . . . ,Γcd,
placed as described above, but rotate everything by 60◦.
Let ` be the ↗-line that has ↘-distance w(D) from
d. Copy and mirror Γxa, . . . ,Γcd along line ` to get
Γef , . . . ,Γhy. The only subgraph missing is then Hde,
for which we use a type-C drawing that fits exactly with
the existing points for d and e. See Figure 7(b). One
verifies that all drawings are disjoint except where they
have common poles.

We define the bounding triangle T to be the upward
isosceles triangle where the left side is parallel to the
left side of Txa and at ↗-distance 1, the bottom side is
parallel to the bottom side of Thy and at ↗-distance 1,
and the right side is parallel to the top side of Tde and
at →-distance 2. (Line ` is the axis of symmetry for
T .) Place x and y (as required for a type-C drawing)
at the top and right corner of T . We place c and f
on the rays rc and rf , with distance one from the start-
point of the ray. This places the line through cf halfway
between the line through de and the line through xy.
With this the complete graphs {x, y, c, f} and {c, d, e, f}
of Q are drawn correctly (albeit with very small angles).
All other edges of Q can clearly be added.

As for the flexibility of moving x, the same argument
as for the type-A drawing applies with respect to the
complete graph formed by {x, a, b, c}. For the complete
graph formed by {x, c, f, y}, observe that xy and cf are
parallel and therefore moving x to some point x′ in the
wedge (hence strictly above the line through cf keeps
{x′, c, f, y} as a strictly convex quadrilateral.

To analyze the length of the shorter sides of T , let
c0 be the top corner of Tcd. Observe first (see also Fig-
ure 7(b)) that c0 has ←-distance 2D+2 to the left side
of T and↘-distance 3w(D)+2D+2 to the bottom side
of T . Now consider the close-up in Figure 9, let c1 be
the ←-projection of c0 onto the left side of T , and let
c2 be the place where the line through de intersects the
left side of T . Since de has slope −

√
3/2 while c0c1 has

slope 0 and c1c2 has slope −
√

3, the triangle {c0, c1, c2}
is isosceles, and therefore d(c1, c2) = 2D+2. The ↖-

distance from c2 to x is 2 by definition of T . Therefore
the left side of T has length 3w(D)+4D+6 = w(D+2).
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Figure 9: Close-up of the type-C construction.

This ends the proof of Lemma 1. Since a complete
outer-1-planar graph has n = 3D + 1 vertices, we have
w(D) ∈ Θ(3D/2) = Θ(

√
n) and the drawings reside (af-

ter a skew) in an orthogonal grid of area O(n).

Theorem 2 Every complete outer-1-plane graph has a
straight-line drawing in a grid of O(n) area.

Following the steps of our construction, it is easy to
construct the drawing in linear time.

5 Remarks

Our result is easily stated, but its proof is annoyingly
complicated. The corresponding result for complete
outer-planar graphs by Di Battista and Frati [9] has
a very elegant proof: Draw a complete binary tree with
a special property called “star-shaped”, and one can de-
rive a drawing of the balanced outer-planar graph from
it. This does not translate to outer-1-planar graphs
for multiple reasons. First, any complete outer-planar
graph contains a complete binary tree (of roughly the
same depth) as a subtree, so after drawing the complete
binary tree one “only” has to add some edges. Attempts
to generalize this for drawing a complete outer-1-planar
graph G led to super-linear area [5]. The dual tree T
of G is a complete ternary tree, but it does not map
naturally to a subtree of G, and it would not be clear
how to expand a drawing of T to one of G. Is there a
simpler way to prove Theorem 2?

Also, in the paper by Di Battista and Frati [9] drawing
the complete outer-planar graph was really just a warm-
up to get results for all outer-planar graphs via star-
shaped drawings of trees, useful also for [13]. We stud-
ied drawings of complete outer-1-planar graphs in the
hopes that it would lead to sub-quadratic area-bounds
for drawing all outer-1-planar graphs. But this seems
significantly harder and obtaining area-bounds that are
sub-quadratic (and ideally O(n1+ε)) remains open.
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Appendix

In Figure 10 we show the drawings for the base case in the
other situations.
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x y
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Figure 10: The type-B+ drawing for D = 1 and the
drawings (of type A, B = B+ and C) for D = 2.
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A 13
9 -approximation of the average-2π

3 -MST

Ahmad Biniaz∗ Prosenjit Bose† Patrick Devaney‡

Abstract

Motivated by the problem of orienting directional an-
tennas in wireless communication networks, we study
average bounded-angle minimum spanning trees. Let P
be a set of points in the plane and let α be an angle.
An α-spanning tree (α-ST) of P is a spanning tree of
the complete Euclidean graph induced by P with the
restriction that all edges incident to each point p ∈ P
lie in a wedge of angle α with apex p. An α-minimum
spanning tree (α-MST) of P is an α-ST with minimum
total edge length.

An average-α-spanning tree (denoted by α-ST) is a
spanning tree with the relaxed condition that incident
edges to all points lie in wedges with average angle α.
An average-α-minimum spanning tree (α-MST) is an α-
ST with minimum total edge length. In this paper, we
focus on α = 2π

3 . Let A
(
2π
3

)
be the smallest ratio of

the length of the 2π
3 -MST to the length of the standard

MST, over all sets of points in the plane. Biniaz, Bose,
Lubiw, and Maheshwari (Algorithmica 2022) showed
that 4

3 ≤ A
(
2π
3

)
≤ 3

2 . In this paper we improve the

upper bound and show that A
(
2π
3

)
≤ 13

9 .

1 Introduction

A wireless communication network can be represented
as a geometric graph in the plane. Each antenna is
represented by a point p, its transmission range is rep-
resented by a disk with radius r centered at p, and there
is an edge between two points if they are within each
other’s transmission ranges. The problems of assign-
ing transmission ranges to antennas to achieve networks
possessing certain properties has been widely studied
[3, 5, 9, 12, 14, 15, 16, 17].

In recent years, there has been considerable research
on the problem of replacing omni-directional antennas
with directional antennas [1, 2, 4, 6, 8, 10, 11, 13, 14, 18].
Here, the transmission range of each point p is an ori-
ented wedge with apex p and angle α. Directional an-
tennas provide several advantages over omni-directional

∗School of Computer Science, University of Windsor,
ahmad.biniaz@gmail.com

†School of Computer Science, Carleton University,
jit@scs.carleton.ca

‡School of Computer Science, University of Windsor,
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antennas, including less potential for interference, lower
power consumption, and reduced area where communi-
cations could be maliciously intercepted [3, 18].

Motivated by this problem, Aschner and Katz [2] in-
troduced the α-Spanning Tree (α-ST): a spanning tree
of the complete Euclidean graph in the plane where all
incident edges of each point p lie in a wedge of angle
α with apex p. They also presented approximation al-
gorithms for the cases where α = π

2 ,
2π
3 , and π, with

approximation factors of 16, 6, and 2, respectively, with
respect to the MST. For α = 2π

3 and α = π
2 , the ap-

proximation ratios have been improved to 16
3 [6] and 10

[7], respectively. Aschner and Katz further proved the
NP-hardness of the problem of computing the α-MST
for the α = 2π

3 and α = π cases.

Most previous research in this context has been done
on the case where α is one fixed value for all anten-
nas [6]. Biniaz et al. [6] extended this concept to an
average-α-minimum spanning tree (α-MST): an α-MST
with the relaxed restriction that the average angle of all
the wedges is at most α. More formally, a total angle
of αn must be allocated among n points p so that each
point has a sufficient allowed angle to cover all incident
edges. In the case where α = 2π

3 , they presented an
algorithm that achieves an α-ST of length at most 3

2
times the length of the MST. They also proved a lower
bound of 4

3 on the approximation factor with respect to
the MST.

In this paper, we improve the upper bound on A
(
2π
3

)
from 3

2 to 13
9 . In fact we modify the algorithm of [6] and

obtain an α-ST of length at most 13
9 times the length of

the MST. Our algorithm involves a stronger exploitation
of the Euclidean metric than the previous work.

Our improved upper bound immediately gives an ap-
proximation algorithm with ratio 13

9 (with respect to
the MST) for the α-MST problem for any α ≥ 2π

3 . Sim-
ilar to that of [6], our algorithm runs in linear time after
computing the MST.

1.1 Notation

We use the terms point and vertex interchangeably de-
pending on the context.

To facilitate comparison, we borrow the following no-
tation from [6]. A maximal path in a tree is a path with
at least two edges where all internal vertex degrees are
2, and the end vertex degrees are not 2. To contract a
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maximal path is to remove all vertices of degree 2 on
the path and the edges between them, and add an edge
connecting the end vertices. The angle that the inci-
dent edges of a vertex in an α-MST are allowed to fall
within is called its charge. Charges can be redistributed
between vertices. We denote the total length of edges
of a geometric graph G by w(G).

As the length of the optimal solution is not known,
we use the underlying MST of the points as a lower
bound in our analysis. We denote the smallest ratio of

the length of the 2π
3 -MST to the length of the standard

MST over all points in the plane as A
(
2π
3

)
. In [6], it

was shown that 4
3 ≤ A

(
2π
3

)
≤ 3

2 .

1.2 Outline

The approximation algorithm of [6] for the 2π
3 -MST

starts with a standard MST that has maximum degree 5
(which always exists). Then it re-assigns angle charges
from leaves to inner vertices. Their approach first con-
siders the MST with all maximal paths contracted, and
then introduces edge shortcuts in each contracted path.

By exploiting additional geometric properties we en-
sure the connectivity of path vertices with less total
charge. This enables us to save some charges. The saved
charges allow us to introduce fewer shortcuts than the

original algorithm, resulting in a shorter 2π
3 -ST.

2 The Algorithm of Biniaz et al.

In this section we briefly describe the algorithm of
Biniaz et al. [6], which we refer to by “Algorithm 1”.

The algorithm starts by computing a degree-5 mini-
mum spanning tree T of the point set, where each vertex
holds a charge of 2π

3 . Then the algorithm goes through
two phases that redistribute the charges and also mod-
ify the tree. In the first phase, all maximal paths of
T are contracted (to edges), resulting in a tree with no
vertices of degree 2, and all other vertices having the
same degree as in T . The charge from the leaves are
then redistributed among the internal vertices so that
each vertex of degree 3, 4, and 5 has a charge of 4π

3 ,
2π, and 8π

3 , respectively. Since the charge of each inter-
nal vertex with degree n is at least

(
1− 1

n

)
2π, which

covers any set of n edges, all vertices can cover their
incident edges. After redistribution, degree-1 vertices
have 0 charge and each degree-2 vertex holds its origi-
nal 2π

3 charge. This redistribution retains a pool of 4π
3

charge that can be split among all leaves in the tree at
the end of the algorithm.

In the second phase, the edges of each path p1, p2,
. . . , pm that was contracted in phase 1 are split into
two matchings, M1 and M2 with equal number of edges
(if the path has odd number of edges then the last
edge is not in either matching). The edges of the

matching with the larger weight are removed, and a set
S = {(p1, p3), (p3, p5), ...} of new edges called shortcuts
are introduced (see Figure 15 of [6], which we include
here as Figure 1). By this process, the charge of ev-
ery new degree-1 vertex is redistributed among other
vertices so that each new degree-2 and degree-3 vertex
along the path has a charge of π and 4π

3 , respectively;
this is handled in four cases based on which matching
is heavier and whether the path length is even or odd,
as shown in Figure 1. Note that the charge given to
vertices assigned degree 2 and 3 allows them to cover
any set of 2 and 3 edges, respectively.

Let M ′
1 and M ′

2 be the union of the edges in the
smaller and larger-weight matchings of all contracted
paths, respectively. Let T ′ be the final tree obtained by
the above algorithm, and let E be the set of edges of T
not in M ′

1∪M ′
2. Then w(T ) = w(E) +w(M ′

1) +w(M ′
2).

By the triangle equality we have w(S) ≤ w(M ′
1) +

w(M ′
2). Since w(M ′

2) ≥ w(M ′
1) we get

w(T ′) = w(E) + w(M ′
1) + w(S)

≤ w(E) + w(M ′
1) + w(M ′

1) + w(M ′
2)

= w(T ) + w(M ′
1) ≤ 3

2
w(T ).

3 The Improved Algorithm

We begin by modifying the charge-redistribution of
phase 2 of Algorithm 1 with a more careful charge re-
distribution. In particular we show that the 3 edges,
that are incident to new degree-3 vertices, can be cov-
ered by 4π

3 −
π
12 charge (meaning that we can save the π

12
charge). We then use the saved charge of π

12 to achieve a
better approximation with respect to the original MST.
The following lemma, although very simple, plays an
important role in the design of the modified algorithm.

Lemma 1 It is possible to save at least π
12 charge from

every shortcut performed by phase 2 of Algorithm 1.

Proof. Consider a shortcut ac between two consecutive
edges ab and bc of a contracted path as depicted in Fig-
ure 2. Up to symmetry we may assume that ab is in M2

and thus it has been removed in phase 2 of Algorithm
1. Denote the angle ∠bca by β. Since the path (a, b, c)
is part of the MST, ac is the largest edge of the trian-
gle 4abc, and thus ∠abc is its largest angle. Therefore
β ≤ π

2 .

a

b

c
β

Figure 2: illustration of the proof of Lemma 1.
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π/3
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w(M1) ≥ w(M2)

w(M1) < w(M2)

w(M1) ≥ w(M2)

w(M1) < w(M2)

M1 M1 M1M2 M2 M2

pm−1

pm−1

pm−2

Figure 1: (borrowed from [6]) The contracted path is shown by black segments. The dashed-black edges belong to
M2 and the red edges belong to S.

The replacement of ab by the shortcut ac has not
changed the degree of a, has decreased the degree of b
by 1, and has increased the degree of c by 1. Thus the
charge assigned to a by Algorithm 1 remains enough to
cover its incident edges. Since b has degree 1, its 2π

3
charge is free. Algorithm 1 transfers this free charge
to c to cover its new edge. We show how to cover all
edges incident to c while saving π

12 charge. If c’s original
degree (i.e. after phase 1 and before phase 2) was 4 or
5 then it carries at least 2π charge which is sufficient to
cover its edges. We may assume that the original degree
of c is 1, 2, or 3, in which case it holds a charge of 0,
2π
3 , or 4π

3 , respectively. Thus the new degree of c (after
phase 2) is 2, 3, or 4. Based on this we distinguish three
cases.

• If deg(c) = 2 then the two incident edges of c are
ac and bc. We can cover these edges by a charge
of β (≤ π

2 ). Thus we transfer π
2 charge from b to c

and we save π
6 .

• If deg(c) = 3 then we cover β and the smaller of
the other two angles at c. Thus the three incident
edges to c can be covered by charge of

β +

(
2π − β

2

)
=

2π + β

2
≤

2π + π
2

2
=

5π

4
.

Thus by transferring 7π
12 from b to c it will have

charge of 5π
4 (including its original 2π

3 charge).
Thus we save charge of 2π

3 −
7π
12 = π

12 from b.

• If deg(c) = 4 then we transfer π
6 charge from b to c

and save the remaining π
2 charge of b. The vertex c

now holds 3π
2 charge (including its charge 4π

3 after
phase 1) which covers its four incident edges.

�

The following is a direct implication of Lemma 1.

Corollary 2 It is possible to save π
3 charge from every

four shortcuts that are performed by Algorithm 1.

3.1 Reversing Shortcuts

In this section, we present an approximation algorithm
that uses fewer shortcuts than Algorithm 1. In fact
the new algorithm reverses a constant fraction of the
shortcuts performed by Algorithm 1.

Theorem 3 Given a set of n points in the plane and
an angle α > 2π

3 , there is an α-spanning tree of length
at most 13

9 times the length of the MST. Furthermore,
there is an algorithm to find such an α-ST that runs in
linear time after computing the MST.

Proof. Let T be a degree-5 minimum spanning tree of

the point set, and T ′ be the 2π
3 -spanning tree obtained

from T by Algorithm 1.
Consider the sequence of shortcuts introduced by Al-

gorithm 1 along each contracted path. Let s1, s2, ..., sm
be the concatenation of the sequences for all contracted
paths. We split these shortcuts into nine sets S0, . . . , S8

such that si ∈ S(i mod 9) for each i ∈ {1, . . . ,m}. Note
that no two adjacent shortcuts in the same contracted
path will be in the same set Si. Moreover the number
of shortcuts in any two sets Si and Sj differ by at most
1. Recall that the edges of each contracted path in Al-
gorithm 1 are split into two matchings M1 and M2. Let
M ′

1 be the set of edges that are kept in the tree (i.e. M ′
1

is the union of the smaller-weight matchings from each
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contracted path), and let the set of edges in the heavier
matchings be M ′

2. Among S0, . . . , S8, let S8 be the one
whose corresponding edges in M ′

1 have the largest total
weight.

Our plan now is to reverse the shortcuts in S8, i.e.,
to replace them by their corresponding edges in M ′

2.
Let S′ be the union of S0, . . . , S7. Notice that |S′| ≥
8 · (|S8| − 1). Let C denote the pool of charges that is
obtained after phase 1 of Algorithm 1, and recall that it
contains 4π

3 charge. For each shortcut in S′ we reassign
the charges between its corresponding points to save at
least π

12 charge (as shown in Lemma 1), and add this
charge to C. Thus the total charge of C is at least

4π

3
+ 8 · (|S8| − 1) · π

12
= (|S8|+ 1) · 2π

3
.

We will show that to reverse each shortcut from S8 it
suffices to take 2π

3 charge from C.
Consider any shortcut ac from S8 between two consec-

utive edges ab and bc of a contracted path as depicted
in Figure 3. We reverse this shortcut by replacing ac
with the removed edge ab. We also reclaim any portion
of b’s charge that was transferred to c. Thus the reverse
operation brings the charges of b and c back to what
it was after phase 1 and before phase 2; in particular
it brings the charge of b back to 2π

3 . There is one ex-
ceptional case where w(M1) < w(M2) and the path has
odd number of edges (the last case in Figure 1 where
p3, p2, p1 play the roles of a, b, c, respectively). In this
case the charge of b (i.e. p2) would be π

3 as pm holds
the other π

3 portion. (Since no two shortcuts in S8 are
adjacent in the same contracted path, we can analyze a
reverse operation independently of others. Notice, how-
ever, that it is possible that two or more shortcuts of
S8 are adjacent at a vertex that has degree at least 3
after phase 1. In this case, the charge of such a vertex
suffices to cover its edges after reversing the shortcuts
since it will have at least π

6 charge added for each new
edge introduced by the process described in Lemma 1.)
The reverse operation does not change the degree of a
and thus its charge remains sufficient to cover its edges.
The reverse operation makes b of degree 2 and decreases
the degree of c by 1.

We take π
3 charge from C for b to bring it to a charge

of π, which covers its two incident edges. If deg(c) = 1
or deg(c) ≥ 3, its charge is sufficient to cover its edges.
If deg(c) = 2 then we take an additional charge of π

3
from C for c to cover its two incident edges. In the
exceptional where w(M1) < w(M2) and the path has
odd number of edges (the last case in Figure 1), p2 = b
holds π

3 charge, so we take 2π
3 from C for p2 to cover

its two incident edges. Since p1 = c is of degree 1 or at
least 3 (as the contracted path is maximal), its charge
(acquired after phase 1) is sufficient to cover its edges.
Thus, in the worst case we take 2π

3 from C to reverse
every shortcut.

After reversing all shortcuts in S8, the pool C is left
with at least 2π

3 charge which can be distributed among
the leaves of the resulting tree.

a

b

c a c

b

Figure 3: Left: The tree T ′ before reversing shortcut
ac. Right: The tree T ′′ after reversing ac.

Let T ′′ be the 2π
3 -ST tree obtained from T ′ after re-

versing all shortcuts in S8. Let E be the set of edges of
T ′′ not in M ′

1 ∪M ′
2. Let E′ be the set of all edges of

M ′
1 ∪M ′

2 that correspond to the shortcuts in S8. Let
M ′′

1 = M ′
1 \ E′ and M ′

2 = M ′
2 \ E′ (i.e. all edges in

M ′
1 and M ′

2, respectively, with a shortcut between their
endpoints in T ′′). Then,

w(T ′′) = w(E) + w(E′) + w(S′) + w(M ′′
1 )

≤ w(E) + w(E′) + w(M ′′
1 ) + w(M ′′

2 ) + w(M ′′
1 )

= w(T ) + w(M ′′
1 ).

Since S8 has the largest corresponding M ′
1 weight,

w(M ′′
1 ) ≤ 8

9w(M ′
1) ≤ 8

9 ·
1
2w(T ) = 4

9w(T ). Thus,

w(T ′′) ≤ w(T ) +
4

9
w(T ) =

13

9
w(T ).

�

With Theorem 3 in hand, we report the following
bound for A

(
2π
3

)
.

Corollary 4 4
3 ≤ A

(
2π
3

)
≤ 13

9 .

4 Conclusions

An obvious open problem is to further tighten the gap
between the upper bound of 13

9 and lower bound of 4
3

for A
(
2π
3

)
. This could be done by either introducing

a new algorithm with a better approximation factor, or

by finding a new set of points whose 2π
3 -MST must have

a weight of more than 4
3 times that of the MST.
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Weighted shortest path in equilateral triangular meshes∗

Prosenjit Bose† Guillermo Esteban‡ § Anil Maheshwari¶

Abstract

Let T be a tessellation composed of equilateral tri-
angular regions, in which each region has an asso-
ciated positive weight. We present two approxima-
tion algorithms for solving the Weighted Region Prob-
lem. Our algorithms are based on the method of
discretizing the space by placing points on the cells
of the tessellation and using Dijkstra’s algorithm for
computing the weighted shortest path in the geomet-
ric graph obtained by such a discretization. For a
given parameter ε ∈ [0, 1], the weight of our paths areÅ
1 + 14(4

√
2
√√

6ε+8−
√
6ε−8)−16(7+ε)

(−4
√
2
√√

6ε+8+
√
6ε+8)(7−ε)

ã
≤ 1 + 0.39ε, and

1 + ε (using fewer points) times the cost of the actual
shortest path.

1 Introduction

In this paper, we study optimal obstacle-avoiding paths
from a starting point s to an ending point t in the 2-
dimensional plane. Shortest path problems are among
the most studied problems in computational geometry.
These problems have applications in several areas such
as robotics [16], video-games [11, 17], and geographical
information systems (GIS) [7], among others.

Mitchell and Papadimitriou [13, 12] examined a gen-
eralization of the shortest path problem, called the
Weighted Region Problem (WRP). They allowed the
two-dimensional space to be subdivided into regions,
each of which has a (non-negative) weight associated to
it, representing the cost per unit distance of traveling
in that region. They provided an approximating algo-
rithm which computes a (1 + ε)-approximation path in
O(n8 log nNW

wε ) time, where N is the maximum integer
coordinate of any vertex of the subdivision, W (respec-
tively, w) is the maximum finite (respectively, minimum
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non-zero) integer weight assigned to faces of the subdi-
vision.

Motivated by this result, several authors proposed al-
gorithms for computing approximated paths, reducing
the running time and producing geometric problem in-
stances with fewer “bad” configurations (e.g., the De-
launay triangulation is used to maximize the minimum
angle).

The most common scheme followed in the literature
is to position Steiner points, and then build a graph
by connecting pairs of Steiner points. An approximate
solution is constructed by finding a shortest path in this
graph, by using well-known combinatorial algorithms
(e.g., Dijkstra’s algorithm).

Aleksandrov et al. [3, 4] proposed placing Steiner
points on edges of an appropriate mesh, and then, in-
terconnecting the Steiner points within each face. Since
an infinite number of Steiner points would be required
for the approximation, they constructed a star shaped
polygon around each vertex of the mesh; ensuring that
Steiner points are placed outside these regions. They
also deal with the problem of large sized graphs. By de-
riving geometric properties of Snell’s law of refraction
for a discrete domain, they reduced the search space.
They employed a pruned Dijskstra’s algorithm where
the execution is restricted to a sparse set of potential
edges, given that the preceding edge on a path is known.
Employing all these steps together and using geometric
spanners they obtained a (1 + ε)-approximation path.
Reif and Sun [18] used the same discretization ap-

proach as in [4]. They employed an algorithm called
BUSHWHACK to compute an optimal path in the dis-
crete graph by dynamically adding edges.

In addition, Aleksandrov et al. [5] used a similar
approach as in [4], but placing, for the first time, the
Steiner points on the bisectors of the angles, and not on
the face boundaries. However, this complicates compu-
tation of the discrete path because now the edges join
Steiner points that belong to neighboring faces.

See Table 1 for the time complexity of the approxi-
mation algorithms designed following these schemes.

Recently, it has been shown that the WRP cannot be
solved exactly within the Algebraic Computation Model
over the Rational Numbers (ACMQ) [6], i.e., a solution
to an instance of the WRP cannot be expressed as a
closed formula in ACMQ. This emphasizes the need
for high-quality approximate paths instead of optimal
paths. So, in practice, the geometric space is discretized
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Time complexity Reference

O(n8 log nNW
wε ) [13]

O(N4 log
(
NW
wε

)
n
ε2 log

nN
ε ) [3]

O(N2 log
(
NW
w

)
n
ε log 1

ε (
1√
ε
+ log n)) [4]

O(N2 log
(
NW
w

)
n
ε log n

ε log 1
ε ) [18]

O(N2 log
(
NW
w

)
n√
ε
log n

ε log 1
ε ) [5]

Table 1: ε-approximation algorithms for the Weighted
Region Problem.

using grids. The concept of grid is essential and heavily
used in digital elevation models (DEMs) [2, 10] and in
video games [8]. Because of their symmetry and natu-
ral neighborhood structure, regular triangle meshes are
preferred over square and hexagonal.

Although it is the most complex among the three reg-
ular tessellations (it has the largest number of vertices),
it has various advantages in applications, e.g., the dis-
tance between the vertices of adjacent cells is always
the same, which simplifies distance calculations. Trian-
gles can represent complex shapes, and they can include
hexagonal grids. Although they are built with triangles
in two different orientations, each pixel has 12 neighbors
sharing at least a corner, which gives a valid alternative
for applications in image processing. Recently, various
image processing algorithms have been defined and im-
plemented for the triangular grid, such as discrete to-
mography [14, 15], thinning [9], and mathematical mor-
phology [1].

1.1 Our results

In this paper, we present algorithms for computing ap-
proximate shortest paths between two vertices s and t
on a triangular tessellation. We work with the particu-
lar case in which every cell of the mesh is an equilateral
triangle. In addition, each cell has a positive real weight
associated to it.

Our results are based on a previous work of Aleksan-
drov et al. [5]. With a finer analysis, we improve the
results in two different ways:

1. If we use the same number of Steiner points as
in [5], we prove that the approximation factor is
minimized when placing the Steiner points on the
edges of the cells. In addition, we provide an upper
bound on the quality of the approximation path
with respect to the actual shortest path. Our re-
sult gives an approximation factor which is at least
5(1+ε)(7−ε)

7(5+ε) ≥ 1+ 0.428ε times better than the pre-

vious result.

2. If we decide to maintain the approximation factor
in each of the cells, we provide a discretization us-
ing fewer Steiner points than in [5]. We increase the

distance between Steiner points in each segment by

about a factor of 7−
√
ε

40 ≈ 0.175 − 0.025
√
ε, which

decreases the running time of the algorithm to de-
termine the approximation path.

To solve these problems, we use the traditional tech-
nique of partitioning the continuous 2D space into a
discrete space by designing an appropriate graph. Dif-
ferently from the previous work of Aleksandrov et al. [5],
the discretization is done by placing Steiner points along
a segment from each vertex of the mesh inclined by α ra-
dians. Then, we minimize the number of Steiner points
to be added by optimization over the angle α ∈ [0, π

3 ].
All these improvements were obtained by taking into ac-
count trigonometric properties from the points of entry
of the paths into the cells and carrying out a thorough
analysis when optimizing the results.

The paper is organized as follows: we start Section 2
by introducing the definitions that are needed for the
forthcoming calculations. We also provide Lemma 2,
where two properties about the entry and leaving points
of the shortest path are calculated. Then, in Section 2.1,
with the same number of Steiner points proposed by
Aleksandrov et al. [5] we improve their results on the
approximation factor of the whole path. Similarly, in
Section 2.2, we fix the approximation factor of 1 + ε

2
for each segment joining two points on the edges of a
cell, and we optimize the number of Steiner points to be
placed in each triangular cell. Finally, in Section 3 we
compare the results that we obtain with the previous
results from [5].

2 Equilateral triangle mesh

Let T be a triangular tessellation in the 2-dimensional
space. We will suppose that T is a connected union
of a finite number of equilateral triangles, denoted by
T1, . . . , Tn. Two triangles of the set can share a ver-
tex, an edge, or not being adjacent. Each face Ti, i ∈
{1, . . . , n}, of the tessellation has a positive weight ωi

associated to it. This weight represents the cost of trav-
eling through a face per unit of Euclidean distance.

Any continuous (rectifiable) curve lying in T is called
a path. Every path in T consists of a sequence of seg-
ments, whose endpoints are on the edges of T . Each of
these segments is of one of the following two types:

• face-crossing: the endpoints belong to adjacent
edges;

• edge-using: the endpoints belong to the same edge
of a face.

The cost of a path π is given by ∥π∥ =
∑n

i=1 ωi∥πi∥,
where ∥πi∥ denotes the Euclidean length of the inter-
section between π and a triangle Ti. In case πi is an
edge-using segment, then the cost of traveling along that
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x
d(x)

v S(v)

Figure 1: d(x) is the length of the dotted segment. The
vertex vicinity of v is depicted in gray.

edge is the minimum of the weights of the triangles in-
cident to the edge. Given two distinct points s and t
in T , a shortest path π(s, t) is a path that minimizes
the weighted distance between s and t. Without loss of
generality, we may assume that s and t are vertices of
the tessellation.
A path π(s, t) is represented by a sequence of points

s = a0, . . . , aℓ = t lying on the edges. The points ai, i ∈
{1, . . . , ℓ − 1}, that are not vertices of the tessellation
are called bending points of the path.
Following notation from [5], the function d(x) is de-

fined as the minimum Euclidean distance from a point
x on a side of a triangle to the boundary of the union
of the faces containing x, see Figure 1.

For each vertex v of the tessellation T , let ωmax(v)
and ωmin(v) be, respectively, the maximum (finite)
weight and the minimum weight of the faces adjacent
to v. Let r(v) be the weighted radius of the vertex v
defined as follows:

r(v) =
ωmin

7ωmax
d(v)

Then, for each face adjacent to v, an equilateral tri-
angle with side length εr(v) is defined. Around v, a
regular hexagon S(v), called the vertex-vicinity of v, is
obtained, see Figure 1. Let e1 be the edge of Tj that is
encountered first when traversing the edges of Tj from v
in counterclockwise order. We also define ℓv(j, α) as the
segment in Tj from v inclined by α radians with respect
to e1, see Figure 2.

Definition 1 Let Tj be an equilateral triangle of the
tessellation T , and let v be a vertex of Tj. We define a
set of Steiner points p0, p1, . . . , pk on ℓv(j, α) by:

|pi−1pi| = a(ε) sinα|vpi−1|, for i ∈ {1, . . . , k}, (1)

where a : (0, 1] → R, p0 is the intersection point between
ℓv(j, α) and the boundary of S(v), and k is the largest
integer such that |vpk| ≤ |ℓv(j, α)|.

Lemma 2 Let e1, e2 be two edges adjacent to v in
Tj, and let x1, x2 be two points in e1 and e2, respec-
tively. Let p′ be the intersection point between |x1x2|
and ℓv(j, α). Let p be the closest Steiner point to p′.

α

ρ

δ

p′

p

q

α ϕ
β′ β

v

β

C

Tj

x1

x2

e2

e1

`v(j, α)

θ

Figure 2: Illustration of Lemma 2.

• Let θ be the angle ∠px1p
′, then

tan
θ

2
≤ 2

√
2
√
a sinα+ 2− a sinα− 4

a(cosα− 1)
. (2)

• Let A = 2
√
2
√
a sinα+2−a sinα−4
a(cosα−1) and B =

2
√
2
√

a sin (π
3 −α)+2−a sin (π

3 −α)−4

a(cos (π
3 −α)−1) , then

|x1p|+ |px2| ≤
Å
1 +

AB

1−AB

ã
|x1x2|. (3)

Proof. Let p′ belong to the segment [pi, pi+1]. We want
to calculate an upper bound on the value of the angle θ,
for any x1 and x2. It is well known, that θ is maximum
when the circle through p, p′ and x1 is tangent to e1.
So, let q be this point of tangency, and let C be the
center of the circle. Then, an upper bound on the angle
θ is given by the angle β = ∠pqp′, i.e., θ ≤ β. Let ρ
be the radius of the circle through pqp′. Let ρ + δ be
the distance from p to e1, see Figure 2. We define the
angle ∠p′pC as φ. So, considering the triangle formed
by p, C and the midpoint of the segment pp′, we have
that π = π

2 + β + φ ⇒ φ = π
2 − β. We also define the

angle β′ as β′ = φ− α = π
2 − β − α. Hence,{

sinβ′ = δ
ρ ⇒ δ = ρ sin (π2 − β − α)

sinα = ρ+δ
|vp| =

ρ(1+sin (π
2 −β−α))

|vp| .

Note that the angle β is maximum when p′ is the
midpoint of the segment pipi+1. Thus, if p = pi, and
using equation (1) with the triangle △qpip

′, we get that
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sinβ =
|pipi+1|

2

2ρ
=

a
2

ρ(1+sin (π
2 −β−α))

|vp| |vpi|
2ρ

=
a
2 (1 + sin (π2 − β − α))

2
=

a
2 (1 + cosβ cosα− sinβ sinα)

2

⇔ sinβ +
a
2 sinβ sinα

2
=

a
2 (1 + cosβ cosα)

2

⇔ sinβ

Å
2 + a

2 sinα

2

ã
=

a
2 (1 + cosβ cosα)

2

⇔ sinβ =
a
2 (1 + cosβ cosα)

2 + a
2 sinα

⇔ tan
β

2
=

2
√

a
2 sinα+ 1− a

2 sinα− 2
a
2 (cosα− 1)

=
2
√
2
√
a sinα+ 2− a sinα− 4

a(cosα− 1)
.

Now, suppose that p = pi+1. Then, following an
analogous reasoning as before, and using the fact that
|vpi| < |vp′| for triangle △qp′pi+1, we get that

sinβ =
|pipi+1|

2

2ρ
=

a
2

ρ(1+sin (π
2 −β−α))

|vp| |vpi|
2ρ

<
a
2 (1 + sin (π2 − β − α))

2

⇔ tan
β

2
<

2
√
2
√
a sinα+ 2− a sinα− 4

a(cosα− 1)
.

From the results above, we get that β is maximized
when p = pi, hence equation (2) is proved.

Finally, we prove equation (3). Let θ, θ1, and θ2
be the angles of the triangle px1x2 at p, x1, and x2,
respectively, see Figure 3.

Since θ1 + θ2 + θ = π, we known that

|x1p|+ |px2| ≤
Ç
1 +

2 sin θ1
2 sin θ2

2

sin θ
2

å
|x1x2|

=

Ç
1 +

2 tan θ1
2 tan θ2

2

1− tan θ1
2 tan θ2

2

å
|x1x2|.

Hence, using equation (2) for θ1 and θ2, we get the
desired formula. □

The results in Lemma 2 depend on the value of a
function a(ε). In order to improve the results in [5]
for equilateral meshes, we need to give a value for this
function.

2.1 Fixing the number of Steiner points

We first fix the distance between consecutive Steiner
points, which implies fixing the total number of Steiner
points in each triangular face. In this way, we are

x1

x2

p

θ1

θ2

θ

v

Tj

Figure 3: Illustration of Lemma 2.

improving the upper bound on the distance from x1

to x2 through a Steiner point p. In [5], the distance
between Steiner points on a segment was defined as
|pi−1pi| =

√
ε
2 sin

β
2 |vpi−1|, where β = 2α. So, if we

substitute a(ε) =
√

ε
2 in equation (2), we get that:

tan
θ1
2

≤
2
√
2
»√

ε
2 sinα+ 2−

√
ε
2 sinα− 4√

ε
2 (cosα− 1)

tan
θ2
2

≤
2
√
2
»√

ε
2 sin (

π
3 − α) + 2−

√
ε
2 sin (

π
3 − α)− 4√

ε
2 (cos (

π
3 − α)− 1)

,

where θ1, and θ2 are the angles of the triangle△px1x2

at x1, and x2, respectively, see Figure 3.
We want to minimize the upper bound on equation

(3) when a(ε) =
√

ε
2 . Thus, we get that this value is

maximized when α = π
6 , i.e., when the Steiner points are

placed at the bisectors of the triangles, and minimized
when α = π

3 , i.e., when the Steiner points are placed on
the sides of the triangles. Hence, using Lemma 2 when
placing the Steiner points on the sides of the triangles
gives us the following result:

Proposition 3 Let x1 and x2 be two points on two
edges e1 and e2 of a triangle Tj, and outside the ver-
tex vicinity of the vertex v incident to e1 and e2. If p
is the Steiner point closest to the intersection between
segment x1x2 and the segment ℓv(j,

π
3 ), then

|x1p|+ |px2| =
Ç

4
√
2
√√

6ε+ 8−
√
6ε− 24

−4
√
2
√√

6ε+ 8 +
√
6ε+ 8

å
|x1x2|

⪅ 1.042 · |x1x2| (4)

Once we have the approximation factor in each of the
cells, we need to calculate the approximation factor of
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the whole path. We first define a graph Gε that consists
of a set of vertices Vε, and a set of edges Eε. Using the
corners of the triangles and the set of Steiner points in-
troduced in Definition 1, we create the set of vertices Vε.
For the set of edges we need the notion of neighbor bi-
sectors introduced by Aleksandrov et al. [5]. A bisector
is a neighbor to itself. Two different bisectors are neigh-
bors if they belong to the same face of T . Now, consider
a pair (ℓ1, ℓ2) of neighbor bisectors. We join any pair of
nodes p and q lying on ℓ1 and ℓ2, respectively. The set of
all pairs (p, q) is the set Eε of edges. Once we have the
graph Gε associated to the discretization, we proceed to
compare the weighted length of the approximation path
and the actual shortest path in Theorem 4.

Theorem 4 Let π(s, t) be a weighted shortest path be-
tween two different vertices s and t on T . There
exists a path π̃(s, t) in Gε such that ∥π̃(s, t)∥ ≤Å
1 + 14(4

√
2
√√

6ε+8−
√
6ε−8)−16(7+ε)

(−4
√
2
√√

6ε+8+
√
6ε+8)(7−ε)

ã
· ∥π(s, t)∥.

Proof. Let (s = v0, v1, . . . , vn = t) be the ordered set
of vertices of T such that π(s, t) intersects their vertex
vicinities. Let ai, bi, i ∈ {0, . . . , n}, be, respectively,
the last and first bending point on π(s, t) that is in the
vertex vicinity of vi. Thus, we obtain a sequence of
bending points s = b0, a0, b1, a1, . . . , an−1, bn, an = t on
π(s, t) such that segments of π(s, t) between ai and bi
are not contained in the vertex vicinities.
Consider the subsegment π(ai, bi+1), for some 0 ≤

i < n. A subpath π′(vi, vi+1) is defined [5] as the path
from vi to vi+1 along the sequence of bending points
of π(ai, bi+1). Using the triangle inequality, the fact
that ai ∈ S(vi), bi+1 ∈ S(vi+1), and the definition of
weighted radius, we get that

∥π′(vi, vi+1)∥ ≤ ∥viai∥+ ∥π(ai, bi+1)∥+ ∥bi+1vi+1∥

≤ ε

7
ωmin(vi)d(vi) + ∥π(ai, bi+1)∥

+
ε

7
ωmin(vi+1)d(vi+1).

Therefore, we obtain the path π′(s, t) = π′(s, v1) ∪
π′(v1, v2)∪ . . .∪π′(vn−1, t). Let x

i
j , j = 1, . . .m, be the

inner bending points of the subpath π(ai = xi
0, bi+1 =

xi
m+1). For each j = 0, . . . ,m, we define the point pij to

be the closest Steiner point to the intersection between
[xi

j , x
i
j+1] and ℓv(j,

π
3 ), where v is the common endpoint

of the edges containing xi
j and xi

j+1. Now, we create the
path π′′(s, t) = π′′(s, v1)∪ π′′(v1, v2)∪ . . .∪ π′′(vn−1, t),
where

π′′(vi, vi+1) = (vi, p
i
0, x

i
1, p

i
1, x

i
2, . . . , x

i
m, pim, vi+1).

Let A = 8
√
2
√√

6ε+8−2
√
6ε−32

−4
√
2
√√

6ε+8+
√
6ε+8

. It follows from (4) that

∥π′′(vi, vi+1)∥ ≤ (1 +A)∥π′(vi, vi+1)∥. Thus,

∥π′′(s, t)∥ =
n−1∑
i=0

∥π′′(vi, vi+1)∥ ≤ (1 +A)
n−1∑
i=0

∥π′(vi, vi+1)∥

≤ (1 +A)
n−1∑
i=0

(
∥π(ai, bi+1)∥+

εκi

7

)
, (5)

where κi = ωmin(vi)d(vi) + ωmin(vi+1)d(vi+1), so
it remains to determine an upper bound for the sum∑n−1

i=0 κi. So, using the definition of d(·) it follows that

κi ≤ ∥viai∥+ 2∥π(ai, bi+1)∥+ ∥bi+1vi+1∥

≤ 2∥π(ai, bi+1)∥+
εκi

7
=⇒ κi ≤

14

7− ε
∥π(ai, bi+1)∥.

This, when substituted in equation (5) implies that

(1 +A)
n−1∑
i=0

(
∥π(ai, bi+1)∥+

εκi

7

)
≤ (1 +A)

n−1∑
i=0

Å
∥π(ai, bi+1)∥+

ε

7
· 14

7− ε
∥π(ai, bi+1)∥

ã
= (1 +A)

7 + ε

7− ε

n−1∑
i=0

∥π(ai, bi+1)∥ ≤ (1 +A)
7 + ε

7− ε
∥π(s, t)∥.

(6)

Finally, two consecutive Steiner points pij and pij+1

lie on neighbor sides, and vi belongs to the same
edge as pi0 and vi+1 belongs to the same edge
as pim. Therefore, the sequence of points (vi =
pi0, p

i
1, . . . , p

i
m = vi+1) defines a path π̃(vi, vi+1), such

that ∥π̃(vi, vi+1)∥ ≤ ∥π′′(vi, vi+1)∥. If we com-
bine all the paths π̃(s, v1), . . . , π̃(vn−1, t), we get that
∥π̃(s, t)∥ ≤ ∥π′′(s, t)∥ ≤ (1 + A) 7+ε

7−ε∥π(s, t)∥. And the
result is proved. □

2.2 Fixing the approximation factor of segment join-
ing two points

The other parameter that we can fix is the approxima-
tion factor in each of the triangular cells. By doing this,
we are optimizing the number of Steiner points placed
in the faces. Using the approximation factor given by
Aleksandrov et al. [5], we prove that the distance be-
tween consecutive Steiner points can be decreased, see
Lemma 5. Due to space limitations, we defer the proof
to the full version of the paper.

Lemma 5 Let e1, e2 be two edges adjacent to v in Ti,
and let x1, x2 be two points in e1 and e2, respectively.

Let |pi−1pi| = 4(ε+2
√
ε
√
ε+4)√

3(ε+4)
sin π

3 |vpi−1|, i ∈ {1, . . . , k},
be the distance between two consecutive Steiner points in
side e2. Let p be the closest Steiner point to x2, then
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Figure 4: Comparison of approximation factor on a cell.
The red function represents y = 1 + ε

2 from [5], and

the blue function represents y =

Å
4
√
2
√√

6ε+8−
√
6ε−24

−4
√
2
√√

6ε+8+
√
6ε+8

ã
from Proposition 3.

|x1p|+ |px2| ≤
(
1 +

ε

2

)
|x1x2|.

The next lemma gives us an estimation on the num-
ber of Steiner points inserted on a particular side of a
triangle and on their total number. The result is ob-
tained by using Lemma 5, and the proof can be found
in the full version of the paper.

Lemma 6 1. The number of Steiner points inserted
on a side of a triangle Ti is upper bounded by
log2

2|ℓ|
r(v)

log2 e
3(ε+4)3

(2ε+4
√
ε
√
ε+4)(20ε2+76ε−(2ε+24)

√
ε
√
ε+4+48)

log2
2
ε .

2. The total number of Steiner points on T is less than

C(T ) 9n(ε+4)3

(2ε+4
√
ε
√
ε+4)(20ε2+76ε−(2ε+24)

√
ε
√
ε+4+48)

log2
2
ε ,

where C(T ) =
log2

2|ℓ|
minv∈T r(v)

log2 e

3 Discussion and future work

We provide some figures where we compare our results
with the ones given by Aleksandrov et al. [5]. First,
Figure 4 shows the error we commit when the segment
between two points on the boundary of two adjacent
edges of the tessellation is approximated by the subpath
through a Steiner point. The red function represents the
error obtained in [5], while the blue function represents
the error obtained in Proposition 3, for values of ε in
[0, 1]. Looking at Table 2, we notice that the error com-
mitted by our approach in each cell is about 70% less
than using results in [5].

Secondly, in Figure 5 we depict the error obtained
when the actual shortest path is approximated by the
approach in [5] (see red function) and our result in The-
orem 4 (see blue function). The error is shown for values

ε 1 + ε
2

4
√
2
√√

6ε+8−
√
6ε−24

−4
√
2
√√

6ε+8+
√
6ε+8

0 1 1
0.1 1.05 1.0044
0.2 1.1 1.0088
0.4 1.2 1.017
0.6 1.3 1.025
0.8 1.4 1.033
0.9 1.45 1.037
1 1.5 1.041

Table 2: Comparison of approximation factor on a cell.

ε1

1.2

1.4

1.6

1.8

2

2.2

0 0.2 0.4 0.6 0.8 1

Figure 5: Comparison of approximation factor of
paths. The red function represents y = 1 + ε
from [5], and the blue function represents y =Å
1 + 14(4

√
2
√√

6ε+8−
√
6ε−8)−16(7+ε)

(−4
√
2
√√

6ε+8+
√
6ε+8)(7−ε)

ã
from Theorem 4.

of ε in the interval [0, 1]. These two functions show that

our result is at least 5(1+ε)(7−ε)
7(5+ε) times better than the

one provided in [5], i.e., about 150%. See also Table 3
for certain values of ε.

Recall that, in Figures 4 and 5, the approximation fac-
tors are obtained by using the same number of Steiner
points in our result and in [5].

Finally, let pi, pi+1 be two consecutive Steiner points
on a segment from a vertex v on a triangular cell inclined
by α radians. Then, Figure 6 represents the distance be-
tween pi and pi+1, divided by the distance |vpi|. The
function in red shows the results from [5] when placing
the points on the bisector from v, while the function in
blue shows our results when placing the points at the
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ε 1 + ε 1 + 14(4
√
2
√√

6ε+8−
√
6ε−8)−16(7+ε)

(−4
√
2
√√

6ε+8+
√
6ε+8)(7−ε)

0 1 1
0.1 1.1 1.033
0.2 1.2 1.068
0.4 1.4 1.14
0.6 1.6 1.217
0.8 1.8 1.3
0.9 1.9 1.343
1 2 1.3889

Table 3: Comparison of approximation factor of paths.

ε 1
2

√
ε
2

2(ε+2
√
ε
√
ε+4)

ε+4

0 0 0
0.1 0.111 0.673
0.2 0.158 0.968
0.4 0.223 1.387
0.6 0.273 1.705
0.8 0.316 1.966
0.9 0.335 2.081
1 0.353 2.188

Table 4: Comparison of distance between consecutive
Steiner points on the same cell.

sides of the cells. This value, using our result, is about
7−

√
ε

40 times larger than the value given by Lemma 5,
which is an improvement of the bound of about 500%.
See also Table 4 for some values of ε ∈ [0, 1]. For this
result, we are using the same approximation factor for
the segment between two bending points of the short-
est path on the boundary of the same cell as in [5].
Moreover, another consequence of Lemma 5 is that the
number of Steiner points that we add on each cell is less
than in [5], see also Lemma 6, part 1. Hence, we de-
crease the total number of points that are added to the
triangulation, see Lemma 6, part 2. Compared to [5],
our method reduces the number of Steiner points in at
least 4.5 times. Therefore, the space and time complex-
ity of algorithms that compute weighted shortest paths
(e.g., Dijkstra’s algorithm) using our approach is less
than the complexity of these algorithms using previous
results.

As future work, it would be interesting to work with
other types of regular grids, e.g., square or hexagonal,
or take into account other realistic scenarios like trian-
gulated irregular networks. Another possible extension
would be to work with 3D environments.

ε0

0.4

0.8

1.2

1.6

2

2.4

0 0.2 0.4 0.6 0.8 1

Figure 6: Comparison from Lemma 5. The red function
represents y = 1

2

√
ε
2 from [5], and the blue function

represents y = 2(ε+2
√
ε
√
ε+4)

ε+4 from Lemma 5.
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Maximum Subbarcode Matching and Subbarcode Distance

Oliver Chubet ∗†

Abstract

We investigate the maximum subbarcode matching
problem which arises from the study of persistent ho-
mology and introduce the subbarcode distance on bar-
codes. A barcode is a set of intervals which corre-
spond to topological features in data and is the out-
put of a persistent homology computation. A barcode
A has a subbarcode matching to B if each interval in
A matches to an interval in B which contains it. We
present an algorithm which takes two barcodes, A and
B, and returns a maximum subbarcode matching. The
subbarcode matching algorithm we present is a gener-
alization of the up-right matching algorithm given by
Karp et al [11]. Our algorithm also works on multi-
set input. It has O(n log n) runtime, where n is the
number of distinct intervals in the barcodes. We show
that the subbarcode relation is transitive and induces
a partial order on barcodes. We introduce subbarcode
distance and show that the subbarcode distance is a
lower bound for bottleneck distance. We also give an
algorithm to compute subbarcode distance, which has
expected O(n log2 n) runtime and uses O(n) space.

1 Introduction

In persistent homology the barcode is a multiset of in-
tervals encoding topological information. There is new
interest in the implications arising when one has only
partial knowledge or an approximation of the barcode.
For example, in recent work, Chubet et al [3] establish
that one can use subbarcodes in topological data anal-
ysis to make strong claims about an unknown function
given only upper and lower bounds. Having efficient
subbarcode matching algorithms allows one to imple-
ment strategies suggested by these new theoretical de-
velopements. The subbarcode matching algorithm and
subbarcode distance are practical tools for comparing
the topological invariants of two datasets.

2 Background

A multiset A = (A,ωA) is a pair consisting of a set A
and a multiplicity function ωA : A→ N. The weight of

∗North Carolina State University,oliver.chubet@gmail.com
†This work was partially funded by the NSF under grant CCF-

2017980.

A is the sum of the multiplicities of the elements of A,

denoted, |A| =
∑
a∈A

ωA(a).

A matching M between multisets A = (A,ωA) and
B = (B,ωB) is a multiset M = (M,ω) where M ⊂ A×B
with multiplicity function ω : M → N such that∑

b∈B

ω(a, b) ≤ ωA(a) for all a ∈ A and∑
a∈A

ω(a, b) ≤ ωB(b) for all b ∈ B.

A matching M is a maximum matching if it has maxi-
mum weight over all valid matchings. If |M| = |A| = |B|
then we call M a perfect matching.

An interval is a pair (ax, ay) for ax, ay ∈ R. See
Figure 1. Given intervals s = (sL, sR) and b = (bL, bR),
if

bL ≤ sL, and sR ≤ bR.

then b contains s, denoted s � b. Containment of inter-
vals defines a partial order on intervals.

A barcode B = (B,ωB) is a multiset where B is a
set of intervals. A subbarcode matching from S to B is

y = xy

x

Figure 1: We may represent intervals as points in R2 by
taking their endpoints as coordinates .

a multiset matching M = (M,ωM ), of S and B, where
(s, b) ∈M implies s � b. See Figure 2.

The maximum subbarcode matching problem is to
find a subbarcode matching of maximum weight. If
there exists a subbarcode matching M from A to B such
that |M| = |A|, then we call A a subbarcode of B, de-
noted A v B.
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p

x

y

Figure 2: Any point in the upper shaded region contains
p as an interval. Any point in the lower shaded region
is contained in p as an interval.

3 Related Work

Traditionally, persistence diagrams have been compared
via bottleneck distance. Bottleneck matching is an
instance of the assignment problem. The traditional
Hopcroft-Karp algorithm for maximum matching in bi-
partite graphs runs in O(n

5
2 ) [10]. However, Efrat et

al [5] reduced this runtime to O(n
3
2 log n) by using a ge-

ometric data structure. Kerber et al [12] also improved
this algorithm for persistence diagrams, using k-d trees.

We use a sweepline approach in our subbarcode
matching algorithm [1]. Our algorithm builds upon the
up-right matching algorithm given by Karp et al [11].
In the case of matching finite subsets of the unit square,
this algorithm has been proven to find the optimal
matching. Two additional related problems include the
maximum matching problem for intersecting intervals
[2] and maximum matching in convex bipartite graphs
[7, 13, 8]. The strategy used in these algorithms is to
avoid backtracking to keep the total operations per ele-
ment small.

4 Subbarcode Algorithm

We present an algorithm to compute a linear-sized
maximum multiset subbarcode matching. See Figure 4.

submatch(A,B):
Input Two barcodes: A = (A,ωA), B = (B,ωB)
Output A subbarcode matching from A to B

Sort A ∪B by the x-coordinates.
Initialize T to be an empty balanced binary search
tree to store points from B ordered by y-coordinate.
Initialize residual weights rb = ωB(b) for each b ∈ B
and ra = ωA(a) for each a ∈ A.
Initialize (M, W) to store the matching and multiplici-
ties.

x

y

n

n
n

n
n

n

Figure 3: Two barcodes for which there exists a
quadratic size subbarcode matchings.

For each p ∈ A ∪B, where p = (px, py):

If p ∈ B, insert b into T.
Else

While rp > 0:

Search for b ∈ T with minimum by such that
by ≥ py.
If there is none, then break.

Let r = min{rp, rb}.
Add (p, b) to M and set W[(p, b)] = r,
then update the residual weights of p and b:
rp = rp − r and rb = rb − r.

If rb = 0, then remove b from T.

Return (M, W).

When both input weight functions uniformly map all
elements to 1 this algorithm reduces to the up-right
matching algorithm presented by Karp et al [11]. In
this case, it is clear that the output size is linear. How-
ever, in the case where we are matching multisets, it is
possible for a subbarcode matching to have quadratic
size.

For example, suppose there are n intervals in bar-
codes A and B respectively such that all intervals have
multiplicity n and all intervals in A are subbars of all
intervals in B, as depicted in Figure 3. Then a valid
matching could match each interval in A once with each
of the intervals in B. This illustrates the significance of
a linear-size guarantee.

In the following lemma we prove that the output re-
mains linear.

Lemma 1 Let A = (A,ωA) and B = (B,ωB) be bar-
codes. The subbarcode matching M = submatch(A,B)
has size O(n), where n = #A+ #B.

In particular, #M ≤ n.

Proof. Let (M,ω) = submatch(A,B). Let G = (V,M)
be the weighted graph induced by taking M as the edge
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Figure 4: We find a maximum subbarcode matching from A to B (circles and squares respectively) labeled by their
multiplicities. We iterate through A in order of x-coordinate and match to the point in B with lowest y-coordinate.
Each edge represents the match labeled with the multiplicity, and the residual multiplicities are updated for A and
B accordingly.

set with weights given by ω. All edges (a, b) ∈ M ⊆
A×B. Let m = #M , and n = #V .

We know m = 1
2

∑
v∈V deg(v) to be a property of all

graphs. BecauseG is bipartite, it is sufficient to consider
only the degrees of elements in A. We partition A into
high and low degree nodes,

H = {a ∈ A | deg(a) ≥ 2} and L = A \H.

Then, m =
∑
a∈H

deg(a) +
∑
a∈L

deg(a).

For a ∈ H, consider the sequence (b0, . . . , br) of all
points in B adjacent to a in G, where b0 is the first
point to match to a and br is the last point to match
to a. Then for bi ∈ {b0, . . . , br−1} we know that a is
the last point to match to bi, because the algorithm
does not proceed to matching bi+1 until the remaining
multiplicity of bi is matched.

Each point in B can only have one point being the
last to match to it, so∑

a∈H
deg(a) ≤ #H + #B and

∑
a∈L

deg(a) ≤ #L.

Therefore, m ≤ #H + #L+ #B ≤ n. �

Theorem 2 submatch uses O(n) space.

Proof. The only structures maintained during
submatch are the input, the output, and the
search tree. The input and search tree are linear size.
By Lemma 1, the output of submatch is linear size as
well. Thus total space used is O(n). �

Theorem 3 The matching from submatch is maxi-
mum.

Proof. First consider the case where A = (A,ωA) and
B = (B,ωB) with ωA ≡ ωB ≡ 1. Then submatch
reduces to the up-right matching algorithm given by
Karp et al [11], which has previously been shown to be
optimal.

If we consider two barcodes A = (A,ωA) and B =
(B,ωB), we can construct A′ = (A′, ω′A), B′ = (B′, ω′B)
such that ∀a ∈ A we have ωA(a) distinct copies a(i) of
a in A′, for i ∈ {1, . . . , ωA(a)}. Similarly, b(j) ∈ B′ for
j ∈ {1, . . . , ω′B(b)}. Then we have reduced the input to
the first case described above. �

Theorem 4 submatch computes a linear-sized maxi-
mum subbarcode matching in O(n log n) time.

Proof. Let A = (A,ωA) and B = (B,ωB) be barcodes.
Let T be search tree constructed in submatch and let
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M = (M,ω) be the output matching. Let G = (V,M)
be the graph induced by taking M as the edge set.
Given a ∈ A each time we search T either we find a
match or we don’t. We find a match deg(a) times, and
we don’t find a match at most once. It follows, the num-
ber of searches is at most

∑
a∈A(deg(a)+1) = #M+#A.

In Lemma 1 we proved that #M is linear size. Thus,
the number of searches is O(n). Furthermore, there are
O(n) insertions and deletions and T is balanced, so each
search operation takes O(log n). Therefore, the runtime
is O(n log n). �

5 Subbarcode Transitivity

For intervals a and b, recall that a � b if b contains a.
Transitivity of set matching follows easily by compos-

ing the matchings. However, functions over multisets do
not have a well-defined composition. In 1957, Ford and
Fulkerson showed that Hall’s Theorem for systems of
representitives could equivalently be expressed in terms
of flow networks [6, 9]. We use this approach to show
the existence of a subbarcode matching is transitive.

Lemma 5 (Transitivity) If A v B and B v C then
A v C.

Proof. Given barcodes A = (A,ωA), B = (B,ωB), and
C = (C,ωC) with subbarcode matchings (M,ωM ) for
A v B and (T, ωT ) for B v C, there is a corresponding
network, Net(G), where G = (A t B t C, M t T ) is a
digraph [6, 4]. See Figure 5.

s ωA

A

ωM

CB

ωT
tωB

Figure 5: An (s, t)-flow f in Net(G) corresponds to a
matching of A and C.

If f is a max-flow in Net(G), then the corresponding
matching is maximum and the value of the flow, |f |, is
equal to the weight of the matching [4]. In Appendix A

A

ωM

C

ωT

B

s ωA ωM ωT t
ωC

Figure 6: The the capacity of an arbitrary cut, (L,L)
of Net(G).

we show that c(L,L) ≥ |A| for any cut (L,L) of Net(G).
See Figure 6. Therefore A v C. �

Corollary 6 The relation v defines a partial order on
barcodes.

We call the poset of barcodes (Bar,v).

6 Shifted Subbarcodes

There are cases where the maximum matching is not
sufficient. Rather, one prefers to know “how far off” two
barcodes are from having a subbarcode matching. For
example, if we have only an approximation to the input,
we can consider the maximum matching after shifting
one set by distance δ. There are cases when only a small
shift is needed to obtain a subbarcode matching.

If A 6v B, we can determine the minimum shift of
A such that the translation results in a subbarcode of
B. We use this minimum shift to define a metric on
barcodes.

A δ-shift of A = (A,ω) is a barcode Aδ where

Aδ := (δ(A), ω ◦ δ−1) and

δ(a) := (ax + δ, ay − δ).

Let A and B be barcodes such that |A| = |B|. The
subbarcode distance is

dS(A,B) := max{min
δ≥0

Aδ v B,min
δ≥0

Bδ v A}.

The subbarcode distance is similar to Hausdorff dis-
tance in that it is bidirectional and asymmetric in na-
ture.

Lemma 7 (Approximation is additive.) If Aδ v B and
Bε v C then Aδ+ε v C.

Proof. Let A, B, and C be barcodes such that Aδ v B
and Bε v C. Consider intervals, a and b.

If a � b, then ax ≥ bx and ay ≤ by.

Then, ax + δ ≥ bx + δ and ay − δ ≤ by − δ.

Thus, δ(a) � δ(b).
By extension, if A v B, then Aδ v Bδ. By assump-

tion, Aδ v B, so it follows, Aδ+ε v Bε. Thus by transi-
tivity of subbarcodes (Lemma 5), Aδ+ε v C. �

Lemma 8 (Triangle Inequality)

dS(A,C) ≤ dS(A,B) + dS(B,C)

Proof. Let A,B, and C be barcodes. Suppose
dS(A,B) = δ and dS(B,C) = ε. Then by definition,

Aδ v B, Bδ v A, Bε v C, and Cε v B.

By Lemma 7, it follows Aδ+ε v C and Cδ+ε v A.
Therefore dS(A,C) ≤ δ + ε. �

The remaining metric properties are easily verified,
so we may conclude the following theorem.

Theorem 9 The subbarcode distance is a metric on
barcodes.
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7 Subbarcode Distance Computation

In this section we present algorithms which allow us to
compute the subbarcode distance. The goal is to com-
pute the minimum shift such that we have a subbarcode
matching. To find this shift it is useful to determine
cases in which we may easily recognize that we have
shifted by an excesse amount.

Lemma 10 For a subbarcode matching, (M,ω), of
A∆ v B, let

γ = min
(∆(a),b)∈M

min{ax + ∆− bx, by − ay + ∆}.

Then A∆−γ v B.

Proof. For all (∆(a), b) ∈ M , ae + ∆ − bx ≥ γ, and
by − ay + ∆ ≥ γ. So, ax + (∆ − γ) ≥ bx, and by ≥
ay − (∆− γ). Therefore A∆−γ v B. �

We can think of γ as an excess shift of A. That is,
we could have shifted A by a distance γ less than we
did and the corresponding matching is still be a valid
matching. So intuitively, if the shift is the subbarcode
distance, then γ = 0 because there can be no excess
shift.

In the next lemma we prove that the subbarcode dis-
tance, similar to Hausdorff distance and bottleneck dis-
tance, is determined by a pair from A and B. This
motivates us to devise a search method to find this pair.

Lemma 11 For some (a, b) ∈ A×B,

dS(A,B) = min{ax − bx, by − ay}.

Proof. Let ∆ = dS(A,B). Then there is a subbarcode
matching (M,ω) for A∆ v B. By Lemma 10, A∆−γ v B
for γ = min(∆(a),b)∈M min{ax − bx, by − ay}. It follows
that γ = 0 because ∆ is minimum. So ∆ = min{ax −
bx, by − ay} for some (a, b) ∈ A×B. �

Lemma 11 enables us to compute dS by finding the
correct pair in A × B. There are n2 possibilities, how-
ever, we search these possibilities efficiently by taking a
uniform sample of the endpoints for which the difference
is within given upper and lower bounds.

For barcodes (A,ωA) and (B,ωB), define:

ub := max{(max
b∈B

bx −min
a∈A

ax), (max
a∈A

ay −min
b∈B

by), 0}

lb := max{(max
b∈B

bx −max
a∈A

ax), (min
a∈A

ay −min
b∈B

by), 0}.

Here, the upper bound ub is simply the distance be-
tween the farthest corners of the minimum bounding
rectangles of A and B. The lower bound lb is the dis-
tance between the bottom right corners of the minimum
bounding rectangles. These may be replaced with any
suitable upper and lower bounds.

In minshift we use these bounds to perform a binary
search through all pairs of coordinate differences in or-
der to find the points that give us the exact subbarcode
distance.

minshift(A,B, lb,ub):
Input: Barcodes A,B, and upper and lower bounds
lb ≤ dS(A,B) ≤ ub
Output: The subbarcode distance, ∆

Let x, y be the sorted x- and y-coordinates of A ∪B.
∆ = sample(x,y, lb,ub)
While ∆ exists:

(M,ω) = submatch(A∆,B)
If (M,ω) is a perfect matching, set ub = ∆.
Else lb = ∆
∆ = sample(x,y, lb,ub)

Return ub

A binary search is made possible by using sample to
obtain a uniform random sample of all pairs with co-
ordinate differences contained within the given bounds.
In a linear scan of the sets of x- and y-coordinates we
determine the prevalence of each coordinate in the set
suitable pairs. We then sample a pair from this set and
return the minimum coordinate difference. See Figure 7
and Figure 8.

sample(x,y, lb,ub):
Input: Sorted lists x and y, and bounds lb and ub
Output: A uniform random sample

In a linear scan of x, find indices, li and ui, such that

x[li − 1] ≤x[i] + lb < x[li],

and x[ui] <x[i] + ub ≤ x[ui + 1].

Similarly, scanning y, find indices, l′i and u′i, such that

y[u′i − 1] ≤y[i]− ub < y[u′i],

and y[l′i] <y[i]− lb ≤ y[l′i + 1].

If li = ui and l′i = u′i for all i, return nothing.
Otherwise, sample an index i with probability pro-
portional to (ui − li) + (l′i − u′i).
Sample endpoint e uniformly from x[li : ui]ty[u′i : l′i].
If e is from x then return e − x[i]. Otherwise return
y[i]− e.

Theorem 12 minshift computes the subbarcode dis-
tance with an expected O(n log2 n) time.

Proof. Using sample to get a uniform sample of all
pairwise distances of endpoints, minshift reduces to a
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X
i li ui

Figure 7: If X[i] is an endpoint and X[j] is from the
range X[li : ui] then lb < X[j]−X[i] < ub.

a

lb

ub

Figure 8: Depicted above are the points considered by
sample for a single point a ∈ A. The points in the
shaded region form a subset of B for which the minimum
coordinate differences are within the bounds given.

randomized binary search over n2 elements. Thus there
is an expected O(log n) iterations, where each iteration
is O(n log n). Therefore minshift has expected runtime
O(n log2 n). �

8 Persistence Diagrams

In topological data analysis it is common to compare
persistence diagrams rather than barcodes. In this sec-
tion we show that, with slight modification, the algo-
rithms presented in Section 7 also apply in this setting.

The diagonal of R is the set D = {(x, x) | x ∈ R}.
A persistence diagram for a barcode B = (B,ωB) is a
multiset PD(B) := (B ∪ D, ω), where

ω(x) =

{
ωB(x), x ∈ B
∞, x ∈ D.

We have added the diagonal of R with infinite multi-
plicity.

Let PD(A) = (A ∪ D, ω), be a persistence diagram.
Note that shifting this diagram by δ gives us the multi-
set

PD(A)δ = (δ(A ∪ D), ω ◦ δ−1).

It is useful to refer to only the points above the diagonal,
because points which have been shifted below y = x
can now match to the diagonal. We denote this as [Xδ],
where X is a barcode.

Lemma 13 Let A = (A,ωA) and B = (B,ωB) be bar-
codes. Then

PD(A)δ v PD(B) if and only if [Aδ] v B.

Proof. Let (M,ω) be a subbarcode matching for
PD(A)δ v PD(B). Consider a ∈ [δ(A)]. Note that

if (a, b) ∈ M , then b 6∈ D,so we can restrict M to
M ∩ ([δ(A)]×B) to obtain a matching for [Aδ] v B.

Now let (N,ω) be a matching for [Aδ] v B. For any
a ∈ δ(A∪D)\ [δ(A)], there is d = (ax, ax) ∈ D such that
a � d ∈ D. Because d has infinite multiplicity in PD(B),
we can add (a, d) to N and set ω(a, d) = ωA ◦ δ−1(a).
Thus N is a subbarcode matching. �

This result allows us to compute a subbarcode match-
ing of persistence diagrams PD(Aδ) and PD(B) by
computing submatch([Aδ],B). Additionally, we can
compute dS(PD(A),PD(B)) by modifying minshift
slightly. Rather than returning the minimum ∆ such
that A∆ v B, we return the minimum ∆ such that
[A∆] v B.

Note that because persistence diagrams fall under our
definition of barcodes, the subbarcode distance is also a
metric on persistence diagrams.

9 Subbarcode Distance and Bottleneck Distance

In this section we establish the relationship between the
subbarcode distance and bottleneck distance.

Let A and B be barcodes such that |A| = |B|. LetM
be the set of all possible perfect matchings between A
and B. The bottleneck distance is

dB(A,B) := min
(M,ω)∈M

{
max

(a,b)∈M
||a− b||∞

}
A bottleneck matching between barcodes A and B is a
matching M = (M,ω) where

max
(a,b)∈M

||a− b||∞ = dB(A,B).

Theorem 14 For any two barcodes A and B, where
|A| = |B|,

dS(A,B) ≤ dB(A,B).

Proof. Let M = (M,ωM ) be a bottleneck matching be-
tween A and B. Let β := dB(A,B). Then for any edge
(a, b) ∈M , ||a− b||∞ ≤ β. Moreover, |bx − ax| ≤ β and
|by−ay| ≤ β. It follows that bx ≤ ax+β and ay−β ≤ by,
implying β(a) � b for each (a, b) ∈M . We can then con-
struct a matching as follows: Let T = (T, ωT ), where

T = {(β(a), b) | (a, b) ∈M} and

ωT (β(a), b) := ωM (a, b).

Then T is a subbarcode matching. We note that |T| =
|M| and |A| = |Aβ |. Additionally, M is a perfect match-
ing, so |M| = |A| = |B|. It follows that Aβ v B. By
a similar argument we may also show that Bβ v A.
Therefore, dS(A,B) ≤ β = dB(A,B). �

73



CCCG 2022, Toronto, ON, Canada, August 25–27, 2022

10 Conclusion

We have given an efficient method for computing max-
imum subbarcode matchings and subbarcode distance.
We have shown that barcodes are a poset under the
subbarcode relation, and that subbarcode distance is a
metric on persistence diagrams. Subbarcodes present ef-
ficient methods of comparison for persistence diagrams.
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A Subbarcode Transitivity

Lemma 15 (Transitivity) If A v B and B v C then A v C.

Proof. Let A = (A,ωA), B = (B,ωB), and C = (C,ωC) be
barcodes such that A v B and B v C. Then there exists
subbarcode matchings, (M,ωM ) from A to B and (T, ωT )
from B to C.

Let Net(G) be the corresponding network to find the the
maximum subbarcode matching from A to C, as described in
Section 5. Let (L,L) be a cut of Net(G). Then L = XtY tZ
and L = X t Y t Z for

X = A ∩ L Y = B ∩ L Z = C ∩ L

X = A \X Y = B \ Y Z = C \ Z

We examine c(L,L):

c(L,L) = c(X t Y t Z, X t Y t Z)

= c(s,X) + c(X,Y ) + c(Y, Z) + c(Z, t)

We now evaluate each term:

c(s,X) =
∑
a∈X

ωA(a) c(X,Y ) =
∑
a∈X

∑
b∈Y

ωM (a, b)

c(Z, t) =
∑
c∈Z

ωC(c) c(Y, Z) =
∑
b∈Y

∑
c∈Z

ωT (b, c)

Notice (T, ωT ) is a subbarcode matching, so by necessity ωC

is greater than the marginals of ωT for each c ∈ C. Similarly,
ωB is greater than the marginals of ωM for each b ∈ B.∑

c∈Z

ωC(c) ≥
∑
c∈Z

∑
b∈B

ωT (b, c)

=
∑
c∈Z

∑
b∈Y

ωT (b, c) +
∑
c∈Z

∑
b∈Y

ωT (b, c)

It follows,

c(Y, Z) + c(Z, t) ≥
∑
y∈Y

∑
c∈C

ωT (b, c) =
∑
b∈Y

ωB(b)

≥
∑
b∈Y

∑
a∈X

ωM (a, b).

Then,

c(X,Y ) + c(Y, Z) + c(Z, t)

≥
∑
a∈X

∑
b∈Y

ωM (a, b) +
∑
a∈X

∑
b∈Y

ωM (a, b)

=
∑
a∈X

ωA(a).

Finally,

c(s,X) + c(X,Y ) + c(Y, Z) + c(Z, t)

≥
∑
a∈X

ωA(a) +
∑
a∈X

ωA(a)

=
∑
a∈A

ωA(a) = |A|.

Thus, c(L,L) ≥ |A| for any cut (L,L) of Net(G). Therefore
A v C. �
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Approximating Convex Polygons by Histogons∗

Jaehoon Chung† Sang Won Bae‡ Chan-Su Shin§ Sang Duk Yoon¶ Hee-Kap Ahn‖

Abstract

We study the problem of finding the largest inscribed
histogon and the smallest circumscribed histogon for a
convex polygon. A histogon is an axis-aligned recti-
linear polygon such that every horizontal edge has an
integer length. Depending on whether the horizontal
width of a histogon is predetermined or not, we con-
sider four different versions of the problem and present
exact algorithms.

1 Introduction

Motivated by optimization problems in shape analysis,
classification, and simplification [1, 2], we consider two
optimization problems of approximating a convex poly-
gon P , one by a largest inscribed histogon in P , and the
other by a smallest circumscribing histogon.
A histogon is an axis-aligned rectilinear polygon such

that every horizontal edge has an integer length. We
call a histogon of width 1 a unit histogon and histogon
of width k a k-histogon. Thus, a unit histogon is simply
an axis-aligned rectangle of horizontal width 1, and its
height is the length of the vertical sides which is a posi-
tive real number. A k-histogon H for a positive integer
k can be described by k interior-disjoint unit histogons
whose union is H. See Figure 1 for an illustration.

In the inscribed histogon problem, we compute a his-
togon with maximum area that can be inscribed in P .
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(a) (b) (c) (d)

Figure 1: Histogons. (a) The largest inscribed unit histogon
of P . (b) The largest inscribed histogon with width 3 of P .
(c) The largest inscribed histogon of P . (d) The smallest
circumscribed histogon of P

We call such a histogon a largest inscribed histogon of
P . Depending on whether the horizontal width of a his-
togon is predetermined (1 or a positive integer k) or not,
we consider three versions of the problem.

In the circumscribed histogon problem, we compute a
histogon with minimum area that can be circumscribed
to P . We call such a histogon a smallest circumscribed
histogon of P .

We call a copy of a histogon rotated by θ ∈ [0, π)
in counterclockwise direction a histogon of orientation
θ. Our results can be applied to inscribed and circum-
scribed problems for histogons of orientation θ with the
same time and space.

Approximation of shapes by histogons found its ap-
plications in several topics in calculus, most notably in
Riemann sums and optimization. For a function graph
(or a curve), the area under the graph can be approxi-
mated by a histogon: an inscribed histogon is an under-
approximation of the area, called a lower sum, and a
circumscribed histogon is an over-approximation of the
area, called an upper sum. Many optimization problems
are concerned with the largest inscribed figure and the
smallest circumscribed figure of a shape. They are also
closely related to real-world cost-optimization problems
such as painting a piece using a spray gun, etching VLSI
masks by electron beams with a fixed minimum width,
and inspection.

Related Work. Extensive research has been done in
past decades in computational geometry for inscribing
and circumscribing polygons, and most of which handle
relatively elementary shapes such as triangles, rectan-
gles or parallelograms in a convex or a simple polygon.
Alt et al. [3] gave an O(log n)-time algorithm for find-
ing a maximum-area axis-aligned rectangle that can be
inscribed in a convex n-gon. Daniels et al. [7] gave an
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O(n log2 n)-time algorithm for finding a maximum-area
axis-aligned rectangle in a simple polygon with n ver-
tices, possibly with holes. The running time was im-
proved to O(n log n) by Boland et al. [4].
DePano et al. [8] gave an O(n2)-time algorithm for

finding a maximum-area equilateral triangle and square
that can be inscribed in a convex n-gon and an O(n3)-
time algorithm for finding a maximum-area equilateral
triangle that can be inscribed in a simple polygon with n
vertices. Cabello et al. [5] first suggested O(n3)-time ex-
act algorithm for finding maximum-area or maximum-
perimeter rectangles in a convex n-gon. Jin et al. [12]
designed an O(n2)-time algorithm for computing all the
parallelograms with maximum area in a convex n-gon.
Choi et al. [6] gave an O(n3 log n)-time algorithm for
finding maximum-area rectangles in a simple polygon,
possibly with holes. Lee et al. [14] studied maximum-
area triangles with various restrictions in a convex or a
simple polygon, possibly with holes.

Using the observation due to Freeman and
Sharpia [10], Toussaint [16] gave an O(n)-time al-
gorithm for finding a minimum-area rectangle enclosing
a convex n-gon. The algorithm also works for finding a
minimum-perimeter rectangle enclosing a convex poly-
gon. O’Rourke et al. [15] gave an O(n)-time algorithm
for finding a minimum-area triangle enclosing a convex
n-gon.

Our Results. Our main results are efficient algo-
rithms for computing optimal histogons (largest in-
scribed and smallest circumscribed histogons) for a con-
vex polygon P with n vertices and all our algorithms
use O(n) space. We assume that the vertices of P are
stored in an array in counterclockwise order along the
boundary of P .

For the problem of inscribing a largest histogon in
a convex n-gon, we present an O(log n)-time algorithm
for a largest unit histogon, an O(min{n, k log2 n

k })-time
algorithm for a largest histogon of width k for a fixed
k > 1, and an O(min{n,w log2 n

w})-time algorithm for
a largest histogon. The symbol w denotes the width of
a largest inscribed histogon in P , so the last algorithm
is output-sensitive.

For the problem of circumscribing a smallest histogon
of a fixed orientation for a convex n-gon, we present an
O(min{n,W log n

W })-time algorithm. The symbol W
denotes the (horizontal) width of P , so our algorithm is
output-sensitive.

Sketch of Our Results. For the problem of inscrib-
ing a largest unit histogon, we define a function f that
maps t ∈ R into the height of the largest inscribed unit
histogon of P with the left side at x = t. We show
that f is a concave, piecewise linear function, so we can
perform a binary search to find a maximum of f , which

corresponds to a largest unit histogon inscribed in P .

To find a largest k-histogon inscribed in P with k > 1,
we present a characterization for the existence of k-
histogon inscribed in P . For a k-histogon with the left-
most vertical side at x = t, we define a function F (t)
by the height of the k-histogon and show that F is a
concave, piecewise linear function. We find a closed in-
terval containing the x = t∗ which maximizes F and
apply binary search to find t∗ in the restricted domain.
We present two algorithms for finding t∗, one using O(n)
time which is optimal for k = Ω(n) (Section 3.2.1) and
the other using O(k log2 n

k ) time for k = O(n) (Sec-
tion 3.2.2). When there is no restriction on the width
of the histogon, we show that a largest inscribed his-
togon can be computed by invoking the algorithm for
fixed width a constant number of times. (Section 3.3).

For the problem of circumscribing a smallest histogon,
we show that the smallest circumscribed histogon H
has width ⌈W ⌉. Moreover, either the leftmost vertical
side of H contacts the leftmost vertex or the rightmost
vertical side of H contacts the rightmost vertex of P .
Thus, we compute histogons for two cases, and take the
smaller one. See Section 4.

2 Preliminaries

Let P be a convex polygon with n vertices, stored in an
array in counterclockwise order along the boundary of
P . We denote by ∂P the boundary of P . For a point
p ∈ R2, let x(p) and y(p) be the x-coordinate and the
y-coordinate of p, respectively.

For a histogon H, let w(H) be the horizontal width
of H and let |H| denote the area of H. We call a line
segment connecting two distinct boundary points of P
a chord of P .

3 Inscribed histogons

We compute a largest inscribed histogon in a convex
polygon P with n vertices for three versions of the prob-
lem: a unit histogon, a histogon of width k for a given
integer k, and a histogon of any integer width.

3.1 Largest inscribed unit histogon

For ease of discussion, we assume that no two edges of P
are parallel to each other. The case with parallel edges
can be handled with little modification. Observe that
not every convex polygon contains a unit histogon. The
following lemma shows the condition for P to contain a
unit histogon of a positive height.

Lemma 1 The longest horizontal chord in P has length
larger than 1 if and only if there is a unit histogon of a
positive height contained in P .
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Proof. Assume that the longest horizontal chord in P
has length larger than 1. Let s be a horizontal unit
segment contained in the interior of the longest chord.
Then s can be translated vertically upward or downward
while it is contained in P . Let s′ be such a translated
copy of s. Since P is convex, the convex hull of s and s′

is a unit histogon of a positive height contained in P .

Assume that there is a unit histogon H̄ of a posi-
tive height contained in P . Let s be a horizontal unit
segment contained in H̄, other than its top and bottom
sides. Since no two edges of P are parallel to each other,
one endpoint of s is in the interior of P . By extending s
until both endpoints of s meet ∂P , we get a horizontal
chord of length larger than 1 in P . □

By Lemma 1, we can determine the existence of a unit
histogon contained in P from the length of the longest
horizontal chord in P . Since P is convex and the vertices
of P are stored in an array in counterclockwise order
along ∂P , we apply binary search to find the longest
horizontal chord in P in O(log n) time.

From now on, we assume that the length of the longest
horizontal chord in P is larger than 1. Let P̄ be the
translate of P by vector (−1, 0). Let Q = P ∩ P̄ , which
is a convex polygon. Then there is one-to-one corre-
spondence between any vertical chord at x = t of Q and
the largest unit histogon with left side at x = t inscribed
in P . Moreover, the length of a vertical chord and the
height of its corresponding histogon are the same. Thus,
the height of any largest inscribed unit histogon of P is
the length of a longest vertical chord in Q. See Fig-
ure 2(a).

Note that ∂P and ∂P̄ intersect each other at most
twice. If there is a horizontal edge of length larger than
1 in P , one intersection may appear as a horizontal line
segment on the horizontal edge. Then each intersection
corresponds to the horizontal chord of unit length in P
or a horizontal edge of length larger than 1 of P . We
can compute the intersections ∂P ∩∂P̄ in O(log n) time
by binary search using the sorted array of vertices of
P . The longest vertical chord in Q, and the horizontal
chords of unit length of P , can be computed in O(log n)
time by applying binary search on the boundary of Q
using the sorted array of vertices of P .

To sum up, we can determine whether a unit histogon
of a positive height inscribed in P exists in O(log n)
time, and if so, we can compute the largest inscribed
unit histogon in the same time.

Theorem 2 Given a convex polygon P with n vertices
stored in an array in order along its boundary, we can
find in O(log n) time the largest unit histogon inscribed
in P .

Q

1

PP̄

W

1

(a) (b) (c)

W

H

Figure 2: (a) For the translate P̄ of P by vector (−1, 0),
P ∩ P̄ is also a convex polygon. (b) w̄ is 5.2 and w(H) =
⌊w̄⌋ − 2 = 3. (c) The largest histogon has width larger than
⌊w̄⌋ − 2.

1

P

P̄

(a) (b)

1

Q
Q̄

w(Q̄) = w̄

P

P̄

Figure 3: (a) Three unit histogons whose union is not a
3-histogon. (b) Every unit histogon intersects Q̄, and every
two consecutive unit histogons share a portion along their
vertical sides. Their union is a 3-histogon.

3.2 Largest inscribed histogon of a fixed width

Given a positive integer k > 1, we compute a largest
inscribed histogonH of P with w(H) = k. For t ∈ R, let
H(t) denote the largest inscribed k-histogon in P with
the leftmost vertical side at x = t, and let H̄(t) denote
the largest inscribed unit histogon of P with the left side
at x = t. Then H(t) can be determined by a disjoint
union of k unit histogons H̄(t), H̄(t+1), . . . , H̄(t+k−1).

It is possible that there is no k-histogon that can be
inscribed in P even if there are k interior-disjoint unit
histogons inscribed in P . Figure 3(a) shows an exam-
ple with three unit histogons whose union is not a 3-
histogon.

Thus, to guarantee a k-histogon inscribed in P , we
need the following lemma. Let Q̄ be the union of ℓ ∩Q
over all horizontal lines ℓ with |ℓ ∩Q| ≥ 1. Since Q is a
convex polygon, Q̄ is also a convex polygon.

Lemma 3 Assume that w(Q̄) ̸= k − 1. Then, w(Q̄) >
k − 1 if and only if there is a k-histogon that can be
contained in P .

Proof. Assume that w(Q̄) > k − 1. By letting t =
x(v) + ϵ for the leftmost vertex v of Q̄ and sufficiently
small ϵ > 0 (smaller than w(Q̄) − k + 1), |ℓi ∩ Q̄| > 0
for each vertical line ℓi : x = t+ i and |H̄(t+ i)| > 0 for
i = 0, 1, . . . , k−1. Observe that the union of H̄(t+i) for
i = 0, 1, . . . , k−1 is a k-histogonH(t) if and only if every
two consecutive unit histogons H̄(t+ i) and H̄(t+ i+1)
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share a portion (a point or a vertical segment) along
their vertical sides at x = t+ i+1 for i = 0, 1, . . . , k−2.
Two consecutive unit histogons H̄(t+i) and H̄(t+i+1)
share a portion along their vertical sides if and only if
there is a horizontal line ℓ that intersects both H̄(t+ i)
and H̄(t+ i+ 1).
Suppose that there is no horizontal line that intersects

both H̄(t + i) and H̄(t + i + 1). Then, we can find a
horizontal line ℓ′ such that ℓi ∩ Q̄ and ℓi+1 ∩ Q̄ are on
the opposite sides of ℓ′, and the length |ℓ′ ∩ Q̄| must be
smaller than 1. This contradicts to the definition of Q̄.
Therefore, the union of H̄(t + i) for i = 0, 1, . . . , k − 1
is a k-histogon contained in P . See Figure 3(b) for an
illustration.

Let H be a k-histogon that is inscribed in P . Then H
can be partitioned into k interior-disjoint unit histogons
H̄(t + i) of positive heights, each corresponding to a
vertical line ℓi : x = t+ i for i = 0, 1, . . . , k − 1, where t
is the x-coordinate of the leftmost side ofH. Since every
two consecutive unit histogons H̄(t+ i) and H̄(t+ i+1)
share a portion (a point or a vertical segment) along
their vertical sides at x = i+1, there is a horizontal line
ℓ that intersects both H̄(t+ i) and H̄(t+ i+ 1). Then
|ℓ ∩Q| ≥ 1 which means both ℓi and ℓi+1 intersects Q̄.
Thus w(Q̄) > k − 1. □

By Lemma 3, we can check whether a k-histogon ex-
ists in P by computing w(Q̄) using binary search. First,
we compute Q = P ∩ P̄ as we do in Section 3.1 in
O(log n) time. Since the vertices of Q are stored in an
array in order, Q̄ can be computed in O(log n) time by
locating the two horizontal chords of unit length in Q
by binary search on the array.

By applying binary search on the array of Q̄, we can
compute w(Q̄) in O(log n) time, and decide whether a
k-histogon can be inscribed in P or not by Lemma 3 if
w(Q̄) > k − 1. If w(Q̄) = k − 1, we have to check the
existence of H̄(x(v)+i) in P for i = 0, 1, . . . , k−1, where
v is the leftmost vertex of Q̄. From the convexity of P ,
the existence of H̄(x(v)+i) in P for i = 0, 1, . . . , k−1 can
be confirmed from the existence of two unit histogons
H̄(x(v)) and H̄(x(v) + k − 1) in P , which can be done
in O(log n) time by binary search on the array of Q.
Let I be the set of x-coordinates of all points in Q̄, so

I is equivalent to the projection of Q̄ onto the x-axis.
If a k-histogon H(t) can be inscribed in P , there are k
unit histogons H̄(t), H̄(t+1), . . . , H̄(t+k−1) inscribed
in P such that any two consecutive unit histogons share
a portion along their vertical sides. This implies that
t, t + 1, . . . , t + k − 1 must be contained in the interval
I.
We define a function f : R → R such that f(t) =

|H̄(t)| for any t ∈ I and f(t) = −∞ for any t /∈ I.
Observe that f is a concave function consisting O(n)
linear pieces.

Let F (x) =
∑

0≤i<k f(x + i). If there exists a k-

histogon H(x) inscribed in P , F (x) is the area of H(x).
Otherwise, F (x) is −∞. Observe that F is also a con-
cave, piecewise linear function with O(kn) complexity.
Our goal is to maximize the function F (x) over x ∈ R.
Let x∗ ∈ R be a value at which F attains the maxi-
mum. If there are more than one such value, we choose
the least one as x∗.
Let F ′

− be the left-hand derivative of F . There exists
a real value x̂ ∈ R such that F ′

−(x̂) > 0 and F ′
−(x̂ +

1) ≤ 0, since F is a concave function. If we restrict the
domain of F to [x̂, x̂+ 1), the function consists of O(n)
pieces and we find x∗ on it.

We present two algorithms for finding x∗, one using
O(n) time which is optimal for k = Ω(n) (Section 3.2.1)
and one using O(k log2 n

k ) time for k = O(n) (Sec-
tion 3.2.2).

3.2.1 An O(n)-time algorithm

We present an O(n)-time algorithm for finding x∗,
which is optimal for k = Ω(n). Recall that we can
get the interval I in O(log n) time. We compute the
function f that maps t ∈ I to |H̄(t)| and t /∈ I
to −∞ by traversing Q in O(n) time. Assume that
f consists of m + 2 linear pieces, where m = O(n).
h0, h1, . . . , hm, hm+1 denote the linear functions of these
pieces in the order of their domain. Let h′

i denote the
derivative of hi and (ai, ai+1] denote the domain of hi

for i = 0, 1, . . . ,m + 1. From the construction of f ,
a0 = −∞, am+2 = +∞, h′

0 = +∞, and h′
m+1 = −∞.

Lemma 4 We can find x̂ such that F ′
−(x̂) > 0 and

F ′
−(x̂+ 1) ≤ 0 in O(n) time using O(n) space.

Proof. Let ti be the smallest integer in (ai, ai+1] and
let Ni be the number of integers in (ai, ai+1] for i =
1, 2, . . . ,m. Then F ′

−(ti) =
∑

i≤j<ri
(h′

j · Nj) + h′
ri ·

(k −
∑

i≤j<ri
Nj), where ri is the largest integer such

that
∑

i≤j<ri
Nj < k. Note that ri ≤ ri+1 for each

integer i. Then we compute
∑

i≤j<ri
(h′

j · Nj) for all
integers i inO(n) time in total. Thus we compute F ′

−(ti)
for all integers i in O(n) time. We find an index L
such that F ′

−(tL) > 0 and F ′
−(tL+1) ≤ 0 in O(n) time.

Similarly, we find an index R such that F ′
−(tR − k) > 0

and F ′
−(tR+1 − k) ≤ 0.

Then there exists an integer sL with 0 ≤ sL < NL

such that F ′
−(tL + sL) > 0 and F ′

−(tL + sL + 1) ≤ 0,
and there exists an integer sR with 0 ≤ sR < NR such
that F ′

−(tR − k+ sR) > 0 and F ′
−(tR − k+ sR +1) ≤ 0.

This means that x̂ = tL + sL = tR − k + sR.
Observe that F ′

−(tL+a) =
∑

L≤j<R(h
′
j ·Nj)−h′

L ·a+
h′
R · b, where b = a+ k− (tR − tL). Since the first term∑
L≤j<R(h

′
j ·Nj) remains the same for varying a, we can

find sL satisfying F ′
−(tL+sL) > 0 and F ′

−(tL+sL+1) <
0 in O(n) time. Then sR = sL + k − (tR − tL). Thus
we compute x̂ such that F ′

−(x̂) > 0 and F ′
−(x̂+ 1) ≤ 0

in O(n) time. □
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Then x∗ = max{x ∈ [x̂, x̂ + 1) | F ′
−(x) > 0}. For

each integer i with 1 ≤ i ≤ m, let ki(x) be a function
ki : [0, 1) 7→ Z that maps x ∈ [0, 1) to the number of
integers j with 0 ≤ j < k satisfying x̂+x+j ∈ (ai, ai+1].
Note that ki is a step function having at most three steps
in domain [0, 1). Let gi(x) = ki(x) · h′

i be a function
gi : [0, 1) → R for each integer i with 1 ≤ i ≤ m.
Then gi is also a step function with at most three steps
in domain [0, 1). For given an integer i, functions ki,
h′
i, and gi can be computed in O(1) time. In a step

function, each step has an interval as its domain and
endpoints of the interval are called breakpoints of the
step function. Then

∑
1≤i≤m gi(x) = F ′

−(x̂+ x) and x∗

is a breakpoint of gi’s. For a breakpoint s of gi’s, we can
compute F ′

−(x̂+ s) in O(m) = O(n) time by computing
gi(s) for each i and taking the sum of them. Since F ′

−
is decreasing, we can find x∗ in the set of breakpoints
by using the median of the set.

Lemma 5 We can find x∗ ∈ [x̂, x̂ + 1) in O(n) time
using O(n) space.

Proof. We can construct all gi functions in O(n) time
since each gi can be computed in O(1) time. Let X be
the set of breakpoints in all gi’s. Then |X| = O(n)

We find x∗ in X iteratively by using the medians of
X. The number of breakpoints of X halves over each it-
eration, and thus the total time spent for computing the
median s and F ′

−(x̂+s) is O(n). The median s of X can
be computed by a selection algorithm that takes time
linear to the cardinality of X using Hoare’s selection
algorithm [11]. Note that F ′

−(x̂ + x) =
∑

1≤i≤m gi(x)
and gj remains constant in the rest of iterations if X
contains no breakpoint of gj . Let G be the sum of gj ’s
values such that X contains no breakpoint of gj . In
each iteration, we compute the sum of gi(s) if X con-
tains a breakpoint of gi, and compute F ′

−(x̂ + s) from
the sum and G. Then we update X by removing those
breakpoints larger than s if F ′

−(x̂+ s) ≤ 0, and remov-
ing those breakpoints smaller than s if F ′

−(x̂ + s) > 0.
Finally, we update G. This can be done in time linear
to the number of breakpoints in X. We repeat this until
X consists of at most two breakpoints.

Observe that F ′
− has a positive value at one of the

breakpoints. We return the breakpoint as x∗. Since the
size of X halves over each iteration, the total time spent
over all iterations is O(n). Therefore, x∗ can be found
in O(n) time using O(n) space. □

Combining Lemma 4 and Lemma 5, we have the fol-
lowing theorem.

Theorem 6 Given a convex polygon P with n vertices
given in order along its boundary and an integer k > 1,
we can find the largest inscribed k-histogon H in P in
O(n) time using O(n) space.

3.2.2 An O(k log2 n
k )-time algorithm

We present another algorithm for finding x∗ in
O(k log2 n

k ) time for k = O(n). From now on, we as-
sume that n ≥ 4k. If n < 4k, we apply the algorithm in
Section 3.2.1 taking O(k) time. We partition Q = P ∩P̄
into two parts along the line ℓ through the leftmost ver-
tex and the rightmost vertex of Q. Let Q+ denote the
upper part and let Q− denote the lower part of it. Ob-
serve that any vertical chord of Q can be partitioned
into two pieces by ℓ, one vertical chord of Q+ and one
vertical chord of Q−.

We group the edges of Q+ into blocks B1, B2, . . . , Bm

of size ⌊n
k ⌋ consecutively in order from left to right. Sim-

ilarly, we group the edges of Q− to blocks C1, C2, . . . , Cl

of size ⌊n
k ⌋ consecutively in order from left to right.

Both m and l are O(k). Every block has size ⌊n
k ⌋, ex-

cept that the last blocks, Bm and Cl, may consist of less
number of edges. For an edge e of P , we say e contains
an x-coordinate t if the vertical line at x = t intersects
e. We say a block B contains an x-coordinate t if B
contains an edge e and e contains an x-coordinate t.
Our algorithm works as follows. It first computes x̄

that maximizes f(x), and sets D = f ′
−(x̄). It initializes

indices i = 0 and j = 0. Then it searches x̂ linearly from
x̄ by updatingD value k−1 times as follows. It increases
i by 1 and sets w = x̄ + i if D > 0, and it increases j
by 1 and sets w = x̄− j if D ≤ 0. Then it finds blocks
Bs and Ct that contain w, computes f ′

−(w) using the
edges containing w, and updates D = D+f ′

−(w). After
k−1 iterations, we have D = F ′

−(x̄− j). The algorithm
returns x̂ = x̄− j if D > 0, and x̂ = x̄− j − 1 if D ≤ 0.

Lemma 7 We can find x̂ such that F ′
−(x̂) > 0 and

F ′
−(x̂+ 1) ≤ 0 in O(k log n

k ) time using O(n) space.

Proof. First we compute x̄ that maximizes f(x) in
O(log n) time using binary search. Since F (x) =∑

0≤i<k f(x + i) and f is a concave, piecewise linear
function, we can get a larger k-histogon than H(x) by
decreasing x if x̄ < x or by increasing x if x+k−1 < x̄.
Then x̄ − k + 1 ≤ x∗ ≤ x̄. At the end of iterations,
D = F ′

−(x̄ − j). If D > 0, F ′
−(x̄ − j) > 0 and

F ′
−(x̄ − j + 1) ≤ 0, that is x̂ = x̄ − j. If D ≤ 0,

F ′
−(x̄−j−1) > 0 and F ′

−(x̄−j) ≤ 0, that is x̂ = x̄−j−1.
Note that the indices s and t of blocks Bs and Ct con-
taining w = x̄ + i monotonically increase while i in-
creases. The indices s′ and t′ of blocks Bs′ and Ct′

containing w = x̄ − j monotonically decrease while j
increases. Then the step for finding the blocks takes
O(k) time in total, since the number of blocks is O(k).
Moreover, we can find two edges containing w = x̄ + i
or w = x̄−j in the blocks in O(log n

k ) time using binary
search. Thus the time complexity of the algorithm is
O(k log n

k ) time using O(n) space. □

We define a function qi : [0, 1) 7→ R for each inte-
ger i with 0 ≤ i < k by qi(x) = f ′

−(x̂ + i + x). Then
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∑
0≤i<k qi(x) = F ′

−(x̂+ x). Note that qi is a step func-
tion on its domain and the total number of breakpoints
of all qi’s is O(n). Let b∗ be the largest breakpoint of
qi’s such that

∑
0≤i<k qi(b

∗) = F ′
−(x̂ + b∗) > 0. Then

x∗ is x̂+ b∗ since x∗ = max{x ∈ [x̂, x̂+1) | F ′
−(x) > 0}.

Note that each breakpoint is induced by a vertex of
Q. Consider the sequence of the breakpoints of qi in-
duced by the vertices on Q+ from left to right. Let bi,j
denote the j-th breakpoint of qi in the sequence. Sim-
ilarly, in the sequence of the breakpoints of qi induced
from the vertices on Q− from left to right, let ci,j be
the j-th breakpoint of qi in the sequence. Then there
are 2k sequences, two for each qi, and there are O(n)
breakpoints in total.

Lemma 8 After O(k log n
k )-time preprocessing, we can

get bi,j and ci,j in O(1) time for any given indices i and
j.

Proof. We show how to get bi,j . We can get ci,j sim-
ilarly. Let ui,j denote the vertex corresponding to bi,j .
By the definition of qi, x(ui,j) = x̂ + i + bi,j . Thus,
for given indices i and j, we can get bi,j in O(1) time
if we can get x(ui,j) in O(1) time. We group the ver-
tices of Q+ into blocks of size ⌊n

k ⌋ consecutively in order
from left to right. Let B and B′ be the two leftmost
blocks containing some t ∈ [x̂+ i, x̂+ i+ 1). Then ui,1

is the leftmost vertex on edges of B and B′ satisfying
x(ui,1) ∈ [x̂ + i, x̂ + i + 1). We search for B and B′

for every i linearly in O(k) time. For each i, we find
ui,1 using binary search in O(log n

k ) time. Thus, we can
find ui,1 for every qi in O(k log n

k ) time. Then we can
get x(ui,j) for j > 1 for each qi in O(1) time as the
vertices of Q are stored in an array in order along its
boundary. □

By Lemma 8, we can construct the collection of 2k
sequences implicitly in O(k log n

k ) time such that each
breakpoint can be accessed in constant time. Our goal
is to find the largest breakpoint b∗ in the collection such
that

∑
0≤i<k qi(b

∗) > 0.
Kaplan et al. [13] gave a selection algorithm for a

row-sorted matrix A with m rows that computes the k
smallest items of A in O(m + k) time. Frederickson et
al. [9] also gave an O(m)-time algorithm for finding the
k-th smallest item of A. We describe an algorithm that
finds b∗ in the collection of 2k sequences in O(k log2 n

k )
time. Recall that n ≥ 4k. We partition each sequence
of the collection into blocks of size ⌊ n

4k ⌋. They are par-
titioned into a number of full blocks, followed possibly
by one block of size less than ⌊ n

4k ⌋. Then the number
of blocks in the collection is Θ(k). We set the last el-
ement in each block as the representative of the block.
We select k smallest representatives among all repre-
sentatives in O(k) time using the selection algorithm by
Kaplan et al. We claim that the k-th smallest repre-
sentative r is an approximated median of the collection.

First, the rank of r in the collection is at least n
8 , since

n
8 ≤ k⌊ n

4k ⌋ for n ≥ 4k. Second, the number of blocks
containing a breakpoint less than r is at most 3k − 1
in the collection, since r is the k-th smallest represen-
tative. Then the rank of r in the collection is less than
n− (3k − 1)⌊ n

4k ⌋ ≤ n− n
2 = n

2 .
We evaluate F ′

−(r) =
∑

1≤i≤k qi(r). If F
′
−(r) ≤ 0, we

shrink the search range of each sequence of the collection
to the range of the elements smaller than r. If F ′

−(r) >
0, we shrink the search range of each sequence of the
collection to the range of the elements larger than or
equal to r. The number of breakpoints in the collection
decreases by a constant factor at each iteration.

To evaluate
∑

1≤i≤k qi(r), we need to locate the po-
sition of r in each sequence of the collection, except the
sequence where r was selected. For each sequence, we
already know the block containing r, and we can find
the position of r in the block using binary search in
O(log n

k ) time. Thus it takes O(k log n
k ) time to com-

pute the positions of r in all sequences in total.
After O(log n

4k ) iterations, the number of remaining
breakpoints in the collection becomes smaller than 4k.
Then we use the algorithm in Section 3.2.1 with all el-
ements in the collection to find b∗ taking O(k) time.

Taken together, there are O(log n
k ) iterations, each of

which takes O(k log n
k ) time. Thus it takes O(k log2 n

k )
time using O(n) space to find x∗ = x̂+ b∗.

Theorem 9 Given a convex polygon P with n vertices
stored in an array in order along its boundary and an
integer k = O(n), we can find the largest inscribed k-
histogon H in P in O(k log2 n

k ) time using O(n) space.

3.3 Largest inscribed histogon

Now we consider the variation that no restriction is im-
posed on the width of a largest inscribed histogon in P .
We find the largest inscribed histogon H in P .

Recall that Q̄ is the union of ℓ ∩ Q with |ℓ ∩ Q| ≥ 1
for all horizontal lines ℓ. Let w̄ = w(Q̄). Then the
largest inscribed histogon has width at most ⌊w̄⌋+1 by
Lemma 3.

We now claim that the width of the largest inscribed
histogon in P is either ⌊w̄⌋−1, ⌊w̄⌋ or ⌊w̄⌋+1. Suppose
that the largest inscribed histogon H in P has width
k ≤ ⌊w̄⌋−2. Then there are k vertical lines intersecting
Q̄ such that all distance between two consecutive lines
is 1. Since w̄ − k + 1 ≥ 3, the leftmost vertical line is
at distance larger than 1 from the leftmost point of Q̄
or the rightmost vertical line is at distance larger than
1 from the rightmost point of Q̄. Thus, we can always
attach a unit histogon with positive height to the left or
right of H and get an inscribed histogon with a larger
area in P . Thus, the largest histogon has width ⌊w̄⌋−1,
⌊w̄⌋ or ⌊w̄⌋+1. See Figure 2(b–c). Once we compute w̄
in O(log n) time, we can compute the largest histogons
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(of width ⌊w̄⌋−1, ⌊w̄⌋ and ⌊w̄⌋+1) using the algorithms
in Section 3.2 and choose the largest one.
In conclusion, we can compute the largest inscribed

histogon of P in O(n) time using O(n) space by Theo-
rem 6. For w̄ = O(n), we can compute it in O(w̄ log2 n

w̄ )
time using O(n) space by Theorem 9.

Theorem 10 Given a convex polygon P with n ver-
tices stored in an array in order along its boundary,
we can find the largest inscribed histogon in P in
O(min{n, w̄ log2 n

w̄}) time using O(n) space, where W
denotes the width of the largest inscribed histogon in P .

4 Smallest circumscribed histogon

We consider the problem of covering a convex polygon
P with n vertices by a histogon with smallest area and
present algorithms for computing the smallest circum-
scribed histogon of P .

We denote by H̄(t) the smallest unit histogon with
the left side at x = t that covers the part of P between
x = t and x = t + 1. Let lt denote the intersection
between P and the vertical line x = t. Observe that
H̄(t) is defined if lt or lt+1 has a positive length, and
|H̄(t)| = max{|lt|, |lt+1|}.

Let H∗ denote the smallest histogon covering P , and
let x∗ be the x-coordinate of the leftmost vertical side of
H∗. Then H∗ can be represented by the disjoint union
of w(H∗) unit histogons, H̄(x∗), H̄(x∗ + 1), . . . H̄(x∗ +
w(H∗)− 1).
We denote by P̂ the Minkowski sum of P and the hor-

izontal segment with endpoints (−1, 0) and (0, 0). Note
that the length of the longest vertical segment contained
in P̂ at x = t is the same as |H̄(t)|.

We define a function g : R 7→ R by g(t) = |H̄(t)|
if H̄(t) is defined, otherwise g(t) = −∞. Then g is a
concave, piecewise linear function, since P̂ is convex and
g(t) is the length of the longest vertical segment at x = t
contained in P̂ .

Lemma 11 Let H∗ be a smallest histogon covering P .
Then, w(H∗) = ⌈W ⌉, where W is the (horizontal) width
of P . There is a smallest histogon covering P whose
leftmost vertical side contacts the leftmost vertex of P
or whose rightmost vertical side contacts the rightmost
vertex of P .

Proof. Let xl and xr be the x-coordinates of the left-
most vertex and the rightmost vertex of P , respectively.
Any smallest histogon H∗ covering P with its leftmost
vertical side with x = x∗ satisfies xl − 1 < x∗ ≤ xl

and xr ≤ x∗ + w(H∗) < xr + 1. Thus, w(H∗) ≥
⌈xr − xl⌉ = ⌈W ⌉ and w(H∗) ≤ ⌈W ⌉ + 1. Suppose
that w(H∗) = ⌈W ⌉+1. We define a function G : I 7→ R
by G(x) =

∑
0≤i<⌈W⌉+1 g(x + i), where I is a maxi-

mal interval such that g(x + i) > 0 for all integers i

with 0 ≤ i < ⌈W ⌉ + 1. We minimize G(x) subject to
x ≤ xl and xr ≤ x+ ⌈W ⌉+ 1, which P can be circum-
scribed by the union of H̄(x), H̄(x+1), . . . H̄(x+ ⌈W ⌉).
If G(x) has a minimum, G(x) is minimized at x = xl

or x = xr − ⌈W ⌉ − 1 since G is also concave and piece-
wise linear as g. Thus x∗ = xl or x∗ = xr − ⌈W ⌉ − 1
which means H∗ touches either the leftmost vertex
or the rightmost vertex of P . Then either H̄(x∗) or
H̄(x∗ + ⌈W ⌉) does not intersect P , a contradiction.
Thus, w(H∗) = ⌈W ⌉ and H∗ touches either the left-
most vertex or the rightmost vertex of P . □

By Lemma 11, w(H∗) = ⌈W ⌉ and there are only two
candidate locations for H∗, one with x∗ = xl and one
with x∗ = xr − ⌈W ⌉. To compute their areas, we can
use the method for computing the area of the largest
inscribed histogon in Section 3.3. More precisely, we
show how to compute the area of the smallest circum-
scribed histogon with x∗ = xl. We construct function g
in O(n) time using the vertices of P̂ stored in an array
in order along its boundary which can be computed in
O(log n) time. For each piece of g, we find in O(1) time
the smallest integer s and the largest integer t such that
xl+s and xl+t are contained in the domain of the piece.
Then we can compute

∑
s≤i≤t g(xl+i) in O(1) time. By

summing the values over all pieces,
∑

0≤i<⌈W⌉ g(xl + i)

can be computed in O(n) time. If W = O(n), similar
to Lemma 8, we find two edges containing x = xl + i
for all 0 ≤ i < ⌈W ⌉ in O(W log n

W ) time and com-
pute

∑
0≤i<⌈W⌉ g(xl + i) in O(W ) time. Among two

candidates for H∗, the smaller one is the smallest cir-
cumscribed histogon of P .

Theorem 12 Given a convex polygon P with n ver-
tices stored in an array in order along its boundary,
we can find the smallest circumscribed histogon of P in
O(min{n,O(W log n

W )}) time using O(n) space where
W denotes the width of the smallest circumscribed his-
togon in P .

5 Discussion

We present algorithms for computing the largest in-
scribed histogon and the smallest circumscribed histo-
gon for a convex polygon. The histogons are required
to be axis-aligned. A direction for future work is to
consider a generalization of the problem in which the
histogons can be of arbitrary orientations.
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Fast Deterministic Approximation of Medoid in Rd

Ovidiu Daescu∗ Ka Yaw Teo†

Abstract

For a set P of n points in Rd, the medoid is the point
in P with the minimal sum of distances to P . We
present two new deterministic algorithms for approxi-
mating the medoid of P within a factor of (1 + ε) in
time O(nε−d log n) and O(nε−d + n log n), respectively.
Our results rely on a quick approximation of the sum
of the distances between P and any given point of P .
Our algorithms are simple, versatile, and easily imple-
mentable.

1 Introduction

In this paper, we consider the following problem:

Given a set P of n points in Rd, locate a point in
P that minimizes the sum of the Euclidean distances
between P and the located point.

The optimal point for the problem is commonly re-
ferred to as the medoid. One would encounter the prob-
lem of computing the medoid in various contexts such
as clustering in data science [19, 21, 25], optimizing fa-
cility location in operations research [10, 11, 15, 22], and
quantifying centrality in network analysis [6, 7, 16, 17,
26].
Naively, one can find the medoid of P by simply com-

puting all
(
n
2

)
pairwise distances. However, it has been

argued that an exact algorithm does not exist for solv-
ing the medoid problem in o(n2) time [23]. Different
approaches have thus been developed to compute the
medoid in sub-quadratic time either approximately or
exactly under statistical assumptions.
Eppstein and Wang [13] proposed a randomized

method that takes O(nε−2 log n) distance computations
to approximate the medoid within an additive error of
εD with high probability, where D is the diameter of
P , which may not be known apriori. This result was
later improved by Okamoto et al. [24], whose algorithm

requires O(n5/3 log4/3 n) distance evaluations to return
the exact medoid with high probability under certain
statistical assumptions on P . Later on, Newling and
Fleuret [23] presented an algorithm for finding the true
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las, ovidiu.daescu@utdallas.edu

†Department of Computer Science, University of Texas at Dal-
las, ka.teo@utdallas.edu

medoid using O(n3/22Θ(d)) distance computations un-
der certain assumptions on the distribution of the given
points near the medoid. Soon after, a sampling-based
algorithm was given by Bagaria et al. [4] for computing
the exact medoid with high probability, and their al-
gorithm takes a total of O(n log n) distance evaluations
under a distributional assumption on the input points.
By exploiting the underlying structure of the problem,
Baharav and Tse [5] derived an improvement to Bagaria
et al.’s algorithm, obtaining a gain of two to three orders
of magnitude in number of distance computations.

Note that all the algorithms aforementioned have
been derived in the context of network analysis, where
n is the number of nodes in an undirected graph, and
the distance metric is the length of the shortest path
between nodes. Nonetheless, the algorithms can be ef-
fectively applied to any point set under the Euclidean
metric, in which case the time complexity of each said
algorithm would be equal to its associated number of
distance computations multiplied by a factor of d.
In addition, there are randomized algorithms based

on coreset techniques [14, 27] capable of addressing the
problem considered herein. Specifically, one can com-
pute an ε-coreset of a point set P in Rd, which is a
small weighted subset of P , such that for any point
q ∈ Rd, the distance sum

∑
p∈P ∥p − q∥ can be ap-

proximated up to a factor of (1 + ε) by using the dis-
tances between q and the weighted points in the core-
set. A coreset of size O(dε−2) and O(poly(1/ε)) can
be constructed in time O(dn + log2 n + dε log n) and
O(nnz(A)+ (n+ d)poly(1/ε)+ exp(poly(1/ε))), respec-
tively, where nnz(A) is the number of non-zero entries
in the n× d matrix A of the coordinates of P . As a re-
sult, one can find a (1+ε)-approximation to the medoid
with high probability in O(n · poly(1/ε)) time.

For a set P of n points in R2, Har-Peled et al. [20] ob-
tained an exact algorithm that computes the medoid in
O(n log2 n · (log n log logn+ cP )) expected time, where
cP is the size of the largest subset of P in convex po-
sition. When the points of P are located uniformly at
random on the unit square, cP is bounded by Θ(n1/3) in
expectation [2], and thus the medoid can be computed
in O(n4/3 log2 n) expected time.

2 Our results

Given an ε > 0, a point x is said to be a (1 + ε)-
approximate solution if the sum of the distances from x
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to P is at most (1 + ε) times the sum of the distances
from the true medoid. Throughout the paper, we as-
sume that d and ε are fixed constants independent of
n; nevertheless, we include them in some of the asymp-
totic results to indicate their dependencies. In addition,
we assume, without loss of generality, that P has been
scaled so that it is enclosed within a unit hypercube.

We begin in Section 3 by describing an algorithm
to compute a (1 + ε)-approximate medoid in time
O(nε−d log n). This algorithm uses a new data structure
named well separated subset decomposition (WSSD),
which extends on the classical idea of the well separated
pair decomposition (WSPD) by Callahan [9]. WSSD
partitions P into O(log n) clusters that preserve the dis-
tances of P to each of the n candidate points.
In Section 4, we encode the pairwise distances be-

tween the points of P by directly using WSPD. We can
then estimate the medoid within a factor of (1 + ε) in
time O(nε−d + n log n), provided that the pairwise dis-
tances associated with the well separated pairs are com-
puted and summed in the right order. If ε−d = O(log n),
our algorithm would run in O(n log n) time.

To the best of our knowledge, all the previous ap-
proximation methods for solving the medoid problem
are randomized, making our algorithms the first deter-
ministic fully polynomial-time approximation schemes
(FPTASs) with a time complexity near-linear in n.

3 O(nε−d logn)-time (1 + ε)-approximation

We propose an O(nε−d log n)-time approximation algo-
rithm involving the following partitioning scheme.

Well separated subset decomposition (WSSD)

Let C denote a subset of P . Define s > 0 to be a
parameter called separation factor. With respect to a
candidate point p ∈ P , for some r ∈ R≥0, if the points
of C can be enclosed within a Euclidean ball of radius
r such that the closest distance from this ball to p is at
least sr, then C is said to be s-well separated from p.

Definition 1 (WSSD) Given a set P of n points, a
point p, and a separation factor s > 0, an s-well sep-
arated subset decomposition (s-WSSD) with respect to
p is defined as a collection of subsets of P , denoted by
{C1, C2, . . . , Ck}, such that (I) Ci ⊆ P for 1 ≤ i ≤ k,
(II) Ci ∩ Cj = ∅ for 1 ≤ i, j ≤ k and i ̸= j, (III)
∪ki=1Ci = P , and (IV) Ci is s-well separated from p for
1 ≤ i ≤ k.

An s-WSSD can be constructed from either a kd-tree
[8] or a balanced box decomposition (BBD) tree [3].
Both of these data structures are based on a hierarchical
subdivision of space into rectilinear regions called cells.
The size of a cell is given by the length of its longest

side. For a set P of n points in Rd, it is possible to
build, in time O(n log n), an optimized kd-tree [18] or a
BBD-tree with height O(log n) and space O(n). In ei-
ther tree, each internal node has two children, and each
leaf node contains a single point. Unlike a kd-tree, the
cells of a BBD-tree have a bounded aspect ratio, and
the sizes of the cells decrease by (at least) a factor of
1/2 with each descent of 2d levels in the tree.

Theorem 1 For a set P of n points and any s > 0,
with respect to a point p, one can construct an s-WSSD
of size O(sd log n) in time O(n log n+ sd log n).

Proof. We begin by building a kd-tree or a BBD-tree
for P . Each leaf node, which contains a single point, is
treated as having an infinitesimally small cell containing
its point.

The construction of an s-WSSD, with respect to a
point p, is based on a recursive process. Throughout the
construction, we maintain a collection of sets that sat-
isfy properties (I), (II), and (III) as stated in Definition
1. When the procedure terminates, all the sets gener-
ated will fulfill property (IV). Each set of the s-WSSD
will be encoded as a node in the kd-tree or BBD-tree.

Let u denote a node in either tree. Consider the small-
est Euclidean ball that encloses the cell of node u. If
the ball is s-well separated from point p, then we report
node u as an s-well separated subset. Otherwise, we
apply the procedure recursively to each child node of u.
Let WSSD(u, p, s) denote said procedure.

Note that we can determine whether a node u (i.e.,
its smallest enclosing Euclidean ball) is s-well separated
from point p in O(1) time. This requires computing
the smallest Euclidean ball enclosing the cell of node u,
either at the time of determining the separation between
node u and point p or in advance (when creating the tree
data structure).

In the procedure WSSD(), we divide a node u only
if the call WSSD(u, p, s) is non-terminal – that is, node
u is not an s-well separated subset. Each non-terminal
call generates at most two recursive calls, through which
a terminal call may arise. Note that each terminal call
produces at most one well separated subset. Thus, the
total number of well separated subsets is at most two
times the number of non-terminal calls.

To evaluate the number of s-well separated subsets
generated in the recursive process, we use a packing
argument (to count the number of non-terminal calls),
which slightly differs depending on either an optimized
kd-tree or a BBD-tree is used as the basis for the con-
struction of the s-WSSD.

kd-tree-based s-WSSD. Each of the nodes at a
given level in an optimized kd-tree is associated with
(nearly) the same number of points (which is a result
of choosing the median as the cutting value). Consider
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the nodes at a given level λ of the kd-tree, where the
cell associated with each node contains bλ points. Let
V denote the volume of the cell associated with any
node at level λ in the kd-tree. As shown by Friedman
et al. [18], the expected volume of each such cell is
approximately E[V ] = bλ

n+1 ·
1
Pλ

, where Pλ is the proba-

bility density averaged over the cell (assuming that the
probability distribution of the points within the cell is
approximately constant). Let α be the size of the cell.
Then, the expected size E[α] of the cell is simply the
d-th root of the expected volume of the cell – that is,
E[α] = E[V ]1/d. The expected number of nodes at level
λ being divided in the procedure must be bounded from
above by the expected number of cells at level λ over-
lapping the ball of radius sr centered at p – that is,
(1 + ⌈2sr/E[α]⌉)d. Given that r = E[α]

√
d/2, the up-

per bound becomes (1 + s
√
d)d = O(sd). Since there

are O(log n) levels in the kd-tree, the expected num-
ber of non-terminal calls to the procedure WSSD() is
O(sd log n). Hence, the expected number of s-well sep-
arated subsets is 2 ·O(sd log n) = O(sd log n).

BBD-tree-based s-WSSD. For the case of a BBD-
tree, we use a similar packing argument as that for a
kd-tree. Recall that point set P has been scaled so that
it is enclosed within a unit hypercube. As a result, the
cells of the BBD-tree have sizes that are powers of 1/2.

For analysis purposes, we congregate the nodes in
the BBD-tree into groups according to the sizes of their
associated cells. Define size group i to be the set of
nodes whose cell size is 1/2i. Note that a node and
its child may have the same size, and thus we cannot
apply the packing argument directly to each size group.
Define base group i to be the subset of nodes in size
group i that are leaf nodes or whose children belong to
the next smaller size group. The cells corresponding to
the nodes in a base group are pairwise interior-disjoint.
For each base group i, the number of cells overlapping
the ball of radius sr centered at p is bounded from

above by
(
1 +

⌈
2sr/

(
1/2i

)⌉)d
. Since r =

(
1/2i

)√
d/2,

the upper bound becomes O(sd). Note that at most
2d levels of ancestors above the nodes in the base
group can be in the same size group. In addition, the
BBD-tree is O(log n) in height, which implies that the
total number of base groups is bounded by O(log n).
So, the total number of non-terminal calls to WSSD()
is O(2d · sd log n) = O(sd log n). As a result, the total
number of s-well separated subsets generated with
respect to point p is 2 ·O(sd log n) = O(sd log n).

In both cases above, the asymptotic upper bound
on the number of s-well separated subsets generated is
O(sd log n), with the distinction that the upper bound
applies to the worst case for the BBD-tree, whereas the
upper bound is derived with respect to the average (ex-

pected) case for the kd-tree. Together with O(n log n)
time to build either tree, the overall running time is
O(n log n+ sd log n). □

We now describe a technical lemma associated with
an s-WSSD, which will be used later in approximating
the medoid.

Lemma 2 (WSSD Utility Lemma) If subset C is s-
well separated from point p, and c, c′ ∈ C, then we have
∥c′ − p∥ ≤

(
1 + 2

s

)
∥c− p∥.

Proof. Due to the triangle inequality, we have ∥c′ −
p∥ ≤ ∥c − p∥ + ∥c − c′∥. Since C is enclosed within a
ball of radius r and is s-well separated from p, we have
∥c′ − p∥ ≤ ∥c − p∥ + 2r = ∥c − p∥ + 2r

sr sr ≤ ∥c − p∥ +
2
s∥c− p∥ =

(
1 + 2

s

)
∥c− p∥. □

WSSD-based approximation

This section discusses the usage of a WSSD for approx-
imating the medoid of P . We present the arguments
only for the WSSD constructed from a BBD-tree, since
the analysis is similar for the case of using a kd-tree,
aside from that the resulting time complexity would be
of the average case instead of the worst case.

Theorem 3 Given a set P of n points in Rd, for any
ε > 0, a (1 + ε)-approximation to the medoid of P can
be computed in time O(nε−d log n).

Proof. First, we build a BBD-tree for P , using which
we construct an s-WSSD with respect to each of the
n candidate points in P . According to Theorem 1,
the total construction time is bounded by O(n log n +
nsd log n) = O(nsd log n). We make a small augmenta-
tion to the construction of the WSSD as follows. When
building a BBD-tree, we associate each node u of the
tree with a quantity |u| indicating the number of points
lying within its cell. When we output a node u as an
s-well separated subset with respect to a point p in the
decomposition process, we report |u| and the farthest
point within the cell of node u from p (which may not
necessarily be a point of P ). Since the farthest point
within a hypercube from p is one of the 2d vertices of
the hypercube, we can find the farthest point in O(2d)
time, which is just O(1) given that d is treated as a
constant. Thus, the overall running time for the con-
struction of the WSSD remains the same as before.

Let {Ci | 1 ≤ i ≤ kp} be the collection of s-well
separated subsets with respect to a point p. Let ϕ(Ci)
denote the farthest point within the cell containing Ci

from point p, and let |Ci| be the number of points in
Ci. With respect to each candidate point p ∈ P , we
compute the distance sum

∑
i |Ci| · ∥ϕ(Ci) − p∥, and

output the point p achieving the smallest distance sum.
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Suppose that the aforementioned approach yields
point x as an approximate medoid for P . Let {Ai |
1 ≤ i ≤ kx} be the set of s-well separated subsets
with respect to x. Then, by Lemma 2, for each s-
well separated subset Ai, we have |Ai| · ∥ϕ(Ai) − x∥ ≤∑

a∈Ai

(
1 + 2

s

)
∥a−x∥. Since ϕ(Ai) is the farthest point

within the cell containing Ai from x, by summing over
all i, we obtain∑
p∈P

∥p−x∥ ≤
∑
i

|Ai|·∥ϕ(Ai)−x∥ ≤
(
1 +

2

s

)∑
p∈P

∥p−x∥

Let m denote the exact medoid of P . Let {Bi : 1 ≤
i ≤ km} be the set of s-well separated subsets with
respect to m. We then have∑

p∈P

∥p−m∥ ≤
∑
p∈P

∥p− x∥ ≤
∑
i

|Ai| · ∥ϕ(Ai)− x∥

≤
∑
i

|Bi| · ∥ϕ(Bi)−m∥

≤
(
1 +

2

s

)∑
p∈P

∥p−m∥

Given any ε > 0, we set s = 2/ε. Then, we obtain∑
p∈P

∥p−m∥ ≤
∑
p∈P

∥p− x∥ ≤ (1 + ε)
∑
p∈P

∥p−m∥

This implies that the output point x is a (1 +
ε)-approximation to the medoid of P . The over-
all running time is bounded by O(n(2/ε)d log n) =
O(nε−d log n). □

4 O(nε−d + n logn)-time (1 + ε)-approximation

In this section, we derive an algorithm for computing a
(1 + ε)-approximation to the medoid of P in O(nε−d +
n log n) time. First, we use a WSPD to represent the
distances between the points of P . After obtaining such
a representation, we carefully enumerate the pairwise
distances in an order such that the sum of the distances
from P to each representative point is approximated
correctly.

Well separated pair decomposition (WSPD)

A WSPD [9] is formally defined as follows. Let A and
B be subsets of P . Define s > 0 to be a separation
factor. Denote by r the smallest radius of a Euclidean
ball such that each of A and B can be enclosed within
such a ball. Set A is said to be s-well separated from B
if the closest distance between the two balls enclosing A
and B is at least sr.

Definition 2 (WSPD) For a set P of n points and a
separation factor s > 0, an s-well separated pair decom-
position (s-WSPD) is a collection of pairs of subsets of

P , denoted as {{A1, B1}, {A2, B2}, . . . , {Ak, Bk}}, such
that (I) Ai, Bi ⊆ P for 1 ≤ i ≤ k, (II) Ai ∩ Bi = ∅ for
1 ≤ i ≤ k, (III) ∪ki=1Ai

⊗
Bi = P

⊗
P , and (IV) Ai

and Bi are s-well separated for 1 ≤ i ≤ k.

When estimating the medoid of P , we will make use
of the following utility property of an s-WSPD.

Lemma 4 (WSPD Utility Lemma) If pair {A,B}
is s-well separated, a, a′ ∈ A, and b ∈ B, then we have
∥a′ − b∥ ≤

(
1 + 2

s

)
∥a− b∥.

Proof. The proof is similar to that of Lemma 2 and
thus omitted. □

WSPD-based approximation

Theorem 5 Given a set P of n points in Rd, for any
ε > 0, one can compute a (1 + ε)-approximation to the
medoid of P in O(nε−d + n log n) time.

Proof. We begin by building a compressed octree for
P . The octree can be built in O(n log n) time, and is
of size O(n) [1, 12]. For simplicity of arguments, we
assume that the octree is not compressed but of size
O(n). This allows us to assume that nodes of the same
level in the octree have the same cell size. By using
the octree, we construct a WSPD for P such that each
well separated pair of nodes generated are of the same
level in the octree. This requires a slight modification to
the original algorithm given in [9] for creating a WSPD.
Namely, when we fail to separate a pair of nodes u and
v, we proceed to recursively separate the 2d children of u
from those of v, thus keeping the invariant that each pair
of nodes considered are of the same size. The algorithm
is presented as a pseudocode in Figure 1 (where the
code in blue is an augmentation necessary for finding
an approximate medoid, which will be discussed later).
The initial call is WSPD(u0, u0, s, ∅), where u0 is the
root of the octree.

To evaluate the total number of well separated pairs
in the resulting WSPD, it suffices to count the number
of terminal calls to WSPD(), each of which can generate
Θ(22d) well separated pairs. Since a terminal call may
only arise as a call toWSPD() in a non-terminal call, we
instead bound the number of calls to WSPD() made by
all the non-terminal calls. We claim that, in any non-
terminal call, for every node ui (iterated in the first
outer for loops of the algorithm), the number of calls
to WSPD() (as in the final for loop in the algorithm)
is bounded by O(sd). Since there are O(n) nodes in
the (compressed) octree, the total number of calls to
WSPD() is O(sdn).

We are now left to establish the claim that for any
node ui, the number of calls to WSPD() is bounded by
O(sd). For a node ui, a call to WSPD() is made only
if ui is not s-well separated from some node vj . Let α
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Algorithm WSPD(u, v, s, par)
1. let u1, ..., uα be the children of u;
2. let v1, ..., vβ be the children of v;
3. for i← 1 to α
4. do S ← T ← ∅;
5. newpar ← par;
6. for j ← 1 to β
7. do if (ui or vj is empty) then ignore (ui, vj);
8. else if (ui and vj are leaves and ui = vj) then ignore (ui, vj);
9. else if (ui and vj are s-well separated)
10. then add (ui, vj) to S;
11. else add (ui, vj) to T ;
12. if (S ̸= ∅) then newpar ← ui;
13. for each (x, y) ∈ S do output (x, y, par);
14. for each (x, y) ∈ T do call WSPD(x, y, s, newpar);

Figure 1: Augmented algorithm for constructing WSPD.

denote the side length of the cells of nodes ui and vj .
Let r be the radius of the Euclidean ball enclosing each
of the cells of nodes ui and vj . Note that r = α

√
d/2.

Assume that s ≥ 1; if 0 < s < 1, we replace s with
max(s, 1). Let cui

and cvj
be the centers of the balls

enclosing the cells of nodes ui and vj , respectively. Since
ui is not s-well separated from vj , the distance between
cui and cvj must be at most 2r+sr ≤ 3sr. Let β denote
the ball of radius 3sr centered at cui . The set of nodes vj
that are not s-well separated from ui must correspond
to the cells of side length α overlapping β. Using a
similar packing argument as in the proof of Theorem 1,
for a node ui, the number of such nodes vj is bounded
by O(sd).

Finally, together with O(n log n) time to build the
octree, the overall time for constructing the WSPD is
O(n log n+ sdn).

For the convenience of the ensuing discussion, each
well separated pair (u, v) is represented (and produced
by the algorithm WSPD()) as an ordered pair, where u
is referred to as the anchor set of the pair.

Augmenting WSPD construction. In the octree
used for constructing the WSPD, we associate each node
u with i) a representative point rep(u), which may be
chosen arbitrarily among the points lying inside the cell
of node u, and ii) a quantity |u| indicating the number
of points located within the cell of node u. In addition,
we output each well separated pair (u, v) along with a
set w, if any, where w is the lowest ancestor of u such
that w is s-well separated from some node of the same
level as w (in the octree). We call w the parent set of
(u, v) (and of u), and u a child set of w. In the pseu-
docode WSPD(), variables par and newpar (i.e., code
in blue) are used for keeping track of the parent set for
each well separated pair.

Finding an approximate medoid. Let Γ denote the
set of well separated pairs in an s-WSPD for P . Each
ordered pair of points (pi, qi) ∈ P × P (where pi ̸= qi)
occurs in a unique well separated pair (A,B) in Γ. As
a result, we could simply compute the approximate dis-
tance sum for each point pi ∈ P using Γ, and return the
point with the minimum distance sum as the approxi-
mate solution.

To take a closer look at this idea, let ei denote any
anchor set (of any well separated pair in Γ) that has
no child anchor set. Recall that rep(ei) denotes the
representative point associated with ei. Note that a
point pi ∈ P must belong to a (unique) childless anchor
set ei, for which pi may or may not be chosen as the
representatives point.

Suppose that pi = rep(ei). Let Si ⊆ Γ be the
subset of well separated pairs, of which ei is either
the anchor set or a child anchor set. We can obtain
an approximate distance sum for point rep(ei) using
Si. Namely, for each pair (A,B) ∈ Si, we compute
|B| · ∥rep(B)− rep(ei)∥. We then take the sum over all
the pairs in Si to be the approximate distance sum for
pi. If pi ̸= rep(ei), then the approximate distance sum
for pi only differs by at most a factor of

(
1 + 2

s

)
from

that for rep(ei), according to Lemma 4.

Hence, we only need to compute the distance sum
for each representative point associated with a childless
anchor set (which will just be referred to as representa-
tive points for simplicity hereafter). However, observe
that, for any two childless anchor sets ei and ej , Si ∩Sj

may not be empty. That is, there could be some well
separated pair (A,B) ∈ Si ∩ Sj such that ei ⊆ A and
ej ⊆ A. In other words, ei and ej could have some com-
mon ancestor anchor set. This implies, by computing
the distance sum for each representative point one at a
time, that the running time required to find the repre-
sentative point with the minimum distance sum could
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Algorithm Approx-Medoid(Γ)
1. F ← ∅;
2. for each Ci ∈ C (in increasing order)
3. do for each Pij ∈ Pi

4. do let w be the parent set of the well separated pairs in Pij ;
5. for each Aijk ∈ Aij

6. do let u be the anchor set of the well separated pairs in Aijk;
7. compute σ[u] +=

∑
(u,v)∈Aijk

(|v| · ∥rep(v)− rep(u)∥);
8. if (w = ∅) then add (rep(u), σ[u]) to F ;
9. if (w ̸= ∅)
10. then let A = {u | (u, v) ∈ Pij};
11. umin ← argminu∈A σ[u];
12. σ[w]← σ[umin];
13. rep(w)← rep(umin);
14. output (x, σ) ∈ F with the minimum σ;

Figure 2: Algorithm for approximating medoid using WSPD.

be Ω(sdn).
As it turns out, we do not have to compute the dis-

tance sums for all the representative points. If we com-
pute and sum the distances for each representative point
at each level in a bottom-up fashion, allow the represen-
tative point with the minimum “partial” distance sum
thus far at each level to overtake the others with the
same parent anchor set, then we could find the represen-
tative point with the minimum distance sum in O(sdn)
time (since each well separated pair is only used once
for distance sum computation).

Here are the details of the procedure. We group the
well separated pairs in Γ according to the cell sizes of
their corresponding node pairs in the octree. Within
each cell-size group, we collect the well separated pairs
into groups with common parent sets. Within each such
parent-set group, we further congregate the well sepa-
rated pairs according to their anchor sets. Formally, for
a given well separated pair (u, v), we denote by cel(u, v)
and par(u, v) the cell size and the parent set of (u, v),
respectively. Note that if a well separated pair (u, v)
has no parent set, then par(u, v) = ∅. Define:

i) C = {Ci ⊆ Γ | ∀(u, v), (x, y) ∈ Γ, cel(u, v) =
cel(x, y) =⇒ (u, v) ∈ Ci ∧ (x, y) ∈ Ci},

ii) Pi = {Pij ⊆ Ci | ∀(u, v), (x, y) ∈ Ci, par(u, v) =
par(x, y) =⇒ (u, v) ∈ Pij ∧ (x, y) ∈ Pij}, and

iii) Aij = {Aijk ⊆ Pij | ∀(u, v), (x, y) ∈ Pij , u = x =⇒
(u, v) ∈ Aijk ∧ (x, y) ∈ Aijk}.

That is, C = {Ci | i = 1, 2, . . .} is the partition of
set Γ according to cell size, Pi = {Pij | j = 1, 2, . . .}
is the partition of set Ci ∈ C according to parent set,
and Aij = {Aijk | k = 1, 2, . . .} is the partition of set
Pij ∈ Pi according to anchor set. Assume, without loss
of generality, that for any Ci,Cj ∈ C, if i < j, then

cel(u, v) < cel(x, y) for all (u, v) ∈ Ci and (x, y) ∈ Cj .
For any anchor set u, let σ[u] denote the distance sum
computed for u. Initially, we set σ[u] = 0 for all anchor
sets u. We then process Γ as described in the pseu-
docode given in Figure 2.

Briefly, we iterate the well separated pairs by cell size
in ascending order. Within each cell-size group Ci ∈ C,
we update σ[u] for each anchor set u sharing the same
parent set w by considering its associated well separated
pairs (line 6 of the pseudocode). If w ̸= ∅, then we find,
among those having the same parent set w, the anchor
set umin with the minimum distance sum after the up-
date. We record the distance sum for umin as that for
its parent set w, and replace the representative point for
the parent set w of umin with that for umin. When the
algorithm terminates, of all anchor sets without a par-
ent set, we report the one with the minimum distance
sum.

The time complexity of Approx-Medoid() is bounded
by O(sdn), given that each well separated pair is pro-
cessed by a constant number of operations in the pro-
cedure. Along with the construction time for WSPD,
the overall time for approximating the medoid of P is
O(n log n+ sdn).

Correctness of algorithm. We now proceed to prove
the correctness of the algorithm Approx-Medoid() to
yield a solution within a multiplicative error of ε.

Let m be the exact medoid of P . Let x be the rep-
resentative point returned as the approximate solution
by the algorithm Approx-Medoid(). To establish the
correctness of the algorithm, we have to show that∑

p∈P

∥p−m∥ ≤
∑
p∈P

∥p− x∥ ≤ (1 + ε)
∑
p∈P

∥p−m∥

The first inequality holds because no other point in P
can have a smaller distance sum than the exact medoid
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m. To prove the second inequality, consider the anchor
set U such that i) m ∈ U ∧ x ∈ U and ii) m /∈ U ′ ∧ x /∈
U ′ for all child sets U ′ of U .
First, we examine the set of distance computations

for the levels above that of U . Let Λ = {(U ′′
i , Vi) |

i = 1, 2, . . . } denote the set of all well separated pairs
such that for each pair (U ′′

i , Vi) ∈ Λ, U ′′
i is an ancestor

set of U . For each well separated pair (U ′′
i , Vi) ∈ Λ,

according to Lemma 4, we have |Vi| · ∥rep(Vi) − x∥ ≤(
1 + 2

s

)
|Vi| · ∥rep(Vi)−m∥. If we sum over all the pairs

in Λ, we then have∑
i

|Vi|·∥rep(Vi)−x∥ ≤
(
1 +

2

s

)∑
i

|Vi|·∥rep(Vi)−m∥

Secondly, we examine the distance computations for
the levels below that of U . For any anchor set C, let
σ[C, c] denote the distance sum computed for C in the
algorithm, where c ∈ C is the representative point used
in computing the distance sum. Let M be the child set
of U such that m ∈M . Similarly, let X denote the child
set of U such that x ∈ X. Recall that M ∩X = ∅.
Let M ′ be the lowest descendant set of M such that

m ∈M ′. Let m′ be the representative point associated
with M ′. If m′ = m, then the distance sum computed
for M ′ is σ[M ′,m′] = σ[M ′,m]. Otherwise, according
to Lemma 4, we have σ[M ′,m′] ≤

(
1 + 2

s

)
σ[M ′,m].

Figure 3: Point m′′ = m∗ overtakes m′ in the distance
sum computation during the execution of the algorithm
Approx-Medoid() such that σ[M,m∗] ≤ σ[M,m′] ≤(
1 + 2

s

)
σ[M,m].

Let m∗ ∈ M be the representative point used (in
the algorithm) to compute the distance sum for an-
chor set M . Since x is the representative point pro-
duced by the algorithm as the solution, we must have
σ[X,x] ≤ σ[M,m∗]. If m∗ = m′, then σ[X,x] ≤
σ[M,m∗] = σ[M,m′] ≤

(
1 + 2

s

)
σ[M,m]. Otherwise,

at some level between that of M and M ′, m′ must
be “overtaken” by some other point m′′ such that i)
m′′ is the representative of some anchor set M ′′, and
ii) σ[M ′′,m′′] ≤ σ[M ′

+,m
′], where M ′

+ is an ances-

tor set of M ′ and of the same level as M ′′ (see Fig-
ure 3 for an illustration). Clearly, this sort of “over-
taking” could happen multiple times as we ascend the
levels from that of M ′ to M in the algorithm. At
the end of the ascension, m∗ prevails, and we have
σ[X,x] ≤ σ[M,m∗] ≤ σ[M,m′] ≤

(
1 + 2

s

)
σ[M,m].

As the algorithm terminates, (x, σ) is yielded as the
approximate solution, where

σ =
∑
i

|Vi| · ∥rep(Vi)− x∥+ σ[X,x]

is the minimum distance sum reported along with point
x. By applying Lemma 4, we have∑

p∈P

∥p− x∥

≤
(
1 +

2

s

)(∑
i

|Vi| · ∥rep(Vi)− x∥+ σ[X,x]

)

≤
(
1 +

2

s

)2
(∑

i

|Vi| · ∥rep(Vi)−m∥+ σ[M,m]

)

≤
(
1 +

2

s

)3∑
p∈P

∥p−m∥

=

(
1 +

6

s
+

12

s2
+

8

s3

)∑
p∈P

∥p−m∥

Since s = max(s, 1), we obtain

∑
p∈P

∥p− x∥ ≤
(
1 +

6

s
+

20

s2

)∑
p∈P

∥p−m∥

Given an ε > 0, if we set s = 3+
√
9+20ε
ε , then we have∑

p∈P

∥p− x∥ ≤ (1 + ε)
∑
p∈P

∥p−m∥

□

5 Conclusion

We have presented two deterministic, near-linear time
algorithms for approximating the medoid of a point set
in fixed dimensions within a factor of (1 + ε). In the
future, we propose to further explore the idea of pair
decompositions for solving minsum location-based op-
timization problems involving more complex geometric
objects.
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[2] G. Ambrus and I. Bárány. Longest convex chains. Ran-
dom Structures & Algorithms, 35(2):137–162, 2009.

[3] S. Arya, D. M. Mount, N. S. Netanyahu, R. Silverman,
and A. Y. Wu. An optimal algorithm for approximate
nearest neighbor searching in fixed dimensions. Journal
of the ACM, 45(6):891–923, 1998.

[4] V. Bagaria, G. Kamath, V. Ntranos, M. Zhang, and
D. Tse. Medoids in almost-linear time via multi-armed
bandits. In International Conference on Artificial In-
telligence and Statistics, pages 500–509, 2018.

[5] T. Z. Baharav and D. Tse. Ultra fast medoid identifi-
cation via correlated sequential halving. In Proceedings
of the 33rd International Conference on Neural Infor-
mation Processing Systems, pages 3655–3664, 2019.

[6] A. Bavelas. Communication patterns in task-oriented
groups. Journal of the Acoustical Society of America,
22(6):725–730, 1950.

[7] M. A. Beauchamp. An improved index of centrality.
Behavioral Science, 10(2):161–163, 1965.

[8] J. L. Bentley. Multidimensional binary search trees used
for associative searching. Communications of the ACM,
18(9):509–517, 1975.

[9] P. B. Callahan. Dealing with higher dimensions: The
well-separated pair decomposition and its applications.
PhD thesis, The Johns Hopkins University, 1995.

[10] Z. Drezner. Facility location: A survey of applications
and methods. Springer Series in Operations, 1995.

[11] Z. Drezner and H. W. Hamacher. Facility location: Ap-
plications and theory. Springer Science & Business Me-
dia, 2004.

[12] D. Eppstein, M. T. Goodrich, and J. Z. Sun. Skip
quadtrees: Dynamic data structures for multidimen-
sional point sets. International Journal of Compu-
tational Geometry & Applications, 18(01n02):131–160,
2008.

[13] D. Eppstein and J. Wang. Fast approximation of cen-
trality. Journal of Graph Algorithms and Applications,
8(1):39–45, 2004.

[14] D. Feldman and M. Langberg. A unified framework for
approximating and clustering data. In Proceedings of
the 43rd Annual ACM Symposium on Theory of Com-
puting, pages 569–578, 2011.

[15] R. L. Francis, L. F. McGinnis, and J. A. White. Facility
layout and location: An analytical approach. Pearson
College Division, 1992.

[16] L. C. Freeman. Centrality in social networks conceptual
clarification. Social Networks, 1(3):215–239, 1978.

[17] N. E. Friedkin. Theoretical foundations for centrality
measures. American journal of Sociology, 96(6):1478–
1504, 1991.

[18] J. H. Friedman, J. L. Bentley, and R. A. Finkel. An
algorithm for finding best matches in logarithmic ex-
pected time. ACM Transactions on Mathematical Soft-
ware, 3(3):209–226, 1977.

[19] J. Han, M. Kamber, and A. K. H. Tung. Spatial clus-
tering methods in data mining: A survey. Geographic
data mining and knowledge discovery, pages 188–217,
2001.

[20] S. Har-Peled, M. Jones, and S. Rahul. Active-learning
a convex body in low dimensions. Algorithmica,
83(6):1885–1917, 2021.

[21] L. Kaufman and P. J. Rousseeuw. Finding groups in
data: An introduction to cluster analysis. John Wiley
& Sons, 1990.

[22] P. B. Mirchandani and R. L. Francis. Discrete location
theory. Wiley-Interscience, 1990.

[23] J. Newling and F. Fleuret. A Sub-Quadratic Exact
Medoid Algorithm. In Proceedings of the 20th Interna-
tional Conference on Artificial Intelligence and Statis-
tics, volume 54, pages 185–193, 2017.

[24] K. Okamoto, W. Chen, and X. Y. Li. Ranking of close-
ness centrality for large-scale social networks. In Inter-
national Workshop on Frontiers in Algorithmics, pages
186–195, 2008.

[25] H. S. Park and C. H. Jun. A simple and fast algorithm
for k-medoids clustering. Expert systems with applica-
tions, 36(2):3336–3341, 2009.

[26] G. Sabidussi. The centrality index of a graph. Psy-
chometrika, 31(4):581–603, 1966.

[27] C. Sohler and D. P. Woodruff. Strong coresets for k-
median and subspace approximation: Goodbye dimen-
sion. In Proceedings of the 59th Annual Symposium on
Foundations of Computer Science, pages 802–813, 2018.

90



CCCG 2022, Toronto, ON, Canada, August 25–27, 2022

The Median Line Segment Problem: Computational Complexity and
Constrained Variants

Ovidiu Daescu∗ Ka Yaw Teo†

Abstract

In the median line segment problem, we are given a set
P of n points in Rd and a real number ℓ > 0 with
the objective to find a line segment of length ℓ such
that the sum of the Euclidean distances from P to the
line segment is minimized. We prove that, in general,
it is impossible to construct a median line segment for
n ≥ 3 non-collinear points in the plane by using only
ruler and compass. We then consider two constrained
variants of the median line segment problem in R2 –
i) point-anchored and ii) constant-slope. In the point-
anchored variant, an endpoint of the median line seg-
ment is given as input, whereas in the constant-slope
variant, the orientation of the median line segment is
fixed. We present a deterministic (1+ε)-approximation
algorithm for solving each constrained variant. For ap-
proximating a point-anchored median line segment, we
give a space-subdivision method with a time complex-
ity of O(nε−2α−1

θ ), where αθ is a parameter dependent
on the coordinates of P . For approximating a constant-
slope median line segment, a prune-and-search approach
is used, and its time complexity is O(kn log n), where k
is inversely proportional to ε.

1 Introduction

The median line segment problem is formally defined
as follows.

Given a set P of n points in Rd and a positive real
number ℓ, locate a line segment of length ℓ such that the
sum of the Euclidean distances from P to the located
line segment is minimized.

The problem applies to any real-world scenario that in-
volves finding a best location for any object that could
be modeled as a line segment. The problem could arise
in many industries and sectors, where we wish to find
the optimal placement of various facilities to maximize
their efficiency, impact, and profit. These facilities may
include highways, railroads, pipelines, telecommunica-

∗Department of Computer Science, University of Texas at Dal-
las, ovidiu.daescu@utdallas.edu

†Department of Computer Science, University of Texas at Dal-
las, ka.teo@utdallas.edu

tion lines, electronic circuit connectors, and electrodes.
In addition to location science, the median line segment
problem could have potential applications in other sub-
ject areas with less obvious connections such as cluster
analysis in data science and pattern recognition in com-
puter vision.

The median line segment problem is closely related
to one of the oldest non-trivial problems in facility loca-
tion theory – the (generalized) Fermat-Torricelli prob-
lem, which asks to find a point with the minimal sum of
distances to a given set of n points. The optimal point
is referred to as the Fermat-Torricelli point or simply
the (geometric) median. For n ≥ 5 points in general
position, it has been proven that the Fermat-Torricelli
point cannot be constructed by strict usage of ruler and
compass [1, 7]. In other words, the Fermat-Torricelli
problem is unsolvable by radicals over the field of ratio-
nals. Consequently, no exact algorithm exists for solv-
ing the problem under computational models with basic
arithmetic operations and the extraction of k-th roots.
This leaves us with only numerical or symbolic approx-
imation methods for n ≥ 5 points (e.g., see [2, 3, 4]).
Furthermore, it remains unclear whether the problem is
in NP.

Another problem related to ours is the median line
problem, which asks to locate a line minimizing the sum
of the distances between a given set of n points and the
located line. When considering the median line problem
in two dimensions, the optimal line has been shown to
exhibit the following properties. The median line must
divide the given points into two equal halves, and must
pass through at least two of the given points [8]. As a
consequence, the median line problem could be solved
exactly in O(n2) time (by mainly exploiting the prop-
erty that the optimal line must contain a pair of given
points) [6]. The optimal solution could also be found
in O(h log n) time, where h is the number of halving
lines [11, 12]. Currently, the best upper bound for h is
O(n4/3). However, no exact algorithm is known to solve
the median line problem in higher dimensions.

Unlike the Fermat-Torricelli problem and the median
line problem, which have been extensively studied over
the years, the median line segment problem has not thus
far received any proper attention in the literature.
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2 Our results

We prove that it is impossible to construct a median
line segment for n ≥ 3 non-collinear points in R2 by
using only ruler and compass (Section 4). We then con-
sider the median line segment problem under different
geometric constraints. Particularly, we derive a (1+ ε)-
approximation algorithm for solving the point-anchored
median line segment problem in the plane (Section 5).
In this constrained problem, an endpoint of the median
line segment is given as part of the input. By essen-
tially dividing the space around the anchor point into
O(n) intervals with certain geometric properties, our al-
gorithm finds an approximate solution in O(nε−2α−1

θ )
time, where αθ is a parameter dependent on the coor-
dinates of P . Furthermore, we provide an algorithm
for computing a (1+ε)-approximate constant-slope me-
dian line segment in R2, where the slope of the median
line segment is fixed at input (Section 6). Our algo-
rithm is a tailored extension of the prune-and-search
approach given by Bose et al. [2], and its running time
is O(kn log n), where k = 2π

cos−1(1+ε)−2 .

3 Preliminaries

For any two points a and b in Rd, let ab denote the line
segment bounded by a and b, and let ∥ab∥= ∥b− a∥ be
the Euclidean distance between a and b.

For any line segment ab in Rd, let Ha (resp. Hb) be
the hyperplane containing a (resp. b) and orthogonal to
ab. Let Sa (resp. Sb) be the closed half-space bounded
by Ha (resp. Hb) and not containing ab. Define Sab =
Rd \ (Sa ∪ Sb).

For a line segment ab in R2, let Lab be the line con-
taining ab. Let H+ denote a closed half-plane bounded
by Lab, and let H− = R2 \H+. Define S+

a = Sa ∩H+,
S−
a = Sa ∩ H−, S+

b = Sb ∩ H+, S−
b = Sb ∩ H−,

S+
ab = Sab ∩H+, and S−

ab = Sab ∩H− (Figure 1).

Figure 1: Regions defined with respect to a line segment
ab.

We assume, without loss of generality, that the points
of P have been uniformly scaled such that the length of
the median line segment is ℓ = 1. Let D denote the
diameter of point set P . Note that if ℓ ≥ D, then our
problem effectively becomes the median line problem.
Thus, in this paper, we assume that ℓ < D, unless spec-
ified otherwise.

A line segment s is said to be a (1 + ε)-approximate
solution if the sum of the distances from P to s is at
most (1 + ε) times that of the optimal line segment.

4 Inconstructibility of the median line segment

Theorem 1 The construction of a median line segment
is, in general, impossible for n = 3 and more points in
the plane by strict usage of ruler and compass.

Proof. In order to prove the theorem, we require the
following lemma.

Lemma 2 Let p∗ denote the Fermat-Torricelli point for
a point set {p1, p2, p3}. Let β = argmaxi∥p∗pi∥. For
i ̸= β, let ηi be the distance from pβ to the foot of the
altitude from pi in triangle △p1p2p3.

A. If ℓ ≤ ∥p∗pβ∥, then there exists a median line seg-
ment s∗ = a∗b∗ such that its endpoint a∗ coincides
with p∗, and s∗ lies in p∗pβ (Figure 2A).

B. If ℓ > ∥p∗pβ∥, then there is a median line segment
s∗ = a∗b∗ such that its endpoint a∗ coincides with
pβ.

(1) l ≤ min{ηi : i ̸= β}. For i ̸= β, let ϕi be the
acute angle formed by b∗pi and the line sup-
porting s∗. Endpoint b∗ must be located such
that ϕi = ϕj, where i, j ̸= β and i ̸= j (Figure
2B).

(2) l > min{ηi : i ̸= β}. For i ̸= β, let qi be
the closest point on s∗ to pi, and let wi de-
note the distance from a∗ to qi. Note that
wi ∈ [0, 1]. Let d̄i denote the vector from qi
to pi, and let h̄i be the component of d̄i nor-
mal to s∗ multiplied by wi. For i, j ̸= β and
i ̸= j, endpoint b∗ must be located such that
∥h̄i∥/∥d̄i∥= ∥h̄j∥/∥d̄j∥.

Proof. We refer to the full paper for the proof. □

Part A of Lemma 2 essentially implies that if ℓ ≤
∥p∗pβ∥, then a median line segment s∗ can be con-
structed by using ruler and compass, since the exact
Euclidean construction of the Fermat-Torricelli point
for n = 3 points is possible. However, in part B of
Lemma 2 (ℓ > ∥p∗pβ∥) – case 1 in particular – in order
to construct a median line segment s∗, we have to look
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Figure 2: Illustrations for Lemma 2. (A) Part A. (B)
Case 1 of part B.

for a point b∗ on the circumference of a circle of radius ℓ
centered at a∗ = pβ such that the rays emanating from
pi and pj , where i ̸= j and i, j ̸= β, meeting at b∗ make
equal angles with the normal at b∗. This is known as
(and equivalent to) the Alhazen’s billiard problem, to
which the general solution has been proven to be incon-
structible using only ruler and compass [9]. Briefly, the
problem requires solving a quartic equation that is irre-
ducible over Q (and so does not have constructible solu-
tions). Hence, we conclude that the ruler-and-compass
construction of a median line segment is, in general, im-
possible for n = 3 (and more) points. □

5 Approximating the point-anchored median line
segment

In this section, we consider the following restricted
variant of the median line segment problem.

Given a set P of n points in R2, a point q ∈ R2, and a
real number ℓ > 0, find a line segment of length ℓ with
an endpoint at q such that the sum of the Euclidean
distances from P to the line segment is minimized.

Remark 1 It follows from the proof of Theorem 1 that
the point-anchored median line segment problem is, in
general, not solvable by radicals over Q for n ≥ 2 points.

Theorem 3 For the point-anchored median line seg-
ment problem in R2, given any ε > 0, one can compute a

(1+ε)-approximate solution in time O(nε−2α−1
θ ), where

αθ is a function dependent on the coordinates of P .

Proof. Let s denote any line segment of length ℓ with
an endpoint fixed at q. Assume, without loss of gen-
erality, that the fixed endpoint of line segment s is
a = q = (0, 0) (by a translation of P ), and the length
of line segment s is ℓ = 1 (through a uniform scaling of
P ). Let θ be the counterclockwise angle of line segment
s with respect to the positive x-axis rooted at a. The
sum of the distances from P = {p1, p2, ..., pn} to line
segment s is given by the following objective function:

f (θ) =
∑

1≤i≤n
pi∈Sa

√
xi

2 + yi2

+
∑

1≤i≤n

pi∈S+
ab

[xi (− sin θ) + yi cos θ]

+
∑

1≤i≤n

pi∈S−
ab

[−xi (− sin θ)− yi cos θ]

+
∑

1≤i≤n
pi∈Sb

√
(xi − cos θ)

2
+ (yi − sin θ)

2

where xi and yi are the x- and y-coordinates of pi ∈ P ,
respectively. We consider θ ∈ [0, π/2) only, and each
subsequent quadrant can be handled analogously. The
quadrant [0, π/2) can be divided into a set T of at most
Θ(n) contiguous intervals, in each of which the subsets
of points of P in Sa, S

+
ab, S

−
ab, S

+
b , and S−

b , respectively,
remain constant. We partition each interval of T into
a number of small sub-intervals such that the relative
error in computing the sum of the distances from P to
a line segment s, whose angle θ is given by a boundary
of a sub-interval, does not exceed ε.
To evaluate the number of sub-intervals, we perform

the following analysis. Let I denote a sub-interval. Sup-
pose that the optimal line segment s∗ lies within I.
First, we note that the distance from any given point
pi ∈ Sa to endpoint a of line segment s remains con-
stant within sub-interval I. For simplicity of notation,
the subscript i is dropped, and p is equivalent to pi
hereafter.

For a point p ∈ S+
ab, let dp = d(p, s) denote its or-

thogonal distance to a line segment s whose location is
defined by a boundary of interval I (Figure 3A). Sup-
pose that d∗p = d(p, s∗) is the distance from p to the op-
timal line segment s∗. We rotate the coordinate system
such that the positive x-axis contains s, and the first
quadrant of the defined xy-plane contains sub-interval
I (and thus s∗). Specifically, consider the worst-case
scenario where s and s∗ are located at the two ends of
sub-interval I. Let ∆θ be the size of sub-interval I. In
addition, let xp and yp denote the x- and y-coordinates,
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Figure 3: A point p ∈ P located in (A) S+
ab or (B) S+

b .

respectively, of point p. In order to have dp ≤ (1+ε)d∗p,
the following must hold:

dp ≤ (1 + ε) d∗p

yp ≤ (1 + ε) (−xp sin∆θ + yp cos∆θ)

1

1 + ε
≤ −xp

yp
sin∆θ + cos∆θ

=

√
1 +

(
xp

yp

)2

cos

(
∆θ + tan−1xp

yp

)

∆θ ≤ cos−1

 1

(1 + ε)

√
1 +

(
xp

yp

)2
− tan−1xp

yp

Let A+
ab,p denote the right-hand term of the last inequal-

ity above. Given that

A+
ab,p ≥ ε

cos−1

 1

2

√
1 +

(
xp

yp

)2
− tan−1xp

yp


= εα+

ab,p

for 0 < ε < 1, if we have ∆θ = εα+
ab,p, then the desired

condition dp ≤ (1 + ε)d∗p is fulfilled. Note that α+
ab,p is

a trigonometric function in terms of the coordinates of
point p. We can satisfy dp ≤ (1 + ε)d∗p for all points

p ∈ S+
ab if we set ∆θ = ε ·min{α+

ab,p : p ∈ Sab
+}.

The analysis for S−
ab is similar to that for S+

ab due to
symmetry, and we obtain {α−

ab,p : p ∈ S−
ab} accordingly.

We can also perform a similar analysis for each point
p ∈ S+

b . Let dp = d(p, s) denote the distance from p
to endpoint b of a line segment s located at a boundary
of sub-interval I (Figure 3B). Let d∗p = d(p, s∗) be the
shortest distance from p to the optimal line segment s∗.
As before, we define a coordinate system on s such that
the positive x-axis contains s, and the first quadrant of
the xy-plane contains sub-interval I, at whose bound-
aries s and s∗ are positioned. Let ∆θ be the size of
sub-interval I. If dp ≤ (1 + ε)d∗p, then we have

dp ≤ (1 + ε) d∗p√
(xp − 1)

2
+ yp2

≤ (1 + ε)

√
(xp − cos∆θ)

2
+ (yp − sin∆θ)

2

(xp − 1)
2
+ yp

2

(1 + ε)
2

≤ (xp − cos∆θ)
2
+ (yp − sin∆θ)

2

= xp
2 − 2xp cos∆θ + yp

2 − 2yp sin∆θ + 1

− 1

2

(
(xp − 1)

2
+ yp

2

(1 + ε)
2 − xp

2 − yp
2 − 1

)
≥ xp cos∆θ + yp sin∆θ

=
√
xp

2 + yp2 cos

(
∆θ + tan−1

(
−xp

yp

))
∆θ ≤ tan−1

(
xp

yp

)
− cos−1

(
− 1

2
√

xp
2 + yp2(

(xp − 1)
2
+ yp

2

(1 + ε)
2 − xp

2 − yp
2 − 1

))

Let A+
b,p denote the right-hand side of the last inequality

above. Since

A+
b,p ≥ ε2

[
tan−1

(
xp

yp

)
− cos−1

(
− 1

2
√

xp
2 + yp2(

(xp − 1)
2
+ yp

2

(1 + ε′)
2 − xp

2 − yp
2 − 1

))]
= ε2α+

b,p

where ε′ = min(1, εp),

εp =

√
(xp − 1)

2
+ yp2√(

xp − xp√
xp

2+yp
2

)2

+

(
yp − yp√

xp
2+yp

2

)2
− 1

and 0 < ε ≤ ε′ < 1, if we set ∆θ = ε2α+
b,p, then dp ≤

(1 + ε)d∗p is satisfied. Note that α+
b,p is a trigonometric

function dependent on the coordinates of point p. In
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order to uphold dp ≤ (1+ ε)d∗p for all points p ∈ S+
b , we

can simply set ∆θ = ε2 ·min{α+
b,p : p ∈ S+

b }.
Points p ∈ S−

b can be handled analogously as those
in S+

b , and we obtain {α−
b,p : p ∈ S−

b } as the result.
In summary, for each given interval τ ∈ T , we

compute α+
ab = min{α+

ab,p : p ∈ S+
ab}, α−

ab =

min{α−
ab,p : p ∈ S−

ab}, α+
b = min{α+

b,p : p ∈ S+
b },

and α−
b = min{α−

b,p : p ∈ S−
b }. We then use ∆θ =

min
{
εα+

ab, εα
−
ab, ε

2α+
b , ε

2α−
b

}
for partitioning the given

interval τ into sub-intervals of size at most ∆θ.
We now derive an upper bound on the number

of sub-intervals as follows. Let s(τ) denote the set
{α+

ab, α
−
ab, α

+
b , α

−
b } computed for each interval τ of T .

Define αθ = min{α ∈ s(τ) : τ ∈ T}. Then, we have
a total of 2π/(ε2αθ) sub-intervals in the worst case.
Since it takes O(n) algebraic operations to compute the
sum of distances for each candidate line segment (de-
fined by the boundaries of the sub-intervals), we can
obtain a solution, whose sum of distances to P is at
most (1 + ε) times that of the optimal solution, in
2πn/(ε2αθ) = O(nε−2α−1

θ ) time. □

6 Approximating the constant-slope median line
segment

In this section, we address a constrained variant of the
median line segment problem stated as follows.

Given a set P of n points in R2, an angle θ, and a real
number ℓ > 0, find a line segment of length ℓ making
angle θ with the abscissa axis such that the sum of the
Euclidean distances from P to the line segment is min-
imized.

Theorem 4 For the constant-slope median line seg-
ment problem in R2, given any ε > 0, one can find
a line segment, whose sum of distances to P is at most
(1 + ε) times that of the optimal line segment, in time
O(kn log n), where k = 2π

cos−1(1+ε)−2 .

Proof. We denote by s = ab any line segment of length
ℓ making angle θ with the positive x-axis. Assume,
without loss of generality, that θ = 0 and ℓ = 1. Let
xa and ya be the x- and y-coordinates of the endpoint
a of line segment s, respectively. Then, the sum of the
distances from P = {p1, p2, ..., pn} to line segment s can
be written as the following objective function:

f(s) = f (xa, ya)

=
∑

1≤i≤n
pi∈Sa

√
(xi − xa)

2
+ (yi − ya)

2

+
∑

1≤i≤n

pi∈S+
ab

(yi − ya) +
∑

1≤i≤n

pi∈S−
ab

(ya − yi)

+
∑

1≤i≤n
pi∈Sb

√
(xi − xa − 1)

2
+ (yi − ya)

2

where xi and yi are the x- and y-coordinates of pi ∈ P ,
respectively.

Remark 2 f is a piecewise convex function, where
each piece consists of a sum of two convex functions and
two linear functions, and the transition between any two
consecutive pieces corresponds to a point of P moving
between Sa, S

+
ab, S

−
ab, and Sb. Since the number of such

transitions is bounded by Θ(n2), the minimum of func-
tion f can be obtained by solving Θ(n2) two-variable
convex optimization problems.

We begin by defining the so-called k-oriented distance
function dk [5, 10] to approximate the Euclidean dis-
tance as follows.

k-oriented distance. A cone in R2 is defined as the
intersection of two half-planes, each of whose supporting
lines contains the origin O. A simplicial cone c has a
diameter bounded by an angle γ if, for any two points
p and q in c, we have ̸ pOq ≤ γ. Let C = {c1, ..., ck} be
a set of k cones, each of which has a diameter bounded
by γ, and C forms a partition of R2. Note that k is a
function of γ. Thus, C could be a set of cones defined by
the rays originating at O making angles {(i − 1)2π/k :
1 ≤ i ≤ k} with respect to the abscissa axis. The two
rays that bound a cone c are called the axes of c. For
a point p ∈ R2, let ti(p) denote p represented in the
coordinate system whose axes are those of ci. For a
point p in a cone ci, dk(O, p) = ∥ti(p)∥ is called the
k-oriented distance from O to p, and is defined as the
length of the shortest path from O to p traveling only
in the directions parallel to the axes of ci. For any two
points p and q in ci, we have dk(p, q) = dk(O, q − p).
Notice that, if γ = π/2, then the corresponding dk is
known as the rectilinear (Manhattan) distance function.
For any two points p, q ∈ R2, ∥pq∥≤ dk(p, q) ≤ (1 +
ε)∥pq∥, where ε is a positive constant that decreases as
k increases.

We now derive an explicit expression for k in terms
of ε. Assume, without loss of generality, that point p is
located at the origin O (i.e., p = O). Let ρ1 and ρ2 be
the two rays originating at O and defining the cone that
contains point q. Recall that the cone has a diameter
bounded by angle γ. Consider the case that γ is less
than π/2. Define m to be the line with the same slope
as ray ρ1 and passing through q. Let r be the inter-
section of m and ρ2. Note that dk(p, q) = ∥pr∥+∥rq∥.
Furthermore, according to the law of cosines, we have

∥pr∥2+∥rq∥2−2∥pr∥∥rq∥cos(π − γ) = ∥pq∥2

∥pr∥2+∥rq∥2+2∥pr∥∥rq∥cos γ = ∥pq∥2
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Given that 0 < γ < π/2,(
∥pr∥2+∥rq∥2+2∥pr∥∥rq∥

)
cos γ ≤ ∥pq∥2

(∥pr∥+∥rq∥)2 ≤ ∥pq∥2

cos γ

∥pr∥+∥rq∥ ≤ ∥pq∥
√
cos γ

Thus, we have dk(p, q) ≤ (1+ε)∥pq∥, where ε = 1√
cos γ −

1. Since γ = 2π/k, we obtain k = 2π
cos−1(1+ε)−2 for

0 < ε < 1.
Recall that the objective function f(s) denotes the

sum of the Euclidean distances from P to s. We can
approximate f(s) using

fk (s) =
∑

1≤i≤n
pi∈Sa

dk (pi, a) +
∑

1≤i≤n
pi∈Sb

dk (pi, b)

+
∑

1≤i≤n

pi∈S+
ab

yi − ya +
∑

1≤i≤n

pi∈S−
ab

ya − yi

Observe that function fk(s) is convex and piecewise lin-
ear. Hence, we can find the minimum of fk(s) using the
prune-and-search approach described by Bose et al. [2]
after some careful modifications.

Prune and search. Consider the set of cones C used
in evaluating dk. Recall that each cone c ∈ C is defined
by two lines. Let L be the set of lines defining C. For
each point p ∈ P , we create a point at a distance ℓ to
the right of p. Let P ′ denote the newly created set of
points. For each point p ∈ P ∪ P ′, we construct a copy
of L such that each of the lines in L passes through
p. The result is an arrangement of lines A. Observe
that each cell of A corresponds to a linear piece of the
surface fk. Consequently, fk reaches a minimum when
the endpoint a of line segment s coincides with a vertex
of A.

We now describe a prune-and-search algorithm to find
the lowest point on the surface fk. Note that A consists
of k sets of parallel lines. Let Hi denote a given set
of parallel lines in A, where 1 ≤ i ≤ k. We begin by
finding a median line h ∈ Hi that divides Hi into two
nearly equal sets. Line h partitions R2 into two half-
planes, h1 and h2, one of which contains a minimum of
fk. Suppose, without loss of generality, that h1 contains
the minimum. Then, we can simply ignore all the lines
in h2, and continue to recurse on h1. This recursive
process takes O(log n) rounds for each set Hi.
In each aforesaid round, we first find a point ph on h

that minimizes fk. We can then, based on ph, determine
if the minimum lies in h1 or h2.

The problem of finding ph is a one-dimensional in-
stance of our problem (i.e., constrained to line h). Since
fk is piecewise linear, ph lies on an intersection of h with
some other line in H = {H1, ...,Hk} \ h. Hence, we i)
compute all the intersections of h with H, ii) find the
median intersection point qm and the two intersection
points q1 and q2 that are adjacent to qm on h, and iii)
determine if ph lies to the left of qm, right of qm, or is
qm by evaluating fk(qm), fk(q1), and fk(q2).

Let u be the size ofH. The time complexity of finding
ph is given by the recurrence relation T (u) = T (u/2) +
O(u + Q(n)), where Q(n) denotes the query time to
evaluate fk. This recurrence solves to O(u+Q(n) log u).

After finding ph, we determine whether the mini-
mum lies in h1 or h2 as follows. Consider two oppo-
site rays r1 and r2, which are i) originating at ph, ii)
orthogonal to h, and iii) contained in h1 and h2, re-
spectively. We identify the first lines hr1 and hr2 inter-
sected by r1 and r2, respectively. Let v1 (resp. v2) be
the intersection point of hr1 and r1 (resp. hr2 and r2).
There are three possible cases to be considered: (1) If
fk(v1) ≤ fk(ph) ≤ fk(v2), then a minimum of fk lies in
h1. (2) If fk(v1) ≥ fk(ph) ≥ fk(v2), then a minimum of
fk lies in h2. (3) If fk(v1) > fk(ph) and fk(v2) > fk(ph),
then ph is a minimum of fk. Verifying these cases re-
quire the computation of all the intersections of H with
r1 and r2, and the evaluation of fk at v1 and v2. So,
the time complexity of determining whether a minimum
lies in h1 or h2 is O(u+Q(n)).

Observe that u = O(kn). Thus, the time taken by the
recursive procedure for each setHi is given by the recur-
rence relation T (n) = T (kn/2) + O(kn + Q(n) log kn),
which solves to O(kn + Q(n) log kn). Given that we
have k sets Hi, the overall time taken by the prune-and-
search algorithm to compute the point that minimizes
fk is O(P (n) + k(kn+Q(n) log kn)), where P (n) is the
preprocessing time to construct the data structure for
evaluating fk, and Q(n) is the query time to evaluate
fk.

We claim that a data structure with a preprocess-
ing time P (n) = O(kn log n) exists for evaluating fk in
query time Q(n) = O(k log n) (refer to the full paper
for details). As a result, the overall running time of our
algorithm is O(kn log n). □

Remark 3 Alternatively, the space-subdivision proce-
dure previously used in approximating a point-anchored
median line segment could be extended to address
the constant-slope variant. The resulting (1 + ε)-
approximation algorithm would have a time complexity
of O(n2 +nε−4αxy), where αxy is a function dependent
on the coordinates of P .
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7 Conclusion

We have proven that a median line segment is not con-
structible for n ≥ 3 non-collinear points in the plane
by using only ruler and compass. We have presented
a (1 + ε)-approximation algorithm for solving the con-
strained median line segment problem in R2 where an
endpoint or the slope of the median line segment is given
at input. These algorithms are space-subdivision and
prune-and-search approaches, and their time complex-
ities are near-linear in n. At last, we leave open the
question of whether our approximation algorithms for
solving the constrained variants can be extended to ob-
tain a (1+ε)-approximate solution to the unconstrained
median line segment problem.
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Computational Complexity of Flattening Fixed-Angle Orthogonal Chains

Erik D. Demaine∗ Hiro Ito† Jayson Lynch‡ Ryuhei Uehara§

Abstract

Planar/flat configurations of fixed-angle chains and
trees are well studied in the context of polymer science,
molecular biology, and puzzles. In this paper, we fo-
cus on a simple type of fixed-angle linkage: every edge
has unit length (equilateral), and each joint has a fixed
angle of 90◦ (orthogonal) or 180◦ (straight). When the
linkage forms a path (open chain), it always has a planar
configuration, namely the zig-zag which alternating the
90◦ angles between left and right turns. But when the
linkage forms a cycle (closed chain), or is forced to lie
in a box of fixed size, we prove that the flattening prob-
lem — deciding whether there is a planar noncrossing
configuration — is strongly NP-complete.

Back to open chains, we turn to the Hydrophobic–
Hydrophilic (HP) model of protein folding, where each
vertex is labeled H or P, and the goal is to find a folding
that maximizes the number of H–H adjacencies. In the
well-studied HP model, the joint angles are not fixed.
We introduce and analyze the fixed-angle HP model,
which is motivated by real-world proteins. We prove
strong NP-completeness of finding a planar noncross-
ing configuration of a fixed-angle orthogonal equilateral
open chain with the most H–H adjacencies, even if the
chain has only two H vertices. (Effectively, this lets us
force the chain to be closed.)

1 Introduction

In this paper, we introduce and investigate a new model
of protein folding. We are given an equilateral fixed-
angle chain (“protein”), where each vertex is marked
H or P and has a specified fixed angle, and edges all
have unit length. The goal is to embed the chain into a
given grid (e.g., 2D square, 3D cube, 2D triangular, or
2D hexagonal) while

1. respecting the fixed angles (but each angle is still
free to be a left or right turn in 2D or spin in 3D);

2. without self-crossing in the embedding; and

∗Computer Science and Artificial Intelligence Laboratory,
Massachusetts Institute of Technology, edemaine@mit.edu

†School of Informatics and Engineering, The University of
Electro-Communications, itohiro@uec.ac.jp

‡Cheriton School of Computer Science, University of Waterloo,
jayson.lynch@uwaterloo.ca

§School of Information Science, JAIST, uehara@jaist.ac.jp

3. maximizing the number of H–H grid adjacencies.

This is a fixed-angle version of the well-studied HP
model of protein folding (where the angles are normally
free to take on any value), which is known to be NP-
hard in the 2D square grid [4] and 3D cube grid [3].
Fixed angles are motivated by real-world proteins; see
[7, Chapters 8–9]. In the 2D square grid or 3D cube
grid studied here, we can restrict to orthogonal fixed-
angle chains where all fixed angles are 90◦ or 180◦. For
example, the popular “Tangle” toy restricts further to
all fixed angles being 90◦; see [5].

In the 3D cube grid, NP-hardness of fixed-angle
HP protein folding follows from [1] which proves NP-
hardness of embedding a fixed-angle orthogonal equi-
lateral chain of n3 vertices into an n × n × n 3D cube
grid. If we make all vertices Hs, then a cube embedding
is the best way to maximize H–H adjacencies, as the
cube uniquely minimizes surface area where potential
adjacencies are lost.

In this paper, we prove that the fixed-angle HP pro-
tein folding problem is NP-hard in the 2D square grid,
even if the chain has only two H vertices and those ver-
tices are its endpoints. In other words, given a fixed-
angle orthogonal equilateral HP chain, we prove it is
strongly NP-hard to find any planar noncrossing em-
bedding where the endpoints (the two H vertices) are
adjacent. This result is tight in the sense that any fixed-
angle orthogonal equilateral chain with fewer than two
H vertices (and hence can have no H–H adjacencies) has
a noncrossing embedding, given by zig-zagging the 90◦

angles to alternate between left and right turns.

Fixed-angle HP protein folding where only the two
endpoints are H vertices is nearly equivalent to finding
any planar noncrossing embedding of a closed fixed-
angle chain (where the first and last vertex are identi-
fied, and vertices are no longer marked H or P). This
is called the flattening problem for fixed-angle closed
chains. The only difference is that, in the flattening
problem, the first/last vertex has a fixed-angle con-
straint, whereas in the HP model, the two necessarily
adjacent H vertices could form any angle.

Nonetheless, we show that the flattening problem
for fixed-angle orthogonal equilateral closed chains is
strongly NP-complete. Past work proved strong NP-
hardness when this problem was generalized to fixed-
angle orthogonal equilateral caterpillar tree (instead of
a chain) or when we allow nonorthogonal fixed angles
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(and working off-grid) [6], but left this case open.
Finally our work also addresses two open problems

from [1]. We solve one open problem by proving strong
NP-completeness of deciding whether a given fixed-
angle orthogonal equilateral chain can be packed into
a 2D square (whereas [1] proved an analogous result for
a 3D cube). We also prove that this problem remains
NP-complete when the chain is only a constant factor
longer than the side length of the square (and thus the
square is sparsely filled), answering the 2D analog of a
3D question from [1].

2 Preliminaries

A linkage consists of a structure graph G = (V,E)
and edge-length function ℓ : E → R+. A configuration
of a linkage in 2D is a mapping C : V → R2 satisfying
the constraint ℓ(u, v) = ∥C(u)− C(v)∥ for each edge
{u, v} ∈ E. Let x(C(u)) and y(C(u)) be the x- and
y-coordinate of C(u), respectively. A configuration is
noncrossing if any two edges e1, e2 ∈ E intersect only
at a shared vertex v ∈ e1 ∩ e2.

A linkage is equilateral if ℓ(e) = 1 for every e ∈ E.
A linkage with n vertices is an open chain if its struc-
ture graph G is a path (v0, v1, . . . , vn−1), and it is a
closed chain if G is a cycle (v0, v1, . . . , vn−1, vn = v0).
A fixed-angle chain is a chain together with an angle
function θ : V → [0◦, 180◦], constraining configurations
to have an angle of θ(v) at every vertex v, except for
the two endpoints of an open chain. For notational con-
venience, we define θ(v0) = θ(vn−1) = 180◦ for an open
chain. A fixed-angle chain is orthogonal if we have
θ(vi) ∈ {90◦, 180◦} for every vertex vi.
The embedding problem asks to determine whether

a given linkage has a noncrossing configuration in 2D.
For general linkages, this problem is ∃R-complete [2].
For fixed-angle orthogonal chains, the problem is in NP:
given a binary choice of turning left or right at each
vertex, we can construct an embedding (say, placing the
first vertex at the origin and the second vertex on the
positive x axis), and check for collisions and (for closed
chains) closure. In fact, for fixed-angle orthogonal open
chains, every instance is a “yes” instance:

Observation 1 Every fixed-angle orthogonal open
chain has a noncrossing configuration.

Proof. Intuitively, we embed the chain in a zig-zag.
Precisely, let P = (v0, v1, . . . , vn−1) be the path struc-
ture graph. First we put v0 at (0, 0), and v1 at (1, 0). For
each i = 2, 3, . . . , n−1, we define x(C(vi)) and y(C(vi))
as follows. When θ(vi) = 180◦, we have no choice:
x(C(vi)) = x(C(vi−1))+(x(C(vi−1))−x(C(vi−2))) and
y(C(vi)) = y(C(vi−1)) + (y(C(vi−1)) − y(C(vi−2))).

When θ(vi) = 90◦ and
−−−−−−−−−−−→
C(vi−2)C(vi−1) is horizon-

tal, we define x(C(vi)) = x(C(vi−1)) and y(C(vi)) =

y(C(vi−1)) + 1. If it is vertical, we define x(C(vi)) =
x(C(vi−1)) + 1 and y(C(vi)) = y(C(vi−1)). The ob-
tained configuration is noncrossing because it proceeds
monotonically in x and y, with strict increase in one of
the coordinates. □

We note that Observation 1 holds for any fixed-angle
orthogonal open chain which is not necessarily equilat-
eral.

In the HP model , the structure graph G = (V,E)
has its vertices bicolored by a color function ω : V →
{H,P}. For a configuration C of an equilateral orthog-
onal linkage, a pair (u, v) of vertices forms an H–H
contact if ω(u) = ω(v) = H, ∥C(u)− C(v)∥ = 1, and
{u, v} /∈ E. The HP optimal folding problem of a
bicolored fixed-angle orthogonal equilateral chain asks
to find a noncrossing configuration of the linkage in 2D
that maximizes the number of H–H contacts.

A variant of the standard 3SAT problem is planar
3SAT , where the graph Gϕ = (C∪V,E) of the variable
set V and clause set C in a 3SAT formula ϕ, with edges
between variables and the clauses that contain them,
has a planar embedding. We use a variant of planar
3SAT with additional planarity restrictions: if we add
edges to form a Hamiltonian cycle κ of C ∪ V that first
visits all elements of C and then all elements of V , the
resulting graph G′

ϕ = Gϕ ∪ κ must also be planar. The
linked planar 3SAT problem asks, given ϕ, Gϕ, and
κ, whether ϕ is satisfiable. Pilz [8] proved this problem
NP-complete.

c1 c2 c3 c4

v1v2v3v4

Figure 1: An example instance of linked planar 3SAT,
where c1 = (¬v2 ∨ ¬v3 ∨ ¬v4), c2 = (v4 ∨ v3 ∨ ¬v1),
c3 = (¬v3 ∨ v1), and c4 = (v1 ∨ v2 ∨ v3). Hamiltonian
cycle κ (drawn dotted) visits c1, c2, c3, c4, v1, v2, v3, v4 in
cyclic order.

3 Embedding Fixed-Angle Orthogonal Equilateral
Closed Chains is Strongly NP-complete

In contrast to Observation 1, not all fixed-angle orthog-
onal equilateral closed chains are “yes” instances of the
embedding problem. In particular, an orthogonal equi-
lateral closed chain must have an even number of edges
to have a configuration in 2D. Even with this property,
the length-8 chain (v0, v1, v2, v3, v4, v5, v6, v7, v8 = v0)
with angles θ(v2) = θ(v6) = 180◦ and θ(vi) = 90◦ for
i = 0, 1, 3, 4, 5, 7 has configurations in 2D but they have
crossings at vertices v2 and v6. It is not difficult to show
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that the embedding problem for fixed-angle orthogonal
closed chains is weakly NP-hard by a reduction from
the ruler folding problem (see [7, Chap. 2]); this con-
struction requires exponential edge lengths (or equilat-
eral chains with exponentially long straight sections).
In this section, we prove that the embedding problem is
strongly NP-complete:

Theorem 1 Embedding a fixed-angle orthogonal equi-
lateral closed chain in 2D is strongly NP-complete.

Proof. (Outline.) Section 2 argued membership in NP.
To show NP-hardness, we reduce from the linked planar
3SAT problem. We are given a formula ϕ, the associ-
ated graph Gϕ = (C ∪ V,E), and a Hamiltonian path κ
visiting c1, c2, . . . , cm, v1, v2, . . . , vn in cyclic order. Be-
cause Gϕ∪κ is planar, there is a planar embedding with
the clauses c1, c2, . . . , cm along a single horizontal line
from left to right, and the variables v1, v2, . . . , vn along
a lower horizontal line from right to left, as in Figure 1,
but with edges routed via orthogonal paths. We can
find such an embedding in polynomial time. Note that
each edge is either interior or exterior to κ. We can
assume that every variable vi has an incident interior
edge and an incident exterior edge, by adding appropri-
ate always-satisfiable clauses (vi ∨ vi ∨¬vi) to κ so that
an edge to vi preserves planarity.

We construct four gadgets that we compose according
to the embedding of Gϕ and κ: the clause gadget, hook
gadget, variable gadget, and frame gadget. Some gad-
gets assume pinned vertices that cannot move in the
plane; we will discuss why they are effectively pinned
when we combine the gadgets together.
Figure 2 illustrates the clause gadget . We call the

two gray vertices the “tabs” of this gadget. When black

pinned

tabs

(a) When black vertices are pinned and forced to turn down,
the two gray tabs can be placed in one of three places.

(b) Representative configurations (modulo reflection).

Figure 2: Clause gadget.

vertices are pinned and must turn downward, the tabs
have three locations they can be placed. When we
flip all vertices in the gadget along the horizontal line
through two black vertices, we have three other sym-
metric options above the horizontal line.

We surround each clause gadget with a hook gad-
get , as shown in Figure 3, which consists of an upper

16

>16

tabs

(a) Hook gadget with three options on the lower half.

tabs

(b) Hook gadget with two options on the lower half and one
option on the upper half.

Figure 3: Two versions of the hook gadget. (Some ver-
tices are not drawn to simplify the figure.)
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half and a lower half to receive tabs of the clause gad-
get at distance 8 from the pinned vertices of the clause
gadget. Again we assume that both endpoints of these
upper and lower halves are pinned, which are depicted
by black vertices. We add long flaps beside the clause
gadget to prevent it from shifting vertically (relative to
the hook gadget). The hook gadget limits the clause to
three of its six options, which we arrange to be on the
upper or lower halves according to which incident edges
of the graph are exterior or interior to κ respectively
(see Figure 1). We illustrate the two possibilities of this
split modulo reflectional symmetry.

In Figure 3a, the three upper options of the clause
are prevented by the upper half which is just a horizon-
tal line, which would cross the clause tabs if the tabs
were on the upper half. The lower half consists of three
subgadgets, each with their own pair of tabs. When the
clause gadget chooses one of the downward options for
its tabs, it forces the tabs of the corresponding subgad-
get to be extended down by 2 (to avoid crossing), while
the other tabs can remain retracted (which will always
be better for avoiding crossings). (The figure shows the
unused alternate state with dashed lines.) Each pair
of tabs in the hook gadget has distance more than 16
from the clause gadget, and the linkage to the tabs is
a doubled zig-zag; together, these guarantee that the
tabs of a hook gadget cannot be flipped up because this
would cross with the upper half. The doubled zig-zag
also prevents the tabs from flipping horizontally. Thus
each pair of tabs has exactly two placements (retracted
and extended) if the black vertices are pinned.

In Figure 3b, one lower option of the clause (the
middle) is prevented by the lower half being horizontal
there, while the corresponding upper option is allowed
by adding a subgadget to the upper half. Using the same
arguments, the pair of tabs of the subgadget on the up-
per half has two exactly placements: retracted and ex-
tended. When the clause gadget chooses the available
upper option, the pair of tabs of the subgadget is forced
to be extended up by 2, which is the opposite of each
subgadget on the lower half. Moreover, we arrange that
no pair of doubled zig-zag corridors to tabs have the
same height.1

Figure 4 illustrates the variable gadget . The vari-
able gadget for a variable v consists of two zig-zag paths
of length 4k + 3, where k is the number of appearances
of v or ¬v as a literal in clauses. The two zig-zag paths
are joined by a horizontal baseline, which separates the
upper and lower zig-zag paths, forcing only two possi-
ble embeddings: the one in the figure and its reflection
through the baseline. Both zig-zag paths contain a hor-
izontal segment of length 4 for each appearance of the

1Otherwise, unexpected pairs of adjacent corridors may be
flipped. For example, consider the pair indicated by an arrow at
the top of Figure 6. If these two corridors have the same height,
the linkage joining the pair can be flipped up locally.

v v v

v v

Figure 4: A variable gadget for a variable v that appears
five times as v, ¬v, ¬v, v, and v. The corresponding tabs
come from above, above, below, above, and below.

variable. The heights of the segments on the upper and
lower zig-zag paths, measured from the baseline, are ei-
ther 3 and −1 respectively, or 1 and −3 respectively.
Which option depends on whether the corresponding
literal uses the variable positive or negated, and on
whether the corresponding tab of the hook gadget comes
from above or below the variable gadget (which corre-
sponds to whether the tab is from the upper or lower
half of the clause/hook gadget, i.e., whether the graph
edge is exterior or interior to κ). The heights are (1,−3)
if and only if either the literal is v and the tab comes
from above, or the literal is ¬v and the tab comes from
below; in Figure 4, these are the first, third, and fourth
pairs of horizontal segments. In the other cases, the
heights are (3,−1).

We arrange the variable gadgets with different heights
(see Figure 6) so that the minimum vertical distance be-
tween two baselines of two variable gadgets is at least
4n. This minimum distance guarantees that no pair
of horizontal segments in variable gadgets for vi and
vj with i ̸= j has the same height, which may cause
an unexpected flip between them. In addition, our as-
sumption that every variable has connections to clauses
both above and below it means that there is a tab both
above and below the variable, forcing an approximately
correct height of the baseline.

The last gadget is the frame gadget , shown in Fig-
ure 5, which surrounds all other gadgets. For a given
closed chain, we consider the minimum rectangle that
contains but does not intersect the chain (one step out-
side the bounding box on all sides). Then we remove an

Gadgets 

Figure 5: Frame gadget for closed chains.
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c1 c2

c3

c4

v1

v2

v3

v4

Figure 6: An example of the reduction from the instance in Figure 1, and the solution embedding corresponding to
assignment v1 = true, v2 = true, v3 = true, and v4 = false, where clauses c1, c2, c3, and c4 choose the variables v4,
v3, v1, and v1 as their true literals, respectively. (Note: vertical distances between two gadgets are not to scale.)

extreme edge {u, v} in the gadgets, and attach the frame
gadget that essentially doubles the minimum rectangle,
as shown in Figure 5. The inside of the frame gadget in-
cludes the minimum rectangle, except for three edges, as
part of the chain. The doubling prevents any part of the
frame from being flipped with respect to the surrounded
gadgets. This frame also inhibits the surrounded gad-
gets from illegal flips to outside the minimum rectangle.2

Figure 6 shows how all the gadgets fit together for
the example instance from Figure 1. We join together
all upper halves of hook gadgets for c1, c2, . . . , cm; all
clause gadgets (and their flaps) for cm, cm−1, . . . , c1; all
lower halves of the hook gadgets for c1, c2, . . . , cm; and
all variable gadgets for v1, v2, . . . , vn, in these orders.
Finally, we attach the frame gadget by replacing an edge

2In the most common case, including the example in Figure 6,
the frame is not necessary, as the hook gadgets will wrap around
both sides of the construction.

on a path joining the upper halves of the hook gadgets,
or an edge on a path joining the variable gadgets.3

This reduction can be done in time polynomial in the
size of ϕ. It remains to show that an instance (ϕ,Gϕ, κ)
of linked planar 3SAT is satisfiable if and only if the
resulting fixed-angle orthogonal equilateral closed chain
has a planar embedding. Due to the space limitation,
we only outline the proof.

When the linked planar 3SAT instance is satisfiable,
at least one literal of each clause is satisfied by the as-
signment. The clause gadget then chooses the corre-
sponding tabs of the corresponding hook gadget and
extends it, while retracting the other tabs. The ex-
tended tabs force the corresponding variable gadget to
take the true position, to avoid crossing. Because the
assignment is satisfiable, all variable gadgets can avoid

3We omit the case that no edge can be seen from the outside
of these gadgets.
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crossing with tabs. On the other hand, when the loop
has an embedding, all gadgets must be inside the frame
gadget. Each clause gadget then has to indicate some
tabs to be extended. Because the corresponding variable
does not have any crossings, the corresponding variable
satisfies the clause. Therefore, the instance of the linked
planar 3SAT is satisfiable. □

4 HP Optimal Folding a Fixed-Angle Orthogonal
Equilateral Open Chain is Strongly NP-complete

We now turn to orthogonal equilateral open chains in
the HP model, where the vertices are bicolored H or
P , and we wish to find a noncrossing configuration in
2D that maximizes the number of H–H contacts. In
this section, we prove that this problem is NP-complete,
despite the chain being open:

Theorem 2 HP optimal folding of a bicolored fixed-
angle orthogonal equilateral open chain is strongly NP-
complete, even if the chain has just two H vertices.

Proof. We use the same reduction in the proof of The-
orem 1, except for the frame gadget, which we replace
with Figure 7. The inside of the frame gadget covers
the minimum rectangle except two edges, but now the
bottom doubled edge extends very far to the left, more
than 10 times the total length L of all other gadgets.
The leftmost two vertices of the bottom doubled edge
are H (and the chain is not closed there), and all other
vertices in the chain are P .

Gadgets of
total length L

10L+1

Figure 7: A frame gadget for an HP chain. The two H
vertices are drawn red at the far left.

This reduction can be done in polynomial time. Thus
it suffices to show that this arrangement of the frame is
the only way to obtain the H–H contact at the two H
vertices. Because the total length of the gadgets inside
of the frame is at most L, we must arrange the two
long segments attached to the H vertices in parallel as
shown in the figure to make the H–H contact. Thus we
must put all other gadgets inside the frame, and hence
correctness follows from the proof of Theorem 1. □

5 Packing Fixed-Angle Orthogonal Equilateral Open
Chains into Squares is Strongly NP-complete

We now address some of the open questions from [1].
First, the authors ask whether a fixed-angle orthogonal

equilateral open chain (or in their terminology, an S–T
sequence of squares, where each S square must continue
straight and each T square must turn left or right) can
be packed into a 2D square. Second, they ask whether
the problem remains hard when the chain occupies a
small fraction of the volume of the target shape. (They
ask this question for the 3D version of the problem, but
it naturally extends to the 2D version we consider.) We
answer both questions by showing that packing a fixed-
angle orthogonal equilateral open chain of length O(s)
into an s×s square is strongly NP-complete. This result
is tight up to constant factors: if the chain has length
< s, then it can be packed into an s × s square via
Observation 1.

Theorem 3 Embedding a given fixed-angle orthogonal
equilateral open chain into an s × s square is strongly
NP-complete, even if the chain has length O(s).

Proof. We use the same reduction in the proof of The-
orem 2, except for the frame gadget, which we replace
with Figure 8.

Gadgets of
total length L

10L+1

10L+1

Figure 8: A frame gadget for an open chain which must
fit in a 10L+ 1 by 10L+ 1 square.

This frame gadget starts the chain with two connected
segments of length s. Any embedding into the s × s
square must place these segments along two boundary
edges of the square, say left and bottom as in the fig-
ure. The next two segments on the outside of the frame
gadget must turn left to remain within the square. At
the other end of the chain, we have a vertical (by par-
ity) segment of length s − 1 and a horizontal segment
of length > 9L, which forces these segments against the
first two segments. With these segments in place, the
prior argument ensures that the rest of the frame and
thus the rest of the gadgets are correctly placed.

The chain has length at most 47L+ 6 vertices (from
the SAT gadgets, the smaller frame, and the three long
bars). Thus the length l = O(s). □

It remains open whether the problem of densely pack-
ing a fixed-angle orthogonal equilateral open chain of
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length s2 into an s × s square is NP-complete.4 The
analogous problem in 3D is strongly NP-complete [1].
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A bound for Delaunay flip algorithms on flat tori

Loïc Dubois∗

Abstract

We are interested in triangulations of flat tori. A Delau-
nay flip algorithm performs Delaunay flips on the edges
of an input triangulation T until it reaches a Delaunay
triangulation. We prove that no sequence of Delaunay
flips is longer than CΓ · n2 · Λ(T ) where Λ(T ) is the
maximum length of an edge of T , n is the number of
vertices of T , and CΓ > 0 depends only on the flat
torus. The bound improves on the upper bound previ-
ously known [4] in three ways: the dependency in the
“quality” of the input triangulation is linear instead of
quadratic, the bound is tight, and the “quality parame-
ter” is simpler.

Acknowledgments. The author thanks Vincent
Despré, Benedikt Kolbe, and Monique Teillaud for their
help and discussions.

1 Introduction

Delaunay triangulations are mostly known in the Eu-
clidean plane setting. In this context a triangulation T
can be defined as a maximal planar subdivision of a fi-
nite set of points P [3, Chapter 9]. If the two bounded
faces of T incident to an inner edge e form a strictly
convex quadrilateral then the edge e can be replaced,
in T , by the other diagonal of the quadrilateral. Such
operation is called a flip. The flip graph of P is the
graph whose vertices are the triangulations on P and
such that two triangulations are linked by an edge if
there is a flip transforming one into the other. This
graph is connected and its diameter is quadratic in the
cardinal of P [5]. A triangulation is Delaunay if the cir-
cumdisk of every bounded face contains no point of the
triangulation in its interior. A Delaunay flip algorithm
takes as input a triangulation and performs Delaunay-
flips until it reaches a Delaunay triangulation. Such an
algorithm terminates [3, Observation 9.3].

Generalizing Delaunay triangulations [2] [1] and De-
launay flip algorithms [4] to other geometric spaces than
the Euclidean plane is a natural question that has been

∗loic.dubois@ens-lyon.fr. LIGM, CNRS, Université Gus-
tave Eiffel, F-77454 Marne-la-Vallée, France. This work was
done while the author was working at Université de Lorraine,
Inria, LORIA, F-54000 Nancy. It was partially supported by
the grant ANR-17-CE40-0033 of the French National Research
Agency ANR (project SoS https://sos.loria.fr/). It also was
partially supported by ÉNS de Lyon.

studied (and implemented [7] [6]). In that setting De-
launay flip algorithms present the advantage of handling
triangulations containing loops and multi-edges. A flat
torus TΓ is the quotient space of the Euclidean plane
under the action of a group Γ generated by two inde-
pendent translations (Section 2.1). In this paper we are
interested in the complexity (number of flips) of Delau-
nay flip algorithms on flat tori. We prove Theorem 1.

Theorem 1 Every sequence of Delaunay flips starting
from a triangulation T of a flat torus TΓ has length at
most

CΓ · n2 · Λ(T )

where Λ(T ) is the maximum length of an edge of T , n
is the number of vertices of T , and CΓ > 0 depends only
on TΓ. This bound is asymptotically tight.

An upper bound was already proved [4, Theorem 16],
together with the connectivity of the flip graph, as a
particular (easy) case of a more general result on geo-
metric triangulations of hyperbolic surfaces:

Ch · n2 ·∆(T )2

where Ch depends only on TΓ and ∆(T ) is a parameter
measuring in some sense how “stretched” T is. The def-
inition of ∆(T ) is not used in this paper but we give it
(in the special case of triangulations of flat tori) for the
interested reader: the real ∆(T ) is the smallest diame-
ter that can have a domain of R2 that is the union over
every face t of the triangulation T of a lift (Section 2.1)
of the face t.

To obtain their bound the authors showed that the
edges flipped in a sequence of Delaunay flips cannot be
longer than 2∆(T ) [4, Lemma 10]. The upper bound
follows from the observation that the number of seg-
ments no longer than L > 0 between two given points
of TΓ is at most quadratic in L.

Our first (small) improvement is to replace the pa-
rameter ∆(T ) by the maximum length Λ(T ) of an edge
in T . The inequality Λ(T ) ≤ ∆(T ) is easily observed to
be true. Moreover the definition of ∆(T ) is more intri-
cate than the definition of Λ(T ) and it is not obvious
how to compute ∆(T ).

Our second (main) improvement is to replace the
quadratic dependency by a linear dependency in Λ(T ),
obtaining a bound that is asymptotically tight.
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2 Background

In this paper Rd, d ≥ 1, denotes the usual d-dimensional
Euclidean space with the L2 norm. We call segment
of Rd the convex hull [ũ, ṽ] of any two distinct points
ũ, ṽ ∈ Rd. We call interior of [ũ, ṽ] the set [ũ, ṽ]\{ũ, ṽ}.
The interior of a segment of Rd is not empty.

2.1 Flat tori

A flat torus TΓ is the quotient of R2 under the action of
a group Γ generated by two independent translations.
For the needs of this section we introduce the projection
ρ : R2 → TΓ mapping every point of R2 to its Γ-orbit.

We call segment of TΓ any projection s = ρ(s̃) of a
segment s̃ of R2 such that the restriction of ρ to the
interior of s̃ is injective. If ũ and ṽ are the endpoints of
s̃ then ρ(ũ) and ρ(ṽ) are the (possibly equal) endpoints
of s. We call interior of s the image by ρ of the interior
of s̃.

A lift of a point p ∈ TΓ is any point p̃ in the Γ-orbit
ρ−1(p). A lift of a segment s of TΓ is any segment s̃
of R2 whose interior is, through ρ, in one-to-one corre-
spondence with the interior of s.

The length l (s) of a segment s of TΓ is the length of
a lift of s in R2. It is independent of the lift.

2.2 Delaunay triangulations and flip algorithms

A topological triangulation of a flat torus TΓ is any em-
bedding of a finite undirected graph onto TΓ such that
each resulting face is homeomorphic to an open disk and
is bounded by exactly three distinct edge-embeddings.
Observe that this graph may have loops or multiple
edges. A geometric triangulation of TΓ is a topolog-
ical triangulation in which each edge is embedded as
a segment of TΓ. In this paper every triangulation is
geometric so we just use the term triangulation.
The lift of a triangulation T of TΓ is the infinite tri-

angulation of R2 whose vertices and edges are the lifts
of the vertices and edges of T .

A Delaunay triangulation of TΓ is a triangulation T
of TΓ whose lift T̃ is a Delaunay triangulation of R2

(Figure 1). In other words for each face t̃ of T̃ the disk
circumscribing t̃ contains no vertex of T̃ in its interior.
We refer to the literature for an introduction to Delau-
nay triangulations of R2 [3, Chapter 9].

Consider a triangulation T of TΓ, an edge e of T and
a lift ẽ of e. The segment ẽ of R2 is an edge of the lift
T̃ of T and ẽ is incident with two faces t̃1 and t̃2 of T̃ .
Let D̃1 and D̃2 be the open disks of R2 circumscribing
t̃1 and t̃2 respectively. Let also ṽ1 be the vertex of t̃1
that is not a vertex of t̃2, and ṽ2 be the vertex of t̃2
that is not a vertex of t̃1. The condition ṽ1 ∈ D̃2 is
equivalent to ṽ2 ∈ D̃1. If it is satisfied we say that
the edge e is Delaunay-flippable in the triangulation T

Figure 1: A portion of the lift of a Delaunay triangula-
tion of a flat torus. (Gray) Six lifts of a single face.

and this definition is independent of the choice of the
lift ẽ. In such a case the union of the closures of t̃1
and t̃2 is a convex quadrilateral and replacing, in the
triangulation T , the edge e by the segment ρ([ṽ1, ṽ2]) of
TΓ yields another triangulation T ′ of TΓ. We say that
the triangulation T ′ results from the Delaunay flip of
the edge e in the triangulation T .

We call sequence of Delaunay flips any sequence
T0, . . . , Tm of triangulations of TΓ, for some m ≥ 0,
such that for every k ∈ {1, . . . ,m} the triangulation
Tk results from the Delaunay flip of an edge in the tri-
angulation Tk−1. We say that m is the length of the
sequence.

Every Delaunay flip algorithm takes as input a trian-
gulation of TΓ and flips Delaunay-flippable edges until
there is none left to flip. Such an algorithm terminates
and outputs a Delaunay triangulation [4].

2.3 Stereographic projection and Delaunay flips

In R3 let S2 denote the 2-dimensional sphere of radius
1 centered at (0, 0, 0). The point P = (0, 0,−1) belongs
to S2. We identify R2 with the plane of R3 containing
the points whose third coordinate is 1. Given p̃ ∈ R2 we
denote by Ip̃ the unique line of R3 containing the points
p̃ and P (Figure 2).

The stereographic projection π is a bijection from R2

to S2 \ P . It maps every point p̃ ∈ R2 to the unique
intersection of the line Ip̃ with S2 \ P .

A triangle in R3 is the convex hull of three points
that do not belong to a common line. We call triangular
surface any connected union of triangles satisfying the
following properties. Firstly if the intersection of any
two distinct triangles of the union is not empty then it
is either a vertex or an edge of both of the two triangles.
Secondly every edge belongs to at most two triangles.
Finally the triangles incident to a common vertex v can
be either circularly or linearly ordered so that two such
triangles share an edge e that is incident to v if and
only if the two triangles are adjacent in the (circular or
linear) ordering.
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Every infinite triangulation T of R2 is mapped
uniquely to a triangular surface S as follows. The ver-
tices of S are the images of the vertices of T under π
and the triangles of S are in one-to-one correspondence
with the faces of T : the three vertices ṽ1, ṽ2 and ṽ3 of a
face of T are mapped to the three vertices π(ṽ1), π(ṽ2),
and π(ṽ3) of a triangle of S. We say that such a trian-
gular surface (issued of an infinite triangulation of R2)
is standard.

We emphasize that every standard triangular surface
shares no other point with the sphere S2 than its ver-
tices. In fact if a point belongs to, but is not a vertex
of, a standard triangular surface then it is at distance
less than one from the point (0, 0, 0).

P

S2

p̃

π(p̃)

Ip̃

R2

Figure 2: Mapping a lift of a triangulation of flat torus
to a standard triangular surface.

Every standard triangular surface S induces bijection
πS : R2 → S sending every p̃ ∈ R2 to the unique in-
tersection with S of the line Ip̃. Given two standard
triangular surfaces S and S′ (possibly with S = S′) we
say that S is above S′ if for every p̃ ∈ R2 the point
πS′(p̃) lies on the closed segment [P, πS(p̃)] of R3, on
the line Ip̃. The aboveness relation is a partial order
on the set of standard triangular surfaces. Lemma 2 is
folklore and follows from the fact that every circle on
R2 is mapped under the stereographic projection to a
circle on S2 \ P , the latter being the intersection with
S2 \ P of a plane of R3.

Lemma 2 Assume that a triangulation T of a flat torus
TΓ results from the Delaunay flip of an edge e′ in a
triangulation T ′ of TΓ and let e be the edge of T resulting
from the flip. Let S and S′ be the standard triangular
surfaces associated to the lifts of T and T ′, respectively.
Then S is above S′. Let also p ∈ TΓ be the intersection
point of the interiors of e and e′ and p̃ ∈ R2 be any lift
of p. Then πS(p̃) 6= πS′(p̃).

3 Lower bound

On a flat torus TΓ the length of a sequence of De-
launay flips ending at a Delaunay triangulation cannot

be bounded from above by a function depending only
on the number of vertices of the starting triangulation.
This fact follows from two observations. The first ob-
servation is that it is easy to construct an infinite set
of triangulations of TΓ all having a single common ver-
tex, say v, as their vertex set (Figure 3). The second
observation is that there can only be a finite number of
Delaunay triangulations of TΓ having v as their unique
vertex1.

Figure 3: On a flat torus, three portions of the lifts of
three triangulations with a single common vertex.

To understand this phenomenon more precisely, we
consider a second parameter of the starting triangula-
tion T : the maximum length Λ(T ) of an edge in T . We
exhibit in Proposition 3 a family of starting triangula-
tions T for which we prove a lower bound on the length
of every sequence of Delaunay flips starting from T and
ending at a Delaunay triangulation.

We are interested in a particular flat torus. Consider
the two independent translations by the vectors (1, 0)
and (0, 1) respectively. We are interested in the flat
torus T� that is the quotient of R2 under the action
of the group generated by those two translations. We
denote by ρ� the canonical projection from R2 to T�.
We say that T� is the unit flat torus.

Proposition 3 For every n ≥ 1 and every Λ0 > 0 there
is a triangulation T of the unit flat torus T� such that
every sequence of Delaunay flips starting from T and
ending at a Delaunay triangulation is longer than

c · n2 · Λ(T )

where Λ(T ) > Λ0 is the maximum length of an edge in
T , n is the number of vertices of T , and c > 0 is a
constant.

The quadratic dependence in the number of vertices is
also a consequence of a more general fact about flips (not
necessarily Delaunay flips) of triangulated polygons in
the plane [5, Theorem 3.8]. Our construction is inspired
from one previously known in that setting [5].

1Pick’s theorem [8] infers the existence of Λ1 > 0 depending
only on TΓ such that in R2 every disk of diameter Λ1 intersects a
lift of v. It follows that the edges of any Delaunay triangulation
of TΓ with vertex set {v} are not longer than Λ1. There can only
be a finite number of such edges.
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p̃00 p̃01 p̃02 p̃03

p̃10 p̃11 p̃12 p̃13

. . .

. . .

p̃0−1

p̃1−1. . .

. . .

Figure 4: A portion of the lift of a triangulation belong-
ing to F in the proof of Proposition 3. The fixed edges
are in gray.

Proof. We fix n ≥ 1 and Λ0 > 0. See Figure 4.
For every z ∈ Z and every ε ∈ {0, 1} we define the

point p̃εz = ( zn , ε) in R2 and the point pz of T� by pz =
ρ�(p̃0

z). Observe that if z, z′ ∈ Z are such that z ≡ z′

mod n then pz = pz′ and the points p̃0
z, p̃

1
z, p̃

0
z′ , and p̃

1
z′

are all lifts of pz. For every z, z′ ∈ Z we define the
segment sz,z′ of T� as ρ�(

[
p̃0
z, p̃

1
z′

]
).

We are interested in the set F of the triangulations
of T� satisfying the following. The vertices of every
triangulation T ∈ F are p1, . . . , pn and the edges of
T are partitioned as follows: T contains n edges that
we call fixed and 2n edges that we call free. For k ∈
{1, . . . , n} the kth fixed edge of T is ρ�(

[
p̃0
k−1, p̃

0
k

]
). The

only restriction on the free edges of T is that they must
belong to {sz,z′ : z, z′ ∈ Z}.

Claim 1. For every T ∈ F the following holds:

(a) The fixed edges of T are not Delaunay-flippable.

(b) The Delaunay flip of a free edge e in T results in a
triangulation T ′ ∈ F .

(c) Such a Delaunay flip replaces the edge e in T by an
edge e′ in T ′ such that l(e′) ≥ l(e)− 2/n.

(d) The lengths of two free edges of T cannot differ by
more than 2.

Claim 2. There is a triangulation in F having a free
edge longer than Λ0.

Claim 3. There is a constant Λ1 > 0 such that
the edges of every Delaunay triangulation in F are not
longer than Λ1.

Claims 2 and 3 are straightforward. We will prove
Claim 1 in the end. We first show that those claims
imply the result. By Claim 2 there is a triangulation
T0 ∈ F having a free edge longer than Λ0. Let Λ(T )
denote the maximum length of an edge in T0; Λ(T ) is
the length of a free edge of T0. Indeed the free edges
of T0 have length at least 1 while the fixed edges of T0

have length 1/n.
We assign to every triangulation T ∈ F a weight ω(T )

that is the sum of the lengths of its edges. By Claim
1.d ω(T0) ≥ 1 + 2n(Λ(T ) − 2). Indeed T0 has n fixed
edges of length 1/n and 2n free edges of length at least
Λ(T )− 2.

Consider a sequence T0, . . . , Tm of Delaunay flips for
some m ≥ 0 that starts from T0 and ends at a Delaunay
triangulation Tm. By Claims 1.a and 1.b all the trian-
gulations T0, . . . , Tm belong to F . By Claim 1.c holds
ω(Tm) ≥ ω(T0)− 2m/n. By Claim 3 there is a constant
Λ1 > 0 such that ω(Tm) ≤ 3nΛ1. Thus

2m ≥ n(ω(T0)− ω(Tm)) ≥ n+ (2Λ(T )− 3Λ1 − 4)n2.

That proves the result. Now we prove Claim 1.
Proof of Claim 1. To prove (a) consider a fixed

edge e of the triangulation T . There is k ∈ {1, . . . , n}
such that the segment ẽ of R2 between p̃0

k−1 = (k−1
n , 0)

and p̃0
k = ( kn , 0) is a lift of e. Consider the two faces t̃1

and t̃2 of the lift T̃ of T that are incident to ẽ. Let ṽ1 be
the vertex of t̃1 that is not a vertex of t̃2 and let ṽ2 be the
vertex of t̃2 that is not a vertex of t̃1. Up to renaming
ṽ1 and ṽ2 there are z, z′ ∈ Z such that ṽ1 = p̃1

z = ( zn , 1)

and ṽ2 = ( z
′

n ,−1). It is straightforward to check that
the open disk whose boundary contains p̃0

k−1,p̃
0
k, and ṽ1

does not contain ṽ2.
To prove (b) and (c) consider a free edge e of the

triangulation T and assume that e is Delaunay-flippable.
There are z, z′ ∈ Z such that e = sz,z′ . The segment
ẽ =

[
p̃0
z, p̃

1
z′

]
is a lift of e so it is incident to two faces

t̃1 and t̃2 of the lift T̃ of T . Let ṽ1 be the vertex of t̃1
that is not a vertex of t̃2 and let ṽ2 be the vertex of t̃2
that is not a vertex of t̃1. Up to renaming ṽ1 and ṽ2

there is ε ∈ {1,−1} such that ṽ1 = p̃0
z−ε and ṽ2 = p̃1

z′+ε:
every other case would contradict the fact that both T
and the triangulation resulting from the flip of e in T
are indeed triangulations. The edge e′ resulting from
the lift of e in T admits the segment [ṽ1, ṽ2] as a lift and
l(e′) ≥ l(e)− 2/n.

To prove (d) consider a lift ẽ of a free edge e of T and
the two vertices ṽ1 and ṽ2 of ẽ. Let τ1 be the translation
by the vector (1, 0) (one of the two translations defining
T�). The four points of R2 that are ṽ1, ṽ2, τ1(ṽ2) and
τ1(ṽ1) are the vertices of a closed parallelogram P�. The
closed parallelogram P� contains a lift of every free edge
of T . Indeed every free edge f of T distinct from e
admits a lift f̃ whose interior intersects the interior of
P�

2, and the interior of f̃ cannot intersect a side of
P� because that would imply that the interior of the
edge f intersects another edge of the triangulation T .
To conclude observe that by construction the sides of
P� are of length 1 (for the sides ṽ1τ1(ṽ1) and ṽ2τ1(ṽ2))
and of length l(e) (for the sides ṽ1ṽ2 and τ1(ṽ1)τ1(ṽ2))).
Thus every free edge of T has its length between l(e)−2
and l(e) + 2. �

2The closed parallelogram P� is a fundamental domain for the
flat torus T�.
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4 Upper bound

In Section 3 we exhibited a family of triangulations T
for which the length of a sequence of Delaunay flips
starting from T and ending at a Delaunay triangulation
is bounded from below (Proposition 3). In this section
we show that our construction was actually “the worst
possible” and that the lower bound of Proposition 3 is
asymptotically matched by a general upper bound over
all possible starting triangulations on a flat torus. This
upper bound comes from an observation formalized by
Proposition 4. Informally, given two “long” edges e1 and
e2 among the edges flipped in a sequence of Delaunay
flips, if e1 and e2 have “comparable” lengths then they
must be “roughly parallel”.

4.1 Statement of Proposition 4

Consider a flat torus TΓ. We say that a segment s of
TΓ follows a segment s′ of TΓ (possibly with s = s′) if
there are triangulations T and T ′ of TΓ (possibly with
T = T ′) such that s is an edge of T , s′ is an edge of
T ′, and there is a sequence of Delaunay flips (possibly
of length 0) starting from T ′ and ending at T .

We map every segment s of TΓ to a pair {p̃,−p̃} of
opposite nonzero vectors of R2 as follows. We consider
the endpoints ũ and ṽ of a lift of s and define the point
p̃ as the image of 0R2 under the translation that maps ũ
to ṽ. The resulting pair {p̃,−p̃} does not depend on the
choice of ũ and ṽ. We call these two points the signature
points of the segment s.

Consider two segments s and s′ of TΓ and assume
that s and s′ have the same endpoints u and v (u and v
may be equal) and the same signature points p̃ and −p̃.
Consider also a lift ũ of u. For ε ∈ {1,−1} let ṽε denote
the image of ũ under the translation that maps 0R2 to εp̃.
There are ε, ε′ ∈ {1,−1} such that the segment [ũ, ṽε] of
R2 is a lift of s and such that the segment [ũ, ṽε′ ] of R2

is a lift of s′. If ε = ε′ then s = s′. Thus there cannot be
more than two distinct segments of TΓ having the same
endpoints and the same signature points.

Proposition 4 Given a flat torus TΓ there are κ > 0
and l0 > 0 depending only on TΓ such that the following
holds. If a segment s of TΓ follows a segment s′ of TΓ

and if l (s) > l0 and l (s′) ∈ [l (s) /2, 2l (s)] then the
signature points of s′ are at distance at most κ from the
line containing the signature points of s.

See Figure 5 for an illustration of Proposition 4.

4.2 Proof of Proposition 4

Lemma 5 Assume that a segment s of a flat torus TΓ

follows a segment s′ of TΓ and consider a lift s̃ of s and
a lift s̃′ of s′. If s̃ and s̃′ intersect in their respective

2l(s)

1
2 l(s)

(0,0)

Figure 5: Illustration of Proposition 4. (Black disks)
Signature points of s. (Black squares) Signature points
of s′. (Gray) Points at distance at most κ from the line
containing the signature points of s.

interiors and if there is an open disk D̃ whose bound-
ary ∂D̃ contains the two endpoints of s̃ and one of the
endpoints of s̃′ then the other endpoint of s̃′ lies outside
D̃.

Observe that in Lemma 5 if a point lies outside the
open disk D̃ it may still lie within the boundary circle
∂D̃. In particular the conclusion of the lemma holds
when s = s′ and s̃ = s̃′.

Proof. Let ũ, ṽ denote the two endpoints of s̃, and ũ′, ṽ′
denote the two endpoints of s̃′. Assume that the points
ũ, ṽ, and ũ′ belong to the circle ∂D̃. The projection
π(∂D̃) is the intersection with S2 \P of a plane P ⊂ R3.
The plane P bounds two closed half-spaces whose union
is R3 and whose intersection is P. We will show that
π(ṽ′) belongs to the half-space R containing the point
P .

There are triangulations T and T ′ of TΓ such that
s is an edge of T , s′ is an edge of T ′, and there is a
sequence of Delaunay flips starting from T ′ and ending
at T . The lift T̃ of T and the lift T̃ ′ of T ′ are infinite
triangulations of R2; s̃ is an edge of T̃ and s̃′ is an edge
of T̃ ′. Let S and S′ be the standard triangular surfaces
associated to T̃ and T̃ ′ respectively. Lemma 2 and the
transitivity of the aboveness relation imply that S is
above S′ (possibly with S = S′). Thus any point p̃ ∈ R2

of the intersection of s̃ and s̃′ is such that πS′(p̃) lies on
the segment of R3 [P, πS(p̃)] on the line Ip̃. (Section 2.3).
The point πS(p̃) is the intersection with the line Ip̃ of
an edge of S: this edge is the segment of R3 [π(ũ), π(ṽ)].
This segment is fully contained in the plane P since its
endpoints π(ũ) and π(ṽ) both belong to P. In particular
πS(p̃) belongs to P and πS′(p̃) belongs to the half-space
R. Since πS′(p̃) is distinct from π(ũ′) and belongs to
the segment of R3

[
π(ũ′), π(ṽ′)

]
and since both πS′(p̃)

and π(ũ′) belong to R then so does π(ṽ′). �
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Lemma 6 Let ε > 0 and d > 20ε. Let ũ ∈ R×]−∞, 0[
and ṽ ∈ R×]0,+∞[ such that ‖ũ‖ < ε and ‖ṽ − ũ‖ <
4d. There is a unique open disk D̃ whose boundary con-
tains ũ and the points (d, 0) and (−d, 0). If ṽ lies outside
D̃ then yṽ < 100ε where yṽ denotes the second coordi-
nate of ṽ.

Observe that in Lemma 6 if the point ṽ lies outside
the open disk D̃ it may, still, belong to its boundary.
See Figure 6 for an illustration of Lemma 6.

(d, 0)(−d, 0) (0, 0)

c̃

ũ

ṽ

D̃

Figure 6: Illustration of Lemma 6.

We put the proof of Lemma 6 in Appendix 5. Now
we prove Proposition 4 using Lemmas 5 and 6.

Proof. (Proof of Proposition 4)
Assume that a segment s of a flat torus TΓ follows a

segment s′ of TΓ. Consider a lift s̃ of s. Up to a rota-
tion and a translation we assume that s̃ is a horizontal
segment whose center is the point (0, 0). We claim that
there exist ε > 0 depending only on TΓ and a lift s̃′ of
s′ whose endpoints ũ = (xũ, yũ) and ṽ = (xṽ, yṽ) satisfy
the three following conditions: ‖ũ‖ < ε, yũ < 0, and
yũ ≤ yṽ. To prove this claim start with any lift of s′
and let p̃ = (xp̃, yp̃) and q̃ = (xq̃, yq̃) denote the end-
points of this lift. Up to renaming p̃ and q̃ we assume
yp̃ ≤ yq̃. There is ε > 0 such that any open disk of
diameter ε intersects the Γ-orbit of p̃. Hence there is a
point ũ ∈ R2 at distance less than ε/2 from the point
(0,−ε/2) and a translation τ ∈ Γ such that τ(p̃) = ũ.
Setting ṽ = τ(q̃) proves the claim.

The signature points of s belong to the line R× {0}.
We set κ = 101ε and consider one of the two signature
points of s′, namely ṽ − ũ. Since −ε < yũ < 0 and
yũ ≤ yṽ proving yṽ < 100ε will infer the proposition.
Having yṽ ≤ 0 would conclude so we assume yṽ > 0.
There are two cases: either s̃ and s̃′ intersect in their
interiors or they do not.

First assume that s̃ and s̃′ intersect in their interiors.
We set d = l (s) /2 and we can enforce that d > 20ε.
Indeed we assumed l (s) > l0 and we can choose l0 large
enough with respect to ε (recall that ε depends only on
TΓ). Lemma 5 implies that ṽ lies outside the open disk
D̃ whose boundary contains ũ and the endpoints (d, 0)
and (−d, 0) of s̃. Thus the conditions of Lemma 6 are
satisfied and yṽ < 100ε.

If s̃ and s̃′ do not intersect in their interiors then ṽ lies
outside D̃ and the conditions of Lemma 6 are satisfied
again. �

4.3 Proof of the upper bound

Lemma 7 is folklore. We prove it in Appendix 6 for
completeness.

Lemma 7 Consider a flat torus TΓ, an integer m ≥ 0,
and a sequence of Delaunay flips T0, . . . , Tm. For every
k ∈ {1, . . . ,m} we let ek denote the edge of Tk−1 that is
flipped to obtain Tk. The segments e1, . . . , em of TΓ are
pairwise distinct.

The edges flipped in a sequence of Delaunay flips are
not longer than 2∆(T ) where ∆(T ) is a parameter mea-
suring in some sense how “stretched” the starting trian-
gulation T is [4, Lemma 10]. The arguments yielding a
bound in terms of ∆(T ) easily infer a bound in terms of
the maximum length of an edge in T . This new bound is
stated by Lemma 8. As the proof of Lemma 8 is only a
slight adaptation of the anterior proof [4, Lemma 10] we
omit it here and put it in Appendix 7 for completeness.

Lemma 8 Consider triangulations T and T ′ of a flat
torus TΓ and assume that there is a sequence of De-
launay flips starting from T ′ and ending at T . Then
the edges of T cannot be more than twice as long as a
longest edge of T ′.

Now we prove Theorem 1.

Proof. (Proof of Theorem 1) Consider m ≥ 0 and a
sequence of Delaunay flips T0, . . . , Tm such that T0 = T .
For every k ∈ {0, . . . ,m} the edges of Tk constitute a
set Ek of segments of TΓ. We are interested in the union
E of the sets E0, . . . , Em. By Lemma 7 the cardinal of
E is not smaller than m. We partition the elements of
E into n(n+ 1)/2 subsets according to their endpoints,
as follows. For every unordered pair {u, v} of vertices
of the triangulation T we consider the set of segments
in E that end at u and v. For every single vertex v
of T we consider the set of segments in E that admit
v as their unique endpoint. Proving that each of those
subsets contains at most CΓ · Λ(T ) segments will infer
the result.

So consider such a subset F ⊆ E in the partition that
we just described and let u and v be the (possibly equal)
endpoints of the segments in F . Let κ > 0 and l0 > 0
be given by Proposition 4.

As explained in Section 4.1 there cannot be more than
two distinct segments of TΓ having the same endpoints
and the same signature points. Fix a lift ũ of u and a lift
ṽ of v. For any signature point p̃ of a segment in F there
is τ ∈ Γ such that either p̃ or −p̃ is equal to τ(ṽ) − ũ.
Thus there is a finite number of such signature points
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that are at distance at most l0 from the point (0, 0),
and this finite number depends only on TΓ (recall that
l0 depends only on TΓ). That implies that there is only
a finite number of segments in F that are not longer
than l0.

Consequently we let F ′ ⊆ F be the set of segments
in F that are longer than l0: we will now bound the
cardinality of F ′. By Lemma 8 no segment in F ′ is
longer than 2Λ(T ). We partition the segments in F ′ by
their lengths as follows. We consider j0 = l0 < j1 <
· · · < jN = 2Λ(T ) for some N ≥ 1 such that for every
k ∈ {1, . . . , N} the reals jk−1 and jk differ by a factor of
at most 2. For every k ∈ {1, . . . , N} we let F ′k denote the
set of segments in F ′ whose length belongs to ]jk−1, jk].
We now fix k and claim that F ′k contains at most C ′Γ ·
(jk − jk−1) segments, where C ′Γ > 0 is a constant that
depends only on TΓ.

To prove this claim observe that if F ′k is not empty
then it contains a segment s that follows every other
segment s′ ∈ F ′k \ {s}. For such another segment s′
Proposition 4 states that the signature points of s′ are
at distance at most κ from the line containing the sig-
nature points of s. Also the distance to (0, 0) of the
two signature points of s′ is the length of s′ and thus
lies between jk−1 and jk. Consequently the number of
signature points of elements of F ′k is at most linear in
jk − jk−1 and the constant coefficient depends only on
TΓ.

To clarify this statement observe that the signature
points of elements of F ′k all belong, by definition, to the
Γ-orbit O of some point of R2. We just proved that such
signature points also belong to the set D of points of R2

(1) that are at distance κ from the line containing the
signature points of s and (2) whose distance to (0, 0) lies
between jk−1 and jk. The cardinality of the intersection
of O and D is linear in jk − jk−1, and the constant
coefficient depends only on O and κ, that both depend
only on TΓ.

That, together with Proposition 3 for the lower
bound, concludes the proof of Theorem 1. �
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Appendix

5 Proof of Lemma 6

Proof. We write ũ = (xũ, yũ) and ṽ = (xṽ, yṽ) and recall
that yṽ > 0 and yũ < 0 both hold by assumption. The latter
enforces the existence of the open disk D̃. Now let c̃ denote
the center of D̃. The segment [−d, d] × {0} is a chord of D̃
and its midpoint is the point (0, 0). Thus the first coordinate
of c̃ is 0 and the radius of D̃ is

√
y2
c̃ + d2 where yc̃ denotes

the second coordinate of c̃. One easily gets yc̃ > 0 from the
assumptions yũ < 0, ‖ũ‖ < ε, and d > ε. See Figure 6.

We first prove a few inequalities that may seem arbitrary
at first but will be used in the end of the proof. Pythagorean
Theorem gives (yc̃ − yũ)2 + x2

ũ = y2
c̃ + d2 which simplifies to

−2yũyc̃ = d2 − x2
ũ − y2

ũ. We assumed ‖ũ‖ < ε and d >
√

2ε,
that implies x2

ũ + y2
ũ < d2/2 and −yũ < ε and thus

4εyc̃ > d2. (1)

Equation (1) combined with the assumption that d > 20ε
implies

yc̃ > 100ε. (2)

The triangular inequality gives ‖ṽ‖ ≤ ‖ṽ − ũ‖ + ‖ũ‖. The
later is smaller than 4d+ ε < 5d by assumptions. So ‖ṽ‖2 <
25d2 and by Equation 1 we obtain

‖ṽ‖2 < 100εyc̃. (3)

Equation (3) and Equation (2) imply

‖ṽ‖ < yc̃. (4)

Now we prove yṽ < 100ε. Since ṽ lies outside D̃ then
(yc̃ − yṽ)2 + x2

ṽ ≥ y2
c̃ + d2, which simplifies to y2

ṽ − 2yc̃yṽ +
x2
ṽ − d2 ≥ 0. We study this inequality to derive a bound

on yṽ. Equation (4) implies 4(y2
c̃ + d2 − x2

ṽ) > 0 hence the
polynomial X2 − 2yc̃X + x2

ṽ − d2 univariate in X admits
two real roots yc̃ ±

√
y2
c̃ + d2 − x2

ṽ. Equation (4) enforces
yṽ ≤ yc̃ −

√
y2
c̃ + d2 − x2

ṽ, which implies

yṽ < yc̃

(
1−

√
1− x2

ṽ/y
2
c̃

)
.

Equation (3) and Equation (2) successively infer

yṽ < yc̃
(

1−
√

1− 100ε/yc̃
)
≤ 100ε.

That proves the lemma. �

6 Proof of Lemma 7

Proof. Assume there are k, k′ ∈ {1, . . . ,m} such that k <
k′ and ek = ek′ . Let Sk−1, Sk and Sk′−1 be the standard
triangular surfaces associated to the lifts of Tk−1, Tk and
Tk′−1, respectively. Consider the edge f of Tk resulting from
the Delaunay flip of the edge ek in Tk−1. Let p ∈ TΓ be the
intersection point of the interiors of f and ek. Let also p̃ ∈ R2

be a lift of p.
Since ek = ek′ then πSk−1(p̃) = πSk′−1

(p̃). By Lemma 2
Sk′−1 is above Sk and Sk is above Sk−1. We deduce πSk (p) =
πSk−1(p̃) = πSk′−1

(p̃). But Lemma 2 also gives πSk (p̃) 6=
πSk−1(p̃) hence a contradiction. �

7 Proof of Lemma 8

Proof. Let Λ(T ′) be the maximum length of an edge of
T ′ and assume that there is an edge e of T such that
l(e) > 2Λ(T ′). Consider a lift ẽ of e and let p̃ ∈ R2 be
the middlepoint of ẽ. There is a face t̃′ of the lift T̃ ′ of T ′

such that p̃ belongs either to t̃′ or to the boundary of t̃′. The
three edges of the triangle t̃′ are not longer than Λ(T ) so, by
the triangular inequality, the distance from p̃ to any vertex
of t̃′ is not greater than Λ(T ) and the closed disk D̃ ⊂ R2 of
diameter Λ(T ) and centered at p̃ contains t̃′. Also the two
endpoints ũ and ṽ of ẽ lie outside D̃.

Consider the standard triangular surfaces S and S′ asso-
ciated to the lifts of T and T ′, respectively. The projection
π(∂D̃) of the boundary ∂D̃ of D̃ is the intersection with
S2 \ P of a plane P ⊂ R3. The plane P bounds two open
half-spaces. The points π(ũ) and π(ṽ) both belong to the
half-space R that contains P . Thus πS(p̃) ∈ R. The vertices
w̃1, w̃2 and w̃3 of t̃′ all belong to ∂D̃ thus π(w̃1), π(w̃2) and
π(w̃3) all belong to P and πS′(p̃) ∈ P. Consequently πS′(p̃)
does not lie on the segment [P, πS(p̃)] of R3, contradicting
Lemma 2. �
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Computing Batched Depth Queries and the Depth of a Set of Points

Stephane Durocher∗ Alexandre Leblanc† Sachini Rajapakse∗

Abstract

Simplicial depth and Tukey depth are two common mea-
sures for expressing the depth of a point q relative to a
set P of points in Rd. We introduce definitions that gen-
eralize these notions to express the depth of a set Q of
points relative to a set P of points in Rd, and we exam-
ine algorithms for computing these in R2, capitalizing
on the relative cardinalities of P and Q.

1 Introduction

Depth measures quantify the centrality of an object rel-
ative to a set of objects. For univariate quantitative
data, a natural definition for the depth of a point q rel-
ative to a set P of points in R is to measure how deeply
nested q is in P by the lesser of the number of points
of P less than q, and the number of points of P greater
than q. By this measure, outliers relative to P have
low depth, whereas a median of P has maximum depth.
Various generalizations to higher dimensions exist, in-
cluding simplicial depth and Tukey depth.
The simplicial depth of a query point q relative to a

set P of points is the number of simplices determined
by points in P that contain q:

Definition 1.1 (Simplicial depth [14]) Given a set
P of n points in Rd and a point q in Rd, the simplicial
depth of q relative to P is

SDP (q) =
∑
S∈S

I(q ∈ S), (1)

where S denotes the set of
(

n
d+1

)
closed simplices, each

of which is the convex hull of d+1 points from P , and I
is an indicator function such that I(A) = 1 if A is true
and I(A) = 0 otherwise.

The Tukey depth of a query point q relative to a set
P of points is the minimum number of points of P in
any closed half-space containing q:

Definition 1.2 (Tukey depth [19]) Given a set P of
n points in Rd and a point q in Rd, the Tukey depth (or

∗Department of Computer Science, University of Manitoba,
stephane.durocher@umanitoba.ca, rajapak1@myumanitoba.ca

†Department of Statistics, University of Manitoba,
alex.leblanc@umanitoba.ca

half-space depth) of q relative to P is

TDP (q) = min
H∈H

H∩q ̸=∅

|H ∩ P |, (2)

where H is the set of all closed half-spaces in Rd.

Given q and P in R2, the simplicial depth and the
Tukey depth of q relative to P can be computed in
O(n log n) time, respectively, where n = |P | [9, 17, 10],
both of which have matching lower bounds of Ω(n log n)
worst-case time [1].

A depth median of a set P is a point of maximum
depth relative to P for a given depth measure. We refer
to a simplicial median and Tukey median, which can be
computed in O(n4) time [2] and O(n log3 n) time [12] in
R2, respectively. An in-sample median of P is a point
of P with maximum depth, which can be identified in
O(n2) time in R2 for simplicial depth [9].

Depth measures are typically defined to describe the
location of a single query point (an individual) relative
to a set of points (a population). In this paper, we
examine (1) computing a batch of depth queries relative
to a common set of points, and (2) deriving a single
estimator for the depth of a set of query points relative
to another set of points.

Computing a batch of depth queries by iteratively
running an algorithm designed to calculate the depth
of a single query point can be inefficient. To address
this, we present algorithms to compute a batch of depth
queries; the choice of which algorithm to apply to mini-
mize running time depends on the relative cardinalities
of the query point set Q to the input point set P . Defin-
ing and evaluating the depths of a set of query points
has various applications in data analysis, e.g., finding a
center-outward ordering of a set Q relative to a set P .
Next, we derive a single estimator to express the depth
of Q relative to P . Applications include (1) measur-
ing the centrality of Q relative to P (e.g., the position
of one soccer team relative to the opposing team), (2)
classifying a set Q selected from the same distribution
as the sets P1, . . . , Pm to determine within which set Pi

the set Q is most deeply contained.

Our results In Section 3.1 we present three algorithms
for computing a batch of k simplicial depth queries in
R2 in O(kn log n) time, O(n2 + nk) time, and O(n4 +
k log n), respectively. The first algorithm is fastest when
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k ∈ O( n
logn ), the second when k ∈ Ω( n

logn ) and k ∈
O(n3), and the third when k ∈ Ω(n3). In Section 3.2 we
present two algorithms for computing a batch of k Tukey
depth queries in R2 in O(kn log n) time and O(n2 +
k log n) time, respectively. The first algorithm is fastest
when k ∈ O( n

logn ), and the second when k ∈ Ω( n
logn ).

In Section 4 we introduce definitions for the simpli-
cial depth and Tukey depth of a set Q relative to a
set P , which can be computed in R2 by applying the
algorithms above. Finally, we examine properties and
probabilistic interpretations for the simplicial depth of
a set of points.

2 Related Work

2.1 Simplicial Depth and Simplicial Median

Multiple algorithms compute the simplicial depth of a
point q relative to a set P of n points in R2 in O(n log n)
time [9, 17, 10]. Given the radial ordering of P around
q, the simplicial depth of q can be computed in O(n)
time [9]. Given a set P = {p1, . . . , pn} of points in
R2, Lee and Ching [13] showed that the radial order of
P \ {pi} with respect to pi for all i ∈ {1, . . . , n} can be
determined in O(n2) time. Consequently, the simplicial
depths of all points in P can be obtained in O(n2) time
[9], and an in-sample simplicial median can be identified
in O(n2) time [9]. Khuller and Mitchell studied a similar
problem independently [10].

When defined in terms of closed simplices, a simplicial
median lies at an intersection of simplex boundaries [2].
Rousseeuw and Ruts described how to find a simplicial
median by searching the set of intersection points in
O(n5 log n) time [17]. Aloupis et al. [2] derived a faster
algorithm to compute a simplicial median in O(n4 log n)
time, which they further reduced to O(n4) time. We
apply a technique similar to that of Aloupis et al. [2] in
Algorithm S.III in Section 3.1.

2.2 Tukey Depth and Tukey Median

The Tukey depth of a point q relative to a set P of n
points in R2 can be computed in O(n log n) time [17].
Tukey depth contours are a collection of nested poly-
gons that partition the plane into regions of equal Tukey
depth, which can be computed in O(n2) time [15]. A
Tukey median can be found in O(n log3 n) time [12].

2.3 Depth of a Set of Points

Recently, Pilz and Schnider introduced a definition for
the Tukey depth of a set of points [16]:

Definition 2.1 (Generalized Tukey depth [16])
The generalized Tukey depth of a set Q ⊆ Rd with

respect to a set P ⊆ Rd is

GTDP (Q) = min
H∈H

Q∩H ̸=∅

|H ∩ P |
|H ∩Q|

, (3)

where H is the set of all closed half-spaces in Rd.

Definition 2.1 differs from our Definition 4.2 intro-
duced in Section 4.2. Definition 2.1 selects a single non-
empty half-space that minimizes the ratio (3), i.e., the
number of points of P in the half-space H relative to
the number of points of Q in H. On the other hand,
Definition 4.2 incorporates the respective Tukey depths
for each point in Q, i.e., different half-spaces may be
selected for each point.

Depth histograms provide a characterization of
the combinatorial structure of a point set [6, 4].
Bertschinger et al. studied Tukey depth histograms of
k-flats [4] and defined variations of Tukey depth for a
set Q relative to P , including affine Tukey depth and
convex Tukey depth.

Recently, Barba et al. [3] introduced a definition for
the cardinal simplicial depth1 of a set of points:

Definition 2.2 (Cardinal simplicial depth [3])
The cardinal simplicial depth of a set Q ⊆ Rd with
respect to a set P ⊆ Rd is

CSDP (Q) =
∑
S∈S

I(Q ∩ S ̸= ∅), (4)

where S denotes the set of
(

n
d+1

)
closed simplices, each

of which is the convex hull of d+1 points from P , and I
is an indicator function such that I(A) = 1 if A is true
and I(A) = 0 otherwise.

Definition 2.2 differs from our Definition 4.1 intro-
duced in Section 4.1. Definition 2.2 counts the number
of non-empty simplicies (the cardinality of the set of
non-empty simplicies), whereas Definition 4.1 is a nor-
malized sum of the number of points of Q contained
in each simplex. See further discussion in Section 4.1.
Barba et al. gave an algorithm to compute CSDP (Q)

for given sets P and Q in O(N7/3 logO(1) N) time, where
N = |P |+ |Q| = n+ k.

3 Computing a Batch of Depth Queries

In this section, we describe algorithms that compute a
batch of simplicial depth queries or Tukey depth queries
for k points in a set Q relative to a set P of n points,
where P ∪Q is in general position in R2. For simplicial
depth we propose three algorithms: Algorithm S.I is not

1To disambiguate between Definitions 2.2 and 4.1, we refer to
Definition 2.2 as the cardinal simplicial depth because it corre-
sponds to the cardinality of the set of non-empty simplicies.
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new [9, 17, 10]; Algorithms S.II and S.III are new. For
Tukey depth we propose two algorithms: Algorithms T.I
and T.II apply techniques used in existing algorithms
for Tukey depth and Tukey depth contours.

3.1 Computing a Batch of Simplicial Depth Queries

3.1.1 Algorithm S.I

In Section 2.1 we mentioned algorithms for computing
the simplicial depth of a single query point q relative to
a set P of n points in R2 in O(n log n) time [9, 17, 10].
When the number of query points k is small relative to
n, a straightforward approach for computing the depths
of k points is to iteratively compute the simplicial depth
of each query point using one of these existing algo-
rithms. Using this approach, we can compute the sim-
plicial depth of all k points in O(kn log n) time and O(n)
space to store the angular order of P around each query
point (this space is reused for each query point). Due
to the lower bound of Ω(n log n) on the worst-case time
required for computing the simplicial depth of a single
point [1], this approach is optimal when k ∈ O(1).

Lemma 1 Given a set P of n points and a set Q of
k query points in general position in R2, Algorithm S.I
computes SDP (q) for every q ∈ Q in O(kn log n) total
time and O(n+ k) space.

3.1.2 Algorithm S.II

Algorithm S.I is efficient when k is small relative to
n, but more efficient approaches are possible for larger
values of k. We describe an algorithm that computes
the simplicial depths of points in Q relative to P in
O(n2 + nk) time and O(n2) space. Using an approach
similar to the in-sample simplicial median algorithm of
Gil et al. [9] (Step 1), we compute the radial order of
the n points of P around each point in Q, and (Step 2)
we use this ordering to compute the simplicial depth of
each point in Q.
To perform Step 1, we modify the method described

by Gil et al. [9] and Khuller and Mitchell [10]. First, the
sets P and Q are transformed into sets of lines LP and
LQ in the dual plane, respectively. The sorted order
of P around a point q can be obtained by considering
the intersection order of LP with the dual-line Lq us-
ing a method described in [13]. This step requires O(n)
time for each point in Q. The planar graph construction
method in [5] can be implemented to find the line inter-
section order of LP set with each line in Lq. We con-
struct a graph G of the arrangement of lines induced by
LP incrementally by introducing one line at a time, and
construct the doubly connected edge list of LP , which
requires O(n2) time and O(n2) space. Then we continue
this process by temporarily inserting each line in Lq to
G, and finding the order of intersections of lines in LP

with Lq by traversing the sequence of edges in G along
Lq, which takes O(n) time. Then, applying a method
analogous to that described in [13], the angular sorted
order of P around each point q can be obtained in O(n)
time. Step 1 requires O(n2) time and O(n2) space for
preprocessing. In Step 2, the simplicial depth of each
point q ∈ Q relative to P can be found in O(n) time us-
ing the angular order of points of P around q [9]. This
takes O(nk) time, giving a total time of O(n2 + nk).
Step 1 requires finding the order of intersections be-

tween LP and each line in Lq. Finding the order of
intersections between one line and a set of m lines can
be achieved using one of various methods: (a) incre-
mental planar graph construction [5] in O(m2) time and
O(m2) space, (b) line sweeping [18] in O(m2 logm) time
[8], or (c) topological sweeping [7] in O(m2) time and
O(m) space. Despite its lower costs as a function of
m, when applied to our problem, topological sweeping
takes O(n2 + k2) time and O(n + k) space because it
processes additional intersections in LP and LQ that
are not needed for Step 1. The most efficient method
for finding the ordered intersections between LP and
each Lq line is incremental planar graph construction,
which takes O(n2 + nk) time and O(n2) space.

Lemma 2 Given a set P of n points and a set Q of k
query points in general position in R2, Algorithm S.II
computes SDP (q) for every q ∈ Q in O(n2 + nk) total
time and O(n2 + k) space.

3.1.3 Algorithm S.III

When k is large relative to n, construct the arrange-
ment L formed by lines between every pair of points in
P . This arrangement partitions the plane into Θ(n4)
convex cells in which every point within a cell has equal
simplicial depth. By modifying the O(n4)-time simpli-
cial median algorithm of Aloupis et al. [2], we can com-
pute the depths of all cells in O(n4) time. Aloupis et
al. consider the arrangement of line segments connecting
every pair of points in P , which also has O(n4) inter-
sections and O(n4) cells. This method computes the
number of points on each side of each line segment of
P in O(n3) time. Further, Aloupis et al. showed that
starting from a known depth value on a line segment,
by processing each intersection point in O(1) time, the
simplicial depth along the line segment can be computed
in O(n) time [2]. We adapt this depth-finding method
along a line segment to find the simplicial depth of cells
in our arrangement L as described below.

Each line l in L is partitioned into three by the two
points p1 and p2 in P that determine l: the line seg-
ment between p1 and p2 (colour this segment blue) and
two rays (colour the rays red) on l rooted at p1 and p2,
respectively. In the arrangement determined by L, only
the blue segments are boundaries of simplices. There-
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fore, when crossing from one cell to an adjacent cell, the
depth changes if the two cells share a blue line segment
on their common boundary. Similarly, if the two cells
share a red segment on their common boundary, then
both cells have the same simplicial depth.

We compute the number of points on each side of
each line in L in O(n3) time. Starting from a cell Ci

with known simplicial depth, the algorithm traverses the
arrangement, calculating the simplicial depth of each
cell relative to the depth of an adjacent cell whose depth
was already computed. To find the simplicial depth of
a cell Cj that shares a blue edge with Ci, subtract the
number of points in P on the side of Ci to the blue edge
and add the number of points in P on the side Cj to
the blue edge. The simplicial depth inside Ci includes
simplicies (triangles) bounded by the blue line segment
and points in P on the side of Ci. When crossing the
blue edge to Cj , we exit (subtract) one set of triangles
and enter (add) a new set of triangles based on the blue
line segment and points of P on the Cj side of the blue
edge. If depth on simplex boundaries is required, then
the depth on the blue edge is calculated by adding depth
in Ci to the number of points in the side of Cj ; no query
point lies on a simplex boundary when P∪Q is in general
position.

All cells outside the convex hull of P have depth zero;
we can initiate our algorithm at any of these cells. The
algorithm proceeds to compute the depths of all cells by
traversing the planar graph determined by L starting
from an extreme cell (with depth zero) using the tech-
nique described above. The depth of each individual
cell is computed in O(1) time. Therefore, the traver-
sal takes time and space proportional to the number of
cells: Θ(n4).

Finally, for each point q in Q we apply a point lo-
cation algorithm to identify the cell in the arrangement
determined by L that contains q. Kirkpatrick’s point lo-
cation algorithm can be implemented in a t-edge planar
subdivision with O(t) preprocessing time, O(t) space,
and O(log t) query time [11]. In our case, t ∈ Θ(n4),
corresponding to Θ(n4) cells in the planar subdivision
determined by L (the number of edges is also Θ(n4)).
Therefore, Kirkpatrick’s point location algorithm can be
used to find the locations of each point in Q in O(n4)
preprocessing time, O(n4) space and O(k log n) query
time. The simplicial depths of all points in Q can be
computed in O(n4 + k log n) time and O(n4) space.

Lemma 3 Given a set P of n points and a set Q of k
query points in general position in R2, Algorithm S.III
computes SDP (q) for every q ∈ Q in O(n4 + k log n)
total time and O(n4 + k) space.

Lemmas 1–3 give:

Theorem 4 Given a set P of n points and a set Q of
k query points in general position in R2, the simplicial

depths of points in Q with respect to P can be computed
in O(min{kn log n, n2 + nk, n4 + k log n}) time.

3.2 Computing a Batch of Tukey Depth Queries

In this section, we describe two methods for computing
a batch of Tukey depth queries based on previous work
related to computing Tukey depth [17] and Tukey depth
contours [15].

3.2.1 Algorithm T.I

In R2, the Tukey depth of a point q relative to a set
P of n points can be computed in O(n log n) time [17].
Similar to Algorithm S.I in Section 3.1, a straightfor-
ward method for computing the Tukey depths of k query
point is to apply a Tukey depth algorithm iteratively for
each point of Q. This process take O(kn log n) time and
O(n) space to store the sorted order of P around each
point of Q.

Lemma 5 Given a set P of n points and a set Q of
k query points in general position in R2, Algorithm T.I
computes TDP (q) for every q ∈ Q in O(kn log n) total
time and O(n+ k) space.

3.2.2 Algorithm T.II

Algorithm T.I is efficient when k is small relative to n,
but more efficient approaches are possible for larger val-
ues of k. Algorithm T.II begins by computing the Tukey
depth contours of P using the algorithm of Miller et al.
in O(n2) time and space [15]. Miller et al. showed how
to build a point location data structure on the contours
in O(n2) time to support O(log n)-time Tukey depth
queries. Therefore, the Tukey depths of k points can be
calculated in O(n2 + k log n) time and O(n2) space.

Lemma 6 Given a set P of n points and a set Q of k
query points in general position in R2, Algorithm T.II
computes TDP (q) for every q ∈ Q in O(n2 + k log n)
total time and O(n2 + k) space.

Lemmas 5 and 6 give:

Theorem 7 Given a set P of n points and a set Q of k
query points in general position in R2, the Tukey depths
of points in Q with respect to P can be computed in
O(min{kn log n, n2 + k log n}) time.

4 Depth of a Set of Query Points

We introduce definitions for the simplicial depth and
Tukey depth of a set Q of points relative to a set P of
points. As we discuss below, our new definitions differ
from previous definitions introduced by Barba et al. [3]
and Pilz and Schnider [16].
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BA

Figure 1: Relative to the blue set, the green and red sets
have the same cardinal simplicial depth (Definition 2.2).
However, by Definition 4.1, the simplicial depth of the
green set is triple that of the red set. An analogous prop-
erty holds for Tukey depth: the green and red sets have
the same generalized Tukey depth (by Definition 2.1)
relative to the blue set, but their Tukey depths differ
(by Definition 4.2).

4.1 Simplicial Depth of a Set of Query Points

We define the simplicial depth of a set Q relative to a
set P as the normalized sum of the number of points of
Q contained in each simplex determined by points in P :

Definition 4.1 (Simplicial depth of a set of points)
Given a set P of n points and a set Q of k points in
Rd, the simplicial depth of Q relative to P is

SD∗
P (Q) =

1

|Q|
∑
S∈S

|Q ∩ S|, (5)

where S denotes the set of
(

n
d+1

)
closed simplicies, each

of which is the convex hull of d+ 1 points from P .

SD∗
P (Q) can be expressed as the average simplicial

depth of points in Q:

SD∗
P (Q) =

1

|Q|
∑
q∈Q

SDP (q). (6)

A derivation of (6) is given in Appendix A. (6) implies
that SD∗

P (Q) also has a natural probabilistic interpre-
tation. If q is selected uniformly at random from Q, the
expected value of the simplicial depth of q relative to P
is SD∗

P (Q).
Definition 4.1 differs from CSDP (Q) (Definition 2.2)

introduced by Barba et al. [3]. CSDP (Q) counts the
number of non-empty simplicies, which can result in
similar depth values for significantly different point sets.
Specifically, a small subset of points in the set Q can de-
termine the depth of Q relative to P . See Figure 1. On
the other hand, Definition 4.1 is a normalized sum of
the number of points contained in each simplex. Equa-
tion (6) also suggests a family of measures that can be
used to define the simplicial depth of a set Q with re-
spect to a set P by substituting the average with another
summary statistic of the distribution of the depths of
points in Q. We discuss this briefly in Section 5.

We can compute SD∗
P (Q) by computing the simpli-

cial depth SDP (q) for each point q ∈ Q, and taking the

average of these depth values. This can be achieved ef-
ficiently using the algorithms introduced in Section 3.1,
which gives the following corollary.

Corollary 8 Given a set P of n points and a set Q of
k points in general position in the plane, SD∗

P (Q) can
be computed in O(min{kn log n, n2 + nk, n4 + k log n})
time.

As mentioned earlier, CSDP (Q) can be computed in

O(N7/3 logO(1) N) time, where N = n + k. By Corol-
lary 8, the simplicial depth, SD∗

P (Q), introduced in this
paper can be computed asymptotically faster for any
values of n and k.

Next, we consider another generalization of simplicial
depth to sets, which we show is equivalent to Defin-
ion 4.1. For this, we introduce the normalized simplicial
depth (NSD) of a query point q relative to P as

NSDP (q) =
1

|S|
∑
S∈S

I(q ∈ S) =
SDP (q)

|S|
, (7)

that is, it is the proportion of simplices from S that con-
tain q. Interestingly, this normalized simplicial depth
can also be interpreted as the probability that the query
point q lies in a simplex whose vertices are selected at
random from P or, equivalently,

NSDP (q) = P(q ∈ S), (8)

where S is selected uniformly at random from S.
Liu [14] argued that this is an estimator of the prob-
ability that the query point q lies in a simplex formed
from d + 1 independent random points selected from a
common distribution F in Rd.
Now, consider generalizing the idea described above

by selecting a simplex at random from S, but by in-
stead focusing on the expected number of points of Q
that lie in that simplex. This depth measure, which we
denote ERSP (Q) (Expected number of points of Q in
a Random Simplex from P ) is then

ERSP (Q) = E[YQ(S)], (9)

where S is again randomly selected from S, and where
the random variable YQ(S) denotes the number of points
of Q that lie inside S. This is a reasonable measure
of the depth of Q with respect to P , has an elegant
and intuitive interpretation, and reduces to (8) when
Q contains a single point. Indeed, when Q contains a
single point, E[YQ(S)] = E[I(q ∈ S)] = P(q ∈ S), the
normalized simplicial depth of q. We now justify that
ERSP and SD∗

P are equivalent measures of depth.
The number of points of Q that lie inside a simplex

S constructed from points of P can be expressed as

YQ(S) =
∑
q∈Q

I(q ∈ S), (10)

117



34th Canadian Conference on Computational Geometry, 2022

and takes values in {0, 1, . . . |Q|}. Also, the proportion
of simplices in S that contain exactly y points of Q is

PS(y) =
1

|S|
∑
s∈S

I
[
YQ(s) = y

]
, (11)

for y = 0, 1, . . . , |Q|. This also corresponds to the prob-
ability that the simplex constructed from three points
selected at random from P contains exactly y points of
Q.

In this context, the expectation of YQ(S), which cor-
responds to the mean of the probability distribution in
(11), can be shown to satisfy (see Appendix A)

SD∗
P (Q) =

|S|
|Q|

ERSP (Q). (12)

From this, the simplicial depth of Q, as defined in Defi-
nition 4.1, is equivalent to ERSP (Q), the expected num-
ber of points in Q that lie a randomly selected simplex
constructed from points of P , as the two depth measures
are always proportional to each other.

We conclude this section by highlighting how CSDP ,
defined in (4) as the number of simplices constructed
from points of P that contain at least one point of Q,
relates to the discussion above. Specifically, it is possible
to write (see Appendix A)

CSDP (Q) = |S|P(YQ(S) > 0). (13)

This implies that, as a measure of depth, CSDP (Q)
is equivalent to P(YQ(S) > 0), the probability that a
random simplex contains at least one point of Q. In
the case where Q contains a single point, this further
reduces to P(YQ(S) > 0) = P(q ∈ S) and justifies that
CSDP (Q) is also a direct generalization of simplicial
depth that applies to sets, but differs from ERSP (Q).

4.2 Tukey Depth of a Set of Query Points

We define the Tukey depth of a set Q relative to a set
P as follows:

Definition 4.2 (Tukey depth of a set of points)
Given a set P of n points and a set Q of k points in
Rd, the Tukey depth of Q relative to P is

TD∗
P (Q) =

1

|Q|
∑
q∈Q

TDP (q). (14)

As with (6), (14) corresponds to the average Tukey
depth of points in Q relative to P , and carries the same
probabilistic interpretation as for simplicial depth: (14)
corresponds to the expected depth of a point selected
uniformly at random from Q.
To compute TD∗

P (Q), we can compute the Tukey
depth of each point in Q relative to P using the algo-
rithms introduced in Section 3.2, and take the average
of those depth values. Therefore, we have the following
corollary.

Corollary 9 Given a set P of n points and a set Q of
k points in general position in the plane, TD∗

P (Q) can
be computed in O(min{kn log n, n2 + k log n}) time.

As mentioned in Section 2.3, Pilz and Schnider [16]
introduced the generalized Tukey depth of a set Q rela-
tive to a set P , GTDP (Q). This definition can result in
similar depth values for significantly different point sets.
Specifically, a small subset of points in the set Q can de-
termine the depth of Q relative to P . See Figure 1. Pilz
and Schnider did not provide an algorithm to compute
GTDP (Q), but based on Definition 2.1, a straightfor-
ward iterative approach for computingGTDP (Q) would
require O(n3+k3) time. This time can likely be reduced
to O(n2 + k2) time by constructing the arrangement of
lines determined by pairs of points in Q∪P , and travers-
ing the arrangement to examine all possible subsets of
Q∪P contained in a half-plane; traversing from one cell
in the arrangement to a neighbouring cell corresponds
to adding or removing O(1) points from Q ∪ P .

5 Discussion and Directions for Future Research

In this paper, we introduced new definitions for the sim-
plicial depth and Tukey depth of a set Q of points rel-
ative to a set P of points in Rd, and we presented algo-
rithms for computing these in R2.

This work suggests various possible generalizations of
simplicial depth and Tukey depth to measure the depth
of a query set Q. As the computation of these depth
measures involves computing the depth of each point in
Q, we could instead define a depth measure as a func-
tion of a different summary of the distributions of the
simplicial depths and Tukey depths of individual points
of Q relative to P . For instance, we could summarize
the distribution of depths using a median, a minimum,
a maximum, or a measure of spread, such as variance,
range, skewness, or quantiles of this distribution. These
different summaries of the constructed depth distribu-
tions over the points of Q can all be computed in the
same time and space complexities as in Corollaries 8
and 9. One could also define the depth of a set using
another depth for individual points altogether.

Future work is warranted to investigate the character-
ization of these depth measures of sets of points. SD∗

P

and TD∗
P are invariant under affine transformations and

vanish at infinity. TD∗
P is consistent across dimensions.

Other properties such as convexity, stability, and ro-
bustness remain to be analyzed, requiring appropriate
generalizations for the depth of a set of points. Finally,
some questions remain unanswered with respect to the
possibility of improving the running times of the algo-
rithms presented in Theorems 4 and 7. In particular,
can we show corresponding lower bounds on the worst-
case running time expressed in terms of n and k?

118



CCCG 2022, Toronto, ON, Canada, August 25–27, 2022

References

[1] G. Aloupis, C. Cortés, F. Gómez, M. Soss, and G. Tou-
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A Proofs

In this Appendix we include complete details of proofs and
arguments omitted from the main text due to space con-
straints.

Derivation of Equation (6): Starting with Definition 4.1,
and noting that

|Q ∩ S| =
∑
q∈Q

I(q ∈ S),

we see that

SD∗
P (Q) =

1

|Q|
∑
S∈S

|Q ∩ S|

=
1

|Q|
∑
S∈S

∑
q∈Q

I(q ∈ S)

=
1

|Q|
∑
q∈Q

∑
S∈S

I(q ∈ S)

=
1

|Q|
∑
q∈Q

SDP (q),

as claimed.

Derivation of Equation (12): To avoid confusion in what
follows, we reserve S to denote a randomly selected simplex
and use s otherwise. First, we note that

E[YQ(S)] =

|Q|∑
y=0

y PS(y)

=

|Q|∑
y=0

y

|S|
∑
s∈S

I
[
YQ(s) = y

]
=

1

|S|
∑
s∈S

|Q|∑
y=0

y I
[
YQ(s) = y

]
=

1

|S|
∑
s∈S

YQ(s). (15)

Now, using (10), we can further simplify (15) to get

E[YQ(S)] =
1

|S|
∑
s∈S

∑
q∈Q

I(q ∈ s)

=
1

|S|
∑
q∈Q

∑
s∈S

I(q ∈ s)

=
1

|S|
∑
q∈Q

SDP (q)

=
|Q|
|S| SD

∗
P (Q). (16)

Finally, (9) and (16) together imply that

ERSP (Q) =
|Q|
|S| SD

∗
P (Q),

which is equivalent to (12).

Derivation of Equation (13): First, we write

CSDP (Q) =
∑
s∈S

I
[
YQ(s) > 0

]
.

Then, making use of (11), derivations similar to those pro-
vided above allow one to see that

CSDP (Q) =
∑
s∈S

|Q|∑
y=1

I
[
YQ(s) = y

]
=

∑
s∈S

|Q|∑
y=0

I
[
y > 0

]
I
[
YQ(s) = y

]
=

|Q|∑
y=0

I
[
y > 0

]∑
s∈S

I
[
YQ(s) = y

]
= |S|

|Q|∑
y=0

I
[
y > 0

]
PS(y)

= |S|E
[
I(YQ(S) > 0)

]
= |S|P(YQ(S) > 0),

as claimed.
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Curve Stabbing Depth: Data Depth for Plane Curves∗

Stephane Durocher† Spencer Szabados†

Abstract

Measures of data depth have been studied extensively
for point data. Motivated by recent work on analy-
sis, clustering, and identifying representative elements
in sets of trajectories, we introduce curve stabbing depth
to quantify how deeply a given curve Q is located rel-
ative to a given set C of curves in R2. Curve stab-
bing depth evaluates the average number of elements
of C stabbed by rays rooted on Q. We describe an
O(nm2 + n2m log2 m)-time algorithm for computing
curve stabbing depth when Q is an m-vertex polyline
and C is a set of n polylines, each with O(m) vertices.

1 Introduction

Processes that generate functional or curve data are be-
coming increasingly common within various domains,
including medicine (e.g., ECG signals [16] and analy-
sis of nerve fibres in brain scans [11]), GIS techniques
for generating and processing positional trajectory data
(e.g., tracking migratory animal paths [4], air traffic con-
trol [8], and clustering of motion capture data [12]), and
in the food industry (e.g., classification of nutritional in-
formation via spectrometric data [13]). In this paper,
we consider depth measures for curve data.
Traditional depth measures are defined on multidi-

mensional point data and seek to quantify the centrality
or the outlyingness of a given object relative to a set of
objects or to a sample population. Common depth mea-
sures include simplicial depth [18], Tukey (half-space)
depth [23], Oja depth [20], convex hull peeling depth [3],
and regression depth [21]. See [19] and [22] for fur-
ther discussion on depth measures for multivariate point
data. Previous work exists defining depth measures for
sets of functions and functional data [13, 10, 16, 9], of-
ten with a focus on classification. Despite the fact that
curves can be expressed as functions, depth measures
for functions typically do not generalize to curves, as
they are often sensitive to the specific parameterization
and most are restricted to functions whose range is R,
which can only represent x-monotone curves.
New methods are required for efficient analysis of tra-

jectory and curve data. Recent work has examined iden-

∗This work is funded in part by the Natural Sciences and En-
gineering Research Council of Canada (NSERC).

†University of Manitoba, Winnipeg, Canada,
stephane.durocher@umanitoba.ca, szabados@myumanitoba.ca

tifying representative elements [4] and clustering in a set
of trajectories [5, 12]. In this work, we introduce curve
stabbing depth, a new depth measure defined in terms
of stabbing rays to quantify the degree to which a given
curve is nested within a given set of curves.

Our main contributions are:

• In Section 2, we define curve stabbing depth, a new
depth measure for curves in R2, and we describe a
general approach for evaluating the curve stabbing
depth of a given curve Q relative to a set C of curves
in R2.

• In Section 3, we present an O(nm2 + n2m log2 m)-
time algorithm for computing the curve stabbing
depth of a given m-vertex polyline Q relative to a
set P of n polylines in R2, each with O(m) vertices.

• In Section 4, we discuss properties of a deepest
curve (depth median) for curve stabbing depth, dis-
cuss the consistency of generalizations to higher di-
mensions, and outline possible directions for future
research.

2 Definitions and Preliminary Analysis

Definition 1 (Plane Curve) A plane curve is a con-
tinuous function Q : [0, 1] → R2.

Definition 2 (Polyline) A polyline (polygonal chain)
is a piecewise-linear curve consisting of the line seg-
ments p1p2, p2p3, . . . , pm−1pm determined by the se-
quence of points (p1, p2 . . . , pm) in R2.

Definition 3 (Stabbing Number) Given a ray −→qθ
rooted at a point q in R2 that forms an angle θ with
the x-axis, the stabbing number of −→qθ relative to a set
C of plane curves, denoted stabC(

−→qθ ), is the number of
elements in C intersected by −→qθ .

Definition 4 (Curve Stabbing Depth) Given a
plane curve Q and a set C of plane curves, the curve
stabbing depth of Q relative to C, denoted D(Q, C), is

1

πL(Q)

∫
q∈Q

∫ π

0

min{stabC(
−→qθ ), stabC(

−−→qθ+π)} dθ ds, (D.c)

where L(Q) =
∫
q∈Q

ds denotes the arc length of Q.
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As L(Q) approaches zero (the curve Q becomes a
point q), the value of (D.c) approaches

1

π

∫ π

0

min{stabC(
−→qθ ), stabC(

−−→qθ+π)} dθ. (D.p)

Curve stabbing depth corresponds to the average
depth of points q ∈ Q. The depth of a point q relative
to C, given by (D.p), is the average stabbing number in
all directions θ around q, where for each θ, either the
stabbing number of the ray−→qθ or its reflection−−→qθ+π is ap-
plied, generalizing the one-dimensional notion of depth
that counts the lesser of the number of elements less
than vs. greater than the query point (outward rank).

As a ray −→qθ rotates about a point q, stabC(
−→qθ ) par-

titions the range θ ∈ [0, π) into intervals, such that for
all values θ in a given interval, −→qθ intersects the same
subset of C. These intervals partition the plane around
q into wedges. We generalize this notion and define the
wedges determined by a point q relative to a set C of
curves.

Definition 5 (Wedge) The wedge of the curve C rel-
ative to the point q is the region determined by all rays
rooted at q that intersect C:

w(q, C) =
⋃

−→qθ∩C ̸=∅
θ∈[0,2π)

−→qθ .

C1

C2

C3

w2

q

C4

w3

w4

τ1(w2)

τ2(w2)

θ(w3)

Q

φ(τ1(w2))

w1

Figure 1: The set of wedges w1, w2, w3, and w4 induced
by curves C1, C2, C3, and C4 rooted at the point q on the
curve Q. Moving counterclockwise around q, the positive
angle between τ1(w2) with the horizontal is indicated by
ϕ(τ1(w2)), the tangent points of w2 are labelled τ1(w2) and
τ2(w2), and the internal angle of w3 is highlighted by θ(w3).

Definition 6 (Tangent Points) When C ∪ {q} is in
general position in R2, the tangent points of the wedge
w = w(q, C), denoted τ(w) = {τ1, τ2}, are those points
of C incident with the boundary of w; i.e., τ(w) =
∂w ∩ C, where ∂w denotes the boundary of w. (If C

is a curve for which all rays from q intersect, the tan-
gents points of w(q, C) are taken to be coincident on C,
with an internal wedge angle of 2π radians.) τ1(w) de-
notes the tangent point that is the most clockwise of the
two around q. The angles between the horizontal and
each tangent point of w are denoted by ϕ(τ1(w)) and
ϕ(τ2(w)), with θ(w) denoting the interior angle of w.

See Figures 1 and 2. The sequence of wedges deter-
mines an ordering of the curves stabbed about a given
point q. A ray −→qθ always stabs the associated curve
C as −→qθ sweeps through the wedge determined by the
extreme points of C. For a given set C of curves and
associated wedges WC rooted at a common point q,

stabC(
−→qθ ) = |{w ∈ WC | θ ∈ [ϕ(τ1(w)), ϕ(τ2(w))]}|. (1)

That is, stabC(
−→qθ ) is the number of wedges that con-

tain the ray −→qθ , where each wedge is associated with a
curve in C. See Figure 1.

Our algorithm for computing curve stabbing depth re-
quires calculating the interior angle θ(w) of each wedge
w, which we now describe. We consider two cases for
the relative positions of a given query line segment Q,
a curve C, and the wedge w(q, C) rooted at a point q:
(1) when q ̸∈ CH(C), where CH(C) denotes the convex
hull of C, i.e., Q does not pass through the interior of C,
and (2) when q ∈ CH(C). When points and curves are
in general position, C cannot coincide with a bounding
edge of w. See Figure 2.

C

q

τ2(w)

τ1(w)

θ(w) β

φ(τ1)

α

q′

Q

Q′

(a) A curve C existing entirely above (below) the
query line segment Q.

C

q

τ2(w)

τ1(w)

w

θ(w)

φ(τ2)

α

β

q′
Q

(b) A curve C crossing through the query line seg-
ment Q.

Figure 2: Two ways a query line segment C and a wedge
rooted at a point on C can be arranged under general po-
sition. Case 1 is drawn in black while Case 2 is outlined in
blue.

122



CCCG 2022, Toronto, ON, Canada, August 25–27, 2022

In Case 1, when C lies entirely above or below Q the
angles formed between the tangent points, root, and
horizontal can be evaluated as

θ(w) + ϕ(τ1) =
π

2
− α =

π

2
− tan−1

(∣∣∣∣qx − τ2(w)x
τ2(w)y − qy

∣∣∣∣) ,

ϕ(τ1) =
π

2
− β =

π

2
− tan−1

(∣∣∣∣qx − τ1(w)x
τ1(w)y − qy

∣∣∣∣) .

Where the interior angle of w is found to be

θ(w) = tan−1

(
qx − τ2(w)x
τ2(w)y − qy

)
− tan−1

(
qx − τ1(w)x
τ1(w)y − qy

)
. (A.1)

This can be done rather than evaluating distinct cases
due to the order in which the signs of each inverse tan-
gent change while q transitions past each dropped per-
pendicular. When C crosses in front of Q, as illustrated
in Figure 2b, we calculate

θ(w) = π −
∣∣∣∣ tan−1

(
qx − τ2(w)x
τ2(w)y − qy

)
+tan−1

(
qx − τ1(w)x
τ1(w)y − qy

) ∣∣∣∣. (A.2)

Once q enters CH(C), we transition to Case 2, in which
the calculations are similar to those of Case 1, except
for modifications needed to account for taking an an-
gle greater than π radians, as shown in Figure 2b in
blue. Every case considered by our algorithm reduces
to Case 1 or Case 2. We sometimes limit discussion to
instances of Case 1 depicted in Figure 2a to simplify the
presentation; our results apply to all cases.

Definition 7 (Circular Partition) The circu-
lar partition induced by the set of wedges WC =
{w1, w2, . . . , wn} rooted at a common point q is the
sequence 0 = θ0 < θ1 < · · · < θ4n < 2π of angles, corre-
sponding to the ordered sequence of bounding edges of
wedges in WC; i.e., it is the ordered sequence of values in
{θi | θi ∈ {ϕ(τj), ϕ(τj) + π mod 2π}, τj ∈ τ(w), w ∈ WC}.
Denote this sequence by σ(WC) = (θ0, θ1, . . . , θ4n).

See Figure 3. Applying Equation (1) to Definition 7,
we arrive at the following observation:

Observation 1 Given a set WC of wedges and induced
partition σ(WC) = (θ0, θ1, . . . , θ4n) for a given point q
and set C of curves, for every i ∈ {1, . . . , 4n−1} and ev-
ery ϕ1, ϕ2 ∈ (θi, θi+1), the set of curves in C intersected
by −→qϕ1

is the same as that intersected by −→qϕ2
.

Observation 1 remains true when the point q at the
root of the wedges moves within a bounded neighbour-
hood: given a curve Q and a set C of curves, for each

C1

C2

C3

w2

q

w1

w3

Q

θ1 θ2 θ3 θ4 θ5 etc . . .

Figure 3: A configuration similar to that shown in Fig-
ure 1 for three curves C1, C2, and C3 is depicted, with their
respective wedge boundaries extended through the origin.
The circular partition induced is shown by the sequence of
angles towards the right-hand side of the figure.

point q on Q, the relative ordering of wedge boundaries
in the circular partition of q remains unchanged when q
moves along some interval of Q. By partitioning Q into
such cyclically invariant segments, this property allows
us to calculate the curve stabbing depth of Q relative
to C discretely. Formally:

Q

C1

C2

Figure 4: A configuration similar to that shown in Fig-
ure 1 for two curves C1 and C2 is depicted, the highlighted
segment being cyclically invariant with respect to the given
population, as can be seen by inspecting the wedge bound-
aries

Definition 8 (Cyclically Invariant Segments) A
segment along a curve that maintains the same cyclic
ordering of boundaries within the circular partitions of
each point along its length, is called cyclically invariant.
Specifically, for a given curve Q, a segment I ⊆ Q
is cyclically invariant provided σ(WC) has the same
ordering of wedge boundaries as σ(W ′

C), for all WC and
W ′

C defined relative to any q, q′ ∈ I respectively.

See Figure 4. Clearly such segments exist when {Q}∪
P is a set of polylines in R2. This property does not hold
more generally for all plane curves1. For the remainder
of this article, we assume {Q} ∪ P is a set of polylines.

1We use C to denote a general set of plane curves, and P to
denote a set of polylines in R2.
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Lemma 1 (Invariant Segments along Polylines)
Given a polyline Q and a set P of polylines, Q can
be partitioned into line segments, each of which is
cyclically invariant with respect to P.

Proof. Consider any line segment L in Q, and as-
sume without loss of generality that every element of
P = {P1, P2, . . . , Pn} lies above the line determined by
L. An analogous argument can be applied to polylines
that lie below L (any polyline that crosses L can be
partitioned into separate polylines above and below L).
The tangent points in a circular partition can only un-
dergo a change in relative positions when the reference
point (root) q becomes collinear with one of the com-
mon tangents between a pair of polylines defining the
associated wedges, common to the convex hulls of each
polyline. Consequently, as at most four such tangents
exist for each pair of polylines, the set of points along
L that trigger change in wedge orderings must be fi-
nite. Therefore, L can be partitioned into cyclically
invariant segments, each of which is a maximal line seg-
ment on Q between two consecutive points that trigger
changes. □

By Observation 1 and Lemma 1, the double integral
in (D.c) can be reformulated as a sum of integrals mea-
suring the total angular area swept out by the wedges
of P with stabbing number weights along all cyclically
invariant segments. This reformulation, which is made
explicit in Section 3.2, is possible due to the fact that
stabbing numbers remain constant within circular par-
titions, and that the cyclic ordering of each circular par-
tition remains unchanged along each invariant segment.

3 Computing Curve Stabbing Depth for Polylines

In the following section we develop an algorithm for
computing the curve stabbing depth of a given polyline
Q relative to a given set P of polylines, based on the
identification of critical curve features, such as tangent
update points for curve wedges and the partitioning Q
into invariant segments.

3.1 One Invariant Segment and One Polyline

We first describe an algorithm for computing the curve
stabbing depth of one cyclically invariant segment I =
q1q2 on a query polyline Q relative to another polyline
P = (p1, p2, . . . , pm), before generalizing the algorithm
to the complete polyline Q and a set P of polylines.

The wedge w(q, P ) associated with polyline P and a
given point q is determined by the tangent points of P
(see Figure 5) which can be found by computing the
convex hull of P and examining its vertices relative to
q using binary search in O(logm) time. Thus, start by
computing the convex hull CH(P ), which can be com-
pleted in O(m logm) total time [14, 6].

In Case 1, begin by deriving the initial tangent points
τ1 and τ2 of w(q, P ) for q = q1 ∈ I by using CH(P ) as
described in the previous paragraph. Additionally, de-
termine all points of intersection between I and the set
of lines corresponding to the extension of all line seg-
ments that form, ∂ CH(P ), the boundary of CH(P ).
Denote this set of intersection points along I by T .
The points of T signal when and how tangent points of
w(q, P ) need to be updated as q traverses along I; see
Figure 7. The cyclical invariance of I allows the angular
area swept out by w along each subsegment Ii = ab of
I formed by points of T to be evaluated as

Ai =

∫
q∈Ii

θ(w(q, P )) ds. (WA)

We can apply a coordinate transform to render I
collinear with the x-axis, which for Case 1(a) using (A.1)
in the integral results in (WA) becoming

Ai =

∫ b′

a′

[
tan−1

(
x− τ2(w

′)x
τ2(w′)y

)
− tan−1

(
x− τ1(w

′)x
τ1(w′)y

)]
dx,

for the transformed points a′, b′ and resulting wedge w′

defined by the tangent points associated with the points
of T delineating Ii. This being an integral with known
antiderivative

Ai =

[
(τ1(w

′)x − x) tan−1

(
τ2(w

′)x − x

τ2(w′)y

)
+ (x− τ1(w

′)x) tan
−1(τ1(w

′)y(τ1(w
′)x − x))

+
1

2τ1(w′)y
ln(τ1(w

′)y(τ1(w
′)2x − 2τ1(w

′)xx+ x2) + 1)

− 1

2
τ2(w

′)y ln(τ2(w
′)2x − 2τ2(w

′)xx+ τ2(w
′)2y + x2)

]b′
a′
.

As a consequence of the circular partition induced by
w being straightforward and w having stabbing num-
ber one, we find D(I, P ) =

∑
Ii∈I Ai/πL(I). Analo-

gous analysis can be applied using (A.2) for problems
in Case 1(b) reassembling that depicted in Figure 2b.

In Case 2, where q ∈ I is in the interior of CH(P ),
begin by processing P to identify points of self intersec-
tion, some of which form closed loops (closed regions).
Let L denote the set of points of self intersections of
P . The planar subdivision formed by P and ∂ CH(P )
consists of polygonal faces, each of which can include at
most one window edge on its boundary, i.e., an edge of
∂ CH(P ) that is not on P , as well as subpaths of P that
do not cross into other faces.2 This planar subdivision

2Observe that the faces of the planar decomposition are ef-
fectively simple polygons. Any polyline that protrudes into the
interior of a face could be twinned to form a proper simple polyg-
onal face.
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can be computed in O(m2) time using a line segment
intersection algorithm (e.g., [2]) and updating a doubly-
connected edge list each time a point of intersection is
identified.
Next, we construct the shortest geodesic path query

data structure given in [15] augmented using the result
from [7] in linear time for each face of the planar sub-
division, taking O(m2) total time.

For any endpoint of I within CH(P ) and for every in-
tersection point a between I and the boundary of a face
of the planar subdivision (or when I crosses an edge of
P while remaining in the same face), we query the two
shortest geodesic paths between a and the endpoints of
the window edge on ∂ CH(P ) belonging to the current
face. When q is in a face with no window edge, no visi-
bility computation is required as all rays rooted at q stab
P . The intersections between I and the extended seg-
ments along the shortest paths identify when and which
tangent points of the visibility wedges that look out of
CH(P ) need to be updated. If the two shortest paths
intersect at a vertex of P , then q loses external visibil-
ity after one of the two update points corresponding to
these extended intersecting segments. Shortest geodesic
path queries can be performed in O(logm2 + t) time,
where t is the number of turns on the reported shortest
path. Intersection testing between extended segments
and I takes at most O(t) time per path. Thus, this step
takes O(m) worst-case time for each such query along
I.

The depth for the portion of I within CH(P ) can be
calculated as a discrete sum of the depth accumulated
by each subsegment Ii of I that result from partition-
ing I by shortest path update points, by calculating the
total wedge area of the difference between 2π and the
window visibility wedge at each point along Ii. A cal-
culation that is otherwise analogous to those discussed
for Case 1 above.

3.2 A Polyline Q and a Set P of Polylines

We generalize the algorithm described in Section 3.1 to a
query polylineQ = (q1, q2, . . . , qm) and a set of polylines
P = {P1, P2, . . . , Pn}, with Pi = (pi,1, pi,2, . . . , pi,m) for
i = 1, . . . , n.
The algorithm is organized into three stages: an ini-

tial preprocessing stage applied to P, a separate pre-
processing method applied to Q based on results of the
first stage, and the final computation of D(Q,P).

Preprocessing P. Begin by computing the convex hull
CH(Pi) of each polyline Pi ∈ P to determine wedge
tangent points, as done in Section 3.1; see Figure 5. Let
H denote the resulting set of convex hulls. This stage
can be completed in O(nm logm) total time.
Having determined H, compute the collection τ(H)

of all common tangent lines that separate each pair of

qQ

P

τ2

τ1
w

CH(P )

Figure 5: A query polyline Q and tangent points of P high-
lighted along the boundary of CH(P ). The tangent points
and boundary rays for the wedge w(q, P ) are also shown.

convex hulls. See Figure 6. That is, compute

τ(H) ={lines l | for some {Pi, Pj} ⊆ P
(l ∩ CH(Pi)) ∪ (l ∩ CH(Pj)) = {pi,i′ , pj,j′}},

where pi,i′ and pj,j′ are vertices of CH(Pi) and CH(Pj),
respectively.

Q

CH(P2)

CH(P3)

CH(P1)

Figure 6: Illustration of the common tangents between con-
vex hulls CH(P1),CH(P2), and CH(P3). To simplify the fig-
ure, only those tangents that intersect Q are shown, with
their points of intersection marked along Q by boxes.

There are three distinct cases to consider when com-
puting these common tangents: (1) the two convex
hulls are disjoint, (2) their boundaries intersect, and
(3) one convex hull entirely contains the other. Case 1
is the simplest, in which the common tangents be-
tween two convex hulls CH(P1) and CH(P2) can be
computed in O(log |CH(P1)|+ log |CH(P2)|) time [17].
Case 2 requires O(m) time to compute in the worst
case. However, if the two convex hull boundaries in-
tersect at most twice, the common tangents can be
found in O(log(|CH(P1)|+ |CH(P2)|) log k) time, where
k = min{|CH(P1) ∩CH(P2)|, |CH(P1) ∪CH(P2)|} [17].
In Case 3, no computation is performed after identifying
that the hulls are nested. It takes up to O(m) time to
identify which of the three cases must be applied. Thus,
this stage can be computed in O(n2m log2 m) time.

Preprocessing Q. After preprocessing P, mark the
points of intersection between elements of τ(H) and Q,
which, per the proof of Lemma 1, partition Q into cycli-
cally invariant segments. Additionally, as outlined in
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Section 3.1, determine all points of intersection between
Q and the set of lines corresponding to the extension of
all line segments on ∂ CH(Pi) for each i = 1, . . . , n. See
Figure 7 for the latter. If the intersection between one
of these extended segments and Q occurs on the bound-
ary of the convex hull, Q must pass into the interior
of the convex hull. Here we enter Case 2 of the algo-
rithm described in Section 3.1, and perform the same
computations. In the worst case, Q passes through the
convex hulls of all n polylines in P, leading to O(nm2)
worst-case processing time.

This yields two point sets on Q, say S and T , that
respectively identify when wedge stabbing numbers and
tangent points need to be updated relative to the po-
sition of q along Q. Let I denote the resulting parti-
tion of Q into cyclically invariant segments by points
of S, after further refinement from the vertices of Q
itself. Likewise, for all I ∈ I, let Ii ∈ I denote a sub-
division of I delineated by tangent update points of T .
There are at most O(n2) many points in S as there are
at most four common tangents for each pair of convex
hulls. Additionally, there are at most O(m) segments
composing each of the n convex hulls, and O(m2) in-
ternal update points for each crossed convex hull, so
T contains at most O(nm2) points. Consequently, this
step takes O(n2m + nm2) worst-case time to compute
all possible intersections.

qQ

CH(P )

Figure 7: Depiction of a query polyline Q with tangent up-
date points of a polyline P shown along its length as open
circles. These points are derived from the intersection be-
tween Q and lines passing though the parameter segments of
CH(P ). Only those lines that intersect Q are shown. Then
q traverses the length of Q (in the indicated direction) the
tangent points of the wedge w(q, P ) change whenever one
such point is crossed. The update points are color matched
with the resulting tangent point (line) change.

Computing the curve stabbing depth of Q. Let u⃗
denote the unit direction vector associated with a line
segment I = q1q2 ∈ I along Q. Construct the ma-
trix Pu⃗ + B, composed of the transition matrix Pu⃗

from the standard basis of R2 to the orthonormal ba-
sis {u⃗,−1/u⃗}, and a vertical translation matrix B that
displaces I to have height zero after the transforma-
tion. Applying this transformation to P pointwise for
each I ∈ I allows us to calculate the area swept out by

wedges along a path as described in Section 3.1. Let
P ′ = {P ′

1, P
′
2, . . . , P

′
n} be the set of transformed poly-

lines.
Starting at q1, construct the set of wedges WP′ . This

is accomplished by calculating the tangent points of
each convex hull within H relative to q1 using binary
search in O(n logm) time. The set WP′ is updated in-
crementally by monitoring the points of T crossed by
q while traversing I. Each update takes O(1) time
by walking one vertex clockwise or counterclockwise
around the perimeter of the convex hull depending on
the relative motion between q translating along I and
the convex hull.

Afterwards, construct σ(WP′) = (θ0, θ1, . . . , θ4n) by
sorting the lines associated to each tangent point by
slope, treating the portion of the line extended through
the origin separately. During this process, take note of
which regions overlap to calculate the stabbing num-
bers of each angular region in the partition (subdi-
vided wedges) as in (1) and Observation 1. These stab-
bing numbers are iteratively updated by monitoring the
points of S crossed in O(1) time per event as is done
for tangent points above. From the circular partition
σ(WP′), select a minimizing subset iteratively by defin-
ing the indicator variable (bit sequence)

δi =


1 if stabP(

−→qθ∗) ≤ stabP(
−−−→qθ∗+π)

for θi−1 ≤ θ∗ ≤ θi

0 otherwise,

for i = 1, . . . , 4n. This selection procedure performs the
same task as the minimization operation within (D.c).

At last, we can compute the depth of Q accumulated
along I, by reformulating (D.c) in terms of summations
over all Ii ∈ I, specifically,

DI =
1

πL(Q)

∑
Ii∈I

4n∑
j=1

δj stabP′(−→qθ∗j )Aj , (D.i)

for any q along Ii and sample angle θ∗j ∈ [θj−1, θj), and
the angular area Aj swept out by the wedge bounded
between the angles [θj−1, θj ] while q is translated across
Ii, as calculated above using (WA).

The total depth of Q is found by evaluating the sum
D(Q,P) =

∑
I∈I DI .

Forming the partition σ(WP′) and selecting the cho-
sen subset takes at most O(n logm) time. The query
polyline Q contains at most O(n2+nm2) update points
from S and T which are used during the computation of
DI , and at most O(m) directional transitions from its
m constitutional line segments where each transforma-
tion to the set P takes O(nm2) time. Thus, this final
stage takes O(n2 + nm2) time.

These results are summarized in the following theo-
rem:
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Theorem 2 Given an m-vertex polyline Q and a set
P of n polylines, each with m vertices, we can compute
the curve stabbing depth of Q relative to P in O(nm2 +
n2m log2 m) time.

Expressed differently, the running time is O(k2),
where k denotes the total number of vertices in the in-
put polylines {Q} ∪ P.

4 Discussion and Directions for Future Research

In this section, we discuss depth medians, possible gen-
eralizations of curve stabbing depth to higher dimen-
sions, and other possible measures of curve depth. Due
to space constraints, discussion of properties has been
omitted (e.g., stability, robustness, etc.).

4.1 Median Curves and Depth Median Points

The depth for any particular curve in a set can be com-
puted by treating it as a query curve Q. The compari-
son of all the resulting depth scores allows for a median
outwards ranking of all curves.

Moreover, observe not all points along the length of a
curve Q contribute equally to the curve stabbing depth
of Q relative to the set C of curves. The depth of a point
(a degenerate curve) is given by (D.p). It follows that for
some point q on Q, D(q, C) ≥ D(Q, C). Consequently,
this gives:

Observation 2 For any given set C of plane curves,
there exists a point m ∈ R2 that is a depth median of C.
That is,

D(m, C) = max
Q∈Q

D(Q, C),

where Q denotes the set of all plane curves.

4.2 Generalizations to Higher Dimensions

When a curve Q and a set C of curves lie in a k-
dimensional flat of Rd for some k < d, the d-dimensional
curve stabbing depth of Q as calculated using a ray
relative to C is zero; whereas, the k-dimensional curve
stabbing depth of Q relative to C is non-zero in gen-
eral, meaning that the straightforward generalization of
Definition 4 is not consistent across dimensions.

Alternatively, another natural generalization of Defi-
nition 4 to higher dimensions is to replace the rotating
stabbing ray by a k-dimensional half-hyperplane, and
to measure the number of curves it intersects as it ro-
tates. This second generalization is consistent across
dimensions.

4.3 Alternative Definitions

Alternative possible definitions for the stabbing depth
of curves considered by the authors include:∫

q∈Q

min
0≤θ<π

min{stabC(
−→qθ ), stabC(

−−→qθ+π)} ds, (2)

which differs from (D.c) by a minimum in place of the
second integral (maximum was also considered). Equa-
tion (2) often gives a zero depth value regardless of the
position of Q relative to C. For example, consider a
set C′ of n parallel line segments of equal length. Each
of these line segments has depth zero relative to C′ by
(2) because every point on every segment is the root of
some ray that does not intersect any other segment in
C′. Conversely, using Definition 4 instead, the line seg-
ment at the centre (median) of C′ has greatest depth,
with depth values decreasing monotonically toward the
two line segments on the outside of C′, which are the
only two curves in C′ with depth zero.

4.4 Approximation Algorithms using Randomization

Definition 4 suggests that efficient approximate compu-
tation by Monte Carlo methods is likely possible using
a random sample of rays rooted along the query curve
Q. One possible direction for future research is to bound
the expected quality of approximation and the expected
running time as functions of the number of random rays
selected.

4.5 Upper Envelopes of Sets of Pseudolines

Our algorithm for computing curve stabbing depth in-
volves identifying the extreme points of each curve
P ∈ P relative to a point q that follows the query curve
Q. When P is a polyline, the extreme points can be
identified by computing the upper and lower envelopes
of the angle formed by each vertex of P relative to q as
a function of the position of q on Q. These functions are
a set of pseudolines when Q is a line segment; it may be
possible to compute upper and lower envelopes of this
set efficiently by constructing the convex hull of a set
of points dual to the set of pseudolines (e.g., [1]), which
may lead to a simpler and more efficient algorithm for
computing curve stabbing depth.
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Reflections in an Octagonal Mirror Maze

David Eppstein∗

Abstract

Suppose we are given an environment consisting of axis-
parallel and diagonal line segments with integer end-
points, each of which may be reflective or non-reflective,
with integer endpoints, and an initial position for a light
ray passing through points of the integer grid. Then
in time polynomial in the number of segments and in
the number of bits needed to specify the coordinates
of the input, we can determine the eventual fate of the
reflected ray.

1 Introduction

There are many problems in graphics and visibility test-
ing where it is of interest to determine the path that
would be taken by a ray of light, through an environ-
ment that may contain mirrors. Figure 1 gives a simple
example of a problem of this type. Even for very re-
stricted environments such as the one depicted, where
the starting point of the ray and all endpoints of mir-
rored segments have integer coordinates and where the
mirrors are all either axis-aligned or at 45◦ angles to
the axes, the path of such a ray may be very compli-
cated, taking a number of reflections that may depend
on the geometry of the input and not merely on its com-
binatorial complexity. For instance, a ray that bounces
diagonally between two parallel mirrors on opposite sides
of a long thin rectangle will only exit the rectangle after
a number of bounces proportional to the aspect ratio of
the rectangle, even though such an environment consists
of only two segments. Nevertheless, in that simple two-
mirror example, the eventual path of the ray is easy to
predict, without resorting to separately simulating each
bounce. What about for environments of more than two
mirrors? Is it still easy to ray-trace reflected rays in such
environments?
We formalize this problem as follows. The input en-

vironment is described as a collection of line segments,
with integer endpoints and either parallel to a coordinate
axis or at a 45◦ angle to the axes. Each side of each line
segment may be marked as reflective or non-reflective.
We are also given an integer position for the start of
a light ray, and an integer vector describing the initial
direction of the light ray. The restricted orientation of

∗Department of Computer Science, University of California,
Irvine. Research supported in part by NSF grant CCF-2212129.

Figure 1: The reflections of a light ray (red) among
mirrors that are axis-aligned or at 45◦ angles to the axes
(blue)

the mirrors ensures that each reflection of the ray in one
of the reflective segments continues to have integer slope,
on a line through infinitely many points of the integer
grid. If, after repeated reflections, the ray eventually
hits a non-reflective segment, the endpoint of a segment,
or its initial position and orientation, it stops; otherwise,
it must eventually escape the environment along an un-
obstructed infinite ray. The output of the problem is the
eventual fate of the ray: the point where it stops, or the
ray along which it escapes. Our main result is that we
can determine this outcome in polynomial time.

Let n denote the number of segments of the input,
and suppose that all of the integers in the input specifi-
cation (including the ones specifying the initial vector
of the traced ray) have magnitude at most N . For these
problem size parameters, it would be trivial to solve the
problem in time polynomial in N – simply trace the ray
one reflection at a time – but this time bound is not poly-
nomial, as it is exponentially larger than the input size.
Our time bound is weakly polynomial, but not strongly
polynomial: it is a polynomial of the number of bits
required to specify the input, which is O(n logN). For
the purposes of polynomial-time complexity, it would
be equivalent to allow input coordinates that are ra-
tional numbers, rather than integers, with numerators
and denominators of magnitude at most N . Clearing
denominators would produce an integer input whose
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coordinates have magnitude NO(n) (the product of the
input numerators and denominators), still requiring only
a polynomial number of bits to specify, O(n2 logN).
The main idea of our algorithm is to transform the

problem into one of determining the iterated behavior
of a certain type of discrete one-dimensional dynamic
system, which in a related recent paper [4] we called
an iterated integer interval exchange transformation. In
turn, following that paper, we can transform the iterated
integer interval exchange transformation problem into a
previously-studied problem in computational topology,
of following paths along normal curves on triangulated
topological surfaces. To solve this path-following prob-
lem on normal curves in triangulated surfaces, we apply
algorithms of Erickson and Nayyeri [5].
The general topic of visibility and ray-shooting with

reflection is one with much prior work, both heuristic
as part of the computer graphics rendering pipeline and
with more rigorous bounds in computational geometry,
for which see, e.g., [1–3,6–10]. However, this past work
has a combinatorial complexity that blows up with the
number of reflections. In contrast, our results give a poly-
nomial time algorithm whose complexity is independent
of the number of reflections.

2 Iterated interval exchange transformations

In a recent paper of the author [4] we investigated a
broad class of problems, involving computing the nth
iterate of a polynomial-time bijective function. One moti-
vation for this investigation was in ray-tracing problems
like the one studied here: if an environment consists
only of mirrors, with no absorbing barriers for light,
then (modulo representational issues involving whether
reflections preserve the integer nature of a light ray) the
mapping from each reflected position and direction of
a light ray to the next is just such a polynomial-time
bijection. Most of the problems considered in our recent
paper have high computational complexity. However,
our paper also identified a special class of bijections,
the integer interval exchange transformations, for which
iterates can be computed in polynomial time. We will
use the resulting iterated integer interval exchange trans-
formation problem as a subroutine in our algorithm for
finding the result of a sequence of reflections. In this
section we summarize the definitions needed to apply
this problem, following our previous paper.

We define an integer interval exchange transformation
to be a certain type of piecewise-linear bijective mapping
on a range of consecutive integers. It may be defined
by a partition of the range into subintervals, and by a
permutation of those subintervals. The transformation
then translates each subinterval (meaning that it acts on
this interval by addition of the same value to each integer
in the interval), so that the translated subintervals again

form a partition of the same range, reordered into the
given permutation. An example, used in Fig. 2, is the
transformation on [0, 15) that permutes the intervals
a = [0, 3], b = [4, 5], c = [6], d = [7, 14] into the permuted
order b, d, c, a. This permutation describes the function

x 7→


x+ 11, for x ∈ [0, 3]

x− 4, for x ∈ [4, 5]

x+ 4, for x ∈ [6]

x− 5, for x ∈ [7, 14].

A transformation of this type, with m intervals on the
range [0,M − 1], can be specified by O(m logM) bits of
information, specifying the endpoints and permuted po-
sition of each subinterval. The resulting integer function
may be evaluated on any integer x in its range in time
O(m), by a sequential search of the listed subintervals
to find the one containing x, and a second scan of the
subintervals to determine which ones have permuted
positions before the one containing x and contribute to
the translation offset for x. Even faster evaluations are
possible if the intervals are stored in sorted order with
their translation offsets. The iterated interval exchange
transformation problem takes as input an integer interval
exchange transformation µ, represented in either of these
ways, an integer x in its range, and another non-negative
integer k. The goal is to compute µ(k)(x), the result of
repeatedly replacing x by its transformed value, k times.
Following a suggestion of Mark Bell, our paper [4]

shows that, for every integer interval exchange transfor-
mation, it is possible to find a corresponding triangulated
two-dimensional manifold, and a normal curve on the
surface, such that tracing the normal curve for a specified
number of steps corresponds to evaluating the integer
interval exchange transformation (Figure 2). Here, a
normal curve is a curve through the triangles of the
surface, avoiding triangle vertices and passing straight
across each triangle from edge to edge, without cross-
ing itself. It can be specified by a system of numbers
on each edge counting the number of segments of the
curve that cross that edge; this specification must obey
certain consistency constraints (the numbers of cross-
ings on the three edges of each triangle must obey the
triangle inequality and sum to an even number). This
specification is sufficient to reconstruct the curve itself,
up to topological equivalence.

In the transformation from our paper [4], the integers
in the range [0,M − 1] of an integer interval exchange
transformation are represented as the sequence of M
crossings of a normal curve, along a central horizontal
edge of a triangulated surface. Each of these crossing
points x is connected by the normal curve, along a path
of exactly s segments for a number s determined as part
of the construction, to its image µ(x) according to the
integer interval exchange transformation. Following this
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Figure 2: A normal curve (light blue) on a triangulated
double torus (black triangles and red vertices, glued from
top to bottom and from left side to right side with the
pairing indicated by the letters). Traversing the normal
curve upwards from its central horizontal line, through
the glued edges from top to bottom, and continuing
upwards back to the same central line, permutes the
branches of the curve according to the integer interval
exchange transformation that maps [0, 3] 7→ [11, 14],
[4, 5] 7→ [0, 1], 6 7→ 10, and [7, 14] 7→ [2, 9]. From [4].

construction, the iterated interval exchange transforma-
tion problem can then be reduced to finding the crossing
point that is sk steps ahead of x along the normal curve.
This problem, of tracing paths for a given number of
steps on a normal curve, has been given a polynomial-
time solution by Erickson and Nayyeri [5]. It follows that
the iterated interval exchange transformation problem
can also be solved in polynomial time. More precisely,
the time is O(m2 logM), after an initial step in which
the input parameter k is reduced modulo the total num-
ber of steps in (a component of) the normal curve [4]. As
an integer division of a log k-bit number by a logM -bit
number, this reduction step can be performed in time
O(log k logM) using naive division algorithms.

3 Partial integer interval exchange

Reflection in a mirror is a reversible transformation
on systems of rays, but absorption by a non-reflective
surface is not: many different rays could be absorbed
at the same point. To mimic this non-reversibility in
an integer exchange problem, while still allowing the
polynomial-time procedure from our previous paper to
apply, it is convenient to generalize the integer interval
exchange problem to allow transformations that are only
partially defined, as follows.

We define a partial integer interval exchange transfor-
mation, for the range [0,M−1], to be a system of disjoint
subintervals of this range, together with a transformation
that offsets each of these subintervals to another system
of disjoint subintervals (necessarily of equal lengths).

For instance, by omitting the subinterval [6] from the
previous example, we obtain a partial integer exchange
transformation that maps that maps [0, 3] 7→ [11, 14],
[4, 5] 7→ [0, 1], and [7, 14] 7→ [2, 9]. The domain of the
transformation is the union of the given subintervals, and
the codomain is the union of their target subintervals.
This example has domain [0, 5] ∪ [7, 14] and codomain
[0, 9] ∪ [11, 14].

Lemma 1. If a partial integer interval exchange trans-
formation is repeatedly applied to an input x that does
not belong to the codomain, it eventually reaches a trans-
formed value that does not belong to the domain.

Proof. Consider the directed graph that connects each
value to its transformed image. This graph has in-degree
and out-degree at most one at each vertex, and has
finitely many vertices, so it consists of a disjoint union
of directed paths and directed cycles. An input x that
does not belong to the codomain has no incoming edge,
so it is the starting vertex of a path, and is eventually
transformed into the ending vertex of the same path, a
value that does not belong to the domain.

We define the iterated partial integer interval exchange
transformation problem to be a computational task that
takes as input the description of a partial integer interval
exchange transformation (as a system of subintervals
and their targets) and a value x that does not belong
to the codomain, and that produces the corresponding
value that does not belong to the domain, according to
Lemma 1.

Lemma 2. The iterated partial integer interval ex-
change transformation problem can be solved in time
O(m2 logM + log2M), polynomial in the input repre-
sentation size.

Proof. We transform the problem in polynomial time
into an equivalent instance of the (non-partial) iterated
integer interval exchange transformation problem. Let
I1, I2, . . . be the intervals of the given partial transfor-
mation f , and let f(I1) etc. denote their images after
the transformation. Suppose also that the given partial
transformation operates on the range [0,M−1] of length
M . Let m denote the total number of elements in this
range that are missed by f : they are not in its domain.
We define a new transformation f̄ that operates on the
range [0,Mm+M +m− 1] of length Mm+M +m, as
follows:

• For each subinterval Ii in the given transformation,
with image f(Ii), we include in f̄ the mapping Ii 7→
f(Ii).

• For each maximal subinterval Ji of [0,M−] \ ∪Ii (a
subinterval not in the domain of f) we include in f̄ a
mapping from Ji to a subinterval of [M,M +m−1],
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so that the images of these subintervals are disjoint
and completely cover [M,M +m− 1].

• We include in f̄ the mapping [M,Mm+M − 1] 7→
[M +m,Mm+M +m− 1]. Iterating this mapping
eventually transforms any value in [M,M +m− 1]
to a value in [Mm+M,Mm+M +m− 1], but it
takes M iterations to do so.

• For each maximal subinterval Ki of [0,M−]\∪f(Ii)
(a subinterval not in the codomain of f) we in-
clude in f̄ a mapping from a subinterval of [Mm+
M,Mm+M +m− 1] to Ki, so that the preimages
of these mappings are disjoint and completely cover
[Mm+M,Mm+M +m− 1].

For instance, for the example partial integer interval ex-
change transformation f given above,M = 15 andm = 1
(there is only one missing value from the transformation),
and we have f̄ mapping [0, 3] 7→ [11, 14], [4, 5] 7→ [0, 1],
[7, 14] 7→ [2, 9]; [6] 7→ [15]; [15, 29] 7→ [16, 30]; and
[30] 7→ [10].
Suppose we apply the algorithm to the iterated in-

teger interval exchange transformation problem, with
transformation f̄ , on an input value x that does not
belong to the codomain, and that the output of this
algorithm is a value z. If we iterate f̄ for a total of M
iterations, starting with a value x that does not belong
to the codomain, it will reach a value y that does not
belong to the domain in fewer than M iterations, by
Lemma 1. The next iteration will map y into a value y′
in the subinterval [M,M +m− 1], and the subsequent
(again fewer than M) iterations will each add m to this
value y′. We may therefore obtain y′ by z as the unique
value in the subinterval [M,M+m−1] that is congruent
to z modulo m. From y′, we may obtain the desired
value y as f̄−1(y′).

The time bound is obtained by plugging in the number
of pieces of the resulting transformation, O(m), the range
of its values, O(Mm), and the number of iterations,
O(M), into the previous time bound for iterated integer
interval exchange transformations.

4 Converting reflection to partial integer interval ex-
change

The reason that we have restricted our attention to
reflections in line segments that are horizontal, vertical,
and diagonal is that these kinds of reflections preserve
the integrality of the reflected rays. We formalize these
observations as follows.

Lemma 3. If a ray whose direction is specified by a vec-
tor (x, y) is reflected by a sequence of horizontal, vertical,
or diagonal mirrors, then the resulting ray’s direction
can be specified by one of the eight vectors (±x,±y) or
(±y,±x).

Figure 3: Cases for reflection of a ray from a horizontal,
vertical, or diagonal mirror

Proof. Vertical mirrors negate the first coordinate, hor-
izontal mirrors negate the second coordinate, and di-
agonal mirrors exchange the two coordinates (possibly
also negating both of them); see Fig. 3. The set of eight
vectors of the lemma are preserved by these operations,
so no other direction is possible.

Along with these eight directions, it will also be impor-
tant to keep track of the left-right orientation of each ray;
that is, whether an image that follows a thickened copy
of the ray has its orientation preserved or flipped. This
changes on each reflection, and cannot be determined
only from the ray’s direction: a ray that reflects perpen-
dicularly from a mirror will have its orientation changed,
whereas a ray that returns from a corner-reflector (two
perpendicular mirrors) will not.

Lemma 4. If a ray that passes through infinitely many
points of the integer grid is reflected by a sequence of
horizontal, vertical, or diagonal mirrors, each with inte-
ger endpoints, then the reflected ray again passes through
infinitely many points of the integer grid.

Proof. When a ray is reflected by a mirror, it passes
after the reflection through the same sequence of grid
points that the unreflected ray would pass through in
the reflection of the grid. But with mirrors of the type
described by the lemma, the reflection of the grid is an
integer grid with the same points.

Observation 5. Let L be the system of all lines in the
plane that pass through integer points in the direction of
a vector (x, y), where x and y are integers in lowest terms
(their greatest common divisor is one). Then the lines
of L subdivide each vertical unit segment of the integer
grid into x equal-length pieces, and each horizontal unit
segment of the grid into y equal-length pieces. They
subdivide each diagonal segment of the grid, of length√
n with slope of the same sign as the slope of the lines

in L, into |x− y| equal-length pieces, and each diagonal
segment of the opposite slope into |x+ y| equal -length
pieces. (See Fig. 4.)

Putting these observations together, we can transform
any octagonal mirror maze into an equivalent partial
integer interval exchange transformation.

Lemma 6. Suppose we are given an environment, de-
scribed as a collection of line segments, each side of
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Figure 4: Subdivision of grid segments and diagonals
(blue) by the system of all lines through integer points
in the direction of the vector (5, 3) (red).

which may be marked as reflective or non-reflective, with
integer endpoints, an integer position for the start of
a light ray, and an integer vector describing the initial
direction of the light ray. Then in polynomial time we
can construct a partial integer interval exchange trans-
formation f whose values correspond to points of the
environment (either the starting point or points along
the segments of the environment) and directions of a
reflected light ray emanating from that point, such that:

• If a value v belongs to the domain of f , then the
ray described by v is eventually reflected by the en-
vironment, with its first reflection at a position and
direction described by f(v).

• If a value v does not belong to the domain of f ,
then the ray described by v hits an absorbing barrier
before being reflected, or escapes to infinity.

Proof. We surround the given environment with a non-
reflective bounding box that will catch all escaping rays.
By Lemma 3 and Lemma 4, we need only consider rays
through integer points, in eight directions and two left-
right orientations. By Observation 5, we need only
consider a discrete evenly-spaced set of possible reflec-
tion points along each segment of the environment, of
a size that can be described by an integer with polyno-
mially many bits. (Recall that we are not restricting
the lengths of our grid segments or our initial direction
to have polynomial magnitude, only to be integers with
a polynomial number of bits.) We will create a partial
integer interval exchange transformation f whose range
is partitioned into subintervals, one for each combination
of an environment segment, a direction of the emanat-
ing ray, and a left-right orientation, with the length of
these subintervals obtained by multiplying the length
of the segment by the number of reflection points per

A: (0,0)

B: (0,2) C: (2,2)

D: (1,0)

E: (1,1)

A

B

hits A

reflected
to CD

reflected
to BC

reflected to C

hits B

Figure 5: Reflection points along segment AB of a given
environment, partitioned into subintervals according to
the next object in the reflected path for incoming rays
of slope − 1

2 .

unit length given by Observation 5. For each of these
subintervals, we further partition it into sub-subintervals,
in polynomial time, according to the next object in the
environment that a ray in that direction would hit, as
depicted in Fig. 5. (This is simply a lower envelope
of n disjoint line segments, for a projection direction
determined by the ray direction.) When the next ob-
ject to be hit is reflecting, we map a sub-subintervals
to the interval describing the corresponding reflection
points along that object. When, instead, it is absorbing,
we omit that sub-subinterval from the partial integer
interval exchange transformation.

5 The main result

Putting these components together, we have the follow-
ing result:

Theorem 7. Suppose we are given an environment,
described as a collection of line segments, each side of
which may be marked as reflective or non-reflective, with
integer endpoints, an integer position for the start of
a light ray, and an integer vector describing the initial
direction of the light ray. Then in time polynomial in
the number of segments and in the number of bits needed
to specify the integers of the input, we can determine
whether the reflected ray is eventually absorbed or escapes
to infinity. If it is absorbed, we can determine where
it is absorbed, what direction it comes from when it is
absorbed, and how many bounces it makes before this
happens. If it escapes to infinity, we can determine its
eventual escape path, and how many bounces it takes
before reaching this path. The time bound for these
algorithms is O(n2 logN + log2N).

Proof. We convert the input to an equivalent partial
integer interval exchange transformation according to
Lemma 6, and then apply the polynomial-time algo-
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rithm for the iterated partial integer interval exchange
transformation problem of Lemma 2.
An input of size n and coordinate magnitude N can

be converted into a partial integer interval exchange
transformation whose number of subintervals is O(n)
(each comes from a trapezoid in four trapezoidal decom-
positions with sides parallel to one of the directions of
the reflected rays) and whose range is O(N2) (combining
the magnitude of the environment coordinates with the
number of reflection points along each grid segment). For
inputs of this size, the time to apply an algorithm for the
iterated partial integer interval exchange transformation
is O(n2 logN + log2N).

It would be of interest to determine to what extent
this algorithm can be generalized. Can we determine the
geometric length of the reflected path of a light ray, and
not just its number of bounces? Are there other systems
of slopes, beyond the axis-aligned and diagonal slopes,
for which similar algorithms can work? How does the
complexity of the algorithm depend on the system of
slopes? For slopes that do not preserve the rationality of
reflected rays, what can be said about the computational
complexity of the problem?
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Locked and Unlocked Smooth Embeddings of Surfaces

David Eppstein∗

Abstract

We study the continuous motion of smooth isometric
embeddings of a planar surface in three-dimensional
Euclidean space, and two related discrete analogues of
these embeddings, polygonal embeddings and flat fold-
ings without interior vertices, under continuous changes
of the embedding or folding. We show that every star-
shaped or spiral-shaped domain is unlocked: a contin-
uous motion unfolds it to a flat embedding. However,
disks with two holes can have locked embeddings that are
topologically equivalent to a flat embedding but cannot
reach a flat embedding by continuous motion.

1 Introduction

Much research in computational geometry has concerned
smooth deformations of a shape that preserve its geomet-
ric structure. This includes bloomings, continuous and
collision-free unfoldings from polyhedra to flat nets that
preserve the shape of each face [6, 9, 15, 18, 21, 26], the
carpenter’s rule problem on continuous collision-free mo-
tions that straighten a polygonal chain while preserving
segment lengths [8, 20, 22], and the closely related study
of continuous rigid motions of single-vertex origami pat-
terns [1, 19, 23]. When the carpenter’s rule problem is
generalized to to more complex linkages or three dimen-
sions it can have locked configurations, unable to reach a
straightened configuration even though there is no topo-
logical obstacle to their reconfiguration [3–5, 7, 11, 16].
Demaine, Devadoss, Mitchell, and O’Rourke studied
“folded states” of simple planar polygons in 3d, con-
sisting of a surface-distance-preserving mapping to 3D
together with a consistent “local stacking order” at parts
of the polygon that are mapped onto each other. As they
show, any folded state can be continuously transformed
to any other folded state: the configuration space of
these states is connected [10,12].
In this work we examine reconfigurability for three

natural restricted forms of folded states:

• Smooth embeddings into R3, where the embedded
surface is doubly differentiable (having a tangent
plane everywhere) without self-contact.

∗Department of Computer Science, University of California,
Irvine. This work was inspired by discussions at the 3rd Vir-
tual Workshop on Computational Geometry, held in March 2022,
for which we thank the organizers and participants. Research
supported in part by NSF grant CCF-2212129.

• Polygonal (piecewise linear) embeddings into R3

without interior vertices, so all “fold lines” where
the mapping is not locally linear extend entirely
across the surface. There should be finitely many
connected linear pieces and no self-contact.

• Planar folded states (flat foldings) without interior
vertices. We again require that the mapping be
piecewise linear with finitely many pieces and that
the fold lines extend entirely across the surface.

At each interior point of a smoothly embedded flat sur-
face in R3 that is not locally flat, the surface bends
along a straight “bend line” that continues to the sur-
face’s boundary [14]. As an everyday example of this
phenomenon, when holding a slice of pizza at its crust,
keeping the crust flat allows the slice to droop, but bend-
ing it extends rigid bend lines lengthwise through the
slice, preventing drooping [25]. Our restriction against in-
terior vertices of polygonal embeddings and flat foldings
provides a combinatorial model of the same phenomenon.
We have studied flat foldings with this restriction (but
not their reconfiguration) in previous work [13].
In all three models of bending and folding we allow

continuous motions that stay in the same model; in par-
ticular, in the polygonal embedding model, folds may
“roll” along the surface rather than remaining fixed in
place. Our folded states are special cases of the ones
previously considered by Demaine et al. [10, 12], and we
retain their notion of a continuous motion as a mapping
from the closed unit interval [0, 1] to folded states that
is continuous under the sup-norm of the distances of
mapped points and (for flat foldings) consistent with
respect to the local stacking order. The initial configura-
tion of a motion is the mapping for the parameter value
0, and the final configuration is the mapping for the
parameter value 1. For all three of our restricted models
of folded states, we prove the following new results:

• A compact subset of the plane with a continuous
shrinking motion has a connected space of restricted
folded states: every folded state can be continuously
unfolded to a flat state. These sets are topological
disks and include the star-shaped domains.

• There exist subsets of the plane, topologically equiv-
alent to a disk with two holes, that can be locked:
they have embeddings that are topologically equiva-
lent (ambient isotopic) to their flat embedding, but
cannot be continuously deformed to become flat.
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Figure 1: A polygon that has a continuous shrinking
motion into itself, but that is not star-shaped.

2 Shapes that can shrink into themselves

A star-shaped polygon, or more generally a star-shaped
domain, is a subset S of the plane such that, with an
appropriate choice of one point of the plane to be the
origin, every scaled copy pS for p ∈ [0, 1] is a subset of S
itself. These are widely studied in computational geom-
etry, and can be recognized in linear time [17]. However,
these are not the only shapes that have a continuous
shrinking motion of scaled copies of the shape into them-
selves. Fig. 1 depicts a different type of continuous
shrinking motion, in which the shape spirals inwards
while shrinking. Such a motion can be described by
coordinatizing the plane by complex numbers, again for
an appropriately chosen origin (the center of the spiral
motion), choosing a complex number q of absolute value
less than one, and considering the family of scaled copies
epqS for p ∈ [0,∞). The linear shrinking motion of star-
shaped domains is a special case of this type of motion
in which q is a positive real number. If any shape S has
any continuous shrinking motion of its scaled copies into
itself, the start of the motion can be approximated to
first order by an inward-spiraling shrinking motion of
this type, which can then be continued to a complete
inward-spiraling shrinking motion of the same shape. In
this sense, this family of continuous shrinking motions
is completely general, in the sense that all shapes with a
continuous shrinking motion have a continuous shrinking
motion of this type, although we will not use this fact.
Following Aharonov et al. [2], we call a compact set S
that has a continuous shrinking motion of this type a
spiral-shaped domain.

In an inward-spiraling shrinking motion, each point
of the set S traces out a logarithmic spiral, which meets
every ray from the center of the motion in a fixed an-
gle θ. The existence of a spiraling motion for a given
simple polygon and a fixed choice of θ can be tested by
intersecting polygonal regions, one for each edge, that
describe the set of locations for the center where a spiral
of this angle would leave the edge towards the interior

of the polygon, rather than towards the exterior. This
characterization leads to a polynomial-time algorithm for
testing the existence of an inward-spiraling motion, by
continuously varying θ over the range (−π, π) and deter-
mining the combinatorial changes in the corresponding
intersection of polygonal regions. It is plausible that
finding a feasible angle θ and a center point for that
choice of θ is an LP-type problem of bounded dimension,
solvable in linear time, but we have not proved this.

The main results of this section are that every spiral-
shaped domain S has connected spaces of smooth embed-
dings, polygonal embeddings without interior vertices,
and flat-foldings without interior vertices. Equivalently,
every embedding can be continuously unfolded. The
simplest case concerns smooth embeddings.

Theorem 1. Every smooth embedding of a spiral-shaped
domain has a continuous motion, through smooth em-
beddings, to a flat embedding.

Proof. Let S be the given spiral-shaped domain, and
f : S → R3 be its smooth embedding. Parameterize an
inward-spiraling shrinking motion of S as si : S → S
where i ∈ (0, 1], s1 is the identity, and each si scales S
by a factor of i, converging as i→ 0 to a single central
point of the motion (which may or may not be on the
boundary of S).
Our proof converts this parameterized family of scal-

ings to a parameterized family of smooth embeddings
of S at a single scale, by composing si, f , and a func-
tion that expands R3 by a factor of 1/i to restore the
original size of S. The obvious expansion function R3

by (x, y, z) 7→ (x/i, y/i, z/i) does not work, because of
the following issues:

• Composing si, f , and an expansion by 1/i does
provide a continuous motion of smooth embeddings
on the half-open interval (0, 1], whose curvature
tends towards zero as the parameter goes to zero.
However, we need a continuous motion on the closed
interval [0, 1] for which the limiting embedding at
parameter value zero exists and is completely flat.

• When the origin of R3 does not belong to all of the
rescaled and smoothly embedded copies of S, the
composition with R3 by (x, y, z) 7→ (x/i, y/i, z/i),
as i → 0, will produce smooth embeddings of S
whose distance from the origin is inversely propor-
tional to i, preventing them from having a limit.
We can prevent this by choosing coordinates for R3

that have as their origin f(p), where p is the limit
point of the inward-spiraling shrinking motion on
S. In this way, the composition of si, f , and an
expansion by 1/i will act as the identity on this
point, and more strongly will preserve the tangent
plane of the surface at that point.
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Figure 2: A spiral-shaped domain between two logarith-
mic spirals, whose shrinking motion cannot be shortcut
to a linear shrinking motion.

• This still does not complete the proof, because a
spiral inward-shrinking motion of the domain, com-
posed with f and (x, y, z) 7→ (x/i, y/i, z/i), will
cause the embeddings to rotate at increasing speed
as i → 0, preventing the continuous motion from
having a flat limiting surface at i = 0. For the
polygonal domain of Fig. 1, this problem can be
circumvented by switching from the spiral inward-
shrinking motion to a linear scaling transformation
in S, once the scaled copies of S become small
enough that this linear scaling stays entirely within
S. However, for some other shapes, such as the
domain between two logarithmic spirals depicted in
Fig. 2, switching to linear scaling is never possible.

Instead, we address this third issue by choosing a ref-
erence vector tangent to S at f(p). We compose si,
f , an expansion by 1/i, and a rotation of R3 (with
axis perpendicular to the tangent plane at f(p))
that restores this vector to its original direction.

Let fi denote the resulting composition of si, f , an
expansion of R3 with a careful choice of origin, and a
rotation that restores the original directions of vectors
in the tangent plane to the embedded surface. Then fi,
for values of i in the half-open interval (0, 1], describes
a continuous motion with f1 = f as one endpoint of the
motion. The maximum curvature of the surface fi(S)
equals i times the maximum curvature within the i-
scaled copy of S within f(S), which in the limit becomes
arbitrarily close to i times the curvature at p in f(S) and
therefore has limiting value zero. The transformations fi
preserve the tangent plane to the surface and directions
within the tangent plane.

For each point q ∈ S, fi(q) can be obtained by the
exponential map: follow a curve on fi(S) of length |p−q|,
starting from p, in the direction given by the image of
the tangent vector q − p. This length and direction
are invariant through the motion, and as i → 0 the
curvature of this path approaches zero. Therefore, fi
converges pointwise to a flat embedding f0(S), obtained
by the exponential map on the tangent plane of f(S) at p.

Appending f0 to our continuous sequence of smooth em-
beddings fi for i ∈ (0, 1] gives us a continuous sequence
on i ∈ [0, 1], flat at i = 0 and equal to our starting
embedding at i = 1, which therefore shows that these
two embeddings are reconfigurable to each other.

This proof uses compactness to ensure that the limit
point of the spiral shrinking motion is asymptotically flat
and that sufficiently small copies of the entire domain
fit into any neighborhood of that point. Non-compact
surfaces can have self-similar embeddings, smooth every-
where except the limit point, that are invariant under
shrinking and re-expansion. For polygonal embeddings
we handle the same issue of avoiding self-similar em-
beddings differently, using the requirement that these
embeddings have finitely many connected linear pieces.

Theorem 2. Every polygonal embedding without inte-
rior vertices of a bounded spiral-shaped domain has a
continuous motion, through polygonal embeddings with-
out interior vertices, to a flat embedding.

Proof. The same idea as above comes close to working:
compose the inward-spiraling shrinking motion of the
domain, the initial embedding f , an expansion of R3 cen-
tered at the limit point of the motion, and a rotation of
R3 that cancels any spinning motion the inward-spiraling
motion might have. However, the limit point p of the
inward-spiraling shrinking motion might be a point on a
fold line of the polygonal embedding, or worse, it might
be a boundary point of S where multiple fold lines meet.
In this case, there is not a unique tangent plane of f(S)
at p, and when the same composition can be made to
have a limit, this limit will be folded at p in the same
way as it was in f(p) rather than being flat.

To address these issues, when p is a folding point of
the embedding f(S), we choose one of the polygonal
faces incident to p to determine the tangent plane for
the previous construction. Then as above we compose
the inward-spiraling shrinking motion of the domain,
the initial embedding f , an expansion of R3 centered
at the limit point of the motion, and a rotation of R3

that cancels any spinning motion of this tangent plane.
The resulting composition defines a continuous motion
over the half-open interval of parameter values (0, 1],
which can be extended with a well-defined limit at 0, a
polygonal folded state that has the same fold lines and
fold angles as f(S) at p and is flat everywhere else.

We distinguish three cases:

• If p is not a folding point of the embedding f(S),
then the previous proof applies directly.

• If p belongs to a single fold line of the embedding
f(S), then we can concatenate two continuous mo-
tions. First we perform the motion from the previ-
ous proof that transforms f(S) into a folded state
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that contains this fold line. Because this folded
state has only one fold line, it cannot self-intersect,
and forms a valid polygonal embedding. Next, we
perform an additional continuous motion that lin-
early changes the angle of this fold from its initial
value to π (unfolded into a flat angle). Again, none
of the intermediate states of this second continuous
motion can self-intersect.

• In the remaining case, p is a boundary point of S
that belongs to multiple fold lines within S. For a
line from p to intersect S in a line segment, it must
necessarily be the case that the inward-spiraling
shrinking motion is actually the linear shrinking
motion of a star-shaped domain. The link of this
folded state at p, the intersection of f0(S) with
a small sphere centered at p, is a polygonal chain
consisting of arcs of great circles. Because it remains
invariant throughout the motion, it does not self-
intersect. Any two distinct points of S at distance
d from p lie on distinct points of a scaled copy of
this link, on a sphere of radius d, and for this reason
cannot coincide. Therefore, the folded state at f0
is again a valid polygonal embedding.

By known results on the spherical carpenter’s rule
problem, there exists a continuous motion of the
link, as a polygonal chain of fixed-length great-circle
arcs on the sphere, from its folded state to a com-
pletely flat state. This motion induces a continuous
motion of f0 to a flat-folded state [23]. Perform-
ing the continuous motion from f(S) to f0(S), and
then using this carpenter’s rule solution on the re-
sulting single-vertex surface, produces a combined
continous motion from f(S) to a flat state.

To apply the same method to flat foldings without
interior vertices, we cannot use the carpenter’s rule prob-
lem, as 1d flat-folded polygonal chains with fixed edge
lengths cannot change continuously. Instead, we use a
one-dimensional version of Theorem 2:

Lemma 3. Let P be line segment, folded flat by a
piecewise-isometry f : P → R with a finite number
of fold points and a consistent above-below relation for
points with the same image. Then there exists a contin-
uous motion of flat foldings of P that transforms folding
f into an unfolded state.

Proof. Chose any point p of P that is not a fold point,
and form a continuous family of one-dimensional folded
states of P , fi(P ) for i ∈ (0, 1], by scaling P by a factor
of i centered at p, applying f , and scaling the result by
a factor of 1/i centered at f(p). When i becomes less
than the distance from p to the nearest fold, the result
will be an unfolding of P , so this provides a continuous
transformation from f to an unfolding.

Figure 3: Two disks connected by a knotted band. This
surface can be flattened by a continuous motion of
smooth embeddings.

Theorem 4. Every flat folding without interior ver-
tices of a bounded spiral-shaped domain has a continuous
unfolding motion through foldings of the same type.

Proof. The proof follows the same outline as Theorem 2,
combining shrinking and unshrinking to reach a folded
state in which all folds pass through the center p of
the spiral shrinking transformations. If the result has a
single fold through p we roll this fold to the boundary
of S rather than changing its fold angle. If p lies on
the boundary of the domain and belongs to multiple
fold lines, we apply Lemma 3 in place of the spherical
carpenter’s rule.

3 An instructive example

Fig. 3 shows two large disks connected by a short thin
band, embedded with the disks spread flat and the band
tied into an open overhead knot. If the disks could
be crumpled, it would be easy to untie and flatten, by
crumpling the disks into small enough balls that they
could be passed through the knot, and then uncrumpling.
However, our model of smooth surface embeddings does
not allow crumpling. In every smooth embedding, the
center point of each disk lies in a flat subset of the disk
with large diameter: either a diameter of the disk, or
a triangular subset of the disk with the vertices of this
triangle on the boundary of the disk.
Rolling up either disk around a diameter makes that

diameter act like a rigid line segment, but gives the
rest of the disk a smaller overall shape. Rolling both
disks in this way can produce an embedding like the
locked polygonal chain with long “knitting needles” at
its ends from Figure 1 of Biedl et al. [4]. Any other rigid
configuration for the two disks would be similarly locked.
However, this surface is unlocked! It can be unfolded
through the following sequence of transformations:

• LetD be a diameter of one of the two disks, touching
the boundary of the disk at its attachment point
p with the knotted band. Roll up the disk around
D, starting at one of the points of the disk that is
farthest from D, and leaving the semicircle opposite
that point exposed on the outside of the roll.
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Figure 4: A flat surface with two holes and a config-
uration that cannot be flattened. Intuitively, the two
interlocked loops prevent the rolled center region from
unrolling, the bend lines of the roll make it act like a
rigid rod, and the length of this rod prevents the loops
from being pulled around its ends. For the way the two
loops on the hidden side of the roll interlock, see Fig. 5.

• Poke p into the hole made by the knotted band, so
that if the rolled-up disk around D were not rigid,
it could pass through the hole and untie the knot.
However, because D is made rigid by the bending
of the embedding as it rolls around D, only the very
end of diameter D near p can pass into the hole.

• Continuously spin the parallel family of bend lines
on the rolled-up disk, so that it rolls up around a
different diameter than D. Choose the direction
of spin that causes p to travel along the exposed
semicircle along the rolled-up disk. As it does so,
this will allow more of the diameter of the rolled-up
disk to poke through the hole in the knot.

• When the bend lines have spun on the disk through
an angle of π, causing p to reach the other end of
the exposed semicircle, the rolled-up diameter will
have traveled all of the way through the hole in the
knot, which will become unknotted.

• Unroll the disk so that it lies flat with the rest of
the surface.

Thus, although bend lines of a smoothly embedded
surface are rigid, the underlying pattern of these lines on
the surface can change continuously, complicating the
search for a proof that a surface is locked.

4 A locked surface

Fig. 4 depicts a smoothly-embedded unit square with two
small loops on midpoints of opposite sides, wrapped into
a spiral roll with the loops interlocked. Fig. 5 provides
a cutaway view showing how the loops interlock.

Figure 5: Cutaway view of the two loops and centerline
of the rolled-up part of the surface of Fig. 4, showing
their topological equivalence to the Borromean rings

This rolled-up and interlocked surface is topologically
equivalent (ambient isotopic) to a flattened surface. As
can be seen in Fig. 5, the interlocking pattern is that
of the Borromean rings, three unknotted loops in space
that cannot be separated from each other, in which any
two of the loops become unlinked if the third loop is
removed. In the figure, the role of one of these three
loops is taken by the center of the spiral roll, which
does not actually form a loop, so this embedding is not
topologically linked. From the arrangement of the loops
in Fig. 5, it is possible to unlink it by pulling the right
half of the red band to the right and up, around the
right end of the yellow spiral center, passing this part of
the red band around the right half of the blue band, and
then passing the same part of the red band back to the
right and down around the right end of the yellow spiral
center. This sequence of motions reverses the front-back
order of the two red-blue crossings on the right half
of the red band, after which it is straightforward to
flatten the whole surface. We have also verified that this
configuration is topologically unlocked using a physical
model of two rubber bands attached to a pen.
As a smoothly-embedded surface, Fig. 4 is locked: it

cannot be flattened while preserving its geometry. To
prove this, we use three interlocked properties of the em-
bedding that, like the Borromean rings, are interlinked:
as long as any two of the properties remain valid, the
third one must remain valid as well, so none of the three
properties can be the first to break in any continuous
motion of the embedding. The first two properties are
parameterized by a parameter ε, which we will be able
to make arbitrarily small by making the length of the
loops sufficiently small:

A. The two loops are bounded within distance ε of each
other.

B. The nearest bend line on the square to its center
point has distance ≤ ε to the center point, and
crosses the top and bottom sides of the square at
distance ≥ 1/4− ε from its left and right sides.

C. The nearest bend line on the square to its center
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Figure 6: Bend lines for a deformed version of Fig. 4 in
which the (heavier) bend line through the center of the
square crosses the top and bottom sides of the square
at distance 1/4 from the sides. For these bend lines, the
two loops still meet near the center of the rolled surface.

point can be completed into a loop by a curve, on a
sphere with it as diameter, forming Borromean rings
with the other two loops.

The reason for the 1/4 in property B is that it is
possible to deform Fig. 4, keeping the two loops inter-
locked in the center of the roll, so that the center bend
line crosses the top and bottom sides of the square at
distance 1/4, as shown in Fig. 6. However, as we will
prove, it is not possible to move this center bend line
significantly farther from vertical.

Lemma 5 (A ∧B ⇒ C). For all sufficiently small loop
lengths δ and all sufficiently small ε, continuous motion
through states where A(ε) and B(ε) hold, starting from a
state where C holds, cannot reach a state where C does
not hold.

Proof. Let b be the bend line of property B. Then
(Fig. 7) the attachment point p of the right loop must
lie within the intersection of two spheres centered at
the endpoints of b, with radii equal to the distances
from p to those endpoints, because the embeddings we
consider are not allowed to increase distances. Similarly,
the attachment point of the left loop must lie within
the intersection of another two spheres. By property
A, these attachment points must be near each other,
and until C stops holding, they must also lie near line
b. This limits their nearby locations to points of line b
that are far from its endpoints on the square, so they
cannot reach the sphere through the endpoints of b on
which the connecting curve of property C lies.

As the smooth embedding deforms continuously, the
bend line nearest the center point can change, but (as
long as B continues to hold) only by small amounts,
and the connecting curve can be changed by similar
small amounts to maintain property C. As the other
two loops cannot reach the sphere containing this curve,
they cannot cross this curve (even though it does not
form a physical obstacle to them) and cannot change
the knotted topology that it forms with them.

Figure 7: For a bend line through the square’s center, the
attachment point of the right loop must be in the shaded
intersection of circles centered at the bend endpoints, to
avoid having greater distance to those endpoints than
in the flattened surface.

Lemma 6 (A ∧ C ⇒ B). For all sufficiently small ε
there exists a δ such that, for loop lengths less than δ,
continuous motion through states where A(2ε) and C
hold, starting from a state where B(ε) holds, cannot
reach a state where B(ε) does not hold.

Proof. Let b be the bend line nearest the center of the
square. While A and C hold, b must pass through the
Borromean link formed by it and the two loops, and so
(if the center point itself does not lie on a bend line) it
must lie on a flattened part of the surface whose width is
at most proportional to the loop length. Therefore, b is
close to the center point, as part of property B demands.
For a bend line that is close to the center point, the same
reasoning used in Fig. 7 and Lemma 5 shows that it must
be at distance at least 1/4 − ε from the left and right
sides, for otherwise the two intervals on this bend line
where the left and right loop attachment points must be
near would not intersect.

Lemma 7 (B ∧ C ⇒ A). For all sufficiently small ε
there exists a δ such that, for loop lengths less than δ,
continuous motion through states where B(2ε) and C
hold, starting from a state where A(ε) holds, cannot
reach a state where A(ε) does not hold.

Proof. By assumption C, the two loops of the surface
and a third loop formed by bend line b form Borromean
rings, and by assumption B, line b is near vertical and
near the square’s center, forcing the attachment points
of the two loops to be far from the endpoints of b.
Each loop of the surface has small diameter, so if

the two loops could be far from each other it would be
possible to make two small spheres (of radius ε), one
containing each loop. The loop containing b lies on a
straight line within each of these two spheres. Although
Borromean rings can have two loops in two disjoint
spheres [24] (Fig. 8), the third Borromean ring cannot
pass through either sphere as a straight line. If it could,
we could deform a loop within its sphere to a circle (as it
is not pairwise linked with the line passing through the
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Figure 8: Borromean rings with links in separate spheres

sphere) and span it by a disk not crossed by the other
two loops, impossible for the Borromean rings. This con-
tradiction shows that the two loops cannot be separated
by a distance larger than ε, as stated in property A.

These properties together prove that the surface of
Fig. 4 is locked: for versions of this surface with short
enough loops, it is impossible to deform it as a smoothly
embedded surface to its flattened state. The same is true
for the same reasons for approximations to this surface by
polyhedral embeddings or flat foldings without interior
vertices. As a result, we have the following theorem:

Theorem 8. For smooth embeddings, polyhedral embed-
dings without interior vertices, and flat foldings without
interior vertices, there exist flat surfaces with the topol-
ogy of a disk with two holes that are ambient isotopic
to their flattened form but cannot reach that form by a
continuous sequence of folded states staying within the
same class of folded states.

Proof. Choose a sufficiently small δ > 0 and ε > 0
for the lemmas above. The surface of Fig. 4, in the
configuration of the figure, has properties A(ε), B(ε),
and C. As it continuously moves, all three properties
remain true; none can be the first to fail, because at the
instant it failed, the weaker properties A(2ε) and B(2ε)
would still be true, which by the lemmas would imply
all three of C, A(ε), and B(ε). However, the flattened
configuration does not obey the three properties, so it
cannot be reached.

5 Conclusions and open problems

We have shown that, for smooth embeddings, polyhedral
embeddings without interior vertices, and flat foldings
without interior vertices, every spiral-shaped domain can
be flattened. However, there exist more complex planar
shapes whose configuration spaces are disconnected: they
have locked embeddings that, although topologically
equivalent, cannot be flattened.

Is every topological disk flattenable? Can the method
that we used to flatten Fig. 3 be generalized to other

disks? What about surfaces with a single hole? Ad-
ditionally, we have only investigated the existence of
flattenings, but not their algorithmic complexity. For
polyhedral embeddings and flat foldings, how hard is
it to determine whether a continuous flattening exists?
What about for smooth embeddings represented as a
piecewise cylindrical and conical surface?
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Orthogonal Dissection into Few Rectangles

David Eppstein∗

Abstract

We describe a polynomial time algorithm that takes as
input a polygon with axis-parallel sides but irrational
vertex coordinates, and outputs a set of as few rectangles
as possible into which it can be dissected by axis-parallel
cuts and translations. The number of rectangles is the
rank of the Dehn invariant of the polygon.

1 Introduction

Slicing an orthogonal polygon horizontally through each
vertex partitions it into rectangles, but may use more
rectangles than necessary. Instead, a partition into a
minimum number of rectangles can be found in polyno-
mial time, even for polygons with holes. The algorithm
finds axis-parallel segments through pairs of non-convex
vertices, and uses bipartite matching to find a maximum
independent set in the intersection graph of segments.
The resulting independent slices, with one additional
slice through each remaining non-convex vertex, mini-
mize the number of rectangles [6, 7, 14,16].

What if we allow sliced pieces to be rejoined? Slicing
a polygon into pieces and rejoining them into another
polygon is called dissection. For example, the Greek
cross of Fig. 1 requires three rectangles when partitioned,
but has a three-piece dissection into one rectangle, as
shown. In fact, every polygon (orthogonal or not) can
be dissected into every other polygon of the same area;
this is the Wallace–Bolyai–Gerwien theorem [2, 9, 11, 20].
Therefore, a dissection into one rectangle always exists.
However, this dissection may rotate pieces and use non-
axis-aligned cuts, unnatural for orthogonal polygons.
Instead, we ask: if we consider dissections that use only
axis-parallel slices, translations, and rejoining of the
sliced pieces, without rotations, how few rectangles can
we dissect a given shape into? For instance, the figure
demonstrates that the answer for the Greek cross is one:
it can be dissected into a single rectangle. We call this
restricted class of dissections orthogonal dissections.1

Polyominoes such as the Greek cross always have an
orthogonal dissection into one rectangle: just subdivide
into some number n of squares and rearrange into a
1 × n rectangle. However, we consider polygons with

∗Department of Computer Science, University of California,
Irvine. Research supported in part by NSF grant CCF-2212129.

1It would be natural to allow also 90◦-rotations, but our results
do not directly extend to dissections that allow such rotations.

Figure 1: Dissection of a Greek cross into a rectangle,
using only axis-parallel cuts and translation of pieces.

irrational coordinates, for which an orthogonal dissection
into a single rectangle may not exist. To address the
computational issues that this entails, we assume that
all coordinates are presented as rational linear combina-
tions of a rational basis, a set of real numbers for which
no nontrivial rational linear combination sums to zero.
Our main result is an algorithm that in polynomial time
computes the minimum number of rectangles into which
a given orthogonal polygon can be dissected, and con-
structs a family of rectangles of that minimum size into
which it may be dissected. As we show, this has strong
implications for the possibility of dissecting a polygon
into a prototile that can tile the plane: such a dissection
exists if and only if the minimum number of rectangles
is one or two.
The main technical tool that we use for this task is

a form of the Dehn invariant. The Dehn invariant is
a value living in an infinite-dimensional tensor space,
usually used for three-dimensional polyhedral dissection
problems. One polyhedron can be dissected into another
if and only if they have the same volumes and Dehn
invariants, and a polyhedron can be dissected to tile
space if and only if its Dehn invariant is zero [3,5,12,19].
Another version of the Dehn invariant has also been
used for orthogonal dissection of rectangles to rectangles,
in order to prove that such a dissection exists if and
only if the two rectangles have equal areas and rationally
related sides [1,4,17,18]. For instance, because the Greek
cross of Fig. 1 (scaled to form a pentomino, with side
length one) has an orthogonal dissection into a rectangle
with dimensions 2× 2 1

2 , it cannot also be orthogonally
dissected into a

√
5 ×
√

5 square. (Instead, it can be
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dissected into a square using only two straight but not
axis-parallel cuts [8].)
Our key insight is that, as order-two tensors, Dehn

invariants have significant structure beyond merely being
equal or unequal to each other or zero. In particular,
like matrices, they have a rank, and this rank is geomet-
rically meaningful. We prove that, for the orthogonal
Dehn invariant, the rank equals the minimum number
of rectangles that can be obtained from an orthogonal
dissection. For the Dehn invariant of polyhedra, we do
not have as precise a relation, but the rank of the Dehn
invariant (if nonzero) provides a lower bound on the
minimum number of edges in a polyhedron to which the
given polyhedron can be dissected.

2 Model of computation

We consider inputs that are orthogonal polygons,
bounded regions of the plane whose boundary consists of
finitely many axis-parallel line segments, allowing poly-
gons with holes. We assume that the input specifies
the coordinates of each vertex (endpoint of a boundary
segment). Because the problems we consider are non-
trivial only for polygons with irrational coordinates, it is
necessary to say something about how those coordinates
are represented and how we compute with them. We
assume that the input is described in terms of a rational
basis, finitely many real numbers with the property that
if a linear combination of basis elements with rational-
number coefficients adds to zero, all coefficients must be
zero.2 We allow different bases for the x-coordinates and
the y-coordinates (an x-basis and a y-basis) or a single
combined basis. Each vertex coordinate is a rational
linear combination of basis elements, represented as a
vector of rational-number coefficients, one for each basis
element. The size of the input is the number of rational
coefficients needed to describe all of the polygon vertices:
the product of the number of vertices with the sum of
the sizes of the x-basis and y-basis.

To compute the minimum number of rectangles in an
orthogonal dissection, no additional information about
the basis elements is necessary. Our algorithm for this
version of the problem uses only rational-number arith-
metic, and performs a polynomial number of arithmetic
operations: essentially, only Gaussian elimination ap-
plied to a matrix whose coefficients are quadratic com-
binations of input coefficients. However, we need addi-
tional assumptions that allow computation with basis
elements in order to verify that the input describes a
polygon without edge crossings, or to construct the rect-
angles into which it can be dissected. To do these things,
we need the following additional primitive operations:

2A note on terminology: A rational basis does not generally
consist of rational numbers. On the contrary, at most one member
of the basis can be rational.

• Find the sign of a rational combination of basis
elements, or of a rational combination of products
of x-basis elements and y-basis elements.

• Given any two rational combinations of basis ele-
ments, or of products of x-basis elements and y-basis
elements, find a rational number between them.

We are not aware of past use of this specific com-
putational model. However, exact computation using
algebraic numbers is common in computational geometry
implementation libraries [13, 15], and it is standard to
represent such numbers as rational combinations of roots
of a Galois polynomial, a special case of a rational basis.
We have stated our results in a more general model that
does not specify the algebraic nature of the numbers, so
that they can be applied as well to coordinates involving
transcendental numbers such as π and e.

3 The orthogonal Dehn invariant

In terms of the given rational basis, the Dehn invariant
D(P ) of an orthogonal polygon P can be described as
a matrix of rational numbers, with rows indexed by y-
basis elements and columns indexed by x-basis elements,
constructed as follows:

• Express the given polygon as a linear combination
of rectangles Ri. For instance, if coordinate com-
parisons are available, we may slice the polygon
horizontally through each non-convex vertex. If
comparisons are unavailable, we may instead choose
the line through one horizontal side as a base and
consider the family of signed rectangles between
each other horizontal side and this base line.

• Express the width wi and height hi of each rectangle
Ri as a linear combination of basis elements with
rational coefficients. The width is the difference of
x-coordinates of right and left sides of the rectangle,
the height is the difference of y-coordinates of top
and bottom sides, and the difference of two linear
combinations of basis elements produces another
linear combination.

• Construct a matrix Mi, the outer product of the
expressions for wi and hi. The coefficient of this
matrix, for the column corresponding to an x-basis
element xj and the row corresponding to a y-basis
element yk, is a rational number, the product of the
coefficient of xj in wi and the coefficient of yk in hi.

• The Dehn invariant of the polygon is the sum of
matrices

∑
iMi.

For example, for the blue polygon in Fig. 2 and the
rational basis {1, 21/3, 22/3}, this computation would
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Figure 2: Three rectangles with dimensions 22/3 × 1,
21/3× 21/3, and 1× 22/3 (yellow), and a polygon formed
by gluing them together (blue)

yield as the Dehn invariant the matrix0 0 1
0 1 0
1 0 0

 ,

as can be seen from its dissection into yellow rectangles
in the figure. These have basis elements as widths and
heights, and they each contribute a single 1 coefficient
to the total.

Instead of using a specific basis, one can describe the
same thing in a basis-free way by writing that the Dehn
invariant is an element of the tensor product of Q-vector
spaces R ⊗Q R, and can be determined as a sum of
elements of this tensor product:3

D(P ) =
∑
i

hi ⊗ wi.

It is an invariant of P , in the sense that its value (ei-
ther thought of as a matrix for a specific basis or as
a tensor) does not depend on the decomposition into
rectangles used to compute it, and remains unchanged
under orthogonal dissections; see Section 4.

In contrast to the polyhedral Dehn invariant, the area
of an orthogonal polygon P can be recovered from its
Dehn invariant under any basis, as the sum∑

j

∑
k

D(P )kjxjyk

of products of matrix coefficients, x-basis elements, and
y-basis elements. In this sense, it is meaningful to speak
of the area of a Dehn invariant, rather than the area of
a polygon.

3The Dehn invariant is often written as an element of a tensor
product of abelian groups, rather than of vector spaces, using the
notation R⊗Z R or, for the polyhedral invariant, R⊗Z R/Z. The
group notation makes more sense for some contexts; for instance,
it works for the polyhedral invariant in hyperbolic or spherical
geometry, where linear scaling of polyhedra is not possible. But for
our use of tensor rank, vector space notation is more convenient.
For the equivalence of matrices and tensors see [10].

Figure 3: Illustration for Lemma 1: subdividing a rect-
angle into a grid of smaller rectangles does not change
its Dehn invariant.

4 Invariance of the Dehn invariant

Previous works on the orthogonal Dehn invariant only
appear to have considered it with regard to rectan-
gles, rather than for orthogonal polygons more generally.
Therefore, for completeness, we prove that it is an invari-
ant of orthogonal polygons under dissection, although
we believe this to be implicit in previous work [1,4,17,18].
Throughout this section, we use the abstract tensor space
formulation of the orthogonal Dehn invariant; everything
carries directly over to the formulation in any particular
basis, according to standard principles on the invariance
of linear algebra under different choices of basis.

Lemma 1. Let R be a rectangle with height h and width
w. Suppose R is subdivided arbitrarily by vertical and
horizontal lines into a rectangular grid of smaller rectan-
gles of heights hj and widths wk, as depicted in Fig. 3.
For all such subdivisions, h⊗ w =

∑
hj ⊗ wk.

Proof. This follows immediately from the facts that∑
hj = h and that

∑
wk = w, and from the bilinearity

of tensors.

Lemma 2. Let P be any orthogonal polygon. Then
regardless of how P is subdivided into rectangles Ri of
height hi and width wi, the value

∑
hi ⊗ wi will be

unchanged. That is, D(P ) =
∑
hi ⊗ wi is well-defined

as an invariant of P .

Proof. Consider any two different subdivisions into rect-
angles Ri and R′i, and refine both subdivisions into a
common subdivision by extending vertical and horizon-
tal lines through all vertices of both Ri and R′i. By
Lemma 1, this refinement does not change the sum over
the rectangles in either subdivision. Because both of the
sums coming from the initially given subdivisions are
equal to the sum coming from their common refinement,
they must be equal to each other.

Lemma 3. If two orthogonal polygons P and P ′ are
related by an orthogonal dissection, then D(P ) = D(P ′).
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That is, the Dehn invariant remains invariant under
orthogonal dissections.

Proof. We can refine any orthogonal dissection into a
dissection for which all pieces are rectangles, and use
those rectangles to calculate D(P ) and D(P ′). Translat-
ing a rectangle obviously does not change its height or
width, so the result follows from Lemma 2.

5 The rank of the Dehn invariant

Any tensor has a rank, the minimum number of terms
needed to express it as a sum of tensor products. The
Dehn invariants we are considering are order-two tensors
over the field of rational numbers, and for any order-two
tensor over any field, the rank of the tensor equals the
rank of any matrix representing it for any basis over that
field. As the rank of a matrix, it equals the minimum
number of terms in an expression of the matrix as a
sum of outer products of vectors [10]. Therefore, the
rank of the Dehn invariant is just the rank of the matrix
computed in Section 3. It does not depend on the basis
chosen to construct this matrix, and it can be computed
using any standard algorithm for matrix rank, such as
Gaussian elimination.

If an orthogonal polygon P has an orthogonal dissec-
tion into r rectangles with height hi and width wi, we
have seen that its Dehn invariant can be expressed as

D(P ) =

r∑
i=1

hi ⊗ wi.

This is an expression as a sum of r products, so the
Dehn invariant has rank at most r. Conversely, if an
orthogonal polygon P has a Dehn invariant with rank r,
then it has an expression of exactly this form. However,
not all terms of such an expression may be interpreted as
describing rectangles. To come from a rectangle, a term
hi ⊗wi must have hi ·wi > 0, in which case it can come
from any rectangle of height q · |hi| and width |wi|/q for
any positive rational number q. All of these different
rectangles produce the same value hi ⊗ wi. But if the
product hi ·wi is a negative number, then hi⊗wi cannot
be the Dehn invariant of a rectangle or of any polygon,
because it would have negative area. For this reason,
the rank of the Dehn invariant lower bounds the number
of rectangles that can be obtained in an orthogonal
dissection, but it requires an additional argument to
prove that these two numbers are equal.

6 Geometric realizability

In the case of the polyhedral Dehn invariant, not every
tensor in the space describing these invariants comes
from the Dehn invariant of a polyhedron. There exists
a surjective homomorphism of groups from the tensor

y = 0
x = 0 x = α

y = 1
y = 1 – ε

y = 1 + ε

Figure 4: Illustration for Lemma 4: realizing each term
in a tensor by a rectangle of height near one, forming the
difference of the positive and negative rectangles, and
repartitioning the result into rectangles, produces a set
of r rectangles having a given Dehn invariant of rank r.

space R⊗Z R/Z onto the group Ω1
R/Q of Kähler differen-

tials, such that the tensors coming from Dehn invariants
are exactly those mapped to the group identity. The
preimages of nonzero Kähler differentials are tensors
that do not come from Dehn invariants [5]. In contrast,
for the orthogonal Dehn invariant, the only obstacle to
geometric realizability is area:

Lemma 4. Let D =
∑r

i=1 hi ⊗ wi be a tensor of rank
r in R⊗Q R, and suppose that the putative area a(D) =∑r

i=1 hi · wi is positive. Then D is the Dehn invariant
of a disjoint union of r rectangles.

Proof. Partition the range of indices [1, r] into two sub-
sets I+ and I−, where i ∈ I+ if hi · wi > 0 and in
i− otherwise. (Because each term contributes to the
rank, it is not possible for hi · wi to equal zero.) Let
a+ =

∑
i∈I+ hi · wi and a− = −

∑
i∈I+ hi · wi, so that

a(D) = a+ − a−. By assumption this is positive. We
may assume without loss of generality that both sets of
indices are non-empty: I+ non-empty is needed to make
a(D) positive, and if I− is empty then we can represent
D using the disjoint union of rectangles of height |hi|
and width |wi| without any additional construction. We
can find two rational numbers α and ε > 0 such that
a− < α < a+, with a− < α(1− ε) and a+ > α(1 + ε).4
These numbers are illustrated with the dashed blue axis-
parallel lines in Fig. 4.

4Computationally, this uses the assumption from our model
of computation that we can find a rational number between two
products of combinations of basis elements.
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Let A be a rectangle with unit height and with width
α. For each index i ∈ I+, find a positive rational number
qi such that 1 < qi ·|hi| < 1+ε, and construct a rectangle
of height qi · |hi| and width |wi|/qi, whose Dehn invariant
is hi ⊗ wi. Arranging these rectangles side by side on
a common baseline produces an orthogonal polygon P+

whose height varies between 1 and 1 + ε, whose area is
a+, and whose Dehn invariant is

∑
i∈I+ hi⊗wi. In order

to achieve area a+ with height everywhere less than 1+ε,
P+ must have width greater than a+/(1 + ε) < α, so it
completely covers A. These side-by-side rectangles are
shown in yellow in the top part of Fig. 4.
In the same way, for each index i ∈ I−, find a posi-

tive rational number qi such that 1 − ε < qi · |hi| < 1,
and construct a rectangle of height qi · |hi| and width
|wi|/qi, whose Dehn invariant is hi⊗wi. Arranging these
rectangles side by side on a common baseline produces
an orthogonal polygon P− whose area is a− and whose
Dehn invariant is −

∑
i∈I+ hi ⊗ wi, entirely within A,

the red rectangles in the top part of Fig. 4.
Arranging P+ and P− so they share the same bottom

left vertex, and computing the set-theoretic difference
P+ \ P−, produces a polygon P whose Dehn invariant
is D. It can be sliced vertically at each vertex whose
x-coordinate is intermediate between its smallest and
largest x-coordinate, as shown in the bottom part of
Fig. 4. There are r − 1 slices (one for each side where
two rectangles from I+ meet, and one for each left side of
a rectangle from I−), so the result is a set of r rectangles
with total Dehn invariant D, as required.

7 Dissectability

Long after the work of Dehn, Sydler proved that the
polyhedral Dehn invariant is a complete invariant: any
two polyhedra with the same volumes and Dehn invari-
ants can be dissected to each other [19]. We need an
analogous result for the orthogonal Dehn invariant. We
do not bound the number of pieces in a dissection; a
polynomial bound is not possible, because even the triv-
ial dissection of a 1×n rectangle into an n× 1 rectangle
requires n pieces, a non-polynomial number.

Theorem 5. Any two orthogonal polygons with the same
Dehn invariant have an orthogonal dissection.

Proof. We may assume without loss of generality that
the two polygons P1 and P2 have already been dissected
into (different) disjoint sets of rectangles R1 and R2. We
use induction on the size of rational bases for the heights
and widths of these rectangles (which may be a superset
of a basis for the Dehn invariant). As a base case, if
these bases have size one, all rectangles have heights and
widths that are rational multiples of each other. In this
case we can scale the x and y coordinates separately
to clear denominators in these coordinates and make

Figure 5: Illustration for Theorem 5. The horizontal
red lines are (from top to bottom) y = ε+, y = 0, and
y = −ε−; the vertical lines are (left to right) x = 0
and x = min{c+i , c

−
i }. Slicing the rectangles in R+

i

(yellow) and R−i (blue) by these lines dissects them into
a family of rectangles whose heights do not depend on ŷ
(the bottom blue and yellow rectangles) together with a
single rectangle whose coefficient of ŷ is ±1 (red).

all rectangle side lengths integers, allowing a dissection
using unit squares.
Otherwise, by the symmetry of heights and widths,

we can assume without loss of generality that the y-basis
has at least two elements; let ŷ be one of them. For each
rectangle in R1 and R2, of width wi and height hi let qi
be the coefficient of ŷ in the expansion of hi as a rational
combination of basis elements. Whenever qi 6= 0, apply
the base case of the theorem (for the one-element bases
{wi} and {hi}) to dissect that rectangle into another
rectangle of width qi ·wi and height hi/qi. After this step,
for all rectangles in R1 and R2, the coefficient of ŷ in the
rectangle height belongs to {−1, 0, 1}. Let R+

i be the
rectangles in Ri for which this coefficient is 1, R−i be the
rectangles for which it is −1, and R0

i be the rectangles for
which it is 0. By composition of dissections, a dissection
of these modified sets of rectangles into each other will
lead to a dissection of P1 and P2 into each other.

For each of P1 and P2, translate the rectangles of R+
i

so they are placed side by side, with their bottom sides
all placed on the x-axis, with the left side of the leftmost
rectangle placed on the y-axis. Similarly translate the
rectangles of R−i so they are side by side, with their
top sides all placed along the x-axis, and again with
the left side of the leftmost rectangle placed on the y-
axis. Let ε be the smallest height of any rectangle in
either R1 or R2. Choose two numbers 0 < ε+ < ε
and 0 < ε− < ε, so that both of these numbers are
expressible as a rational combination of elements of the
y-basis, with the coefficient of ŷ in ε+ equal to 1 and
the coefficient of ŷ in ε− equal to −1. (The ability to
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make this choice hinges on the fact that the rational
multiples of any remaining basis element are dense in
the real number line.) Let c+i be the x-coordinate of the
right end of the rightmost rectangle in the placement of
R+

i , and define c−i symmetrically.
Now that the rectangles have been placed in this way,

slice them by the horizontal lines y = ε+ and y = −ε−.
This leaves a hexagonal region between these two lines,
which we dissect into two rectangles by slicing it with the
vertical line x = min{c+i , c

−
i } (two different lines, one

for R1 and the other for R2). The dissection is shown
in Fig. 5.

The rectangles in R0
i , the remaining parts of rectangles

in R+
i above the line x = ε+, and the remaining parts

of rectangles in R−i below the line x = ε−, all have
heights whose rational expansion in terms of the y-basis
does not use ŷ. The rectangle to the left of the vertical
slice line, and between the two horizontal slice lines,
has height ε+ + ε−; here, the coefficients of ŷ cancel
leaving a rectangle height whose expansion in terms of
the basis does not use ŷ. This leaves all dependence on
ŷ concentrated in one remaining rectangle, to the left of
the vertical slice line, with height ε+ or ε− and width
|c+i − c

−
i |. Let ŵi denote this width.

Because all remaining pieces except this rectangle
have heights that do not depend on ŷ, it follows that
the coefficients of D(Pi), in the row of the coefficient
matrix corresponding to basis element ŷ, are exactly the
coefficients in the rational expansion of ŵi for a rectangle
of height ε+, or the negation of those coefficients for a
rectangle of height ε−. By the assumption that D(P1) =
D(P2), these matrix coefficients must be equal. The
widths ŵ1 and ŵ2 of the rectangles can be recovered,
up to their signs, as the number represented by these
coefficients using the y-basis. It is not possible for the
two signs to be different, because both ŵ1 and ŵ2 are
non-negative. Therefore, the two remaining rectangles
must both have the same height, ε+ or ε−, and the same
width, ŵ1 = ŵ2, and need no more dissection to be
transformed into each other.

We have shown that P1 and P2 can be dissected into
two congruent rectangles whose height expansion uses
ŷ, and into a larger number of additional rectangles
whose height expansion does not use ŷ. These remaining
rectangles have a smaller basis for their heights and
(because we have removed a congruent rectangle from
each polygon) have equal Dehn invariants. The result
follows from the induction hypothesis.

8 Putting the pieces together

We are now ready to prove our main results:

Theorem 6. The minimum number of rectangles into
which an orthogonal polygon can be dissected by axis-

parallel cuts and translation equals the rank of its or-
thogonal Dehn invariant.

Proof. This number of rectangles is lower-bounded by
the rank, by the discussion in Section 5. If the rank is r,
then there exists a set of r rectangles with the same in-
variant as the polygon, by Lemma 4. The given polygon
can be dissected into these rectangles, by Theorem 5.

Theorem 7. We can compute the minimum number
of rectangles into which an orthogonal polygon can be
dissected, given a representation for its coordinates over
a rational basis, in a polynomial number of rational-
arithmetic operations. We can construct a minimal set of
rectangles into which it can be dissected, in a polynomial
number of operations using arithmetic over the given
rational basis.

Proof. To compute the rank, we compute the Dehn
invariant as described in Section 3, and apply any
polynomial-time algorithm for computing the rank of a
rational-number matrix, such as Gaussian elimination.
To construct the rectangles, we follow the steps in the
proof of Lemma 4, which uses only a polynomial number
of operations involving comparing linear combinations
of basis elements and finding rational approximations to
them.

We remark that, as well as counting rectangles, the
rank of the orthogonal Dehn invariant can also count
vertices. Every set of r disjoint rectangles can be glued
together to form an orthogonal polygon with 2r + 2
vertices, and every orthogonal polygon with this many
vertices can be sliced at its non-convex vertices into r
rectangles. Therefore, the minimum number of vertices
that a polygon of Dehn rank r can be orthogonally
dissected into is 2r + 2.

9 Dissection into prototiles

Another use of the polyhedral Dehn invariant, besides
dissection of one shape into another, involves tiling. Any
polyhedron that tiles space must have Dehn invariant
zero, and any polyhedron with Dehn invariant zero can
be dissected into a different polyhedron that tiles space.
For the axis-parallel polygonal Dehn invariant we study,
things don’t work out quite so neatly. The Greek cross
can tile, but has nonzero Dehn invariant. More, any
axis-parallel polygon can be cut into multiple rectangles,
and these can tile space aperiodically by grouping them
into rows of the same type of rectangle (Fig. 6). So
the Dehn invariant cannot be used to prove that such a
thing is impossible, because it is always possible. If we
could rotate pieces, we could also rearrange certain sets
of more than two rectangles, such as the three rectangles
of Fig. 2, into a single-piece axis-parallel hexagon that
could tile the plane periodically (Fig. 7).
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Figure 6: Construction of a non-periodic tiling from an
arbitrary dissection into rectangles

Figure 7: With orthogonal rotations of pieces, the poly-
gon of Fig. 2 can be dissected to form the prototile of a
periodic tiling of the plane.

However, for the orthogonal dissections considered
here, without rotation, the rank of the Dehn invariant
does produce a limitation on the ability to tile periodi-
cally without rotation:

Theorem 8. An orthogonal polygon P , or any finite
number of copies of P , has an orthogonal dissection to a
prototile that can tile the plane periodically if and only
if the rank of its Dehn invariant is at most two.

Proof. If the rank of the Dehn invariant is one, P can be
dissected to a rectangle, which tiles periodically. If the
rank is two, P can be dissected into two rectangles, and
reassembled into a hexagon, which (like the prototiles of
Fig. 7) tile periodically.

Combining n copies of P multiplies the Dehn invariant
by the scalar n, which does not change the rank. Every
periodic tiling of the plane has a fundamental region in
the shape of an axis-parallel hexagon, like the prototiles
of Fig. 7. (Because it tiles by translation, this funda-
mental region may combine a finite number of prototiles

of the tiling.) If copies of P could be dissected to the
prototile of a tiling, they could also be dissected to this
fundamental region, which has Dehn invariant at most
two.

In particular, as a shape whose Dehn invariant has
rank three, the orthogonal polygon of Fig. 2 has no
orthogonal dissection to a prototile for a periodic tiling
of the plane.

10 Conclusions

We have shown that the rank of the orthogonal Dehn
invariant of an orthogonal polygon controls the number
of rectangles into which it can be dissected by axis-
parallel slices and translation, leading to a polynomial
time algorithm to compute this number of rectangles or
to construct an optimal set of rectangles into which it
can be dissected. The dissection itself may require a non-
polynomial number of pieces. The number of rectangles,
in turn, controls the ability to dissect a polygon into
a shape that tiles the plane. One natural question for
future research is whether these results can be extended
to dissections that allow 90◦ rotations.

The rank of the polyhedral Dehn invariant, similarly,
provides a lower bound on the number of edges of a poly-
hedron into which a given polyhedron may be dissected,
because every polyhedron’s Dehn invariant is defined as
a sum of tensors over its edges, with rank at most the
number of edges in the sum. It is tempting to guess that
this lower bound provides a constant-factor approxima-
tion to the minimum number of edges in a dissection,
but we have been unable to prove this. What would be
needed is a construction of a polyhedron with a given
Dehn invariant and with a number of edges proportional
to the rank of the invariant, analogous to Lemma 4, but
this is made more difficult by the fact that not all tensors
are realizable as polyhedral Dehn invariants.
Order-two tensors have additional invariants beyond

their rank, obtained as the coefficients of the character-
istic polynomial or as any function of those coefficients.
(The rank can be obtained in this way from the differ-
ence in degrees of the highest-degree and lowest-degree
nonzero coefficients.) Our work naturally raises the
question: which of these invariants are meaningful for
dissection problems, and what do they mean?
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Minimum Enclosing Spherical/Cylindrical Shells in High-Dimensional
Streams

Mohammad Javad Eslami-Bidgoli∗ Hamid Zarrabi-Zadeh†

Abstract

Given a point set P in Rd, the minimum enclosing spher-
ical (resp., cylindrical) shell problem is to find a sphere
(resp., a cylinder) best fitting P . We show that in the
single-pass streaming model, any algorithm for the min-
imum enclosing spherical/cylindrical shell problem with
an approximation factor better than d1/3/4 requires a
memory size exponential in d.

1 Introduction

Shape fitting is a fundamental problem in compu-
tational geometry, with various applications to ma-
chine learning, data mining, statistics, and computer
vision. The objective in the shape fitting problem
is to find a shape from a certain family of shapes,
best fitting a given point set. Examples of geomet-
ric shape fitting problems include minimum enclosing
ball, width, minimum-radius enclosing cylinder, and
minimum-width enclosing spherical/cylindrical shell.

In this paper, we consider shape fitting problems in
the streaming model, where input points arrive one at
a time, and the algorithm has a limited storage, so it
cannot keep all the points received so far in memory.
Moreover, we are considering the problems in high di-
mensions, where the dimension, d, can be arbitrarily
large.

In fixed dimensions, a (1+ε)-approximation for many
geometric shape fitting problems can be computed effi-
ciently in linear time using the idea of core-sets [1]. The
idea can be extended to the streaming model as well,
leading to efficient (1 + ε)-approximation streaming al-
gorithms that require only 1/εO(d) space [1, 4, 7].

In high dimensions, however, the above (1 + ε)-factor
approximation algorithms are not applicable, due to
their exponential dependency in d. Nevertheless, there
are a few results on shape fitting in high-dimensional
streams. For the minimum enclosing ball problem,
Zarrabi-Zadeh and Chan [8] presented a simple 3/2-
approximation algorithm that works in any dimension,
using only O(d) space. Agarwal and Sharathkumar [2]

∗Department of Computer Engineering, Sharif University of
Technology. Email: bidgoli@ce.sharif.edu.
†Department of Computer Engineering, Sharif University of

Technology. Email: zarrabi@sharif.edu.

presented another O(d)-space streaming algorithm with

an approximation factor of 1+
√
3

2 + ε ≈ 1.37. The ap-
proximation factor of their algorithm was later improved
to 1.22 by Chan and Pathak [5], getting very close to the

lower bound of 1+
√
2

2 ≈ 1.207 known for the problem [2].
For the minimum enclosing cylinder problem, Chan [4]
gave an elegant (5 + ε)-approximation streaming algo-
rithm using only O(d) space. For the width problem,
Agarwal and Sharathkumar [2] proved a lower bound
of d1/3/8 on the approximation factor of any streaming
algorithm for the problem whose memory size is sub-
exponential in d.

In this paper, we study two other important shape
fitting problems in high dimensions, namely the mini-
mum enclosing spherical shell and the minimum enclos-
ing cylindrical shell in the data stream model. We show
that any (randomized) streaming algorithms that ap-
proximates the minimum enclosing spherical/cylindrical
shell to within a factor better than d1/3/4 (with proba-
bility at least 2/3) requires a memory size exponential
in d.

To prove our lower bounds, we use the well-known
lower bound on the one-round communication complex-
ity of the index problem [6], in the same way used by
Agarwal and Sharathkumar [2]. However, technical de-
tails of our proofs are non-trivial, and require carefully
exploiting geometric properties of spherical/cylindrical
shells. To the best of our knowledge, the two problems
studied in this paper—despite being central in geomet-
ric shape fitting—have not been studied before in high-
dimensional streams. As such, this work is an impor-
tant step towards better understanding the limitations
of shape fitting in high-dimensional data streams.

2 Preliminaries

Given a point c ∈ Rd and two positive real numbers
r1 and r2 such that r1 < r2, the closed region between
two concentric spheres of radii r1 and r2 centered at c
is called a spherical shell. The width of the spherical
shell is defined as r2 − r1. Given a line ` in Rd and two
positive real numbers r1 and r2 such that r1 < r2, the
closed region between two coaxial cylinders with axis `
and radii r1 and r2 is called a cylindrical shell. Likewise,
the value r2 − r1 is called the width of the cylindrical
shell. The minimum enclosing spherical (resp., cylindri-
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p

−p

q√
2/d1/3

√
2/d1/3

Figure 1: Two points p and q on Sd−1.

cal) shell problem is to find a minimum-width spherical
(resp., cylindrical) shell that encloses the whole input
point set.

Let Sd−1 be the a sphere in Rd centered at origin.
Namely, Sd−1 =

{
p ∈ Rd | ‖op‖ = 1

}
, where o denotes

the origin. We call a point set P symmetric if for every
point p in P , −p is also in P . Given two points/vectors
u and v in Rd, we denote by u · v the inner product of u
and v. We also denote by exp(x) the function ex, where
e is the natural number. The following lemma, which is
stated in a slightly different form in [2], will be used to
derive our lower bounds.

Lemma 1 There is a symmetric point set K ⊆ Sd−1
of size Ω(exp(d1/3)) such that for every pair of distinct
points p, q ∈ K, if q 6= −p, then |p · q| ≤

√
2/d1/3.

Proof. Let p ∈ Sd−1 and 0 < δ ≤ 1. The hyperplane
at distance δ from the origin and normal to p partitions
Sd−1 into two parts. We denote the smaller part by
cap(p, δ). Now, consider the point set K returned by
the following algorithm.

Algorithm 1 Well-Separated Point Set

1: F ← Sd−1, K ← ∅
2: while F 6= ∅ do
3: pick an arbitrary point p in F
4: K ← K ∪ {p,−p}
5: F ← F \ (cap(p,

√
2/d1/3) ∪ cap(−p,

√
2/d1/3))

6: return K

Let p and q be two points in K, such that q 6= −p.
Suppose that p is added to K before q by the algo-
rithm. Then, it is clear by our construction that q is
at distance at most

√
2/d1/3 from the hyperplane pass-

ing through the origin and normal to p, which means
|p · q| ≤

√
2/d1/3. (See Figure 1.)

To analyze the size of K, let S(X) denote the area of
a surface X. It is well-known [3] that for any p ∈ Sd−1
and any 0 ≤ δ ≤ 1,

S(cap(p, δ))

S(Sd−1)
≤ exp(−dδ2/2).

Therefore, at any iteration of the algorithm, no more
than 2/ exp(d1/3) of the surface of Sd−1 is removed from
F . Hence, |K| = Ω(exp(d1/3)). �

3 Spherical Shell

In this section, we provide a lower bound on the ap-
proximation factor of any streaming algorithm for the
minimum enclosing spherical shell problem whose stor-
age size is sub-exponential in d. The following lemma
provides the main ingredient of our proof.

Lemma 2 Let {~u1, . . . , ~ud} be a set of orthogonal unit
vectors in Rd. Then any spherical shell that encloses the
point set P = {o,±~u1}∪

⋃d
i=2{±

√
d~ui,±(

√
d+2)~ui} has

width at least
√
2
2 .

Proof. Suppose that the minimum spherical shell en-
closing P is centered at a point a = (a1, . . . , ad), where
ai = a ·~ui. Due to symmetry of P around the origin, we
can assume without loss of generality that ai ≥ 0 for all
i ∈ {1, . . . , d}. Moreover, by symmetry of definition of
P on dimensions 2 to d, we can assume without loss of
generality that a2 ≥ ai for all i ∈ {3, . . . , d}, i.e., a2 is
the biggest number among a2, . . . , ad. We consider the
following four cases:

(i) a1 ≤ a2
√
d and a2 ≥ 1

(ii) a1 ≤ a2
√
d and a2 ≤ 1

(iii) a1 ≥ a2
√
d and a1 ≥ 1

(iv) a1 ≥ a2
√
d and a1 ≤ 1

Let wa(P ) denote the width of the minimum spher-
ical shell centered at a enclosing P , i.e., wa(P ) =
maxp∈P ‖pa‖ − minp∈P ‖pa‖. To prove the lemma, it
is enough to show that in all the above four cases,

wa(P ) ≥
√
2
2 . We will prove the first case here, and

leave the rest to the appendix. By the definition of
wa(P ) we have

wa(P ) ≥ wa

(
{±
√
d~u2}

)
=

√
a21 + (a2 +

√
d)2 + a23 + · · ·+ a2d

−
√
a21 + (a2 −

√
d)2 + a23 + · · ·+ a2d

=

√
Σdi=1a

2
i + d+ 2a2

√
d

−
√

Σdi=1a
2
i − d+ 2a2

√
d.

Note that the function f(x) =
√
x+ c−

√
x is decreasing

in x, for all positive c. Therefore, in the above expres-
sion, if we increase both values under the roots by the
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same amount, the expression becomes smaller. There-
fore,

wa(P ) ≥
√

2da22 + d+ 4a2
√
d−

√
2da22 + d

(as a2
√
d ≥ a1 and a2 ≥ ai for i = 3, . . . , d)

≥
√

3da22 + 4a2
√
d−

√
3da22 (as a2 ≥ 1)

≥
√

3

√da22 + a2
√
d+

a2
√
d

3
−
√
da22


≥
√

3

(√
da22 + a2

√
d+

1

4
−
√
da22

)
(as a2, d ≥ 1 and a2

√
d/3 > 1/4)

=
√

3

√(a2√d+
1

2

)2

−
√
da22


=

√
3

2
,

which implies wa(P ) ≥
√
2
2 in Case (i). The proof of the

other three cases are provided in the appendix. �

Now, we are ready to provide our lower bound. Sup-
pose A is a streaming algorithm that approximates the
minimum enclosing spherical shell within a factor bet-
ter than d1/3/4 with probability at least 2/3. We reduce
from the following problem in communication complex-
ity:

Index Problem. Alice has a binary string a1 . . . ak
and Bob has an index i ∈ {1, . . . , k}. Alice can send
Bob a message to inform him about her string and then
Bob should determine whether ai is 0 or 1.

It is known [6] that in any algorithm for the index
problem that succeeds with probability at least 2/3, the
size of the message sent by Alice to Bob is Ω(k). By
reducing from the index problem to the minimum en-
closing spherical shell problem, we will show that the
space required by A is Ω(exp(d1/3)).

Let d be the smallest integer such that k < exp(d1/3).
By Lemma 1, it is possible to choose a set K of k pair
of well-separated points on Sd−1. Let K+ be the subset
of points of K lying on the hemisphere x1 ≥ 0, and
let f : {1, . . . , k} → K+ be a one-to-one function. We
assume that Alice and Bob are both aware of f and K,
as these are independent of Alice’s string or Bob’s index.
Alice gives the points {±f(j) | aj = 1} to A and then
sends the working space of A to Bob. Bob then gives
the set of points {o} ∪

⋃d
j=2{±

√
d~uj ,±(

√
d + 2)~uj} to

A, where o is the origin and {~u2, . . . , ~ud} is a set of
orthogonal unit vectors which are all orthogonal to the
point f(i). If the output of A is a spherical shell of width

less than
√
2
2 , then Bob claims that ai = 0, otherwise, he

claims ai = 1. We show that with probability at least
2/3 he is true in his claim.

Suppose ai = 0. In this case, all of the points that
Alice and Bob have given to A are at most at distance√

2/d1/3 from the hyperplane passing through the ori-
gin and normal to the point f(i). Therefore, a spherical
shell centered at a point along f(i) lying at infinity en-
closes all of the points with a width of at most 2

√
2/d1/3.

Hence, due to the approximation factor of A, the out-

put will be a spherical shell of width less than
√
2
2 , with

probability at least 2/3.
On the other hand, if ai = 1, due to Lemma 2, there

is no spherical shell of width less than
√
2
2 that encloses

Bob’s points plus the pair of points ±f(i). Thus, the

output that Bob receives has width at least
√
2
2 .

Therefore, the protocol presented for the index prob-
lem works with probability at least 2/3. Hence, the
size of the working space that Alice sends to Bob is
Ω(k) = Ω(exp(d1/3)). We can conclude the following
theorem.

Theorem 3 Given a set P of n points in Rd, any
streaming algorithm that approximates the minimum
enclosing spherical shell of P to within a factor bet-
ter than d1/3/4 with probability at least 2/3 requires
Ω(min{n, exp(d1/3)}) space.

4 Cylindrical Shell

In this section, we prove a lower bound on the approxi-
mation factor of any streaming algorithm for the mini-
mum enclosing cylindrical shell problem whose memory
size is sub-exponential in d. Again, we start with the
following crucial lemma.

Lemma 4 Let {~u1, . . . , ~ud} be a set of orthogonal unit
vectors in Rd. Then any cylindrical shell that encloses
the point set P = {o,±~u1} ∪

⋃d
i=2{±

√
d~ui} has width

at least
√
2
2 .

Proof. Let ` be a line in Rd, α be a point on `, and ~n
be a unit vector in the direction of `. Then, any point
on ` can be represented by α + t~n, where t is a real
number. Note that such a presentation is not unique.
In particular, we can choose the point α such that α is
orthogonal to ~n. This condition does not lose generality,
as every point α+ t~n can be rewritten as α′+ t′~n, where
α′ = α − α·~n

~n·~n~n, t′ = t + α·~n
~n·~n , and α′ is orthogonal to

~n. Henceforth, we assume that the standard form of
presenting a line has the above condition.

Now, let ` = {α+t~n}, where α is orthogonal to ~n. We
write α and ~n as (a1, . . . , ad) and (n1, . . . , nd), respec-
tively, where ai = α · ~ui and ni = ~n · ~ui. The perpen-
dicularity condition ensures that

∑d
i=1 aini = 0. Let

dist(p, `) denote the distance of a point p to the line `.
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p

α
`

dist(p, `)

~n

p− α

(p− α) · ~n

Figure 2: Computing dist(p, `).

Likewise, we write p as (p1, . . . , pd), where pi = p · ~ui.
By the Pythagorean theorem,

dist2(p, `) = |p− α|2 − ((p− α) · ~n)
2

(see Fig. 2)

=
d∑
i=1

(pi − ai)2 −

(
d∑
i=1

pini −
d∑
i=1

aini

)2

=
d∑
i=1

(pi − ai)2 −

(
d∑
i=1

pini

)2

In particular, when p = pk~uk, we have:

dist2(p, `) =
d∑
i=1

a2i + p2k − 2akpk − p2kn2k (1)

Note that the minimum width of a cylindrical
shell with axis ` enclosing point set P is equal to
maxp∈P dist(p, `) − minp∈P dist(p, `). We denote this
value by w`(P ). Suppose that ` is the axis of a
minimum-width cylindrical shell enclosing P . We can
assume without loss of generality that ai ≥ 0 for all
i = 1, . . . , d, and a2 ≥ ai for all i = 3, . . . , d, due to
symmetry of P . We consider two cases: (i) a1 ≥ a2

√
d,

and (ii) a1 ≤ a2
√
d.

To prove the first case, we first show that n21 ≤ 1
2 .

Since
∑d
i=1 aini = 0, we have

a1|n1| =

∣∣∣∣∣
d∑
i=2

aini

∣∣∣∣∣ ≤
d∑
i=2

ai|ni|.

Therefore,

|n1| ≤
d∑
i=2

ai
a1
|ni| ≤

1√
d

d∑
i=2

|ni|.

By the Cauchy-Schwarz inequality, for any two vectors
u and v, |u · v|2 ≤ (u · u)(v · v). As such,

n21 ≤
1

d

(
d∑
i=2

|ni|

)2

≤ d− 1

d

d∑
i=2

n2i .

Thus,

n21 +
d− 1

d
n21 ≤

d− 1

d

d∑
i=1

n2i =
d− 1

d
,

which implies n21 ≤ d−1
2d−1 ≤

1
2 . Now,

w`(P ) ≥ dist(−~u1, `)− dist(o, `)

=
√

Σdi=1a
2
i + 2a1 + (1− n21) (by (1))

−
√

Σdi=1a
2
i

≥
√

Σdi=1a
2
i + 2a1 +

1

2
−
√

Σdi=1a
2
i

≥
√

2a21 + 2a1 +
1

2
−
√

2a21

(as a1 ≥ ai
√
d, for i = 2, . . . , d)

=
√

2

(√
a21 + a1 +

1

4
− a1

)

=
√

2

√(a1 +
1

2

)2

− a1


=

√
2

2
,

which completes the proof of Case (i). The second case
is proved in the appendix. �

Now, suppose A is a streaming algorithm that approxi-
mates the minimum enclosing cylindrical shell to within
a factor better than d1/3/4 with probability at least 2/3.
Like the previous section, we use a reduction from the
index problem. Alice gives the points {±f(j) | aj = 1}
to A, and sends the working space to Bob. Bob then
gives the point set {o} ∪

⋃d
j=2{±

√
d~uj} to A, where

{~u2, . . . , ~ud} is a set of orthogonal unit vectors which
are all orthogonal to f(i).

Let H be the hyperplane passing through the origin
and normal to f(i). If ai = 0, all of the points given
to A are at most at distance

√
2/d1/3 from H. In this

case, a cylindrical shell with an axis parallel to H in-
finitely far from H encloses all the input points with
width 2

√
2/d1/3. Thus, according to the approxima-

tion factor of A, the output of A is a cylindrical shell

of width less than
√
2
2 . On the other hand, if ai = 1,

then by Lemma 4, there is no cylindrical shell of width

less than
√
2
2 that encloses Bob’s points plus the pair of

points ±f(i).
Therefore, Bob can check the output shell, and report

ai = 0, if the width is less than
√
2
2 , and report ai = 1,

otherwise. This solves the index problem with proba-
bility at least 2/3. Therefore, the working space of A
must be Ω(k) = Ω(exp (d1/3)).

Theorem 5 Given a set P of n points in Rd, any
streaming algorithm that approximates the minimum en-
closing cylindrical shell of P to within a factor bet-
ter than d1/3/4 with probability at least 2/3 requires
Ω(min{n, exp(d1/3)}) space.
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Appendix

Proof of Lemma 2

Case (ii).

wa(P ) ≥ wa

(
{o, (
√
d + 2)~u2}

)
=

√
a2
1 + ((

√
d + 2)− a2)2 + a2

3 + · · ·+ a2
d

−
√

Σd
i=1a

2
i

≥
√

a2
1 + (

√
d + a2)2 + a2

3 + · · ·+ a2
d

−
√

Σd
i=1a

2
i

=

√
Σd

i=1a
2
i + 2

√
da2 + d−

√
Σd

i=1a
2
i

≥
√

2da2
2 + 2

√
da2 +

1

2
−
√

2da2
2

=

√
2

2
.

Case (iii).

wa(P ) ≥ wa({±~u1})

=
√

(a1 − (−1))2 + a2
2 + · · ·+ a2

d

−
√

(a1 − 1)2 + a2
2 + · · ·+ a2

d

=
√

Σd
i=1a

2
i + 2a1 + 1−

√
Σd

i=1a
2
i − 2a1 + 1

≥
√

2a2
1 + 4a1 −

√
2a2

1

≥
√

2(

√
a2
1 +
√

2a1 +
1

2
− a1)

= 1

>

√
2

2
.

Case (iv).

wa(P ) ≥ wa

(
{o,−

√
d~u2}

)
=

√
a2
1 + (a2 − (−

√
d))2 + a2

3 + · · ·+ a2
d

−
√

Σd
i=1a

2
i

=

√
Σd

i=1a
2
i + 2

√
da2 + d−

√
Σd

i=1a
2
i

≥
√

2a2
1 + d−

√
2a2

1

≥
√

2 + d−
√

2,

which is at least
√
2
2

, for all d > 2. �

Proof of Lemma 4

Case (ii). We first prove that d(1 − n2
2) ≥ 1

2
. Since∑d

i=1 aini = 0, we have

a2|n2| =

∣∣∣∣∣a1n1 +

d∑
i=3

aini

∣∣∣∣∣ ≤ a1|n1|+
d∑

i=3

ai|ni|.

Therefore,

|n2| ≤
a1

a2
|n1|+

d∑
i=3

ai

a2
|ni| ≤

√
d|n1|+

d∑
i=3

|ni|,

and hence,

n2
2 ≤ dn2

1 +

d∑
i=3

2
√
d|n1‖ni|+

(
d∑

i=3

|ni|

)2

≤ dn2
1 +

d∑
i=3

(
n2
1 + dn2

i

)
+ (d− 2)

d∑
i=3

n2
i

= (2d− 2)

(
n2
1 +

d∑
i=3

n2
i

)
.

Thus,

n2
2 + (2d− 2)n2

2 ≤ (2d− 2)

d∑
i=1

n2
i = 2d− 2.

Therefore, n2
2 ≤ 2d−2

2d−1
, and hence, d

(
1− n2

2

)
≥ d

2d−1
≥ 1

2
.

We can thus conclude that

w`(P ) ≥ dist(−
√
d~u2, `)− dist(o, `)

=

√
Σd

i=1a
2
i + 2a2

√
d + d(1− n2

1)−
√

Σd
i=1a

2
i

≥
√

2da2
2 + 2a2

√
d +

1

2
−
√

2da2
2

=

√
2

2
. �
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On the Geometry of Stable Steiner Tree Instances

James Freitag∗ Neshat Mohammadi† Aditya Potukuchi‡ Lev Reyzin§

Abstract

In this work we consider the Steiner tree problem under
Bilu-Linial stability. We give strong geometric struc-
tural properties that need to be satisfied by stable in-
stances. We then make use of, and strengthen, these
geometric properties to show that 1.59-stable instances
of Euclidean Steiner trees are polynomial-time solvable
by showing it reduces to the minimum spanning tree
problem. We also provide a connection between certain
approximation algorithms and Bilu-Linial stability for
Steiner trees.

1 Introduction and previous work

In this work, we initiate the study of Steiner tree in-
stances that are stable to multiplicative perturbations
to the distances in the underlying metric. Our anal-
ysis lies in the Bilu-Linial stability [9] setting, which
provides a way to study tractable instances of NP-hard
problems.

Instances that are γ-stable in the Bilu-Linial model
have the property that the structure of the optimal so-
lution is not only unique, but also does not change even
when the underlying distances among the input points
are perturbed by a multiplicative factor γ > 1. In their
original paper, Bilu and Linial analyzed MAX-CUT
clustering, and since their seminal work, other prob-
lems have been analyzed including center-based cluster-
ing [4, 6, 7], multi-way cut problems [15], and metric
TSP [17].1

Here, we look at the metric Steiner tree problemand
also the more restricted Euclidean version. For general
metrics, the Steiner tree problem is known to be APX-

∗Department of Mathematics, Statistics, and Computer Sci-
ence, University of Illinois at Chicago, jfreitag@uic.edu. Sup-
ported in part by NSF CAREER award 1945251.
†Department of Computer Science, University of Illinois at

Chicago, nmoham24@uic.edu. Supported in part by NSF grant
CCF-1934915.
‡Department of Mathematics, Statistics, and Computer Sci-

ence, University of Illinois at Chicago, adityap@uic.edu. Sup-
ported in part by NSF grant CCF-1934915.
§Department of Mathematics, Statistics, and Computer Sci-

ence, University of Illinois at Chicago, lreyzin@uic.edu. Sup-
ported in part by NSF grant CCF-1934915.

1Bilu-Linial stability is one among other notions of data sta-
bility studied in the literature [1, 5]. This is in contrast to notions
of algorithmic stability, which focus on properties algorithms as
opposed to data, see e.g. [2, 8, 11, 14, 16].

hard in the worst case [10]. For the Euclidean metric, a
PTAS is known [3].

In this paper we begin by providing strong geomet-
ric structural properties that need to be satisfied by
stable instances. These point to the existence of al-
gorithms for non-trivial families. We then make use
of, and strengthen, these geometric properties to show
that 1.59-stable instances of Euclidean Steiner trees are
polynomial-time solvable. Finally, we discuss the con-
nections between certain approximation algorithms and
Bilu-Linial stability for Steiner trees.

2 Model and definitions

In this section, we recall the relevant definitions. Fist we
define the Steiner tree problem, which is among Karp’s
21 original NP-hard problems [13]. It has various appli-
cations including in network design, circuit layouts, and
phylogenetic tree reconstruction.

Definition 1 (the Steiner tree problem). Consider
an undirected graph G = (V,E) with edge weights we ∈
R+

0 for every edge e ∈ E, and a set T ⊆ V of terminals.
A Steiner tree S is a tree in the graph G that spans all
terminal vertices T and may contain some of the non-
terminals (also called Steiner points). The goal is to
find such a tree of lowest weight, which we call OPT,

OPT = arg min
S

∑
e∈S

we.

We can assume without loss of generality2 that the
vertices are points in a metric space and the weights of
the edges are given by the distance function – when the
input is in the form of a metric, we call this the met-
ric Steiner tree problem. Our results use properties
of metric spaces, but move freely between the metric
space and graph representations of the problem. When
the metric is Euclidean, this is called the Euclidean
Steiner tree problem.

Now we move on to defining Bilu-Linial stability for
the Steiner tree problem on metrics.

2For any graph with distances specified on edges, a metric can
be formed by taking the vertices to be points and considering the
shortest path distances in the graph between pairs of vertices.
Solving (or approximating) the Steiner tree problem on a metric
formed in this matter solves (or approximates) the problem on
the original graph. See Vazirani [18] for further discussion of this
issue.
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Definition 2 (Bilu-Linial γ-stabile instances). Let
I = (G,w) be an instance of a metric Steiner tree
problem and γ > 1. I is γ-stable if for any function
w′ : V × V → R+

0 such that ∀u, v ∈ V ,

wuv ≤ w′uv ≤ γwuv,

the optimal Steiner tree OPT′ under w′ is equal to the
optimal Steiner tree OPT under w.

We note that the perturbations can be such that
instances originally satisfying the metric or Euclidean
properties no longer have to satisfy these properties af-
ter perturbation. We also note that due to the triangle
inequality, no instances have stability 2 or greater in the
metric setting.

Notation: For a graph G, wGab is the weight of edge

ab in G. We abbreviate wab = wGab and w′ab = wG
′

ab . Let
OPT ⊆ E(G) denote the minimum weight Steiner tree
of G, let w(OPT) = wG(OPT) denote the weight of the
Steiner tree.

3 Structural properties in general metrics

In this section, we work in the context of a general met-
ric space, and we develop interesting restrictions on the
types of problems with γ-stable solutions, for various
values of γ.

The techniques of this section do not give, in complete
generality, an efficient algorithm for finding the optimal
Steiner tree for any value of γ less than 2, a problem
we leave open. However, when more information about
the metric space is available, one can use the structural
results here to give restrictions on the arrangements of
Steiner points which does yield a definitive solution. In
particular,

1. In Section 4, we use Lemma 3 to give an algorithm
for the Euclidean metric when γ > 22/3.

2. More generally, in the case that no two Steiner
points are adjacent in the optimal solution, Lemma
10 together with the other results of the section
can be used to give an efficient and very simple al-
gorithm to find the minimal weight Steiner tree.
Other more general situations can be efficiently
handled via only slightly more elaborate arguments
- e.g. if one has a bound on the length of the longest
path of Steiner points in the optimal solution.

Lemma 3. The degree of any Steiner point in the op-
timal solution is greater than 2

2−γ .

Proof. Consider a Steiner node s in the optimal so-
lution, that is connected to (m 6= n) other points,
a1, ..., am. Let w =

∑m
i=1

wsai

m , and let wsa1 and wsam

be such that wsa1 +wsam ≥ 2w. Let G′ be obtained by
perturbing each edge sai by a factor of γ. Let

T′ := (OPT \ {sa1, . . . , sam}) ∪ {a1a2, . . . , am−1am}.

Clearly, T′ is also a Steiner tree. Triangle inequality
gives us waiai+1

≤ wsai + wsai+1
. So, we have

w′(T′) ≤ w′(OPT)−
m∑
i=1

γwsai

+
m−1∑
i=1

(
wsai + wsai+1

)
= w′(OPT)−

m∑
i=1

γwsai +
m−1∑
i=2

2wsai

+ wsa1 + wsam .

Using the fact that w′(T′) > w′(OPT), we have

m∑
i=1

γwsai <
m−1∑
i=2

2wsai + wsa1 + wsam

or

γ · wm < (2m− 2)w.

Rearranging, we have

2

2− γ
< m.

Now we state some additional structural properties
of optimal Steiner trees in γ-stable instances. These are
not used in Section 4. Nevertheless, we hope that they
are of independent interest.

Proposition 4. If a, b ∈ V (OPT) are nearest neighbors
in the graph, then the edge ab is in the optimal solution.

Lemma 5. Suppose ab, bc ∈ OPT, then

1. wac > γ ·max{wab, wbc}.

2. 2
γ · wac > wab + wbc.

3. (γ − 1) · wab < wbc, (γ − 1) · wbc < wab.

Proof. We handle the three parts in turn:

1. Assume w.l.o.g. wab ≥ wbc. Suppose that wac ≤ γ ·
max{wab, wbc}, let G′ be obtained by perturbing ab
by a factor of γ. Then (OPT\{ab})∪{ac} is also a
Steiner tree in G′ of weight w′(OPT) contradicting
stability. This completes the proof of 1.

2. The proof of 2. follows from 1. and the fact that
max{wab, wbc} ≥ wab+wbc

2 .
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3. Let G′ be obtained by perturbing bc by a factor of
γ. Then T′ := OPT \ {bc} ∪ {ac} is also a Steiner
tree of weight

w′(T′) = w(OPT)− wbc + wac ≤ w(OPT) + wab.
(1)

On the other hand, stability gives us that

w′(T′) > w′(OPT) = w(OPT) + (γ − 1)wbc. (2)

Putting (1) and (2) together gives us that (γ − 1) ·
wbc ≤ wab.
Repeating the same argument but swapping bc for
ab gives us (γ − 1) · wab ≤ wbc.

Lemma 6. Let H be a subgraph of OPT with at least
one edge. Let ab ∈ H. Fix any vertex c ∈ V (OPT) \
V (H) satisfying wca ≤ γ(γ − 1) · wab; then we have
ca ∈ OPT.

Proof. If ca /∈ OPT, then adding the edge ac to OPT
produces a cycle which includes edge ac. Suppose that
the cycle also includes ab. Let G′ be obtained by per-
turbing ab by a factor of γ. Then (OPT\{ab})∪{ac} is
a Steiner tree of weight at most w′(OPT), contradicting
stability.

If the cycle does not include ab, it includes some edge
other than ac which has an endpoint at a. This edge,
call it ad, is in OPT. By Lemma 5, wad > (γ − 1)wba.
Let G′ be obtained by perturbing ad by a factor of γ.
We have w′ad > γ(γ−1)wba ≥ wac. Then (OPT\{ad})∪
{ac} is a Steiner tree of weight less than w′(OPT), again
contradicting stability.

Lemma 7. Let γ > 1+
√
5

2 . Let ab ∈ H, a subgraph of
OPT. Suppose that c is a vertex with wca ≥ γ ·wab, then
ca /∈ OPT.

Proof. Let γ′ = wca

wab
. Note that γ′ ≥ γ is some real

number larger than 1+
√
5

2 . If ac ∈ OPT, then by part 1.
of Lemma 5, we must have

wbc
wac

> γ.

On the other hand,

wbc
wac

≤ wab + wac
wac

≤ wab + γ′wab
γ′wab

≤ 1 + γ′

γ′
.

We now have a contradiction as long as 1+γ′

γ′ < γ. The

function f(x) = 1+x
x is decreasing for x > 0 and f(x) <

x for any x ≥ 1+
√
5

2 . So, we have that

1 + γ′

γ′
<

1 + γ

γ
< γ

as desired.

Proposition 8. Let H be a subgraph of OPT with at
least one edge. Suppose that ab ∈ H and suppose that
c ∈ V (OPT) \ V (H) with wbc < γ(γ − 1)wab. Then we
must have wbc <

wab

γ−1 and wab <
wbc

γ−1 .

Proof. By Lemma 6, we must have that bc ∈ OPT.
Therefore, property 3. of Lemma 5 gives us the desired
inequalities.

When γ(γ − 1)2 > 1 Proposition 8 strengthens the
bounds of Lemma 6. This holds, for instance, when
γ > 1.755. In this case, we obtain:

Proposition 9. Assume that γ(γ − 1)2 > 1. Assume
that H is a subgraph of OPT with at least one edge. Let
ab ∈ H. Fix any vertex c ∈ V (OPT) \ V (H). Then we
have wca <

1
γ−1 · wab if and only if ca ∈ OPT.

Proof. By Lemma 6 and the assumption that γ(γ −
1) > 1

γ−1 , we must have that ac ∈ OPT. If wca ≥
1

γ−1 · wab, we can not have edge ac in OPT by Lemma
5 part 3.

Let B = {b1, . . . , bm} be vertices (either terminal or
Steiner points). For a vertex a, we denote by T (a,B)
the tree on vertex set a,B in which a is connected to
each element of B. Let the average weight of T (a,B)
be ∑m

i=1 wabi
m

.

Suppose that H is a subgraph of OPT. We call
T (a,B) a terminal component fan relative to H if a
is a Steiner point and B are all terminals or vertices in
distinct connected components of H each with at least
two vertices. We call the collection of components of
H together with the terminals not in H the terminal
components of H.

Lemma 10. Let γ > 1.755 and suppose that H is a
subgraph of OPT and in the optimal solution, no two
Steiner points are adjacent. Suppose that T (a,B) with
B = {b1, . . . , bm} is a terminal component fan such that:

• The average weight of T (a,B) is less than all edges
not in H which connect two terminal components
of H,

• the average weight of T (a,B) is minimal among all
terminal component fans, and

• the weights of the edges of T (a,B) are all within a
factor of 1

γ−1 of each other.
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Then T (a,B) is a subgraph of OPT.

Proof. Suppose that the fan T (a,B) is not in OPT.
Specifically, if there are k < m edges of T (a,B) which
are not in OPT, then there are at least k edges of OPT\
H such that in OPT ∪ T (a,B) we may remove these k
edges and still have a Steiner tree.3 Moreover, since no
two Steiner points are adjacent, these edges are either

• terminal to terminal edges, or

• part of a terminal component fan.

In the first case, the terminal to terminal edges have

weight at least
∑m

i=1 wabi

m . In this case perturb this edge
by a factor of γ, and swap it with one edge of the termi-
nal component fan T (a,B). Since the weights of edges of
T are within a factor of 1

γ−1 of each other and their av-

erage weight is
∑m

i=1 wabi

m , this swap decreases the weight
of the resulting Steiner tree after the perturbation.

Similarly in the case that one of the k edges is in an-
other terminal component fan, T1, the average weight

of edges in that fan is at least
∑m

i=1 wabi

m , and apply-
ing part 3. of Lemma 5, the minimal weight edge in

T1 is at least (γ − 1) ·
∑m

i=1 wabi

m . Now, perturb such
an edge by a factor of γ to make the weight at least

γ · (γ − 1) ·
∑m

i=1 wabi

m , which is larger than the weight
of the largest weight edge of T (a,B), which is a most
1

γ−1 ·
∑m

i=1 wabi

m because γ > 1.755.

Performing any of these k swaps yields a lower weight
Steiner tree than OPT under the above perturbations,
contradicting γ-stability.

4 Euclidean Steiner trees

In this section, we consider the restriction of the Steiner
tree problem to the Euclidean metric.

Definition 11 (angle). Let a1, a2, b be points on a Eu-
clidean metric. Then we call ∠a1ba2 the angle between
a1, a2 at b.

Under the assumption of γ-stability the minimum
angle between two terminal points at their common
Steiner neighbor can be bounded from below as a func-
tion of γ.

Lemma 12. For a γ-stable instance of a Euclidean
Steiner tree, the angle between two terminal points at
their common Steiner neighbor in the tree should be
greater than 2 sin−1(γ/2).

3In the case that k = m, there may be only m− 1 such edges,
as a may not be in OPT, but the argument works identically in
that case.

Figure 1: An example of points t1, t2, t3, and t4 sur-
rounding Steiner point s at angles over θ > 90 degrees.
No more than −1

cosθ can fit, independent of the dimen-
sion.

Proof. Let’s assume, for a γ-stable instance of Steiner
tree, the angle between two terminal points a1, and a2
at a Steiner point b is θ. Without loss of generality,
let wa1b =: w ≥ wa2b . Clearly wa1a2 > γw, since
otherwise, perturbing edge a1b by a factor of γ allows
one to replace a1b by a1a2 in a minimal Steiner tree,
contradicting stability. Let us use α to denote the angle
∠a1a2b. Clearly, α ≥ π/2− θ/2. Thus by the sine rule,
we have

γw

sin θ
<
wa1a2
sin θ

=
w

sinα
≤ w

sin(π/2− θ/2)
.

Rearranging, we have

γ <
sin θ

sin(π/2− θ/2)

=
2 sin(θ/2) cos(θ/2)

cos(θ/2)

= 2 sin(θ/2)

as desired.
Thus we immediately get the following Corollary.

Corollary 13. For a γ-stable instances of Steiner tree
where γ >

√
2, the angle between two terminal points

at their common neighbor in the optimal Steiner tree is
greater than π/2.

We say that a matrix M ∈ Rd×d is positive semidefi-
nite if for every v ∈ Rd, it holds that vTRv ≥ 0.

Lemma 14. If there are N points in Rd such that the
angle between every pair with respect to a point u is at
least θ > (π/2), then N ≤ 1− 1

cos θ .

Proof. Let θ > π/2 and let v1, . . . , vN ∈ Rd be unit
vectors in Rd such that 〈vi, vj〉 ≤ cos θ. Consider the
matrix V whose columns are the vi’s. By construction

159



CCCG 2022, Toronto, ON, Canada, August 25–27, 2022

V TV is positive semi-definite. Indeed, for any u ∈ Rd,
we have uT (V TV )u = 〈V u, V u〉 ≥ 0.

If N − 1 > −1
cos θ , then the sum of every row is nega-

tive. This is because each diagonal entry of V TV is 1,
and every non-diagonal entry is at most cos θ. So we
have that 1T (V TV )1 < 0 where 1 = (1, 1, . . . , 1). This
contradicts the positive semidefiniteness of V TV . So it
must be the case that N ≤ 1− 1

cos θ .

Corollary 15. For γ >
√

2 the degree of a Steiner node

in the optimal solution is at most γ2

γ2−2 .

Proof. Consider any two neighbors u,w of a given ver-
tex v, and assume that ∠uvw = θ. From Lemma 12 we
have

γ < 2 sin(θ/2).

So
γ2 < 4 sin2(θ/2)

and so γ2/2 < 2 sin2(θ/2) or 1− γ2/2 > 1− 2 sin2(θ/2).
Since cos(θ) = 1− 2 sin2(θ/2), we have

cos(θ) < 1− γ2/2

or
θ > cos−1(1− γ2/2).

Since the angle between any two neighbors of v is at
least cos−1(1−γ2/2), Lemma 14 gives us that there are

at most 1− 2
2−γ2 = γ2

γ2−2 of them.

Corollary 16. When γ > 1.59, the optimal Steiner tree
for a γ-stable instance does not have Steiner nodes.

Proof. This happens when the min degree imposed by
stability is larger than the max degree imposed by the
packing bound. By Lemma 3 and Corollary 15, this
happens when we have the following:

γ2

γ2 − 2
≤ 2

2− γ
By solving the above equation for γ we get γ ≥ 22/3,
which is bounded from above by 1.59.

This geometric property implies that for 1.59-stable
instances, Steiner points will not be used in the optimal
solution. Hence, an MST algorithm on just the terminal
points will give the answer in polynomial time.

Finally, we point to the existence of Gilbert and Pol-
lak’s the Steiner ratio conjecture [12], which states that
in the Euclidean plane, there always exists an MST
within a cost of 2/

√
3 of the minimum Steiner tree,and

the behavior of this ratio for higher dimensions is yet
unknown. Assuming this conjecture, in certain cases it
may imply some limitations on the stability of Euclidean
instances, especially in low dimensions, using the idea
that even if the Steiner tree distances are “blown up”
by more than the Steiner ratio, one could instead use
the MST instead and get a cheaper solution. Unfortu-
nately, because the MST may overlap with the Steiner
tree, we cannot give a concrete statement.

5 Using approximation algorithms to solve stable in-
stances

In this section we give a general argument about how
strong approximation algorithms for Steiner tree prob-
lems give stability guarantees. We note that it is
known that an FPTAS for the Steiner tree would im-
ply P=NP [10], so there is no hope to use the result
below in the general metric case. But if at some future
point an FPTAS for the Euclidean variant of the Steiner
tree problem is developed (currently, only a PTAS is
known to exist [3]), then this would immediately imply
the existence of polynomial-time algorithms for stable
instances for any constant γ > 1.

Theorem 17. An FPTAS for the Steiner tree problem
gives a polynomial time algorithm for optimally solving
any γ-stable Steiner tree problem in time poly(n, (γ −
1)−1). In particular, this gives a polynomial-time algo-
rithm for any constant γ > 1.

Proof. Assume we are given an FPTAS for the Steiner
tree problem. This means that we have an algorithm
that runs in time poly(n, 1/ε) on instances of size n to
give (1+ε)-approximations to the optimum Steiner tree.
Now consider a γ-stable instance for constant γ > 1. We
run our FPTAS on that instance with ε = γ−1

2n to get a
Steiner tree S′ with weight within OPT(1+(γ−1)/2n).
We now claim that every edge in the optimal solution
whose weight is at least OPT

n must be in S′. Suppose
it isn’t – then we could perturb such an edge by γ and
increase the weight of the optimal solution to OPT(1 +
(γ − 1)/n) without increasing the weight of S′, and S′

would become cheaper than OPT, thereby violating γ-
stability.

By the fractional pigeonhole principle, the most ex-
pensive edge of the FPTAS satisfies the desired property
above and is therefore in OPT. Hence, we can contract
this edge into a new vertex and get a new instance with
n − 1 vertices at γ-stability. We can continue this pro-
cess, getting one new edge of the optimal in each itera-
tion, until we have a constant-size problem that we can
brute-force.

We note that the above technique could be used to
convert even slightly weaker (than FPTAS) approxima-
tion algorithms to nontrivial stability guarantees.
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I. Cerná, T. Gyimóthy, J. Hromkovic, K. G. Jef-
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Globally linked pairs in braced maximal outerplanar graphs

Dániel Garamvölgyi∗ Tibor Jordán†

Abstract

We say that a graph G is a braced MOP graph if it
contains a maximal outerplanar graph as a spanning
subgraph. We show that a pair {u, v} of vertices of
a braced MOP graph is globally linked in R2 in every
generic realization of G if and only if uv is an edge of G
or G contains three pairwise openly disjoint u-v paths.
It follows that a braced MOP graph is globally rigid if
and only if it is 3-vertex connected or isomorphic to K3.

The former result verifies the conjectured characteri-
zation of global linkedness in the plane in a special case.
The latter result leads to a linear time algorithm for
testing global rigidity of braced MOP graphs.

Our proof is based on new structural results about
maximal outerplanar graphs.

1 Introduction

Given a set V = {v1, v2, . . . , vn} of n labeled points,
a map p : V → Rd defines a point configuration P =
{p1, p2, . . . , pn} of V in Rd, where pi = p(vi), for 1 ≤
i ≤ n. For a subset E of the pairs of points in V , a basic
geometric problem is whether every d-dimensional point
configuration Q of V for which the pairwise distances in
P and in Q are the same for all pairs in E, is congruent
with P . In the local version of this question we focus on
a pair vi, vj and ask whether the distance between the
points corresponding to this pair is the same as in P in
every point configuration Q that agrees with P on E.
It is known that these decision problems are NP-hard,
even in R1 [17].

If we restrict ourselves to generic point configurations,
then global uniqueness, up to congruence, depends only
on E (for fixed d). A combinatorial characterization
of those pairs (V,E) that give rise to globally unique
generic point configurations is known for d = 1, 2. The
higher dimensional cases are still open. We also have
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a similar combinatorial question concerning the local
version, which is open for all d ≥ 2.

In this paper we consider the latter problem in R2 and
characterize local uniqueness for a new family of graphs.
Our results verify a conjectured characterization (Con-
jecture 1 below) in a special case. These problems are
best described and studied by using the notions and
tools of rigidity theory. In the rest of this section we in-
troduce these notions as well as previous results of this
area.

1.1 Globally linked pairs in frameworks and graphs

A d-dimensional framework is a pair (G, p), where G =
(V,E) is a graph and p is a map from V to Rd. We
also say that (G, p) is a realization of G in Rd. Intu-
itively, we can think of a framework (G, p) as a col-
lection of bars and joints where each vertex v of G
corresponds to a joint located at p(v) and each edge
to a rigid (that is, fixed length) bar joining its end-
points. Two frameworks (G, p) and (G, q) are equivalent
if ||p(u)− p(v)|| = ||q(u)− q(v)|| holds for all pairs u, v
with uv ∈ E, where ||.|| denotes the Euclidean norm in
Rd. A pair of frameworks (G, p), (G, q) are congruent
if ||p(u)− p(v)|| = ||q(u)− q(v)|| holds for all pairs u, v
with u, v ∈ V . This is the same as saying that (G, q)
can be obtained from (G, p) by an isometry of Rd. A
framework (G, p) is said to be generic if the set of its
d|V (G)| vertex coordinates is algebraically independent
over Q.

A d-dimensional framework (G, p) is called globally
rigid if every equivalent d-dimensional framework (G, q)
is congruent to (G, p). The framework (G, p) is rigid if
there exists some ε > 0 such that, if (G, q) is equivalent
to (G, p) and ||p(v)−q(v)|| < ε for all v ∈ V , then (G, q)
is congruent to (G, p). This is equivalent to requiring
that every continuous motion of the vertices of (G, p) in
Rd that preserves the edge lengths takes the framework
to a congruent realization of G. It is known that for
generic frameworks the rigidity (resp. global rigidity)
in a given dimension depends only on G: either every
generic realization of G in Rd is (globally) rigid, or none
of them are [1, 4]. Thus, we say that a graph G is rigid
(resp. globally rigid) in Rd if every (or equivalently, if
some) d-dimensional generic realization of G is globally
rigid in Rd.

For d = 1, 2, combinatorial characterizations and cor-
responding deterministic polynomial time algorithms
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1
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Figure 1: Two equivalent generic realizations of a graph
G in R2. The graph is not globally rigid, but the pair
{1, 2} is globally linked in G.

1

2

21

Figure 2: Two equivalent generic realizations of the
same graph G in which {1, 2} is not globally linked.
The lengths of the edges incident with 1 and 2 permit
a partial reflection in the rest of the graph.

are known for (testing) rigidity in Rd as well as global
rigidity in Rd [7, 14, 16]. The existence of such a char-
acterization (or algorithm) for d ≥ 3 is a major open
question in both cases. For more details on (globally)
rigid graphs and frameworks see e.g. [12, 18].

A pair of vertices {u, v} in a framework (G, p) is glob-
ally linked in (G, p) if for every equivalent framework
(G, q) we have ||p(u) − p(v)|| = ||q(u) − q(v)||. The
pair {u, v} is globally linked in G in Rd if it is globally
linked in all generic d-dimensional frameworks (G, p).
It is immediate from the definitions that G is globally
rigid in Rd if and only if all pairs of vertices of G are
globally linked in G in Rd. Global linkedness in Rd is
not a generic property (for d ≥ 2): a vertex pair may
be globally linked in some generic d-dimensional real-
ization of G without being globally linked in all generic
realizations. See Figures 1, 2.

The case d = 1 is exceptional and well-understood: a
pair is globally linked in G in R1 if and only if there is a
cycle in G that contains both vertices. In higher dimen-
sions, no combinatorial (or efficiently testable) charac-
terization is known for globally linked pairs in graphs.

1.2 The rigidity matroid

The rigidity matroid of a graph G is a matroid defined
on the edge set ofG which reflects the rigidity properties
of all generic realizations of G. For a general introduc-
tion to matroid theory we refer the reader to [15]. For
a detailed treatment of the 2-dimensional rigidity ma-
troid, see [11].

Let (G, p) be a realization of a graph G = (V,E) in
Rd. The rigidity matrix of the framework (G, p) is the
matrix R(G, p) of size |E| × d|V |, where, for each edge
uv ∈ E, in the row corresponding to uv, the entries in
the d columns corresponding to vertices u and v contain
the d coordinates of (p(u) − p(v)) and (p(v) − p(u)),
respectively, and the remaining entries are zeros. The
rigidity matrix of (G, p) defines the rigidity matroid of
(G, p) on the ground set E by linear independence of the
rows. It is known that any pair of generic frameworks
(G, p) and (G, q) have the same rigidity matroid. We
call this the d-dimensional rigidity matroid Rd(G) =
(E, rd) of the graph G.
We denote the rank of Rd(G) by rd(G). A graph

G = (V,E) isRd-independent if rd(G) = |E| and it is an
Rd-circuit if it is not Rd-independent but every proper
subgraph G′ of G is Rd-independent. We note that
in the literature such graphs are sometimes called M -
independent in Rd and M -circuits in Rd, respectively.
An edge e of G is an Rd-bridge in G if rd(G − e) =
rd(G) − 1 holds. Equivalently, e is an Rd-bridge in G
if it is not contained in any subgraph of G that is an
Rd-circuit.
The following characterization of rigid graphs is due

to Gluck.

Theorem 1 [3] Let G = (V,E) be a graph with |V | ≥
d + 1. Then G is rigid in Rd if and only if rd(G) =
d|V | −

(
d+1
2

)
.

A graph is minimally rigid in Rd if it is rigid in Rd

but deleting any edge results in a flexible graph. By
Theorem 1, minimally rigid graphs in Rd on at least
d+ 1 vertices have exactly d|V | −

(
d+1
2

)
edges.

Let M be a matroid on ground set E. We can define
a relation on the pairs of elements of E by saying that
e, f ∈ E are equivalent if e = f or there is a circuit
C of M with {e, f} ⊆ C. This defines an equivalence
relation. The equivalence classes are the connected com-
ponents of M. The matroid is connected if there is only
one equivalence class, and separable otherwise. A graph
G = (V,E) is Rd-connected if Rd(G) is connected. The
subgraphs induced by the edges of the connected com-
ponents of Rd(G) are the Rd-components of G. Thus
an edge e ∈ E is an Rd-bridge if {e} is a trivial Rd-
component of G.

In the next section we shall see that R2-connected
graphs play an important role in the characterization of
globally rigid graphs in R2 (see Theorem 2 below) as
well as in the conjectured characterization of globally
linked pairs in R2.

2 Previous work

In the rest of the paper, we focus on the d = 2 case.
Thus, we shall occasionally write that a graph is (glob-
ally) rigid to mean that it is (globally) rigid in R2, and
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we may similarly omit the dimension when referring to
global linkedness of vertex pairs in graphs. The follow-
ing characterization of globally rigid graphs in R2 (the
equivalence of (i) and (ii) below) is from [7]. As it was
noted in [9], (ii) is in fact equivalent to (iii).

Theorem 2 [7] Let G be a graph on at least four ver-
tices. The following assertions are equivalent.

(i) G is globally rigid in R2,
(ii) G is 3-connected and R2-connected,
(iii) G is 3-connected and contains no R2-bridges.

The complete characterization of globally linked pairs
of vertices in a graph in R2 is not known. The truth of
the following conjecture would imply a complete answer
and an efficient algorithm for testing global linkedness.
Let H = (V,E) be a graph and x, y ∈ V . We use

κH(x, y) to denote the maximum number of pairwise
internally disjoint xy-paths in H. Note that if xy /∈ E
then, by Menger’s theorem, κH(x, y) is equal to the size
of a smallest set S ⊆ V (H)−{x, y} for which there is no
xy-path in H − S. It is easy to see that if κG(x, y) ≤ 2
and xy /∈ E(G) then {x, y} is not globally linked in G
in R2 [9].

Conjecture 1 [9, Conjecture 5.9] The pair {x, y} is
globally linked in a graph G = (V,E) in R2 if and only
if either xy ∈ E or there is an R2-component H of G
with {x, y} ⊆ V (H) and κH(x, y) ≥ 3.

The following partial results are known. The first
characterizes globally linked pairs in R2-connected
graphs and implies the “if” direction of Conjecture 1.

Theorem 3 [9, Theorem 5.7] Suppose that G is R2-
connected and let u, v be a pair of vertices in G. Then
{u, v} is globally linked in G in R2 if and only if
κG(x, y) ≥ 3.

In the case of minimally rigid graphs (in which ev-
ery R2-component is trivial, i.e. isomorphic to K2) it
has been shown that there are no non-adjacent globally
linked pairs.

Theorem 4 [10] Let G = (V,E) be a minimally rigid
graph in R2 and u, v ∈ V . Then {u, v} is globally linked
in G in R2 if and only if uv ∈ E.

3 Maximal outerplanar graphs

A (simple) graph G = (V,E) on n ≥ 3 vertices is said
to be outerplanar if it has a planar embedding in which
all vertices of G lie on the boundary of the outer face.
It is well-known that if G is a 2-connected outerplanar
graph, then G has a unique Hamiltonian cycle C, which
bounds the outer face in any in such planar embedding

of G. We shall consider 2-connected outerplanar graphs
and call this cycle C the boundary cycle of G. The edges
in E − E(C) are called the diagonals of G.
A maximal outerplanar graph, or MOP graph, for

short, is an outerplanar graph G for which G+uv is not
outerplanar for all nonadjacent vertex pairs u, v ∈ V .
Equivalently, G is the graph of the triangulation of a
polygon. Note that every MOP graph on at least three
vertices is 2-vertex connected: indeed, if v is a cut-
vertex in the outerplanar graph G, then G necessar-
ily has some pair u1, u2 of non-adjacent neighbours for
which G+ u1u2 is outerplanar.

It is well-known that every 2-connected outerplanar
graph has at least two vertices of degree two. For a de-
gree two vertex v of a MOP graph on at least four ver-
tices G− v is also a MOP graph. Since K3 is minimally
rigid and adding a new vertex of degree two preserves
minimal rigidity (see e.g. [11]), we have the following
observation.

Proposition 5 Every MOP graph is minimally rigid in
R2.

We shall mainly be concerned with the following
larger family of graphs. A graph G′ is a braced MOP
graph if it contains a spanning MOP subgraph. If we fix
such a subgraph G = (V,E), so that G′ = (V,E ∪ B),
then we say that the edges in B are the braces of the
graph. If |B| = 1 (i.e. if G′ has 2|V |− 2 edges), then we
say that G′ is a uni-braced MOP graph.

In order to identify the globally linked pairs in braced
MOP graphs we first obtain new structural results con-
cerning the connectivity properties of MOP graphs.

3.1 Separating pairs and 3-connected subgraphs in
(braced) MOP graphs

A pair {u, v} of vertices of G is a separating pair if G−
{u, v} is disconnected. The structure of the separating
pairs in a MOP graph is rather special.

Lemma 6 Let G = (V,E) be a MOP graph and let
{u, v} ⊂ V . Then {u, v} is a separating pair if and only
if uv is a diagonal of G.

Proof. The “if” part follows from planarity (and holds
for all 2-connected outerplanar graphs). To prove the
“only if” direction suppose that {u, v} is a separating
pair in G. Let C denote the boundary cycle of G. Since
C is a 2-connected spanning subgraph of G, the ver-
tices u and v cannot be consecutive on C. Thus if
uv ∈ E then uv is a diagonal and we are done. Let
us suppose, for a contradiction, that uv /∈ E. It is clear
that G− {u, v} has exactly two connected components
A1, A2 whose vertex sets coincide with the vertex sets
of the two paths P1, P2 obtained from C by deleting u
and v. The fact that G is outerplanar and there are no
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Figure 3: (a) A uni-braced MOP graph G′ with a span-
ning MOP subgraph G (indicated by the solid edges)
and a bracing edge ab. (b) the graph HG[a, b] + ab.

edges in G between P1 and P2 imply that G+uv is also
outerplanar, contradicting the maximality of G. □

Consider a MOP graph G = (V,E) and two non-
adjacent vertices a, b ∈ V . We say that a diagonal uv
is (a, b)-separating if a and b are in different connected
components of G− {u, v}.

Proposition 7 Let G = (V,E) be a MOP graph and
let a, b ∈ V be two non-adjacent vertices. Then
(i) for every (a, b)-separating diagonal vivj and two in-
ternally disjoint a-b-paths P1, P2 we have (after relabel-
ing the paths, if necessary) vi ∈ V (P1), vj ∈ V (P2),
(ii) for every diagonal vkvl which is not (a, b)-separating
and for the component D of G − {vk, vl} disjoint from
{a, b} we have that G− V (D) is a MOP graph. In par-
ticular, κG−V (D)(a, b) ≥ 2.

Proof. Lemma 6 implies (i). Part (ii) follows from the
observation that for every diagonal vivj and component
K of G− {vi, vj}, G− V (K) is a MOP graph. □

By using Proposition 7(ii) to “peel off” vertex sets
from G, preserving 2-connectivity, we can deduce the
following.

Lemma 8 Let G = (V,E) be a MOP graph and let
a, b ∈ V be two non-adjacent vertices. Then there is a
unique smallest 2-connected subgraph H of G that con-
tains a, b. This subgraph H is a MOP graph, induced
by the vertex set consisting of the end-vertices of the
(a, b)-separating diagonals, plus a, b.

Proof. LetX be the set of the end-vertices of the (a, b)-
separating diagonals in G. By Proposition 7(i) the ver-
tex set of every 2-connected subgraph of G that contains
a, b must also contain X. Let us fix an outerplanar em-
bedding of G and consider a minimal (with respect to
inclusion) subgraph of G which induces a MOP sub-
graph in this embedding and contains a, b. It follows
from Proposition 7(ii) that every diagonal vkvl in H is
(a, b)-separating, for otherwise we can delete the vertices
of the component D of H − {vk, vl} which is disjoint

from {a, b} to obtain a smaller MOP subgraph. The
key observation is that such a deletion does not create
new (a, b)-separating diagonals. Hence the vertex set
of H must be equal to X ∪ {a, b}. This completes the
proof. □

The unique subgraph H in Lemma 8 belonging to
a, b in G is denoted by HG[a, b]. Note that HG[a, b] has
exactly two vertices of degree two: a and b.

We close this subsection with a lemma which may be
of independent interest. Since we shall not use it later,
we omit the proof. (Necessity follows from Lemma 6.)

Lemma 9 Let G = (V,E) be a 2-connected graph.
Then G is a MOP graph if and only if for all non-
adjacent vertex pairs {a, b} ⊂ V there is a separating
pair {u, v} with uv ∈ E for which G − {u, v} has ex-
actly two connected components, each of which contains
exactly one of a and b.

3.2 Globally rigid braced MOP graphs

Lemma 10 Let G = (V,E) be a MOP graph and let
a, b ∈ V be two non-adjacent vertices. Then HG[a, b] +
ab is a 3-connected R2-circuit.

Proof. Since HG[a, b] is a MOP graph, every sepa-
rating pair consists of the end-vertices of a diagonal
by Lemma 6. Moreover, every diagonal in HG[a, b] is
(a, b)-separating by Lemma 8. Hence HG[a, b] + ab is
3-connected.

By Proposition 5, HG[a, b] is minimally rigid. Thus,
by basic matroid theory, HG[a, b]+ab contains a unique
R2-circuit W with ab ∈ E(W ). It is well-known that
deleting any edge of an R2-circuit results in a minimally
rigid graph (see e.g. [7, Lemma 2.15]), so in particular
W −ab is minimally rigid. Since minimally rigid graphs
on at least three vertices are 2-connected, the minimal-
ity of HG[a, b] implies that W − ab = HG[a, b] holds.
Hence HG[a, b] + ab is an R2-circuit, as claimed. □

The above discussion leads to the following result.

Lemma 11 Let G′ be a uni-braced MOP graph obtained
from the MOP graph G by adding the brace ab. Then
HG[a, b]+ab is a maximal globally rigid subgraph of G′.

Proof. The global rigidity of HG[a, b]+ab follows from
Lemma 10 and Theorem 2. Maximality is due to the
fact that every vertex v of G′ which is disjoint from
HG[a, b] + ab is separated from HG[a, b] + ab by a diag-
onal. □

Our first main result is as follows.

Theorem 12 Let G′ be a braced MOP graph. Then
G′ is globally rigid if and only if G′ is 3-connected (or
G = K3).
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Proof. The only (braced) MOP graph and the only
globally rigid graph on three vertices is K3, so we may
assume that |V | ≥ 4. Necessity follows from Theorem
2. To prove sufficiency, we shall verify that every edge
of G′ belongs to an R2-circuit. Let us fix a spanning
MOP subgraph G = (V,E) and let B denote the set of
braces of G′. For a brace ab ∈ B, Lemma 10 implies
that HG[a, b] + ab is an R2-circuit that contains ab.
Next, consider a diagonal uv of G. Since G′ is 3-

connected, there is a brace a′b′ ∈ B that connects the
two connected components of G − {u, v}. Then {u, v}
is (a′, b′)-separating, so H[a′, b′] + a′b′ is an R2-circuit
that contains uv by Lemmas 8 and 10.

Finally, consider an edge e = vivi+1 of the boundary
cycle C of G. The 3-connectivity of G′ implies that the
degree of vi and vi+1 in G′ is at least three. Hence there
is a diagonal vivk incident with vi. Let us suppose that
vk is as close to vi+1 as possible on the path C − {vi}.
By using 3-connectivity again, we can see that there is
a brace cd that connects the two connected components
of G − {vi, vk}. We may suppose that d and vi+1 are
in the same components. Now the choice of vk and the
MOP structure implies that the R2-circuit HG[c, d]+cd
contains the edge e.
Since G′ is 3-connected and contains no R2-bridges,

it is globally rigid by Theorem 2. □

3.3 Globally linked pairs in braced MOP graphs

We next consider the globally linked pairs. The next
general lemma is easy to verify. Let H1, H2 be two dis-
joint graphs on at least three vertices with two desig-
nated edges ei = uivi, ei ∈ E(Hi), i = 1, 2. We say
that the graph G obtained from H1, H2 by identifying
u1 with u2 and v1 with v2 is the 2-merge of H1 and H2

along the edges ei, i = 1, 2.

Lemma 13 Let G = (V,E) be the 2-merge of H1 and
H2 and let x, y ∈ V . Then {x, y} is globally linked in
G if and only if {x, y} ⊆ V (Hi) and {x, y} is globally
linked in Hi for some i ∈ {1, 2}.

Our second main result is as follows.

Theorem 14 Let G′ be a braced MOP graph, obtained
from the MOP graph G = (V,E) by adding a set B of
braces, and let x, y ∈ V . Then {x, y} is globally linked
in G′ if and only if either xy ∈ E(G′) or κG′(x, y) ≥ 3.

Proof. We may assume that G′ has at least four ver-
tices. Suppose that xy /∈ E(G′). Then κG′(x, y) ≥ 3 is
a necessary condition for the global linkedness of {x, y}
in G′ (for otherwise applying a suitable partial reflec-
tion to a generic realization of G′ shows that x and y
are not globally linked). To prove sufficiency suppose
that we have κG′(x, y) ≥ 3. Every separating pair of G′

is a separating pair of G. Thus every separating pair

in G′ consists of the end-vertices of a diagonal of G by
Lemma 8. Hence we may assume, by Lemma 13, that G′

is a 3-connected braced MOP graph. Then the theorem
follows from Theorem 12. □

From the proof it also follows that if {x, y} is globally
linked in the braced MOP graph G′, then there is an
R2-component H of G with x, y ∈ V (H). Indeed, the
proof shows that there is even a globally rigid subgraph
H ′ with x, y ∈ V (H ′), and globally rigid graphs in R2

are R2-connected, c.f. Theorem 2. Thus, Theorem 14
also implies Conjecture 1 in the case of braced MOP
graphs.

We note that there exist R2-connected graphs which
are not braced MOP graphs (for example the complete
bipartite graph K3,4), as well as braced MOP graphs
which are not R2-connected (for example, K4 plus a
degree-two vertex). Thus neither of Theorem 3 and
Theorem 14 is implied by the other.

We can also deduce the following results on braced
MOP graphs. For a 2-dimensional realization (G, p),
let r(G, p) denote the number of pairwise non-congruent
realizations of G that are equivalent to (G, p). A globally
rigid cluster of G is a maximal vertex set of G in which
each vertex pair is globally linked in G.

Theorem 15 Let G be a braced MOP graph. Then

(i) global linkedness is a generic property of G, that is,
for each vertex pair {x, y} either the pair is glob-
ally linked in every generic realization of G, or not
globally linked in every generic realization of G,

(ii) for every generic realization (G, p) of G in R2 we
have r(G, p) = 2c(G), where c(G) is the number of
diagonals uv of G for which {u, v} is a separating
pair in G′,

(iii) a vertex set X in G′ is a globally rigid cluster if and
only if G[X] is a maximal globally rigid subgraph of
G′ if and only if G[X] is a maximal 3-connected
subgraph of G′ (or a K3).

We close this section with an inductive construction
of globally rigid uni-braced MOP graphs. A result in [7]
shows that every globally rigid graph can be obtained
from K4 by a sequence of so-called 1-extensions and
edge additions. Our construction uses the vertex split-
ting operation, which is one of the frequently used tools
in the theory of rigid (planar) graphs, see e.g. [2]. Let
uv be an edge of the graph G and let F1, F2 be a parti-
tion of the edges incident with v in G− uv. The vertex
splitting operation at vertex v on the edge uv consists of
deleting the vertex v from G and then adding two new
vertices v1, v2 and new edges uv1, uv2, v1v2, as well as
the edges xvi for every edge xv with xv ∈ Fi, i = 1, 2.
See Figure 4. The vertex splitting operation is said to
be non-trivial if F1, F2 are both non-empty.
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Figure 4: The vertex splitting operation at vertex v on
edge uv.

Let v be a vertex of a MOP graph G, uv a diagonal
incident with v, a let C1, C2 be the connected compo-
nents of G−{u, v}. Then an outerplanar vertex splitting
operation at v on uv is a vertex splitting operation in
which Fi consists of the edges that connect v to Ci,
i = 1, 2. It is not difficult to see that a graph obtained
by an outerplanar vertex splitting from a MOP graph
is again a MOP graph. In a uni-braced MOP graph G′

with spanning MOP subgraph G and brace ab, we can
define an outerplanar vertex splitting operation at v on
edge uv in a similar manner, provided ab is disjoint from
v.

With these definitions in place, we can show the fol-
lowing:

Theorem 16 A graph is a 3-connected uni-braced
MOP graph if and only if it can be obtained from K4

by a sequence of non-trivial outerplanar vertex splitting
operations.

Proof. It is easy to see that non-trivial vertex split-
ting preserves 3-connectivity. Thus all graphs obtained
from K4 by non-trivial outerplanar vertex splitting op-
erations are 3-connected uni-braced MOP graphs. To
see the other direction, we show that if G′ is such a
graph on at least five vertices then we can perform the
inverse operation (i.e. the contraction of some edge vv′

of the boundary cycle which is disjoint from the brace
and for which v and v′ have a common neighbour) so
that we obtain a smaller 3-connected uni-braced MOP
graph. Let ab be the brace in G′ and let G = (V,E)
be the underlying MOP graph. Every diagonal of G is
(a, b)-separating, since otherwise the end-vertices of the
diagonal would form a separating pair in G′ by Lemma
6. Since G has at least five vertices, the boundary cycle
of G must contain an edge e = vv′ that is disjoint from
{a, b}. By the MOP property v and v′ have a common
neighbour. Thus e is contractible in the above sense
and hence the resulting graph G′′ obtained from G′ by
contracting e is a uni-braced MOP graph with brace ab.
Moreover, G′′ is 3-connected, since every diagonal of G
is (a, b)-separating. The theorem follows by induction
on the number of vertices. □

4 Questions and conjectures

Although we have extended the family of those graphs
for which global linkedness is well characterized and
computationally tractable in R2, Conjecture 1 remains
open. On the other hand, our results motivate the fol-
lowing new questions:

(1) For which family of (rigid) graphs is global linked-
ness in R2 a generic property?

Examples of families that satisfy this property areR2-
connected graphs (Theorem 3), graphs with a spanning
MOP graph (Theorem 15), so-called special graphs (i.e.
minimally rigid graphs without proper non-complete
rigid subgraphs) [9] and 2-trees (graphs that can be ob-
tained from a sequence of 2-merge operations on trian-
gles).

(2) For which family of (rigid) graphs is global linked-
ness in R2 characterized by the κ ≥ 3 condition (for
non-adjacent vertices)?

The next question may also be interesting.

(3) For which family of (rigid) graphs does global linked-
ness in R2 hold only for adjacent vertex pairs?

Here we offer the following conjecture, which would
extend Theorem 4, and which would follow from Con-
jecture 1.

Conjecture 2 A graph G = (V,E) has no globally
linked pairs {u, v} in R2 with uv /∈ E if and only if ev-
ery R2-connected component of G is either a complete
graph or can be obtained from a sequence of 2-merge
operations on complete graphs of size at least four.

Necessity follows from Theorem 3.

5 Concluding remarks

We have characterized the globally linked pairs in
braced MOP graphs in R2, extending the family of
graphs for which the statement of Conjecture 1 holds.
As a by-product we have obtained a simpler characteri-
zation for the two-dimensional global rigidity of braced
MOP graphs which makes it possible to test their global
rigidity in linear time, by using fast algorithms that can
check if a graph is 3-connected, see e.g. [6]. We note that
the problem of testing, in polynomial time, whether a
given graph is a braced MOP graph seems to be open.

The theory of globally rigid graphs and globally linked
pairs has found numerous applications, including wire-
less sensor network localization, see [8]. Our result can
also be used in this context. For example, the charac-
terization of globally linked pairs (Theorem 14) enables
one to identify the uniquely localizable vertices in R2

with respect to any designated set of so-called anchor
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vertices in a sensor network, provided the graph of the
network contains a spanning MOP graph. It also im-
plies an affirmative answer to another conjecture of [9]
concerning unique localizability in R2, when the graph
is a braced MOP.
A recent research direction is to find efficient algo-

rithms that can add a smallest set of new edges to a
graph so that it becomes globally rigid, see [13]. By
Theorem 12 this augmentation problem can be reduced
to the well-studied 3-connectivity augmentation prob-
lem of graphs, provided the input is a (braced) MOP
graph.

Finally, we remark that we have been able to sub-
stantially generalize our characterization of globally
linked pairs in MOP graphs in R2 in several ways.
In particular, the analogues of Theorems 12 and 14
turn out to also hold, in d ≥ 1 dimensions, for so-
called “braced d-trees”, and, more generally, “braced
d-connected chordal graphs.” These new results will be
part of a forthcoming manuscript.
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[13] C. Király and A. Mihálykó, Globally Rigid Augmenta-
tion of Minimally Rigid Graphs in R2, In: Calamoneri,
Tiziana; Coro, Federico (eds.) Algorithms and Com-
plexity : 12th International Conference, CIAC 2021,
Proceedings, Springer Nature Switzerland AG (2021),
pp. 326–339.

[14] G. Laman, On graphs and rigidity of plane skeletal
structures, J. Engineering Math. 4 (1970), 331–340.

[15] J. G. Oxley, Matroid Theory, Oxford University Press,
New York, 1992.

[16] H. Pollaczek-Geiringer, Über die Gliederung ebener
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Unstacking Slabs Safely in Megalit is NP-Hard

Kirby Gordon∗ Jacob Lezberg† Aaron Williams‡

Abstract

We consider the problem of safely unstacking rectangu-
lar boxes through the lens of Megalit (ASCII, 1991). In
this Game Boy game, the player is confronted with a pile
of 1-by-k and k-by-1 megaliths (slabs). The goal is to
pull and push the slabs until they reach the floor, with-
out falling more than one cell at a time. We prove that
an associated problem is NP-hard. Along the way, we
introduce the drop-ladders problem, and prove that the
Game Gear game Popils (Tengen, 1991) is NP-hard.

1 Introduction

In the late-1990s, the quintessential box pushing game
Sokoban (倉庫番) was shown to be NP-hard indepen-
dently by Fryers and Greene [11], Dor and Zwick [8], and
Uehara [21]. In this top-down game, the player controls
an agent who must push m boxes onto m locations.
Many papers have been written under the Push[Push]-
1/k/*-[X] banner (e.g., [15, 7]), where the goal is to
reach a location under various physical models. Pulling
[2], pushing rows [13], and rotation [12] have been stud-
ied, and Sokoban was proven PSPACE-complete [6].

The 1990s also saw the establishment of NP-hardness
for Blocks World [5]. In this grid-based problem, 1-by-1
blocks are stacked in columns and the goal is to unstack
and restack the blocks to be in a particular state, and
this led to ample subsequent research [14, 20, 16, 19].

In this paper, we consider a decision problem that has
ingredients of both box pushing and Blocks World.

• Side-view. The two-dimensional world has gravity
and a side perspective [18, 10] like Block Dude [4, 3].

• Agent-based. The player controls an agent who is
vulnerable to falling objects, but not falling.

• Unstacking. Unlike Sokoban and Blocks World, the
goal is to safely bring the boxes to the ground floor.

• Fragility. Unlike Sokoban and Blocks World, the
blocks break when dropped more than one unit.

• Push and Pull. The agent can push and pull [17].

1.1 Inspiration and Outline

We were inspired by another 1990s artifact: Megalit
(ASCII, 1991) for Nintendo’s Game Boy (see Figure 1).

∗Williams College, jacob.lezberg@gmail.com
†Williams College, kirbyjgordon@gmail.com
‡Williams College, aaron.williams@williams.edu

(a) Start. (b) Push.

(c) Climb. (d) Pull.

(e) Climb. (f) Push. (g) Box art ( ).

Figure 1: Solving a Megalit level (a)–(f).

• Section 2 formalizes our Megalit decision problem.
• Section 3 describes how any configuration of slabs

can be flattened with the help of additional slabs.
• Section 4 introduces a toy problem called Ladders.
• Section 5 provides our reduction from Ladders.
• Section 6 proves that our reduction is correct.
• Section 7 concludes with final remarks.

2 Megalit: Gameplay and Decision Problem

Megalit puzzles involve slabs and the following rules:

1. The playfield is a grid with bottom-left cell at (0, 0).
2. The player may move left, move right, or jump. A

jump is 3 units high. While jumping, the player
may travel up to 2 units left or right.

3. If the player is horizontally adjacent to a slab and
on stable footing (i.e. not in midair), they may grab
the slab and push or pull it with them as they move.
(a) If the player moves and falls off a slab while

clutching a slab, then their grip is released.
(b) Only the slab being grabbed is pushed or

pulled; only one slab moves at a time.
(c) Slabs will fall down due to gravity when un-

supported. They cannot move upwards.
4. Slabs are horizontal 1-by-k or vertical k-by-1.
5. A slab x is supported by slab y when any cell of x

is directly above a cell of y (see Figure 1d).
6. A level is failed if a slab falls ≥ 2 units or the player

is crushed under a falling slab or trapped.
7. A cleared level has every slab touching the ground.

In the actual game, the slabs and player move hor-
izontally in 1

2 -unit increments. In our decision prob-
lem we ignore this complication and use 1-unit moves.
We also disallow pull and push moves that result in the
player falling, which affects rule 3a as shown in Figure 2.
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c b
a

Can’t push a.

b
a

Can push a.

b
a

Can’t pull a.

b
a

Can pull a.

Figure 2: In our Megalit decision problem the player must
step onto a solid cell when performing a pull or push.

Our decision problem Megalit(C, p) asks if a configu-
ration of supported slabs C can be flattened when the
player starts at position p. Our main result is below.

Theorem 1 The decision problem Megalit is NP-hard.

We will specify a slab s by a 4-tuple, (x1, y1, x2, y2),
where (x1, y1) and (x2, y2) are the bottom-left and top-
right grid cells in s, respectively. We also let cells(s) be
the set of all cells in slab s, and cells(C) be the union of
cells(s) for s ∈ C. Finally, we normalize our co-ordinate
system so that the minimum x and y coordinates of
slabs in C are both zero. In other words, (0, 0) is the
bottom-left cell in the initial bounding box of the slabs.

3 Ramunto’s Extraction Algorithm

In this section, we show that a configuration of slabs
C can be safely flattened, so long as it is surrounded
by other slabs. Our flattening process resembles pulling
pizzas out of an oven using long wooden pizza trays
known as pizza peels. Thus, we name our approach after
our local pizza joint: Ramunto’s Brick House Pizza [23].

3.1 Extractable Slabs

We define a slab s = (x1, y1, x2, y2) to be extractable if
it has the following three properties:
X1: There is no slab cell to the right of s. That is, @t ∈

C with (x, y) ∈ cells(t) and x > x2 and y1 ≤ y ≤ y2.
X2: There is no slab cell above s. That is, @t ∈ C with

(x, y) ∈ cells(t) and y > y2 and x1 ≤ x ≤ x2.
X3: There is no gap to the right of s in the row below it.

That is, if ∃t ∈ C with (x2 + i, y1 − 1) ∈ cells(t) for
i ≥ 2, then ∃t′ ∈ C with (x2+i−1, y1−1) ∈ cells(t′).

For insight into this definition, the reader may skip
ahead to Figures 4–5. Property X3 ensures that s can
be pulled along a series of slabs until it is transferred to
a pizza peel; X2 ensures that no slab t gets in the way
when s is pulled to the right; X1 ensures that s does
not support any other slab t that could fall and break.

Lemma 2 Every non-empty configuration of slabs C
contains at least one extractable slab.

Proof. We find an initial candidate slab, and then
prove that it is extractable, or find a new candidate.
During this process, we maintain a rectangular search
region from (x∗, y∗) to (x∗, y∗), which are initially the
bottom-left and top-right cells in cells(C), respectively.

If ∃s ∈ C with (x∗, y∗) ∈ cells(s), then s is extractable
since all three properties are vacuously true. Otherwise,
we let the first candidate be s = (x1, y1, x2, y2) ∈ C that
maximizes the minimum of x∗−x2 and y∗−y2, breaking
ties by maximizing y2. In other words, s is the first slab
found by searching along down-right lines originating
from the top row proceeding from right-to-left. After
identifying the candidate, we reduce the search region.

• If s is horizontal, then we set (x∗, y∗) = (x1, y1 + 1
and (x∗, y∗) = (x2, y

∗) (i.e., the cells above s.
• If s is vertical, then we set (x∗, y∗) = (x1 + 1, y1

and (x∗, y∗) = (x∗, y2) (i.e., the cells right of s).
If a slab is found in the new search region, then it is the
new candidate, and we repeat the process. Otherwise, s
is our finalized candidate. Finally, we need to prove that
s is extractable. We first assume that s is horizontal.
X1: There is no slab t with a cell above s since the

search that made s a candidate would have found t.
X2: There is no slab t with a cell to the right of s since

nothing was found in the final search area.
X3: There is no gap immediately below and right of s

since the search that made s a candidate would find
a slab t in the row immediately below s.

When s is vertical the same points hold, but with the
first two arguments interchanged. �

c
a

b
d

e

(a) A configuration
of slabs c.

c
a

b
d

e

(b) The first search
selects candidate c.

c
a

b
d

e

(c) The second search
selects candidate b.

c
a

b
d

e

(d) The third search
selects candidate a.

c
a

b
d

e

(e) The fourth search
confirms candidate a.

c

b
d

e

(f) Ramunto’s algo-
rithm will extract a.

Figure 3: Lemma 2 considers successively smaller search re-
gions (green) along arrows (gray) from the top-right. The
confirmed candidate is extractable. The slabs are labeled by
their extraction order during Ramunto’s algorithm.

3.2 Pizza Oven Template

Let C be a configuration of slabs of width W and height
H, with the maximum width and height of slabs being
w and h, respectively. We surround this configuration
slabs with additional slabs as follows.

• Vertical slabs of height h below C.
• Horizontal slabs pi for −W + 1 ≤ i ≤ H − 1. Each

slab is w + 1 units wider than the one above, with
the top slab pH−1 having width 2W + H + h −
4. These slabs are organized into a left staircase
immediately to the right of C.
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dg

h = 3

w = 3

+w
+w

+w
+w

+w
+w

2W +H + h− 4 = 20
W = 8
by

H = 5
p3

p−2
p−1
p0

p1

p2

p4

W vertical stilts of height h H + h− 1 horizontal pizza peels of varying width

(a) The configuration C in the gold region, with purple vertical slabs and blue horizontal slabs (pizza
peels) added, forms C′ = pizza(C). The peel lengths ensure support for each extraction.

(b) Slabs in C are extracted like
pizzas, and (gently) dropped.

Figure 4: The demolition layout for our example configuration C. The total width and height of C are W = 8 and H = 5,
respectively, while the maximum width and height of a slab in C are w = 3 and h = 3, respectively.

We denote the resulting configuration C′ = pizza(C).
This is illustrated in Figure 4, where the initial C form
the slabs inside of the pizza oven.

3.3 Extraction Algorithm

This section’s main result is illustrated in Figure 5.

Theorem 3 If C is a configuration of slabs, then

Megalit(C′, p) = yes,

where C′ = pizza(C) and p is the unique standing posi-
tion immediately to the right of C.

Proof. Algorithm 1 flattens C′1. �

Algorithm 1 Ramunto’s algorithm for flattening a con-
figuration of slabs C′ = pizza(C) where p is the unique
standing position immediately to the right of C.

procedure Ramuntos(C′)
while |C| > 0 do
C ← C − {s} for an extractable s = (x1, y1, x2, y2)
push peel px1 as close to s as possible
pull s to be above the bottom peel p−W+1

pull peels px1 ,px1−1, . . . ,p−W+1 to lower s
pull peels p−W+1,p−W+2 . . . ,pH−1 to alignment

end while
pull peels p−W+1,p−W+2, . . . ,pH−1 to flatten them

end procedure

3.4 Flattening Goal to Target Location Goal

Theorem 3 helps us reduce the problem of flattening a
configuration of slabs to reaching a particular location.
For example, the player can complete Figure 4 so long
as they can exit the initial gold region to the right, since
Ramunto’s algorithm will work regardless of where the
slabs in C are located. We’ll further refine this idea
by surrounding the gold region with tall vertical walls,
which ensures that the player can flatten the level if, and
only if, they can reach the top-right cell in the region. In
other words, we change the flattening goal into target
location goal, and then a climbing goal. Climbing is
further discussed in the following toy problem.

1Several temptingly simple greedy algorithms do not work.
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(a) The previous slabs a–d have been extracted.
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(b) Slab e’s bottom cells are at y = 1, so push peel p1 for support.
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(c) Pull e to be above its destination on the ground level.
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(d) Drop e by one level by pulling out peel p1.
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(e) Drop e by one level by pulling out peel p0.
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(f) Drop e by one level by pulling out peel p−1.
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p3
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p1
p0
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(g) Drop e to the ground by pulling out peel p−2.

Figure 5: A snapshot of Ramunto’s algorithm extracting slab
e from configuration C. After e reaches the ground in (g),
the player realigns the peels as in (a) in order to extract f .

4 A Toy Problem

In this section, we introduce an NP-complete toy prob-
lem that resembles several well-established metatheo-
rems [9] [22] [1]. The problem involves drop-ladders and
we’ll illustrate it by proving that Popils is NP-hard.

4.1 Drop-Ladders

A drop-ladders problem consists of ` ladders and f + 1
floors. Each ladder extends from the ground floor up
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to the top floor and consists of some number of rungs.
More specifically, there are 2f possible locations for a
rung: on floor i and between floor i and i + 1, for 1 ≤
i ≤ f (where i = 1 denotes the bottom floor). If a
ladder contains a rung on floor i, then the player can
climb from floor i to floor i + 1 using this ladder; the
rungs between floors cannot (immediately) be used to
climb. In addition, when the player is on the bottom
floor, they have the ability to lower any ladder by one
unit. Lowering a ladder moves all of its rungs down
one position, so a rung that was between floor i and
i+ 1 moves to floor i, thus allowing the player to climb
upward. Similarly, a rung on floor i moves between floor
i−1 and floor i, eliminating its ability to help the player
climb upward. The player starts on the bottom floor,
and their goal is reach the top floor. Figure 6 provides
an illustration.

(a) A Ladders problem. (b) A solution.

Figure 6: (a) A Ladders problem with ` = 5 ladders and
f+1 = 3 floors. It is a yes instance since the player can climb
from the ground floor to the top floor using the rungs on the
first ladder. Alternatively, they can drop the fourth ladder,
then climb the fourth ladder and fifth ladder, as in (b). This
level illustrates our reduction from φ in (1), with ladders
for variables v1–v5 from left-to-right, and floors for C1 =
(v1∨v2∨¬v4) and C2 = (v1∨¬v2∨v5) from bottom-to-top.
The solution in (b) corresponds to the satisfying assignment
v1 = v2 = v3 = v5 = True and v4 = False, with C1 satisfied
by v4 = False and C2 satisfied by v5 = True.

4.2 Ladders is NP-Complete

We now prove that Ladders is NP-complete.

Lemma 4 Ladders is NP-complete.

Proof. NP-hardness follows from a simple 3-SAT re-
duction, as illustrated in Figures 6–7 for the following:

φ = C1 ∧ C2 = (v1 ∨ v2 ∨ ¬v4) ∧ (v1 ∨ ¬v2 ∨ v5). (1)

In particular, lowering a ladder corresponds to chang-
ing the assignment of a variable from True to False.
Ladders is in NP since a suitable certificate specifies
which ladders to drop and to climb. �

The following observation strengthens Lemma 4.

Observation 1 It is possible to climb to floor i if
and only if the variable assignment associated with the
dropped ladders satisfies clauses C1, C2, . . . , Ci.

C1

v1 v2 v3 v4

C2

v5

TrueTrueTrue True True

(a) Template for n = 5 variables
and m = 2 clauses.

Cj

vi

vi in Cj

vi

¬vi in Cj

vi

otherwise
“positive” “negative” “absent”

Cj Cj

(b) Rungs are added based on
literal-clause membership.

Figure 7: Reducing 3-SAT to Ladders using (a) a template,
with (b) added rungs. Specifically, if vi is in clause Cj , then
ladder i has a rung on floor j; if ¬vi is in clause Cj , then
ladder i has a rung between floor j and floor j + 1.

4.3 Application: Popils is NP-Hard

Another 1990s handheld puzzler is Tengen’s Magical
Puzzle Popils ( 1991) / Popils ( 1992) for Sega’s
Game Gear. Each round follows the save-the-princess
trope. Its mechanics and elements include the following:

• Normal blocks. Breakable by punching left or right,
headbutting up, or kicking down.

• Gold blocks. Unbreakable and can be stood on.
• Black blocks. Empty and cannot be stood on.
• Ladders. The player can walk across or on top.

When the player breaks a normal block, all of the blocks
stacked above in the same column will fall down one cell.
The princess paces horizontally and never intentionally
moves vertically; both characters are subject to gravity.
The Popils decision problem generalizes the single-screen
rounds to be arbitrarily large. See Figure 8.

a. Start b. Punch c. Fall

d.Punch e.Punch f. Head g. Done

normal

ladder

gold

black

player

princess

h. Legend i. Box art ( )

Figure 8: Round 1 in Popils with partial legend and box art.

We now illustrate Ladders with two reductions to
Popils. The first uses the elements in Figure 8h and has
simpler player movements, while the second omits gold
blocks and has simpler rung gadgets. See Figures 9–10
and 11–12 for details, where ladders cells in the rung
gadgets are tinted green, pink, or blue for readability.

In both reductions, a drop-ladder occupies one col-
umn with a normal block at its base. The player starts
in a cellar that appears below the first clause. The cellar
is used to set the value of the variables. More specifi-
cally, the player can drop a drop-ladder by headbutting
its normal block. Additional ladders on the right allow
the player to exit a clause and enter the next clause,
with the Princess pacing above the last clause. Each
clause has a lower-half and an upper-half. To traverse a
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clause, the player walks right-to-left on the lower-half,
climbs a ladder associated with a satisfying literal, and
then walks left-to-right on the upper-half.

4

3

2

1

or

or

or

or

(a) Four cells.

positive negative absent

3

2

4

2

4

2

1

(b) Implementing the three gadgets.

Figure 9: Rung gadgets using four ladder or black square
cells. To understand (b) note that 1 and 2 allow climbing
undropped columns, while 2 and 3 allow climbing dropped
columns. The remaining ladder cells allow walking past
(un)dropped columns on the lower and upper halves.

normal

ladder

gold

black

player

princess

v1 v2 v3 v4 v5

C1

C2

(a) Template.

normal

ladder

gold

black

player

princess

positivenegativeabsent

(b) Popils level for φ.

normal

ladder

gold

black

player

princess

positivenegativeabsent

(c) Solution.

Figure 10: Reducing Popils to Ladders for formula φ in (1)
with n = 5 variables and m = 2 clauses. The provided
solution involves headbutting and dropping the v2 and v3
columns, and then using v1 = T to satisfy C1 = (v1∨v2∨¬v4)
and v2 = F to satisfy C2 = (v1 ∨ ¬v2 ∨ v5).

3
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1

or

or

or

(a) Three cells.

positive negative absent

2

3

1

(b) Implementing the three gadgets.

Figure 11: Rung gadgets using three ladder or black
square cells. To understand (b) note that 1 allows climb-
ing undropped columns, while 2 allows climbing dropped
columns. The ladder in the absent case allows walking past
(un)dropped columns on the lower and upper halves.
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(a) n = 5 and m = 2.

normal

ladder
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(b) Popils level for φ.

normal

ladder

gold

black

player

princess

positivenegativeabsent

(c) Solution.

Figure 12: Reducing Popils to Ladders for formula φ in (1).
The provided solution follows the same format as Figure 10
but requires a more complicated path.

The second reduction gives the following theorem.

Theorem 5 Popils is NP-hard with only ladders, nor-
mal blocks, and black blocks, even if the player can’t fall.

5 Reduction from 3-SAT

Now we describe our reduction from 3-SAT to Megalit.
More specifically, we describe the configurations C that
will be placed in the ‘pizza oven’ as per Section 3. We
refer to these configurations as haunted houses. A sam-
ple is given in Figure 17. We define two new terms:

• A cornerstone is a lower corner cell of a slab. Ver-
tical slabs have 1, while horizontal slabs have 2.

• A slab is mobile if the player can stand next to a
cornerstone of the slab and push or pull it.

5.1 Primitive Gadgets: Tables and Chunks

A table2 consists of a tabletop supported by a pair of
legs, which are 2 or 3 units in height. This gadget ap-
pears in many variations, as seen in Figure 13. Only one
leg is needed to support the tabletop, which allows the
other leg to be pulled away. The player may pass under-
neath a table, by pulling and pushing the legs to reset
them as needed, or over it (given that nothing on the
tabletop obstructs passage). They may also re-purpose
a leg as a climbing aid elsewhere in the level.

Figure 13: Tables come in many different sizes.

A chunk is a row of adjacent vertical slabs in any
plural quantity. Notably, a chunk is extremely stable
because only its two exterior slabs have exposed corner-
stones. It follows that a chunk is completely immobile
if the player cannot access either of these cornerstones.

5.2 Variable Towers

Variables are modeled by vertical structures called vari-
able towers (see Figure 16). The base of each variable
tower is a pit of truth, as shown in Figure 14a.

(a) True (default). (b) False (modified).

Figure 14: A pit of truth in its initial and modified state.

By pulling out the left leg of the underlying table,
the player can jump up into the pit. To escape the pit,
they must move the two horizontal slabs, as shown in
Figure 14b. The net effect is that the tower is lowered
by 2 units. This is analogous to dropping a ladder in
the toy problem, or setting the associated variable to
False. We note that a horizontally-mirrored version of
the pit is used at the base of the last variable tower.

2Historically, this stone table structure is known as a dolmen.
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Above a pit we stack literal gadgets for that variable.
These gadgets come in three flavors (see Figure 15).

positive negative absent

Figure 15: The three types of variable literal gadgets.

Each literal has a horizontal 9x1 slab at the base,
then a chunk covering its full width, and finally a small
table with multiple tabletop layers. Each gadget is 14
units tall, but the relative placement (and height) of the
legs change based on the type of literal. As in our toy
problem, the positive literals will be useful for climbing,
unless the associated variable is negated, which causes
its negative literals to become useful.

5.3 Scaffolding

Scaffolding towers between the variable towers enable
climbing. A scaffolding tower is supported by a pair of
support gadgets (yellow), which consist of a table with a
tall vertical slab on top. The base of a scaffolding tower
also includes a pyramid gadget (yellow), which allows
the player to climb up to the rest of the scaffolding. See
the bottom-middle of Figure 16.

Figure 16: Illustrating two variable towers (left and right)
with scaffolding (middle) between them.

A scaffolding block has two horizontal slabs support-
ing chunks of height 4 (red), each of which supports one
leg of a large table (yellow). This table has 4 tabletop
layers, and on top of it are two small tables (purple)
on either side of a 5-unit vertical slab (maroon). This
scaffolding tower can be seen in the center of Figure 16.
If the player enters a scaffolding block from the bottom,
they can access either side of the gadget, but cannot
jump to the upper surface without a climbing aid (anal-
ogous to rungs from the toy problem). The mapping of
these jumps to the satisfiability of the given problem is
the discussion of Section 6.

6 Proof that Megalit is NP-Hard

The player must complete a constructed level in two
stages – ascend to the top of the “haunted house,” then
flatten it using “pizza peels.” We complete our proof of
Theorem 1 by proving that the first stage can be com-
pleted if, and only if, the 3-SAT instance is satisfiable.
More specifically, Observation 1 holds. The following
lemmas prove the two directions.

Lemma 6 Given a satisfiable instance of 3-SAT, the
level generated by the reduction rules is climbable.

Proof. Suppose we are given a satisfiable instance of
3-SAT and build a Megalit level by the procedure in
Section 5. Next, we let the player dislodge the truth-
setting slabs for each variable as would correspond to a
satisfying assignment for the instance of 3-SAT. Since
the given instance of the problem is satisfiable, each
clause has at least one positive literal set to “true” or
one negative literal set to “false.”

In both of these cases, the corresponding gadget rep-
resenting the variable literal is offset by exactly one unit
above its neighboring scaffolding. We can see that the
truth-assignment created this useful offset, just as it
made the ladder rungs accessible in Lemma 4. As a
result, the player is able to borrow an extra table leg
from the literal and bring it into the scaffolding region
close enough to the center that they can use it as a
“ladder rung” to overcome the tall jump from the lower
scaffolding surface to the upper one. See Figure 18.

Since this occurs for each clause, and therefore for
each layer of scaffolding and literals, the player can jump
all the way to the top of the house by moving laterally
until they reach the satisfying literal, using its table leg
to climb to the next layer, and repeating this process for
each layer. In accordance with Observation 1, this climb
is possible because the satisfying variable assignment
provided a climbing aid on each “floor.” �

Observation 2 It is impossible to move a tabletop on
an isolated table; see our physical model in Section 2.

Observation 3 Even when two tables are adjacent on
the same surface, it is impossible to move either table-
top, provided the leg-heights of the tables are different.

Lemma 7 Given an unsatisfiable instance of 3-SAT,
the level generated from the reduction has no escape
routes from the haunted house.

Proof. Suppose that we are given an unsatisfiable in-
stance of 3-SAT. We must show that no alternative exits
from the haunted house exist for the player. Referencing
Figure 17, we will proceed with an examination of each
gadget and then each zone where gadgets may interact
with one another.
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v1 v2 v3 v4scaffolding scaffolding scaffolding

cellar

C1

C2

floor

wall wall

Figure 17: A full haunted house, with surrounding structure (walls and floor) and labeled regions, generated from the 3-SAT
instance φ = C1 ∧C2 with C1 = (v1 ∨ ¬v2 ∨ v3) (middle layer) and C2 = (v2 ∨ ¬v3 ∨ ¬v4) (top layer). The player is shown at
their starting location (orange circle) and the additions in blue ensure that the player may only exit the house via its top level.
The added slabs on top of each scaffolding tower enable traversal along the “roof” and pairs of tall vertical slabs bookend
the house as per Section 3.4. Note that the vertical “floor” slabs are much taller than shown here, and a set of pizza peels is
present immediately to the right of this structure.

Figure 18: A +1 offset allows a table leg from the tower to
be brought into the scaffolding region. The player cannot
climb the scaffolding further without this aid.

The player has free lateral movement in the cellar and
may encounter four notable structures:

1. The Pit. Due to the manner in which it traps the
player, the pit has an isolating effect in all respects
besides the intended 2-unit tower drop, and thus
cannot affect the rest of the haunted house.

2. Scaffolding Support. Per Observation 3, the only
way for the player to interact with the support’s
table is to pass beneath it. The mobility of the
long vertical support slab is severely limited, as it
cannot be safely dropped from the table and has
only 1 unit of available movement left or right.

3. Pyramid. The aforementioned constraints on tables
apply to the pyramid’s base as well. The vertical
slabs covering the tabletop’s surface form a chunk,
preventing access to each other’s cornerstones.

4. Thick Walls. Double-slab walls blockade both sides
of the house and are immobile.

None of these can interact with the larger structure

except for the pit’s intended transformation. Proceed-
ing upwards, the player reaches a series of scaffold-
ing/tower combinations. By itself, the scaffolding offers
only two surfaces on which the player can stand and no
mobile parts except the pairs of table legs. These legs
cannot be dropped between scaffolding layers or sur-
faces within a layer because they would shatter. In an
isolated tower, a variable literal offers the player only
one surface on which to stand, from which the player
can do nothing but pass underneath the table. At the
edge of the house, the double-slab wall is again present,
and equally immovable.

Finally, we consider interactions between the scaffold-
ing and variable literals, characterized by the height of
the literal relative to the scaffolding. For example, the
surface of a true/negative literal is +3 units above the
lower surface of the adjacent scaffolding.

• +3 (True/Negative): This offset is too high to
safely drop a table leg from the tower’s literal onto
the scaffolding region. It is possible to use a scaf-
folding leg as a step down, creating an effective off-
set of +2, but there is no way to move it any closer
to the scaffolding’s center or cross the wide gap
from there to the scaffolding’s upper surface.

• +1 (False/Negative & True/Positive): As described
in Lemma 6, this offset lets the player safely bring
a table leg from the tower onto the scaffolding’s
lower surface, and use it as a ladder rung to reach
the upper surface and continue climbing.

• −1 (False/Positive & True/Absent): Since slabs
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may never move upwards (rule 3c), this table leg
is stuck on the tower’s surface. It is possible to
drop a scaffolding leg into the tower section, but
this offers no further productive moves. Note that
the scaffolding leg can be used to replace the leg of
a variable literal and lower the tower, but doing so
will trap the player.

• −3 (False/Absent): The absent literal once again
has no impact on the player’s climbing ability.

Since no manipulations of slabs within a layer of scaf-
folding allow the player to climb higher without a posi-
tive evaluation of a variable, and there is no way to cause
a collapse except for the 2-unit drop of a tower that oc-
curs when escaping a pit, the player cannot escape the
haunted house unless they create a positively-evaluated
variable in each layer of scaffolding. This is equivalent
to satisfying each clause in an instance of 3-SAT, but
the given instance was unsatisfiable. Hence, the player
cannot exit the haunted house. �

7 Open Problems

Sharpness. Is Megalit NP-complete or PSPACE-
complete? Membership in NP is unclear since slabs can
move back-and-forth and downward, but not upward.
Restrictions. Toward NP-completeness, one could con-
sider slabs of constant size.
Generalizations. Toward PSPACE-completeness, one
could add rectangular slabs, or immovable walls.
Physics. Megalit is not faithful to the physics of Megalit.
In fact, 1

2 -unit moves and rule 3a invalidate Lemma 7.
One could also consider center of gravity physics.
Fragility. Block pushing games and problems seldom
consider the fragility of the objects being moved.
Unstacking. Other unstacking games could provide in-
spiration like QBillion (SETA, 1990) for Game Boy.

The authors would like to thank the anonymous ref-
erees whose feedback helped improve this paper.
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Abstract

We investigate the computational complexity of a sim-
ple one-dimensional origami problem. We are given a
paper strip P of length n+1 and fold it into unit length
by creasing at unit intervals. Consequently, we have sev-
eral paper layers at each crease in general. The number
of paper layers at each crease is called the crease width
at the crease. For a given mountain-valley assignment
of P , in general, there are exponentially many ways of
folding the paper into unit length consistent with the as-
signment. It is known that the problem of finding a way
of folding P to minimize the maximum crease width of
the folded state is NP-complete. In this study, we inves-
tigate a related paper-folding problem. For any given
folded state of P , each crease has its mountain–valley
assignment and crease-width assignment. Then, can we
restore the folded state uniquely when only partial infor-
mation about these assignments is given? We introduce
this natural problem as the crease-restore problem, for
which there are a number of variants depending on the
information given about the assignments. In this paper,
we show that some cases are polynomial-time solvable
and that some cases are strongly NP-complete. As an
application of the problem, we also propose a digital
signature system based on the hardness of the crease-
restore problem.

1 Introduction

Recently, computational origami has attracted the in-
terest of theoretical computer scientists. In this pa-
per, we focus on one of the simplest origami mod-
els: one-dimensional origami. This origami model in-
volves a long rectangular strip of paper, which can be
abstracted by a line segment and is uniformly sub-
divided by creases. At each crease, we fold the pa-
per strip by degree π in either one of two choices for
the direction of folding: a mountain fold, or a valley
fold. Finding the number of feasible (i.e., without self-
crossing) ways of folding a paper strip is known as a

∗School of Information Science, Japan Ad-
vanced Institute of Science and Technology,
{s2110150,kamata,uehara}@jaist.ac.jp
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stamp-folding problem, for which the exact value re-
mains open [5]: Experimentally, a paper strip of length
n+1 has a total of Ω(3.06n) feasible ways of folding and,
on average, Ω(1.53n) ways of folding for a given ran-
dom mountain–valley assignment (“MV assignment,”
for short) of length n.

M M V M M V M V V V V

1 2 3 4 5 6 7 8 9 10 11 12

Figure 1: Example of MV assignment
MMVMMVMV V V V for paper strip of length
12.

[5|4|3|6|7|1|2|8|10|12|11|9] [2|1|3|4|9|11|12|10|8|7|6|5]

Mountain fold Segment 5

Valley fold
Max. CW=3

Max. CW=7

Segment 2

Figure 2: Side views of two
folded states for MV assignment
MMVMMVMV V V V . [5|4|3|6|7|1|2|8|10|12|11|9]
and [2|1|3|4|9|11|12|10|8|7|6|5] describe the orders of
paper segments from the top. The first folded state has
the maximum crease width of 3, whereas the second
has the maximum crease width of 7.

However, even when an MV assignment is given for
the creases, the problem remains counterintuitive. In
general, there are exponentially many ways of folding
a paper strip with a given MV assignment. For exam-
ple, a paper strip of length 12 with the MV assignment
MMVMMVMV V V V , shown in Figure 1, has 100 dif-
ferent feasible folded states (as verified by a computer
program), among which some are easy, while some are
difficult, to fold flat. The main reason behind these
differences in difficulty is the number of paper layers
between two paper segments at each crease. For ex-
ample, in the first folded state shown in Figure 2, the
maximum number of layers at a crease is 3, whereas in
the second folded state, the maximum number of lay-
ers is 7. From this viewpoint, an optimization problem
was proposed and investigated in [6]. That paper in-
troduced a new concept known as the “crease width” of
a crease, which is defined by the number of paper lay-
ers at a crease in a folded state. Therein, it was proved
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that the decision problem for the maximum crease width
of a given MV assignment is NP-complete. (In fact,
among the 100 feasible folded states for the MV as-
signment MMVMMVMV V V V shown in Figure 1, the
first folded state is the only one with a maximum crease
width of 3, which is optimal.)

Now, we consider the information necessary for spec-
ifying a folded state. We will observe that given both
an MV assignment and a crease-width assignment for
every crease (“CW assignment,” for short), the folded
state is uniquely determined if it is feasible. Then, what
happens if we are given partial information about these
assignments? This natural question leads us to our
new computational origami problem, which is named
the crease-restore problem. In this paper, we first show
that the crease-restore problem is strongly NP-complete
in general. More specifically, when we are given part of
the MV assignment and CW assignment, the decision
problem that asks whether there exists a feasible folded
state is strongly NP-complete. We also show that even
if the entire MV assignment is given, the crease-restore
problem is still strongly NP-complete when only a part
of the CW assignment is given.

Based on the hardness, we propose a digital signature
system. In this system, an MV assignment is fixed as
the ID of a user, and a CW assignment is used as its
corresponding private key. Then, a pair consisting of
the user ID and a partial CW assignment is used as a
public key. The security of the signature system is based
on the hardness of the strong NP completeness of the
crease-restore problem.

2 Preliminaries

Herein, a paper strip refers to a one-dimensional line seg-
ment with creases at every integer position. (In other
words, we ignore the thickness and width of the paper.)
The paper strip is rigid except at the creases; that is,
we are allowed to fold only along these creases at in-
teger positions. We are given a paper strip of length
n + 1 placed in the interval [0, n + 1]. (We will refer
to this state as an initial state.) We call each paper
segment between i and i+ 1 at the initial state the seg-
ment i + 1. We assume that the top and bottom sides
of the 1st segment are fixed. The paper strip is in a
folded state if each crease is folded by a degree π or
−π, and the folded strip is placed in the interval [0, 1].
The paper strip is mountain (valley)-folded at a crease
i when the ith segment and the (i + 1)st segment are
folded in the direction such that their bottom sides (top
sides, respectively) are close to touching (although they
may not necessarily touch if they have some other pa-
per layers between them). For a given paper strip, an
MV assignment at crease i is either M or V , where M
refers to a “mountain fold,” and V refers to a “valley

fold.” A folded state is feasible if the paper strip does
not penetrate itself in the given state.

We then provide formal definitions of feasibility and
MV assignment for the sake of precision. When we ob-
tain a folded state of P placed in the interval [0, 1], the
segments 1, 2, . . . , n, n+ 1 are positioned in this interval
in some proper order. We define an ordering function f
such that f(i) = j denotes that the segment i is the jth
layer in the folded state with 1 ≤ i, j ≤ n + 1. (That
is, for the first folded state [5|4|3|6|7|1|2|8|10|12|11|9]
shown in Figure 2, we have f(1) = 6, f(2) = 7, f(3) =
3, f(4) = 2, f(5) = 1, and so on.) Then, for each i
with 1 ≤ i ≤ n, the crease i (between segment i and
i+ 1) is mountain-folded in the folded state if and only
if (1) i is odd, and f(i) < f(i+ 1), or (2) i is even, and
f(i) > f(i+ 1). Inversely, the crease i is valley-folded if
and only if (3) i is odd, and f(i) > f(i+ 1), or (4) i is
even, and f(i) < f(i + 1). When the paper strip does
not penetrate itself, the creases form a nest structure.
Precisely, a folded state is feasible if and only if for any
pair of integers i and j (i 6= j) with the same parity,1

we have either

• max{f(i), f(i+ 1)} < min{f(j), f(j+ 1)} (crease i
is over j),

• max{f(j), f(j+ 1)} < min{f(i), f(i+ 1)} (crease j
is over i),

• f(i) < f(j) < f(j+1) < f(i+1), f(i) < f(j+1) <
f(j) < f(i+ 1), f(i+ 1) < f(j) < f(j + 1) < f(i),
f(i+ 1) < f(j) < f(j + 1) < f(i) (crease i pinches
j), or

• f(j) < f(i) < f(i+1) < f(j+1), f(j) < f(i+1) <
f(i) < f(j+1), f(j+1) < f(i) < f(i+1) < f(j), or
f(j + 1) < f(i) < f(i+ 1) < f(j) (crease j pinches
i).

(Consequently, the ith and jth creases should cross
when we have f(i) < f(j) < f(i + 1) < f(j + 1) or
its symmetric cases, which denotes that the paper strip
penetrates itself.)

For a given paper strip P of length n + 1, we con-
sider a feasible folded state. Then, the crease width at
crease i is defined by |f(i)− f(i+ 1)| − 1, which gives
the number of paper layers between the ith segment and
the (i+ 1)st segment joined at the crease i.

On the other hand, for a folded state, the CW assign-
ment is the assignment of crease widths to the creases.

In this study, we introduce the following crease-
restore problem. We are given partial information on
the MV and CW assignments of the creases of a folded
state of P . Then, the solution to the problem is a
folded state of P that satisfies these assignments. Pre-
cisely, the input of the crease-restore problem is com-
posed of two functions: As : [1, n] → {M,V, ∗}, and

1They satisfy the parenthesis theorem.
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Cw : [1, n] → {0, 1, . . . , n − 1, ∗}. (Note that we have
0 ≤ Cw(i) ≤ n − 1 for any 1 ≤ i ≤ n.) The problem
asks if there exists a feasible folded state of P consistent
with these two functions. Precisely, a folded state sat-
isfies these two functions if and only if for each crease i
with 1 ≤ i ≤ n, (1) it is mountain-folded if As(i) = M
or As(i) = ∗, (2) it is valley-folded if As(i) = V or
As(i) = ∗, and (3) the crease width at i is equal to
Cw(i) or Cw(i) = ∗.

Subsequently, we propose a digital signature system.
A digital signature is a mathematical or computational
scheme for verifying the authenticity of digital messages
or documents. The scheme typically consists of three al-
gorithms. A key generation algorithm selects a private
key uniformly at random from a set of possible private
keys. The algorithm outputs the private key and a cor-
responding public key. A signing algorithm then pro-
duces a signature for given a message and a private key.
Finally, a signature verifying algorithm accepts or re-
jects the message’s claim to authenticity given the mes-
sage, public key, and signature. See, e.g., [3] for further
details.

3 Computational Complexity of Crease Restore
Problem

In this part of the study, we consider a number of vari-
ants of the crease-restore problem. We first consider a
few trivial cases:

Observation 1 ([5, Proposition 1]) All instances of
the crease-restore problem are yes instances when
As(i) ∈ {M,V } and Cw(i) = ∗ for every i in
{1, 2, . . . , n}.

Proof. Intuitively, we can repeat “end folding” for each
i = 1, 2, . . . , n following As(i).2 �

Observation 2 We can solve the crease-restore prob-
lem in linear time when Cw(i) ∈ {0, 1, . . . , n − 1} and
As(i) ∈ {M,V } for every i in {1, 2, . . . , n}.

Proof. We first fix segment 1 of height 0, where the
height indicates the order of each paper segment in [0, 1]
in the final folded state. (We denote the height of seg-
ment 1 by h(1) = 0.) Then, for each i = 1, . . . , n,
we can compute the height of the segment i + 1 from
the height of the segment i by adding or subtract-
ing Cw(i). The addition or subtraction is determined
by the parity of i and As(i). Precisely, (1) h(i) =
h(i − 1) + Cw(i) + 1 if i is odd and As(i) = V , (2)
h(i) = h(i−1)+Cw(i)+1 if i is even and As(i) = M , (3)
h(i) = h(i−1)− (Cw(i)+1) if i is odd and As(i) = M ,
or (4) h(i) = h(i − 1) − (Cw(i) + 1) if i is even and

2See [1] for the definition of the end folding. In our context,
we just repeat folding along the leftmost crease line.

As(i) = V . After computation of the heights, we check
if the folded state is feasible, and if the heights have
no gaps. The folded state has no gap if and only if
there is an integer j with j ≤ 0 such that there ex-
ists exactly one paper segment of height j′ for every
j′ = j, j + 1, . . . , j + n. This consecutiveness check of
heights can be done in linear time in the same tech-
nique as in bucket sort. The feasibility can be confirmed
through checks of the nest structure. It is discussed in
[4, Sect. 3.2.3] in the context of recognition of valid lin-
ear orderings in 2D map folding. Using the technique in
[4, Sect. 3.2.3], it can be confirmed in linear time. �

Now, we turn to the main theorem in this section.

Theorem 1 The crease-retrieve problem is strongly
NP-complete when Cw(i) ∈ {0, 1, . . . , n − 1, ∗} and
As(i) ∈ {M,V } for every i in {1, 2, . . . , n}.

Proof. It is easy to see that the problem is in NP. We
prove the hardness via a reduction from the following
problem 3-Partition, which is known to be strongly
NP-complete even if B is bounded from above by some
polynomial in m [2].

3-Partition
Input: Positive integers a1, a2, a3, . . . , a3m such that∑3m

j=1 aj = mB for some positive integer B and
B/4 < aj < B/2 for 1 ≤ j ≤ 3m.

Question: Is there a partition of {1, 2, . . . , 3m} into
m subsets A1, A2, . . . , Am such that

∑
j∈Ak

aj =
B for 1 ≤ k ≤ m?

To begin with, we describe a construction of a paper
strip P for a given instance a1, . . . , a3m and B of 3-
Partition. The basic idea is slightly similar to the one
in [6].

The strip P consists of a folder part and 3m gadget
parts (Figure 3). The folder part consists of creases
in [1, 2m + 3], and each of the 3m gadget parts corre-
sponds to aj (1 ≤ j ≤ 3m), which contains 4m+28m2aj
consecutive points on the strip. That is, the total
length of P is 2m + 3 +

∑3m
j=1(4m + 28m2aj) = 3 +

2m+ 12m2 + 28m3B. In the folder part, creases i with
1 ≤ i ≤ 2m+3 form a zig-zag pattern via the MV assign-
ment VMVM · · ·MV , as shown in Figure 3. Precisely,
As(i) = V for odd i, and As(i) = M for even i. For
even i, we let Cw(i) = 0; that is, we cannot have any
paper layers in the folded state at this crease (assigned
M). For i = 1 and i = 2m+ 3, we set Cw(i) = ∗; that
is, we can have any number of paper layers in the folded
state at these creases. These two creases 1 and 2m+ 3
are called trash folders, where we will put useless paper
layers. For each i with i = 3, 5, 7, . . . , 2m + 1, we set
Cw(i) = 14m2B + 6m. We call these m creases “unit
folders.”

Now, we move to the gadget part (Figure 4). For each
integer aj , we let bj = 14m2aj . We first consider the
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Figure 3: Construction of paper strip.
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bj-1 m(MV)

Figure 4: Construction of gadget part.

mb2m

m b1 m

**

14m2B+6m

Figure 5: Overview of folding.

case that j is an odd number. Then, the jth gadget part
consists of a zig-zag pattern of length 2m + bj (which
can be represented by (VM)bj+2m in a standard rep-
resentation of string). Let sj be the first crease of the
jth gadget part (which depends on aj′ with all j′ < j).
Then, As(i) = V for even i = sj + 2k, and As(i) = M
for odd i = sj + 2k+ 1, with 0 ≤ k ≤ m+ bj/2 (we note
bj is even). This zig-zag pattern contains three parts.
We set their crease widths as follows: (1) Cw(i) = ∗
for i = sj + k for 0 ≤ k ≤ 2m, (2) Cw(i) = 0 for
i = sj + k for 2m < k < 2m + bj , and (3) Cw(i) = ∗
for i = sj + k for 2m + bj ≤ k < 2m + bj + 2m. We
call the first and third parts spring parts and the second
part bj part. Based on the requirement in (2), we can-
not put any paper layers at the creases in the bj part.
Intuitively, this part can be considered as “glued,” and
this thickness of bj should be put into some folder. On
the other hand, each of the spring parts can be split in
any way, and they can be put into any folders, including
trash folders.

We next consider the case that j is an even number.
The zig-zag pattern (MV )bj+2m is obtained via flipping
of the M and V used in the odd case. The crease widths
are identical: (1) Cw(i) = ∗ for i = sj + k for 0 ≤ k ≤
2m, (2) Cw(i) = 0 for i = sj +k for 2m < k < 2m+2bj ,
and (3) Cw(i) = ∗ for i = sj + k for 2m + 2bj ≤ k <
2m+ bj + 2m.

The construction of the paper strip P can be done in
polynomial time. Therefore, it is sufficient to show that
P can be folded into a unit length without penetration
such that each crease i satisfies the condition for the
crease width Cw(i) if and only if the instance of 3-
Partition is a yes instance.

* *

b2

b1

Figure 6: One feasible way of folding.

We first observe that most parts of P are in pleat fold-
ing MVMV · · · or VMVM · · · . As shown in Figure 5,
the folder part consists of m unit folders of crease width
14m2B+6m between two trash folders, and each gadget
corresponding to aj consists of a “glued” part of width
2bj between two springs of width 2m.3 Therefore, we
consider putting gadget parts into unit folders to fill up
each folder by exactly 14m2B + 6m layers of paper.

We first assume that the instance of 3-Partition
is a yes instance and show that P can be folded into
unit length. Because the instance is a yes instance, the
positive integers a1, a2, a3, . . . , a3m can be partitioned
into m subsets A1, A2, . . . , Am such that

∑
j∈Ak

aj = B
for 1 ≤ k ≤ m. Then, we fill the unit folders as follows
(Figure 6). We assume that a1 is put into a subset Ak′

for some k′. Then, we put the b1 gadget into the k′th
unit folder, and two paper layers for each unit folder, as

3The width here refers to the number of layers.
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shown in Figure 6. The other remaining segments in the
two springs are put into trash folders on both sides. We
can observe that these springs also act as unit folders
after putting the b1 gadget into Ak′ . Therefore, we can
repeat the same process for each a2, a3, . . . , a3m. Then,
by the assumption with bj = 14m2aj , each unit folder
Ak′ has 14m2B + 6m paper layers at its corresponding
crease. Thus, we obtain the required folded state of P .

Next, we assume that the paper strip P is folded, and
we construct a solution for 3-Partition from it. We
first observe that the total number of paper layers in the
spring parts is 3m ·4m = 12m2, which is much less than
14m2. Therefore, because each bj = 14m2aj and B/4 <
aj < B/2, if a unit folder contains 14m2B + 6m paper
layers, it is easy to see that each unit folder contains
exactly three bj parts for some bj , bj′ and bj′′ . Then,
these parts together make 14m2B paper layers because
6m is excessively small compared to each of bj , bj′ , and
bj′′ . Therefore, we have aj +aj′ +aj′′ = B for this unit.
We can use the same argument for each unit folder,
and we can construct a solution for 3-Partition, which
completes the proof. �

In fact, if the proof of Theorem 1 is considered care-
fully, it can be inferred that the MV assignment in the
proof is not necessary.

Corollary 2 The crease-retrieve problem is strongly
NP-complete when Cw(i) ∈ {0, 1, . . . , n − 1, ∗} and
As(i) = ∗ for every i in {1, 2, . . . , n}.

Proof. The reduction is identical to one given in the
proof of Theorem 1, but we provide no MV assignment
to P . When the instance of 3-Partition is a yes in-
stance, we can use the same method as that used in the
proof, and thus P can be folded into unit length in a
way that satisfies the two functions. Therefore, we as-
sume that the paper strip P is folded, and we construct
a solution for 3-Partition from it.

We first focus on the folder part. We have Cw(i) =
0 for each even i, and Cw(i) has the same value for
each i = 3, 5, 7, . . . , 2m + 1. If we valley-fold at some
even i, two consecutive unit folders have to have the
same crease width, which is impossible. On the other
hand, if we mountain-fold at some odd i, we cannot have
Cw(i− 1) = Cw(i+ 1) = 0. Therefore, the folder part
should make a pleat folding.

Next, we focus on the gadget part for aj . In this part,
we have consecutive bj+1 creases i with Cw(i) = 0. For
the same reason as for the folder part, we can observe
that this part should make a pleat folding to satisfy the
condition. Then, to satisfy the crease-width conditions
in all unit folders, this part has to be put into some unit
folder to contribute to its crease width by bj .

Therefore, we can use the same argument as that
applied in the proof of Theorem 1, and obtain the
claim. �

4 Application to Digital Signature System

1

2
3

1
2
3 1

2
3

1
2
3

1
2

3
1
2

3

Figure 7: Six ways of folding a strip of length three.

In this section, we propose a digital signature sys-
tem. The security of this system relies on the compu-
tational complexity of the crease-retrieve problem. We
first observe the complexity of the stamp-folding prob-
lem in [5]. It is easy to see that one folded state can be
represented by a permutation of [1, n + 1]. For exam-
ple, a strip of length three has 3! = 6 ways of folding
(Figure 7), which can be represented by [1|2|3], [1|3|2],
[3|1|2], [3|2|1], [2|3|1], and [2|1|3]. However, when n is
large, some of the permutations will cause penetrations.
In general, the following is known.

Theorem 3 ([5]) For a random MV assignment (of
length n) for a paper strip of length n+ 1, the expected
number of ways of folding is Ω(1.53n).

We note that Ω(1.53n) is the theoretical lower bound;
by contrast, it is Θ(1.65n) experimentally.

Therefore, when we generate a random MV assign-
ment of length n, there are Ω(1.53n) permutations of
[1, n + 1] corresponding to feasible folded states that
satisfy the MV assignment. When we give a proper se-
quence of crease widths of length n, the folded state of
the paper strip can be reconstructed in linear time by
Observation 2. On the other hand, when a part of the
sequence of crease widths is given, finding the folded
state is NP-complete because its decision problem is
NP-complete by Theorem 1. Based on the aforemen-
tioned observation, we can propose the following digital
signature system with a public key cryptosystem.

As a preparation, every user first fixes a unique ID
from a random MV assignment A of length n. This ID
is a part of the public key.

4.1 Key generation algorithm G

From the MV assignment A, the algorithm G first gen-
erates a feasible folded state F (A), which can be rep-
resented by a permutation pn of [1, n+ 1]. An efficient
algorithm that generates F (A) from A can be obtained
via modification of an algorithm in [6].

In [6], the authors show an algorithm for finding the
folded state that achieves the minimum total crease
width, which is defined by

∑n
i=1 Cw(i), for a given MV

assignment. The algorithm in [6] enumerates all feasible
folded states for a given MV assignment, and it is proved
that this algorithm shows that finding the minimum to-
tal crease width is fixed parameter tractable. That is,
for a given MV assignment, the algorithm finds a feasi-
ble folded state in polynomial time if its minimum total
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crease width is a constant. Therefore, we modify this
algorithm and construct a feasible folded state F (A) for
an MV assignment A, as follows:

(0) We first initialize the folded state F (A) by a segment
[0, 1].

(1) We then add the last line segment at the last crease
i such that As(i) = R, where R is M or V specified by
the ith assignment in A.

(2) We put the last line segment in the interval [0, 1].
The height of the last segment is chosen at random from
the feasible positions. Go to step (1) if the length of the
paper strip is not exhausted.

Intuitively, we fold the last line segment according to
A and put it in one of the feasible places at random
in the current (partial) folded state. In the last step
(2), we have to check the nest structure of the current
folded paper strip to find the feasible positions. Using
the technique in [4, Sect. 3.2.3], it can be done in linear
time. Thus our algorithm for key generation runs in
O(n2) time, where n+ 1 is the length of the paper strip
P .

The folded state F (A) of P can be represented by
the corresponding permutation pn. Because n! ∼√

2πn(n/e)n by the Stirling Formula, pn requires
O(n log n) bits in a binary string.

Now, we turn to the generation of the public key.
From the permutation pn, we can generate the CW as-
signment C(A) = (c1, c2, . . . , cn), where ci is an inte-
ger in [0, n − 1]. We then randomly replace some of
these integers by ∗ and obtain a sequence C∗(A) =
(c∗1, c

∗
2, . . . , c

∗
n), where c∗i is an integer in [0, n − 1] or

a symbol ∗.4
Then, we make a pair (A,C∗(A)) the public key of

this user. We note that A is a binary number of n
bits that is fixed for each user and that C∗(A) will
be used once and then thrown away. It is easy to see
that C∗(A) can be encoded by a binary string of length
O(n log n). (Because the number of ways of folding is
Θ(3.3n), which is much less than n!, we can theoretically
reduce it to O(n) bits.) We will use the CW assignment
C(A) as the signature key.

That is, for an MV assignment A, the corresponding
public key is (A,C∗(A)), where C∗(A) is partial infor-
mation about the CW assignment C(A) of a folded state
F (A) for A. By Theorem 1, reconstruction of the folded
state F (A) (and thus C(A)) from (A,C∗(A)) is strongly
NP-complete in general.

4.2 Signature protocol

We suppose Alice is sending a message T to Bob. Let
(A,C∗(A)) be the public key of Alice, which Bob knows.
Alice first gives notice of sending a message to Bob, and

4This random part is crucial for the security in this system.
The details are discussed in Concluding Remarks.

then updates C(A) by C ′(A) (to prevent spoofing by
Bob). Then, Alice sends the message (T,C(A)). Bob
can confirm the reliability of the message T by check-
ing C∗(A), which is partial information about C(A) be-
cause it is NP-complete to restore C(A) from C∗(A) by
Theorem 1. Once Bob has received and confirmed the
message T , the C(A) is discarded.

4.3 Discussions

For a given random MV assignment A, the expected
number of folded states F (A) (and thus C(A)) is
Ω(1.53n). Therefore, each user has exponentially many
candidates for C(A). We also note that no pair of
distinct MV assignments A and B produces the same
folded state F (A) = F (B); the same is true for CW
assignments. Therefore, we never have C(A) = C(B)
unless they share the same ID.

By Corollary 2, we can use the same system even if
we remove A from the public key (A,C∗(A)). In this
case, the public key is just C∗(A), and only Bob can
know that Alice is the person who has the public key
C∗(A), which is made from C(A). This system can be
used for some kinds of anonymous communication.

5 Concluding Remarks

In this study, we introduce the crease-restore problem
and investigate its computational complexity. As inves-
tigated in [5], an MV assignment is not sufficient for de-
termining the folded state of a strip of a paper. On the
other hand, an MV assignment and a CW assignment
are sufficient for determining the folded state. When we
provide partial information on the CW assignment, the
decision problem is NP-complete, whether we provide a
full MV assignment or provide no MV assignment. One
interesting open question is whether we can determine
the folded state of a strip of paper when only a (full)
CW assignment is given.

From the viewpoint of the proposed digital signa-
ture system, some specific MV assignment A has a few
folded states, although there exists at least one folded
state F (A). It is known that A is a pleat folding (i.e.,
MVMV · · · or VMVMV · · · ) if and only if A has only
one folded state. The characterization of the number of
folded states for a given MV assignment remains open
in the context of the stamp-folding problem.

In our framework, for a given CW assignment C(A) =
(c1, c2, . . . , cn), which is a secret key, the method for
generating the public key C∗(A) = (c∗1, c

∗
2, . . . , c

∗
n) is

another problem that needs to be resolved. If we mask
a few numbers in C(A), it can be restored from C∗(A)
by brute force. On the other hand, when we mask too
many numbers in C(A), we may have some risk that
C∗(A) = C∗(A′) for different MV assignmentsA andA′.
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Finding a reasonable method (based on experiments) for
masking C(A) will be pursued in future research.
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Quantitative Helly-type Theorems via Hypergraph Chains

Attila Jung*

Abstract

We propose a combinatorial framework to analyze quan-
titative Helly-type questions. Using this framework,
we prove a Quantitative Fractional Helly Theorem with
Fractional Helly Number 3d and a stability version of
the Quantitative Helly Theorem of Bárány, Katchalski
and Pach.

1 Introduction

Two directions in the study of Helly-type Theorems
are quantitative and abstract questions. Quantitative
results concern intersection patterns of convex sets in
some specific space, originally Rd, where instead of find-
ing points in the intersection, one bounds the size, for
example the volume or the diameter of the intersection.
Abstract results, on the other hand, study more general
structures, e.g. hypergraphs, with certain properties
that capture some essential aspects of the behavior of
convex sets. In this note, we connect the two.

First, consider the Quantitative Volume Theorem.

Theorem 1 [Bárány, Katchalski and Pach [3]] As-
sume that the intersection of any 2d members of a fi-
nite family of convex sets in Rd is of volume at least
one. Then the volume of the intersection of all mem-
bers of the family is of volume at least c(d), a constant
depending on d only.

In [3], it is proved that one can take c(d) = d−2d2 and
conjectured that it should hold with c(d) = d−cd for
an absolute constant c > 0. Theorem 1 was confirmed
with c(d) ≈ d−2d by Naszódi [14], whose argument was
refined by Brazitikos [4], who showed that one may take
c(d) ≈ d−3d/2. For more on quantitative Helly-type
results, see the surveys [6, 8].

Helly’s theorem may be stated in the language of hy-
pergraphs as follows. Let V be a finite family of convex
sets in Rd, and call a subset of V an edge of our hy-
pergraph, if the intersection of the corresponding con-
vex sets is not empty. Helly’s theorem states that if all
(d + 1)-tuples of a subset S of V are edges of the hy-
pergraph, then so is S. Observe that Theorem 1 cannot
be translated to the same language, as two hypergaphs
are involved: in one, the edges correspond to families of

*Institute of Mathematics, Loránd Eötvös University,
jungattila@gmail.com

convex sets whose intersection is of volume at least one,
and in the other, this volume is at least c(d). The goal
of this note is to provide a combinatorial framework in
which Theorem 1, and other quantitative results can be
translated.

The Colorful Helly Theorem found by Lovász [12]
(and with the first published proof by Bárány [2]) states
the following. If C1, . . . , Cd+1 are finite families (color
classes) of convex sets in Rd, such that for any color-
ful selection C1 ∈ C1, . . . , Cd+1 ∈ Cd+1, the intersection
d+1⋂
i=1

Ci is non-empty, then for some j, the intersection⋂
C∈Cj C is also non-empty.

In [5], the following quantitative variant is shown.

Theorem 2 [Damásdi, Földvári and Naszódi [5]] Let
C1, . . . , C3d be finite families of convex sets in Rd. As-
sume that for any colorful selection C1 ∈ C1, . . . , C3d ∈

C3d, the intersection
3d⋂
i=1

Ci is of volume at least one.

Then, there is a j with 1 ≤ j ≤ 3d such that

vol

( ⋂
C∈Cj

C

)
≥ d−cd2 with a universal constant c > 0.

The Fractional Helly Theorem due to Katchalski and
Liu [11] (see also [13, Chapter 8]) is another classical
Helly-type result, which states the following. Fix a di-
mension d, and an α ∈ (0, 1), and let C be a finite fam-
ily of convex sets in Rd with the property that among
the subfamilies of C of size d + 1, there are at least
α
( |C|
d+1

)
for whom the intersection of the d+ 1 members

is nonempty. Then, there is a subfamily C′ ⊂ C of size
|C′| ≥ α

d+1 |C| such that the intersection of all members
of C′ is nonempty.

In [10], the following quantitative variant of the Frac-
tional Helly Theorem is shown.

Theorem 3 [Jung and Naszódi [10]] For every dimen-
sion d ≥ 1 and every α ∈ (0, 1), there is a β ∈ (0, 1)
such that the following holds.
Let C be a finite family of convex sets in Rd. Assume
that among all subfamilies of size 3d + 1, there are at
least α

( |C|
3d+1

)
for whom the intersection of the 3d + 1

members is of volume at least one.
Then, there is a subfamily C′ ⊂ C of size at least β|C|

such that vol

( ⋂
C∈C′

C

)
≥ d−cd

2

with a universal con-

stant c > 0.
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In Theorems 1, 2 and 3, the cardinalities 2d, 3d and
3d+ 1 appear, respectively. It is easy to verify (cf. [3])
that Theorem 1 does not hold with any number below
2d, which implies the same lower bound for the other
two theorems. No better lower bounds are known.

Turning to abstract results, we describe Helly’s The-
orem and the Fractional and Colorful Helly Theorems
in the language of hypergraphs. Let V be a (possibly
infinite) set. A hypergraph on the base set V is any fam-
ily of its subsets, H ⊂ 2V . A hypergraph is downwards
closed, if H ∈ H and G ⊂ H implies G ∈ H. A down-
wards closed hypergraph H has Helly Number h, if for
every finite subset S ⊂ V the relation

(
S
h

)
⊂ H implies

S ∈ H. Now let us denote the family of convex sets of
Rd as Cvx(d) and the hypergraph which contains the
subfamilies of convex sets with nonempty intersection
by Kd = {C ⊂ Cvx(d) : ∩C∈CC 6= ∅}. Helly’s Theorem
says that Kd has Helly-number d+ 1.

A downwards closed hypergraph H over a base set V
has Fractional Helly Number k, if there exists a function
β : (0, 1) → (0, 1) such that whenever S ⊂ V is a finite

subset such that
∣∣∣H ∩ (Sk)∣∣∣, the number of edges of H

of size k in S is at least α
(|S|
k

)
with an α ∈ (0, 1), then

there exists a subset S′ ⊂ S of size at least β|S| such
that S′ ∈ H. The Fractional Helly Theorem says, that
Kd has Fractional Helly Number d+ 1.

We turn to phrasing the Colorful Helly Theorem in
an abstract setting. Let S1, . . . , Sk ⊂ V be (not neces-
sarily disjoint) subsets of a base set V , which we will call
color classes. We call a set F ⊂ V a colorful selection
from these color classes, if F contains one element from
each color class. Very formally, to clarify how elements
belonging to multiple color classes are handled, we say
that F ⊂ V is a colorful selection, if there is a surjective
map φ : [k] −→ F with φ(i) ∈ Si for all i ∈ [k]. We
denote the set of colorful selections by S1 ⊗ . . .⊗ Sk.

A downwards closed hypergraph H over a base set V
has Colorful Helly Number k, if for every k finite subset
S1, . . . , Sk ⊂ V such that (S1 ⊗ . . . ⊗ Sk) ⊆ H, there
exists a color class Sj with Sj ∈ H. The Colorful Helly
Theorem says that Kd has Colorful Helly Number d+1.

Alon, Kalai, Matoušek and Meshulam [1] considered
Helly-type results in the abstract setting. They showed,
that if a hypergraph has bounded Fractional Helly Num-
ber, then it also has the so called (p, q) property (see the
definition in [1]). Holmsen [9] showed that if a hyper-
graph has Colorful Helly Number k, then it has Frac-
tional Helly Number at most k. In this sense, the Frac-
tional Helly Theorem can be deduced from the Colorful
Helly Theorem with a purely combinatorial proof. Note
that Holmsen’s result does not immediately imply a sim-
ilar relationship between Theorem 2 and Theorem 3,
because there are two different kinds of intersection of
convex sets (sets intersecting in volume one and sets

intersecting in volume d−cd
2

).

We introduce the notion of hypergraph chains, and
our first main result, Theorem 8 states that Holmsen’s
result extends to hypergraph chains, and, as a result,
it can be applied in the context of quantitative Helly-
type questions. It follows (see Corollary 12) that in
Theorem 3 we can decrease the number 3d + 1 to 3d
(at the expense of a bigger loss of volume). Our second
main result, Theorem 9 states that Theorem 1 is stable:
one does not need to check that all 2d-tuples of the
given convex sets have intersection of volume at least
one. Instead, it is sufficient to verify it for almost all of
them to obtain that almost all have an intersection of
some positive volume.

Quantitative Helly-type theorems are considered in
[7, 15, 16] with the focus on convex sets in Rd, or the
lattice Zd, or sets in topological spaces with particular
topological properties. To our knowledge, ours is the
first attempt to address quantitative Helly-type ques-
tions in the general context of hypergraphs in the spirit
of the results of [1] and [9].

2 Hypergraph Chains

Definition 4 Let V be a (possibly infinite) set. The
infinite sequence (H`)`∈Z of hypergraphs over the base
set V is a hypergraph chain, if every H` is downwards
closed and for all ` ∈ Z, H` ⊂ H`+1.

If V = Cvx(d) and H` = Kd for all `, then (H`)`∈Z
is a hypergraph chain. A more interesting example is
when V = Cvx(d), v ∈ (0, 1) a real number and for an
` ∈ Z, a family of convex sets from Rd is an edge in H`,
if and only if their intersection is of volume at least v`.
We will denote this hypergraph by Qd

(
v`
)
.

Definition 5 A hypergraph chain (H`)`∈Z over a base
set V has Helly Number h, if for every S ⊆ V ,

(
S
h

)
⊂ H`

implies S ∈ H`+1.

According to this definition, (Kd)`∈Z has Helly Num-
ber d+ 1.

More interestingly, Theorem 1 states that if v ≈
d−3d/2, then

(
Qd
(
v`
))
`∈Z has Helly Number 2d.

Definition 6 A hypergraph chain (H`)`∈Z over a base
set V has Colorful Helly Number k, if whenever
S1, . . . , Sk are finite subsets (color classes) of V and
S1 ⊗ . . . ⊗ Sk ⊂ H`, then there is a color class Sj with
Sj ∈ H`+1.

Note that by taking S1 = S2 = ... = Sk = S, a hy-
pergraph chain with Colorful Helly Number k has Helly
Number h ≤ k.

According to the definition, (Kd)`∈Z has Colorful
Helly Number d+ 1.

More interestingly, the Quantitative Colorful Helly
Theorem, Theorem 2 may be stated as follows. If v =
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d−cd
2

from Theorem 2, then
(
Qd
(
v`
))
`∈Z has Colorful

Helly Number 3d.

Definition 7 A hypergraph chain (H`)`∈Z over a base
set V has Fractional Helly Number k, if there exists a
function β : (0, 1)→ (0, 1) such that for every finite set

S ⊂ V , if |H` ∩
(
S
k

)
| ≥ α

(|S|
k

)
with some α ∈ (0, 1),

then there exists an S′ ⊂ S with |S′| ≥ β(α)|S| and
S′ ∈ H`+1.

As in the previous two cases, (Kd)`∈Z has Fractional
Helly Number d + 1 and Theorem 3 states, that if v =
d−cd

2

from Theorem 3, then
(
Qd
(
v`
))
`∈Z has Fractional

Helly Number 3d+ 1.
Now we are ready to state our main result, which is

a quantitative analogue of Theorem 3 from [9].

Theorem 8 If the hypergraph chain (H`)`∈Z has Col-
orful Helly Number k, then (H(k+1)`)`∈Z has Fractional
Helly Number k.

Here, the obtained Fractional Helly Number is the
same as the assumed Colorful Helly Number, but not
for the exact same hypergraph chain: we can only take
every (k + 1)th element from the original chain. Can
the Fractional Helly number go below the Colorful Helly
number? If for a hypergraph chain the Helly Number is
smaller than the Colorful Helly Number, the answer is
a partial yes.

Theorem 9 If the hypergraph chain (H`)`∈Z has Helly
Number h and Colorful Helly Number k ≥ h, then there
exists a function β : (0, 1) → [0, 1) with limα→1 β(α) =
1 such that for every finite set S ⊂ V , if |H` ∩

(
S
h

)
| ≥

α
(|S|
h

)
with some α ∈ (0, 1), then there exists an S′ ⊂ S

with |S′| ≥ β(α)|S| and S′ ∈ H`+3.

We can interpret this result as a stability version of the
Helly property (under some additional assumptions),
since limα→1 β(α) = 1.

As far as we know, the best possible β here might
assign 0 to a large fraction of αs from (0, 1), this is the
difference from hypergraph chains with Fractional Helly
Number h, where this is not possible. But at least, if α
is very close to 1, then β(α) is also close to 1.

3 Proof of Theorems 8 and 9

Let us begin with an analogue of Lemma 3.1 from [9].
We denote by ωh(H`|S) the size of the largest h-clique
of S, ie. the size of the largest subset K ⊂ S such that(
K
h

)
⊂ H`.

Lemma 10 Let (H`)`∈Z be a hypergraph chain with
Helly Number h and Colorful Helly Number k over a
base set V . Then for every finite subset S ⊂ V , we
have

(a)
∣∣∣(Sk) \ H`∣∣∣ ≥ ( 1

k (|S|−ωk(H`+1|S))
k

)
, and

(b)
∣∣∣(Sh) \ H`∣∣∣ ≥ (kh)−1( 1

h (|S|−ωh(H`+2|S))
h

)
.

Proof. Note that h ≤ k holds for every hypergraph
chain of Helly Number h and Colorful Helly Number k.
Fix ` ∈ Z.

For the proof of part (a), let {M1, . . . ,Mt} ⊂
(
S
k

)
\

H`+1 be a maximal size family of disjoint missing edges
from H`+1, each of size k. By the maximality of this

family, we have
(
S\(M1∪...∪Mt)

k

)
⊂ H`+1, and thus,

ωk(H`+1|S) ≥ |S \ (M1 ∪ . . .∪Mt)| = |S| − tk or, equiv-
alently,

t ≥ 1

k
((|S| − ωk(H`+1|S))). (1)

Consider a selection I ∈
(

[t]
k

)
of k indices. Since each

Mi is a missing edge fromH`+1, we have that {Mi : i ∈
I} is a family of k color classes, such that neither one
is contained in H`+1. Since (H`)`∈Z has Colorful Helly
Number k, there is a colorful selection {vi : i ∈ I} ⊂ V
of vertices (that is, vi ∈ Mi for all i ∈ I) such that
{vi : i ∈ I} is not an edge in H`.

Observe that if I1, I2 ∈
(

[t]
k

)
are distinct selections of

indices, then, by the disjointness of the Mj , we have
that {vi : i ∈ I1} 6= {vi : i ∈ I2}. Thus, we found

(
t
k

)
members of

(
S
k

)
\ H`, completing the proof of part (a).

For the proof of part (b), let {M1, . . . ,Mt} ⊂
(
S
h

)
\

H`+2 be a maximal size family of disjoint missing edges
from H`+2, each of size h. Similarly to the argument in
part (a), we have

t ≥ 1

h
((|S| − ωh(H`+2|S))). (2)

Consider a selection I ∈
(

[t]
k

)
of k indices. Again, as

in the proof of part (a), since (H`)`∈Z has Colorful Helly
Number k, there is a colorful selection {vi : i ∈ I} ⊂ V
of vertices from the color classes {Mi : i ∈ I} such
that {vi : i ∈ I} is not an edge in H`+1. By the Helly
property, there is a J ∈

(
I
h

)
and an F ∈

(
S
h

)
\ H` such

that |F ∩Mj | = 1 for every j ∈ J . Any fixed J ∈
(

[t]
h

)
can appear at most

(
t−h
k−h
)

times in this way. Moreover,

any fixed F ∈
(
S
h

)
\ H` may appear for only one J , so

there are at least
(
t
k

)
/
(
t−h
k−h
)

=
(
t
h

)
/
(
k
h

)
missing edges

F ∈
(
S
h

)
\ H`, which combined with (2) completes the

proof of part (b) of Lemma 10. �

Proof. [of Theorem 9] Fix ` ∈ Z and assume that the
largest edge of H`+3 in S is of size at most (1 − ε)|S|
for some ε > 0. Since (H`)`∈Z has Helly Number h, this
implies ωh(H`+2|S) ≤ (1− ε)|S|. Part (b) of Lemma 10

yields
∣∣∣(Sh) \ H`∣∣∣ ≥ (kh)−1(ε|S|/h

h

)
≥ δ ·

(|S|
h

)
with some

δ = δ(ε, k, h) > 0. Thus, if β(α) ≤ 1−ε, then α ≤ 1−δ,
proving Theorem 9. �
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In order to prove Theorem 8, we need the following
technical lemma, which is an analogue of Lemma 3.2
from [9] and can be proved using part (a) of Lemma 10.

Lemma 11 Let (H`)`∈Z be a hypergraph chain over a
base set V with Colorful Helly Number k. Let S ⊂ V
be a finite subset with |S| = n large enough. If for a
t ∈ Z and c ∈ (0, 1) the inequality ωk(Ht+1|S) ≤ cn/2
holds, then given any i ∈ [k] and a family Fi ⊂

(
S
i

)
with

|Fi| ≥ c
(
n
i

)
there exists another family Fi−1 ⊂

(
S
i−1

)
and an M ∈

(
S
k

)
\ Ht such that |Fi−1| ≥

(
c

12k2

)k ( n
n−1

)
and A ∪ {v} ∈ Fi for all A ∈ Fi−1 and v ∈M .

Proof. For every A ∈
(
S
i−1

)
let ΓA = {v ∈ S : (A ∪

{v}) ∈ Fi} and let

P =

{
(A,M) : A ∈

(
S

i− 1

)
,M ∈

(
ΓA
k

)
\ Ht

}
.

We want to lower bound |P|. By part (a) of
Lemma 10, for a fixed A ∈

(
S
i−1

)
there are at least( 1

k (|ΓA|−(c/2)n)
k

)
distinct M ∈

(
ΓA

k

)
\ Ht such that

(A,M) ∈ P. Jensen’s inequality gives

|P| ≥
∑

A∈( S
i−1)

( 1
k (|ΓA| − (c/2)n)

k

)

≥
(

n

i− 1

)(( n
i−1

)−1 1
k

∑
A∈( S

i−1)
(|ΓA| − (c/2)n)

k

)
.

Since∑
A∈( S

i−1)

|ΓA| = i|Fi| ≥ ic
(
n

i

)
> (n− i)c

(
n

i− 1

)
,

we get∑
A∈( S

i−1)

(|ΓA| − (c/2)n) > (n−i)c
(

n

i− 1

)
−(c/2)n

(
n

i− 1

)
,

and thus

|P| ≥
(

n

i− 1

)(nc
2k −

ci
k

k

)
.

If n is large enough compared to i and k, then

|P| ≥
( c

12k2

)k ( n

i− 1

)(
n

k

)
.

Since there are
(
n
k

)
possible M ∈

(
S
k

)
, there is an M

with at least
(

c
12k2

)k ( n
i−1

)
different A ∈

(
S
i−1

)
such that

(A,M) ∈ P. These A will form Fi−1. �

Proof. [of Theorem 8] We are given α ∈ (0, 1), and our
goal is to find the corresponding β ∈ (0, 1) satisfying

Definition 7. Let f(x) =
(

x
12k2

)k
, α0 = α, αi+1 = f(αi).

We will show that β = αk−1 is a good choice. Fix ` ∈ Z
and suppose for a contradiction that

∣∣∣H` ∩ (Sk)∣∣∣ ≥ α(nk),
but H`+k+1 has no edge of size at least βn inside S.
Since (H`)`∈Z has Colorful Helly Number k, it has Helly
Number at most k, so H`+k+1 having no edge of size at
least βn implies ωk(H`+k|S) < βn.

Set Fk = H` ∩
(
S
k

)
. Since (H`)`∈Z is a hypergraph

chain, Fk ⊂ H`+i for all i ≥ 0, in particular, Fk ⊂ H`+k.
We have |Fk| ≥ α

(
n
k

)
and ωk(H`+k|S) < βn ≤ (α/2)n,

so we can apply Lemma 11 with t = `+k−1 and c = α
to obtain an Fk−1 ⊂

(
S
k−1

)
with |Fk−1| ≥ α1

(
n
k−1

)
and

an M1 ∈
(
S
k

)
\ H`+k−1 such that A ∪ {v} ∈ Fk for all

A ∈ Fk−1 and v ∈M1. Now, we have |Fk−1| ≥ α1

(
n
k−1

)
and ωk(H`+k−1|S) ≤ ωk(H`+k|S) < βn ≤ (α1/2)n and
we can apply Lemma 11 again, this time with t = ` +
k − 2 and c = α1, to obtain an Fk−2 ⊂

(
S
k−2

)
with

|Fk−2| ≥ α2

(
n
k−2

)
and an M2 ∈

(
S
k

)
\ H`+k−2 such that

(A ∪ {v}) ∈ Fk−1 for all A ∈ Fk−2 and v ∈ M2. Note
that (A ∪ {v1, v2}) ∈ Fk = H` ∩

(
S
k

)
for all A ∈ Fk−2,

v1 ∈M1, v2 ∈M2.
After repeating this process k−1 times, we obtain an

F1 ⊂
(
S
1

)
with |F1| ≥ αk−1n = βn and M1, . . . ,Mk−1 ∈(

S
k

)
\ H`+1 such that A ∪ {v1, . . . , vk−1} ∈ H` ∩

(
S
k

)
for all A ∈ F1, v1 ∈ M1, . . . , vk−1 ∈ Mk−1. Since

ωk(H`+1|S) < βn, there must be an Mk ∈
(
V (F1)
k

)
\

H`+1. But regarding M1, . . . ,Mk as color classes,
(H`)`∈Z having Colorful Helly-number k yields a con-
tradiction, since M1 ⊗ . . . ⊗Mk ⊂ H`, but there is no
color class Mi ∈ H`+1. �

4 Consequences for Quantitative Theorems

If v = d−cd
2

from Theorem 2, then
(
Qd
(
v`
))
`∈Z has

Colorful Helly Number 3d by Theorem 2, so the follow-
ing Corollary follows from Theorem 8.

Corollary 12 For every dimension d ≥ 1 and every
α ∈ (0, 1), there is a β ∈ (0, 1) such that the following
holds.
Let C be a finite family of convex sets in Rd. Assume
that among all subfamilies of size 3d, there are at least
α
(|C|

3d

)
for whom the intersection of the 3d members is

of volume at least one.
Then, there is a subfamily C′ ⊂ C of size at least β|C|

such that vol

( ⋂
C∈C′

C

)
≥ d−cd

3

with a universal con-

stant c > 0.

Proof. The above claim is equivalent to saying that(
Qd
(
v`
))
`∈Z has Fractional Helly Number 3d, if v =

d−c
′d3 with a universal constant c′. Theorem 2 states

that
(
Qd
(
v`
))
`∈Z has Colorful Helly Number 3d, if

v = d−cd
2

as in Theorem 2. By applying Theorem 8
to the latter Hypergraph Chain, we can conclude, that
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(
Qd
(
v(3d+1)`

))
`∈Z has Fractional Helly Number 3d and

v = d−cd
2

. But this is equvivalent to
(
Qd
(
v`
))
`∈Z hav-

ing Fractional Helly Number 3d if v = d−c
′d3 . �

This is a slight improvement on the Fractional Helly
Number, which was 3d + 1 in Theorem 3. Can we go
below 3d? Theorem 9 implies at least a stability version
of the Quantitative Helly Theorem with Helly Number
2d as follows.

Corollary 13 For every positive integer d there exists
a function β : (0, 1)→ [0, 1) with limα→1 β(α) = 1 such
that the following holds.
Let C be a finite family of convex sets in Rd. Assume
that among all subfamilies of size 2d, there are at least
α
(|C|

2d

)
for whom the intersection of the 2d members is

of volume at least one.
Then, there is a subfamily C′ ⊂ C of size at least β|C|

such that vol

( ⋂
C∈C′

C

)
≥ d−cd

2

with a universal con-

stant c > 0.

Proof. Since
(
Qd
(
v`
))
`∈Z, with v = d−cd

2

from The-
orem 2, has Helly Number 2d by Theorem 1 and Col-
orful Helly Number 3d by Theorem 2, we can apply
Theorem 9. The assumption of Corollary 13 states
that for a finite subset of convex sets C, the inequal-

ity
∣∣∣Qd(v0) ∩

( C
2d

)∣∣∣ ≥ α
(|C|

2d

)
holds with some α ∈ (0, 1),

where v can be v = d−cd
2

from Theorem 2. Theorem 9
yields a subfamily C′ ⊂ C with C′ ∈ Qd(v3) and |C′| ≥
β(α)|C|, where β is the function from Theorem 9. For

C′, the inequality vol

( ⋂
C∈C′

C

)
≥
(
d−cd

2
)3

= d−3cd2

holds. �

5 Remarks

The following questions are left open.

Conjecture 1 For every dimension d, there is a v =
v(d) ∈ (0, 1), such that

(
Qd
(
v`
))
`∈Z has Fractional

Helly Number 2d.

Conjecture 2 For every dimension d, there is a v =
v(d) ∈ (0, 1), such that

(
Qd
(
v`
))
`∈Z has Colorful Helly

Number 2d.

Our Theorem 8 shows that proving Conjecture 2
would also confirm Conjecture 1.
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Online Square Packing with Rotation

Shahin Kamali* Pooya Nikbakht�

Abstract

We consider the square packing problem, where the goal
is to place a multiset of square items of different side-
lengths in (0, 1] into a minimum number of square bins
of uniform side-length 1. We study the problem under
the online setting, where the multiset of items forms
a sequence revealed in an online and sequential man-
ner. An online algorithm must place each item into a
square bin without prior knowledge of the forthcoming
items. Most existing results assume square items are
placed orthogonally to the square bins (that is, parallel
to the sides of the bins). In the presence of rotation,
Kamali and Nikbakht [COCOA 2020] proved that the
offline problem is NP-hard and admits an APTAS in an
augmented setting. This paper investigates the online
problem when item rotation is allowed. We introduce a
linear-time algorithm that achieves an asymptotic com-
petitive ratio of 2.306 when square-items have any size
x ∈ (0, 1], and a better asymptotic competitive ratio of
1.732 when x ∈ (0, 1/2]. We also study another prob-
lem where items, instead of squares, are isosceles right
triangles (half-squares) and present a linear-time online
algorithm with an asymptotic competitive ratio of at
most 1.897.

1 Introduction

An instance of the square packing problem is defined
with a multiset of squares-items of different sizes in the
range (0, 1]. The goal is to place these squares into a
minimum number of unit square-bins in a way that two
square items placed in the same square bin do not in-
tersect. At the same time, they can still “touch” each
other. The problem is a generalization of the classical
bin packing problem into two dimensions, and we some-
times refer to the squares-items simply as “items” and
square-bins as “bins.” A square item can be recognized
by its side-length, which we refer to as the size of the
square.
In the offline setting, all square-items are given in ad-

vance, and the algorithm can process them as a whole
before placing any item into a bin. In particular, the
algorithm can sort squares in decreasing order of their

*Department of Electrical Engineering and Computer Science,
York University, Toronto, Canada, kamalis@yorku.ca

�Department of Computer Science, University of Manitoba,
Winnipeg, Canada, nikbakhp@myumanitoba.ca

sizes, which comes in handy in designing algorithms. In
the online setting, the multi-set of items forms a se-
quence which is revealed online and sequentially. When
an item is revealed, an online algorithm must place it
into a square bin without prior knowledge of forthcom-
ing items. The decisions of an online algorithm are ir-
revocable.

Square packing has many applications in practice.
One application is cutting stock where bins represent
stocks (e.g., wood boards) and items are requests to
squares of specific sizes. When requests arrive, an al-
gorithm must cut the stock to provide the pieces that
match the requests. This cutting process is equivalent
to placing items into bins. Note that cutting stock aims
to minimize the number of stocks, which also matches
a square packing goal. We note that in many practical
applications, requests arrive in an online manner, and
the stock should be cut without prior knowledge about
future requests. It is needless to say that the cutting
process is irrevocable, which gives an inherently online
nature to these applications of square packing.

There has been a rich body of research around square
packing. All existing results except for recent work on
the offline problem by Kamali and Nikbakht [20] assume
that squares are not allowed to rotate; that is, the sides
of square-items should be parallel to the square-bins.
While this assumption makes the combinatorial analysis
of the problem more straightforward, it comes at a cost.
For example, consider an instance of the problem formed
by n items of size 0.36. If we do not allow rotation, any
bin can include at most four items, giving any algorithm
a total cost of n/4. Allowing rotation, however, five
items fit in each bin, and we can reduce the cost to
n/5 (see Figure 1). As a result, the number of required
bins is decreased by n/20, which is a notable saving in
practice, e.g., for cutting stock applications.

In [20], it was proved that the offline problem is NP-

Figure 1: If all items have a length 0.36, allowing rota-
tion helps pack 5 items per bin instead of 4.
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complete in the presence of rotation and admits an AP-
TAS in an augmented setting, where the bins of the
online algorithm are slightly larger than those of the
optimal offline algorithm. In this paper, we consider
the online square packing problem with rotation:

Definition 1 In the online square packing with rota-
tion, the input is a sequence σ = ⟨a1, a2, . . . , an⟩ which
is revealed in an online manner. At time-step t, the
value of at is revealed, and an online algorithm has to
place a square of size at into a bin, using any degree of
transition and rotation, such that no two items in the
same bin intersect (they can touch). The algorithm’s
decisions are irrevocable and are made without knowing
the values of at′ for t

′ > t. The goal is to pack all square
bins into a minimum number of squares of unit size.

The asymptotic competitive ratio is the standard
method for analyzing online packing problems. An al-
gorithm A has a competitive ratio of c if there exists a
constant c0 ≥ 0 such that, for all n and for all input
sequences σ of length n, we have A(σ) ≤ c ·Opt(σ)+ c0
where A(σ) and Opt(σ) denote the costs of A and an
optimal offline algorithm Opt (with unbounded com-
putational power) for processing σ, respectively.

1.1 Related Work

The 1-dimensional bin packing has been studied exten-
sively in offline and online settings (e.g., [13, 12, 6, 7, 18,
1]). In the 1-dimensional setting, each item has a size in
(0, 1], and each bin has a capacity of 1. The offline, 1-
dimensional bin packing problem is NP-hard [13], and
the best existing result is an algorithm that opens at
most Opt(σ) + O(logOpt(σ)) bins σ [16]. In the on-
line setting, the best existing algorithm has a compet-
itive ratio of 1.578 [2], while no online algorithm has a
competitive ratio better than 1.54278 [3].

There are many ways to extend bin packing to higher
dimensions (see [5] for a survey). Packing axis-aligned
square items into square bins is perhaps the most
straightforward extension. In the offline setting, the
problem is NP-hard [21], and there exists an APTAS
for the problem [4]. In the online setting, the upper and
lower bounds have been improved a few times [22, 10].
The best existing algorithm has a competitive ratio
of 2.1187 [14] while the best existing lower bound is
1.6707 [15]. Almost-online square (and triangle) pack-
ing, where an online algorithm receives some “advice”
about the input sequence, is studied in [17, 19].

Another generalization of bin packing into two dimen-
sions assumes items are axis-aligned rectangles. This
problem is also studied extensively (see [5] for details).
In particular, a variant of this problem assumes rect-
angles can be rotated by exactly ninety degrees (see,
e.g., [8]). We note that rotation by ninety degrees is

not relevant for square packing and is quite restrictive
compared to the rotations considered in this paper.

1.2 Contribution

We study the online square packing problem and present
an online algorithm that achieves a competitive ratio of
2.306 for the square packing problem. Our algorithm
is based on classifying squares based on their sizes and
placing squares of similar sizes tightly, possibly using
rotations, in the same bins. This approach was previ-
ously used to introduce different families of Harmonic
algorithms for the classic bin packing in both one di-
mension and higher dimensions. However, the presence
of rotations makes our classification and analysis dif-
ferent from the previous work. While analyzing the
algorithm, we also consider sequences where the item
sizes are at most 1/2 and show that our algorithm has a
competitive ratio of at most 1.732 in this case. We also
study another problem where items, instead of squares,
are isosceles right triangles (half-squares), also called
“tans”, and present a linear-time online algorithm with
an asymptotic competitive ratio of at most 1.897.

2 Online Square Packing

In this section we introduce our square packing algo-
rithm called Square-Rotate.

2.1 Item Classification

We classify squares by their side lengths, which we refer
to as the “size” of the items. Square-Rotate packs
squares of each class separately from other classes.

In total, there are 13 classes of squares. Square items
with sizes in the range (0, 0.1752] are in class 13; we re-
fer to this class as the tiny class, and items that belong
to it are called tiny items. We refer to items that be-
long to class i ∈ [1, 12] as regular items. For each class
i ∈ [1, 12], the range of items in the class is specified
as (xi, xi−1] (for convenience, we define x0 = 1). The
values of xi’s are defined so that a certain number of
items, denoted by Si, of class i can fit in the same bin.
The specific range of item sizes for each class i ∈ [1, 12]
and values of Si are derived from the best-known or
optimal results on the congruent square packing prob-
lem [11]. This problem asks for a square’s minimum
size c(j) that can contain j unit-sized squares. A scal-
ing argument, where the container size is fixed to be 1,
gives values of u(j)’s when the goal is to pack j iden-
tical squares of maximum size u(j) into a unit square.
Table 1 provides the scaled best-known/optimal u(j)
values for 1 ≤ j ≤ 36. These scaled numbers give the
specific ranges that we use for classifying items.

Items of class 1 have sizes in the range (1/2, 1], and
we have x1 = 1/2. Note that exactly S1 = 1 item of
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(a) Class 1: x ∈
(0.5000, 1.0000]

(b) Class 2: x ∈
(0.3694, 0.5000]

(c) Class 3: x ∈
(0.3333, 0.3694]

(d) Class 4: x ∈
(0.2697, 0.3333]

(e) Class 5: x ∈
(0.2579, 0.2697]

(f) Class 6: x ∈
(0.2500, 0.2579]

(g) Class 7: x ∈
(0.2139, 0.2500]

(h) Class 8: x ∈
(0.2073, 0.2139]

(i) Class 9: x ∈
(0.2047, 0.2073]

(j) Class 10: x ∈
(0.2000, 0.2047]

(k) Class 11: x ∈
(0.1779, 0.2000]

(l) Class 12: x ∈
(0.1752, 0.1779]

Figure 2: Placement of regular square items of class i ∈ [1, 12] in their respective bin. It is possible to pack i square
items of class i into a single square bin [11].

j u(j) opt./b.k. j u(j) opt./b.k.

1 1.0 opt. 19 0.2047 b.k.
2-4 0.5 opt. 20-22 = 0.2 b.k.
5 0.3694 opt. 23-25 = 0.2 opt.
6-9 0.3333 opt. 26 0.1779 b.k.
10 0.2697 opt. 27 0.1752 b.k.
11 0.2579 b.k. 28 0.1716 b.k.

12-13 = 0.25 b.k. 29 0.1685 b.k.
14-16 = 0.25 opt. 30-33 ≈ 0.1667 b.k.
17 ≈ 0.2139 b.k. 34-36 ≈ 0.1667 opt.
18 ≈ 0.2073 b.k.

Table 1: Optimal (opt.) or best-known (b.k.) values of
u(j) for 1 ≤ j ≤ 36 when the goal is to pack j identical
squares of the largest size u(j) into a unit square. Values
of u(j) are the scaled values of the known results on
congruent square packing [11].

class 1 can fit in the same bin. For i ∈ [2, 12], Si is the
largest number of items of size xi−1 that fit in the same
bin. For example, for i = 2, we have S2 = 4 because
x1 = 1/2, and at most 4 items of size 1/2 fit in the same
bin. Moreover, xi is defined as the largest value so that
Si + 1 items of size xi do not fit in the same bin. For
example, we have x2 = 0.3694 because, according to
Table 1, S2+1 = 5 squares of size larger than 0.3694 do
not fit in the same bin (with respect to the best known
results).

The respective range of items for each class, as well as
the values of Si, is presented in Table 2. For example,
a square is in class 1, 2, or 12 if its side size is in the
interval (0.5, 1], (0.3694, .5], or (0.1752, 0.1779], respec-
tively. In Figure 2, it is specified how Si items of the
largest size in class i can fit into a square bin. We refer
to [11] for details on the unit square packing problem.

2.2 Packing Regular Items

For each class i (1 ≤ i ≤ 12), the algorithm has at
most one active bin of type i. When a bin of type i
is opened, it is declared as the active bin of the class,
and Si square “spots”, each of which having a size equal
to the largest square of class i, are reserved in the bin.
Upon the arrival of an item of class i, it is placed in one
of the Si spots of the active bin. If all these spots are
occupied, a new bin of type i is opened. This ensures
that all bins of type i, except potentially the current
active bin, include Si items.

2.3 Packing Tiny Items

For packing tiny items, the algorithm uses a different ap-
proach, proposed by Epstein and van Stee [9]. Briefly, it
maintains at most one active bin for placing tiny items.
The algorithm maintains a partitioning of the active bin
into sub-bins whose sizes are 2−i for non-negative, inte-
ger values of i. Upon the arrival of a tiny item of size
x, the smallest sub-bin of size y > x is repeatedly par-
titioned into four sub-bins of size y/2, up to the point
that further partitioning results in sub-bins of size less
than x. At this point, x is placed in one of the resulting
partitions. Note that if there is no sub-bin of size y ≥ x,
the active bin is closed, and a new one is opened.

Lemma 1 [9] Consider the square packing problem
(without rotation) in which all items are of size at most
1/M for some integer M ≥ 2. There is an online al-
gorithm (as described above) that creates a packing in
which all bins, except possibly one, have an occupied
area of size at least (M2 − 1)/(M + 1)2.
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Class Side length x Si Occupied Area Weight Density

1 (0.5000, 1.0000] 1 > 1(0.250)=0.250 1 < 4.000
2 (0.3694, 0.5000] 4 > 4(0.136)=0.544 1/4 < 1.838
3 (0.3333, 0.3694] 5 > 5(0.111)=0.555 1/5 < 1.801
4 (0.2697, 0.3333] 9 > 9(0.072)=0.648 1/9 < 1.543
5 (0.2579, 0.2697] 10 > 10(0.066)=0.660 1/10 < 1.515
6 (0.2500, 0.2579] 11 > 11(0.062)=0.682 1/11 < 1.466
7 (0.2139, 0.2500] 16 > 16(0.045)=0.720 1/16 < 1.388
8 (0.2073, 0.2139] 17 > 17(0.042)=0.714 1/17 < 1.400
9 (0.2047, 0.2073] 18 > 18(0.041)=0.738 1/18 < 1.355
10 (0.2000, 0.2047] 19 > 19(0.040)=0.760 1/19 < 1.315
11 (0.1779, 0.2000] 25 > 25(0.031)=0.775 1/20 < 1.290
12 (0.1752, 0.1779] 26 > 26(0.030)=0.780 1/26 < 1.282

13 (0, 0.1752] > 0.702 1.425x2 ≈ 1.425

Table 2: A summary of item classification, weights, and densities, as used in the definition and analysis of
Square-Rotate.

2.4 Analysis

In this section, we prove a competitive ratio of at most
2.306 for Square-Rotate. We use a weighting function
argument. For each item of size x, we define a weight
w(x) ≥ x and prove that: (1) the total weight of square
items in each bin of the algorithm, except potentially a
constant number of them, is at least 1, and (2) the total
weight of items in each bin of an optimal packing is at
most 2.306. If w(σ) denotes the total weight of items in
an input sequence σ, then (1) implies that the number
of bins opened by the algorithm is at most w(σ)+ c, for
some constant value of c, and (2) implies that the num-
ber of bins in an optimal packing is at least w(σ)/2.306.
Therefore, the (asymptotic) competitive ratio of the al-
gorithm would be at most 2.306.

Weight assignment. Recall that all bins opened for
squares of class i (1 ≤ i ≤ 12), except possibly the last
active bin, include Si squares. We define the weight of
items of class i to be 1/Si. This way, the total weight
of items in bins opened for all squares of classes 1 to
12, except possibly 12 of them (the last bin from each
class), is exactly 1. Therefore, (1) holds for bins opened
for regular items.

We define the weight of a tiny item of size x as
x2/0.701(≈ 1.42x2). All tiny items are of size at most
0.1752. Therefore, by Lemma 1, the occupied area of all
bins opened for tiny items (except possibly one of them)
will be at least 0.701. This implies their total weight is
at least 0.701/0.701 = 1.

Table 2 gives a summary of the weights of items in
different classes. From the above argument, we conclude
the following lemma.

Lemma 2 The total weight of squares in each bin
opened by Square-Rotate, except possibly 13 of them,
is at least 1.

Next, we provide an upper bound for the total weight
of items in a bin of the optimal offline algorithm (Opt).
Define the density of an item of size x as the ratio be-
tween its weight and area, i.e., w(x)/x2. Given the lower
bound for the size of each square belonging to class
i (1 ≤ i ≤ 12), we can calculate an upper bound for
the density of items in each class. For tiny items, the
density is simply 1.425x2/x2 = 1.425. Density upper
bounds for all classes are reported in Table 2. Defining
densities comes in handy in a case analysis used to prove
the following lemma.

Lemma 3 (Appendix A) The total weight of items
in a bin of Opt is less than 2.306.

Proof. (sketch) We consider a bin B of Opt and use
case analysis to find an upper bound for the total weight
of items in B. The case analysis considers the number
of items of classes 1, 2, and 3 in B. In each case, the
upper bounds for densities yield an upper bound for
the total weight. In the simplest case, when there is
no item of class 1 in B, the density of all items will
be at most 1.838, and so will be the total weight of all
items in B. The presence of an item of class 1 restricts
the number and class of other items in B, as captured
by 14 sub-cases in the proof of the lemma. Neverthe-
less, the maximum weight in all cases is at most 2.306,
which happens when B contains one item of class 1,
three items of class 2, and one item of class 3. □

Provided with the above two lemmas, we can derive
the main result of this section.

Theorem 1 There is an algorithm Square-Rotate
for the online square packing problem with rotation
which achieves a competitive ratio of at most 2.306.

Proof. For an input σ, let SR(σ) and Opt(σ) denotes
the cost of Square-Rotate andOpt, respectively. Let
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(a) Class 1: x ∈
(0.7072, 1.0000]

t = 1.000

(b) Class 2: x ∈
(0.5593, 0.7072]

t = 0.7072

(c) Class 3: x ∈
(0.5000, 0.5593]

t = 0.5593

(d) Class 4: x ∈
(0.3828, 0.5000]

t = 0.5000

(e) Class 5: x ∈
(0.3056, 0.3828]

t = 0.3828

(f) Class 6: x ∈
(0.2843, 0.3056]

t = 0.3056

Figure 3: Placement of regular tan items of class i ∈ [1, 6] in their respective bin. It is possible to pack i tans of class
i into a square bin [11].

w(σ) denote the total weight of items of σ. Lemma 2
implies that SR(σ) ≤ w(σ) + 13. Meanwhile, Lemma 3
implies that Opt(σ) ≥ w(σ)/2.306. From these inequal-
ities, we conclude SR(σ) ≤ 2.306 Opt(σ) + c, where c
is a constant independent of the length of σ. □

It is possible to analyze Square-Rotate when all
items are of size at most 1/2. In particular, we can
establish the following result using the same weighting
argument as before and a case analysis slightly different
from that of Lemma 3, to get an upper bound for the
total weight of items in a bin of optimal packing.

Theorem 2 [Appendix B] When all items are of size
at most 1/2, Square-Rotate achieves a competitive
ratio of at most 1.732.

3 Online Tan Packing

This section studies a problem similar to the online
square packing problem, called the online tan pack-
ing problem, where the sequence of items is formed by
isosceles right triangles (half-squares), which we refer to
as “tans”.

Definition 2 The input to the online tan packing with
rotation problem is a sequence σ = ⟨a1, a2, . . . , an⟩,
where at ∈ (0, 1] denote the leg sizes of right isosceles
triangles (half-square triangles or tans), that need to be
packed into a minimum number of unit bins. The deci-
sions of the algorithm at any time t are irrevocable and
are made without knowing the values of at′ for t′ > t.

3.1 Half-Square-Rotate Algorithm

We will introduce an online algorithm, called
Half-Square-Rotate, that classifies tans by their leg
sizes and packs tans of each class separately from other
classes. There are seven classes, as presented in Ta-
ble 3. We refer to items that belong to classes i ∈ [1, 6]
as regular items and those in class 7 as tiny items. Tiny
items have sizes in the range (0, 0.2843]. For each class
i ∈ [1, 6], the range of items in class i is specified as

(yi, yi−1] (for convenience, we define y0 = 1). The val-
ues of yi are defined so that a certain number Ti of tans
of class i can fit in the same bin.

The specific range of item sizes for each class i ∈ [1, 6]
and values of Ti is derived from the best-known or opti-
mal results on the congruent tan packing problem [11],
which asks for the minimum size s(j) of a square that
can contain j tans of unit leg size. A scaling argument,
where the container size is fixed to be 1, gives t(j) values
when the goal is to pack j identical tans of maximum
leg size t(j) into a unit square. Table 4 provides the
scaled best-known/optimal t(j) values for 1 ≤ j ≤ 20.
These scaled numbers give the specific ranges that we
used for classifying items as follows: Tans of class 1 have
sizes in the range (0.7072, 1], and we have y1 = 0.7072.
Note that exactly T1 = 1 item of class 1 can fit in the
same bin (for tans of size ≤ 0.7072, it is possible to
pack at least two tans in the bin). For i ∈ [2, 6], Ti is
the number of items of size yi−1 that fit in the same
bin. For example, for i = 2, we have T2 = 4 because
y1 = 0.7072, and up to 4 items of size 0.7072 fit in the
same bin. Moreover, yi is defined as the largest value so
that Ti + 1 items of size yi cannot fit in the same bin.
For example, we have y2 = 0.5593 because, according to
Table 4, T2 + 1 = 5 tans of size 0.5593 do not fit in the
same bin (with respect to the best known results). The
respective range of items for each class, as well as the
values of Ti, are presented in Table 3. Figure 3 shows
how Ti items of the largest size in class i can fit into a
square bin.

3.2 Packing Regular Items

For each class i (1 ≤ i ≤ 6), the algorithm has at most
one active bin of type i. When a bin of type i is opened,
it is declared as the active bin of the class, and Ti tan
“spots”, each of which has a size equal to the largest tan
of class i, are reserved in the bin. Upon the arrival of an
item of class i, it is placed in one of the Ti spots of the
active bin. If all these spots are occupied by previous
items, a new bin of type i is opened. This ensures that
all bins of type i, except potentially the current active
bin, include Si items.
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Class Side length y Ti Occupied Area Weight Density

1 (0.7072, 1.0000] 2 > 2(0.250)=0.500 1/2 < 2.000
2 (0.5593, 0.7072] 4 > 4(0.156)=0.626 1/4 < 1.599
3 (0.5000, 0.5593] 5 > 5(0.125)=0.625 1/5 < 1.600
4 (0.3828, 0.5000] 8 > 8(0.073)=0.586 1/8 < 1.706
5 (0.3056, 0.3828] 12 > 12(0.047)=0.560 1/12 < 1.785
6 (0.2843, 0.3056] 20 > 20(0.040)=0.808 1/20 < 1.237

Tiny (0, 0.2843] > 0.557 1.795(y2/2) 1.795

Table 3: A summary of item classification, weights and densities, as used in the definition and analysis of
Half-Square-Rotate.

3.3 Packing Tiny Item

To pack tiny items, Half-Square-Rotate uses the
same approach as Square-Rotate. Namely, the algo-
rithm maintains partitioning any tiny bin into sub-bins
formed by tans of various sizes. The only difference,
compared to the algorithm of Epstein and van Stee [9],
is that the square bin is divided initially into two tans
(of side length 1) instead of four sub-bins. Subsequently,
instead of partitioning larger square sub-bins into four
sub-squares, we partition large tan sub-bins into two
smaller tan sub-bins. One crucial observation is that it
is possible to partition a tan into two sub-tans, which
allows using the same approach as in [9]. Using a sim-
ilar proof to the one in [9], we can show this adapted
algorithm almost entirely packs each bin.

Lemma 4 [9] Consider the tan packing problem in
which all items are of size at most 1/M for some in-
teger M ≥ 2. There is an online algorithm that creates
a packing in which all bins, except possibly one, have an
occupied area of size at least (M2 − 1)/(M + 1)2.

3.4 Analysis

We use a weighting argument to prove the competitive
ratio of Square-Rotate is at most 1.897. For each
tan of size x, we define a weight w(x) as follows. Recall

n t opt./b.k. n t opt./b.k.

1 = 1.0 opt 11 ≈ 0.4143 b.k.
2 = 1.0 opt 12 ≈ 0.3828 b.k.
3 ≈ 0.7072 opt. 13 ≈ 0.3720 b.k.
4 ≈ 0.7072 opt. 14 ≈ 0.3614 b.k.
5 ≈ 0.5593 b.k. 15 ≈ 0.3536 b.k.
6 ≈ 0.5163 b.k. 16 ≈ 0.3536 opt.
7 ≈ 0.5003 b.k. 17 ≈ 0.3367 b.k.
8 = 0.5 opt. 18 ≈ 0.3333 opt.
9 ≈ 0.4531 b.k. 19 ≈ 0.3124 b.k.
10 ≈ 0.4179 b.k. 20 ≈ 0.3056 b.k.

Table 4: Optimal (opt.) or best-known (b.k.) t(j) val-
ues for 1 ≤ j ≤ 20 when the goal is to pack j identical
tans of the largest leg size t(j) into a unit square. Val-
ues of t(j) are the scaled values of the known results on
congruent tan packing [11].

that all bins opened for tans of class i (1 ≤ i ≤ 6),
except possibly the last active bin of each class, include
Ti tans. We define the weight of items of class i to be
1/Ti. For a tiny tan of leg size x, we define its weight as
1.795(x2/2) where x2/2 is the area of the tan. Table 3
gives a summary of the weights of the items in different
classes. Our definition of weights ensures that all bins
opened for regular items, except potentially the last six
active bins, have a total weight of 1 since they include
i items of weight i. Similarly, our definition of weight
for tiny items, paired with Lemma 4, ensures that all
tiny bins, except potentially the active one, will have a
weight of 1. We can conclude the following lemma.

Lemma 5 [Appendix C] The total weight of tans in
each bin opened by Half-Square-Rotate, except pos-
sibly 7 of them, is at least 1.

Using a case analysis, which is similar to that of
Lemma 3 and is based on investigating the density of
items in a bin of Opt, we can find an upper bound for
the total weight of items in any bin of the optimal offline
algorithm Opt.

Lemma 6 (Appendix D) The total weight of items
in a bin of Opt is less than 1.897.

Theorem 3 The Half-Square-Rotate algorithm
for the online tan packing with rotation achieves a com-
petitive ratio of at most 1.897.

Proof. For an input σ, let HR(σ) and Opt(σ) de-
note the cost of Half-Square-Rotate and Opt, re-
spectively. Let w(σ) denote the total weight of items
of σ. Lemma 5 implies that HR(σ) ≤ w(σ) +
7. Meanwhile, Lemma 6 implies that Opt(σ) ≥
w(σ)/1.897. From these inequalities, we conclude
HR(σ) ≤ 1.897 Opt(σ)+c, for some constant c ∈ O(1)
which proves an upper bound 2.306 for the asymptotic
competitive ratio of Square-Rotate. □
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C1 C2 C3
Sum of
Weights

(W )

Sum of
Areas
(A)

Remaining
Area

(Ar = 1−A)

Weight of Items in
the Remaining Area

(Wr = Ar × 1.543)

Total Weight of
Items in the Bin
(Wmax = W +Wr)

Number
of items
of each
class in
an OPT
bin

1 0 0 1.00 > 0.250 < 0.750 < 1.157 < 2.157
1 0 1 1.20 > 0.361 < 0.639 < 0.986 < 2.186
1 0 2 1.40 > 0.472 < 0.528 < 0.815 < 2.215
1 0 3 1.60 > 0.583 < 0.417 < 0.644 < 2.244
1 0 4 1.80 > 0.694 < 0.306 < 0.472 < 2.272
1 1 0 1.25 > 0.386 < 0.614 < 0.948 < 2.198
1 1 1 1.45 > 0.497 < 0.503 < 0.776 < 2.226
1 1 2 1.65 > 0.608 < 0.392 < 0.605 < 2.255
1 1 3 1.85 > 0.719 < 0.281 < 0.434 < 2.284
1 2 0 1.50 > 0.522 < 0.478 < 0.738 < 2.238
1 2 1 1.70 > 0.633 < 0.367 < 0.566 < 2.266
1 2 2 1.90 > 0.744 < 0.256 < 0.395 < 2.295
1 3 0 1.75 > 0.658 < 0.342 < 0.528 < 2.278
1 3 1 1.95 > 0.769 < 0.231 < 0.356 < 2.306

Table 5: The fourteen possible cases for a combination of items of class 2 (C2) and 3 (C3) together with an item x
of class 1 (C1) in a bin B. Here, sum of weights (W ) and sum of areas (A) indicate, respectively, the total weight
and area of items of the first three classes in B. Remaining area is the area left in the bin that is used for packing
items of class 4 or higher. Weight of items in the remaining area is an upper bound for the total weight of items of
class 4 or higher in B (these items have a density of no more than 1.543). Finally, total weight of items in the bin
indicates the sum of weights of all items (from all classes) in B.

Appendix

A Proof of Lemma 3

Proof. We use the following case analysis:

Case 1: Assume there is no item of class 1 in B. Since the
density of items of other classes are less than 1.838, even if
B is fully packed with items of the largest density, the total
weight of items cannot be more than 1.838, which is less
than 2.306.

Case 2: Assume there is one item x of class 1 (note that no
two items of class 1 fit in the bin). Without loss of generality,
we assume the size of x is 1/2+ ϵ, where ϵ is a small positive
value greater than zero. Clearly, a larger size for x does not
increase the total weight of other items in B because it would
leave less space to occupy more items in the bin (while the
weight of x stays 1). Next, we consider all possible cases in
which we have some items of class 2 and 3 together with x
in B. As presented in Table 5, there will be 14 sub-cases to
analyze. To see how we reach these 14 sub-cases, first note
that it is not possible to accommodate four or more items of
class 2 in addition to x in B (i.e., a total number of 5 or more
items from these classes 1 and 2). This is because no five
items with size larger than 0.3694 can fit in B [11]. A similar
argument shows that we cannot have six or more items from
classes 1, 2, and 3 together in a bin; otherwise, we could
accommodate six identical squares of size strictly larger than
0.3333, which is a contradiction to the fact that no six items
of size larger than 0.3333 can fit in the same bin [11]. In
summary, the 14 sub-cases summarized in Table 5 cover all
possibilities for items of the first three classes in Case 2.

According to Table 2, the density of items belonging to
class i (4 ≤ i ≤ 12) as well as tiny items is at most 1.543

(which is the density of class-4 items). Using a similar ar-
gument made for Case 1, we suppose that, after placing a
certain number of items of class 2 and 3 beside x in B, in
each sub-case, we can fill the remaining space of B with
the items of the maximum density 1.543. This allows us to
calculate an upper bound for the maximum total weight of
items in B for each of the sub-cases. The resulting bounds
for each sub-case can be found in the last column of Table 5,
where the maximum upper bound among all sub-cases is
2.306, which happens when we have one item of class 1 in B
together with three items of class 2 and one item of class 3.

As a result, in both Case 1 and Case 2, the total weight
of items in B cannot be more than 2.306. □

B Proof of Theorem 2

Proof. We employ the same approach and weighting func-
tion as the one we used to analyze the upper bound of
Square-Rotate for the general setting, except that we
exclude items of class 1, that is, items of size more than
1/2. By Lemma 2, the total weight of items in each bin of
Square-Rotate, except for a possibly a constant number
of them, is at least 1. Therefore, to prove the theorem, it
suffices to show the total weight of items in any bin B of an
optimal packing is at most 1.732. To study the maximum
weight of items in B, we consider all possible combinations
of items from classes 2 and 3 in B. For that, we consider the
following two limitations: (i) we cannot have more than four
items of class 2 in B; otherwise, we could accommodate five
squares of size more than 0.3694, which is not possible [11].
(ii) we cannot have more than six items of class 2 or 3 in
B. Otherwise, one could place six squares of size more than
0.3333, which is known to be impossible [11]. Altogether,
we will have 19 cases to consider as presented in Table 6.
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C2 C3 Total Weight of
Items in the Bin

C2 C3 Total Weight of
Items in the Bin

Number of
items of each
class c ∈ {2, 3}
in B.

0 0 < 1.543 1 4 < 1.698
0 1 < 1.572 2 0 < 1.623
0 2 < 1.601 2 1 < 1.652
0 3 < 1.629 2 2 < 1.681
0 4 < 1.658 3 0 < 1.664
0 5 < 1.687 3 1 < 1.692
1 0 < 1.583 3 2 < 1.721
1 1 < 1.612 4 0 < 1.704
1 2 < 1.641 4 1 < 1.732
1 3 < 1.669

Table 6: Maximum total weight of items of size ∈ (0, 1/2) in a bin B of an optimal packing in all nineteen possible
cases in which there is no item of class 1 but a combination of items of class 2 (C2) and 3 (C3) in B.

We have used the same method as in Lemma 3 to calculate
the upper bound for the total weight of items in each case.
Table 6 summarizes the final results for all cases. The max-
imum weight, 1.732, happens when we have four items of
class 2 together with one item of class 3 packed in B. □

C Proof of Lemma 5

Proof. In every bin of class i (1 ≤ i ≤ 6), except possibly
the last bin, there are Ti items, each having a weight of
1/Ti. As a result, the total weight of the items in each
bin of such classes, except possibly 6 of them, is exactly
Ti × 1/Ti = 1. For bins of tiny items, we know, by Lemma 4
and considering 1/M = 0.2843, that the occupied area of
all bins, except possibly the last one, will be at least 0.557.
Therefore, the total weight of items in such a bin is at least
W = 1.795× 0.557 = 1. □

D Proof of Lemma 6

Proof. We first define the density of a tan item of leg
size x as the ratio between its weight and its area, i.e.,
w(x)/(x2/2). Given the lower bound for the leg size of items
in each class i (1 ≤ i ≤ 6), and, hence, their area, we can
calculate an upper bound for the density of each item in
the class. For tiny items, the density is simply equal to
1.795(x2/2)/(x2/2) = 1.795. The densities of items from
different classes are reported in Table 3. In what follows, we
use a case analysis approach to prove that the total weight
of items in a bin B of an optimal packing is at most 1.897.
There are three cases to consider: either 0, 1, or 2 tans of
class 1 exist in the bin. Note that it is not possible to ac-
commodate 3 or more items of class 1 in a bin because their
total area would exceed 1.

Case 1: No class-1 item in B: Since the density of items
of class 2 or larger is at most 1.795, even if all area of B is
filled with items of the largest density, the total weight of
items cannot exceed 1× 1.795 which is less than 1.897.

Case 2: Exactly one class-1 item in B: If there is
exactly one item of class 1 (with weight 1/2 and the area
of at least (0.7072 × 0.7072)/2 = 0.25) in B, the remaining
area in the bin will be at most 0.75. Items of classes other
than class 1 have a density of at most 1.795. Even if we fill

the remaining area with such items of the highest density,
the total weight of items in B will not exceed 1.346. As a
result, the total weight of items in B cannot be more than
1/2 + 1.346 = 1.846, which is less than 1.897.

Case 3: Exactly two class-1 items in B: If there ex-
ists exactly two items of class 1 with weight 1/2 (and the
total weight of 1) and total area of at least 2 × (0.7072 ×
0.7072)/2 = 0.50, the remaining area in B will be at most
0.50. If this remaining area is filled by items of the highest
density, which are items of the last class with a density of at
most 1.795, the total weight of items in B will not be more
than 1 + 0.50× 1.795 = 1.897.

In conclusion, the total weight of items in a bin B of an
optimal packing cannot be more than 1.897 in all cases. □
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A Randomized Algorithm for Non-crossing Matching of Online Points

Shahin Kamali* Pooya Nikbakht� Arezoo Sajadpour�

Abstract

We study randomized algorithms for the online non-
crossing matching problem. Given an online sequence of
n online points in general position, the goal is to create
a matching of maximum size so that the line segments
connecting pairs of matched points do not cross. In pre-
vious work, Bose et al. [CCCG 2020] showed that a sim-
ple greedy algorithm matches at least ⌈2n/3 − 1/3⌉ ≈
0.6̄6n points, and it is the best that any determinis-
tic algorithm can achieve. In this paper, we show that
randomization helps achieve a better competitive ratio;
that is, we present a randomized algorithm that is ex-
pected to match at least 235n/351−202/351 ≈ 0.6695n
points.

1 Introduction

In the geometric matching problems, the input is a
set of geometric objects, and the goal is to create a
pairwise matching of these objects under different re-
strictions and objectives. In the bottleneck matching
problem, for example, the goal is to create a perfect
matching of n points, assuming n is even, to minimize
the maximum length of the line segments that connect
matched pairs [8]. Using the same terminology as in
graph theory, we refer to the line segments that connect
pairs of matched vertices as the edges of the match-
ing. Other variants of the geometric matching prob-
lems ask for perfect matchings that minimize the total
length of edges [4] or maximize the length of the short-
est edge [6]. Matching objects other than points are also
studied (e.g., [1, 2]).

In the non-crossing matching problem, the input is
a set of points in general position, and the goal is to
match points so that the edges between the matched
pairs do not cross. It is relatively easy to solve the
problem in the offline setting: one can sort all points
by their x-coordinate and match pairs of consecutive
points. All points, except possibly the last one, will
be matched. The running time of this algorithm is
O(n log n), which is asymptotically optimal [5]. Other
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York University, Toronto, Canada, kamalis@yorku.ca

�Department of Computer Science, University of Manitoba,
Winnipeg, Canada, nikbakhp@myumanitoba.ca

�Department of Computer Science, University of Manitoba,
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variants of non-crossing matching have been studied in
the offline setting; see [7]. For example, Aloupis et al.
[1] considered the computational complexity of finding
the non-crossing matching of a set of points with a set
of geometric objects that can be a line, a line segment,
or a convex polygon.

Bose et al. [3] studied the online variant of the non-
crossing matching. Under this setting, the input is a
set of n points in the general position that appears se-
quentially. When a point x arrives, an online algorithm
can match it with an existing unmatched point y, pro-
vided that the edge between them does not cross pre-
vious edges in the matching. Alternatively, the algo-
rithm can leave the point unmatched. In making these
decisions, the algorithm has no information about the
forthcoming points or the input length. The algorithm’s
decisions are irrevocable in the sense that once a pair
of points is matched, that pair cannot subsequently be
removed from the matching. The objective is to find a
matching of maximum size.

Under a worst-case analysis, where an adversary gen-
erates the online sequence, it is not possible to match all
points. For example, consider an input that starts with
two points x and y. If an online algorithm leaves the
two points unmatched, the adversary ends the sequence,
and the matching is already sub-optimal. If the algo-
rithm matches x and y, then the adversary generates
the following two points on the opposite sides of the line
between x and y, and the matching will be sub-optimal
for this input of length 4. Bose et al. [3] extended this
argument to show that no deterministic algorithm can
match more than ⌈2n/3 − 1/3⌉ points in a worst-case
input of length n. Meanwhile, they showed that any
greedy algorithm matches at least ⌈2n/3− 1/3⌉ points,
and hence is optimal. An algorithm is greedy if it does
not leave a point x unmatched if there is a suitable un-
matched point y that x can be matched to (that is, the
edge between x and y does not cross existing edges in
the matching).

1.1 Contribution

We study randomized algorithms for the non-crossing
matching problem. As in [3], we investigate worst-case
scenarios where the input is adversarially generated. We
assume the adversary is oblivious to the random choices
made by the algorithm, but it is aware of how the algo-
rithm works (that is, the “code” of the algorithm).
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We present a randomized algorithm that matches at
least ⌊235n/351− 202/351⌋ ≈ 0.6695n points on expec-
tation for any input of size n. This result establishes
the advantage of randomized algorithms over the best
deterministic algorithm, which matches roughly 0.6̄6n
points in the worst case [3].

There are two main components in our randomized
algorithm. First, the algorithm maintains a convex par-
titioning of the plane and matches two points only if
they appear in the same partition. The matching is
followed by updating the partitioning by extending the
edge between the matched pair. This partitioning en-
ables us to use a simple inductive argument to analyze
the algorithm. Second, the algorithm deviates from the
greedy strategy and gives a chance to an incoming point
x to stay unmatched even if there are one or two points
in the same convex region that x can be matched to. As
we will see, this will be essential for any improvement
over deterministic algorithms.

2 A Randomized Online Algorithm

We present and analyze a randomized online algorithm
for the non-crossing matching problem. In what follows,
for any a ̸= b we use Lab to denote the line passing
through a and b, and Sab to denote the line segment
between a and b.

2.1 Algorithm’s description

The algorithm maintains a partitioning of the plane into
convex regions and matches points only if they belong
to the same region. In the beginning, only one region
is formed by the entire plane. After four points appear
inside a convex region, one or two pairs of points are
matched, and the convex region is partitioned into two
or three convex regions by extending the line segments
passing through the matched pairs.

Let x, y, z, and w be the first four points that appear
(in the same order) inside a convex region C. In what
follows, we describe how these four points are treated.

� Upon the arrival of x, there is no decision to make,
given that there is no point inside C to be matched
with x.

� Upon the arrival of y, it is matched with x with
a probability of 1/2 and stays unmatched with a
probability of 1/2.

� Upon the arrival of z, if the pair (x, y) is already
matched, then there is no decision to make. Oth-
erwise, z is matched with x with a probability of
1/3, with y with a probability of 1/3, and stays
unmatched with a probability of 1/3.

� Upon the arrival of w, there are two possibilities to
consider:

– First, suppose a pair of points a, b ∈ {x, y, z}
is already matched, while a third point c ∈
{x, y, z}/{a, b} is unmatched. If it is possi-
ble to match w with c (that is, Swc does not
cross Sab), then w is matched with c; other-
wise, when Swc and Sab cross, there is no de-
cision to make.

– Second, suppose no pair of the first three
points are matched. Then w is matched with
a point a ∈ {x, y, z} so that the two points
b, c ∈ {x, y, z}/{a} appear on different sides
of the line Law (if there is more than one such
point, w is matched with z).

After the arrival of four points inside C, either all
points are matched into two pairs, in which case we
say a “double-pair is realized”, or only two points are
matched while the other two appear on different sides
of the matched pair, in which case we say a “single-pair
is realized.” If a single-pair is realized, the algorithm ex-
tends the line segment between the matched pair until
it hits the boundary of C; in this case, C is partitioned
into two convex regions. If a double-pair is realized, the
line segment between the first matched pairs is extended
until it hits the boundary of C or the (non-extended)
segment between the second matched pair. This is fol-
lowed by extending the line segment between the second
pair until it hits the boundary of C or an extended line
that passes through the first matched pair. In the case
of a double-pair, C is partitioned into three convex re-
gions when a double-pair is realized.

Assume n ≥ 8. A single-pair is “good” iff, after all the
n points appear, each of the two regions resulting from
extending the line segment of the matching contains at
least 2 points (discounting their potential further parti-
tionings in the future), and it is “bad” otherwise. Sim-
ilarly, a double-pair is said to be “good” if, after all the
n points appear, one of the three regions formed by ex-
tending the line segments of the two matched pairs is
empty; otherwise, it is “bad.” The presence of 2 or more
points or no points in a region leaves a possibility of
matching all pairs; hence we assert that a single/double
pair is “good” or “bad” as specified above.

When a double-pair is realized, the ordering at which
we extend the line segments between matched pairs will
impact whether the double-pair is good or bad. But ul-
timately, our worst-case analysis still holds if we change
the algorithm to extend the line segment between the
second matched pair before the first one.

The following example illustrates the algorithm’s
steps. Consider an input formed by 10 points labeled
from p1 to p10 in the order of their appearance, as de-
picted in Figure 1. The convex regions maintained by
the algorithm are highlighted in different colours. Ini-
tially, the entire plane is a convex region C0, where
point p1 appears. Upon the arrival of p2, the algorithm
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(a) The state of the algorithm after processing p1, . . . , p4.
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p8

p5

p10

(b) The state of the algorithm after processing p1, . . . , p10.

Figure 1: One possible output of the algorithm when the
input is a sequence of 10 points labelled as p1, . . . , p10
in the order of their appearance.

matches it with p1 with a probability of 1/2. Suppose
(p1, p2) are matched. Then, there is no decision to be
made for p3. Upon the arrival of p4, the line segments
Sp1p2 and Sp3p4 do not cross. Therefore, p4 is matched
with p3. At this point, four points have appeared in C0

and a double-pair (p1, p2) and (p3, p4) has been realized.
Therefore, C0 is partitioned into three smaller convex
regions C1, C2, and C3 by extending Sp1,p2

and Sp3,p4

(Figure 1a). Points p5 and p6 appear respectively in C3

and C2. Since these are the first points in their respec-
tive regions, there is no decision to be made for them,
and they stay unmatched. Subsequently, p7 appears in
C3 and the algorithm matches with p5 with a probabil-
ity of 1/2. Suppose these two points are not matched.
Upon the arrival of p8 in C3, it is matched with p5 or
p7, each with a probability of 1/3, and is left unmatched
with a probability of 1/3. Suppose (p5, p8) are matched.
Next, point p9 appears in C2 and is matched with p6
with a probability of 1/2, and stays unmatched with a
probability of 1/2. Suppose (p6, p9) are matched. Fi-
nally, point p10 appears on C3. Given that the Sp7p10

crosses Sp5p8
, there is no decision to be made, and p10

stays unmatched. At this point, four points have ap-
peared in C3, and a single-pair (p5, p8) has been realized.
Therefore, C3 is partitioned into two smaller convex re-
gions C4 and C5 by extending Sp5,p8 (Figure 1b).

2.2 Algorithm’s analysis

Let f(n) denote the expected number of unmatched
points by the algorithm when input is formed by n
items. We use an inductive argument to find an upper
bound for f(n). First, we prove the following lemma,
which is used when establishing the base of the induc-
tion.

Lemma 1 After four points arrive in a convex region
C, with a probability of at least 1/3, a double-pair is
realized, and with a probability of at most 2/3, a single-
pair is realized.

Proof. Let x, y, z, and w denote the four points in the
same order they appear. There are two cases to con-
sider:

� Suppose Sxy crosses Szw. In this case, a double-
pair is realized iff (i) x and y are not matched, and
(ii) z is matched with either x or y (in which case
w will be matched to the other point). The chance
of (i) is 1/2, and the chance of (ii) is 2/3; therefore,
a double-pair is realized with a chance of 1/3.

� Suppose Sxy does not cross Swz. Then, (x, y) are
matched with a probability of 1/2, and after that,
(w, z) are matched, and a double-pair is realized
with a chance of 1/2.

□

Using Lemma 1, we can prove the following lemma,
which serves as the base case for the inductive proof of
the main result.

Lemma 2 We have f(0) = 0, f(1) = 1, f(2) = 1,
f(3) = 4/3, f(4) ≤ 4/3, f(5) ≤ 5/3, f(6) ≤ 20/9, and
f(7) ≤ 26/9.

Proof. Suppose n items appear in a convex region C.
The proof is trivial for n ≤ 2. In what follows, we prove
the lemma for other values of n.

� For n = 3, it is possible that all points stay un-
matched, which happens when the second point is
not matched with the first one (with a probability
of 1/2), and then the third point is not matched
with any of the first two points (with a probability
of 1/3). Therefore, with a probability of 1/6, all
three points stay unmatched, and one point stays
unmatched with a probability of 5/6. We can write
f(3) = 1/6 · 3 + 5/6 · 1 = 4/3.

� For n = 4, using Lemma 1, we can write f(4) ≤
1/3 · 0 + 2/3 · 2 = 4/3.

� For n = 5, after the first four points appeared,
either a single-pair or a double-pair is realized:
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– Suppose a single-pair is realized. Then, C is
partitioned into two regions, one containing
one point and the other one containing two
points. Therefore, it is expected that f(1) +
f(2) = 2 points stay unmatched.

– Suppose a double-pair is realized. Then, the
first four points are matched, and only the
fifth point stays unmatched.

By Lemma 1, with a probability of at least 1/3, a
double-pair is realized, and with a probability of at
most 2/3, a single-pair is realized. Therefore, we
can write f(5) ≤ 1/3 · 1 + 2/3 · 2 = 5/3.

� For n = 6, after the first four points appeared,
either a single-pair or a double-pair is realized:

– Suppose a single-pair is realized. Then, C is
partitioned into two regions. Either (i) the
fifth or the sixth points appear in the same
region, in which case one region will have one
point, and the other one will have three points,
or (ii) the fifth and the sixth points appear
in different regions, in which case each region
contains two points. Therefore, it is expected
that at most max{f(1)+ f(3), f(2)+ f(2)} =
7/3 points stay unmatched.

– Suppose a double-pair is realized. Then, at
most 2 points (the last two points) stay un-
matched.

By Lemma 1, with a probability of at least 1/3, a
double-pair is realized, and with a probability of at
most 2/3, a single-pair is realized. Therefore, we
can write f(6) ≤ 1/3 · 2 + 2/3 · 7/3 = 20/9.

� For n = 7, after the first four points appeared,
either a single-pair or a double-pair is realized:

– Suppose a single-pair is realized. Then, C is
partitioned into two regions. Either (i) the
fifth, the sixth, and the seventh points all ap-
pear in the same region, in which case one re-
gion has one point, and the other one has four
points (Figure 2a), or (ii) one of these points
appear in one region, and the other two ap-
pear in the other region, in which case one
region contains two points, and the other re-
gion contains three points (Figure 2b). There-
fore, at most max{f(1)+ f(4), f(2)+ f(3)} ≤
max{1 + 4/3, 1 + 4/3} = 7/3 points stay un-
matched.

– Suppose a double-pair is realized. Then, at
most three points stay unmatched, which hap-
pens when any of the three regions formed
extending the line segments between the
matched pairs includes a point (see Figure 2c).

a

c
d

b

(a) The case where a single-pair is real-
ized, and the last three points appear in
different regions.

a

c
d

b

(b) The case where a single-pair is real-
ized, and the last three points appear in
different regions.

a

c

b
d

(c) The case where a double-pair is real-
ized, and the last three points appear in
different regions.

Figure 2: The cases used in the calculation of f(7);
a, b, c, d ∈ {x, y, z, w} where x, y, z, and w are the first
four points in the same order of their appearance.

Unlike other cases, for n = 7, the upper bound
for the expected number of unmatched points is
larger when a double-pair is realized compared to
when a single-pair is realized; hence we cannot use
Lemma 1. Instead, we note that the probability
of a single-pair being realized is at least 1/6. This
is because the first three points stay unmatched
with a probability of 1/2 · 1/3 = 1/6, and then
the fourth point gets matched to the point that
bisects the unmatched points (by the definition of
the algorithm). Therefore, we can write f(7) ≤
5/6 · 3 + 1/6 · 7/3 = 26/9.

□

We use an inductive argument to prove f(n) ≤ cn +
d where c = 116/351 ≈ 0.3304 and d = 32c − 10 =
202/351 ≈ 0.5754. First, we apply Lemma 2 to establish
the base of induction in the following theorem.

Lemma 3 For n ∈ [2, 7], it holds that f(n) ≤ cn + d
where c = 116/351 and d = 202/351.

Proof. The proof follows from Lemma 2. For n = 2,
we have f(2) = 1 < 2c+ d (since 2c+ d > 1.2364). For
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n = 3, we have f(3) = 4/3 = 3c + d (since 3c + d >
1.5669). For n = 4, we have f(4) ≤ 4/3 < 4c + d
(since 4c + d > 1.8974). For n = 5, we have f(5) ≤
5/3 < 5c + d (since 5c + d > 2.2279). For n = 6, we
have f(6) ≤ 20/9 < 6c + d (since 6c + d > 2.5584).
For n = 7, we have f(7) ≤ 26/9 = 7c + d (note that
7c+ d = 26/9). □

Lemma 4 Consider an input sequence with n ≥ 8
points. Suppose at least four points appear in some con-
vex region C maintained by the algorithm. At least one
of the following statements holds with respect to the first
four points in C, regardless of how an adversary gener-
ates the input:

� A good single-pair is realized in C with a probability
of at least 1/6.

� A good double-pair is realized in C with a probability
of at least 1/6.

Proof. Let x, y, z, and w denote the first four points in
the same order that they appear in C.
First, suppose the convex hull formed by the four

points is a triangle ∆ which includes the fourth point
inside it. We consider the following two cases:

� Assume w is the point that is inside ∆. Then the
pairs (x, y) and (w, z) form a double-pair that is
realized with a probability of 1/2. This is because
the pair (x, y) is matched with a probability of 1/2,
and then the pair (w, z) is matched with a proba-
bility of 1. Meanwhile, (w, z) is a single-pair which
is realized with a probability of 1/6. This is be-
cause, with a chance of 1/6, the first three points
stay unmatched, and then the algorithm matches
w to z with a chance of 1. Now, if the double pair
formed by the pairs (x, y) and (w, z) is bad, then
there should be at least one future point on each
side of the line passing through (w, z), which means
(w, z) is a good single-pair (see Figure 3a).

� Assume w is a vertex of ∆ and another point c ∈
{x, y, z} is inside ∆. Let a, b be the other two points
in {x, y, z}. Then, the pairs (a, b) and (c, w) form
a double-pair which is realized with a probability
of at least 1/6. This is because the pair (a, b) is
matched with a probability of at least 1/6 (the pair
(a, b) is matched with a probability of 1/2 if z /∈
{a, b}, and with a probability of 1/6 if z ∈ {a, b}),
and then w is matched with c with a probability of
1. Meanwhile, the pair (c, w) is a single-pair which
is realized with a probability of 1/6. Similar to the
previous case, if the double pair formed by the pairs
(a, b) and (c, w) is bad, then there should be at least
one future point on each side of (a, b), which means
(c, w) is a good single-pair (see Figure 3b).

wx

z

y

(a)

ca

w

b

(b)

w

a

c

b

(c)

w

a

c

b

(d)

Figure 3: An illustration of the proof of Lemma 4. (a)
when w is inside the triangle ∆, either the single-pair
formed by (w, z) is a good single-pair, or the double-
pair formed by (x, y), (w, z) is a good double-pair. (b)
when c ∈ {x, y, z} is inside the triangle ∆, either the
double pair formed by (a, b), (w, c) is a good double-
pair, or the single-pair formed by (w, c) is a good single-
pair. (c) the case when at least one of the diagonals of
the convex hull formed by the four points (here (w, b))
forms a good single-pair (d) when none of the single-
pairs formed by the diagonals of the convex hull are
good, all remaining points appear in one of the quarter-
planes formed by extending these diagonals; therefore,
the pair of points on the boundary of the quarter-plane
(here (b, c)) and the pair of points outside the quarter-
planes (here (w, a)) form a good double-pair.

Next, suppose the convex hull formed by the four
points is a quadrilateral and includes all of them. Con-
sider the two single-pairs formed by the diagonals of
the convex hull. Any of these pairs can be realized with
a probability of at least 1/6. Specifically, the diago-
nal involving w is realized when no pair of points from
{x, y, z} are matched, which takes place with a proba-
bility of 1/6. The other diagonal is either between x
and y, which is realized with a probability of 1/2 or
between z and a ∈ {x, y}, which is realized with a prob-
ability of 1/6. Therefore, if any of the two diagonals
form a good single-pair, the statement of the lemma
holds, and we are done (see Figure 3c). If none of the
two diagonals is good, then all the remaining points in
the input sequence should appear in one of the quarter-
planes formed by extending these diagonals (see Fig-
ure 3d). Then, the double-pair formed by the pair of
points on the boundary of the quarter-plane (points b
and c in Figure 3d) and the pair of points outside of the
quarter-plain (points w and a in Figure 3d) is a good
double-pair. The probability of such a good double-pair
being realized is at least 1/6. This is because one of the
pairs in the double-pair involves two of the first three
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points. If these points are (x, y), the double-pair is re-
alized with a probability of 1/2; otherwise, it is realized
with a probability of 1/6. □

We are now ready to prove the main result.

Theorem 5 There is a randomized algorithm that, for
any input formed by n ≥ 2 points, leaves at most cn+ d
points unmatched on expectation, where c = 116/351
and d = 202/351.

Proof. We use an inductive argument to show that our
algorithm satisfies the conditions specified in the theo-
rem. For n ≤ 7, the claim holds by Lemma 3. Suppose
n ≥ 8, and assume that for any m < n, it holds that
f(m) ≤ cm+ d.
First, we claim that the number of unmatched points

is at most cn + d + (2 − 6c) when a bad single-pair is
realized or a bad double-pair is realized after the first
four points of the input sequence appear. If a bad single-
pair is realized, then either (I) there is one point on
one side of the matched pair and n − 3 > 2 points on
the other side, or (II) there is no point on one side of
the matched pair and n − 2 > 2 points on the other
side. For (I), by the induction hypothesis, the number
of unmatched points on the side with n−3 points will be
at most f(n−3) ≤ cn−3c+d. Therefore, the number of
unmatched points is at most f(n−3)+1 ≤ cn−3c+d+
1 < cn+ d+(2− 6c). The last inequality holds because
c < 1/3. For (II), the number of unmatched points will
be at most f(n− 2) ≤ cn+ d− 2c < cn+ d+ (2− 6c).

If a bad double-pair is realized, then one of the follow-
ing cases holds for the three regions formed by extending
the line segments between the matched pairs (regardless
of the ordering at which we extend the line segments):

i) One region contains n−6 points, and the other two
regions each contains one point. Note that n− 6 ≥
2 since n ≥ 8. By the induction hypothesis, the
expected number of unmatched points is at most
2 + f(n− 6) = cn+ d+ (2− 6c).

ii) One region contains m ≥ 2 points, another region
contains one point, and the third region contains
n − m − 5 ≥ 2 points. The expected number of
unmatched points is at most f(m)+f(n−m−5)+
1 ≤ cn− 5c+ 2d+ 1 < cn+ d+ (2− 6c). The last
inequality holds because c+ d < 1.

iii) One region contains m1 ≥ 2 points, one region con-
tains m2 ≥ 2 points, and the third region contains
m3 = n −m1 −m2 − 4 ≥ 2 points. The expected
number of unmatched points is at most f(m1) +
f(m2) + f(m3) ≤ cn− 4c+ 3d < cn+ d+ (2− 6c).
The last inequality holds because c+ d < 1.

In summary, if a bad single-pair or a bad double-pair is
realized, the expected number of unmatched points is
at most cn+ d+ (2− 6c), and the claim holds.

By Lemma 4, after the appearance of the first four
points, either a) a good single-pair or b) a good double-
pair can be realized with a probability of at least 1/6.

Suppose case a) holds, that is, a good single-pair is
realized with a probability of at least 1/6, which im-
plies a bad single-pair or double-pair is realized with a
probability of at most 5/6. In case the good single-
pair is realized, there will be m ≥ 2 points on one
side of the line segment connecting matched pair, and
n−m− 2 ≥ 2 points on the other side. Therefore, the
expected number of unmatched points will be at most
f(m)+f(n−m−2) ≤ cn+2d−2c = (cn+d)+(d−2c).
On expectation, the number of unmatched points will be
at most 1/6((cn+d)+(d−2c))+5/6(cn+d+(2−6c)) =
cn+ d+ 1/6(d− 32c+ 10) = cn+ d. The last equality
holds because d = 32c− 10.

Next, suppose case b) holds, that is, a good double-
pair is realized with a probability of at least 1/6, which
implies a bad single-pair or double-pair is realized with
a probability of at most 5/6. If the good double-pair
is realized, by definition, at least one of the three con-
vex regions formed by extending the double-pair will be
empty. For the other two regions, we have the following
cases:

i) One region is empty, and the other contains n −
4 ≥ 2 points, in which case the expected number of
unmatched points becomes f(n−4) ≤ cn+d−4c <
cn+d+(1−5c). The last inequality holds because
c < 1.

ii) One region contains a single point, and the other
one contains n− 5 ≥ 2 points. The expected num-
ber of unmatched points will be at most f(n−5)+
1 ≤ cn+ d+ (1− 5c).

iii) Both regions include m ≥ 2 and n − m − 4 ≥ 2
points. In this case, the expected number of un-
matched points will be at most f(m) + f(n−m−
4) ≤ cn+ d+(d− 4c) < cn+ d+(1− 5c). The last
inequality holds because c+ d < 1.

Therefore, as long as the good double-pair is realized,
the expected number of unmatched points will be at
most cn + d + (1 − 5c). Then we can write f(n) ≤
1/6((cn + d) + (1 − 5c)) + 5/6((cn + d) + (2 − 6c)) =
cn + d + 1/6(11 − 35c) < cn + d. The last inequality
holds since c > 11/35. □
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Abstract

The burning process on a graph G starts with a single
burnt vertex, and at each subsequent step, burns the
neighbors of the currently burnt vertices, as well as one
other unburnt vertex. The burning number of G is the
smallest number of steps required to burn all the ver-
tices of the graph. In this paper, we examine the prob-
lem of computing the burning number in a geometric
setting. The input is a set of points P in the Euclidean
plane. The burning process starts with a single burnt
point of P , and at each subsequent step, burns all the
points that are within a distance of one unit from the
currently burnt points and one other unburnt point of
P . The burning number of P is the smallest number
of steps required to burn all the points of P . We call
this variant point burning. We consider another variant
called anywhere burning, where we are allowed to burn
any point of the plane. We show that point burning and
anywhere burning problems are both NP-complete, but
(2+ε) approximable for every ε > 0. Moreover, if we put
a restriction on the number of burning sources that can
be used, then the anywhere burning problem becomes
NP-hard to approximate within a factor of 2√

3
− ε.

1 Introduction

Graph burning is a discrete process that propagates fire
to burn all the nodes in a graph. In particular, the
fire is initiated at a vertex of the graph and at each
subsequent step, the fire propagates to the neighbors of
the currently burnt vertices and a new unburnt vertex is
chosen to initiate a fire. The vertices where we initiate
fire are called the burning sources. The burning process
continues until all the vertices are burnt. The burning
number of a graph G is the minimum number of steps to
burn all its vertices. Bonato et al. [4] introduced graph
burning as a model of social contagion. The problem is
NP-Complete even for simple graphs such as a spider or
forest of paths [1].

∗This work is supported in part by the Natural Sciences and
Engineering Research Council of Canada (NSERC).

†Department of Computer Science, University of
Saskatchewan, mark.keil@usask.ca

‡Department of Computer Science, University of Saskatchewan
d.mondal@usask.ca

§Department of Computer Science, University of Saskatchewan
ehsan.moradi@usask.ca

t1 t1

t2

t1

t2

t3
t1

t2

t3

t1

t2

t1

t2

t1 The unit distance used
in these two examples.

Figure 1: Illustration for (top) point burning and (bot-
tom) anywhere burning. The burning sources are illus-
trated in labelled dots and cross marks, respectively.

In this paper we introduce burning number for the
points in the plane. We consider two methods for burn-
ing: point burning and anywhere burning. Both prob-
lems take a set of points P as an input, and seek for the
minimum number of steps to burn all points of P .

In the point burning model, we can initiate fire only at
the given points. The burning process starts by burning
one given point, and then at each subsequent step, the
fire propagates to all unburnt points of the plane that
are within one unit of any burnt point of the plane and
a new unburnt given point is chosen to initiate the fire.
Figure 1(top) illustrates this model. Note that we may
not have an unburnt vertex at the last step.

In the anywhere burning model, we can start a fire
anywhere on the plane, and at each subsequent step, the
fire propagates to all unburnt points of the plane that
are within one unit of any burnt point of the plane,
and a new unburnt point is chosen to initiate the fire.
Figure 1(bottom) illustrates this model.

In addition to being a natural generalization of graph
burning, our proposed burning processes may poten-
tially be used to model supply chain systems. A hypo-
thetical example of how a burning process may model
a supply chain management system is as follows. Con-
sider a business that needs to maintain a continuous
supply of perishable goods to a set of P locations. Each
day it can manage to send one large shipment to a hub
location that distributes the goods further to the nearby
locations over time. The point burning considers only
the points of P as potential hubs, whereas anywhere
burning allows to create a hub at any point in the plane.
The burning number indicates the minimum number of
days needed to distribute the goods to all locations. For
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example, in Figure 1(top), the hubs are t1, t2, and t3,
and the business can keep sending the shipments to the
hubs after every three days in the same order.

1.1 Related Results

Finding the graph burning number is NP-Hard [1], but
approximable within a factor of 3 [6]. These results have
been improved very recently. Garćıa-Dı́az et al. [10]
have given a (3 − 2/b)-approximation algorithm where
b is the burning number of the input graph. Mondal
et al. [17] have shown the graph burning problem to be
APX-hard, even in a generalized setting where k = O(1)
vertices can be chosen to initiate the fire at each step.
They gave a 3-approximation algorithm for this gener-
alized version [17]. Since the introduction of the graph
burning problem [5], a rich body of literature examines
the upper and lower bound on the graph burning num-
ber for various classes of graphs [20, 14, 8] as well as
the parameterized complexity of computing the burn-
ing number [13]. We refer the reader to [2] for a survey
on graph burning.

Researchers have also explored burning number for
geometric graphs. Gupta et al. [11] examined square
grid graphs and gave a 2-approximation algorithm for
burning square grids. They also showed the burn-
ing number to be NP-Complete for connected interval
graphs. Bonato et al. [3] considered the burning pro-
cess on dynamic graphs, which are growing grids in the
Cartesian plane with the center at the origin. They
explore the proportion or density of burned vertices rel-
ative to the growth speed of the grid. Recently, Evans
and Lin [9] have introduced polygon burning, where
given a polygonal domain and an integer k, the problem
seeks for k vertices such that the polygonal domain is
burned as quickly as possible when burned simultane-
ously and uniformly from those k vertices. They gave a
3-approximation algorithm for polygon burning.

The anywhere burning problem that we introduced
can be seen to be related to the nonuniform version
of the k-center problem. Given a set of points, the
goal of the k-center problem is to find the minimum
radius R and a placement of k disks of radius R to
cover all the given points. In the nonuniform k-center
problem [7], given a set of points and a set of k numbers
r0 ≥ . . . ≥ rk−1, the goal is to find a minimum dilation
α and a placement of k disks where the ith disk, 1 ≤ i ≤
k, has radius αri and all the given points are covered.
If the anywhere burning number of a set of points is
k, then the nonuniform k-center problem with ri = i
admits a solution with α = 1.

1.2 Our Contribution

We introduce two discrete-time processes (i.e., point
burning and anywhere burning) to burn the points in

the plane, which naturally extend the graph burning
model to the geometric setting. We prove that in both
models, computing the burning number is NP-hard, and
give polynomial-time (2+ ε)-approximation algorithms.
We then show that if we put a restriction on the num-
ber of burning sources that can be used, then the any-
where burning problem becomes NP-hard to approxi-
mate within a factor of 2√

3
− ε.

2 Approximating Burning Number

2.1 Point Burning

The burning sources at the ith step are all the vertices
that we choose to initiate the fire from the beginning of
the burning process to the ith step (including the ith
step). We refer to the number of burning sources as Bi.
The maximum burning radius Ri at the ith step of the
burning process is the maximum radius over all burn-
ing sources. After the ith step of the burning process,
the maximum burning radius is exactly (i− 1) and the
number of burning sources is exactly i (except possi-
bly for the last step). Therefore, if δ∗ is the number of
steps in the optimal solution, then the number of burn-
ing sources is at most δ∗, and the maximum burning
radius is exactly (δ∗ − 1). Hence for the ith step, we
have the following.

δ∗ ≥ i ≥ Bi. (1)

Theorem 1 Given a set P of points in R2 and an ε >
0, one can compute a point burning sequence for P in
polynomial time such that the length of the sequence is
at most (2 + ε) times the point burning number of P .

Proof. Let Gk be a unit disk graph where k/2 equals
one unit, i.e., each vertex of Gk corresponds to a disk of
radius k/2 in R2, and there is an edge between two ver-
tices of Gk if their corresponding disks intersect. Con-
sider the graph Gk on P where P represents the centers
of the disks. We denote by Dk a minimum dominating
set of Gk, i.e, the smallest set of vertices such that each
vertex of Gk is either in Dk or a neighbor of a vertex
in Dk. There exists PTAS to approximate Dk [19], i.e.,
Dk is approximable within a factor of (1 + ε) for every
fixed ε > 0.
Let δ∗ be the burning number for P . We now claim

that δ∗ must be at least |Dδ∗−1|. Suppose for a con-
tradiction that the burning number is strictly smaller
than |Dδ∗−1| and let S be the corresponding burning
sources. Since the maximum burning radius over S is
at most (δ∗ − 1), we could use |S| disks, each of ra-
dius (δ∗ − 1) to burn all the points. Hence, we could
choose the disks corresponding to S as a dominating set
for Gδ∗−1. This contradicts that Dδ∗−1 is a minimum
dominating set. Hence we have δ∗ ≥ |Dδ∗−1|.
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We now iteratively guess the burning number δ from
1 to n, where |P | = n. For each δ, we construct Gδ−1,
and compute a (1 + ε) approximation D′

δ−1 for Dδ−1.

If
|D′

δ−1|
(1+ε) , i.e., the lower bound on the burning sources,

is strictly larger than δ, then it violates Equation 1 and
our guess can be increased. We stop as soon as we have
|D′

δ−1|
(1+ε) ≤ δ. Since none of the previous guesses were

successful, here we know that δ∗ ≥ δ.
To burn P , we first choose D′

δ−1 as the burning
sources and burn them in arbitrary order. We then
keep burning another (δ − 1) steps (or, stop early if
all points are burnt). Since all the points are within
the distance (δ − 1) from some point in D′

δ−1, all the
points will be burnt. Since |D′

δ−1| ≤ (1+ ε)δ, and since
δ∗ ≥ δ, the length of the burning sequence we compute
is |D′

δ−1|+ (δ − 1) ≤ (1 + ε)δ∗ + δ∗ = (2 + ε)δ∗. □

2.2 Anywhere Burning

We leverage the discrete unit disk cover problem to ob-
tain a (2+ε)-approximation for anywhere burning. The
input of a discrete unit disk cover problem is a set of
points P and a set of unit disks U in R2, and the task
is to choose the smallest set U ⊆ U that covers all the
points of P . There exists a PTAS for the discrete unit
disk cover problem [18].

We relate the discrete unit disk cover problem to any-
where burning using the observation that there exists an
optimal anywhere burning sequence where each burning
source either coincides with a given point or lies at the
center of some circle determined by two or three given
points. More specifically, consider a burning source q
with a burning radius r in an optimal anywhere burn-
ing process. Let S be the set of points burned by q. Let
C be the smallest circle that covers all the points of S.
Then we could choose a burning source at the center of
C instead of at q and burn all points of S.

A (1 + ε)-approximation for anywhere burning prob-
lem can now be obtained by iteratively guessing the any-
where burning number using the same technique as in
Section 2.1 but using an approximation to the discrete
unit set cover problem.

Theorem 2 Given a set P of points in R2 and an ε>0,
one can compute an anywhere burning sequence in poly-
nomial time such that the length of the sequence is at
most (2 + ε) times the anywhere burning number of P .

Proof. Let P be the input to the anywhere burning
problem. Note that Equation 1 holds also for anywhere
burning. We now iteratively guess the anywhere burn-
ing number δ from 1 to n, where |P | = n. For each δ,
we construct a set of

(
n
3

)
+
(
n
2

)
disks, where each disk is

of radius δ and is centered at the center of a circle deter-
mined by either two or three points of P . We compute
a (1 + ε)-approximation U ′

δ for the discrete unit disk

cover Uδ. If
|U ′

δ|
(1+ε) , i.e., the lower bound on the burning

sources, is strictly larger than δ, then it violates Equa-
tion 1 and our guess can be increased. We stop as soon

as we have
|U ′

δ|
(1+ε) ≤ δ. Here we know that δ∗ ≥ δ.

To burn all the points of P , we first choose U ′
δ as

the burning sources and burn them in arbitrary order.
We then keep burning another (δ − 1) steps (or, stop
early if all points are burnt). Since all the points are
within the distance (δ − 1) from some point in U ′

δ, all
the points will be burnt. Since |U ′

δ| ≤ (1+ε)δ, and since
δ∗ ≥ δ, the length of the burning sequence we compute
is |U ′

δ|+ (δ − 1) ≤ (1 + ε)δ∗ + δ∗ = (2 + ε)δ∗. □

3 NP-hardness

In this section we present the hardness results.

3.1 Point Burning

Consider a decision version of the point burning problem
where given a set of points and an integer b, the task
is to decide whether there is a burning sequence that
burns all the points in at most b steps. This decision
version of the point burning problem is in NP because
given a sequence of burning sources, in polynomial time
one can simulate the burning process to check whether
all the points are burnt. We now consider the hardness.

The graph burning number problem is NP-hard even
for a forest of paths [4]. To prove the NP-hardness of
the point burning one can easily reduce the path for-
est burning problem into the point burning problem as
follows.

Let I be an instance of the path forest burning prob-
lem and let L1, . . . , Lt be the paths in I. We draw the
vertices of each path Li, 1 ≤ i ≤ t, along the x-axis in
the (left-to-right) order they appear on the path with
unit length distance between consecutive vertices. We
ensure a gap of (2n+1) units between consecutive paths,
where n is the number of vertices in the forest. The
point burning number for the vertices of the paths is at
most n. Since we can only burn the points (equivalently,
vertices) in the point burning model, any point burning
process can be seen as a graph burning and vice versa.
Hence we have the following theorem.

Theorem 3 The point burning problem is NP-
complete.

3.2 Anywhere Burning

Similar to point burning, the decision version of the
anywhere burning problem is in NP because given a se-
quence of burning sources, in polynomial time one can
simulate the burning process to check whether all the
points are burnt.
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Figure 2: Illustration for the construction of the point set P .

To show the hardness we can use almost the same
hardness reduction that we used for point burning. Let
I be an instance of the path forest burning problem and
let P be the corresponding point set we constructed in
Section 3.1. If the burning number for I is b, then we
can simulate the same burning process to burn all points
of P in b steps. If P admits an anywhere burning within
b steps, then for each burning source q, we choose the
nearest point q′ of P as the burning source. By the
construction of P , the distance between q and q′ is at
most 0.5. Since the burning radius of q is an integer, a
burning source with the same radius at q′ will burn the
same set of points as that of q. Therefore, if we now burn
the chosen points of P in the order corresponding to
the anywhere burning sequence, this simulates a graph
burning process on I and burns all the vertices within
b steps. We thus have the following theorem.

Theorem 4 The anywhere burning problem is NP-
complete.

Hardness of Approximation with Bounded

Burning Sources: If we put a restriction on the num-
ber of burning sources that can be used, then we can
modify the above hardness proof to derive an inapprox-
imability result on the number of burning steps.

To show the hardness of approximation, we first give
a different NP-hardness proof for anywhere burning.
Here we reduce the NP-hard problem planar exactly
3-bounded 3-SAT [16]. The input of the problem is
a 3-CNF formula where each variable appears in ex-
actly 3 clauses, each clause contains at least two and at
most three literals, and the corresponding SAT graph (a
graph with clauses and variables as vertices, and clause-
variable incidences as edges) is planar. The task is to
decide whether there exists a truth value assignment for
the variables that satisfies all the clauses.

Let I be an instance of the planar exactly 3-bounded
3-SAT and let G be the corresponding SAT graph. We
now show how to compute a point set P and an integer
b such that P can be burned within b steps if and only
if I admits an affirmative solution. Our construction is
inspired by an NP-hardness reduction for the k-center
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problem [15], but contains nontrivial details due to vari-
able sizes for the burning radii. We will use the concept
of β-disk, which is a disk of radius β.

We first compute an orthogonal planar drawing D
of G where the vertices are represented as grid points
and edges as orthogonal polylines (Figure 2(a)). Every
planar graph with maximum degree three has such an
orthogonal planar grid drawing inside a square of side
length ⌊n/2⌋ [12]. We then scale up the drawing and
replace the vertices with squares and edges with parallel
orthogonal lines (Figure 2(b)). We will refer to this new
representation for an edge as a tunnel. We ensure that
each square is of side length 7 units and the pair of
parallel line segments of a tunnel are 3 units apart. We
then replace the square for each variable by joining the
tunnels incident to it (Figure 2(c)).

Creating Points for Variables and Clauses: We
now add some points along the boundary of the tunnels
as follows. Let L be a polygonal line (determining a
side of the tunnel) from a clause to another clause (e.g.,
the orange line Figure 2(c)). We place points from both
ends such that no three points can be covered by a 1.10-
disk. The first point is placed at one unit distance from
the boundary of the square representing the clause, and
then each subsequent point is placed two units apart
from the previous one. If the two sequences of points
from the two ends of L meet at a common point (e.g.,
the point q in Figure 2(c)), then nothing else needs to be
done. If the two sequences does not meet at a common
point and a bend point is available, then we create a new
point instead of creating two points that are one unit
apart (e.g., the point s in Figure 2(c)). This ensures
the property that no three points can be covered by a
1.10-disk. Note that instead of modifying a bend, one
can also create a ‘bump’ on L to ensure this property,
as illustrated with the points t, t′ in Figure 2(c).

For each square representing a clause, we add 2 points
for each variable incident to it and an additional 4 points
q0, q1, q2, q3, as illustrated in Figure 2(d). We refer
to the points q0, q1, q2, q3 as the clause points. Some
black unit disks are drawn to illustrate the configura-
tion of these points. The key property here is that no
1.10-disk can cover all clause points, but if we exclude
one clause point among {q1, q2, q3}, then the remaining
clause points can be covered using a unit disk.

Note that each variable now corresponds to a se-
quence of points forming a loop. We create some more
bumps to ensure that each variable contains an even
number of points. This allows us to have two ways
of covering the loop by using only unit disks by tak-
ing alternating pairs, as illustrated in Figures 2(e)–(f).
Later, we will relate such covering to burning and if both
variable-loop points inside the clause gadget are covered
by the same unit disk, then will set that literal to true.
Therefore, we add some more points to ensure consis-

tency. For example, assume that in Figures 2(e)–(f), the
clauses c4 and c3 contain the literals v4 and v4, respec-
tively. We create a bump so that if both variable-loop
points inside the gadget of c4 are covered by a single
unit disk, then the two variable-loop points inside the
gadget of c3 will be covered by two different unit disks,
and vice versa.

Since the width and height of the drawing is of size
O(n), the total number of points is O(n2). We will
denote by Nv and Nc the points that we created for the
variables and clauses, respectively.

Creating Points to Accommodate Burning
Process: We now scale up the drawing by r units,

where we set r to be 10
(

|Nv|
2 + |Nc|

4

)
. Let the resulting

drawing be D′. Consequently, all the above covering
properties for unit disks and 1.10-disks now hold for
r-disks and 1.10r-disks, respectively.
We now create r points wi, where 1 ≤ i ≤ r, along a

horizontal line such that each point is far from the rest
of the points by at least 3r units.

We will refer to the points created in this step as the
outlier points and denote them by Nt. Note that the
points of Nt lie outside of D′.

From 3-SAT to Burning Number: We now show
that if the 3-SAT instance I admits an affirmative solu-
tion, then the point set (Nv ∪ Nc ∪ Nt) can be burned
in 1.10r steps.

In the first 0.10r steps we initiate 0.10r burning
sources inside D′ and then initiate r burning sources
at the outlier points. After this, the minimum radius of
the burned area for any burning source started within
D′ is at least r and the maximum radius for such sources
is (1.10r−1). The burning sources inside D′ can be seen
as β-disks where β ∈ [r, 1.10r].

For each true literal, we cover the corresponding two
variable points and the nearest clause point by initi-
ating a single burning source (e.g., Figures 3(a)–(c)).
We then burn the variable loops by initiating burning
sources for alternating pairs of points. This takes |Nv|/2
burning sources. Since all clauses are satisfied, for each
clause, at least one of the clause points from {q1, q2, q3}
will be allocated to burn along with a pair of variable-
loop points. Therefore, each clause now requires one
burning source to ensure the burning of all its clause
points. Hence the total number of burning sources we

use within D′ is 0.10r =
(

|Nv|
2 + |Nc|

4

)
. The set Nt con-

tains r points where no two of them can be covered by
a 1.10r-disk. It is straightforward to burn them in r
steps. Therefore, the total number of steps required is
1.10r.

From Burning Number to 3-SAT: We now show
that if the point set (Nv∪Nc∪Nt) can be burned in 1.10r
steps, then the 3-SAT instance I admits an affirmative
solution.

Since the set Nt contains r points where no two of
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Figure 3: Illustration for the reduction. (a) x1 = True, x2 = False, x3 = True. (b) x1 = False, x2 = False,
x3 = False. (c) x1 = True, x2 = True, x3 = False. (d) x1 = False, x2 = True, x3 = False.

them can be covered by a 1.10r-disk, any burning se-
quence would need r burning sources outside of D′.
Since there are at most 1.10r steps to burn all the points,

we are left with at most 0.10r =
(

|Nv|
2 + |Nc|

4

)
burn-

ing sources inside D′. Note that none of these burning
sources can have a radius larger than (1.10r−1). By the
construction of the variable-loop points, no three points
can be covered by a 1.10r-disk. Therefore, the variable-
loop requires at least |Nv|/2 burning sources. If none of
q1, q2, q3 are burned along with the variable-loop points,
then a clause gadget requires two burning sources (e.g.,
Figures 3(d)). Otherwise, each clause gadgets requires
at least one burning source to ensure all clause points
are burned even if q1, q2, q3 are all burned along with
the variable-loop points (e.g., Figures 3(a)). Since there

are |Nc|
4 clause gadgets and exactly that many burning

sources remaining, each clause gadget will have exactly
one from the remaining burning sources. Since a 1.10r-
disk cannot cover all four clause points of a clause gad-
get, one of them must be burned together with a pair
of variable-loop points. We set the corresponding literal
to true. The construction of the variable-loop ensures
the consistency of the truth value assignment for each
variable at different clauses.

Inapproximability Factor (with Bounded
Burning Sources): Assume that we are only allowed

to initiate
(

|Nv|
2 + |Nc|

4

)
+ |Nt| fires. We change r to

be 10δ
(

|Nv|
2 + |Nc|

4

)
, where δ is a constant. We now

can burn (Nv ∪ Nc ∪ Nt) in (1 + 10−δ)r steps by first

initiating 10−δr =
(

|Nv|
2 + |Nc|

4

)
burning sources inside

D′ and then r burning sources to burn the points in Nt.
Since our reduction can be carried out with 1.10r-disks,
we can continue burning for (1.10r − (1 + 10−δ)r)
more steps. Therefore, we obtain an inapproximability
factor of 1.10

(1+10−δ)
, i.e., (1.10− ε), where ε can be made

arbitrarily small by choosing a large value for δ.

2/
√
3

x1

x2

x3

Figure 4: Illustration for the modified clause gadget.

Although for simplicity we used an orthogonal set-
ting where variable loops enter a clause gadget either
horizontally or vertically, we could slightly change the
construction using curves (similar to [15]) such that they
make 120◦ angles at the clause gadget (Figure 4). This

210



CCCG 2022, Toronto, ON, Canada, August 25–27, 2022

allows us to carry out the reduction using a 2√
3
-disks

and thus to have an inapproximability factor of 2√
3
− ε.

Corollary 5 The anywhere burning problem with a re-
striction on the number of burning sources that can be
used is NP-hard to approximate with a factor of 2√

3
−ε,

for every fixed ε > 0.

4 Conclusion

In this paper, we introduced two burning processes —
point burning and anywhere burning — to burn a set
of points in the Euclidean plane. We proved that com-
puting the burning number for these processes are NP-
complete and gave approximation algorithms for them.
We showed that inapproximability results can be de-
rived for anywhere burning if only a restricted number of
burning sources are allowed. Hence a natural future re-
search direction to explore is to design efficient approx-
imation algorithms for computing the burning number
as well as to establish better inapproximability results.
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Uniformly Monotone Partitioning of Polygons Revisited∗

Hwi Kim† Jaegun Lee‡ Hee-Kap Ahn§

Abstract

Partitioning a polygon into simple pieces is a funda-
mental problem in computational geometry with a long
history. In this paper, we revisit the problem of parti-
tioning a simple polygon P with n vertices (including
R reflex vertices) and no holes into a minimum number
of uniformly monotone subpolygons using open line seg-
ments drawn inside P . We present an O(nR log n+R5)-
time algorithm for the problem by adding diagonals be-
tween pairs of vertices of P . When Steiner points can
be placed on the boundary of P and the subdivision is
formed by adding diagonals between pairs of vertices of
P including Steiner points, we present an O(n + R5)-
time algorithm. We present an O(n + R4)-time algo-
rithm when Steiner points can be placed anywhere in
P . Our algorithms improve upon the previously best
ones for polygons with a small number of reflex vertices
relative to the total number of vertices. We also present
simple and efficient 2-approximation algorithms.

1 Introduction

Partitioning a polygon into disjoint simple pieces, such
as triangles, trapezoids, convex polygons, and star-
shaped polygons, is an important and fundamental
problem in computational geometry [2, 3, 7, 8, 11, 12].
A classic and typical example is the triangulation of a
simple polygon in the plane [2].

A simple polygon is called monotone with respect to a
line ℓ if for any line ℓ′ perpendicular to ℓ the intersection
of the polygon with ℓ′ is connected. The problem of
partitioning a polygon into monotone subpolygons has
been well studied [7, 9]. Many geometric algorithms
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run faster asymptotically for monotone polygons than
for more general ones, and it is often straightforward to
implement algorithms for monotone polygons [12].

In this paper, we study the problem of partitioning a
simple polygon with no holes into a minimum number
of uniformly monotone subpolygons using diagonals
(open line segments lying in the interior of the polygon)
between pairs of vertices of the polygon. A partition
is uniformly monotone with respect to a line ℓ if every
subpolygon in the partition is monotone with respect
to ℓ. Among all uniformly monotone partitions, we
wish to compute one that minimizes the number of
subpolygons in the partition. Below we define the
problem formally.

Minimum Uniformly Monotone Partition: Given
a simple polygon P with n vertices (including R reflex
vertices) and no holes, find a pair (ℓ∗,P∗) of a line
ℓ∗ and a uniformly monotone partition P∗ of P with
respect to ℓ∗ such that the number of subpolygons
in P∗ is the minimum among all pairs (ℓ,P) of lines
ℓ and uniformly monotone partitions P with respect to ℓ.

We call such a pair (ℓ∗,P∗) a minimum partition-pair,
and such a partition P∗ a minimum partition of P . In
the rest of the paper, we may simply refer to the mini-
mum uniformly monotone partition problem as the min-
imum partition problem.

We also consider two variants of the minimum par-
tition problem with additional vertices, called Steiner
points. Steiner points are added as part of the partition
to reduce further the number of subpolygons. There are
two ways of adding Steiner points, either placing them
only on the boundary of P or placing them anywhere in
P . See Figure 1.

1.1 Previous works

Lee and Preparata [9] gave an O(n log n)-time plane
sweep algorithm to partition a simple polygon with
n vertices into monotone pieces, but not necessarily
into a minimum number of monotone pieces. Liu and
Ntafos [10] studied the minimum partition problem and
gave an O(nR2 log n+nR3+R5)-time algorithm for the
problem without using Steiner points. Using Steiner
points lying on the boundary of the polygon, they gave
an O(nR3 log n+R5)-time algorithm to compute a min-
imum partition.
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(a) (b) (c)

P

Figure 1: Uniformly monotone partitions of P with re-
spect to the y-axis. (a) A minimum partition (8 pieces)
with no Steiner points. (b) A minimum partition (7
pieces) with two Steiner points (white squares) on the
boundary of P . (c) A minimum partition (6 pieces) with
three Steiner points (white squares) in P .

Wei et al. [13] considered the minimum partition
problem for a polygon with n vertices and h holes. Us-
ing Steiner points lying in the polygon, they presented
an O(K(n log n+ h log3 h))-time algorithm to compute
a minimum partition of the polygon, where K is the
number of edges of the polygon’s visibility graph.

For the problem of partitioning a polygon into a min-
imum number of subpolygons such that each subpoly-
gon is monotone with respect to some line, Keil [6]
gave an O(n4R)-time algorithm for polygons with n ver-
tices and no holes without using Steiner points. They
also showed that the decision version of the problem is
NP-complete for polygons with holes but without using
Steiner points.

1.2 Our results

Our results are fourfold. First, we present an
O(nR log n+R5)-time algorithm for the minimum par-
tition problem with no Steiner points. The algorithm
by Liu and Ntafos [10] is claimed to take O(nR2 log n+
nR3+R5) time. But this may not hold for simple poly-
gons with vertices of interior angle π and the running
time may increase to O(n2 + nR3 +R5). We give more
details in Section 3.1. Our algorithm runs faster than
their algorithms for R = o(n1/2) while the running times
are the same asymptotically for R = Ω(n1/2).
Second, we present an O(n+ R5)-time algorithm for

the minimum partition problem when Steiner points
can be placed on the boundary of P . Observe that
the algorithm takes only O(R5) time in addition to the
time linear to the input size. It runs faster than the
O(nR3 log n + R5)-time algorithm by Liu and Ntafos

for R = o(n1/2 log1/2 n) while the running times are the

same asymptotically for R = Ω(n1/2 log1/2 n).
Third, we present an O(n + R4)-time algorithm for

the minimum partition problem when Steiner points can
be placed anywhere in P . It takes only O(R4) time in
addition to the time linear to the input size, and thus
it runs fast for R small relative to n. The algorithm by

Wei et al. runs in O(Kn log n) time for this problem,
but K can be Θ(n2).

Finally, we present simple factor-2 approximation al-
gorithms for the minimum partition problem, that is,
the number of subpolygons in the partition returned
by our algorithm is at most twice the number of sub-
polygons in a minimum partition. We present an
O(n log n)-time algorithm with no Steiner points, and
an O(n + R log n)-time algorithm using Steiner points
lying on the boundary of P . The solution returned by
the latter algorithm is also a 2-approximation for the
case that Steiner points can be placed anywhere in P .

Sketches of our algorithms. Our algorithms for the
minimum partition problem are based on the work by
Liu and Ntafos [10]. Given a line ℓ, their algorithm
first computes peaks, each of which is a vertex of P and
a source of local non-monotonicity with respect to ℓ.
Then the algorithm removes the peaks using a minimum
number of non-intersecting diagonals between vertices
and obtains a minimum partition of P with respect to
ℓ in O(n log n+ nR+R3) time.

To compute a minimum number of non-intersecting
diagonals between vertices, they use a circle graph G.
The vertices of G correspond to the peaks in order along
the boundary of P . There is a chord between two ver-
tices of G if and only if their corresponding peaks can be
removed by adding the diagonal between them. Since
each peak can be removed by a diagonal and each diag-
onal removes at most two peaks, a minimum partition
of P can be obtained by computing a maximum inde-
pendent chord set (MICS) of G in O(m3) time for m
vertices in G. By running this algorithm for each of
O(R2) distinct lines defined by pairs of reflex vertices,
Liu and Ntafos compute a minimum partition-pair of P
in O(nR2 log n+ nR3 +R5) time.

Our algorithms also construct circle graphs and com-
pute their MICSs. Our algorithms are different to the
ones by Liu and Ntafos in three aspects. The first dif-
ference is that our algorithms use a data structure for
geodesic queries while the algorithms by Liu and Ntafos
compute visibility polygons repeatedly for vertices and
edges in peaks. From this, we reduce the time for com-
puting diagonals.

The second difference is that our algorithm maintains
and updates the vertices and the chords of the circle
graph efficiently over O(R2) distinct lines. The algo-
rithm by Liu and Ntafos constructs the circle graph
from scratch for each of the lines. Our algorithm uses
certain coherence between the circle graphs induced by
two lines of consecutive orientations among the orien-
tations defined by pairs of reflex vertices. Imagine that
a line ℓ rotates. Then the circle graph G induced by
ℓ changes at certain orientations: a vertex of G is re-
moved, a new vertex is inserted to G, a chord of G is
removed, or a new chord is inserted to G. By keeping
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track of these changes in the order of orientations using
a priority queue, our algorithm maintains and updates
the circle graph and the minimum number of monotone
subpolygons efficiently for O(R2) lines.

The third difference is that our algorithm computes
MICSs without computing their corresponding parti-
tions explicitly while the algorithm by Liu and Ntafos
computes a partition of P explicitly for each of O(R2)
distinct lines. Whenever the circle graph is updated,
our algorithm computes an MICS, but it does not com-
pute the corresponding partition explicitly. Instead, it
maintains and updates the minimum number of mono-
tone subpolygons for the MICS. Once our algorithm is
done with O(R2) lines, it computes a minimum par-
tition P∗ using the line corresponding to the minimum
number of monotone subpolygons. This leads to further
improvements on the time complexity.

When Steiner points are allowed to be placed any-
where in the polygon, the cardinality of an MICS of
the circle graph equals the cardinality of the maximum
matching of the circle graph. We show that the circle
graph is a chordal bipartite graph under updates, and
thus its maximum matching can be computed efficiently.

Our approximation algorithms achieve factor 2 by
computing the minimum number of peaks of P among
all orientations. This is because the number of subpoly-
gons in a minimum partition cannot be less than half of
the number of peaks.

2 Preliminaries

We denote by P the input simple polygon with n ver-
tices (including R reflex vertices) and no holes. We as-
sume that P is given as a sequence of vertices in clock-
wise order along its boundary. For a compact set X, we
use ∂X to denote the boundary of X. For a point p, we
denote by y(p) the y-coordinate of p.

A diagonal is an open line segment that connects two
vertices of P and lies in the interior of P . A set of
non-intersecting diagonals induces a partition of P into
subpolygons.

For a partition P of P , we denote by |P| the num-
ber of subpolygons in P. A minimum partition of P
with respect to a given line ℓ, called the scan line, is a
uniformly monotone partition P∗

ℓ with respect to ℓ such
that |P∗

ℓ | ≤ |Pℓ| for any uniformly monotone partition
Pℓ of P with respect to ℓ. A minimum partition of P
is a uniformly monotone partition P∗ of P with respect
to some scan line such that |P∗| ≤ |P| for any minimum
partition P of P with respect to some scan line.

For two points p and q in the plane, we denote by pq
the line segment connecting them. Two points p, q ∈ P
are visible to each other if pq is contained in P . Two
edges e1, e2 of P are visible to each other if there are
points p ∈ e1, q ∈ e2 such that p and q are visible to

each other.
A super-vertex of P is a maximal chain of consecutive

and collinear vertices of P . A super-vertex is reflex if
both its endpoints are reflex vertices.

For a fixed scan line ℓ, a peak is a reflex vertex or a
reflex super-vertex v of P such that both neighboring
vertices of v lie in one side of the line through v and
perpendicular to ℓ. A peak with respect to ℓ is called
a normal-peak if it is a reflex vertex of P , and a super-
peak if it is a reflex super-vertex of P . The peaks are
sources of local non-monotonicity with respect to ℓ. See
Figure 2(a).

A super-peak and a normal-peak are visible to each
other if the super-peak has a vertex that is visible from
the normal-peak. Two super-peaks are visible to each
other if there are two vertices, one from each super-peak,
that are visible to each other. See Figure 2(b).

(b)(a)

Figure 2: (a) The vertices of P are shown as white disks,
black disks, and black squares. Black disks are nor-
mal peaks and red chains (connecting black squares) are
super-peaks with respect to the y-axis. (b) Two super-
peaks are visible to each other, and a normal-peak and
a super-peak are visible to each other.

Missing proofs and details can be found in the full
version of the paper.

3 Maximum independent chord set of a circle graph

In this section, we describe the approach of using a circle
graph given by Liu and Ntafos [10], and give an outline
of their algorithm using the approach.

We fix the scan line to be the y-axis throughout this
section unless stated otherwise. We call a normal-peak
v a top normal-peak if both neighboring vertices of v
lie above v, and a bottom normal-peak otherwise. Simil-
larly, we call a super-peak a top super-peak if both neigh-
boring vertices of the chain (super-peak) lie above it,
and a bottom super-peak otherwise. A diagonal is full
if it connects a top peak u and a bottom peak v with
y(u) ≥ y(v). Thus, by adding a full diagonal, two peaks
are removed simultaneously.

A minimum partition of P with respect to a scan line
can be obtained by adding a minimum number of non-
intersecting diagonals that remove all peaks of P with
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respect to the scan line. Observe that each peak can
be removed by a diagonal and each diagonal removes
at most two peaks. Thus, a minimum partition is ob-
tained by finding a maximum number of full diagonals
such that no peak is incident to more than one full di-
agonal. The algorithm by Liu and Ntafos computes a
maximum number of full diagonals using a circle graph
G. The vertices of G correspond to the peaks in one-
to-one mapping in order along ∂P . There is a chord
between two vertices of G if and only if there is a full
diagonal between the peaks corresponding to the ver-
tices. A minimum partition of P can be obtained by
computing an MICS of G.

Lemma 1 ([10, 13]) The number of subpolygons in a
minimum partition of P with respect to a fixed scan line
is Np−Nm+1, where Np is the total number of peaks of
P with respect to the scan line and Nm is the cardinality
of an MICS of the circle graph induced by P and the scan
line.

3.1 Minimum partition algorithms by Liu and Ntafos

Using Lemma 1, Liu and Ntafos [10] gave an O(n log n+
nR+R3)-time algorithm that computes a minimum par-
tition of P with respect to a fixed scan line using no
Steiner points. Their algorithm first reduces the min-
imum partition problem to the problem of computing
an MICS of the circle graph G induced by P and the
scan line. The algorithm finds all the top and bottom
peaks as vertices of G. Then it computes the visibility
polygon of each top peak using an O(n)-time algorithm
for finding the visibility polygon of a point in a simple
polygon with no holes. From the visibility polygon of a
top peak u, it identifies all bottom peaks v such that the
open line segment connecting u and v is a full diagonal.
Each such full diagonal contributes a chord to G. Thus,
G can be computed in O(nR) time.

They gave an O(m3)-time algorithm to compute an
MICS of a circle graph with m vertices. Since there are
O(R) vertices in G, the algorithm computes an MICS
of G in O(R3) time.

After the algorithm partitions P into subpolygons us-
ing the set of full diagonals corresponding to the MICS,
no subpolygon in the partition has a full diagonal. The
algorithm removes all the remaining peaks in the par-
tition in O(n log n) time using the subdivision algo-
rithm by Lee and Preparata [9]. Thus, in total it takes
O(n log n+ nR+R3) time.
Liu and Ntafos extend their algorithm to find a min-

imum partition-pair of P . There are O(R2) disjoint in-
tervals of orientation, which are defined by pairs of reflex
vertices, such that the set of peaks and the set of full
diagonals remain the same for any orientation in an in-
terval. With this observation, Liu and Ntafos claim that
a minimum partition-pair of the input polygon can be

computed in O(nR2 log n+nR3+R5) time, by running
the algorithm for a fixed scan line for O(R2) directions,
once for each orientation interval.

However, their algorithms may take more time than
what they claim for simple polygons with vertices of
interior angle π. Their algorithm for a fixed scan line
works as follows. For each vertex u in a super-peak, it
computes the visibility polygon of u and identifies the
vertices v such that there is a full diagonal connecting
u and v. Since there can be Θ(n) non-reflex vertices in
O(R) super-peaks, the time for computing the visibility
polygons increases to O(n2). Then their algorithm takes
O(n2+R3) time for a fixed scan line, and O(n2+nR3+
R5) time for finding a minimum partition-pair of P .
When Steiner points are allowed to be placed on ∂P ,

there is a full diagonal pq between a top super-peak
u and a bottom super-peak v for the y-axis scan line
and a point p ∈ u and a point q ∈ v if y(p) ≥ y(q),
and uv is a diagonal. See Figure 1(b). The algo-
rithm by Liu and Ntafos considers each super-peak as
an edge of P and computes the visibility polygon of the
edge. Using the visibility polygons, it computes pairs
of super-peaks visible to each other and Steiner points
lying on them together with full diagonals connecting
them. The rest of the algorithm is the same with the
algorithm for no Steiner points. Using an O(n log n)-
time algorithm for finding the visibility polygon of an
edge in a simple polygon with no holes, their algorithm
takes O(nR log n + R3) time for a fixed scan line, and
O(nR3 log n+R5) time for finding a minimum partition-
pair.

4 Minimum uniformly monotone partition

We present our algorithms for the minimum partition
problem. In Section 4.1, we describe our approach for
maintaining the circle graph efficiently. In Sections 4.2-
4.4, we present algorithms, one using no Steiner points,
one using Steiner points lying on ∂P , and one using
Steiner points lying anywhere in P .

4.1 Maintaining the circle graph

We show certain coherence between the circle graphs
induced by two lines of consecutive orientations among
the orientations defined by pairs of reflex vertices. We
use this to compute a minimum partition of P efficiently,
provided that we have an algorithm, denoted by fd-algo,
for computing a minimum partition of P with respect
to a fixed scan line.

Imagine that the scan line ℓ rotates around the ori-
gin in clockwise by π, starting from the y-axis. Let ℓθ
denote the scan line of orientation θ ∈ [0, π). The set
of peaks and the set of full diagonals with respect to ℓθ
may change at certain discrete orientations θ at which
one of the following occurs.
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- Diagonal event : a diagonal connecting a top
normal-peak and a bottom normal-peak becomes
perpendicular to ℓθ.

- Peak event : an edge incident to a reflex vertex be-
comes perpendicular to ℓθ.

For super-vertices, it suffices to consider their peak
events for capturing changes to the circle graph because
a super-vertex induces no diagonal event. We construct
a circle graph G and maintain it for these events at dis-
crete orientations. Initially, we construct G as a com-
plete graph with vertices corresponding to reflex vertices
and reflex super-vertices of P in order along ∂P . The
circle graph induced by P and ℓθ is a subgraph of G. We
mark each vertex and each chord of G either as used or
unused. At a diagonal event, we change the mark of the
chord of G corresponding to the diagonal accordingly.
At a peak event, we change the mark of the vertex and
the chords of G corresponding to the peak accordingly.
Our algorithm works as follows. It constructs G as

above and mark the vertices and chords of G such that
the subgraph of G induced by used vertices and chords
is the circle graph induced by P and the y-axis. It also
computes the orientations of diagonal and peak events,
and stores them in a priority queue with the orienta-
tions as keys. Then it processes the events one by one
in order using the priority queue. For each event and its
orientation θ, it updates the number of peaks with re-
spect to ℓθ and updates the mark of the vertex or chord
of G corresponding to the event accordingly. Then it
computes an MICS of the subgraph of G induced by
the used vertices and chords. The number of subpoly-
gons in a minimum partition of P with respect to ℓθ is
determined by the number of peaks and the cardinal-
ity of the MICS by Lemma 1. It updates the minimum
number of subpolygons if the number with respect to ℓθ
is smaller than the minimum number we have so far.
After processing all the events, we have the line ℓ∗

such that the minimum partition P∗ of P with respect
to ℓ∗ is a minimum partition of P . Finally, we compute
a minimum partition P∗ of P with respect to ℓ∗, and
return (ℓ∗,P∗) as a minimum partition-pair.

We analyze the time complexity of the algorithm. We
denote by Tc, Tm and Tr the times for constructing the
circle graph induced by P and a fixed scan line, for com-
puting an MICS of the circle graph, and for computing
a uniformly monotone partition corresponding to the
MICS, respectively.

Lemma 2 We can compute a minimum partition of P
in O(n+R2 logR+Tc+R2Tm+Tr) time using O(n+R2)
space.

4.2 With no Steiner points

We present an O(nR log n+R5)-time algorithm for the
minimum partition problem with no Steiner points, im-

proving upon the result by Liu and Ntafos. Our algo-
rithm uses a geodesic query data structure for finding
full diagonals between super-peaks efficiently. Here, the
geodesic between any two points p, q ∈ P , denoted by
π(p, q), is the unique shortest path between p and q that
is contained in P .

Lemma 3 Given a top super-peak H1 and a bottom
super-peak H2 of P consisting of n1 and n2 vertices,
respectively, we can check if there is a full diago-
nal between a vertex of H1 and a vertex of H2 in
O(min{n1, n2} log n) time, after an O(n)-time prepro-
cessing using O(n) space.

By efficiently computing the chords corresponding to
pairs of super-peaks as in Lemma 3, and using the re-
sult in Section 4.1, we have our result for the minimum
partition problem with no Steiner points.

Theorem 4 Given a simple polygon P with n vertices
(including R reflex vertices) and no holes, we can com-
pute a minimum partition-pair of P in O(nR log n+R5)
time using O(n+R2) space, when no Steiner points are
allowed.

4.3 With boundary Steiner points

We present an O(n + R5)-time algorithm for the mini-
mum partition problem using Steiner points lying on the
boundary of P , improving upon the result by Liu and
Ntafos. Our algorithm first constructs the circle graph
efficiently using geodesic queries for vertices in peaks.

Lemma 5 We can compute full diagonals of P for the
y-axis scan line in O(n+R2 log n+R3) time.

After constructing the circle graph using Lemma 5,
our algorithm computes an MICS of the graph. Then,
it computes a minimum partition from the MICS effi-
ciently using ray shooting queries, and uses the result
in Section 4.1.

Theorem 6 Given a simple polygon P with n vertices
(including R reflex vertices) and no holes, we can com-
pute a minimum partition-pair of P in O(n+R5) time
using O(n+R2) space, using Steiner points lying on the
boundary of P .

4.4 With boundary and interior Steiner points

We give a sketch of an O(n+R4)-time algorithm for the
minimum partition problem using Steiner points lying
on the boundary and interior of P .
The number of subpolygons in a minimum partition

of P may be reduced if Steiner points are allowed to
be placed in the boundary and interior of P . See Fig-
ure 1(b,c). In Figure 1(c), a y-monotone chain connects

216



34th Canadian Conference on Computational Geometry, 2022

a top peak and a bottom peak that are not visible to
each other.

We refer to a chain that connects a pair of vertices
of P including Steiner points on ∂P , and is contained
in the interior of P , except at the end vertices, as a
diagonal chain of P . For a scan line ℓθ, a diagonal
chain is full if it connects a top peak u and a bottom
peak v with yθ(u) ≥ yθ(v), and it is monotone with
respect to ℓθ. Here, yθ(p) for a peak p is the y-coordinate
of the point obtained by rotating p around the origin
in counterclockwise by θ. We use full diagonal chains,
instead of full diagonals, for constructing chords of a
circle graph. Then Lemma 1 holds for the circle graph.

We can show that there is a full diagonal chain be-
tween a pair of top and bottom peaks for scan line ℓθ
if and only if there are a vertex u in the top peak and
a vertex v in the bottom peak with yθ(u) ≥ yθ(v) such
that the geodesic between u and v is monotone with
respect to ℓθ. Thus, we can compute the chords of the
circle graph G by computing for each pair of peaks, the
geodesic between two vertices, one from each peak, and
checking if it is monotone with respect to ℓθ.

After constructing G, we compute an MICS of G.
Lemma 2 holds by modifying the definition of the diag-
onal event as follows.

- Diagonal event : the geodesic between a vertex in a
top peak and a vertex in a bottom peak becomes
monotone with respect to the scan line ℓθ.

It is known that the cardinality of an MICS of G
equals the cardinality of a maximum matching of G [13].
We can show that G is a chordal bipartite graph for any
fixed scan line, which is a bipartite graph such that ev-
ery cycle C of length at least 6 in the graph has an edge
not in C that connects two vertices in C. A maximum
matching of a chordal bipartite graph can be computed
efficiently [1, 14]. Thus, we can efficiently compute the
cardinality of an MICS of G.

By computing the cardinalities of MICSs as above
and using the result in Section 4.1, we compute the ori-
entation θ∗ corresponding to a minimum partition of P .
Then, we explicitly compute an MICS of the circle graph
induced by P and the scan line of orientation θ∗. We
compute a partition of P corresponding to the MICS as
follows. We place Steiner points on line segments lying
in P and perpendicular to the scan line, each of which is
incident to a reflex vertex of P . We assign each Steiner
point to the corresponding chord in the MICS, and con-
nect the assigned Steiner points for each chord in the
MICS to obtain a full diagonal.

From each remaining peak in the partition induced
by the full diagonals, we shoot a ray parallel to the scan
line of orientation θ∗, and add the line segment obtained
from the ray that lies in the subpolygon containing the
peak. The resulting partition is a minimum partition of
P . In total, it takes O(n + R4) time using O(n + R2)

space to compute a minimum partition-pair of P .

5 Approximation algorithms

We give simple factor-2 approximation algorithms for
the minimum partition problem. Observe that the num-
ber of subpolygons in a minimum partition cannot be
less than half of the number of peaks. Thus, any par-
tition of P with the scan line of the orientation, that
minimizes the number of peaks among all orientations,
induced by diagonals each removing at least one peak,
is a 2-approximation for the minimum partition prob-
lem. We compute such a partition in O(n log n) time
with no Steiner points, and in O(n + R log n) time us-
ing Steiner points lying on the boundary of P . The
solution returned by the latter algorithm is also a 2-
approximation for the case that Steiner points can be
placed anywhere in P .
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Opposing Half Guards∗

Erik Krohn† Bengt J. Nilsson‡ Christiane Schmidt§

Abstract

We study the art gallery problem for opposing half
guards: guards that can either see to their left or to their
right only. We present art gallery theorems, show that
the problem is NP-hard in monotone polygons, present
approximation algorithms for spiral and staircase poly-
gons, and show that the location of half guards in 2-
guardable polygons is not restricted to extensions.

1 Introduction

The Art Gallery Problem (AGP), based on a question
by Victor Klee, is one of the classical problems in Com-
putational Geometry. Klee asked for the minimum num-
ber of stationary guards with 360◦ vision that we need
to place to achieve complete visibility coverage of a poly-
gon P. Such a guard g ∈ P can see a point p ∈ P iff gp
is fully contained in P. Typical results can be classified
in two categories:

1. Computational complexity and algorithmic results
for the minimization of the number of star-shaped
polygons (the visibility polygons (VPs) of guards)
that cover a polygon—computation of G(P).

2. “Art Gallery Theorems”: Worst-case, combinato-
rial bounds on the number of VPs that are some-
times necessary and always sufficient to cover a
class of polygons—bounds on the maximum value
of G(P) over all polygons of n vertices, g(n).

Results on (2) are presented in, e.g., [4, 7, 11, 16].
Results settling the computational complexity, (1), are
given in, e.g., [17, 13, 16, 6, 1], approximation algo-
rithms are given in, e.g., [12, 3].

Here, the guards do not have 360◦ vision, but every
guard can either see to the left or the right: imagine a
spotlight as shown in Figure 1(a), for which the upper
bow is fixedly mounted (and cannot rotate/yaw), so, the
only degree of freedom for the spotlight is analogue to
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(a) (b)

Figure 1: (a) A spotlight (picture from flickr.com user Toby
Simkin under licence CC BY-NC-SA 2.0.), (b) a polygon
(black) with a left-looking half guard and its visibility poly-
gon (blue) and a right-looking half guard and its visibility
polygon (red).

an aircraft pitch. If we fully utilize this movement, the
spotlight illuminates one of the two halfplanes defined
by the line that contains the upper bow. Formally, a
left-looking (right-looking) half guard g ∈ P sees a point
p ∈ P iff gp is fully contained in P and if p does not have
larger (smaller) x-coordinate than g, see Figure 1(b) for
an illustration. We call such guards opposing in contrast
to half guards that can all only see in one direction.
Half guards that all see in only one direction have been
considered by Gibson et al. [9].

Of course, if we found a feasible solution for the AGP
with “ordinary” guards, placing a left- and a right-
looking half guard for each guard yields a feasible so-
lution also for the AGP with half guards—usually this
will not be optimal, for monotone mountains (where we
can compute an optimal solution for the AGP in polyno-
mial time [5]) it would directly yield a 2-approximation.
In this paper, we study questions of both types (1) and
(2) for half guards.

2 Notation and Preliminaries

We let P denote a simple polygon, |P| = n. We let
r denote the number of reflex vertices of P . A sim-
ple polygon P is x-monotone if the intersection ` ∩ P
of P with any vertical line ` is a connected set. Any
x-monotone polygon decomposes into two x-monotone
polygonal chains between the rightmost and leftmost
point of P. An x-monotone polygon is a monotone
mountain or uni-monotone, if one of its two chains—
w.l.o.g. the upper chain—is a single horizontal segment,
H. A polygon P is orthogonal (or rectilinear) if all of
its edges are axis-parallel, that is, either horizontal or
vertical. An orthogonal polygon P is a staircase poly-
gon if it is x- and y-monotone. We assume a leftmost
(rightmost) point of a staircase polygon to also be its
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lowest (highest) point and denote this point by p` (pu).
We have two polygonal chains connecting p` and pu, the
chain for which there exists a point on the other chain
with the same x-coordinate but larger y-coordinate is
denoted as the lower chain, the other chain is the upper
chain.

Our half guards can either look to their left or their
right, formally, we define left-looking and right-looking
half guards. Let px and py define the x- and y-
coordinate of a point p, respectively.

• A left-looking half guard g ∈ P can see a point q ∈ P
iff (gq does not intersect P’s boundary AND gx ≥
px); we say that g half sees q.
• A right-looking half guard g ∈ P can see a point
q ∈ P iff (gq does not intersect P’s boundary AND
gx ≤ px); we say that g half sees q.

Because we sometimes compare with “normal” visi-
bility, we also define when a (full) guard g ∈ P sees a
point p ∈ P: when the line segment gp does not in-
tersect P ’s boundary. For a point p, we let V(p) de-
note the half-visibility polygon of p and V(p) denote
the “normal” visibility polygon of p. In a polygon P,
a set of witnesses W is a set of points in P, such that
∀w1, w2 ∈W : V(w1) ∩ V(w2) = ∅.

3 Art Gallery Theorems for Opposing Half Guards

In this section, we give Art Gallery Theorems, that is,
statements of the type “x(n) guards are always sufficient
and sometimes necessary for polygons with n vertices”,
for different polygon classes.

Theorem 1 In simple polyons with n vertices:

• For r > n
2 : 2bn3 c half guards are always sufficient

and sometimes necessary.
• For r ≤ n

2 : r + 1 half guards are always sufficient
and sometimes necessary.

Proof. For r > n
2 , the upper bound follows trivially

from the bn3 c upper bound by Fisk [7] for “normal”
guards (triangulating the poylgon, three-coloring the
vertices and using the least-frequently used color yields
at most bn3 c): placing one right- and one left-looking
half guard at each position of a “normal” guard results
in 2bn3 c half guards.

For the lower bound, we construct a family of poly-
gons Pn, see Figure 2(a), that needs 2bn3 c half guards.
Pn is an x-monotone polygon: the upper polygonal
chain has reflex vertices only (except for the rightmost
and leftmost vertex, which are convex), the lower chain
has alternating reflex and convex vertices. The reflex
vertices of the upper chain have the same x-coordinate
as the convex vertices of the lower chain. The lower-
chain vertices incident to the rightmost and leftmost
vertex of Pn are either a reflex or convex vertex, such
that we can define Pn also for (n mod 3) 6= 0. For each

(a)
ci

uivi
wi

Pi

Pi+1pi qi

(b)

(c)

Figure 2: (a) Lower bound construction for simple (and
monotone) polygons with r > n

2
; (b) zoomed in on (a) show-

ing Pi (yellow) and Pi+1 (green). (c) Lower bound construc-
tion for simple (and monotone) polygons with r ≤ n

2
.

convex vertex ci on the lower chain, we define a sub-
polygon Pi ⊂ Pn. We extend the two edges incident to
ci; let the two points where these extensions intersect
with the upper chain be vi and wi. Let the reflex vertex
of the upper chain with the same x-coordinate as ci be
ui. The polygon Pi is defined by ci, vi, ui and wi, see
Figure 2(b). Note that Pi ∩ Pi+1 6= ∅. We claim that
we need two half guards per Pi. Let pi and qi be two
points on the edges incident to ci within distance ε from
the reflex vertices (marked in red in Figure 2(b)). The
point pi can be seen from a right-looking half guard g
only if gx ≤ pix , however—as indicated by the red line
segment—such a half guard cannot see qi. A similar
argument holds for a left-looking half guard seeing qi.
Both pi and qi can be seen from points in Pi only. How-
ever, we saw that Pi and Pi+1 overlap: assume that we
place a left-looking half guard g at wi, it can see qi and
pi+1. We still need two (more) half guards in Pi+1:
a right-looking half guard at wi cannot see qi+1, but
a left-looking half guard that sees wi cannot see all of
Pi+1. Hence, we need 2dn3 e half guards.

For the upper bound for r ≤ n
2 , we recursively parti-

tion the polygon into r + 1 convex pieces: we pick any
reflex vertex and extend one of its incident edges un-
til we hit the boundary. Then, in both subpolygons we
created, this vertex is no longer a reflex vertex. Because
we end up with convex pieces, we can cover each piece
with either a left-looking half guard at its rightmost ver-
tex or a right-looking guard at its leftmost vertex. This
yields in total r+1 half guards. For the lower bound, we
construct a family of polygons Pn, see Figure 2(c), that
needs r + 1 half guards. No two of the vertices marked
with a point can be seen by a single half guard. Hence,
we need r + 1 half guards. �

The lower bound constructions for simple polygons
are in fact both also monotone polygons, we yield:

Corollary 2 In monotone polyons with n vertices:

• For r > n
2 : 2bn3 c half guards are always sufficient

and sometimes necessary.
• For r ≤ n

2 : r + 1 half guards are always sufficient
and sometimes necessary.
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(a) (b)

Figure 3: (a) Guarding L-shaped pieces with a single half
guard; right-looking half guards are shown in red, left-
looking half guards are shown in blue. (b) Lower bound
construction for orthogonal polygons.

Theorem 3 In simple orthogonal polyons with n ver-
tices, bn4 c half guards are always sufficient and some-
times necessary.

Proof. An orthogonal polygon can be partitioned in
bn4 c L-shaped pieces (in linear time) [15, 16]. L-shaped
pieces are orthogonal hexagons. Any L-shaped piece
can be guarded by a single half guard placed at the
only convex vertex, v, that can see all other vertices of
the L-shaped piece (when the piece is considered as a
simple polygon). Depending on whether the interior of
the L-shaped piece lies in the left or right half plane of
the vertical line through v, we use a left-looking or right-
looking half guard, respectively. See Figure 3(a) for ex-
amples of guarding L-shaped pieces of the four possible
orientations. This establishes that bn4 c half guards are
always sufficient.

Figure 3(b) shows a family of polygons Pn that needs
bn4 c half guards: no two of the vertices marked with a
point can be seen by a single half guard. Hence, we need
one half guard per four edges. �

Theorem 4 In monotone mountains with n vertices:

• For r < n
2 : r + 1 half guards are always sufficient

and sometimes necessary.
• For n

2 ≤ r ≤ 3n
4 : bn2 c half guards are always suffi-

cient and sometimes necessary.
• For r > 3n

4 : 2 · (n − r − 2) ≤ n
2 half guards are

sometimes necessary.

Proof. For r ≤ n
2 , the upper and lower bound follow

as in the proof of Theorem 1 (i.e., the lower bound is
shown in Figure 2(c) (where the lower horizontal chain
is a horizontal segment)).

For the upper bound for n
2 ≤ r ≤ 3n

4 , we consider
the lower polygonal chain (the upper polygonal chain
is a single horizontal segment H). For guarding mono-
tone mountains with “normal” guards, all guards can be
placed on H and it is sufficient to guard all points of the
lower polygonal chain to guard the complete polygon [5],
the arguments used there also hold for half guards.

In between any pair of consecutive convex vertices,
we have a reflex chain. One or two of the vertices in a
reflex chain have a larger y-coordinate than the other
vertices of that reflex chain. We split the reflex chain at
one of these two vertices. Now, any convex vertex v is

H

v3v2
v1

Figure 4: Upper bound construction for monotone moun-
tains. The vertex v1 and CR(v1) and CL(v1) are shown in
dark red; v2, CR(v2), and CL(v2) are shown in dark green;
and v3, CR(v3), and CL(v3) are shown in dark blue. Right-
looking half guards are shown in red, left-looking half guards
are shown in blue.

Figure 5: Lower bound construction for monotone moun-
tains and n

2
≤ r ≤ 3n

4
.

adjacent to a split reflex chain both on its right, CR(v),
and on its left, CL(v). Let ` be the vertex with maximal
y-coordinate in CL(v). We distinguish three cases:

1. Both CR(v) and CL(v) have more than two edges:
Let h ∈ H be the point with hx = vx, we place a
right-looking and a left-looking guard at h. These
half guards monitor CR(v) and CL(v), and we use
two half guards for at least four edges. The vertex
v1 in Figure 4 is an example for this case.

2. One of the two split reflex chains, w.l.o.g. CR(v),
has more than two edges: let h be the point on H
with hx = `x. We place a right-looking half guard
at h. This half guard sees CR(v) and CL(v) (CL(v)
has only one edge), and we use one half guard for
at least three edges. The vertex v2 in Figure 4 is an
example for this case.

3. Both CR(v) and CL(v) have only one edge: let h
be the point on H with hx = `x. We place a right-
looking half guard at h. It monitors CR(v) and
CL(v), and we use one half guard for two edges.
The vertex v3 in Figure 4 is an example for this
case.

In all cases, each half guard monitors on average at least
two edges, and the claim follows.

For the lower bound for n
2 ≤ r ≤ 3n

4 , we use a similar
construction as in Figure 2(c), however, in between two
consecutive convex vertices, we now include one, two
or three reflex vertices, see Figure 5 for an example.
If CR(v) and CL(v) have both one edge, we can guard
both of these edges with a single (left- or right-looking)
half guard. If CR(v) and CL(v) have both two edges,
these four edges cannot be seen by a single half guard,
and no half guard from neighboring reflex chains can
fully monitor these edges. Hence, we use one half guard
per two edges.

For r > 3n
4 , we only use case 1 (that is, only

what is depicted in dark red in Figure 4): we place
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a right-looking and a left-looking guard on H at the x-
coordinates of convex vertices—except for the leftmost
and rightmost convex vertex that are located on H.
These guards see the complete lower polygonal chain.
We have c = n − r convex vertices, thus, we place
2(c−2) = 2(n−r−2) half guards. For the lower bound,
we insert reflex chains as the dark-red reflex chains from
Figure 4 in the construction from Figure 5. �

4 Hardness Results for Opposing Half Guards

NP-hardness for point guarding a monotone polygon
with half guards that only see to the right was claimed
in [10]. The same reduction can be used for opposing
half guards. In [10], the authors show an NP-hardness
reduction from 3SAT. They show that certain vertices
on the boundary represent truth values for variables in
the original 3SAT instance. Clauses are represented by
specific points on the boundary of the polygon. For ex-
ample, if a clause c = x2 ∨ x5 ∨ x7 were in the original
instance, then a vertex would exist on the boundary that
would be seen by three vertices, namely the ones repre-
senting x2, x5 and x7. We briefly look at each pattern
and show that if the polygon is guardable with k guards,
then all k guards must be right-looking half guards.

Figure 6: A starting pattern and a variable pattern for the
NP-hardness reduction.

Starting Pattern: No left-looking half guard can
see both v3 and v6, see Figure 6. No left-looking half
guard placed outside of the starting pattern can see v3
or v6. Placing a left-looking half guard in the starting
pattern for xi would require at least two guards to be
placed for the xi starting pattern when one right-looking
half guard is sufficient.

Variable Pattern: Distinguished vertices of a vari-
able pattern that can be seen by guards outside of the

variable pattern are vertices v10 and v13, see Figure 6.
Neither of these vertices, and none of the other distin-
guished vertices in this pattern, can be seen by a left-
looking half guard outside of the variable pattern. Any
left-looking half guard placed inside the variable pattern
will require too many guards to be placed to guard the
entire variable pattern. In the original reduction, two
right-looking guards are required to guard the variable
pattern. Even with left-looking guards being allowed,
two guards are still required.

We note that only one of v10 or v13 will be seen by
a guard to the left of the variable pattern. An incor-
rectly placed guard that sees both v10 and v13 will be
an additional guard and will not reduce the number of
guards needed in the current variable pattern. No guard
(left or right-looking) can see both v2 and v5. There-
fore, at least two guards are required to see v2 and v5
in each variable pattern. First, assume v10 is seen by a
right-looking half guard to the left of of the variable pat-
tern. This leaves the following vertices to be guarded:
{v2, v5, v8, v12, v13}. No left-looking half guard can see
more than one distinguished vertex in that list. If a
left-looking half guard sees v2, then the only location to
see both v5 and v12 is a right-looking half guard at loca-
tion v11. If a left-looking guard is placed to see v5, then
the only location that sees v2 and v12 is a right-looking
guard at location v1. In both cases, neither v1 nor v11
sees v8 and a third guard would be required.

Next, assume v13 is seen by a guard outside of the
variable pattern. In this instance, no left-looking guard
can see more than one of {v2, v5, v8, v10, v12}. The same
argument as above also applies here. Therefore, if a
left-looking half guard is placed in this variable pat-
tern, three guards are required when two right-looking
half guards are sufficient. Those guard locations are
{xi, v11} or {xi, v1}.

No extra guards are required to see any of the clause
distinguished points. Any left-looking half guard that is
placed to see a clause distinguished point will only see
that particular clause distinguished point. No other dis-
tinguished points in any starting or variable pattern will
be seen by such a guard. If k guards are sufficient to
guard the entire polygon, then if a single left-looking
half guard is placed in any pattern, an additional k
guards are required to see the entire polygon. Thus,
the reduction from [10] holds even if left-looking half
guards are allowed to be placed inside the monotone
polygon.

5 2-Guardable Polygons

In his Master thesis, Belleville [2] showed that if a poly-
gon P is two-guardable (two guards can fully monitor
P), P is two-guardable by two guards that are located
on edge extensions (including the edges themselves). We
show that this statement does not hold for half guards:
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Figure 7: Polygon construction for Theorem 5.

Theorem 5 Let P be a polygon for which the minimum
half-guard cover has cardinality two, let these two guards
be denoted as g1 and g2. Then neither g1 nor g2 must
be located on edge extensions. Moreover, neither g1 nor
g2 must be located on polygon diagonals.

Proof. We construct a polygon P that can be covered
by two half guards, but these guards do not lie on any
edge extensions (or edges), that is, if we would restrict
half-guard locations to edges and edge extensions, P
cannot be covered by two half guards. The polygon P
is shown in Figure 7. The shown half guards (one left-
looking and one right-looking half guard) monitor P, let
the right-looking half guard be denoted as gr and the
left-looking half guard be denoted as g`. The lines of
sight meeting in the niches on the top and bottom of P
are shown in red and blue for gr and g`, respectively.
The dots in the polygon edges indicate very long edges.

Clearly, as P is an orthogonal polygon, neither gr
nor g` lie on any edge extensions, nor on any diagonals.
It remains to show that no other pair of half guards
monitors P.

First, note that we cannot use two half guards that
look into the same direction to monitor P with two half
guards only: Then half guards cannot “share” seeing the
niches, and we need one half guard per pair of mirrored
niches. Hence, any minimum half-guard cover of P must
contain a right-looking and a left-looking half guard.

Now assume that we try to move gr and g`. Assume
first that we only alter the y-coordinate of gr. W.l.o.g.—
the polygon is symmetric—we increase the y-coordinate
of gr and obtain guard g′r. Then, the first point that
g′r sees on the top-right edge of P (the horizontal edge
ending in the upper right vertex of P) has a larger x-
coordinate than p1. Hence, we need to increase the x-
coordinate of g`. If we only alter the x-coordinate of
g` to obtain g′`, points at distance ε from p3 and p4
on the same edges are not visible to g′`, and we do no
longer have a half-guard cover. Increasing also the y-
coordinate of g` leaves part on the top unseen. Thus,
assume that we increase the x-coordinate and decrease
the y-coordinate of g`. Then, a point at distance ε from
p3 on its edge is not visible.

Similar arguments yield that changing the x-
coordinate of gr does not allow us to find a position
for g` such that P is covered. �

(a)

g =→(ei′ )

↓(g)
ei′

p

ei

p

ei

g =↑(p)

vi−1

uj

↘(g)

ei′

(b)

Figure 8: (a) Windows of a spiral polygon. (b) Illustrating
the four operations.

Note that for “normal” guards, we may move the two
guards to the x-coordinates of the left-most and right-
most vertical edges of the niches.

6 An Approximation Algorithm for Spiral Polygons

A simple polygon P is spiral if it has two convex ver-
tices u and u′ such that a clockwise boundary walk from
u to u′ encounters only convex vertices and a counter-
clockwise boundary walk from u to u′ encounters only
reflex vertices. Nilsson and Wood [14] show a linear
time greedy algorithm to compute the minimum num-
ber of “normal” guards for spiral polygons. We show
a 3/2-approximation for half guards based on dynamic
programming.

For a half visibility polygon V(p) of a point p in poly-
gon P, we call a window a boundary edge of V(p) that
does not coincide with the boundary edges of P; see Fig-
ure 8(a). We make the following claims without proof.

Lemma 6 For a point p in a spiral polygon P, the half
visibility polygon V(p) has at most three windows.

Lemma 7 In a spiral polygon P, there is an optimal set
of half guards that all lie on the convex chain of P.

We let n = nc + nr be the total number of vertices
where nc is the number of convex vertices including u
and u′ and nr is the number of reflex vertices. We order
the vertices from u to u′ so that u = u1, . . . , unc = u′ are
the convex vertices and v1, . . . , vnr are the reflex vertices
in counterclockwise order starting from the vertex after
u and ending at the vertex before u′. To simplify, we
let v0 = u. We also denote by ei = [vi−1, vi] the edge of
the reflex boundary connecting vi−1 and vi, 1 ≤ i ≤ nr.

We identify special vertices that we call corners. A
convex vertex uj in P is an (outer) corner, if the two in-
cident edges to uj both lie on the same side of a vertical
line through uj and assume for simplicity that P has no
vertical edges. We say that a corner is a left corner if the
incident edges lie to the right of the vertical line through
the corner, otherwise it is a right corner. Similarly, we
can define the inner corners as the vertices of the reflex
boundary chain for which the adjacent edges lie on the
same side of the vertical line through the vertex. As we
follow the convex chain in clockwise order from a left
corner to a right corner, we say that a left looking half
guard is a backward guard and a right looking half guard
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is a forward guard. Similarly following the convex chain
in clockwise order from a right corner to a left corner,
a left looking half guard is a forward guard and a right
looking half guard is a backward guard.

In addition, we define some useful operations as fol-
lows. For an edge e of the reflex chain, the point →(e)
is the point on the convex chain intersected by a ray
exuded in the counterclockwise direction along e.

For a point p on the convex chain, the point ↓(p) is
the point on the reflex chain intersected by a ray exuded
in the vertical direction from p towards the interior of
the polygon, if it exists, otherwise ↓(p) is undefined.

For a point p on the convex chain, the point ↘ (p)
is the point on the convex chain intersected by a ray
exuded towards the last vertex on the reflex chain seen
by a forward half guard at p.

For a point p on the reflex chain, the point ↑(p) is the
point on the convex chain intersected by a ray exuded in
the vertical direction from p towards the interior of the
polygon. If p is an inner corner, the ray is exuded in the
vertical direction making ↑ (p) the furthest of the two
possible points along the convex chain; see Figure 8(b).

Consider a set of half guards G on the convex chain
and a half guard g placed at point p of the convex
chain. Assume that the half guards in G completely see
the edges e1, . . . , ei′−1 and g completely sees the edges
ei′ , . . . , ei−1, for indices i′ ≤ i, then operation ixG (p)
evaluates to the index i. Our algorithm will always
place guards so that they see a contiguous portion of
the reflex chain starting at v0 = u and ending at some
point p on ei, i ≥ 1. We can therefore assume that G is
any set of half guards that see the edges before ei′ and
define ix(p) = i only based on the half guard g at p.

We specify our algorithm as a dynamic programming
algorithm based on the following recursion. Let i be
the index of the furthest reflex edge ei not completely
seen by the currently placed half guards, let p be the last
point on ei seen by the currently placed half guards, and
let q be the last point on the convex chain seen by the
currently placed half guards. The first call is G(0, u, u).

G
(
i, p, q

)
=

min



G
(
ix(uj), vix(uj)−1,↘(uj)

)
+ 1, half guard at next

corner uj , if uj sees p and q
G
(
ix(g), ↓(g), g

)
+ 1, backward guard at g =→(ei),

if g sees q, ↓(g) is defined, and g is before next corner
G
(
ix(uj), vix(uj)−1,↘(uj)

)
+ 2, backward guard at

g =→(ei) and half guard at next corner uj ,
if g sees q, ↓(g) is undefined, and g is before uj

G
(
ix(q), vix(q)−1,↘(q)

)
+ 1, backward guard at g =↘(q)
if vi does not see q, ↓(g) is defined,

and g is before next corner
G
(
ix(uj), vix(uj)−1,↘(uj)

)
+ 2, backward guard at

g =↘(q) and half guard at next corner uj , if vi does not
see q, ↓(g) is undefined, and g is before uj

G
(
ix(q), vix(q)−1,↘(q)

)
+ 1, forward guard at q,

if q lies before ↑(p) on convex chain
G
(
ix(g), vix(g)−1,↘(g)

)
+ 1, forward guard at g =↑(p),

if ↑(p) lies before q on convex chain

p

q

uj

Case 3.

p

q

uj

Case 2.

p

q

uj

Case 1.

uj

p

Case 5.

q

vi
p

Case 4.

q

vi

q

p

↑(p)

Case 6.

p

↑(p) q

Case 7.

Figure 9: Illustrating the seven cases in the recursion.

We ignore the bottom of the recursion, when i > nr + 1
as it follows the general description above without the
recursive calls.

Each possible half guard position q can be precom-
puted as the (outer) corners, the intersection points
→(e) on the convex chain issuing from each edge e of
the reflex chain, and the intersection points ↑(v) on the
convex chain issuing vertically from each vertex v on
the reflex chain, giving a linear number of possible po-
sitions. For each of these, we identify the linear sized
sequence of continued intersection points ↘ (q) of the
supporting segments with the convex boundary, giving
at most a quadratic number of positions. Each position
can be acquired in constant amortized time by a traver-
sal of the two boundary chains taking quadratic time in
total. The dynamic programming thus fills out a table
of size O(n)×O(n2), each position in constant time.

We next prove the correctness and approximation ra-
tio of the algorithm.

Lemma 8 If G∗ is a minimal set of half guards for a
spiral polygon, then the algorithm covers the polygon and
places at most 3|G∗|/2 + 1 half guards.

Proof. The correctness of the algorithm follows by con-
struction, since it ensures that each window created by
a half guard is seen by the next half guard placed.

It remains to show the approximation ratio for the
algorithm. To do so, let B be the set of prespecified
and computed points on the convex boundary chain of
P where the algorithm can place a half guard. We have
|B| ∈ O(n2) from the discussion above. Consider an
optimum set of half guards G∗ that we can assume by
Lemma 7 all lie on the convex chain. Follow the convex
chain from u to u′ until a half guard g1 in G∗ is reached
that does not lie on a point in B. Let p be the last
point on the reflex chain seen by the guards in G∗ that
lie before g1 in G∗. If g1 is the first half guard, then
p = u. We will show that we can exchange g1 and the
subsequent half guard g2 in G∗ for three half guards g,
g′, and g′′ that indeed lie on the corresponding points
in B. Repeating the argument as the process follows the
convex chain in clockwise order, proves our claim.

If g1 can be moved to the subsequent point in B, with-
out losing visibility, we do so. This will not increase the
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Figure 10: Illustrating the proof of Lemma 8. Grey regions
are seen by previous half guards in G∗.

number of guards.

Assume that g1 is a backward guard between two sub-
sequent points q and q′ in B and that g1 cannot be
moved to q′ without losing visibility. Let vi−1 be the
first vertex on the reflex chain that g1 sees and thus g1
sees ei. So, p is some point on ei (except vi). Since g1
cannot be moved to q′ and the reflex chain is seen by
the previous guards until p on ei, there must be points
on the convex chain that are not seen if g1 is moved to-
wards q′. Let r be such a point on the convex chain and
let g0 be the guard in G∗ that sees r. The guard g0 must
be a backward guard at r and r is by assumption in B,
hence, g1 lies on the intersection of the convex chain and
the supporting line from r through the reflex chain and
this point lies in B, a contradiction; see Figure 10(a).

Assume next that g1 is a forward guard between two
subsequent points q and q′ in B, that g1 cannot be
moved to q′ without losing visibility, and that the re-
gion behind g1 is seen by the previous guards in G∗.
Let vi be the last vertex on the reflex chain that g1
sees and assume furthermore that g2 is a forward guard
(or a backward guard with a corner between g1 and
g2 along the convex chain). Without loss of generality,
we can assume that g2 lies on ↘ (g1) or on ↑ (vi) de-
pending on whether g1 sees the next corner or not; see
Figures 10(b), (c), and (d). If g2 does not lie on any of
these points, we can move it there without losing visi-
bility. We can place two forward guards g and g′ at q
and q′. The half guard g′ sees a vertex vi′ with i ≤ i′,
hence we can replace g2 by a half guard at ↘(q′), if g′

sees the next corner, or at ↑(vi′). Note that if g1 sees
the next corner, so must g′. In both cases, g1 and g2 are
replaced with three guards at positions in B.

Finally, assume that g1 is a forward guard, that the
subsequent guard g2 in G∗ is backward (or forward with
a corner between them) and the region behind g1 is not
seen by previous guards in G∗. We can argue for g2 as
we did in the first case to obtain a point r on the con-
vex chain not seen by g2 if g2 is moved forward; see
Figure 10(e) and (f). The forward guard g1 lies on the
intersection between vertical line segment intersection
through r and the convex chain (the vertical segment
spans between r and g1). Thus, the convex region de-

w1 w2

(a) (b) (c)

Figure 11: (a) A staircase polygon with CWS points w1 and
w2, visibility polygons are shown in gray. (b) Placement of
guards in Gcw. (c) Placement of guard in Gs (darkblue) and
moving the guard to a feasible vertex (dash-dotted).

fined by the convex chain from r to g1 and limited by
the vertical segment through these points is seen by g2
and it contains a corner. We can replace g1 and g2 by a
half guard g at the corner, a forward guard g′ at ↑(vi),
where vi is the last reflex vertex seen be g, and either
a backward guard at →(ei′), where ei′ is the first un-
seen edge of the reflex boundary, or a half guard at the
subsequent corner, whichever point comes first along a
traversal of the convex chain; see Figures 10(e) and (f).

In each case, a pair of half guards from the optimum is
replaced by a triple of half guards at a subset of our des-
ignated positions. Hence, there exists a feasible place-
ment of half guards having size at most d3|G∗|/2e. Since
the dynamic programming algorithm computes the min-
imum such placement, the lemma follows. �

We have the following result.

Theorem 9 The algorithm described computes a 3/2-
approximate set of opposing half guards for spiral poly-
gons in O(n3) time.

7 2-Approximation for Staircase Polygons

Gibson et al. [8] show that staircase polygons allow for a
2-approximation for “normal” guards. Our algorithm is
inspired by their CCCG algorithm (where CCCG stands
for canonical convex corner guard).

Let G∗ be an optimal opposing-half-guard set for a
staircase polygon. We place a guard set G that is com-
posed of two sets, that is, we have G = Gcw ∪Gs.

To construct Gcw, we place a set of witnesses on con-
vex vertices, the convex witness set (CWS): We place
witnesses alternatingly on (some) convex vertices of the
lower and the upper chain. We place the first wit-
ness, w1, on the first convex vertex of the upper chain
that does not lie on P ’s lowest edge. We then de-
fine Pi = P \ V(wi−1), where V(p) denotes the visi-
bility polygon of p under “normal” visibility. In Pi we
place a witness on the first convex on the lower chain
vertex that does not lie on Pis lowest edge, see Fig-
ure 11(a) for an examplary witness placement. We yield
W = {w1, w2, . . .}.

Lemma 10 W is a set of witness points (and a CWS)
and, hence, |W | ≤ |G∗|.
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Proof. The topmost edge of V(wi), for i = 2k + 1, k =
0, . . ., is a horizontal edge, ehi , and wi and ehi have the
same y-coordinate. By construction, the lowest edge of
V(wi+1), ehi+1, is also horizontal, and its y-coordinate is
larger than that of ehi . An analogous argument holds
for the vertical edges limiting V(wi) and V(wi+1) for
i = 2k, k = 0, . . .. Thus, the visibility polygons of the
wi are pairwise disjoint. �

We now place Gcw as follows: place a right-looking
half guard on each wi for which i = 2k + 1, k = 0, . . .,
and a left-looking half guard on each wi for which
i = 2k + 1, k = 1, . . ., see Figure 11(b). Because the
convex vertices are incident to vertical edges that limit
their visibility to one half plane, the visibility polygons
of the half guards coincide with the “normal” visibility
polygons of our witnesses. We have |Gcw| = |W | ≤ |G∗|.

For the construction of Gs, we consider the still un-
seen parts of P: we can at most have |Gcw| such polygon
pieces (between each pair of witness visibility polygons
and possibly one that includes either P’s topmost or
P’s rightmost edge). We show that each such region is
a staircase polygon for which either the upper or the
lower chain has exactly two edges—a stair. Consider
the placement of w2k+1 and w2(k+1): We place w2(k+1)

on the first convex lower chain vertex that does not
have the same y-coordinate as w2k+1. Hence, the lower
chain of the polygonal region between V(w2k+1) and
V(w2(k+1)) consists of one horizontal edge (defined by
the upper edge of w2k+1’s visibility polygon) and one
vertical edge (the upper end point of this edge has the
same y-coordinate as w2(k+1)). Thus, the polygonal re-
gion is a stair. We can place a left-looking half guard at
its lowest-rightmost point that covers it completely, see
Figure 11(c). Analgously, the polygonal region between
V(w2k) and V(w2k+1) is a stair for which the upper
chain has two edges, and we can guard it with a right-
looking half guard at its highest-leftmost point. Thus,
we obtain:

Theorem 11 The set G covers all of P and
|G| = |Gcw|+ |Gs| ≤ 2 · |Gcw| ≤ 2 · |G∗|.

In fact, the result holds for vertex half guards: all half
guards in Gcw are already placed on vertices; we observe
that we can slide each guard g ∈ Gs between w2k+1

and w2(k+1) down along the vertical edge it resides on
without loosing coverage of its stair, see Figure 11(c);
analogously, a guard between w2k and w2k+1 can be
slided left along the horizontal edge it resides on.
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Computing Realistic Terrains from Imprecise Elevations∗

Anna Lubiw† Graeme Stroud†

Abstract

In the imprecise 2.5D terrain model, each vertex of a
triangulated terrain has precise x- and y-coordinates,
but the elevation (z-coordinate) is an imprecise value
only known to lie within some interval. The goal is to
choose elevation values from the intervals so that the re-
sulting precise terrain is “realistic” as captured by some
objective function.

We consider four objectives: #1 minimizing local ex-
trema; #2 optimizing coplanar features; #3 minimizing
surface area; #4 minimizing maximum steepness.

We also consider the problems down a dimension in
1.5D, where a terrain is a poly-line with precise x-
coordinates and imprecise y-coordinate elevations. In
1.5D we reduce problems #1, #3, and #4 to a short-
est path problem, and show that problem #2 can be
2-approximated via a minimum link path.

In 2.5D, problem #1 was proved NP-hard by Gray et
al. [Computational Geometry, 2012]. We give a poly-
nomial time algorithm for a triangulation of a polygon.
We prove that problem #2 is strongly NP-complete, but
give a constant-factor approximation when the triangles
form a path and lie in a strip. We show that problems
#3 and #4 can be solved efficiently via Second Order
Cone Programming.

1 Introduction

A natural problem that arises in Geographic Informa-
tion Systems is to compute a triangulated terrain in 3D
space that is “nice” or “realistic”. There is no single
objective function to capture “niceness”. In the study
of erosion and hydrology, it is generally accepted that
pits in a triangulated terrain are artifacts of imprecision,
due to the unrealistic occurrence of water accumulation
in flow simulations [9]. This motivates minimizing the
number of extrema in the terrain. Since actual terrains
tend to be smoothed by erosion, other natural objec-
tives are to minimize the surface area, or to make the
terrain as flat as possible.

A triangulated terrain is often computed from real
elevation data. It is usually assumed that the data is
accurate, however data acquisition can be complex and
potentially prone to errors. It may be appropriate to

∗Results from Master’s thesis of the second author [16].
†School of Computer Science, University of Waterloo,

alubiw@uwaterloo.ca, graeme.stroud@uwaterloo.ca

model the input data as coming from a possible range
of values to account for this uncertainty. Dealing with
uncertainty or imprecision in the input data is a broad,
well-studied area in computational geometry. Each in-
put point may be represented by an uncertainty region,
and the issue then is to find the best (or worst) place-
ment of points, one in each region, for the problem at
hand. For imprecise points in the plane, there is work
on minimizing/maximizing the width, the area of the
bounding box, or the diameter of the points [11, 13].

For the case of terrains, Gray and Evans [8], and
Gray [7] formulated the imprecise 2.5D terrain
model. In this model, the x, y-coordinates of points are
given as input, in addition to a triangulation defined on
the points when projected to the xy plane, but the z-
coordinate (elevation) of each point is only known “im-
precisely” within some interval of possible values. We
obtain a precise 2.5D terrain by choosing a precise
elevation from each uncertainty interval and connecting
the points together according to the input triangulation.
Various “niceness” criteria for choosing a precise terrain
have been considered in the past such as minimizing the
number of local extrema [9], or minimizing the length
of the shortest path along the terrain from one point to
another [8, 12].

When these problems are NP-hard or have unknown
computational complexity for 2.5D terrains, researchers
(e.g., Gray et al. [10]) have considered imprecise 1.5D
terrains. Here, the x-coordinates are precise, and the
elevations are the y-coordinates, each of which is given
imprecisely via an interval.

We explore four objective functions that capture dif-
ferent “niceness” criteria for a terrain. To the best of
our knowledge, only the first one (minimizing the num-
ber of extrema) has been considered before.

Objective #1: Minimizing local extrema. A local
extremum is a local maximum or minimum compared
to its neighbours in the triangulation. In a terrain these
correspond to peaks or pits. To deal with equal eleva-
tions, define a plateau to be a maximal set of points
of equal elevation that are connected by edges. A lo-
cal minimum [maximum] is a plateau such that all
neighbouring points have higher [lower] elevations. The
problem of minimizing the number of local extrema was
proved NP-hard in 2.5D by Gray et al. [9]. We give a
polynomial time algorithm for the special case of a tri-
angulation of a polygon, and solve the 1.5D version in
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#1: extrema #2: coplanar #3: area/length #4: steepness
1.5D O(n) [§2] 2-approx [§2] O(n) [§2] O(n) [§2]
2.5D special O(n4) [§3] 5-approx [§4.1]

(polygon triangulation) (strip triangulation)
2.5D general NP-hard [9] NP-hard [§4.2] SOCP [§5] SOCP [§6]

Table 1: Summary of results, with new results in bold.

linear time via a shortest path.

Objective #2: Optimizing coplanar features. To
make a smooth terrain, we would like triangles to be
coplanar with adjacent triangles if possible. This can be
formalized as minimizing the number of patches, where
a patch is a maximal set of coplanar triangles that are
connected edge-to-edge. An alternative is to minimize
the number of bends, where a bend is an edge whose two
incident triangles are not coplanar. These objectives
have different solutions in general, though they have
the same solutions in 1.5D, where a patch is a maximal
set of connected collinear edges (a “link”) and a bend
is a point whose two incident edges are not collinear.
We show that both the patch and the bend versions are
NP-complete in 2.5D. We give an easy 2-approximation
in 1.5D and extend this to a 5-approximation for 2.5D
in the special case where the triangles form a path in a
strip (i.e., there are only two y-values).

Objective #3: Minimizing surface area/length.
These are very natural objective functions. In 1.5D
this becomes a shortest path problem. We formulate
the 2.5D version as a Second Order Cone Program
(SOCP). Second Order Cone Programming is a type of
convex optimization problem that can be solved quite
efficiently [15] (though not in polynomial time).

Objective #4: Minimizing maximum steepness.
The steepness of a segment in 2D is the absolute value
of its slope, and steepness of a triangle in 3D is the
norm of its gradient. We consider minimizing the max-
imum steepness. Minimizing steepness gives a terrain
that is as flat as possible, another reasonable objective.

We formulate the 2.5D version as a Second Order
Cone Program, and show that the 1.5D version is solved
via a shortest path—even for a lexicographic version
where we minimize the maximum steepness, and sub-
ject to that, minimize the second maximum, etc.

Background. Gray [7] was the first to consider the
imprecise terrain model. (See also Gray and Evans [8].)
The problem they considered was finding the shortest
path from one point to another over all precise real-
izations of the terrain. Various other objective func-
tions have been explored for imprecise 1.5D and 2.5D
terrains. The problem of minimizing the number of ex-
trema was first explored by Gray et al. [9], and they
show there is no O(log log n) approximation algorithm
unless P = NP. Driemel et al. [6] considered the prob-

lem of determining whether water can flow between two
points of an imprecise 2.5D terrain. Here, the assump-
tion is that water flows down the path of steepest de-
scent. Gray et al. [10] considered a few objectives that
result in “smooth” 1.5D terrains, such as minimizing
[maximizing] the total turning angle, and minimizing
[maximizing] the largest [smallest] turning angle.

2 1.5D Terrains

In this section we show that optimal 1.5D terrains for
Objectives #1, #3, and #4 can be computed in linear
time by finding a shortest path in an appropriate poly-
gon, and that a minimum link path in the polygon pro-
vides a linear time 2-approximation for Objective #2.

Suppose the input to the problem has n points where,
for i = 1, . . . , n, point i must lie in segment `i at x-
coordinate xi, with x1 < x2 < · · ·xn. Let P be the sim-
ple polygon whose vertices are the top and bottom end-
points of the segments, with a chain joining consecutive
top endpoints, a chain joining consecutive bottom end-
points, plus the two edges `1 and `n. See Figure 1. We
use a shortest path from `1 to `n, which is unique unless
it is a straight horizontal path that can shift up/down.

Figure 1: The input segments for the imprecise 1.5D
terrain problem (solid) and the polygon P (dashed).

Theorem 1 A shortest path from `1 to `n in polygon
P can be found in linear time and provides an optimal
1.5D terrain for Objectives #1, #3, and #4.

Proof. The shortest path from one segment to another
in a simple polygon can be found in linear time [3].
This algorithm needs a triangulation of the polygon.
Thankfully, we do not need Chazelle’s impractical linear
time algorithm [2], since P is composed of trapezoids
each of which can be cut into two triangles.

Note that a shortest path in a polygon only bends
at the polygon vertices. The vertices of polygon P are
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1 2 3 4 5 6 7 8 9 10 11 12

Figure 2: A shortest path terrain with five extreme
plateaus (marked by squares).

endpoints of segments, and therefore a shortest path
from `1 to `n provides a 1.5D terrain. (As discussed
below, the fact that a minimum link path may bend
at non-vertex points is why we can only achieve a 2-
approximation for Objective #2.)

The theorem is obvious for Objective #3 (minimizing
length). We next consider Objectives #1 and #4.

Objective #1. Suppose the shortest path has k ex-
trema. We must prove that this is optimal, i.e., that
any 1.5D terrain has at least k extrema. The plateaus
of the leftmost point and rightmost point are extreme
by definition. If k = 1 then there is a single plateau (the
shortest path is horizontal) and this is clearly optimal.
So suppose k > 1. Note that the extrema alternate be-
tween minima and maxima as we traverse the path. Let
pij be the rightmost point of the jth extreme plateau,
lying on segment `ij for j = 1, . . . , k − 1, and—since
we want points where the path bends—let pik be the
leftmost point of the rightmost extreme plateau.

We will show that any 1.5D terrain must include at
least k extrema, the leftmost and rightmost extrema
plus at least k − 2 others, one between segments `ij−1

and `ij+1
for each j, 2 ≤ j ≤ n− 1.

First, note that the points pij zig-zag, i.e., if pij is
a minimum [maximum] then pij is lower [higher] than
pij−1

and pij+1
. We see this in Figure 2, for instance,

where the point on segment 4 is below the points on
segments 3 and 9. Also, if pij is part of a minimum
[maximum] plateau, then the angle above [below] the
path at pij is strictly convex, so (because the path is
shortest) pij must be at the upper [lower] endpoint of
its segment. Therefore, any point on segment `ij is nec-
essarily below [above] the points on segments `ij−1

and
`ij+1

so there must always be a local minimum [maxi-
mum] between segments `ij−1 and `ij+1 . Finally, note
that since these extrema must alternate between min-
ima and maxima, the extremum between `ij−1

and `ij+1

is distinct from the extremum between `ij and `ij+2
.

Objective #4. We prove that the shortest path pro-
vides something stronger: it minimizes the maximum
steepness, and, subject to that, minimizes the second
maximum steepness, and so on. We call this lexico-
graphically minimizing the maximum steepness.
In the full version [14] we prove the following.

Proposition 1 A shortest path from `1 to `n in polygon
P lexicographically minimizes the maximum steepness.

This completes the proof of Theorem 1. �

We now turn to Objective #2, minimizing the number
of links/bends. First note that the number of links is one
more than the number of bends, so the two versions are
equivalent (unlike in 2.5D). We make use of a minimum
link path in polygon P from `1 to `n, which can be
found in linear time using Suri’s minimum link path
algorithm [17]. (Suri’s algorithm finds a minimum link
path from a source point to a target point in a simple
polygon, but, internally, it finds a minimum link path
from a segment (a visibility window) to the target point,
so it can easily be extended to deal with source and
target segments.) This path may have bends that are
not at the input line segments, but each such bend b
can be replaced by two bends at the line segments just
before and after b.

Theorem 2 Let π be a minimum link path from `1 to
`n in P . Then the points where π intersects the seg-
ments provide a 1.5D terrain with at most twice the
minimum number of bends.

Proof. The number of bends in π is clearly a lower
bound, and each bend in π is replaced by at most two
bends in the terrain. �

3 Local Extrema

We now turn to 2.5D terrains, as defined in the Intro-
duction. Note that we allow input triangulations that
do not include all the convex hull edges of the projected
2D points (to model triangulating a general shape). In
this section we consider Objective #1, minimizing the
number of local extrema.

Gray et al. [9] showed that this problem is NP-hard
for 2.5D terrains. Therefore, we will examine a special
case where we have a triangulation of a polygon, i.e., all
points are on the boundary of the triangulation.

Theorem 3 There is an O(n4) dynamic programming
algorithm to minimize the number of extrema for impre-
cise 2.5D terrains when the triangulation is of a poly-
gon.

The following claim (proved in the full version [14])
shows that we can restrict to a discrete set of elevation
values.

Claim 4 Let E = {b1, t1, . . . , bn, tn} denote the set z-
values of the bottom and top endpoints of the input in-
tervals. Then there exists an optimal solution z∗ so that
z∗i ∈ E for all i = 1, . . . , n.
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pj
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pi

S2
S1

Figure 3: Splitting subproblem Si,j into S1 := Sk,j

(pink) and S2 := Si,k (yellow).

We will now describe the algorithm. Label the ver-
tices around the polygon p1, . . . , pn in clockwise order.
For each edge pipj of the triangulation with i < j, we de-
fine a subproblem Si,j(zi, αi, βi, zj , αj , βj). This records
the minimum number of internal extreme plateaus for
the subpolygon pi, . . . , pj , where zi ∈ E is the ele-
vation for pi, αi ∈ {T, F} records whether there are
above (higher) elevations connected to pi’s plateau,
βi ∈ {T, F} records whether there are below (lower) ele-
vations connected to pi’s plateau, and similar for j. Here
“internal” means that we do not count the plateau(s)
of pi and pj . It is easy to add those plateaus into the
count, since pi’s plateau is a local extremum in Si,j iff
¬αi∨¬βi (i.e., there are no higher elevations connected
to its plateau or there are no lower elevations connected
to its plateau) and similarly for pj . Furthermore, they
are in the same plateau iff zi = zj .

The algorithm computes all Si,j entries us-
ing dynamic programming. Initialize by setting
Si,j(zi, αi, βi, zj , αj , βj) to ∞ when the parameters are
incompatible, meaning that a z value is outside its in-
terval, or the α, β values contradict the z values, e.g.,
αi = F but zj > zi, etc.

We solve for Si,j(zi, αi, βi, zj , αj , βj) for compatible
parameter values, starting with smaller values of j − i
before larger values. When j = i+1, there are only two
points (i.e., the subpolygon is an edge), and the number
of internal extrema is zero.

For j > i + 1, there is a (unique) triangle pi, pk, pj
with i < k < j. Our goal is to combine solutions to
the two subproblems Si,k and Sk,j for various z, α, β
values. See Figure 3. Si,k inherits zi. Sk,j inherits zj .
For zk, we try all values in E (the same value in both
subproblems). The above/below values are not simply
inherited, since, for example, a T value for αi in Si,j

can come from a F value in Si,k if zj provides the above
elevation.

To simplify notation, let S1 be Si,k and S2 be Sk,j .
Let α1

i be the α-value(s) of pi in S1, let α1
k be the α-

value(s) of pk in S1, and etc. for the β values and for
S2. We have αi ≡ α1

i ∨ (zj > zi). This tells us which
values of α1

i to try. Similarly for β1
i and α2

j , β
2
j .

We next specify which above/below values to try for
pk in the two subproblems. We will consider all pos-

sibilities for the final above/below values αk, βk of pk
in Si,j . Namely, (T, T ), (T, F ), (F, T ), (F, F ). We have
αk ≡ α1

k∨α2
k, i.e., there are elevations above pk’s plateau

in Si,j iff there are elevations above pk’s elevation in S1

or in S2. This tells us which values of α1
k and α2

k to try
for a given choice of αk. Similarly for βk.

Finally, we set Si,j to be the minimum value, among
all these choices, obtained as S1 + S2 + δ where δ ∈
{0, 1} is 1 iff pk’s plateau is an extremum distinct from
the plateaus of pi and pj , i.e., iff (¬αk ∨ ¬βk) ∧ (zk 6=
zi) ∧ (zk 6= zj).

The final minimum number of local extrema is ob-
tained by taking the best of all the S1,n values, after
adding 0, 1, or 2 extrema for p1 and pn as appropriate.

The algorithm is correct because we have considered
all possibilities for the two subproblems.

Runtime. There are O(n) edges pipj in the trian-
gulation, and for each, we try O(n2) elevations and
above/below values, for a total of O(n3) subproblems.
To solve a subproblem for Si,j we try O(n) values for zk
and a constant number of combinations of above/below
values. Thus the runtime of the algorithm is O(n4).

4 Coplanar Features

In this section, we explore the problem of minimiz-
ing the number of patches/bends. First, we give a 5-
approximation algorithm for a triangulation in a strip
(as shown in Figure 6). Then, we show that the general
case is NP-complete for both objectives.

In general, these two objectives are not equivalent,
see Figures 4 and 5. However, they are equivalent for
a triangulation of a polygon—as we prove in the full
version [14], the number of patches will be the number
of bends plus one.

4.1 An algorithm for a strip triangulation

A strip triangulation is a special case of a triangulation
of a polygon, so we can give an algorithm that works
for both objectives.

Theorem 5 There is a poly-time 5-approximation al-
gorithm for the problem of minimizing the number of
bends/patches when the input is restricted to a strip.

Let the triangles along the strip be T1, . . . , TN , where
N = n − 2. We first greedily find the maximum index
j such that triangles T1, . . . , Tj can be coplanar. To
test a given j, use a linear program whose variables are
the z values of the imprecise points and the coefficients
A,B,C of the plane z = Ax+By+C that the triangles
should lie in. Find the maximum j using binary search.

Note that any precise terrain for T1, . . . , Tj+1 must
have at least one bend. Let k > j be the minimum in-
dex such that triangle Tk shares no vertices with Tj . The
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[0, 1/3]

{0}

{1}

y = 1

y = 1
3

y = 0

Figure 4: Proving that minimizing the number of bends
is not always equivalent to minimizing the number of
patches. The central point (drawn with a big black
square) is the only one with a non-trivial z-interval,
viz. [0, 1/3].

{0}

{1}

z = 1/3

{0}

{1}

Figure 5: Solution (top) : If we use the top end of the
black interval, we get 5 patches (optimal) and 7 bends.
Solution (bottom) : If we use the bottom end of the
black interval, we get 6 patches and 6 bends (optimal).

plan is to start the next greedy step from Tk. Observe
that the situation is as shown in Figure 6: the last edge
of Tj is ab; the first edge disjoint from ab is pq which
is the first edge of Tk; and all intermediate triangles
Tj+1, . . . , Tk−1 include vertex a (without loss of gener-
ality, assume a and p lie on the top side of the strip).
Note that the elevations of a and b have been fixed by
the first greedy step, and the elevations of p and q will
be fixed by the second greedy step. By induction, it
suffices to choose elevations for the remaining vertices,
the ones that lie strictly between b and q along the bot-
tom of the strip, so that the resulting precise terrain on
T1, . . . , Tk−1 is a 5-approximation of the optimum.

Observe that triangles Tj+2, . . . , Tk−3 form a fan F
between apex a (with fixed elevation) and base edges
(with imprecise elevations) on the bottom of the strip.
Two adjacent triangles in this fan are coplanar iff their

Tj
Tk

Tj+1

a p

qe2 e3e1

e4

e5

b

Figure 6: The first iteration of the algorithm. Fan F is
colored in dark orange.

base edges are colinear. This reduces the problem to a
1.5D imprecise terrain problem in the xz-plane through
the bottom of the strip. We use the linear time algo-
rithm from Theorem 2 to find a 2-approximation for the
minimum number of bends.

Let OPT be an optimum solution and let B∗ be the
number of bends in OPT on edges up to and including
pq. Let B be the number of bends on these edges pro-
duced by the above algorithm. Let s∗ be the minimum
number of bends for internal edges of the fan F . Then
we have: B∗ ≥ 1+s∗ since there is at least 1 bend before
Tj+1, and s∗ bends within F ; and B ≤ 5 + 2s∗, since
there are five bends outside F (on the labelled edges
in Figure 6) and at most 2s∗ inside F by Theorem 2.
Thus 5B∗ ≥ 5 + 5s∗ ≥ B. Applying induction proves
the approximation ratio is correct for the whole input.

4.2 NP-hardness for the general setting

We show that the objective of minimizing the number of
patches is NP-complete for the case of a general triangu-
lation without holes, using a reduction from Monotone
Rectilinear Planar 3-SAT. The same reduction shows
that minimizing the number of bends is NP-complete—
see [16].

Theorem 6 Minimizing the number of patches [or
bends] is strongly NP-complete in the general setting.

Containment in NP is proved in the full version [14]—
a non-deterministic guess for the patches/bends can be
verified in polynomial time using linear programming.

Reduction details. The reduction will be from the
NP-complete problem Monotone Rectilinear Planar 3-
SAT [4]. In this variant of 3-SAT, each clause has either
three positive literals or three negative literals, and the
input includes a planar representation where each vari-
able v is represented by a thin vertical rectangle along
the line x = 0, each positive [negative] clause is repre-
sented by a thin vertical rectangle at a positive [nega-
tive, resp.] x-coordinate, and there are horizontal line
segments (“wires”) joining each clause rectangle to the
rectangles of the variables in the clause. We modify the
representation by shrinking each clause rectangle to a
square and adding vertical segments to the wires. See
Figure 7. For n variables and m clauses, the represen-
tation can be on an O(m)×O(n+m) grid.

Given an instance of Monotone Rectilinear Planar 3-
SAT Φ, we will construct an imprecise 2.5D terrain.

Variable gadget and component. The variable
gadget for variable v, shown in Figure 8a, consists of
four triangles: two selector triangles (in white); a true
triangle (green striped), which we force onto the plane
x = z; and a false triangle (checkered), which we force
onto the horizontal plane z = 0. The z-interval of the
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Figure 7: An instance of Monotone Rectilinear Planar
3-SAT, modified so the clauses have fixed height.

leftmost vertex of the gadget extends between the two
planes, which permits the two selector triangles to be
coplanar with the true triangle or with the false tri-
angle. Thus, if the variable gadget is limited to two
patches, the selector triangles “select” a true/false value
for the variable. The gadget for variable v is placed in-
side v’s input rectangle—see Figure 8a for the exact
x, y-coordinates and z-intervals.

To model the wires in the input, we expand v’s vari-
able gadget to a variable component by constructing
chains of path triangles as shown in Figure 8b. The as-
sociated z-intervals are large enough to permit all path
triangles to be coplanar with v’s true triangle (lying in
the plane x = z) or with v’s false triangle (lying in the
horizontal plane z = 0). If the variable component is
limited to two patches, then the choice made by the se-
lector triangles is transmitted to all the path triangles.

Clause gadget. The gadget for clause c, shown in
Figure 8c and 9, consists of three triangles sharing a
centre vertex and joining the three final vertices of
the chains corresponding to the variables in the clause.
The z-interval of the central vertex is strictly above the
z = 0 plane for a positive clause, and strictly above
the x = z plane for a negative clause. Therefore, for
a positive [negative] clause, if all three chains are in
the z = 0 plane [the x = z plane] (corresponding to
setting the literals false), then the three triangles of the
clause gadget must form three patches. However, by
making the z-interval of the central vertex large enough,
we ensure that if at least one chain lies in the other
plane (corresponding to setting the literal true), then
the central vertex may be chosen to lie in the plane
of the other three vertices, thus creating one coplanar
patch out of the three clause triangles.

Completing the triangulation. The variable compo-
nents and clause gadgets can be completed to a triangu-
lation by filling in the holes with spike triangles, each
of which has one new vertex that is off the xy-integer
grid and that we force to a z-coordinate at least four
times lower than anything constructed so far. By this

choice of z, each spike triangle must form one patch.
See Figure 10. Figure 11 illustrates the full reduction
from the 3-SAT instance in Figure 7.

Lemma 7 Let k = 2n + m + s, where s is the number
of spike triangles. Then there is a satisfiable truth-value
assignment for Φ if and only if there is a selection of el-
evations z that creates a terrain with at most k patches.

Proof. (sketch) Suppose there is a satisfiable truth-
value assignment for Φ. Choose elevations that put the
variable component of each true variable in the x = z
plane and the variable component of each false variable
in the z = 0 plane. This creates 2n patches. Since each
clause has at least one true literal, we can choose the
elevation of the centre vertex of each clause gadget so
that the clause gadget uses one patch. This creates m
patches. Finally, each spike triangle is one patch, so the
total number of patches is 2n+m+ s = k.

For the other direction, suppose there is a precise ter-
rain with at most k patches. Each spike triangle forms
one patch, each variable component forms at least two
patches, and each clause gadget forms at least one patch
(note that variable components do not share edges with
clause gadgets). Thus each variable component must
use two patches (thus forcing the three outer vertices
of each clause gadget to respect the true/false choices),
and each clause gadget must use one patch (thus requir-
ing at least one of its literals to be true). �

5 Surface Area

We show that the surface area of an imprecise 2.5D ter-
rain can be minimized using Second Order Cone Pro-
gramming [1, Section 4.4.2] which is an extension of
Linear Programming, with additional constraints of the
form ‖Ax+ b‖ ≤ c>x+ d, where ‖ · ‖ represents the Eu-
clidean (L2) norm. Second Order Cone Programs can
be solved with additive error ε in time polynomial in the
size of the input and log(1

ε ) using interior point meth-
ods. This is efficient, although not polynomial time.

We use variables zi, i = 1, . . . , n for the elevations,
and the linear constraints bi ≤ zi ≤ ti to ensure that
each elevation value is within its interval. For each tri-
angle T , a variable sT will upper bound the area of T ,
via the constraint area(T ) ≤ sT . Then minimizing the
linear objective function

∑
T∈T sT guarantees that the

total surface area is minimized.

We only need to show that area(T ) ≤ sT is a valid
SOCP constraint. If T has imprecise vertices p1, p2, p3,
then area(T ) is 1

2‖(p2−p1)×(p3−p1)‖, where × is cross
product. Because x and y are fixed, (p2−p1)×(p3−p1)
is a linear function of the z variables.
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Figure 8: Gadgets for the NP-hardness reduction.
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(x+ 1/3, x− 1/3, [1/3x, x+ 1/3])

(x, y, [0, x])

Figure 9: A 3D depiction of the clause gadget from
Figure 8c.

6 Min Max Steepness

We show that minimizing the maximum steepness of an
imprecise 2.5D terrain can be formulated as a Second
Order Cone Program (as defined in the previous sec-
tion). The steepness of triangle T lying on the plane
z = ATx + BT y + CT is the L2 norm of the gradient,
i.e., ‖(AT , BT )‖.

As above, we use variables zi for the elevations, to-
gether with the linear constraints bi ≤ zi ≤ ti. For
each triangle T , we introduce variables AT , BT , CT rep-
resenting the coefficients of the plane containing T , as
captured by the constraints zi = ATxi + BT yi + CT

for each vertex (xi, yi, zi) of T . Finally, we add con-
straints ‖(AT , BT )‖ ≤ F for one new variable F . Then
minimizing F will minimize the maximum steepness.

7 Conclusion

For imprecise 1.5D terrains, we gave linear time exact
algorithms for three objectives, but could only achieve
a 2-approximation for minimizing the number of bends.
We believe that minimizing the number of bends for
an imprecise 1.5D terrain is weakly NP-hard. Is the
problem Fixed Parameter Tractable in the number of
bends?

Another direction worth exploring is imprecise 2.5D
terrains when the triangulation is not fixed, so the input
consists only of imprecise points, and the problem is to
find precise points and a triangulation for the given ob-

Figure 10: A portion of the final construction showing
how spike triangles (in blue) fill in the triangulation.

jective. Even if the points are given precisely, choosing
the best triangulation can be NP-hard, as shown by De
Kok et al. [5] for minimizing extrema. Are any of the
other objectives NP-hard when the triangulation is not
fixed, either for precise or imprecise points?
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Efficient Predicate Evaluation using Statistical Degeneracy Detection

Victor Milenkovic∗ Elisha Sacks†

Abstract

Computational geometry algorithms branch on the signs
of predicates. Evaluating degenerate (zero sign) pred-
icates is costly. Degeneracy is common for predicates
whose arguments have common antecedents. Prior de-
generacy detection techniques are slow, especially on
predicates that involve algebraic numbers. We present
statistical degeneracy detection (SDD) algorithms. Ra-
tional predicates are evaluated modulo randomly se-
lected primes. Algebraic predicates are evaluated on
randomly perturbed inputs. We analyze the failure
rates under statistical assumptions. The algorithms are
incorporated into an exact geometric computation li-
brary. Extensive testing shows that the library is reli-
able and fast. We also give an algorithm that reduces
algebraic degeneracy detection to rational degeneracy
detection without perturbation. This algorithm is much
slower than the perturbation algorithm yet is far faster
than prior work even when rational predicates are eval-
uated deterministically.

1 Introduction

We present research on the implementation of compu-
tational geometry algorithms. Implementations employ
floating point arithmetic, whereas algorithms are ex-
pressed using real arithmetic. Although floating point
is very accurate, even a tiny numerical error can cause
a logical operator to return an incorrect Boolean value,
which can cause a program crash or an unbounded error
in the output. We follow the exact geometric computa-
tion (EGC) [25] strategy of ensuring accurate output by
implementing logical operators that are correct despite
numerical error.

A CG algorithm takes as input points or other geo-
metric objects with rational parameters (coordinates or
coefficients), expressed as ratios of integers or floating
point numbers. The algorithm branches on the signs,
> 0, = 0, or < 0 of polynomial functions of parameters,
called predicates. For example, the sign of

turn(a, b, c) = (a− b)× (b− c) with u×v = uxvy−uyvx
∗Department of Computer Science, University of Miami, Coral

Gables, FL 33124-4245, USA, vjm@cs.miami.edu. Supported by
NSF CCF-1526335.

†Computer Science Department, Purdue University, West
Lafayette, IN 47907-2066, USA, eps@purdue.edu. Supported by
NSF CCF-1524455.

determine if abc turns left, goes straight, or turns right
at b. Algorithms also generate new parameters using ra-
tional functions on (antecedent) parameters or the zeros
of polynomials whose coefficients are rational functions
of parameters. The former is rational, such as the coor-
dinates of the intersection p of lines ab and cd, and the
latter is algebraic, such as the intersections of the circle
through b with center a with the line cd. Parameters
and the predicates on them are rational if all functions
in their derivation are rational; otherwise, they are al-
gebraic.

In general, it is inexpensive to determine the sign of a
nonzero predicate. For example, double precision float-
ing point interval arithmetic usually results in an in-
terval that does not contain zero, and hence the sign
is known. Occasionally, additional precision is needed,
such as using the MPFR library (mpfr.org). However,
we find the additional cost is modest, up to 20%.

The situation for degenerate (zero) predicates is much
direr. For rational predicates, it is necessary to use ex-
act rational arithmetic using a library such as GMP
(gmplib.org), and this can be much more expensive
than double precision interval arithmetic. The gen-
eral technique for algebraic predicates is root separa-
tion bounds, and these are very pessimistic, requiring
many bits of precision. Exact rational arithmetic can
sometimes be practical, but root separation bounds are
almost never practical.

Degeneracy resulting from input in special position,
such as collinear a, b, c can be eliminated by input per-
turbation: adding a small random quantity to each in-
put parameter [12]. However, the cost of rational arith-
metic for input degeneracies is not too high, and special
position rarely results in algebraic degeneracy.

Derived parameters that are related by shared an-
tecedents can also cause predicates to be degenerate.
For example, consider line segments a1b1, a2b2, a3b3,
and cd whose endpoint coordinates are input param-
eters. If cd intersects the other segments at p1, p2,
and p3, these points are collinear, turn(p1, p2, p3) = 0,
and this degeneracy is impervious to input perturbation.
The coordinates of c and d are common antecedents of
p1, p2, and p3 in a manner that makes turn(p1, p2, p3)
identically zero as a rational function of the coordinates
of the eight input points. We call this type of degen-
erate predicate an identity because it is identically zero
on an open set in the input parameter space, whereas a
special position is zero on a measure zero set.
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For a derivation depth of one or perhaps two, it is pos-
sible to analyze the identities and detect them by logic.
For example, we know the p1, p2, p3 in the above exam-
ple will be collinear without exact rational evaluation.
However, when multiple operations are cascaded, the
number of types of identities rises exponentially with
the derivation depth, and logic analysis becomes im-
practical. Unfortunately, the bit-complexity hence the
cost of exact rational arithmetic or root separation also
grows much greater.

We believe this effect often prevents the practical use
of CG. Individual operations are efficient, but identities
cause multiple consecutive operations to be very ineffi-
cient.

1.1 Contribution

We propose statistical degeneracy detection
(SDD) to detect degenerate predicates with-
out using exact rational arithmetic or separa-
tion bounds. We present three SDD algorithms
and provide a library implementation at https:

//github.com/Robust-Geometric-Computation.
Each algorithm outputs an estimated failure (false
degeneracy) probability based on statistical assump-
tions. This approach allows efficient EGC on cascaded
geometric operations. The estimated probabilities can
be set so low as to make failure impossible in practice.

We provide the first probabilistic algorithms for de-
generacy detection for both the rational and algebraic
case, and we introduce the concept of statistical degen-
eracy detection. Prior work [10] uses a statistical as-
sumption but does not provide an estimate of the prob-
ability of failure.

The first algorithm (Sec. 2) detects degenerate ratio-
nal predicates by evaluating ambiguous (interval arith-
metic interval contains zero) predicates modulo k ran-
dom primes. We prove a worst-case bound on the prob-
ability of failure. However, this probabilistic bound re-
quires having a bound b on the bit-complexity, but can-
cellation (of common factors of the numerators and de-
nominators) greatly and unpredictably reduces b. Even
given b, the probability bound is very pessimistic. We
estimate the probability using a statistical assumption:
nonzero predicates are zero modulo a random prime at
the same rate as all nonzero expressions. In our tests,
the estimated failure probability is always negligible for
k = 2.

The second algorithm (Sec. 3) uses polynomial quo-
tient rings to reduce an algebraic predicate to multiple
rational predicates without the use of exact arithmetic
or root separation bounds. The rational predicates can
be evaluated using the first algorithm. It is much more
efficient than root-separation-based methods but is lim-
ited to a small number of arguments.

The third algorithm (Sec. 4) uses the observation that

identities remain zero after input perturbation, but all
other expressions are likely to change their values. It
perturbs its input to eliminate input (special position)
degeneracies with high probability. It applies a second
perturbation (provisionally) to predicates that remain
ambiguous at h bits of precision. If an expression re-
mains ambiguous, it reports an identity. It uses a mea-
sure on nonzero, nonidentity expressions to report a
probability of failure, under the statistical assumption
that this measure is the same for nonzero predicates.
In our tests, the estimated failure probability is always
negligible for h = 265.

1.2 Prior work

EGC comprises exact geometry kernels and number
types. An exact geometry kernel supports a set of predi-
cates for a class of objects, possibly with a limited capac-
ity for defining new objects and predicates. The canon-
ical examples are the CGAL [8] and Leda [15] kernels
for rational operations on points. CGAL also provides
an algebraic kernel for zeros of univariate polynomials.
Two zeros can be ordered, but other predicates involv-
ing zeros are not supported. An exact number type sup-
ports a set of operations on a subset of the real numbers.
The canonical example is the Leda real type for general
expressions involving rational operations, radicals, and
zeros of polynomials [7]. A number type is more flex-
ible and easier to use than a kernel. But a kernel can
model entire objects, rather than their parameters, and
can exploit domain-specific algorithms.

Geometry kernels and number types are built from
a common set of tools: interval arithmetic, arbitrary
size integer arithmetic, arbitrary precision floating point
arithmetic, and separation bounds.

Interval arithmetic [19] uses floating point arithmetic
to compute an interval of floating point numbers that
contains the value of an expression. EGC uses interval
arithmetic in floating point filtering [5]: the sign of a
predicate is determined when its interval excludes zero.

Arbitrary size integer arithmetic libraries, such as
GMP (gmplib.org), are used to evaluate rational pred-
icates. The complexity of a b-bit operation is O(b log b).
The bit complexity of a rational predicate can be ex-
ponential in its derivation depth but is much lower in
practice because common factors are canceled. Adap-
tive precision evaluation [22] is faster than GMP style
arithmetic but is restricted to predicates in input pa-
rameters.

Rational predicates can also be evaluated using mod-
ular arithmetic. A predicate of bit complexity b requires
b/k k-bit moduli. Degeneracy can be determined by ver-
ifying that all the residues are zero, at a cost of O(b).
Computing the sign requires Chinese remaindering at a
worst-case cost of O(b2) and an expected cost of O(b)
[6]. This paper proposes a probabilistic algorithm, but
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it depends on on a lemma [10] (Lemma 3.1) that makes
the statistical assumption that the value of a polynomial
modulo an integer is uniformly distributed. Despite the
log factor savings for modular arithmetic in theory, ar-
bitrary size integer arithmetic is most used in practice.

Degenerate algebraic predicates can be detected using
separation bounds. A separation bound β for a pred-
icate e is a positive number such that e 6= 0 implies
|e| > β. Li, Pion, and Yap [13] survey separation bound
computation and Emiris, Mourrain, and Tsigaridas [9]
present the state of the art. The LEDA exact number
type [7] evaluates a predicate with interval arithmetic
and increases the floating point precision until the in-
terval excludes zero or the interval width is less than a
separation bound. The separation bound technique is
rarely practical because the bounds shrink rapidly as the
number and degree of the algebraic numbers increase.

Some special cases are handled without separation
bounds. Berberich et al [3] present an arrangement al-
gorithm for plane algebraic curves using only symbolic
methods. It includes univariate and bivariate polyno-
mial support that is faster than the CGAL algebraic
kernel. Masterjohn et al [14] present an arrangement
algorithm that uses our fixed δ perturbation framework
(below) to avoid degeneracies. Neither is subject to
identities. Blomer [4] provides a probabilistic algorithm
for rational expression whose leaves are roots of integers.

Halperin [12] pioneered input perturbation for pre-
venting special position degeneracy. Each input param-
eter of an algorithm is perturbed by a value chosen uni-
formly in [−δ, δ]. The algorithm is run on the perturbed
input. The δ is chosen so that floating point filtering
succeeds with high probability. If every instance suc-
ceeds for a run of the algorithm, the output is correct
for the perturbed input, hence is correct with backward
error δ for the original input. Otherwise, the algorithm
is rerun with a different perturbation. This approach
does not address identities. Moreover, it can require
values of δ that exceed the error bounds of applications.

We [18] developed a perturbation algorithm that uses
a fixed, user-specified δ. We evaluate predicates using
arbitrary precision interval arithmetic [11] and increase
the precision until the interval excludes zero. We abort
the algorithm when the precision reaches a threshold
that is high enough that only identities reach it. When
this happens, we devise ad hoc code for that identity.

We [17] present an identity detection algorithm for
all predicates involving contacts between polyhedrons
with four degrees of freedom. These predicates can be
expressed as g(r) where r if a zero of f , and both f
and g are univariate polynomials whose coefficients are
multivariate polynomials in the input parameters. The
algorithm uses a precomputed table of all polynomials
f and g, up to isomorphism, and their multivariate fac-
torizations.

2 SDD algorithm for rational predicates

The probabilistic degeneracy detection algorithm for an
ambiguous rational predicate evaluates it modulo a ran-
dom 32-bit prime p. Each input parameter is converted
from a double to the form a× 2b, with a and b integers,
then this expression is evaluated modulo p. Modular ad-
dition and multiplication are 64-bit machine operations
followed by evaluation modulo p. Modular division uses
the extended Euclidean algorithm. If any divisor is di-
visible by p, the test is rerun with a new random prime.
We repeat the test k times and declare the predicate
degenerate if the residue is zero each time.

We bound the probability that the algorithm will re-
port a false degeneracy for a predicate e whose bit com-
plexity is bounded by b. Let n denote the number of 32-
bit primes. At most b/31 primes divide e because they
are larger than 231, so the probability that a given prime
divides e is at most t = b/(31n). The probability that k
primes divide e is at most tk and so a maximum failure
probability of r is ensured by setting k = log r/ log t.
Unfortunately, there is no general method to determine
a tight bound on b.

The SDD algorithm estimates the actual false degen-
eracy rate under the assumption that an ambiguous
predicate and its subexpressions are equally likely to
fail the test. To get this estimate, we set t equal to 1/k
times the fraction of the unambiguous (hence nonzero)
subexpressions that are zero modulo one of the k primes.

3 Extension to algebraic predicates using quotient
rings

We extend rational degeneracy detection to algebraic
predicates. Consider a predicate polynomial e(x) eval-
uated at a simple zero r of f(x), where e and f have
rational coefficients. We compute g = gcd(e, f), using
rational degeneracy detection to detect if the leading co-
efficient of a remainder is zero and hence the remainder
has lower degree than the generic case. Since f(r) = 0,
x − r | f and so e(r) = 0 if and only if g(r) = 0. Let
h = f/g. If g(r) = 0, x − r | g, so x − r - h, since r is
a simple zero of f , and h(r) 6= 0. If h(r) = 0, x− r | h,
so x − r - g and g(r) 6= 0. Hence, either g(r) = 0 and
h(r) 6= 0 or vice versa. We evaluate both expressions in
interval arithmetic and increase the precision until one
interval excludes zero. If h(r) 6= 0, e(r) is degenerate.
This technique detects an algebraic zero without the use
of separation bounds or exact arithmetic.

We use quotient rings to extend this algorithm to
predicates that have multiple algebraic parameters.
Consider a predicate e(x1, x2) evaluated on simple ze-
ros r1 and r2 of f1(x1) and f2(x2). Let R1 denote the
quotient ring Q[x1]/f1 of polynomials in x1 modulo f1.
Convert e to R1[x2] by expressing it as e =

∑
k pk(x1)xk2

then replacing each pk by its remainder when divided
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by f1. Apply the above algorithm to e and f2, which
is trivially in R1[x2], with g = gcd(e, f2) and h = f2/g
in R1[x2]. Either h(r1, r2) = 0 or g(r1, r2) = 0, and
e(r1, r2) is degenerate if h(r1, r2) 6= 0. In the gen-
eral case, e(x1, . . . , xm) is evaluated on simple zeros
r1, . . . , rm of f1(x1), . . . , fm(xm). Let R0 = Q and
Ri = Ri−1[xi]/fi(xi) for i > 0. Convert e and fm to
elements of Rm−1[xm] and apply the above algorithm,
with e(r1, . . . , rm) degenerate if h(r1, . . . , rm) 6= 0.

Implementing this algorithm requires zero detection
and multiplicative inverse computation in Ri. These
use rational degeneracy detection (Sec. 2) for R0 = Q.
For i > 0, an element a(xi) ∈ Ri is represented by the
remainder of a when divided by fi in Ri−1[xi]. Zero
leading coefficients are detected in Ri−1, and a is zero
when all the coefficients are zero. The inverse of a is
computed with the extended Euclidean algorithm on
Ri−1[xi]. We detect a zero divisor (that has no inverse)
when g = gcd(a, fi) has nonzero degree. In that case, we
calculate h = fi/g, determine whether g or h is nonzero
on r1, . . . , ri, replace fi with the other, and restart the
degeneracy detection algorithm for e.

The number of restarts is at most total degree of
fi minus total degree of ri, i = 1, . . . ,m. To prove
correctness, we need to show that one of g and h
is nonzero on r1, . . . , ri and the other is zero. Con-
sider fi(r1, . . . , ri−1)(xi) ∈ R[xi] that is the current
fi(xi) with r1, . . . , ri−1 substituted in its coefficients.
The invariant is that fi(r1, . . . , ri−1)(xi) is divisible by
(x − ri) but not (x − ri)2. This is true for the initial
fi. If fi(xi) = g(xi)h(xi), then fi(r1, . . . , ri−1)(xi) =
g(r1, . . . , ri−1)(xi)h(r1, . . . , ri−1)(xi), one factor is di-
visible by x − ri, and neither factor is divisible by
(x − ri)

2 due to the uniqueness of factorization. The
factor that is not divisible by x− ri is nonzero on ri.

The algorithm is impractical for large values of m
because it requires d2m operations for f1, . . . , fm of to-
tal degree d. It is difficult to interface with computa-
tional geometry algorithms because predicates must be
expressed as polynomials in the m algebraic parameters.

4 Perturbation-based SDD algorithm for algebraic
predicates

The exponential complexity of the quotient-ring-based
SDD algorithm leads us to prefer a perturbation-based
algorithm. This algorithm cannot detect special posi-
tion degeneracy, so we prevent it with an input pertur-
bation. We classify an ambiguous predicate as an iden-
tity if it remains ambiguous when the precision of the
interval arithmetic is increased and when it is evaluated
on a second perturbed input. A nondegenerate predi-
cate is unlikely to remain ambiguous in either case.

The user selects the perturbation size δ and the iden-
tity detection control parameter h with default values

δ = 2−27 ≈ 10−8 and h = 212. The former is chosen
based on the accuracy needed for the application, and
the latter can be increased if the SDD failure probability
estimate is too high. The algorithm employs two inter-
nal parameters: the perturbation precision b and the
secondary perturbation size s, with initial values b = 26
and s = δ. Each input parameter is perturbed by a b-
bit number that is uniformly distributed in [−δ, δ]. For
the initial b and the default δ, perturbing an input is
equivalent to randomizing the lower half of its mantissa.
Smaller δ or larger b would require expressing each input
as a sum of doubles.

The algorithm runs the geometric computation on
the perturbed input p. If an algebraic predicate e(p)
is ambiguous in floating point interval arithmetic, it
is reevaluated in h-bit interval arithmetic. If it is still
ambiguous, the algorithm selects a second perturbation
q = p + rv. Each coordinate of the vector v is drawn
uniformly from the set of b-bit numbers in [−1, 1]. The
scalar r is initialized to s then is divided by ten until the
isolating intervals of the algebraic numbers, which were
computed at p, are also isolating at q. The algorithm
reports an identity when e(q) is ambiguous in h-bit in-
terval arithmetic. Otherwise, it computes the sign of
e(p) using l-bit interval arithmetic, starting with l = 2h
and doubling l until the interval excludes zero.

This algorithm requires that the initial b-bit pertur-
bation eliminates all degenerate non-identity predicates;
otherwise, l would increase without bound. In practice,
we put an upper bound m = 424 on l to prevent an in-
finite loop. If that bound were ever reached, we would
restart with a different perturbation. If the bound were
reached yet again, we would double the default values
of b and m.

The algorithm cannot assign a nonzero sign to an
identity. We bound the probability of a false identity
under the assumption that e(t) is analytic on [0, r]. This
assumption can be guaranteed when the algebraic num-
bers in e are zeros of polynomials whose coefficients are
rational parameters: when applying the Descartes rule
of signs, verify that these coefficients have constant signs
on [0, r]. We know of no practical test for polynomials
with algebraic coefficients. We discuss this issue further
in Sec. 6.

Suppose e(p) is reported as an identity. Since e(p)
and e(q) are ambiguous, ∆ = e(q)− e(p) is ambiguous.
A sufficient condition for ambiguity is |∆| < w with
w the width of the interval value of ∆ in h-bit inter-
val arithmetic. We call |∆|/w the perturbation ratio
of e. We approximate e(q) by its linear Taylor series
e(p) + rg · v with g the gradient of e with respect to
p. The approximate perturbation ratio is r|g · v|/w. Its
maximum for a predicate that depends on d input pa-
rameters is m = r||g||

√
d/w because the components of

v are bounded by one.
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Lemma 1 The probability that r|g · v|/w < 1 is less
than 2

√
2d/m.

Proof. If |g · v| < w/r, v lies in a slab of (−1, 1)d of
thickness at most 2w/(r||g||). The maximum area of a
cross section is

√
2 by Ball’s theorem. Hence, the volume

of the slab is at most 2
√

2w/(r||g||) = 2
√

2d/m. �

We estimate an upper bound on 2
√

2d/m using the
maximum d and using the minimum perturbation ratio
of all ambiguous predicates that are nondegenerate as
an estimate for the lower bound of m. This false iden-
tity probability estimate neglects the truncation error
of the linear Taylor series. One can estimate this error
by comparing e(p + rv) to e(p + rv/2) and can control
it by shrinking r.

5 Results

We tested SDD on eight computational geometry al-
gorithms on polyhedrons. Table 1 lists the input
to the tests, and subsequent tables list the results.
The inputs are displayed in the papers cited be-
low. We provide the software at https://github.com/
Robust-Geometric-Computation.

5.1 Rational predicates

The first five tests use rational predicates. 1) We pack
three polyhedrons into a box with an algorithm [2] that
composes ten Minkowski sums and Boolean operations.
2) We compute a constrained Delaunay triangulation of
a polyhedron with an algorithm [23] that places Steiner
points on edges. 3) We apply the same triangulation al-
gorithm to the Minkowski sum of two polyhedrons. 4)
We compute a constrained Delaunay mesh of a polyhe-
dron with an algorithm [24] that places Steiner points
on edges and facets, and at the circumcenters of tetra-
hedrons. 5) We repeat a test of our algorithm [1] for ap-
proximating the free space of a four degree of freedom
(4DOF) polyhedron that translates freely and rotates
around its z axis.

The best prior degeneracy detection algorithm is ex-
act rational evaluation with floating point filtering.
Adaptive precision evaluation [22] is inapplicable be-
cause most of the predicates have derived parameters.
For test 1, our prior work [21] eliminates all degeneracies
by perturbing the vertices of the polyhedron output of
each step. Topology changes are allowed. As indicated
in Sec. 1.2, this approach is efficient yet lacks an error
bound. For test 5, our prior work [1] uses a preliminary
version of rational SDD.

Table 2 shows the test results using k = 2 primes.
Columns p through c refer to SDD. The percentage of
ambiguous predicates a ranges from 0% to 22% of which
the degenerate percentage d is a large majority. The

predicate evaluation time t is between 30% and 60% of
the total CPU time c. At least 60% of t is for floating
point interval arithmetic f , at most 25% is for modular
arithmetic m, and at most 38% is for arbitrary precision
interval arithmetic e. Using k = 5 primes increases m
by median and maximum factors of 1.7 and 2.9. The
next two columns compare SDD to exact evaluation of
ambiguous predicates using GMP. The predicate evalu-
ation time increases by a factor ×t of up to 216 and the
CPU time increases by a factor ×c of up to 131. The
last column lists the maximum bit complexity b of the
predicates in the test: the total number of bits in the
numerator after cancellation. This number is obtained
as a byproduct of exact rational evaluation. It ranges
from about a thousand to almost 2 million.

The degeneracy detection failure probability bound
(Sec. 2) with k = 2 is at most 4 × 10−7 because b is
at most 1810577 (for test 4b), and n ≈ 9.3 × 107 by
the prime number theorem. For k = 5, the bound is
10−19. We never see a zero residue for an unambiguous
subexpression of an ambiguous predicate, and so the es-
timated failure rate is zero. We ran test 4b 250 times
with k=1000. Each run had 44 million unambiguous
subexpressions and 200,000 nonzero ambiguous predi-
cates. The latter is derived as p(a/100)(1−d/100) ≈ 0.2
million. The number of zero residues for each type was
6404 and 29. This implies a zero residue rate of 1 in 1.7
billion for both populations. Thus the rate for the for-
mer appears to be a good proxy for the latter. Further-
more, both are close to 1/q for a random 32-bit prime
q, 1 in 3 billion, corresponding to a uniform distribu-
tion of residue values. In contrast, the provable bound
for k = 1 and b = 1810577 is 1 in 1700. So high bit
complexity has some effect, but not nearly as much as
the bound indicates. Using the measured zero residue
rate, the estimated degeneracy detection failure rate for
k = 2 is 3 × 10−19, similar to the provable bound for
k = 5.

We can only derive the bound for k = 5 by eval-
uating in exact rational arithmetic to determine the
bit-complexity b after cancellation. In contrast, the es-
timated rate requires negligible overhead to compute
since the SDD algorithm already calculates the residues
for the unambiguous subexpressions of ambiguous pred-
icates. To estimate the probability that the geometric
construction failed, the individual predicate probabil-
ity 3 · 10−19 should be multiplied times the number of
nonzero ambiguous predicate, such as the 200,000 for
test4b. The largest of these is 56 million for test 5b.

5.2 Algebraic predicates

The last three tests use both algebraic and rational
predicates. 6) We repeat a test from our prior work
on 4DOF motion planning [17]: sort 100000 angles at
which four randomly generated pairs of robot and ob-
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Table 1: Test inputs.
# Algorithm Shape 1 Facets Shape 2 Facets Shape 3 Facets
1a packing cube 12 glacier 32 sphere 760
1b packing glacier 32 glacier 32 glacier 32
1c packing glacier 32 sphere 760 sphere 760
1e packing sphere 760 sphere 760 sphere 760
2a CDT bull 12400
2b CDT ear 32236
2c CDT horse 39694
3a CDT of Minkowski sum bull 12400 glacier 32
3b CDT of Minkowski sum ear 32236 glacier 32
3c CDT of Minkowski sum horse 39694 glacier 32
4a mesh bull 12400
4b mesh ear 32236
4c mesh horse 39694
5a 4DOF free space frustum 12 tworooms 122
5b 4DOF free space plus 44 lattice-room 204
6 4DOF rotations not applicable
7a 4DOF path frustum 12 tworooms 122
7b 4DOF path plus 44 lattice-room 204
8a 3DOF free space r1 4 o1 736
8b 3DOF free space r1 4 o2 2640
8c 3DOF free space r1 4 o3 4628
8d 3DOF free space r2 14 o4 8068

Table 2: Rational predicates: # test, p predicates in millions, a percent of p that are ambiguous, d percent of a that
are degenerate, t predicate evaluation time in seconds, f,m, e percent of t for floating point, modular, and arbitrary
precision arithmetic, c total CPU time in seconds, ×t and ×c multipliers of t and of c for exact evaluation, and b
maximum bit complexity.

# p a d t f m e c ×t ×c b
1a 38 9 97 11 80 13 7 30 10 4 5307
1b 35 9 93 11 72 15 13 23 13 7 13925
1c 49 9 76 19 60 19 21 49 4 2 3484
1d 902 8 79 274 66 18 16 666 6 3 9362
2a 3 1 98 0.6 75 25 0 1.8 1 1 1064
2b 6 0 98 1.2 96 4 0 4.0 1 1 942
2c 8 0 99 1.4 97 3 0 5.2 1 1 921
3a 29 2 77 11 63 9 28 37 10 4 4362
3b 54 1 51 25 53 9 38 74 5 2 4373
3c 109 1 69 33 70 7 23 113 6 3 4429
4a 45 3 92 12 83 6 11 35 4 2 600364
4b 194 2 95 51 90 4 6 167 38 12 1810577
4c 90 1 88 23 90 3 7 90 1 1 65680
5a 1113 5 91 252 79 10 11 420 216 131 292091
5b 1026 22 75 704 60 23 17 1114 100 63 115587

stacle features can have simultaneous contacts. 7) We
generate a path in the test 5 approximate free space.
8) We mesh the free space of a 3DOF polyhedron that
translates and rotates in a plane, which we compute
with our prior algorithm [20].

In test 6, the robot and obstacle features are each
generated from a pool of 12 vertices with random co-

ordinates. Four robot/obstacle feature pairs define a
rational angle polynomial. Angle parameters s and t
are zeros of angle polynomials f and g and yield unit
vectors

u =

(
1− s2

1 + s2
,

2s

1 + s2

)
and v =

(
1− t2

1 + t2
,

2t

1 + t2

)
.
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Table 3: Algebraic predicates: # test, p predicates in
millions, a percent of p that are ambiguous, l and i per-
cent of a that are algebraic and identities, t predicate
evaluation time in seconds, f,m, e percent of t for float-
ing point, modular, and arbitrary precision arithmetic,
c total CPU time in seconds, and 10−r error probability.

# p a l i t f m e c r
6a 35 0.2 96 96 51 5 2 93 57 *
6b 35 0.2 96 96 46 5 1 94 53 *
7a 0.2 13 45 1 1 8 13 79 1 28
7b 0.1 5 21 0 0 9 12 79 0 36
8a 1 5 48 37 1 33 14 53 2 20
8b 4 7 49 20 2 34 16 50 6 30
8c 11 6 44 22 6 35 14 51 15 16
8d 105 5 26 10 40 42 10 48 93 18

Vectors with sign(uy) = sign(vy) (equivalent to
sign(s) = sign(t)) are ordered by sign(u × v) (in 2D
u× v = uxvy − uyvx). Test 6a tests for identity by de-
termining if f(t) = 0. It is also required to check that
s′ − t 6= 0 for every zero s′ 6= s of g. Test 6b checks
if u × v = 0 directly. In test 7, the path consists of
rotations plus shortest paths on the polyhedron bound-
ary of the approximate free space for a fixed angle. In
test 8, we approximate the boundary patches with tri-
angles that conform at patch boundaries, compute the
arrangement of the triangles, and return the union of
the cells with positive winding numbers.

There is no practical prior general degeneracy detec-
tion algorithm. The only option is separation bounds
and these are impossibly small in every test. For test 6,
our prior degeneracy detection algorithm is a table
lookup of the factorizations of f and g, which is much
faster than SDD but requires much specialized work
to categorize all the angle polynomials for the domain.
For test 7, our prior work prevents degeneracy by re-
peated geometric rounding [16], which is extremely slow
(Sec. 1.2).

Table 3 shows the test results. We set h = 265 in the
perturbation algorithm. We obtained this value by set-
ting h = 106 (two times double precision) and increasing
it by increments of 53 until the error estimate became
tiny for tests 7 and 8. The error cannot be estimated
in test 6 because every ambiguous predicate is an iden-
tity. The predicate values are the same for h = 212 and
h = 265, which shows that the error estimate is conser-
vative. Empirically, ambiguous at h bits is equivalent
to identity, so algebraic predicates never require more
than h bits and there are no restarts. As noted for the
rational case, the error rate should be multiplied by the
number of nonzero ambiguous expressions to obtain the
probability that the computation failed. The error rate
is very conservative, since this rate is zero.

Table 4 compares the perturbation-based (Sec. 4) and

Table 4: Predicate evaluation: # test, n algebraic ar-
guments, p predicates, t perturbation algorithm time in
microseconds, ×p and ×e multipliers for residue algo-
rithm with SDD and exact evaluation.

# n p t ×p ×e
6a 1 84000 560 0.2 2.4
6b 2 84000 509 3.5 84
8 3 32500 25 400 1040
8 4 22000 64 1150 2600

quotient-ring-based (Sec. 3) algorithms on predicates
from tests 6 and 8. Test 7 is unsuitable for the residue
method because the predicates required to construct a
shortest path traversing m faces of a polyhedron are de-
gree m in m square roots of rational expressions. The
test 6 predicates are a) f(t) or b) (1−s2)(2t)−(2s)(1−t2)
where s and t are zeros of f and g, respectively. The
test 8 predicates are low-degree polynomials in three or
four coordinates of points. The coordinates of a point
are rational expressions in a zero of a polynomial of de-
gree 2 or 4. The residue algorithm always returns the
same result as the perturbation algorithm, which pro-
vides further evidence that the latter is correct. We
compare the running times on predicates where float-
ing point filtering fails, hence degeneracy detection is
required. The residue algorithm with rational SDD
(k = 2) is faster than the perturbation algorithm on
predicates with n = 1 algebraic numbers but is 4 times
slower with n = 2, 400 times slower with n = 3, and
1150 times slower with n = 4. The residue algorithm
using exact rational evaluation for ambiguous predicates
is 2 to 24 times slower than using SDD.

6 Discussion

The tests confirm the claims in the introduction. 1)
Identities are common in algorithms that construct ob-
jects. Tests 1, 5, 7, and 8 have many constructions
and 5%–10% of the predicates are identities, whereas
the other tests have few constructions and under 2%
identities. 2) Identities are a computational bottleneck
for prior degeneracy detection algorithms. For rational
predicates, exact evaluation is median 8 and maximum
216 times slower than SDD on tests 1, 3, 4, and 5, which
have high expression depth. For algebraic predicates,
separation bounds are useless for all the tests. 3) SDD
is reliable and fast. For parameter settings with a mi-
nuscule estimated error rate (k = 2 and h = 256), the
predicate evaluation time is at most 60% of the CPU
time. Hence, no alternate algorithm could reduce the
overall running time by more than a factor of two. 4)
The running time grows slowly with the parameters k
and h, so there is no need for fine-tuning. For exam-
ple, h = 265 is larger than necessary for most of the
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tests, but the additional cost is insignificant. 5) For
algebraic predicates, the perturbation-based algorithm
far outperforms the quotient-ring-based algorithm.

The error estimate for the perturbation-based SDD
algorithm depends on the assumption that the predicate
is analytic on [0, r]. In practice, a value of h that yields
a small estimate also ensures that ambiguity at h is
equivalent to identity. This implies not only that a) a
nondegenerate yet ambiguous e(p) is unlikely but also
that b) an identity e(p) rarely becomes a non-identity
e(q). Since identity is more restrictive than non-identity,
c) going from non-identity to identity is even less likely.
The probability of an undetected analytic failure is the
product of (a) and (b). Although we do not have an
analysis of these probabilities as for an analytic false
identity, we feel it is safe to disregard their product in
comparison to the analytic false identity probability.
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Unfolding Some Classes of One-Layer Polycubes

Josef Minař́ık∗

Abstract

An unfolding of a polyhedron is a cutting along its sur-
face such that the surface remains connected and it can
be flattened to the plane without any overlap. An edge-
unfolding is a restricted kind of unfolding, we are only
allowed to cut along the edges of the faces of the poly-
hedron. A polycube is a special case of orthogonal poly-
hedron formed by glueing several unit cubes together
face-to-face. In the case of polycubes, the edges of all
cubes are available for cuts in edge-unfolding. We focus
on one-layer polycubes and present several algorithms
to unfold some classes of them. We show that it is pos-
sible to edge-unfold any one-layer polycube with cubic
holes, thin horizontal holes and separable rectangular
holes. The question of unfolding general one-layer poly-
cubes remains open.

1 Introduction

An orthogonal polyhedron is a polyhedron whose edges
are parallel to the Cartesian axes and whose faces meet
at right angles. Each face of an orthogonal polyhedron
is parallel to one of the Cartesian coordinate planes. A
polycube is a special case of an orthogonal polyhedra.
It is formed by glueing several unit cubes together by
whole faces. Polycubes are three-dimensional general-
isations of planar polyominoes. A one-layer polycube
is a polycube of height 1. In other words, the centers
of all unit cubes are in one plane. One-layer polycubes
with non-zero genus have some holes in them. If a hole
consists of only one missing unit cube, we call this hole
cubic.

An unfolding of a polyhedron is a cutting along its
surface such that the surface remains connected and it
can be flattened to the plane without any overlap. We
usually only care about interior overlap and there may
be touching edges after unfolding to the plane. Edge-
unfolding is a restricted kind of unfolding. In this case,
we can only cut along the edges of the faces of the
polyhedron. It is quite easy to show that there exist
non-convex orthogonal polyhedra that cannot be edge-
unfolded [7]. We are mostly interested in edge-unfolding
of polycubes. In the case of polycubes, the edges of all
cubes are available for cuts. This means that we can

∗Department of Applied Mathematics, Faculty of Mathematics
and Physics, Charles University

cut the faces of our polyhedron along the edges of the
1× 1 grid. Different kinds of unfolding are discussed in
greater detail in [6] and [8].

Unfoldings of many classes of orthogonal polyhedra
have been studied. For example orthostacks, ortho-
tubes [1] or Manhattan towers [4]. There are also known
unfoldings of special cases of polycubes, such as well-
separated orthotrees [3]. One-layer orthogonal polyhe-
dra with arbitrary genus g can be edge-unfolded using
only 2(g − 1) additional cuts [2]. Kiou, Poon and Wei
proved that it is possible to unfold one-layer polycubes
with sparse cubic holes [5], which are one-layer poly-
cubes such that each connected component in a column
contains at most one hole. We generalize this result
and present an algorithm for unfolding general one-layer
polycubes with cubic holes.

Theorem 1 It is possible to edge-unfold any one-layer
polycube with cubic holes.

In Sections 2.5 and 2.6 we further generalize this ap-
proach for other classes of one-layer polycubes.

Definition 1 A hole is called thin horizontal if it is a
rectangle of height 1.

Theorem 2 It is possible to edge-unfold any one-layer
polycube with thin horizontal holes.

Definition 2 We call a set of rectangles separable if it
satisfies the following property. If we extend any edge
of any rectangle to a line, it does not cut any other
rectangle.

Theorem 3 It is possible to edge-unfold any one-layer
polycube with separable rectangular holes.

2 Results

2.1 Definitions

Let us consider a one-layer polycube P placed in the
xy plane such that the centers of all cubes have integer
coordinates. The exact position of the polycube is not
important, we only need to be able to index the cubes
by coordinates. By a cube with coordinates x, y we
mean a cube whose center has such coordinates. Let
us denote the set of holes H. A one-layer polycube P
has a top base T and bottom base B. There also is
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an external boundary E and several internal boundaries
I = {Ih | h ∈ H}, each corresponding to some hole
h. The boundaries are formed by cyclic stripes of unit
squares.

Since we are only interested in one-layer polycubes,
we will display them as 2-dimensional objects. In all
the figures, we are looking at the polycube from above,
which means that we see the top base. With respect
to that, we will be using terms such as “left”, “right”,
“up” and “down” to describe directions. For example,
the boundary of a hole consists of four not necessarily
connected parts: left, right, upper and lower.

We require the surface of P to be simple, that is, every
edge of P is incident to exactly two 1×1 squares on the
surface of P. The holes are not allowed to “touch” each
other by corners nor to “touch” the external boundary,
examples of such disallowed configurations are in Figure
1.

(a) Example of holes touching.

(b) Example of a hole touching the ex-
ternal boundary.

Figure 1: Examples of polycubes that are not allowed.

We will describe several algorithms for unfolding
polycubes. Let n denote the number of unit cubes form-
ing P. All of the presented algorithms can be imple-
mented in O(n) time if we are provided with a reason-
able representation of the polycube as input (for exam-
ple a sorted list of all unit cubes). We mainly focus on
the existence of the unfolding and the existence of such
an algorithm is more important for us than the exact
implementation. However, an implementation of all the
presented algorithms should be mostly straightforward.

2.2 No holes

Let us start with a simple example to get familiar with
the techniques we will be using. Without holes, we only
need to unfold B, T and E. The algorithm starts with
the external boundary E. The external boundary can be
unfolded to a single stripe of height 1. Let us place this
stripe horizontally in the plane. We do not cut B and T .
We simply connect them to the unfolded E, each being
placed in a different half-plane. They are connected to
E by the cube with the lowest y coordinate (if there
are two or more, we can choose one arbitrarily). The
resulting shape is connected and it is easy to see that
there are no overlaps. See Figure 2 for an example of
an unfolding of a polycube without holes.

Figure 2: Unfolding of a one-layer polycube without
holes.

Note that this is an edge-unfolding in the standard
sense, we only used cuts along the faces of the poly-
hedron. We did not use any additional cuts along the
edges of the unit cubes.

2.3 Wide holes

Definition 3 A hole h is called narrow if Ih contains
two squares with distance 1 facing each other. A hole
is wide if it is not narrow. In other words, we say that
a hole is wide if it satisfies the following property. If
there is a missing cube with a center on coordinates
[x, y], then there is at least one missing cube at coor-
dinates [x+1, y], [x−1, y] and at least one missing cube
at coordinates [x, y − 1], [x, y + 1].

(a) Examples of
wide holes.

(b) Examples of
non-wide holes.

Figure 3: Examples of wide and non-wide holes.

We can unfold one-layer polycubes with wide holes
using the following algorithm. We start by unfolding
B, T and E in the same way as above in Section 2.2.
Thanks to the wideness of the holes, there is a lot of
space inside B and T . For every hole h, we will unfold
Ih in two steps. In the first step, we unfold the upper
and the lower faces of Ih. In the second step, we unfold
the left and the right faces of Ih. In the first step, we
unfold parts of Ih into the top base T , inside the holes.
There will be no overlap because the holes are wide. The
second step is almost the same, the only difference is
that we use the bottom base B instead. Figure 4 shows
an example of an unfolding produce by this algorithm.

We again used only cuts along the edges of P.

2.4 Cubic holes

This algorithm is slightly more complicated, we will
need to cut T and B. Note that cutting T or B is
necessary to unfold even a single cubic hole. The idea
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Figure 4: Unfolding of a one-layer polycube with a wide
hole.

is similar to the algorithm in Section 2.3, we will unfold
some parts (the upper and the lower faces) of the inter-
nal boundaries by connecting them to T and some of
them (the left and the right faces) by connecting them
to B.
The first steps are still the same: we unfold the exter-

nal boundary E. Now let us color the squares of T using
orange and red. The squares whose y-coordinate is 0 or
1 modulo 4 will be orange, the remaining ones will be
red. In other words, we are coloring pairs of rows orange
and red. Example of such coloring can be seen in Fig-
ure 6. Consider the connected components formed by
orange or red squares, which would be formed by cut-
ting edges separating squares of different colors. The
leftmost and the rightmost square of every connected
component must be incident to E. This is due to the
holes being cubic; they are not big enough to separate
components.

Figure 5: Example of a one-layer polycube with cubic
holes.

(a) Coloring of the
top base.

(b) Coloring of the
bottom base.

Figure 6: Coloring of the one-layer polycube with cubic
holes in Figure 5.

We will connect all the orange components to the
external boundary on their left side by their leftmost
square. Analogously every red component will be con-
nected to the boundary by its rightmost square. The
current stage of unfolding is illustrated in Figure 7.
Quite simple casework shows that there is a distance
of at least 2 between any pair of connected components

Figure 7: The first step of unfolding the polycube in
Figure 5.

after placing them in the plane next to unfolded E. Sup-
pose there are two stripes that have a distance of less
than two. There are two cases:

1. Both of the stripes have the same color. We can
suppose without loss of generality they are orange.
Now consider where these stripes come from in the
polycube. They either come from the same pair of
rows or a different pair of rows. In the first case, the
distance would have to be at least 3, in the second
case, it would have to be at least 2, a contradiction.
See Figure 8 for an illustration.

2. The stripes have different colors. Without loss of
generality, we can assume that the left stripe is or-
ange. Let us again consider where those stripes
were before the unfolding. If they don’t come from
the neighboring pair of rows, the distance would
obviously have to be at least 4. There are two re-
maining (symmetric) cases: the red rows could be
either above or below the orange rows. In both of
those cases, the distance is at least 2, contradiction
again, see Figure 9.

Now, we will take every left or right face of the inter-
nal boundaries and connect it to the only square of the
already unfolded top base it is incident to. There are
no overlaps because the connected components have a
distance of at least 2 and there is enough space for two
unit squares between them.

We repeat the process for the bottom base B. This
time, we color pairs of columns instead of rows. This
base and parts of holes are unfolded to the opposite
half-plane so there will be no overlaps with previously
placed parts.

2.5 Thin horizontal holes

The approach in Section 2.4 can be quite easily general-
ized to holes of dimensions 1×k, but only if all of them
are oriented in the same way (either all horizontal or all
vertical).

Definition 4 A hole is called thin horizontal if it is a
rectangle of height 1.
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(a) Suppose the distance of two
orange stripes is at most 1.

(b) In the first case, the dis-
tance after unfolding must be at
least 3.

(c) In the second case, the dis-
tance after unfolding must be at
least 2.

Figure 8: Two orange stripes cannot be too close to
each other.

(a) Suppose the distance of an
orange and red stripe is at most
1.

(b) In the first case, the dis-
tance after unfolding must be at
least 2.

(c) In the second case, the dis-
tance after unfolding must be at
least 2.

Figure 9: Two stripes of different colors cannot be too
close to each other.

Figure 10: Unfolding of the one-layer polycube with
cubic holes in Figure 5.

(a) Example of a
polycube with thin
horizontal holes.

(b) Coloring of the
top base.

Figure 11: Coloring of a one-layer polycube with thin
horizontal holes.

Let us start by unfolding E, T and longer (horizontal
- upper and lower) faces of holes in the same way as in
Section 2.4. The Figures 12 and 13 show the first two
steps of the algorithm.

Figure 12: The first step of unfolding the polycube in
Figure 11.

Figure 13: The second step of unfolding the polycube
in Figure 11.

It remains to unfold the bottom base B and the short
(left and right) faces of holes. We cannot do that in the
same way as before, because if we cut B into stripes of
width 2, they would not be necessarily incident to the
external boundary. We can instead connect one face of
each hole h ∈ H to one of the two already unfolded
faces of Ih. In case of holes in the orange stripes, we
unfold the right face, in case of holes in the red stripes,
we unfold the left face. Let us look at the already un-
folded horizontal faces of Ih. One of the faces is unfolded
“inside” of a stripe but the other is “outside”. For ex-
ample, consider a hole in the lower row of a red stripe:
the upper face of this hole is unfolded “inside” the red
stripe while the lower face is unfolded “outside” of an or-
ange stripe. The face unfolded outside has empty space
around it and we can connect the one face of Ih here
(this face is only one 1 × 1 square). There cannot be
an overlap - we are outside a stripe, so there could only
be a face of some hole or external boundary. Exter-
nal boundary cannot be there because it has distance
at least 1 from all holes (and it also lies in the oppo-
site direction than the one in which we place the face).
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The same is true for holes, they are at a distance of at
least 1 from each other, so the unfolded longer faces are
not next to each other. Two faces unfolded in this step
cannot overlap either because they are unfolded in the
same direction.

The last part is the bottom base B and exactly one
face of every hole. This is rather simple since all of the
remaining faces are just 1 × 1 squares. We can unfold
the rest in a similar fashion to unfolding wide holes in
Section 2.3. See the Figure 14 for an example of the last
steps.

Figure 14: Unfolding of the polycube in Figure 11.

2.6 Separable rectangular holes

A slightly more general class of one-layer polycubes than
the polycubes with cubic holes can also be unfolded us-
ing a similar algorithm.

Definition 5 We call a set of rectangles separable if it
satisfies the following property. If we extend any edge
of any rectangle to a line, it does not cut into any other
rectangle (it does not contain an interior point of any
other rectangle).

One-layer polycubes whose holes are separable rectan-
gles can be unfolded by an algorithm very similar to the
one in Section 2.4. Note that cubic holes are trivially
separable, thus one-layer polycubes with cubic holes can
also be unfolded using this algorithm.

(a) Example of
separable rectan-
gles.

(b) Example of
non-separable
rectangles.

Figure 15: Examples of separable and non-separable
rectangles.

Let us extend the edges of all rectangles that are par-
allel to x-axis to lines. This creates several horizontal

Figure 16: Example of a one-layer polycube with sepa-
rable rectangular holes.

stripes. Analogously, we can create vertical stripes. In-
stead of coloring pairs of neighboring rows or columns
of T and B as in Section 2.4, we color pairs of neighbor-
ing horizontal stripes. You can see an example of such
coloring in Figure 17. The distance between any pair
of stripes is again at least 2 for the same reasons as in
the algorithm for cubic holes. We omit the case analysis
this time.

(a) Coloring of the
top base.

(b) Coloring of the
bottom base.

Figure 17: Coloring of the polycube in Figure 16.

The rest of the algorithm is the same as in Section
2.4. We consider connected components of both col-
ors. The leftmost and rightmost squares of connected
components are incident to E and will be connected
on the left or right side depending on their color. We
then unfold the horizontal and vertical faces of inter-
nal boundaries separately. Since the distance between
neighboring stripes is at least 2, there are no overlaps.
Figures 18 and 19 show the steps of this algorithm.

Figure 18: The first step of unfolding of the polycube
in Figure 16.

3 Conclusion

We presented several linear-time algorithms for edge-
unfolding of special cases of one-layer polycubes. The
question of unfolding one-layer polycubes with arbitrary
holes remains open. Interestingly, we are able to unfold
one-layer polycubes with very small (cubic) holes and
with very big (wide) holes. These are, in some sense,
opposite types of one-layer polycubes. Generalising our
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Figure 19: Unfolding of the polycube in Figure 16.

approach to unfold other classes of one-layer polycubes
seems rather difficult since it relies on being able to
cut the top and bottom bases into stripes such that all
the connected components are incident to the external
boundary.
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Diverse Non Crossing Matchings*

Neeldhara Misra† Harshil Mittal‡ Saraswati Girish Nanoti§

Abstract

A perfect matching M on a set P of n points is a col-
lection of line segments with endpoints from P such
that every point belongs to exactly one segment. A
matching is non-crossing if the line segments do not
cross. Two matchings M and N are said to be com-
patible if there are no crossings among any pair of line
segments in M ∪ N. We introduce a notion of diverse
non-crossing matchings: a pair of perfect matchings M
and N are k-diverse if, for every p ∈ P, the distance be-
tween the matched partners of p in M and N is at least
k. In this contribution, we describe a polynomial time
algorithm to determine if a set of points in convex posi-
tion admits two compatible and perfect NCMs that are
k-diverse. For points in convex position, we also show
that if a perfect matching M is given as input, then we
can determine, in polynomial time, if another perfect
matching N exists that is compatible with M and is
such that M and N are k-diverse. Finally, we also es-
tablish that every point set in general position admits a
pair of compatible and perfect NCMs. The first two re-
sults also hold for bichromatic points, and we also give
a characterization for when a bichromatic point set in
convex position admits a pair of perfect and disjoint
NCMs.

1 Introduction

Matching problems involve partitioning a set of objects
into pairs subject to some constraints. For example, in
the context of graphs, we are given a binary relation
over the set of objects and require the pairs to be re-
lated. In a geometric setting, the set typically consists
of geometric objects (Aloupis et al., 2013), and such
problems have received a lot of attention because of
their practical relevance.

Our focus is on the setting of matching points using
line segments. In particular, given a set P of n points
in the plane R2, we are interested in matching them
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with straight line segments. We focus on perfect non-
crossing matchings (NCMs), i.e, matchings where every
point is matched and no two line segments cross. Un-
less otherwise mentioned, we assume that all match-
ings are perfect.

It turns out that any collection of points admits a NCM
and that this can be found in O(n log n) time (Hersh-
berger and Suri, 1990; Lo et al., 1994). Many studies on
NCMs focus on optimizing some structural property of
the matching, such as the maximum, minimum, or av-
erage edge length. Two NCMs M and N are said to
be disjoint if every point has a different matched part-
ner in both matchings, and compatible if the segments
in M ∪ N do not cross.

For optimization problems, the decision or search ver-
sion of the question seeks to find some optimal solu-
tion, while the counting version asks to enumerate all
optimal solutions. In many application scenarios, the
former is not sufficient, while the latter is too demand-
ing in terms of computational expense. This motivates
the notion of demanding not all but a select collection
of solutions. In most applications, the requirement is
not just for a multitude of solutions, but for an “inter-
esting” collection of solutions: for example, informally
speaking, solutions that are minor variations of one an-
other and are very similar may not be very useful in
most settings.

The existence of a diverse collection of solutions has
been explored in several settings recently. Studies
on diverse solutions have focused on a wide array
of problems including, but are not limited to, vertex
cover (Baste et al., 2022), matchings (Fomin et al., 2020),
stable matchings (Ganesh et al., 2021), matroids (Fomin
et al., 2021), satisfiability (Nadel, 2011), Kemeny rank
aggregation (Arrighi et al., 2021), etc.

To propose that we find “diverse” solutions, we need
a notion of distance between solutions. In the setting
of matchings between points in R2, a natural notion of
“distance between matchings M and N” would be an
aggregation of the distance between the matched part-
ners of all the points in the two matchings. The aggre-
gation function that we work with picks out the small-
est such distance. In particular, using M(·) to denote
the matched partner of a point p in a matching M, we
define the distance between two matchings M and N
over a point set P as minp∈P d(M(p), N(p)). Note that
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the we have used the term “distance” informally and
this function does not satisfy the triangle inequality.
We say that a collection of matchings M is k-diverse
for some positive number k if the distance between ev-
ery pair of matchings in M has a distance of at least k
between them. Throughout our discussions, we focus
on the problem of finding two matchings.

Our Contributions. We propose the following natural
computational questions:

DIVERSE NCMS
(DIVERSE COMPATIBLE NCMS)

Input: A set P of 2n points and a positive ratio-
nal number k.
Question: Does P admit two perfect matchings
that are k-diverse and compatible, i.e., two DC-
NCM’s?

ANOTHER DIVERSE NCM
(ANOTHER DIVERSE COMPATIBLE NCM)

Input: A set P of 2n points, a perfect matching
M over P, and a positive rational number k.
Question: Is there a perfect NCM N over P such
that M and N are k-diverse (and compatible)?

We first show that any monochromatic point set P in
general position with an even number of points such
that |P| ⩾ 4 admits two compatible NCMs. Note that
this is easy to see for points in convex position: a set of
alternating edges on the convex hull and the remain-
ing edges of the convex hull form a pair of compatible
matchings. For points in general position, we gener-
alize this idea by considering the layer decomposition
and peeling off convex layers with an even number of
points, and carefully matching across layers when we
encounter layers with an odd number of points. We
also characterize bichromatic point sets in convex posi-
tion that admit two disjoint non-crossing matchings1.

Theorem 1 (Disjoint Matchings) Any point set P in
general position admits two compatible perfect NCMs. A
bichromatic point set P in convex position admits two dis-
joint and perfect NCMs if and only if the orbit of each point
contains at least two points of the opposite colour.

We next propose the computational problem of find-
ing a matching that is diverse with respect to and, op-
tionally, compatible with a given matching. We show
that when points are in convex position, we can find

1We refer the reader to Section 2 for the formal definitions of the
terminology used here.

such a matching in polynomial time. We use a dy-
namic programming approach here, considering sub-
problems corresponding to contiguous subintervals of
the convex hull.

Theorem 2 (Another Diverse Matching) For both
monochromatic and bichromatic points in convex position,
the problems ANOTHER DIVERSE NCM and ANOTHER
DIVERSE COMPATIBLE NCM admit polynomial time
algorithms.

Finally, we consider the problem of finding a pair of
diverse and compatible matchings. We demonstrate a
polynomial time algorithm for points in convex posi-
tion. For this algorithm, we note that any solution can
be viewed equivalently as a collection of disjoint non-
overlapping polygons. We prove a structural lemma
which shows that there always exists an optimal so-
lution consisting of polygons with a constant number
of sides. We can then leverage this to come up with a
dynamic programming algorithm that considers, as be-
fore, subproblems corresponding to contiguous subin-
tervals of the convex hull, and makes progress by
guessing all possible choices for the polygon that the
first point on the subinterval belongs to.

Theorem 3 (Diverse Compatible Matching) For both
monochromatic and bichromatic points in convex posi-
tion, DIVERSE COMPATIBLE NCMS admits a polynomial
time algorithm.

Related Work. The task of finding a matching that
minimizes the length of the longest edge is called
the bottleneck NCM problem and is known to be
NP-complete in general and tractable for points in
convex position and other special cases, and has
been well-studied for monochromatic and bichromatic
points (Abu-Affash et al., 2014; Carlsson et al., 2015;
Savić and Stojaković, 2017, 2022; Biniaz et al., 2014).

Other variants of the problem such as those which
involve minimizing the length of the shortest edge
or maximizing the length of the longest edge are
tractable (Mantas et al., 2021). Finally, to the best of
our knowledge, the complexity of finding a matching
that maximizes the length of the shortest edge is open.

In the context of the setting where we have a point set
and a matching, it was conjectured by Aichholzer et al.
(2009) that for every perfect matching M of a point set
P such that |P| is a multiple of four, there is another
perfect matching, N of P such that M and N are com-
patible. This was subsequently proved by Ishaque et al.
(2012) using a constructive argument that also leads to
an efficient method for constructing the matching N. It
is also known that the conjecture does not hold when
|P| is not a multiple of four Aichholzer et al. (2009).
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Organization of the paper. Due to lack of space, we
defer the proofs of Theorem 1 and Theorem 2 to the
full version of the paper. We provide most of the de-
tails towards showing Theorem 3 in Section 3, only de-
ferring the argument of correctness and remarks about
the bichromatic case to the full version.

2 Preliminaries

In the setting of monochromatic points, we use P typ-
ically to denote a set of 2n points in R2 with n >
1. When we work with points in general position,
we will use P to denote the convex hull of P. In
case of convex point sets, we label the points of P by
p0, p1, . . . , p2n−1 in positive (counterclockwise) direc-
tion around the convex hull. To simplify the notation,
we will generally use only indices when referring to
points. We write {i, . . . , j} to represent the sequence
i, i + 1, i + 2, . . . , j − 1, j. All operations are calculated
modulo 2n. Note that i is not necessarily less than j,
and that {i, . . . , j} is not the same as {j, . . . , i}.

A bichromatic set of points is a point set P equipped
with a coloring function c : P → {0, 1} that classifies
each point as either “red” (points for which c(p) = 0)
or “blue” (points for which c(p) = 1). We usually de-
note these sets by R and B respectively, with P = R ∪ B
and |R| = |B| = n, and again, we assume n > 1.

We say that two line segments s and t in the plane cross
if there is a point on the plane which is not an endpoint
of either s and t that belongs to both s and t. In partic-
ular, note that if s = t, then s and t cross each other.

The convex hull of a point set is the smallest convex
polygon that contains all the points of it. The convex
layers or the onion decomposition of a set of points are a
sequence of nested convex polygons having the points
as their vertices. The outermost one is the convex hull
of the points and the rest are formed in the same way
recursively. The innermost layer may be degenerate,
consisting only of one or two points. The number of
polygons in onion decomposition of a point set is called
its layer depth.

A perfect matching on the set P is a set of n straight
line segments whose endpoints are points in P such
that each point is the endpoint of exactly one line seg-
ment. For bichromatic points sets, we further require
that each line segment has one red and one blue end-
point. If the line segments do not cross, we refer to such
a matching as a (bichromatic) non-crossing matching.
All matchings are both perfect and non-crossing unless
mentioned otherwise.

We usually use the notation M or N to refer to match-
ings. With a slight abuse of notation, given a matching
M over P and a point p ∈ P, we use M(p) to denote the

matched partner of p in M, that is, the point q such that
the segment connecting p and q belongs to M. Two
matchings M and N are called disjoint if the matched
partners of all points in p are different in both, i.e, for
all p ∈ P, we have that M(p) ̸= N(p), and compati-
ble if the segments in the multiset M ∪ N do not cross.
Note that all compatible matchings are disjoint, while
the converse may not be true.

We define the distance between two matchings M
and N over a point set P, denoted DP(M, N), as
minp∈P(dist(M(p), N(p))), where dist(·, ·) denotes the
Euclidean distance between two points. We also refer
to this as the diversity of the set {M, N} or the diversity
between M and N. Further, we say that a pair of match-
ings M and N over P are k-diverse if DP(M, N) ≥ k.
Note that if M and N are not disjoint, then they are
0-diverse. If the point set P is clear from the context,
we may drop the subscript P from the notation for dis-
tances and diversity.

We now introduce some terminology that is relevant to
bichromatic point sets.

Definition 1 (Balanced, Blue-heavy, Red-heavy) A set
of points is balanced if it contains the same number of red
and blue points. If the set has more red (blue) points than
blue (red), we say that it is red-heavy (blue-heavy).

Lemma 1 (Savić and Stojaković (2022)) Every balanced
set of points can be matched.

Definition 2 (Feasible pair.) We say that (i, j) is a feasi-
ble pair if there exists a matching containing (i, j). We refer
to i as a feasible neighbour of j and vice versa.

Lemma 2 (Savić and Stojaković (2022)) A pair (i, j) is
feasible if and only if i and j have different colors and
{i, . . . , j} is balanced.

Definition 3 (Functions o+ and o−.) [Savić and Sto-
jaković (2022)] By o+(i) we denote the first point starting
from i in the positive direction such that (i, o+(i)) is
feasible. By o−(i) we denote the first point starting from i
in the negative direction such that (o−(i), i) is feasible.

As we assume that the given point set is bal-
anced, Lemma 2 guarantees that both o+ and o− are
well-defined. It also turns out that o− is the inverse
function of o+ as mentioned in Savić and Stojaković
(2022). We denote the composition of o+ function k
times on a point p as ok(p) and also use the notation
o(p) to mean o+(p).

Definition 4 (Orbit) [Savić and Stojaković (2022)]

An orbit of i, denoted by O(i), is defined by O(i) :={
ok(i) : k ∈ Z

}
. By O(P) we denote the set of all orbits

of a convex point set P, that is O(P) := {O(i) : i ∈ P}.
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3 DC-NCM for points in Convex Position

Suppose that the points of P are in convex position. Let
F be a collection of even-length simple convex poly-
gons, each of length ≥ 4. We say that F is a feasible
collection of polygons on P if the following hold true:

• Every p ∈ P is a vertex of exactly one polygon in
F , and every polygon in F has all its vertices in P.

• No edge of a polygon in F crosses an edge of an-
other polygon in F .

For any even-length simple polygon T of length ≥ 4,

• let partners(T) denote the set of all unordered
pairs {u, v} of vertices of T such that exactly one
vertex of T appears between u and v, when one
traverses from u to v in counter-clockwise direc-
tion along the boundary of T.

• let quality(T) denote the minimum of dist(u, v)
over all pairs {u, v} in partners(T).

For any feasible collection F of polygons on P, let
quality(F ) denote the minimum of quality(T) over all
polygons T in F .

Note that for any k > 0, the following are equivalent:

• There exists a pair of compatible perfect NCMs M
and N on P such that DP(M, N) ≥ k.

• There exists a feasible collection F of polygons on
P such that quality(F ) ≥ k.

This claim follows from the fact that the union of the
line segments in any pair of compatible NCMs over P
is a collection of even-length simple convex polygons
whose vertices partition P and do not cross, i.e, a feasi-
ble collection of polygons on P.

Thus, our goal is to find a collection F of feasible poly-
gons on P for which quality(F ) is maximized.

Let A and B be non-empty sets of real numbers. We say
that A dominates B if for every x ∈ A, we have x ≥ y
for some y ∈ B. Note that

• If A ⊆ B, then A dominates B.

• A dominates B if and only if min(A) ≥ min(B).

Our dynamic programming algorithm relies on the fol-
lowing structural lemma, which says the following: if
F is a feasible collection of polygons on P with quality
s, then we can find a (potentially different) F ′ which is
a feasible collection of polygons on P whose quality is
no worse than s, and further, every polygon in F ′ has
four or six vertices. This allows us to devise a poly-
nomial time algorithm based on “guessing” the nature
of the polygons that the points belong to in some final
solution.

Figure 1: Breaking up a polygon on 4q points.

Our proof for the structural lemma considers two sce-
narios. First, when the number of vertices of a poly-
gon T in F is a multiple of four, we simply “break” it
into four-length polygons. In this situation, we intro-
duce no new pairs into the set of matched partners (i.e,
partners(T′) ⊆ partners(T) for any T′ generated by the
breaking procedure) , and so the quality of the solution
is not affected. The other situation is that the number
of vertices of a polygon T in F is of the form 4q + 2. In
this case, we find a six-length polygon T′ and organize
the remaining 4q − 4 points into (q − 1) polygons as in
the previous case. The choice of T′ is made carefully so
as to ensure that the overall quality of the solution thus
obtained is no worse than the original.

Lemma 3 Let F be a feasible collection of polygons on P.
Then, there exists a feasible collection F ′ of polygons on P
such that

• Every polygon in F ′ has length either 4 or 6.

• quality(F ′) ≥ quality(F )

Proof.
Let F ′ be a family of polygons on P obtained from F
as follows: For each polygon T in F of length > 6,

Case 1: T has length 4q, for some integer q ≥ 2

Let 0, 1, 2 . . . , 4q − 1 denote the vertices of T, appear-
ing in that order as one traverses in counter-clockwise
direction along its boundary. We replace T with q sim-
ple convex polygons T0, T1, . . . , Tq−1, each of length 4,
where
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Figure 2: The even and odd polygons Teven and Todd.

• T0 has vertices 0, 1, 2, 3.

• T1 has vertices 4, 5, 6, 7.
...
...

• Tq−1 has vertices 4q − 4, 4q − 3, 4q − 2, 4q − 1.

Let 0 ≤ j ≤ q − 1. Note that

partners(Tj) =
{
{4j, 4j + 2}, {4j + 1, 4j + 3}

}
⊆ partners(T)

So, we have

min
{u,v}∈partners(Tj)

(
dist(u, v)

)
≥ min

{u,v}∈partners(T)

(
dist(u, v)

)
That is, quality(Tj) ≥ quality(T).

Thus,

min
0≤j≤q−1

(
quality(Tj)

)
≥ quality(T)

Case 2: T has length 4q + 2, for some integer q ≥ 2

Let 0, 1, 2, . . . , 4q + 1 denote the vertices of T, appear-
ing in that order as one traverses in counter-clockwise
direction along its boundary.

Let Teven and Todd denote the simple convex poly-
gons, each of length 2q+ 1, on the vertices 0, 2, 4, . . . , 4q
and 1, 3, 5, . . . , 4q + 1 respectively. Let e0, e2, e4, . . . , e4q
denote the interior angles of Teven, at the vertices
0, 2, 4, . . . , 4q respectively. Let o1, o3, o5, . . . , o4q+1 de-
note the interior angles of Todd, at the vertices
1, 3, 5, . . . , 4q + 1 respectively.

For any simple convex polygon, since its exterior an-
gles sum up to 2π, at most two of them are > 2π

3 . So,
at most two of its interior angles are < π

3 .

Figure 3: Breaking up a polygon on 4q + 2 points.

Thus, each of Teven and Todd has at most two in-
terior angles that are < π

3 . That is, at most
two of e0, e2, . . . , e4q are < π

3 , and at most two of
o1, o3, . . . , o4q+1 are < π

3 . So, among the ≥ 5 pairs of
angles (e0, o1), (e2, o3), (e4, o5), . . . , (e4q, o4q+1), there is
at least one pair, say (e2ℓ, o2ℓ+1), such that each of e2ℓ
and o2ℓ+1 is ≥ π

3 .

We replace T with a simple convex polygon T0
of length 6, and q − 1 simple convex polygons
T1, . . . , Tq−1, each of length 4 (c.f. Figure 3), where:

• T0 has vertices
2ℓ− 2, 2ℓ− 1, 2ℓ, 2ℓ+ 1, 2ℓ+ 2, 2ℓ+ 3.

• T1 has vertices 2ℓ+ 4, 2ℓ+ 5, 2ℓ+ 6, 2ℓ+ 7.

• T2 has vertices 2ℓ+ 8, 2ℓ+ 9, 2ℓ+ 10, 2ℓ+ 11.
...
...

• Tq−1 has vertices
2ℓ+ 4q − 4, 2ℓ+ 4q − 3, 2ℓ+ 4q − 2, 2ℓ+ 4q − 1.

Here, the additions are modulo 4q + 2.
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Let 1 ≤ j ≤ q − 1. Note that

partners(Tj) =
{
{2ℓ+ 4j, 2ℓ+ 4j + 2},

{2ℓ+ 4j + 1, 2ℓ+ 4j + 3}
}

⊆ partners(T)

So, we have

min
{u,v}∈partners(Tj)

(
dist(u, v)

)
≥ min

{u,v}∈partners(T)

(
dist(u, v)

)
That is, quality(Tj) ≥ quality(T).

Next, we show that quality(T0) ≥ quality(T).

Let

A :=
{

dist(u, v) | {u, v} ∈ partners(T0)
}

B :=
{

dist(u, v) | {u, v} ∈ partners(T)
}

Note that

partners(T0) \ partners(T) =
{
{2ℓ+ 3, 2ℓ− 1},

{2ℓ+ 2, 2ℓ− 2}
}

Consider the triangle formed by the points 2ℓ − 1,
2ℓ+ 1, 2ℓ+ 3. Here, as o2ℓ+1 ≥ π

3 ,

dist(2ℓ+ 3, 2ℓ− 1) ≥ min
(

dist(2ℓ− 1, 2ℓ+ 1),
dist(2ℓ+ 1, 2ℓ+ 3)

)
.

Consider the triangle formed by the points 2ℓ − 2,
2ℓ, 2ℓ+ 2. Here, as e2ℓ ≥ π

3 ,

dist(2ℓ+ 2, 2ℓ− 2) ≥ min
(

dist(2ℓ− 2, 2ℓ),
dist(2ℓ, 2ℓ+ 2)

)
.

Also, note that partner(T) contains the pairs
{2ℓ− 1, 2ℓ+ 1}, {2ℓ+ 1, 2ℓ+ 3}, {2ℓ− 2, 2ℓ}, {2ℓ, 2ℓ+ 2}.
Therefore, A dominates B and so, min(A) ≥ min(B).

That is,

min
{u,v}∈partners(T0)

(
dist(u, v)

)
≥ min

{u,v}∈partners(T)

(
dist(u, v)

)
Thus, quality(T0) ≥ quality(T).

Hence, we have

min
0≤j≤q−1

(
quality(Tj)

)
≥ quality(T),

and this concludes the proof. □

Based on the lemma, we have the following dynamic
programming approach: Let 0, 1, . . . , 2n − 1 denote the
points of P in counter-clockwise order. For every 0 ≤
i, j ≤ 2n − 1 such that (j − i) is odd, let Qi,j denote the
set of points {i, i + 1, . . . , j} and let:

T(i, j) =


max DQij(M, N) if j − i ≥ 3,
−∞ if j − i = 1,
+∞ if j − i < 0;

where the max is taken over all pairs of disjoint com-
patible perfect NCMs M and N over the point set Qi,j.

Note that T(0, 2n − 1) is the value of the optimal solu-
tion. We compute and store T(i, j)′s using the follow-
ing recurrence:

T(i, j) =


max(α(i, j), β(i, j)) if j − i ≥ 5,
α(i, j) if j − i = 3,
−∞ if j − i = 1,
+∞ if j − i < 0,

where α(i, j) is given by:

max
i < p1 < p2 < p3 ⩽ j :
p1 − i is odd
p2 − p1 is odd
p3 − p2 is odd

min


dist (i, p2) ,
dist (p1, p3) ,
T (i + 1, p1 − 1) ,
T (p1 + 1, p2 − 1) ,
T (p2 + 1, p3 − 1) ,
T (p3 + 1, j)



and β(i, j) is given by:
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max
i<q1<q2<q3<q4<q5⩽j:

q1 − i is odd
q2 − q1 is odd
q3 − q2 is odd
q4 − q3 is odd
q5 − q4 is odd

min



dist (i, q2) ,
dist (q1, q3) ,
dist (q2, q4) ,
dist (q3, q5) ,
dist (q4, i) ,
dist (q5, q1) ,
T (i + 1, q1 − 1) ,
T (q1 + 1, q2 − 1) ,
T (q2 + 1, q3 − 1) ,
T (q3 + 1, q4 − 1) ,
T (q4 + 1, q5 − 1) ,
T (q5 + 1, j)



.

We remark that the recurrences are well-defined. The
overall intuition for the recurrences above is the fol-
lowing: fix an arbitrary solution that has the property
guaranteed by Lemma 3. We attempt to “guess” the
type and vertices of the polygon that the first point be-
longs to in this solution. For each fixed guess, we have
a natural partition of the remaining points into smaller
sub-instances (see Figures 4 and 5). It is easy to identify
invalid guesses, by which we mean a polygon which is
such that there is no solution that contains it.

For any valid guess, the recurrence gives us the
best possible extension, i.e, the best possible diversity
achievable among solutions that contain the guessed
polygon. All that remains is to pick the best choice
among all choices of polygons that contain the first
point. The overall running time is polynomially
bounded because we only have to worry about poly-
gons with a constant number of vertices. We make this
argument more explicit in the Appendix. We also note
that the running time of our algorithm is O(n7) since
the DP table has O(n2) indices and the computation at
each index is O(n5).

We now sketch the correctness of the dynamic pro-
gramming approach proposed in the context of The-
orem 3. Consider the subproblem given by the points
i, i + 1, . . . , j. Consider the space of all solutions S that
have the property guaranteed by Lemma 3 and parti-
tion it into two parts: S4 ⊆ S consists of all solutions
where the point i belongs to a polygon with four sides;
and S6 ⊆ S consists of all solutions where the point i
belongs to a polygon with six sides.

Let A⋆ and B⋆ denote arbitrary optimal solutions
among all the solutions in S4 and S6, respectively. Fur-
ther, let a⋆ and b⋆ denote the corresponding costs. Note
that the cost of the optimal solution for this subproblem
is max(a⋆, b⋆).

We now argue that α(i, j) correctly computes the value
of a⋆. Once again, for every choice of points i < p1 <

p2 < p3 ≤ j in (
Qi+1,j

3 ), let S4[[p1, p2, p3]] denote the set

Figure 4: An example of how a base polygon divides
the subproblem on Qi,j further into four smaller in-
stances.

of all solutions in S4 where the polygon containing the
point i also contains the points p1, p2, p3. Note that if
it is not the case that p1 − i is odd and p2 − p1 is odd
and p3 − p2 is odd , then S4[[p1, p2, p3]] = ∅, since for
any such combination of points, there is no valid so-
lution containing the polygon formed by the points
{i, p1, p2, p3}. For any valid combination, we know
that the best solution in S4[[p1, p2, p3]] is captured
by taking the union of the best solutions for the fol-
lowing subinstances: (i + 1, p1 − 1), (p1 + 1, p2 − 1),
(p2 + 1, p3 − 1), and (p3 + 1, j) corresponding to the
four “chunks” of points “carved out” by the polygon
(see Figure 4); along with the polygon formed by the
points {i, p1, p2, p3}. Note that there are no points in-
side the polygon whose vertices are {i, p1, p2, p3} since
the original point set is in convex position. Further,
note that it is reasonable to consider these subinstances
independently since no solution that contains the poly-
gon formed by {i, p1, p2, p3} will contain a polygon
with points from two distinct segments among the seg-
ments listed above. The proof can now be completed
using a standard strong induction argument, and we
defer the details to the full version.

4 Concluding Remarks

We introduced the notion of diverse non-crossing
matchings. While we show that DIVERSE COMPATIBLE
NCMS can be solved in polynomial time for points in
convex position, the complexity of the closely related
problem DIVERSE NCMS (where we drop the demand
for compatibility from the solution matchings) remains
open even for convex point sets. The complexity of all
problems considered for more general inputs remains
open. We also believe that exploring other notions of
diversity, based on either different aggregation func-
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Figure 5: An example of how a base polygon divides
the subproblem on Qi,j further into six smaller in-
stances.

tions (e.g, sum instead of minimum), or other notions
of distance (different from Euclidean), would also pose
interesting directions for future research. We also pro-
pose to study the problems proposed here for more
than two matchings.
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Maximum Weight Convex Polytope

Mohammad Ali Abam∗ Ali Mohammad Lavasani† Denis Pankratov‡

Abstract

We study the maximum weight convex polytope prob-
lem, in which the goal is to find a convex polytope max-
imizing the total weight of enclosed points. Prior to
this work, the only known result for this problem was
an O(n3) algorithm for the case of 2 dimensions due
to Bautista et al. We show that the problem becomes
NP-hard to solve exactly in 3 dimensions, and NP-
hard to approximate within n1/2−ϵ for any ϵ > 0 in 4
or more dimensions. We also give a new algorithm for
2 dimensions, albeit with the same O(n3) running time
complexity as that of the algorithm of Bautsita et al.

1 Introduction

Suppose you are given a set of n points S in Rd with
weights w : S → R; note that weights can be positive
or negative. The weight of a polytope P is defined as
w(P ) =

∑
x∈S∩P w(x). In the maximum weight convex

polytope problem, or MWCP for short, the goal is to
find a convex polytope of maximum weight. This is a
rather natural and fundamental computational geome-
try question.

MWCP with a binary weight function, such as w :
S → {+1,−1}, belongs to a large class of computa-
tional geometry problems on bichromatic point sets with
weights {+1,−1} corresponding to two colors, typically
“red” and “blue”. For example, in the maximum box
problem one is given a set of r red points and a set of
b blue points in the plane and the goal is to find an
axis-aligned rectangle which maximizes the number of
blue points and does not contain any red points. Liu
and Nediak [10] gave an exact O(r log r + r + b2 log b)
algorithm, and Eckstein et al. [5] construct an efficient
branch-and-bound algorithm motivated by a problem
in data analysis. Liu and Nediak [10] also show how to
solve efficiently a related bichromatic separability with
two boxes problem, introduced by Cortés et al. [2].

MWCP is also related to bichromatic discrepancy
problems, where one is given two finite sets of points S+

and S− in Rd, and the goal is to find an axis aligned par-
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†Department of Computer Science and Software Engineering,
Concordia University, ali.mohammadlavasani@concordia.ca

‡Department of Computer Science and Software Engineering,
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allelepiped (also called a box) B maximizing the differ-
ence between the number of the points of S+ and S− in-
side the box, i.e. ||B∩S+|−|B∩S−||. Let n = |S+∪S−|
denote the total number of points. Dobkin et al. [4]
solved this problem in R2 in O(n2 log n) time. Liu and
Nediak [10] presented a 2-factor approximation for this
problem in R2 with O(n log2 n) running time.

In another related problem, namely, numerical dis-
crepancy problem, one is given a set of n points S ⊂
[0, 1]2. The goal is to find a box B that maximizes the
numerical discrepancy of B defined as ||B ∩ S|/|S| −
µ(B)|, where µ(B) denotes the area of B. Observe that
the numerical discrepancy of B can be thought of as
measuring the deviation of the empirical distribution
from the uniform distribution. Dobkin et al. [4] solved
this problem in R2 in O(n2 log2 n) time. Liu and Nediak
[10] presented a 2-factor approximation for this problem
in R2 with O(n log3 n) running time.

The above problems introduce constraints on the
shape of the solution, namely that the convex polygon
must be an axis-aligned parallelepiped. In another vari-
ation studied by González-Aguilar et al. [7] the geo-
metric shape of the solution is restricted to be a rec-
tilinear convex hull of points (note that the rectilinear
convex hull is not necessarily a convex subset of R2).
González-Aguilar et al. [7] gave an O(n3) algorithm for
this problem.

We note that the above problems are very similar
to our problem at first glance. A deeper investigation
shows that the nature of restriction on the solution set is
crucial for the above problems and algorithms for them,
and so new ideas and techniques are needed for MWCP
problem. There is one other problem that is directly rel-
evant to MWCP , and that is the optimal islands prob-
lem studied by Bautista et al. [1]. In this problem, one
is given a set S of n points colored with 2 colors in the
plane. A subset I ∈ S is called an island of S, if I is
an intersection of S and a convex set C. Bautista et al.
[1] gave an O(n3)-time algorithm to find a monochro-
matic island of maximum cardinality. Their algorithm
can also be used to solve the MWCP problem in 2 di-
mensions.

The class of problems to which MWCP belongs have
important practical applications in data analysis and
machine learning. In particular, Bautista et al. [1] were
motivated by clustering applications. Given a training
dataset of points S ⊂ Rd that are labelled with two col-
ors “red” and “blue”, in a classification problem one is
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interested in a simple description of a region of space
corresponding to the class of “red” points, for example.
One possibility is to use convex hulls for such a descrip-
tion (see, for example, Kudo et al. [9]). If dataset is
2-dimensional one arrives naturally at the optimal is-
lands problem. However, datasets are often noisy, so
one should not expect to see large monochromatic is-
lands, so perhaps weighted version of the problem, such
as MWCP , might be more suitable. A bigger issue is
that in classification problems datasets are often high di-
mensional and one cannot always hope to obtain clusters
by projecting to 2 dimensions first. Thus, for clustering
applications it is important to be able to solve MWCP
efficiently in high dimensions. This is the question we
tackle in this paper. Alas, we show that MWCP is
NP-hard in 3 dimensions (Theorem 8), and that it is
NP-hard to approximate within n1/2−ϵ for any ϵ > 0 in
4 dimensions even with binary weights (Theorem 11).
We also give a completely new algorithm for 2 dimen-
sions with running time O(n3) matching Bautista et al.

2 Preliminaries

Whenever we write “polytope” in this paper we mean
a convex polytope. S denotes the input set of n points
in Rd for d ≥ 1 and a weight function is denoted by
w : S → R. The weight of a polytope P , denoted by
w(P ), is defined as follows:

w(P ) =
∑

v∈S∩P

w(x)

In MWCP problem, the goal is to find a polytope with
maximum weight. Note that points v ∈ S with 0-weight
do not affect weight of any polytope, and so they can be
removed from the input in a preprocessing step. Hence-
forth, we assume that for all v ∈ S we have w(v) ̸= 0.
We use S− and S+ for the subsets of points of S with
negative and positive weights respectively. For a set
of points C ⊂ Rd we let conv(C) denote the convex
hull of C. With a slight abuse of notation, we define
w(C) = w(conv(C)). A subset C ⊆ S+ is maximal if
for every v ∈ C, w(C) > w(C \ {v}).
Recall that a polytope has two standard equivalent

descriptions: V-polytope is described as a convex hull
of vertices, and H-polytope is described as an intersec-
tion of half-spaces. We shall primarily work with V-
polytopes due to the nature of MWCP problem. We
let vert(P ) denote the set of vertices of a polytope P .
Vertices of a polytope are also its 0-faces and edges of a
polytope are its 1-faces. We state a few facts about poly-
topes here that will be used later in the paper; for a more
thorough introduction to polytope theory, the reader is
referred to the excellent lecture notes of Ziegler [11].

Fact 1 (V-polytope definition) Let P ⊆ Rd be a
polytope and v ∈ Rd be a point. v ∈ P if and only
if there is a convex combination of vert(P ) equal to v.

Fact 2 Let P ⊆ Rd be a polytope and F be a face of P .
The face F is a polytope, with vert(F ) = F ∩ vert(P ).

Let P ⊆ Rd be a polytope and F be a face of P . For a
hyperplane h such that F ⊆ h we define h− and h+ to be
the open half spaces bounded by h such that h−∩P = ∅.

A polytope P ∈ Rd is a polytope embedding of a graph
G(V,E) if there exist a one-to-one function f : V →
vert(P ) such that if (u, v) ∈ E then (f(v), f(u)) is an
edge of P . Note that P may have some extra edges
compared to G. If P has exactly |E| edges, then we call
this embedding a polytope realization of G.

3 Results

In this section we present our results for the MWCP
problem beginning with an overview of upper bounds
in Section 3.1 (where we present a new algorithm for
2 dimensions), followed by lower bounds for 3 and 4
dimensions in Section 3.2.

3.1 Upper bounds for 1 and 2 dimensions

We begin with a simple observation: we can assume
without loss of generality that vertices of a maximum
weight polytope are elements of S+.

Lemma 3 For every set S of points in Rd, there exists
a maximum weight polytope P with vert(P ) ⊆ S+.

Proof. Let P be a maximum weight polytope and de-
fine C = S+ ∩ P . The convex hull conv(C) is a sub-
set of P that has all the positive points of P . Thus,
w(C) ≥ w(P ). Since vert(conv(C)) ⊆ S+, we have
that conv(C) satisfies the conditions of the lemma. □

The above lemma implies that to solve MWCP it is
sufficient to find a set C ⊆ S+ with maximum weight of
its convex hall. In particular, when d = 1 the MWCP
problem reduces to the maximum subarray problem
(consider the array of weights of points in S in increas-
ing order of their x-coordinates). The following result
is immediate from well known algorithms for the maxi-
mum subarray problems.

Theorem 4 The MWCP problem in 1 dimension (d =
1) is solvable in O(n log n) time. Moreover, if input
points are sorted the problem is solvable in O(n) time.

Bautista et al. [1] gave a dynamic programming algo-
rithm that solves the MWCP problem in 2 dimensions
in O(n3) time. Their algorithm is based on a trian-
gulation of a convex polytope from a topmost anchor
vertex.
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Theorem 5 (Bautista et al. [1]) The MWCP
problem is solvable in O(n3) time in 2 dimensions
(d = 2).

In the rest of this section we present a new algorithm
which solves MWCP problem in 2 dimensions, albeit
with the same O(n3) running time. Our algorithm is
based on a different decomposition (see Figure 1), and
is arguably simpler than the algorithm of Bautista et al.

Figure 1: Two decompositions of a polytope which form
a basis of two dynamic programming approaches. In the
approach of Bautista et al. (shown on the left) a poly-
tope is decomposed via a triangulation from an anchor
(topmost) vertex. In our approach (shown on the right)
a polytope is decomposed into two paths from a left-
most to a rightmost vertex: top concave path (shown
solid) and bottom convex path (shown dashed).

Without loss of generality we can assume that no two
points of S have the same x-coordinates. Otherwise in
O(n2) we can find line ℓ such that is not parallel to any
line passing through two point in S. Then we can rotate
the axes so that the y-axis becomes parallel to ℓ.

Let p1, . . . , pn be the points in S sorted from left to
right by their x-coordinates. Consider a directed edge
from pi to pj for every i < j. Weight of the edge pi → pj ,
denoted by w(pi, pj), is the sum of all the weights of
points pk such that i < k < j and pk is below the line
segment joining pi and pj . We can use brute-force algo-
rithm to compute w(pi, pj) for all i < j in O(n3) time.
Thus, we assume that all these weights have been pre-
computed and are available to us when we need them.
A path is a sequence of connected edges. For a path P
we define its weight, denoted by w(P), to be the sum of
the weights of its edges and its vertices. For a path P
we define its sub-weight, denoted by w−(P), to be the
sum of the weights of its edges only.
A polygon P can be represented as a concave path C

and a convex path V between its leftmost and its right-
most vertices (see Figure 1). Thus the weight of P is
equal w(C) − w−(V). We shall present a dynamic pro-
gramming algorithm to solve the optimization version of
the problem, where we are interested in computing the
weight of a maximum weight polygon only. The algo-
rithm can be easily modified to find a maximum weight
polygon itself by the standard technique of remember-
ing which choices resulted in individual entries of the
dynamic programming tables.

For every i < j ≤ k, let C[i, j, k] (respectively
V [i, j, k]) be the maximum (respectively, minimum)
weight (respectively, sub-weight) of a concave (respec-
tively, convex) path from pi to pk such that the first
edge is pi → pj . We denote the maximum weight of a
polygon with leftmost vertex pi and rightmost vertex pk
by M [i, k]. If i = k then M [i, k] = w(pk), and if i < k
then M [i, k] can be computed as:

M [i, k] = max
j:i<j≤k

C[i, j, k]− min
j:i<j≤k

V [i, j, k].

The solution to the overall problem is then given by the
maxi≤k M [i, k].

In the remainder, we explain how the table C[i, j, k]
can be computed. The table V [i, j, k] is computed anal-
ogously with some trivial modifications (such as exclud-
ing contribution of vertices of the path, replacing con-
cavity with convexity, and replacing maximization ob-
jective with minimization objective).

In the algorithm, we have to check whether a line
segment joining vertices p and q can be extended to a
vertex r with p.x < q.x < r.x while maintaining concav-
ity. This can be tested by checking whether the vector
r−p is turned clockwise relative to the vector q−p (see
Figure 2). In turn, this can be achieved by checking
the sign of 2-dimensional cross-product, denoted by ×2,
and defined as v1 ×2 v2 = v1.x · v2.y − v1.y · v2.x. To
summarize we have that the path p → q → r is concave
if and only if1(r − p)×2 (q − p) > 0.

p

q r
q − p

r − p

Figure 2: The path p → q → r is concave if and only if
vector r− p is turned clockwise relative to vector q− p.

Base cases for the table C[i, j, k] are the following:

C[i, k, k] = w(pi, pk) + w(pi) + w(pk) if i < k

C[i, j, k] = −∞ if i < j < k

and (pk − pi)×2 (pj − pi) < 0

It is clear that the other entries C[i, j, k] with i < j <
k can be computed according to the following formula:

C[i, j, k] = max
j′

{w(pi, pj) + w(pi) + C[j, j′, k] : (1)

j < j′ ≤ k and (pj′ − pi)×2 (pj − pi) > 0}.
1A bit of care is needed to handle inputs that are not in gen-

eral position. If three points p, q, r with p.x < q.x < r.x are
collinear then (r − p) ×2 (q − p) = 0, and the path p, q, r should
be considered concave. However, this makes q not a vertex of the
resulting polytope, as it appears in the middle of an edge. In our
description, we tacitly assumed that points are in general position
to simplify the presentation. It is easy to extend our algorithm to
handle points not in general position.
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A naive computation of the above table takes O(n4)
time, since the table has O(n3) entries and each entry
can be computed in O(n) time. Next, we show a trick
of how the time complexity can be reduced to O(n3).
The idea is for a fixed j and k to fill in entries C[i, j, k]
for all i in O(n) time.
We precompute in O(n2 log n) total time for all j

two lists: Lj = (l1, . . . , lj−1) and Rj = (r1, . . . , rn−j).
Lj (Rj) consists of points {p1, . . . , pj−1} (respectively,
{pj+1, . . . , pn}) to the left (respectively, to the right) of
pj and sorted in clockwise order with respect to pj as
the origin.

Now, fix a pair of indices j < k. In O(n) time it
is easy to compute D[j′, k] = maxj′′{C[j, j′′, k] : j′′ ≤
k and pj′′ is either pj′ or appears after pj′ in Rj}. De-
fine the first compatible j′ for the given i, j, denoted
by fc(i, j), as the first pj′ appearing in Rj such that
pi → pj → pj′ is concave. Then it is clear that C[i, j, k]
can be equivalently restated as follows:

C[i, j, k] = w(pi, pj) + w(pi) +D[fc(i, j), k].

This is because, every pj′′ that appears after fc(i, j) in
Rj also forms a concave path pi → pj → pj′′ . Thus, the
third term D[fc(i, j), k] in the above equation is exactly
the same as the third term in Equation (1).

Lastly, it is left to observe that as one considers points
pi in the order in which they appear in Lj , the cor-
responding sequence of fc(i, j) also forms an increas-
ing sequence in Rj . Thus, by maintaining a running
pointer into Rj one can compute fc(i, j) in O(n) time
for all pi ∈ Lj . This finishes the description of the algo-
rithm. One readily checks that all precomputing steps
take O(n3), base cases of C[i, j, k] can also be computed
in O(n3) time, and all other entries can be computed in
O(n3) as well, by iterating over all pairs j < k and filling
in C[i, j, k] for all i in O(n) time.

3.2 Lower bounds for 3 and 4 dimensions

Recall that a strict reduction from an optimization prob-
lem A to an optimization problem B is a pair of func-
tions (f, g), where f maps instances x of A to instances
f(x) of B and g maps solutions y of B to solutions g(y)
of A, such that the approximation ratio achieved by so-
lution y on instance f(x) of B is at least as good as
the approximation ratio achieved by solution g(y) on
instance x of A. All our lower bound results in this
section are based on the following technical lemma.

Lemma 6 Let G be a graph family. If for every G ∈ G
a polytope embedding of G into Rd can be found in poly-
nomial time and bit complexity polynomial in n, then
there is a strict reduction from the maximum indepen-
dent set on G to MWCP in d dimensions with weights
{+1,−1}.

Proof. Given input instance G = (V,E) to the maxi-
mum independent set on G, we let P be the result of ap-
plying the polytope embedding toG. Let S+ := vert(P )
and assign +1 weight to every vertex in S+. Create set
S− by adding two points with weights of −1 at two ar-
bitrary positions of every graph edge. Let S = S+∪S−.
For a negative point v ∈ S−, let p1(v), p2(v) ∈ S+ be
positive-weighted vertices such that v was placed on the
edge joining p1(v) with p2(v) and n(v) be the other neg-
ative point on that edge. See Figure 3 for an example.

We claim that for a subset C ⊆ S+, there exist a nega-
tive point v ∈ S− in conv(C) if and only if p1(v), p2(v) ∈
C. One direction is clear: if p1(v), p2(v) ∈ C then by
Fact 1 n(v) and v are in conv(C). For the other di-
rection, assume that v ∈ conv(C). Let e be the edge
between p1(v) and p2(v). By the definition of P , there
exist a hyperplane he such that S+∩h−

e = ∅. Therefore
C ∩h−

e = ∅ and F := conv(C)∩he is a face of conv(C).
F ̸= ∅ since v is in he and conv(C). Only vertices
of S+ in he are {p1(v), p2(v)}. By Fact 2 vert(F ) =
F ∩ vert(conv(C)) ⊆ he ∩ S+ = {p1(v), p2(v)}. With-
out loss of generality suppose vert(F ) = {p1(v)}, this
implies v /∈ F which is a contradiction. Thus vert(F ) =
{p1(v), p2(v)} and p1(v), p2(v) ∈ C.

Let C ⊆ S+ be a maximal subset. We claim
that conv(C) contains no negative points and all pos-
itive points in conv(C) are precisely the vertices of
conv(C). First, suppose there exists a negative point
v ∈ conv(C) thus p1(v), p2(v) ∈ C and n(v) ∈
conv(C). w(C\{p1(v)}) ≥ w(C) + 2 − 1 > w(C) since
v, n(v), p1(v) /∈ conv(C\{vi}). This is a contradiction
to maximality of C. Second, suppose there exist a pos-
itive point v ∈ S in conv(C) \ vert(conv(C)). Because
v is a vertex of P there exist a hyperplane hv such that
S+ ∩ h−

v = ∅. Therefore C ∩ h−
e = ∅ and v is a vertex

of conv(C) which is a contradiction.

Therefore, we can conclude that w(C) = |C| if C ⊆
S+ is maximal. Next, we prove there exists a maximal
subset C ⊆ S+ if and only if there exist an independent
set I ⊆ V such that w(C) = |I|.
If: Let I ⊆ V be an independent set and C ⊆ S+ be

the set of corresponding vertices of I in S+. Because
there is no edge between vertices in I, there is no graph
edge between vertices in C. Thus there are no negative
points in conv(C). Since all vertices inside conv(C) are
positive, C is a maximal subset and w(C) = |C| = |I|.

Only if: Let C ⊆ S+ be a maximal subset and let
I ⊆ V be the set of corresponding vertices of C in G.
Because C is a maximal subset, there is no negative
point in conv(C), and there is no graph edge between
vertices of C. Thus the set of corresponding vertices
of C in G is an independent set. |I| = w(C) since
w(C) = |C|.
Without loss of generality we can suppose every ap-

proximation algorithm for MWCP outputs a maxi-
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mal subset of S+. Thus there exist a strict reduction
from the maximum independent set problem of graph
G(V,E) to MWCP in Rd. □

Figure 3: A graph and its embedding in R3. Black
points and edges are the graph and blue points and
edges are the embedding of the graph. Red points are
added negative points. And an example of v, n(v),
p1(v), and p2(v) is shown.

We obtain the lower bound for 3 dimensions by apply-
ing Lemma 6 to the class G of planar graphs. We note
that the maximum independent set problem isNP-hard
even for planar graphs [6]. Our lower bound relies on
the polynomial embedding in 3 dimensions due to Das
et al. [3]. Amaximal planar graph is a planar graph such
that an addition of any new edge results in a non-planar
graph.

Lemma 7 (Das et al. [3]) Given a maximal planar
graph G(V,E) with n vertices, a polytope realization of
G in R3 can be found in O(n) time and with bit com-
plexity polynomial in n.

Thus the following theorem can be easily deduced
from Lemmas 7 and 6.

Theorem 8 Let S be a set of n points in R3 with weight
function w, finding MWCP of S is NP-hard even if
w : S → {−1,+1}.

Proof. Let G be the family of all planar graphs. By
adding edges to a planar graph G we can make it maxi-
mal. The polytope realization of the new maximal pla-
nar graph is also a polytope embedding of G. Thus with
Lemma 7 we can conclude for every G ∈ G a polytope
embedding of G in R3 can be found in polynomial time
and with polynomial bit complexity. By Lemma 6, there
is a strict reduction from maximum independent set on
planar graphs to MWCP with weights {+1,−1}, hence
it is an NP-hard problem. □

Let S be the set of points (i, i2, i3, i4) for 1 ≤ i ≤ n in
R4. The convex hull of S is known as the cyclic polytope

on n vertices in R4 and it is a polytope realization of
a complete graph with n vertices (for more details, see,
for example, [11]).

Lemma 9 Given a complete graph Kn with n vertices,
a polytope realization of it in R4 can be found in O(n)
time with a bit complexity polynomial in n.

We can use Lemma 9 to show that MWCP in 4
dimensions is as hard as independent set on arbitrary
graphs. Zuckerman [12], strengthening an earlier result
of H̊astad [8], showed that it is NP-hard to approxi-
mate independent set on arbitrary graphs within n1−ϵ

factor for any ϵ > 0.

Theorem 10 (Zuckerman [12]) For any ϵ > 0 it is
NP-hard to approximate maximum independent set to
within n1−ϵ.

Combining the above ingredients we establish the in-
approximability of MWCP in 4 dimensions and higher.

Theorem 11 For any ϵ > 0 it is NP-hard to approxi-
mate MWCP in 4 dimensions (or higher) with weights
{+1,−1} to within n1/2−ϵ.

Proof. Let G be the family of all finite graphs. By
Lemma 9 for every G ∈ G a polytope embedding of G
in polynomial time and with polynomial bit complexity
can be found (recall that the embedding is allowed to
have extra edges compared to G). By Lemma 6, there
is a strict reduction from maximum independent set
on general graphs to MWCP with weights {+1,−1}.
Since Theorem 10 is expressed in terms of input size, it
is left to observe that the reduction of Lemma 6 pro-
duces instances of MWCP with the number of points
that is at most quadratic in the number of vertices of
the input graph. □

4 Conclusion and Discussion

In this work, we extended our understanding of the com-
plexity of MWCP as a function of the ambient dimen-
sion d. Based on our work and previous work of Bautista
et al. [1], the following picture emerges:

1. For d = 1, MWCP is solvable in O(n log n) time
exactly (simple observation);

2. For d = 2, MWCP is solvable in O(n3) time
(Bautista et al. [1] with another algorithm pre-
sented in this work);

3. For d = 3, MWCP is not solvable in polynomial
time unless P = NP (this work);

4. For d ≥ 4, MWCP is NP-hard to approximate to
within n1/2−ϵ for any ϵ > 0 (this work).
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The above list immediately suggests several open prob-
lems, the following two of which are of particular inter-
est:

Open Problem 1 Find an algorithm with better time
complexity than O(n3) for MWCP in 2 dimensions or
prove a lower bound probably with some fine-grained hy-
pothesis.

Open Problem 2 Determine if MWCP can be ap-
proximated within a constant factor in 3 dimensions.

We conjecture that the answer to the first open prob-
lem is that there is no algorithm significantly faster than
O(n3). In light of the second open problem, it is tempt-
ing to consider what approximation guarantees are pro-
vided by polytopes with constantly many vertices. As
the following result demonstrates, constant approxima-
tion cannot be guaranteed by such solutions even in 2D.

Theorem 12 By restricting solutions to polytopes with
constant number of vertices one can not achieve a con-
stant factor approximation for MWCP even in R2 and
even for {+1,−1} weights.

Proof. Let P be a regular n-gon and let the weight of
each vertex be +1. Put a vertex with weight −1 outside
of P on the perpendicular bisector of each edge of P at
ϵ-distance away from the edge. Choose ϵ so that line
segments joining every two consecutive negative points
cross P . This defines the instance of MWCP with P
being an optimal solution of weight n.

Let v1, v2, . . . , vn and u1, u2, . . . un be vertices of the
clockwise order of S+ and S−, respectively, such that
ui has ϵ-distance with the edge between vi and vi+1

(vn+1 := v1).

Let C be a convex k-gon, we claim w(C) ≤ k. Observe
that what makes this claim non-trivial is that we cannot
assume that vert(C) ⊆ S+ as in Lemma 3, since we have
an additional restriction of exactly k vertices.

C\P (the closure of C\P ) is a set of vertices, edges
and non-convex polygons. Let C ′ be one of these non-
convex polygons. It suffices to show w(C ′) ≤ |vert(C)∩
vert(C ′)|. Without loss of generality suppose vert(C ′)∩
S+ = {v1, v2, ..., vr}.
Let outer negative points be the set

{ui1 , ui2 , . . . , uiℓ} ⊆ {u1, u2, . . . ur−1} such that
for every 1 ≤ j ≤ ℓ, uij /∈ C ′. For each 1 ≤ j ≤ ℓ
associate uij to the edge e of C ′ that crosses the
shortest line between uij and P . By the choice of ϵ two
vertices of e are in vert(C ′) ∩ vert(C) and no edge is
associated to more than one outer negative point. Thus
|vert(C ′)∩vert(C)| ≥ ℓ+1. On the other hand there is
at most r positive and at least r− 1− l negative points
in C ′ thus w(C ′) ≤ l + 1 ≤ |vert(C ′) ∩ vert(C)|. □

P

C

v1

v2 v3

v4

v5v6

u1

u2

u3

u4

u5

u6

Figure 4: Illustration of the proof of Theorem 12. Here,
n = 6, k = 3, we chose C to result only in a single C ′,
which is shown as a shaded area. We have l = 1 with
ui1 = u2 and vertex u2 is associated with the topmost
edge of C ′. We have w(C ′) = w(v1) + w(v2) + w(v3) +
w(u1) = 3− 1 = 2 = l + 1.
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High-Dimensional Axis-Aligned Bounding Box with Outliers

Ali Mostafavi∗ Ali Hamzeh†

Abstract

Given n points in d-dimensional space and a parameter
z, we study the problem of finding the smallest axis-
aligned bounding box that covers at least n − z points
and labels the remaining points as outliers. We consider
two measures for the size of bounding box: length of
the largest side and sum of lengths of the sides. We
give two algorithms for the former case: one that uses
at most 2z outliers but gives a bounding box which is at
most as large as the optimal bounding box and another
algorithm that uses at most z outliers but gives a box
than can be twice as large as the optimal box. We also
prove a matching lower bound for the approximation
factor of these algorithms.

For the sum of the sides objective, we give a bi-criteria
approximation algorithm that finds a box which is at
most O(log d) larger than the optimal box by removing
O(z) points.

1 Introduction

We study the classic problem of finding the smallest
axis-aligned box that contains a set of points in the set-
ting where we are allowed to ignore z points by labelling
them as outliers. The axis-aligned bounding box prob-
lem is extensively studied in literature because of its ap-
plications in pattern recognition [15], computer graphics
[18, 17] and VLSI design [14]. Aggarwal et al. [1] gave
an exact algorithm to minimize the perimeter for the
case where points are in two dimensional plane which
runs in O((n− z)2n log n) time. Eppstein and Erickson
[8] showed that the time complexity can be improved
to O((n − z)2n) in the planar case and also gave an
O((n− z)n log n+ (n− z)d/2−1n log2 (n− z)) algorithm
for the L∞ objective (maximum side length) in higher
dimensions.

Segal and Kedem [16] gave an O(n+ z(n− z)2) algo-
rithm for minimizing area and perimeter in the plane
which is faster than previous ones when z is small.
They also extend their algorithm to 3-dimensional space
which runs in O(n+ z(n− z)2 + (n− z)5) time.

Ahn et al. [2] studied (p, z) box covering problem in
the plane: find p disjoint axis-aligned rectangles that

∗Department of Computer Engineering, Shiraz University,
a.hr.mostafavi@gmail.com
†Department of Computer Engineering, Shiraz University,

ali@shirazu.ac.ir

cover at least n − z points minimizing the area of the
largest box. They gave an O(n + z3) algorithm for the
case where p = 1 (which is the same as our problem).
They also show that this problem is NP-hard for general
p. Atanassov et al. [3] studied many geometric problems
with outliers and gave an O(n+ z3) algorithm for min-
imum perimeter rectangle in the plane.

Kaplan et al. [10] developed algorithms for the min-
imum area and minimum perimeter rectangle with
outliers which run in O(n2.5 log2 n) and O(n(n −
z)1.5 log (n− z) logn) respectively.

de Berg et al. [7] considered the case where z is large
(n−z is small) and gave an O(n(n−z)2 log n+n log2 n)
time algorithm. They also studied the “dual” problem
of covering the maximum number of points using a rect-
angle with area at most α and gave a randomized algo-
rithm with running time O( nε4 log3 n log 1

ε ) which covers
at least (1− ε)κ∗ points with high probability where κ∗

is the maximum number of points coverable with such
rectangle.

Guo and Li [9] presented an algorithm with running
time O(kz3+kzn+n2 log n) for the minimum area rect-
angle in the plane where k denotes the number of points
on the first z + 1 convex layers. This algorithm can be
faster than previous ones when z and k are small.

Chan and Har-Peled [5] improved the running
time for both the area and perimeter to O(n(n −
z) log n

n−z log (n− z)) when points are in the two dimen-
sional plane, they also gave an algorithm which finds a
rectangle with area at most 1 + ε times the area of the
optimal rectangle and runs in O((1/ε)3 log (1/ε)n log n).

Bae [4] studied the related minimum width cuboidal
shell problem with outliers where cuboidal shell is de-
fined as the area between a cube and its inward offset.
They give an algorithm with running time O(z2dn).

In this paper, we present the first polynomial-time
bi-criteria approximation algorithms for axis-aligned
bounding box with outliers in high dimensional spaces.
An (α, β)-approximation algorithm for axis aligned
bounding box is one that achieves an objective value
at most α times the optimal value by removing at most
βz outliers. We consider two objectives: the maximum
side length of the bounding box (L∞) and the sum of
the side lengths of the bounding box (L1) which reduces
to perimeter in 2-dimensional case.

• For the L∞ objective, we give (1, 2) and (2, 1)-
approximation algorithms. Moreover, we prove ap-
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proximating the objective function with a factor
better than 2 is NP-hard if we are not allowed to
use more than z outliers.

• For the L1 objective, we give a (O(log d), O(1))-
approximation algorithm.

2 Definitions and Terminology

Let P ⊂ Rd be a set of points in d-dimensional euclidean
space and let n = |P | be the number of points. Let lj(P )
denote the extent of P in the j-th dimension, that is:

lj(P ) = max
p,q∈P

pj − qj

In this paper, we explore the following extent measures
of the point set:

• Maximum side length of the axis-aligned bounding
box:

L∞(P ) =
d

max
j=1

lj(P )

• The sum of side lengths of the axis-aligned bound-
ing box:

L1(P ) =

d∑
j=1

lj(P )

Let f(x) be any function on subsets of P , the problem
of minimizing f with z outliers is to find z points in P
such that removal of these points minimizes f , that is:

Z∗ = arg min
Z⊂P,|Z|=z

f(P \ Z)

we denote the optimal value of this function by
OPT = f(P \ Z∗) and the optimal set of points
by P ∗ = P \ Z∗. For convenience we denote
the optimal outlier points for the L∞ objective by
Z∗∞(P, z) = arg minZ⊂P,|Z|=z L∞(P \ Z) and the op-
timal non-outlier points are P ∗∞(P, z) = P \ Z∗∞(P, z)
and the optimal objective value is L∗∞(P, z) = L∞(P ∗∞).
Z∗1 (P, z), P ∗1 (P, z) and L∗1(P, z) are defined analogously.
For brevity, we will omit (P, z) when their value is obvi-
ous from the context (for example instead of L∗∞(P, z)
we just write L∗∞).

3 Approximating L∞ in High Dimensions

In this section we give the following results for the
minimum-L∞ axis-aligned bounding box with outliers:

1. In subsection 3.1 we give an approximation algo-
rithm that labels 2z points as outliers but guaran-
tees that the L∞ value of the remaining points is
less than L∗∞(P, z)

2. In subsection 3.2 we give an approximation algo-
rithm that labels at most z points as outliers and
guarantees that the L∞ value of the remaining
points is at most 2L∗∞(P, z)

3. In subsection 3.3 we prove that under some reason-
able assumptions both above approximation factors
are optimal.

3.1 A (1, 2)-approximation Algorithm

We repeatedly find the dimension with maximum side
length and remove two extreme points along this dimen-
sion. We claim that Algorithm 1 achieves the optimal
value of L∞ and removes at most 2z points.

Algorithm 1 Approximation Algorithm for L∞ in High
Dimensions
1: procedure L∞-Approximation1(P )
2: for i← 1...z do
3: di = arg maxdj=1 lj(P )

4: pmin
i , pmax

i = extreme points of P in di
5: P ← P \ {pmin

i , pmax
i }

6: return P

Lemma 1 Let Zi = {pmin
i , pmax

i } be the two points re-
moved in the i-th iteration of the for loop in Line 2, then
one of the following holds:

• Zi ∩ Z∗∞ 6= ∅

• L∞(P ) ≤ L∗∞

Proof. Let P ∗∞ be the optimal set of points with their
z outliers removed. Suppose Zi ∩ Z∗∞ = ∅, therefore
Zi ⊆ P ∗∞ and since L∞ is a monotone function (that is,
it can never increase by deleting points), we have:

L∞(P ∗∞) ≥ L∞(Zi) = L∞(P )

�

Theorem 2 The points returned by Algorithm 1
achieve at most the optimal value of L∞.

Proof. If at any point during Algorithm 1 we have
Zi∩Z∗∞ = ∅, then by Lemma 1 we have already achieved
the optimum value (and we will never increase this value
because L∞ is a monotone function of points). Other-
wise we have ∀i : Zi ∩ Z∗∞ 6= ∅ and ∀i, j : Zi ∩ Zj = ∅.
Therefore for each i we have removed at least one new
point from Z∗∞, so after z iterations we have removed
all z points from Z∗∞.

�
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The loop at line 2 is executed z times and each ex-
ecution takes O(nd) time so the overall runtime of the
algorithm is O(ndz). This runtime can be improved
when dz is o(n) by exploiting the following observation:

Observation 1 The extreme point of P ∗∞ with the low-
est (highest) coordinate in j-th dimension is among the
z + 1 extreme points of P with lowest (highest) j-th co-
ordinate.

Proof. This follows trivially from the fact that we have
at most z outliers, therefore one of the z + 1 most ex-
treme points must be in the optimal solution. �

Therefore, instead of considering all n points, we can
consider only the points which are among the z+1 most
extreme points in some dimension. There are at most
2d(z + 1) such points and they can be found in O(nd)
time using standard selection algorithms [6]. Running
the algorithm only on these points reduces the overall
runtime to O(nd+ d2z2).

3.2 A (2, 1)-approximation Algorithm

Observation 1 implies that if a point is not among the
2dz most extreme points, it can not be an outlier and
therefore it must be included in the optimal box. Ad-
ditionally, any cube with side length l can be covered
with a cube with side length 2l centered at any point
inside the cube. Therefore if all except z points can be
covered with a cube of maximum side length l, then all
but z points can be covered with a cube centered at any
non-outlier point with side length 2l. This suggests Al-
gorithm 2 for the case when n > 2dz. We know that
the point c found in line 3 can not be an outlier, and
therefore, we must be able to cover n− z points with a
cube centered on c and length at most 2L∗∞.

Algorithm 2 (2, 1)-approximation Algorithm for L∞
in High Dimensions

1: procedure L∞-Approximation2(P )
2: Let P ′ be the points of P with 2dz most extreme

points in each dimension deleted
3: Let c be an arbitrary point in P ′

4: Find the smallest l such that a cube with side
length l centered at c can cover at least n−z points
in P

5: Label all the points not covered in the cube
found in line 4 as outliers and return the cube as
the solution

Line 2 can be performed in O(nd) time using selection
algorithms. Line 4 can be performed in O(nd log n) time
by performing a binary search on the distance of c to
the points in P . So the overall runtime of Algorithm 2
is O(nd log n).

3.3 Hardness of Approximation

We show that unless P = NP , we can not approximate
the value of L∗∞(P, z) with a factor better than 2 when
no approximation on z is allowed. This proves that
Algorithm 2 is optimal and justifies our approximation
on z in Algorithm 1.

We convert an instance of Vertex-Cover [11] prob-
lem to an instance of minimum L∞ axis-aligned bound-
ing box with outliers such that the optimal value is 1 if
the graph has a vertex cover of size k and is 2 otherwise
(which means an approximation algorithm with a fac-
tor better than 2 can distinguish between these cases).
Let (V,E, k) be an instance of Vertex-Cover prob-
lem where V is the set of nodes and E ⊆ V × V is
the set of edges. Our goal is to determine if the graph
has a vertex cover of size at most k. We arbitrarily as-
sign directions to edges of |E| and convert each vertex
into a point in R|E|. Note that there is a dimension
corresponding to each edge in the graph, let de denote
the dimension corresponding to edge e. Let pv denote
the point corresponding to vertex v ∈ V . We use the
following rule to determine pv:

pv(de) =


−1, if e = (v, ∗).
1, if e = (∗, v).

0, otherwise.

Theorem 3 Let P = {pv|v ∈ V }. Then:

L∗∞(P, k) =

{
1, if (V,E) has a vertex cover of size k.

2, otherwise.

Proof. Suppose (V,E) has a vertex cover C ⊂ V where
|C|= k. We label the points corresponding to vertices in
C as outliers, let P ′ = P \ {pv|v ∈ C} be the remaining
points. There are exactly two points in P with non-zero
value for each edge and since we know we have removed
at least one of the endpoints of each edge in P ′, there
is at most one point in P ′ with non-zero value in each
dimension. Therefore the points of P ′ can be covered
with a box with maximum side length of 1.

Conversely, we can convert any solution where
L∗∞(P, z) = 1 to a vertex cover by selecting the ver-
tices corresponding to outliers in P which means that
if (V,E) doesn’t have a vertex cover with size k then
L∗∞(P, k) > 1, but the only other possible value for
L∗∞(P, k) is 2. �

Assuming that unique games conjecture [12] is true,
it is impossible to approximate Vertex-Cover with a
factor better than two [13] and we can strengthen The-
orem 3 to claim that no (α, β)-approximation is possi-
ble where α and β are simultaneously less than 2. This
proves that both Algorithms 1 and 2 are pareto-optimal.
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4 Approximating L1 in High Dimensions

In this section we develop bi-criteria approximation al-
gorithms for the L1 objective. First, we warm up by
developing (d, 2) and (1, 2d)-approximation algorithms
in subsections 4.1 and 4.2 respectively. Then in subsec-
tion 4.3 we show how to combine the ideas of these algo-
rithms to develop an algorithm that achieves a reason-
able approximation factor both for the objective value
and number of outliers.

4.1 A (d, 2)-approximation Algorithm

We claim that Algorithm 1 already gives us a (d, 2) ap-
proximation factor.

Theorem 4 Algorithm 1 is a (d, 2)-approximation al-
gorithm for L1.

Proof. Let P ∗∞ and P ∗1 be the optimal set of points
(with z outliers removed) for L∞ and L1 respectively
and PW be the result of applying Algorithm 1 on P .
We have:

L1(PW ) =
d∑
j=1

lj(PW )

≤ d d
max
j=1

lj(PW )

≤ d d
max
j=1

lj(P
∗
∞)

≤ d d
max
j=1

lj(P
∗
1 )

≤ d
d∑
j=1

lj(P
∗
1 )

= dL1(P ∗1 )

�

4.2 A (1, 2d)-approximation Algorithm

This algorithm is very similar to Algorithm 1, however,
instead of deleting the extreme points just in the largest
dimension, we delete all 2d extreme points in all dimen-
sions.

Algorithm 3 Simple Approximation Algorithm for L1

in High Dimensions

1: procedure L1-Approximation(P )
2: for i← 1...z do
3: Zi = at most 2d extreme points of P in each

dimension
4: P ← P \ Zi
5: return P

We omit the full proof of correctness and approxima-
tion factor because it is essentially the same as the proof

of Theorem 2. The main idea is that at each step, either
we have already achieved optimality or at least one of
the deleted points is in Z∗1 .

4.3 A Better Approximation Algorithm

In this section, we assume that the optimal value
OPT = L∗1(P, z) is known. We will show how to re-
move this assumption in subsection 4.3.1. The main
idea is the same as Algorithm 3, however, instead of
removing the two extreme points of all dimensions, we
only consider the “large” dimensions and ignore “small”
dimensions by proving that their contribution to the so-
lution can not be too large (Theorem 9). And since we
know the value of OPT, we know that there can not be
too many “large” dimensions in the optimal solution,
therefore we know that a good portion of the deleted
points are actual outliers (Theorem 8).

Procedure Prune is called log 2
1+εd

times. Each run

of Prune takes O(n2d) time so the overall runtime of
Algorithm 4 is O(n2d log 2

1+ε
d).

Algorithm 4 Approximation Algorithm for L1 in High
Dimensions
1: procedure Prune(P , D)
2: n← |D|
3: while |D|> (1+ε)n

2 do
4: for d in D do
5: if ld(P ) > 2OPT

n then
6: Remove the two extreme points of P

in dimension d
7: else
8: D ← D \ {d}
9: return P , D

10: procedure L1-Approximation(P )
11: D = {1, 2, ..., d}
12: for i← 1...

⌈
log 2

1+ε
d
⌉
do

13: P,D ← Prune(P,D)

14: return P

Lemma 5 Let D, |D|> 0 be a set of dimensions and
let D′ be the set of remaining dimensions after running

Prune(P,D) then |D
′|
|D| ≤

1+ε
2 .

Proof. Line 3 removes dimensions until this condition
is satisfied (we know that it can be eventually satisfied
because we can reduce the value to 0 by removing all
points). �

Corollary 6 Let Di be D after the i-th iteration of the
loop at line 12. Then |Di|≤ ( 1+ε

2 )id.
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Proof. |D0| is d and for each i we have |Di+1|≤
1+ε
2 |Di|. By multiplying all these inequalities we get:

|Di|≤
(

1 + ε

2

)i
|D0|=

(
1 + ε

2

)i
d

�

Lemma 7 Let P ∗1 = P \Z∗1 be the optimal set of points
and C = {j : lj(P

∗
1 ) > 2OPT

n }. Then |C|≤ n
2 .

Proof.

OPT =
d∑
j=1

lj(P
∗
1 ) ≥

∑
j∈C

lj(P
∗
1 )

≥
∑
j∈C

2OPT

n
= |C|2OPT

n
=⇒

OPT ≥ |C|2OPT

n
=⇒ n

2
≥ |C|

�

Theorem 8 Algorithm 4 removes at most 4(ε−1z+2d)
points.

Proof. Let Zi be the points removed the i-th time
Prune was called, let Di be the input dimensions to
this iteration and let αi be the number of times while
loop in Line 3 was executed. We have:

|Zi|≤ 2αi|Di|= 2(αi − 1)|Di|+2|Di|

which means:

|Zi|−2|Di|
2|Di|

≤ αi − 1

Now, for the first αi − 1 iterations, we are sure that

there are at least (1+ε)|Di|
2 dimensions remaining in D

which we call active dimensions (this might not be true
for the last iteration because we remove points inside
the loop). On the other hand, Lemma 7 tells us that

there are at most |Di|2 dimensions in the optimal solution

whose extent is more than 2OPT
|Di| . This means that at

least (1+ε)|Di|
2 − |Di|2 = ε|Di|

2 of these dimensions are
not optimal (the extent of points in these dimensions
is still larger than the extent of optimal points in this
dimension) which means at each non-final iteration we

remove at least ε|Di|
2 points from Z∗1 . Thus we have:

|Zi∩Z∗1 |≥ (αi−1)
ε|Di|

2
≥ |Zi|−2|Di|

2|Di|
ε|Di|

2
=
ε(|Zi|−2|Di|)

4

therefore 4ε−1|Zi∩Z∗1 |+2|Di|≥ |Zi|. Now we can bound
the number of points removed in all iterations (we use I

to denote the number of iterations which is
⌈
log 2

1+ε
d
⌉
):

I∑
i=1

|Zi| ≤
I∑
i=1

4ε−1|Zi ∩ Z∗1 |+2|Di|

=
I∑
i=1

4ε−1|Zi ∩ Z∗1 |+ 2
I∑
i=1

|Di|

we have
I∑
i=1

|Zi ∩ Z∗1 | ≤ |Z∗1 |

because the Zis are disjoint so the first sum is less than
4ε−1z. For the second sum we apply Corollary 6 and
sum the geometric series to get:

I∑
i=1

|Di| ≤
I∑
i=1

(
1 + ε

2

)i
d <

2d

1− ε
< 4d

we assumed ε < 1
2 for the last inequality. Putting this

all together we have:

I∑
i=1

|Zi| ≤ 4(ε−1z + 2d)

�

Theorem 9 The points returned by Algorithm 4

achieve an L1 value of at most OPT(2
⌈
log 2

1+ε
d
⌉
).

Proof. Each time Prune is called the deactivated di-
mensions have extent at most 2OPT

|Di| and there are at

most |Di| of them. So the total contribution of these di-
mensions to the objective is at most 2OPT

|Di| |Di|= 2OPT.

And Prune is called at most
⌈
log 2

1+ε
d
⌉

times after

which there remains no active dimensions. �

4.3.1 How to Find OPT ?

In Section 4.3 we assumed we knew the value of OPT.
Here we will show how to remove this assumption. Let
L and U be a lower bound and an upper bound on the
value of OPT. For example U can be L1(P ) and L can
be 1

d times the result of running Algorithm 1 on P . Let

φ = U
L . Run Algorithm 4 in parallel log1+δ φ times each

time with a guess of L(1+δ)i for the value of OPT. For
one of these guesses we have OPT ≤ L(1 + δ)i ≤ (1 +
δ)OPT and for that guess Algorithm 4 is guaranteed to

succeed with a value of at most 2(1+δ)
⌈
log 2

1+ε
d
⌉

OPT.

While this method probably works well in most prac-
tical datasets, one can design adversarial datasets where
the value of φ is unbounded. Here we will describe a
method to find bounds whose ratio is guaranteed to be
a polynomial. Let PW be the result of applying Algo-
rithm 1 on P and W = L∞(PW ). Let L∗∞(P, z) and
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L∗1(P, z) be the optimal value of L∞ and L1 objectives
with z outliers on point set P . We have:

W ≤ L∗∞(P, z) ≤ L∗1(P, z) (1)

On the other hand, applying Algorithm 1 removes at
most 2z points, so L1(PW ) is an upper bound on the
value of L∗1(P, 2z).

L∗1(P, 2z) ≤ L1(PW ) =
d∑
j=1

lj(PW )

≤ d d
max
j=1

lj(PW ) = dW

(2)

We set L = W,U = dW and we use z′ = 2z as the
number of outliers in Algorithm 4.

φ =
U

L
=
dW

W
= d =⇒ log1+δ φ = O(δ−1 log d)

Equation 2 ensures that our algorithm succeeds for
some estimate of OPT and Equation 1 ensures that at
least some of our estimates are less than OPT. So ei-
ther OPT is greater than dW or there is some estimate
between OPT and (1 + δ)OPT. Either way, our algo-
rithm succeeds for these estimates with approximation
factor given in Theorem 9. This algorithm blows up our
approximation factor for the number of outliers at most
by a factor of two (from 4(ε−1z + 2d) to 8(ε−1z + d)).

5 Conclusion

We presented simple bi-criteria approximation algo-
rithms for minimum axis-aligned bounding box in high-
dimensional euclidean spaces for the maximum side
length and sum of side lengths objectives. While this
problem has been previously studied in low-dimensional
settings, as far as we are aware this is the first work
that studies this problem in high-dimensional euclidean
spaces. We proved that our algorithms for the max-
imum side length objective are pareto-optimal under
some reasonable assumptions.

We plan on (i) improving the approximation factors
for the sum of side length algorithm, (ii) prove match-
ing lower bounds for sum of side length objective, and
(iii) studying other high-dimensional problems in the
presence of outliers.
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Quasi-Twisting Convex Polyhedra

Thomas C. Hull∗ Anna Lubiw† Klara Mundilova‡ Chie Nara§

Joseph O’Rourke¶ Josef Tkadlec‖ Ryuhei Uehara∗∗

Abstract

We introduce a notion we call quasi-twisting that
cuts a convex polyhedron P into two halves and re-
glues the halves to form a different convex polyhedron.
The cut is along a simple closed quasigeodesic. We
initiate the study of the range of polyhedra produced
by quasi-twisting P , and in particular, whether P can
“quasi-twist flat,” i.e., produce a flat, doubly-covered
polygon. We establish a sufficient condition and some
necessary conditions, which allow us to show that of
the five Platonic solids, the tetrahedron, cube, and oc-
tahedron can quasi-twist flat. We conjecture that the
dodecahedron and icosahedron cannot quasi-twist flat,
and prove that they cannot under certain restrictions.
Many open problems remain.

1 Introduction

A geodesic γ on a convex polyhedron P is a path that
has exactly π surface angle to either side at every point
of γ. So geodesics cannot pass through vertices. A
quasigeodesic has at most π angle to each side at every
point, and so can pass through vertices. Whereas most
convex polyhedra have no simple closed geodesic [10],
every convex polyhedron has at least three simple closed
quasigeodesics, a result of Pogorelov from 1949 [16].

In this paper we introduce an operation we call
quasi-twisting, which applies to any convex poly-
hedron P and any simple closed quasigeodesic (or
geodesic) Q on P . We imagine cutting along Q to sep-
arate P into two “halves” A and B, above and below
Q, each with boundary ∂A, ∂B. Let L be the length of
Q. Keeping B fixed, “glue” ∂A to ∂B, but shifted by
some fraction of L. (A and B are considered flexible but
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isometric surfaces during this gluing.) So A is “twisted”
with respect to B. By Alexandrov’s Gluing Theorem,
the result is a convex polyhedron P̃ : the lengths of the
boundaries ∂A, ∂B are equal, so the gluing results in a
closed shape homeomorphic to a sphere. And because of
the ≤ π quasigeodesic condition, both ∂A and ∂B are
convex and so the re-gluing maintains ≤ 2π at every
point along the seam.

Example. Before proceeding further, we illustrate with
an example. P is a unit cube, and quasigeodesic Q is
the path through six vertices illustrated in Fig. 1(a).
(We identify a vertex either by its index i, or as vi,
whichever is more convenient.) The angles to one side
of Q alternate between π/2 and π.

Cutting Q leaves A and B composed of three faces
each, with vertex v7 interior to A and antipodal vertex
v1 interior to B. The boundaries ∂A and ∂B each in-
clude a copy of the six vertices of Q. Now we twist A one
unit counterclockwise from above, matching vertices of
A to B as follows.

2 6 5 8 4 3
↓ ↓ ↓ ↓ ↓ ↓
3 2 6 5 8 4

Three of the six vertices along Q cease to be vertices in
P̃ . For example, v6 → v2 joins π to π surface angle. The
result is a triangular bipyramid with base an equilateral
triangle of side length 2, and altitudes to v1 and v7 of
length

√
2/3.

1.1 Related Work

Reshaping. Previous work on reshaping convex poly-
hedra relies on Alexandrov’s Gluing Theorem [1, p.100]
(which we abbreviate AGT):

Theorem AGT If polygons are glued together satisfy-
ing three conditions:

1. All their perimeters are glued, without gaps or over-
lap.

2. At most 2π surface angle is glued at any point.

3. The result is homeomorphic to a sphere.

270



34th Canadian Conference on Computational Geometry, 2022

1
2

34

5 6

7
8

6,2

3,4
5,8

4,8

5,6
2,3

7

1(a) (b)

Figure 1: Vertices identified by their indices. (a) Q =
265843. (b) After quasi-twisting 1 unit: 5 → 6, 6 →
2, 2→ 3, etc.

Then the result is a convex polyhedron (possibly degen-
erated to a doubly-covered convex polygon), unique up
to rigid motions.

A decade ago it was shown that every convex polyhe-
dron could be unfolded to a single planar piece (possibly
overlapping) and refolded to a different convex polyhe-
dron [5]. A recent significant extension of this line of
investigation showed (among other results) that any of
the five Platonic solids can transform to any other by a
sequence of at most six unfold-refold steps [4].

In a different direction, it was shown in [13] that, un-
der mild conditions, a vertex can be excised from a con-
vex polyhedron and transplanted elsewhere to create a
new convex polyhedron. And [14] showed that any con-
vex polyhedron can be converted to (a scaled copy) of
any other via a sequence of vertex “tailorings”—excising
a vertex along a digon and suturing the cut closed.

All of these reshaping results rely heavily on
Alexandrov’s Gluing Theorem, whose proof is non-
constructive. There is no practical algorithm for ac-
tually constructing the three-dimensional shape of the
polyhedron guaranteed by AGT; only an impractica-
ble pseudo-polynomial-time algorithm is available [11].
However, ad hoc calculations suffice for polyhedra with
a few vertices (say, 8), or significant symmetries. And
it seems possible that testing whether the polyhedron
guaranteed by AGT is a doubly-covered polygon is eas-
ier than the general case, although one attempt in this
direction did not achieve polynomial-time [12].

Quasigeodesics. Pogorelov’s proof that there are al-
ways at least three simple closed quasigeodesics on
a convex polyhedron is also non-constructive, and it
has long been an open problem to design an algo-
rithm to find a simple closed quasigeodesic (Open Prob-
lem 24.2 [7]). Recently there has been significant
progress. First, a pseudopolynomial algorithm for find-
ing at least one closed quasigeodesic (not necessarily
simple) was detailed in [6]. Second, an exponential al-

gorithm for finding all the simple closed quasigeodesics
was described in [3]. Despite this progress, there re-
mains no practical algorithm for finding simple closed
quasigeodesics.

Questions. The quasi-twist operation suggests many
questions, most fundamentally: From a given P , what
quasi-twisted P̃ can result? A few remarks:

• Every P can be twisted to some P̃ 6= P , because
every P has simple closed quasigeodesics.

• P̃ could have as many as twice the number of ver-
tices as P , and as few as half the number. For ex-
ample, if P is a doubly-covered regular n-gon and
Q its boundary, then quasi-twisting by angle π/n
leads to P̃ with double the number of vertices. Re-
versing the roles of P and P̃ halves the number of
vertices.

• Quasi-twisting P can lead to an uncountably infi-
nite number of incongruent P̃ . For example, quasi-
twisting a doubly-covered n-gon by different angles
in (0, π/n) leads to incongruent P̃ .

The regular n-gon example connects to D-forms, gluing
two congruent convex shapes along their perimeters [7].

Since it is impractical both to find quasigeodesics and
to apply AGT, algorithmic questions are currently un-
approachable. Here we start the investigation of the
natural question: Which P can be quasi-twisted flat,
i.e., is it possible to quasi-twist P to a doubly-covered
polygon? We further narrow the question to the five
Platonic solids. We show that the regular tetrahedron,
the cube, and the regular octahedron can all quasi-
twist flat. We conjecture that neither the dodecahe-
dron nor the icosahedron can quasi-twist flat. Along
the way, we establish some sufficient conditions for flat-
tening by quasi-twists, and some necessary conditions,
leaving complete characterization unresolved.

For brevity, henceforth we shorten “simple closed
quasigeodesic” to quasigeodesic, and “simple closed
geodesic” to geodesic. In contrast, a geodesic seg-
ment is a geodesic path between distinct vertices on P .
A quasigeodesic is composed of geodesic segments.

2 Flattening with Perimeter Q

In the simplest examples of quasi-twisting to a doubly-
covered polygon, the quasigeodesic Q becomes the
perimeter of the doubly-covered polygon. We begin by
giving necessary and sufficient conditions for this. Later
we show that the regular tetrahedron and the cube sat-
isfy these conditions, and in fact, we can even find a
suitable Q in the 1-skeleton of P .

271



CCCG 2022, Toronto, ON, Canada, August 25–27, 2022

Lemma 1 Quasi-twisting polyhedron P along a quasi-
geodesic Q with twist τ produces a doubly-covered poly-
gon whose perimeter is Q if and only if:

1. Q passes through every vertex of P ;

2. At every point aligned by τ , the angles on the two
sides of Q are equal.

Proof. Suppose the conditions hold. Because Q in-
cludes every vertex of P , the interiors of the two sides
A and B are empty of vertices, i.e., they are flat poly-
gons. Because τ aligns points with equal angles (not
only at the vertices of the polygon, but also along the
sides), the two flat polygons are the same, so the result
is a doubly-covered polygon.

For the other direction, if Q is the perimeter of
a doubly-covered polygon, then Q must have passed
through every vertex of P , and the twist τ has aligned
equal angles. �

1

2

3

4
6

a

b
d

c

1

2

3
4

(a) (b)

ab
bc

Figure 2: (a) Q = abcd. (b) Quasi-twisting results in a
doubly-covered 1×

√
3/2 rectangle.

This lemma is not, however, the only way to flatten P
by quasi-twisting. We have several examples of P and
Q that twist to flat polygons but which do not satisfy
the conditions of the lemma. Perhaps the simplest is Q
determined by the midplane of a regular tetrahedron,
shown in Fig. 2(a). Here Q is a closed geodesic through
no vertices, with two vertices to each side. If the edges
are unit length, a twist by 1

2 , matching abcd to bcda,

results in a 1 ×
√

3/2 doubly-covered rectangle, shown
in (b). The four vertices become the corners of the
rectangle and Q is not the boundary of the rectangle.
We will show another example in Fig. 10.

3 Tetrahedron

The only quasigeodesic Q (up to relabeling) that in-
cludes all four vertices of a regular tetrahedron is shown
in Fig. 3(a). Cutting Q partitions P into A and B, each
alternating angles π

3 and 2π
3 . Quasi-twisting A one unit

lines up the angles to match, as required by Lemma 1,
resulting in a doubly-covered parallelogram, again al-
ternating π

3 and 2π
3 angles.

1 2

1

2

3 3

4

4

(a) (b)

Figure 3: (a) Regular tetrahedron twists to (b) doubly-
covered parallelogram.

4 Cube

We again follow Lemma 1. On a cube there is again
one (up to relabelings) 8-vertex quasigeodesic, as shown
in Fig. 4(a), alternating angles π/2 and π along Q.
(The 3D shape of Q is sometimes known as a “napkin
holder.”) Quasi-twisting 2 units aligns the equal angles
and results in the 3× 1 doubly-covered rectangle shown
in (b) of the figure: v5, v6, v7, v8 become flat with in-
cident angle π + π, and the other four vertices have
doubled angle π/2.

Using the same Q but quasi-twisting 1 unit results in
a doubly-covered hexagon, where Q is not the boundary
of the hexagon.

1

2

3

4

6

7
8

1
2

3
4

6

7
8

5

5

(a) (b)

Figure 4: (a) Q = 15623784. (b) 3 × 1 doubly-covered
rectangle.

5 Octahedron

Here we still use a quasigeodesic Q passing through ev-
ery vertex of P , but we deviate from Lemma 1 in that we
no longer align equal angles. The 6-vertex quasigeodesic
Q shown in Fig. 5(a) has angles π times 1

3 ,
2
3 , 1,

1
3 ,

2
3 , 1.

Fig. 5(b) shows that A and B each consists of four faces.
Fig. 6(a) shows those faces unfolded, and (b) the result
of shifting A by one unit. Gluing ∂A to ∂B after this
shift results in creasing the layout as shown in (c), which
folds to a doubly-covered 1×

√
3 rectangle.
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Figure 5: (a) Q = 123645. (b) A and B each consist of
four faces.
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Figure 6: (a) A and B unfolded. (b) Shifting B one
unit leftward. (c) Crease lines black. (d) Final doubly-
covered 1×

√
3 rectangle.

Quasi-twisting the different quasigeodesic shown in
Fig. 7 by 1 unit leads to a doubly-covered equilateral
triangle.
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Figure 7: (a) Quasigeodesic Q = 126345. (b) Doubly-
covered equilateral triangle, side length 2.

6 Dodecahedron and Icosahedron

We conjecture that neither the dodecahedron nor the
icosahedron can quasi-twist to a doubly-covered poly-
gon. We provide support for this conjecture by show-
ing that the approach followed above—namely to use
a quasigeodesic through all vertices—is not possible for

the icosahedron or dodecahedron because no such quasi-
geodesics exist. We then discuss the challenges remain-
ing to prove the conjecture, challenges that indicate
what may be needed for a broader understanding of
quasi-twists.

Lemma 2 Any quasigeodesic Q on the icosahedron
passes through at most 10 of the 12 vertices.

Proof. Suppose Q passes through m vertices. Partition
Q at the edges of the icosahedron into segments so
that each segment is either: an edge of the icosahedron;
a segment that crosses a face and is incident to one
vertex of that face (we call these rays); or a segment
that crosses a face and is not incident to a vertex of
that face. Suppose there are k edge segments, and r
ray segments. Our counting argument need not include
segments of the third type. First observe that Q consists
of m vertex-to-vertex paths, each of which is an edge,
or includes exactly two rays (one at either end of the
path). Thus m = k + 1

2r, so r = 2m− 2k.
Next, we claim (the argument is below) that each of

the 20 triangle faces can contain at most one edge or ray
segment. Since an edge is contained in two triangles,
it counts twice. Thus 2k + r ≤ 20, and substituting
r = 2m− 2k gives 2m ≤ 20, so m ≤ 10.

To prove the claim, suppose a face contains two edge
or ray segments. If they are incident to the same ver-
tex, then they must be consecutive on Q, and the angle
between them is ≤ π

3 , leaving ≥ 4π
3 to the other side,

violating the quasigeodesic condition. Otherwise (since
a triangle does not have two vertex-disjoint edges), one
segment must be a ray segment, say from vertex v to
the opposite edge, and the other edge/ray segment must
intersect it, see Figure 8(a). �

(a) (b)
v1

v3 v3v5

v4

v2
(c)

v1

v5

v4

v2

Figure 8: (a) Triangle of icosahedron. (b) Two rays and
one edge in a dodecahedron face. (c) A chord v1v3 and
a ray.

We now turn to the dodecahedron. The argument
parallels that of the icosahedron.

Lemma 3 Any quasigeodesic on the dodecahedron
passes through at most 18 of the 20 vertices.

Proof. Suppose Q passes through m vertices. We fol-
low the same plan as in Lemma 2. Partition Q at the
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edges of the dodecahedron into segments. Here we have
four types of segments: an edge of the dodecahedron; a
segment that crosses a face from vertex to vertex (we
call these chords); a segment that crosses a face and
is incident to one vertex (again rays); or a segment
that crosses a face and is not incident to any vertex of
that face. Suppose there are k edge segments, c chord
segments, and r ray segments. Again the counting argu-
ment need not include crossing segments, the last type.
Henceforth we use segments to refer to edges, chords,
and rays. Since Q consists of m vertex-to-vertex paths,
each of which is an edge, a chord, or includes exactly two
rays, we have m = k+c+ 1

2r and thus r = 2m−2k−2c.
We make two claims about segments within a face to

complete our counting argument.

• A face can contain three segments, but cannot con-
tain four segments.

• If a face contains a chord then it has at most one
other segment, and that other segment cannot be
a chord.

See Fig. 8(b,c). These claims are proved below. The
claims imply that each of the c chords is in a unique face
with at most one other edge/ray segment, and the re-
maining 12−c faces each contain at most three edge/ray
segments. Again, each edge segment counts twice since
it lies in two faces. Thus 2k + r ≤ c + 3(12 − c). Sub-
stituting for r we obtain 2m− 2c ≤ c+ 3(12− c), which
gives 2m ≤ 36, so m ≤ 18.

To prove the claims, first suppose a face contains two
segments incident to the same vertex. Then they must
be consecutive on Q, and the angle between them is
≤ 108◦ leaving ≥ 216◦ to the other side, violating the
quasigeodesic condition.

Next, consider the (disjoint) segments in the face. See
Fig. 8(b). Each one cuts the face into two “sides,” and
we say that an “empty side” is a piece that contains no
other segment. There are at least two empty sides and
each (closed) empty side contains at least two vertices,
leaving only one remaining vertex for a third (and last)
segment. Thus there are at most three segments. There
cannot be two (disjoint) chords, and if there is a chord,
then one of its sides must be empty, and contains three
vertices. Furthermore, a second empty side contains two
vertices, so there cannot be a third segment. �

We do not believe either Lemma 2 or Lemma 3 is tight,
in that it seems neither 10- nor 18-vertex quasigeodesics
are achievable on the icosahedron and dodecahedron re-
spectively.

6.1 Conjecture Revisited

Having eliminated the possibility of using Lemma 1, the
dodecahedron and the icosahedron could only twist to a
flat polygon if Q does not include all the vertices. Then

the vertices not on Q must flatten to the boundary of
the doubly-covered convex polygon.

Again we use P̃ to represent P after quasi-twisting
flat, and Q̃ to represent the image of Q on P̃ . Thus
Q̃ is a quasigeodesic on P̃ . Note that ∂P̃ is itself a
quasigeodesic of P̃ and indeed a straightest such quasi-
geodesic in the sense that it bisects the angle at each
vertex through which it passes.1

If Q does not pass through all the vertices of P , then,
by Lemma 1, Q̃ is different from ∂P̃ , though they may
share edges (see for example Figs. 2 and 6). It is tempt-
ing to imagine that there will be only two intersections
between Q̃ and ∂P̃ as in those examples, in which case
the two sections of ∂P̃ would lift to straightest quasi-
geodesic paths on A and B. However, the following
example shows that there may be more than two inter-
sections.

Let P be the doubly-covered rectangle shown in
Fig. 9(a), and Q the horizontal bisector on the front
and back, with v1, v3 above Q in A and v2, v4 below in
B. P is already flattened, but we can still quasi-twist.
Quasi-twisting by

√
2/2 leads to the doubly-covered unit

square shown in (b). Directing Q̃ as wxyz, we have
v1, v3 left of Q and v2, v4 right. This is not surprising,
as the interiors of A and B are unaffected by quasi-
twisting and gluing along their boundaries. What is
perhaps surprising is that ∂P̃ is partitioned into four
sections by Q̃, not the two sections one might expect.

v1

v1
v3v3

v4

v4 v2
v2

y

z

w

x

y
w x
xQ

(a) (b)

Q~

Figure 9: (a)
√

2 ×
√

2/2 doubly-covered rectangle.
(b) 1 × 1 doubly-covered square. Dashed portion of Q
lie on the back side.

At the other extreme, one might ask if P can quasi-
twist flat using a geodesic, i.e., one that does not pass
through any vertices of P . This is possible for the tetra-
hedron (Fig. 2), and also for the octahedron (Fig. 10).
There are three different geodesics on the cube [9, 8],
but our experimental results show that none of them
permit flat quasi-twisting. We conjecture that the icosa-
hedron and dodecahedron cannot be twisted flat at true
geodesics either. Fuchs and Fuchs [9] categorize the
three possible geodesics on the icosahedron, but the case
of the dodecahedron is apparently unresolved.

1The term “straightest geodesic” is from [17].
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To summarize, we do not know if the icosahedron or
dodecadedron can quasi-twist flat. A main difficulty is
that we lack an understanding of when a quasigeodesic
allows a flat quasi-twisting. Another impediment is that
there is no complete inventory of the (simple) quasi-
geodesics on the dodecahedron or icosahedron. Just
recently a 1-vertex quasigeodesic on the dodecahedron
was found [2]. Even tetrahedra can have as many as 34
incongruent quasigeodesics [15].

Figure 10: (a) Geodesic on octahedron. (b) A and B
unfolded. (c) After quasi-twisting by

√
3/2. (d) Doubly-

covered hexagon.

7 Open Problems

Because the quasi-twisting concept is new, almost every
question one could pose is open. It would be interest-
ing to know which polyhedra can be obtained from P
by repeated quasi-twisting. Finding more substantive
necessary conditions for quasi-twisting flat could resolve
flattening the Platonic solids.

We emphasized quasi-twisting from P to a flat poly-
hedron P̃ . The reverse viewpoint is equally interest-
ing. We mentioned in Section 1 that a doubly-covered
regular n-gon could be viewed as a discrete version of
a D-form. It is natural to explore what shapes can
be quasi-twisted from doubly-covered convex polygons.
Even restricting to doubly-covered rectangles is inter-
esting. For example, Fig. 11 illustrates quasi-twisting a
doubly-covered square using the perimeter as the quasi-
geodesic.
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ZHED is NP-complete

Sagnik Saha∗ Erik D. Demaine†

Abstract

We prove that the 2017 puzzle game ZHED is NP-
complete, even with just tiles numbered 1. Such a puz-
zle is defined by a set of unit-square tiles in a square
grid, and a target square of the grid. A move consists
of selecting a previously unselected tile and then fill-
ing the next unfilled square in a chosen direction from
that tile (similar to Tipover and Cross Purposes). We
prove the NP-completeness of deciding whether the tar-
get square can be filled, by a reduction from rectilinear
planar monotone 3SAT.

1 Introduction

ZHED [Gro17] is a puzzle game available for Android,
iOS, Switch, and Steam, first released in 2017. An in-
stance of this puzzle is played on a n × n square grid;
refer to Figure 1 (left). One of the squares is designated
as the target . Several of the other squares are filled by
tiles. Each initial tile has an integer number between
1 and n− 1 written on it.
In each move, the player selects one of the remain-

ing numbered tiles and a direction (up, down, left, or
right); refer to Figure 1. If the tile was numbered k,
the move replaces the tile with a blank tile (keeping the
square filled, but removing the number) and fills the
k closest unfilled squares in the specified direction with
blank tiles. The objective of the game is to fill the target
square.

Figure 1: A typical move in ZHED. Tiles are drawn in
dark blue. The target square has a small square in the
middle.

The number of moves in such a puzzle is bounded
by the number of numbered tiles, so the puzzle is in

∗Work done while at MIT.
†MIT Computer Science and Artificial Intelligence Laboratory,

32 Vassar St., Cambridge, MA 02139, USA, edemaine@mit.edu

NP. In this paper, we prove that the puzzle is in fact
NP-complete, even when all tiles are numbered 1.

The mechanic of ZHED moves is similar to the idea of
a tower of specified height that falls over in a specified
direction. This “falling tower” mechanic is present in
the puzzle board game Tipover, which is NP-complete
[Hea06], and the 2-player board game Cross Purposes,
which is PSPACE-complete [Hea05]. The key distinc-
tion is that both Tipover and Cross Purposes prevent a
tower from falling on top of occupied/filled squares.

2 Rectilinear Planar Monotone 3SAT

Our NP-hardness reduction is from the known NP-
complete problem Rectilinear Planar Monotone 3SAT
(henceforth called RPM-3SAT ) [BK12]; refer to Fig-
ure 2. In this problem, we are given a Boolean formula
F over n Boolean variables x1, x2, . . . , xn. Formula F
is in conjunctive normal form, so the formula F is the
logical AND (∧) of m clauses. Each clause in F is a
logical OR (∨) of at most three literals, and the literals
in each clause are either all positive, consisting of non-
negated variables of the form xi, or all negative, consist-
ing of negated variables of the form xi. (The last is the
“monotonicity” property.) We are also given a planar
embedding of the variable–clause incidence graph con-
necting each variable to the clauses containing them,
which satisfies the following five conditions:

1. All variables and clauses are grid-aligned rectangles
of height 1.

2. All of the variables lie along a single horizontal line.

3. All edges lie along vertical lines.

4. All positive clauses lie above the line of the vari-
ables.

5. All negative clauses lie below the line of the vari-
ables.

The goal in the RPM-3SAT problem is to determine
whether there exists a value assignment to the n
Boolean variables that satisfies F . It is known to be
NP-complete [BK12].

3 Reduction: Puzzle Construction

We now show how to build a ZHED puzzle that rep-
resents an arbitrary instance of RPM-3SAT, in such a
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x1 x2 x3 x4 x5 x6 x7 x8 x9

x4
∨
x5

∨
x6 x7

∨
x8

∨
x9

x3
∨
x4

∨
x6

x2
∨
x7

∨
x9

x1
∨
x2

∨
x3 x4

∨
x7

∨
x8

x1
∨
x3

∨
x9

Figure 2: A sample instance of Rectilinear Planar
Monotone 3SAT (RPM-3SAT). This planar embedding
represents the conjunctive-normal-form formula (x2 ∨
x7 ∨ x9) ∧ (x3 ∨ x4 ∨ x6) ∧ (x4 ∨ x5 ∨ x6) ∧ (x7 ∨ x8 ∨
x9) ∧ (x1 ∨ x2 ∨ x3) ∧ (x4 ∨ x7 ∨ x8) ∧ (x1 ∨ x3 ∨ x9).

way that the puzzle we construct will be solvable if and
only if the original problem is satisfiable (as proved in
Section 4). We start with a description of the various
gadgets in our construction, and then describe how they
are combined together. In our construction, we only
need to use tiles with the number 1, so in the figures we
omit the number on tiles.

3.1 Threshold Gadget: Wires, AND, OR

Our main workhorse is the threshold gadget , which
consists of a line of tiles on alternate squares, as shown
in Figure 3. The empty squares between the tiles each
function as a source . The threshold gadget is param-
eterized by a nonnegative integer k, and we call the
square at a distance of k + 1 from the last tile in the
gadget (on the same line in the direction the gadget is
meant to be expanded) the target .

Sources

···
Target

k = 3b+ 1 = 6

Figure 3: Threshold gadget. We assume that at most 5
of the source squares can be filled by outside tiles, and
this gadget activates as long as at least 3 of those squares
are filled before the tiles in this gadget are expanded
rightwards.

Threshold property. This gadget has the property
that the target square can be filled if and only if at least
k of the source squares were already filled by tiles from
other gadgets. The intended activation is to expand

each tile in the gadget toward the target, in decreasing
order of distance. Without any sources already filled,
this will reach only one square from the last tile in the
gadget. If, however, j sources were already filled, then
it will reach distance j + 1. Thus, the target will get
filled if and only if j ≥ k.

Wire, turn, AND, OR. This gadget is versatile, and
forms the basis of several other gadgets. If we connect
only one source to other gadgets and set k = 1, then
we get simple wire gadget which propagate a signal
(represented by a square being filled) from that source
to the target. We can turn the wire by connecting the
target of one wire at a source of another orthogonal wire.
On the other hand, if m > 1 sources are attached to
other gadgets (overlapping each source with the target
of the other gadget, representing m input signals), then
we obtain an OR gadget by setting k = 1, and we
obtain an AND gadget by setting k = m.

Bounding region. Because of the spacing between the
tiles, a threshold gadget can only possibly fill squares
on that line within a distance of b + 1 from one end of
the gadget, where b is the maximum number of sources
that can be filled by other gadgets. Because each tile
has the number 1, the gadget can also affect at most
the two adjacent lines of squares. Therefore, the dotted
rectangle in Figure 3 serves as a bounding region of
the gadget. No sequence of moves in the overall puzzle
can lead to a tile in the threshold gadget directly filling
a square outside its bounding region.

Chaining threshold gadgets. As alluded to above, we
can chain threshold gadgets by making the target of
one a source of the next, as shown in Figure 4. This al-
lows us to aggregate signals and turn wires, as chaining
necessarily introduces a right-angle turn. During acti-
vation, we simply expand the first gadget’s tiles first,
which (maybe) fills its target square, and then expand
the tiles of the second gadget.

This interaction is one of only two ways different gad-
gets are allowed to interact with each other in our con-
struction. The first gadget’s bounding region grows by
1 unit in the direction it propagates, because the sec-
ond gadget may be expanded before it. The composite
bounding region is simply the union of the two gadgets’
individual bounding regions.

3.2 Shift Gadget

To resolve parity issues in our construction, we some-
times need to shift threshold gadgets by 1 square. To do
so, we simply add an extra tile at the beginning of the
gadget, adjacent to the old starting tile, as in Figure 5.
To activate this gadget, we expand all tiles toward the
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b1 + 1 = 6

b2 + 1 = 4

Targetk2 = 2

k1 = 3

b1 + 2 = 7

Figure 4: Chaining together two threshold gadgets
(with parameters k1 and k2 respectively). The target
of the horizontal threshold gadget (marked by ×) acts
as a source for the vertical threshold gadget.

target, in decreasing order by distance (as in the thresh-
old gadget).

Sources

···
Target

k + 1 = 4b+ 2 = 7

Figure 5: Shift gadget. The threshold gadget from Fig-
ure 3 is shifted by one square to the right.

Bounding region. As a result of the extra tile, the
bounding region of the original threshold gadget ex-
pands by 1 square in the forward direction, and 2
squares in the backward direction (counting the new
tile itself, as well as the extra square it can potentially
fill). We move the target square one square forward,
and everything else remains unchanged.

3.3 Variable Gadget

A variable gadget consists of a large even number L of
tiles consecutive on a horizontal row; refer to Figure 6.
These tiles are all meant to be expanded in the same
direction, either left or right. In our construction, ex-
panding all tiles left corresponds to setting the variable
to false , and expanding all tiles to the right corresponds
to setting the variable to true .

Activating a variable gadget as intended fills L
squares in one direction. We attach vertical wires that
propagate the filling of certain squares to the left or
right of the tiles (to clause gadgets), thus “reading” the
value of the variable. All such wires are at a distance

L/2 = 4

L = 8
3L/2 = 12

L = 8

Figure 6: Variable gadget with L = 8 tiles, along with
four threshold gadgets “reading” the value of this vari-
able. The two threshold gadgets right of the variable
can get one of their source squares filled if the variable
tiles are all expanded right, setting it to true. The two
gadgets on the left can be activated when the variable
is set to false.

between L/2 + 1 and L from the variable gadget. This
choice ensures that an unintended activation of the gad-
get, which expands some tiles left and other tiles right,
cannot activate wires on both sides of the variable. For
example, if x of tiles are expanded left and y are ex-
panded right, then at least one of x and y will be less
than L/2 + 1, so no wire in that direction will be acti-
vated.

We choose the value of L based on the number of
vertical wires needed. In the rest of the construction
described below, we specify the number of wires needed
for each clause gadget, and the gaps needed between
consecutive wire. Any value of L large enough so that
all of those wires fit within L/2− 1 columns suffices.

Bounding region. The bounding region of the variable
gadget is again only 3 rows high because all the tiles
have number 1. There are less than L/2 vertical wires
on either side within the reach of the tiles in this gadget,
so we obtain a upper bound on the bounding region of
the variable gadget by supposing that all of those wires
were already expanded before any tile in this gadget
is expanded. Thus the bounding region of a variable
gadget spans at most L+ L/2 = 3L/2 columns outside
the tiles in each direction, as shown in Figure 6.

3.4 Clause Gadget

The threshold gadget enables us to build a clause gad-
get ; refer to Figure 7. Because our 3SAT instance is
monotone, each clause uses only positive or only nega-
tive literals. For positive clauses, we create a horizontal
threshold gadget going rightwards above the variables;
and for negative clauses, we create the threshold gad-
get below the variables. Then we connect the clause to
corresponding variables (on the left side of the variable
for positive clauses, and on the right side of the variable
for negative clauses) via vertical “thick wires”. A thick
wire is a group of g parallel wires connecting the same
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gadgets, each separated 4 units apart from each other;
thus, a single input actually advances the reach of the
gadget by g. For the threshold gadget to function as an
OR of the literals, we set its k to g (instead of 1). We
refer to the combination of the thick wires and the hori-
zontal OR gadget as the clause gadget. Thus the target
square for the clause gadget is g+1 distance to the right
of the rightmost tile in the gadget. The thickness g is
a parameter that may vary across different clauses and
will be decided later.

x y

Figure 7: Clause gadget for (x∨ y). We use thick wires,
each made of 2 individual wires, to connect the clause
with the variables. The vertical wire chained from the
OR gadget (with the orange bounding region) is a clause
propagator that uses the target square of this clause
gadget as a source, and propagates the signal elsewhere.

Bounding regions. The clause gadget consists mainly
of a threshold gadget which can have 3g filled sources, so
it already has a defined bounding region. By our choice
of separation, the bounding regions of the individual
wires comprising each thick wire do not overlap.

3.5 Crossover Gadget

We use a crossover gadget when we need a vertical
threshold gadget to intersect the horizontal threshold
gadget belonging to a clause. As shown in Figure 8, we
simply position the two threshold gadgets so that the
intersection square is blank (with four tiles surround-
ing that intersection square like a plus sign). Next, we
increase the k of the vertical threshold gadget by 1. Es-
sentially, we assume that the horizontal gadget will be
activated before the vertical one, and we compensate for
the extra filled source square for the vertical gadget by
moving its target square one unit farther. If the player
violates this assumption, the horizontal gadget will ef-
fectively have its k off by 1, an error we will tolerate
using thick wires (see below).

Bounding region. The bounding region of the
crossover gadget is easy to calculate because there are
only four tiles involved. At the point of intersection,
a 3 × 3 square centered at the intersection point suf-
fices. The bounding regions of both gadgets involved
get longer in their long direction by 2 units (1 unit on
each end) because of the potential extra source square
that may be filled.

bnew1 + 1 = bold1 + 2 = 7

k2 + 1 = 3

k1 = 3

bnew2 + 1 = bold2 + 2 = 4

Figure 8: Crossover gadget. The horizontal threshold
gadget is meant to be expanded first, so its target re-
mains unchanged. The vertical threshold gadget is to
be activated second, when the intersection square is al-
ready filled in. This pushes the target by one square.

3.6 Putting It All Together

To construct the overall puzzle, we transform the planar
embedding of the provided RPM-3SAT instance; refer
to Figure 9. All the variable gadgets go on the cen-
tral horizontal row, spaced far enough apart that none
of their bounding regions overlap. We then draw the
clause gadgets according to the provided clause rect-
angles (above and below the central row for positive
and negative clauses respectively). We space out the
clauses more than the original drawing in order to leave
room for the thick-wire connections between variables
and clauses. Because we started with a planar mono-
tone drawing, we obtain a noncrossing drawing.

Next we add vertical wires (henceforth referred to as
clause propagators) to transport the output signals
from all of the target squares of the positive clauses up.
We place an AND gadget horizontally on a row high
enough so that its bounding region doesn’t collide with
the bounding region of any clause gadget, and ensure
that the target of all positive clause propagators coin-
cide with sources of the AND gadget. We perform a
symmetric construction below the negative clauses, re-
sulting in an upper and a lower AND gadget.

Each clause propagator may intersect with the hori-
zontal threshold gadgets from some of the other clauses
(nested above this one). We use a crossover gadget for
each such point of intersection. For each clause, we
count the number x of crossovers in its OR gadget, and
set the thickness g of the thick wires attached to the
clause gadget to be strictly larger: g > x. This choice
ensures that all the propagators intersecting a clause
combined have less influence on the clause threshold
gadget than a single thick wire, so no clause target can
be satisfied by the propagator intersections alone.

We design the upper and lower AND gadgets to both
go rightwards and have their targets on the same col-
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umn, which is farther right than the bounding region of
every other gadget. We combine these two signals using
a vertical AND gadget, with a target square near the
bottom right of the board. This square is the actual
target for the entire puzzle in our construction.

The parity issue in the above construction is that the
threshold gadget has a repeating unit of size 2, and
hence we need to account for parity in lining everything
up. This issue may cause problems when we want mul-
tiple threshold gadget targets to be on the same line for
a chained gadget. Parity issues may also become signif-
icant for crossover gadgets, which require the intersec-
tion square to be empty. We fix these issues using shift
gadgets. This approach allows us to adjust the rows of
the clause gadgets and the columns of the clause prop-
agators without parity restrictions. If we put all the
clause gadgets on rows of the same parity, we can en-
sure that all the crossover gadgets line up. We use the
same trick to ensure proper chaining of the clause prop-
agators into the upper and lower AND gadgets, and the
chaining of those two AND gadgets into the final verti-
cal AND gadget. See Figure 9 for an example.

Puzzle size. During this construction, we space the
gadgets out sufficiently so that no two bounding re-
gions collide except as part of an intended interaction
(through crossover gadgets or chaining threshold gad-
gets). The thickness g of each clause gadget’s thick
wires are determined at this stage, and the size L of
each variable gadget then depends on the total number
of individual wires using it. We’ll show that because all
of our gadgets have bounding-box dimensions of poly-
nomial size, the overall board remains polynomial sized
in the input parameters.
Note that there are a total of m clause propagators cor-
responding to the m clause gadgets. Therefore, any
given clause gadget can have a maximum of m − 1
crossovers in its OR gadget, and we don’t need any thick
wire with thickness g exceeding m. Each variable can
be connected to at most m clauses, and may therefore
need m thick wires reading it. So we need to accom-
modate a maximum of m2 vertical wires, each spaced 4
units apart within L/2 − 1 columns. This implies that
the variables can all have sizes L ≤ 8m2 + 2.
We can draw the clause gadgets’ horizontal wires just
long enough to intersect all the thick wires comprising
them, and therefore the bounding region of a clause gad-
get should end no more than 3g+ 2 ≤ 3m2 + 2 units to
the right of the rightmost thick wire. To account for at
most m crossover gadgets intersecting the clause, it can
extend a further m units.
The horizontal dimension of the puzzle only needs to be
big enough to fit the bounding regions of all the variable
and clause gadgets, followed by the AND gadgets. The
total length of the bounding region of a variable gadget
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Figure 9: The entire puzzle board for a sample formula.
The bounding regions for the clause gadgets are marked
in red. The bounding regions of the clause propagators
together with the upper and lower AND gadgets are
colored orange. The final target square is at the lower-
right of the board, marked by a green circle. Note that
different variables have different sizes L depending on
how many wires connect them to clause gadgets: v3
uses only 2 tiles while v4 uses 28. Similarly, the first
and third clauses use thick wires while the other two
use single wires to connect with variables. We use shift
gadgets for the lower AND gadget and for a couple of
clause propagators.
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is 7L, and the n variables account for 7n(8m2+2). The
clause gadgets can add another 3m2+m+2. The upper
and lower AND gadgets have up to m clause propaga-
tors, and the vertical AND gadget therefore needs to be
another m squares to the right of the rightmost clause
gadget’s bounding region. This shows that the horizon-
tal dimension of our generated puzzle is O(nm2).
The vertical size of the puzzle is much easier to up-
per bound. The bounding region of a basic horizon-
tal threshold gadget is only 3 squares tall. Our gener-
ated puzzle grows vertically because we need to draw
multiple clause gadgets on top of each other without
their bounding regions colliding. All the vertical wires
can only be as long as necessary to intersect with the
variable gadgets and the horizontal OR gadgets of the
clauses. Therefore, the total height of our puzzle is
O(m).

4 Reduction Correctness

Finally we show that the construction of Section 3 is a
valid reduction, i.e., an instance of RPM-3SAT is satis-
fiable if and only the obtained ZHED puzzle is solvable.

4.1 Satisfiable Formula ⇒ Puzzle Solution

Suppose there exists an assignment of the Boolean vari-
ables vis that makes the formula evaluate to true. Then
we solve the constructed puzzle as follows.

First we expand each of the variable tiles. If vi =
true in the solution, we expand the corresponding L
tiles rightward; otherwise, we expand the tiles leftward.
Then we expand all the vertical wires connecting vari-
ables to clauses, toward the clauses. Next we expand
the threshold gadgets in the clause wires rightward. Be-
cause each clause is satisfied in the formula, each of the
clause gadgets will be activated by at least one thick
wire, and hence each of the target squares for the clause
gadgets will be filled after this stage.

Now we expand all of the clause propagator wires.
These propagate the filled source corresponding to their
clause’s target square to the extreme upper and lower
horizontal AND gadgets, filling all of their sources.
Next, we expand the upper and lower AND gadgets
rightward, which fills the two sources of the extreme-
right vertical AND gadget. Finally, we expand the last
vertical AND gadget downwards, which fills the puzzle
target as desired.

4.2 Puzzle Solution ⇒ Satisfiable Formula

Suppose we have a solution to the ZHED puzzle. We
argue about the different gadgets in the reverse order
from the intended activation sequence of Section 4.1,
and use the fact that a square can only be filled by gad-
gets whose bounding regions contain it, to obtain a sat-

isfying Boolean assignment. We call a threshold gadget
successfully activated if it fills its target square.

• The puzzle’s target square only belongs to the
bounding region of the extreme-right vertical AND
gadget. Therefore that AND gadget was success-
fully activated, with at least k = 2 of its sources
filled by other gadgets.

• There are only 2 sources of the extreme-right verti-
cal AND gadget that might be filled by other gad-
gets, so both of them must have been. This implies
that both the extreme upper and lower horizontal
AND gadgets were successfully activated.

• For the extreme horizontal AND gadgets to be suc-
cessfully activated, all clause propagators had to
have successfully activated their target squares.

• This implies that all clause gadgets successfully ac-
tivated their target squares.

• If none of the thick wires activated for any particu-
lar clause gadget, then there will not be enough
sources in that clause’s OR gadget that belong
to other gadget’s bounding regions (specifically,
crossovers) to reach its target square. Therefore,
for every clause gadget, there is at least one thick
wire with one or more component wires successfully
activated.

• For any individual wire connecting a variable to
a clause to be successfully activated, over half of
the tiles in the corresponding variable gadget must
be expanded in the direction of that clause (right
if the clause is positive and left otherwise). We
set each variable to false or true based on which
direction (among left or right) the majority of the
tiles of its corresponding variable gadget expanded;
only clauses in this direction will be satisfied by the
variable gadget. We set the value arbitrarily if there
is a tie, in which case the variable did not satisfy
any clauses.

• This assignment must be a satisfying assignment,
because all clauses must have at least one variable
satisfying them.

4.3 Main Theorem

We just established that determining whether a ZHED
puzzle is solvable is NP-hard. It is also easy to prove
membership in NP: a solution can be described by a
sequence of moves, and if there are n tiles, each move
takes O(log n) bits to describe. The number of moves
cannot exceed the number n of tiles, so the total size of
a proposed solution is polynomial in n. We can verify
the solution in polynomial time by simply maintaining
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the state of the board after each move and simulating
the moves. Together, these assertions prove our main
result:

Theorem 1 It is NP-complete to decide if a ZHED
puzzle is solvable, even when all tile numbers are 1.
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Efficient Graph Reconstruction and Representation
Using Augmented Persistence Diagrams
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Abstract

Persistent homology is a tool that can be employed to
summarize the shape of data by quantifying homological
features. When the data is an object in Rd, the (aug-
mented) persistent homology transform ((A)PHT) is a
family of persistence diagrams, parameterized by direc-
tions in the ambient space. A recent advance in under-
standing the PHT used the framework of reconstruction
in order to find finite a set of directions to faithfully rep-
resent the shape, a result that is of both theoretical and
practical interest. In this paper, we improve upon this
result and present an improved algorithm for graph—
and, more generally one-skeleton—reconstruction. The
improvement comes in reconstructing the edges, where
we use a radial binary (multi-)search. The binary search
employed takes advantage of the fact that the edges can
be ordered radially with respect to a reference plane, a
feature unique to graphs.

1 Introduction

At the heart of inverse problems in the field of topolog-
ical data analysis is the following question: how many
persistence diagrams are needed to faithfully represent a
shape? Since the introduction of persistence diagrams,
it has been known that many “shapes” can share the
same persistence diagram. With enough persistence di-
agrams, we arrive at a set of parameterized diagrams
(that is, diagrams labeled by direction) that uniquely,
or faithfully represents the underlying shape. Moreover,
the set of parameterized diagrams is faithful if and only
if it can be used to reconstruct the underlying shape.

The foundation for asking the question of how many
diagrams are needed for a faithful representation was
first introduced in [16], where Turner et al. defined the
Persistent Homology Transform (PHT) and the Euler
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characteristic curve transform (ECCT). These trans-
forms map a simplicial complex embedded in Rd (a
shape) to sets of persistence diagrams (respectively, Eu-
ler characteristic curves) parmeterized by Sd−1, the set
of all directions in Rd. They showed that, up to mild
general position assumptions, no two simplicial com-
plexes can correspond to the same PHT or ECCT, i.e.,
they showed that the uncountably infinite sets making
up the PHT and ECCT faithfully represent the shape.

However, the PHT and ECCT are uncountably infi-
nite sets of diagrams (and Euler characteristic curves).
Thus, to bridge the gap between the theory and what
can be used in practice, a discretization of the PHT was
needed; several papers stepped up to the challenge and
proved that there exists a finite discretizations of topo-
logical transforms that are faithful for simplicial and
cubical complexes [1,2,4,5,7,8,12]. Beyond proving the
existence of these finite faithful sets, Belton et al. [2]
explicitly give an algorithm for using an oracle to re-
construct graphs embedded in Rd with n vertices. Their
reconstruction uses n2−n+d+1 augmented persistence
diagrams in O(dnd+1 + n4 + (d + n2)Π) time [2, The-
orem 17], where Θ(Π) is the time complexity it takes
for an oracle to produce answer a persistence diagram
querry. Since the direction-labeled diagram set can be
used for reconstructing the underlying graph, it is a
faithful discretization of the augmented PHT (APHT).

In the current work, we give a faithful discretization of
the APHT using Θ(d+m log n) diagrams and Θ(dnd+1+
dΠ + n2 + m log n(log n + d + Π)) time. This result is
an improvement over [2], both in the size of the set
and in the speed of reconstruction. The crux is in the
improvmeent to edge reconstruction. While the method
of [2] uses a linear scan of all possible edges for each ver-
tex, resulting in a quadratic number of diagrams needed,
here we show that we can detect edges with Θ(m log n)
diagrams using a radial binary multi-search.

2 Background and Tools

In this section, we provide definitions of the tools used
in the remainder of the paper. We make use of standard
notation such as using ei for the ith standard basis vec-
tor in Rd, where 1 ≤ i ≤ d. We use the notation (V,E)
for a graph and its vertex and edge sets, and use n = |V |
and m = |E|. We assume the reader is familar with
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standard concepts in topology (such as simplicial com-
plexes, simplicial homology, Betti numbers), and note
that further information can be found in [6] for a gen-
eral introduction and in [7, Section 2.1] for a detailed
definition of the augmented persistence diagram.

First, we define our general postition assumption.

Assumption 1 Let V ⊂ Rd be a finite set with d ≥ 2.
We say V is in general position if the following proper-
ties are satisfied:

(i) Every set of d+ 1 points is affinely independent.

(ii) No three points are colinear after orthogonal pro-
jection into the space π(Rd), where π : Rd → R2

is the orthogonal projection onto the plane spanned
by the first two basis elements, e1 and e2.

(iii) Every point has a unique height with respect to the
direction e2.

We call a graph GP-immersed1 iff its vertex set is in
general position in Rd.

We note that (iii) is not strictly necessary, however, it
is convenient for simplicity of exposition. How to handle
this degeneracy is discussed in Appendix B.

Given a graph GP-immersed in Rd, we can filter the
graph based on the height in any direction s in the
sphere of directions Sd−1. To do so, we assign each
simplex a height. A vertex v ∈ V is assigned the
height s · v, and an edge [v0, v1] ∈ E is assigned the
height max{s · v0, s · v1}. This function, mapping ver-
tices and edges to heights, is known as a filter function,
which we use to compute persistent homology.

2.1 Persistence and the Oracle Framework

Given a filtered simplicial complex (that is, a simplicial
complex with each simplex assigned a “height”), the
corresponding augmented persistence diagram (APD) is
a record of of all homological events throughout the fil-
tration. A birth event is the introduction or appearance
of a new homological feature, and a death event is the
merging of two features. A death is paired with the
most recent of the birth-labeled features that it merges
together, creating a birth-death pairing, leaving the re-
maining feature labeled by the elder birth height. In an
APD, every simplex corresponds to exactly one event
(resulting in some pairings where the birth and death
heights are equal). As a result, by construction, APDs
contain at least one event at the height of each vertex.

For a simplicial complex (e.g., a graph) GP-immersed
in Rd and a direction in Sd−1, we use the lower-star
filtration: the nested sequence of graphs that arise by

1Here, we use immersed rather than embedded in order to allow
intersections of edges. Note, however, that this can only happen
when d = 2.

looking at all simplices at or below a given height and al-
lowing that height to grow from −∞ to∞. Throughout
this paper, we denote the i-dimensional APD by D̂i(s)
and write D̂(s) = tiD̂i(s), omitting the graph itself
from the notation (as it is always clear from context).2

The (augmented) persistence homology transform
((A)PHT) is the set of (augmented) diagrams of lower-
star filtrations in all possible directions, parameterized
by the direction. That is, the set X = {(D̂(s), s)}s∈Sd−1 .
A faithful discretization is a finite subset of X from
which all other elements of X can be deduced (and,
by [16], corresponds to a unique simplicial complex).
The introduction of the (augmented) persistent homol-
ogy transform has sparked related research in applica-
tions of shape comparison [3,9–11,14,15,17,18]. As such,
finding a minimal faithful discretization is important for
the applicability of the (A)PHT. In what follows, we will
only consider APDs, and we may shorten notation and
refer to an APD by the word diagram.

In this work, we assume an oracle framework. That
is, we assume that we have no knowledge of the shape
itself, but we have access to an oracle from which we
can query directional diagrams.

Definition 2 (Oracle) For a graph (V,E) GP-
immersed in Rd and a direction s ∈ Sd−1, the
operation Oracle(s) returns the diagram D̂(s). We
define Θ(Π) to be the time complexity of this oracle

query and note that the space complexity of D̂(s)
is Θ(n + m). We assume that the data structure
returned by the oracle allows queries for specific birth
or death values in Θ(log n) time (for example, the we
could have two arrays of persistences points, one sorted
by birth values and one sorted by death values).

2.2 Constructions and Data Structures

In this subsection, we introduce the edge arc object
and other definitions useful for computing properties of
immersed graphs. Throughout this paper, we project
points in Rd to the (e1, e2)-plane. As a result, we use
“above (below)” without stating with respect to which
direction as shorthand for “above (below) with respect
to the direction e2.” This direction is intentionally cho-
sen (and used in our GP assumption), as it corresponds
to our intuition of above (below) in the figures. When
we measure an angle of a vector x, denoted ]x, we mean
the angle that π(x) makes with the positive e1 axis.

Given a direction s and a vertex in a graph immersed
in Rd, we classify each edge (v, v′) as either an “incom-
ing” edge, when v′ is below v with respect to s, or an
“outgoing” edge, when v′ is above v with respect to s.
Note that all incoming edges have the same height as
the vertex with respect to the e2 direction.

2When calculating diagrams, we count D̂(s) as one diagram,
not multiple.

285



CCCG 2022, Toronto, ON, Canada, August 25–27, 2022

Definition 3 (Indegree) Let (V,E) be a graph GP-
immersed in Rd. Let v ∈ V and s ∈ Sd−1. The indegree
of v in direction s, denoted Indeg(v, s), is the number
of edges incident to v with height s · v.

The following lemma relates the number of edges at
a given height to points in the APD.

Lemma 4 (Edge Count) Let (V,E) be a graph and
let c ∈ R. Let f : V tE → R be a filter function. Then,
the edges in E with a function value of c are in one-to-
one correspondence with the following multiset of points
in D̂(f), the diagram corresponding to f :{

(b, d) ∈ D̂1(f) s.t. b = c
}

∪
{

(b, d) ∈ D̂0(f) s.t. d = c
}
.

(1)

In other words, each edge corresponds to either a birth
of a one-dimensional homological feature or a death of a
zero-dimensional feature in D̂(f). For more details and
a generalized proof, see [7, Appendix A].

If f is a lower-star filtration in direction s ∈ Sd−1, we
note that whenever a vertex v has a unique height with
respect to a direction s, the cardinality of the multiset
above is exactly Indeg(v, s).

Lemma 5 (Indegree Computation) Let (V,E) be a
graph GP-immersed in Rd. Let v ∈ V and let s ∈
Sd−1 such that s · v 6= s · v′ for any v′ 6= v ∈ V .
Then, Indeg(v, s) can be computed via the oracle using
one diagram and Θ(log n+ Π) time.

Proof. Let D̂ = Oracle(s). By the assumption on s,
the height of v with respect to the direction s is unique.
Hence, we know that any edge at height c = s · v must
be incident to v. Thus, by the definition of indegree,
an edge has the height c if and only if it contributes to
the indegree of v in direction s. Using Lemma 4, we
count these edges by counting one-dimensional births
and zero-dimensional deaths at height c. Since D̂0

and D̂1 are sorted by both birth and death values (see

Definition 2) and since D̂ has Θ(n+m) points, searching
for these events takes Θ(logn + logm). Adding Θ(Π)
for the oracle query and recalling that m = O(n), the
total runtime is Θ(log n+ Π). �

We conclude this section by introducing a data struc-
ture, the edge arc object ; see Table 1 for a summary of
the attributes of an edge arc and Figure 1 for an exam-
ple. An edge arc represents the region in the (e1, e2)-
plane centered at v that is swept out between the two
angles α1 and α2 (the word ‘arc’ is referring to the arc
of angles between α1 and α2, where the angle is mea-
sured with respect to the postive e1 axis). We only
consider edge arcs in the upper half-space, with respect
to the e2 direction, so the maximal edge arc is the up-
per half-plane and the start and stop angles always sat-
isfy 0 ≤ α1 ≤ α2 ≤ π. An edge arc stores an array

Table 1: Attributes of the edge arc object.

EA Edge Arc
v Vertex around which the edge arc

is centered
(α1, α2) Start and stop angles of the arc,

with respect to the e1 direction
verts Array of vertices in arc radially or-

dered clockwise in (e1, e2)-plane
count Number of edges incident to v

within the arc

Figure 1: An edge arc EA centered at vertex EA.v = v.
Other attributes of the edge arc include its start and
stop angles, EA.α1 = 1.75 radians and EA.α2 = π ≈
3.14 radians, the array of vertices EA.verts = {v1, v2},
and the count of edges EA.count = 1. Here, we also see
that Indeg(v, e1) = 1 and Indeg(v, e2) = 2.

of vertices sorted radially clockwise about π(v) in the
(e1, e2)-plane in decreasing angle with the e1-direction.
By construction, the first vertex in the array must be
closest to α2 and the last closest to α1. The edge arc
also stores the count of edges of E that have vertices
from verts as endpoints. In implementation, the angles
α1 and α2 do not need to be stored directly, but we
include them in psuedocode and discussions for clarity.

Given some arc EA centered at vertex v ∈ V , we need
to be able to compute EA.count , the number of edges
contained EA that are adjacent to v. The following
lemma provides such a computation. We omit a proof
because it is a straightforward adaptation of [7, Theo-
rem 16] and [2, Lemma 13].

Lemma 6 (Arc Count) Let (V,E) be a graph GP-
immersed in Rd. Let EA be an edge arc object, and
let v = EA.v. Let s ∈ Sd−1 be the direction perpendicu-
lar to α2 so that the arc is entirely below s · v. Let E∗
denote the edges with height s · v that are not contained
in EA. If no vertex in V is at the same height as v in
direction s, then

EA.count = Indeg(v, s)− |E∗|.
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As an illustration, again, consider Figure 1. Con-
sider the direction s = ei(α2−π/2), which is perpendicu-
lar to eiα by construction. In addition, the edge arc is
below s · v (specifically, all vertices in EA.verts are be-
low s · v). Then, Indeg(v, s) = 2 and E∗ = {[v, v5]}. By
Lemma 6, EA.count = Indeg(v, s) − |E∗| = 2 − 1 = 1.
When we say that a list of vertices or edges is sorted
clockwise around v, we mean that the list is sorted clock-
wise (cw) around π(v) once projected into the (e1, e2)-
plane with the largest angle first.

3 Fast Reconstruction

In this section, we provide an algorithm to reconstruct
a graph (and, more generally, a one-skeleton of a sim-
plicial complex) using the oracle. We start with an al-
gorithm to find the edges, provided the vertex locations
are known. We end with describing the complete graph
reconstruction method.

3.1 Fast Edge Reconstruction

In this subsection, we assume we have a graph (V,E),
where the vertex set V is known, but E is unknown.
Using the oracle and the known vertex locations, we
provide a reconstruction algorithm to find all edges
in E (Algorithm 3). This algorithm is a sweepline algo-
rithm in direction e2 that, for each vertex processed in
the sweep, performs a radial binary multi-search (Algo-
rithm 2). This search is enabled by an algorithm that
splits an edge arc object into two edge arcs, each con-
taining half of the vertices (Algorithm 1). We provide
the algorithms and relevant theorem statements here,
but defer the proofs to Appendix A.

Algorithm 1 SplitArc(EA, bigedges, θ)

Input: EA, an edge arc; bigedges, an array of all
edges (EA.v , v′) ∈ E such that ]π(v′ − EA.v) <
EA.α1; θ, the minimum angle defined by any three
vertices in π(V )

Output: EA` and EAr, edge arcs satisfying the prop-
erties in Theorem 7

1: nv ← |EA.verts|
2: mid← dnv2 e
3: α← ]π(EA.verts[mid]− EA.v)− θ/2
4: s← ei(α−

π
2 )

5: m` ← Indeg(EA.v , s)−|{b ∈ bigedges | ]b < π+α}|
6: mr ← EA.count −m`

7: EA` ← edge arc where EA`.v = EA.v , EA`.α1 =
EA.α1, EA`.α2 = α, EA`.verts = EA.verts[: mid],
and EA`.count = m`

8: EAr ← edge arc where EAr.v = EA.v , EAr.α1 = α,
EAr.α2 = EA.α2, EAr.verts = EA.verts[mid+ 1 :],
and EAr.count = mr

9: return (EA`, EAr)

Figure 2: The splitting of edge arc EA into EA`

and EAr, as in Algorithm 1. The large gray region
is the region containing all edges of bigedges. That
is, all edges whose angle with the positive e1-axis is
at least EA.α1. On Line 5 of the algorithm, we com-
pute the number of edges in EA` by first computing
the indegree of EA.v in direction s from the diagram
in direction s, then we subtract the number of edges in
bigedges that are below the height of EA.v in direction s
(i.e., below the blue line). By the pigeonhole principal,
we find EAr.count = EA.count − EA`.count .

In Algorithm 1, we find a direction s in the (e1, e2)-
plane such that half of the vertices in EA.verts are
above v and half are below v with respect to the di-
rection s. This allows us to create a new edge arcs cor-
responding to each half; see Figure 2. The properties of
Algorithm 1 are described in the following theorem.

Theorem 7 (Arc Splitting) Algorithm 1 uses one
diagram and Θ(log n+ d+ Π) time to split EA into two
new edge arcs EA` and EAr with the properties:

(i) The sets EAr.verts and EA`.verts partition
the vertex set EA.verts such that the vertices
in EA`.verts come before those in EAr.verts, with
respect to the clockwise ordering around EA.v.

(ii) |EA`.verts| = d 12 |EA.verts|e.

(iii) |EAr.verts| = b 12 |EA.verts|c.

In Algorithm 2, we use Algorithm 1 to find all out-
going edges from a given vertex. In particular, the al-
gorithm maintains a stack of edge arc objects. When
processing an edge arc (the while loop in Lines 4–16),
we are determining which of the vertices in verts form
edges with v . If an edge arc has count = 0, it contains
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Algorithm 2 UpEdges(v, Vv, inv, θ, D̂)

Input: v ∈ V ; Vv, array of all vertices in V above v,
ordered clockwise; inv, array of all incoming edges
of v, sorted radially clockwise; θ, the minimum angle
formed by any three vertices in π(V ); and D̂, the
APD in direction e2

Output: array of all outgoing edges of v
1: indeg ← indegree of v in direction −e2.
2: eastack ← a stack of edge arc objects, initialized

with a single edge arc A, where A.v = v, A.α1 =
0, A.α2 = π, A.count = indeg , and A.verts = Vv

3: Ev ← ∅
4: while eastack is not empty do
5: EA← eastack .pop()
6: if EA.count = 0 then
7: Continue to top of while loop
8: end if
9: if |EA.count | = |EA.verts| then

10: Append v × EA.verts to Ev, in order
11: Continue to top of while loop
12: end if
13: (EA`,EAr)← SplitArc(EA, inv ∪ Ev, θ)
14: Push EAr onto eastack
15: Push EA` onto eastack
16: end while
17: return Ev

no edges, and it can be ignored (Lines 6–8). If it has
count exactly equal to the number of vertices in verts,
each vertex in verts must form an edge with v (Lines 9–
12). Otherwise, as demonstrated in Figure 3, the edge
arc is split in half using Algorithm 1 and each half is
put on the stack to be processed.

Theorem 8 (Finding Edges Above a Vertex)
Algorithm 2 finds the sorted array of edges above v
using Θ(deg(v) logn) augmented persistence diagrams
in Θ((deg(v) logn)(log n+ d+ Π)) time.

Finally, our main algorithm (Algorithm 3) is a
sweepline algorithm, where we consider the vertices in
increasing order of their e2-coordinates and find the out-
going edges of the vertex being considered.

Theorem 9 (Edge Reconstruction) Let (V,E) be a
graph GP-immersed in Rd. Given V , Algorithm 3 recon-
structs E using Θ(m log n) augmented persistence dia-
grams in Θ(n2 +m log n(log n+ d+ Π)) time.

3.2 Putting it Together: Full Reconstruction

The results of Section 3.1 are related to just part of
the full process of reconstruction, since reconstruction
begins with no knowledge of the underlying simplicial
complex. Identifying the location of all vertices is the

Algorithm 3 FindEdges(V )

Input: V , array of all vertices in the unknown graph
Output: E, array of all edges in the unknown graph

1: D̂ ← Oracle(−e2)
2: E ← {}
3: vertsabove ← for each v ∈ V , an array clockwise

ordering all vertices in V that are above v
4: θ ← min angle defined by any three vertices of π(V )
5: for v in V , in increasing height in direction e2 do
6: inedges ← clockwise sorted array of edges in E

incident to v
7: E+ = UpEdges(v, vertsabove[v], inedges, θ, D̂)
8: end for
9: return E

first step, and is one that has been previously examined
in detail. In particular, Belton et al. provide an algo-
rithm to reconstruct V in Θ(dnd+1 +dΠ) time and d+1
oracle queries; see [2, Algorithm 1 & Theorem 9]. To-
gether with Theorem 9, we obtain the following runtime
and diagram count for a full reconstruction process.

Theorem 10 (Graph Reconstruction) Using
an oracle, we can reconstruct an unknown graph
immersed in Rd using Θ(d + m log n) diagrams
in Θ(dnd+1 + dΠ + n2 +m log n(log n+ d+ Π)) time.

We omit a proof of Theorem 10, as it simply com-
bines the results of [2, Theorem 9] and Theorem 9 of the
current paper. Observing that the methods presented
here are immediately applicable in the reconstruction of
one-skeletons of general simplicial complexes, we have
the following corollary:

Corollary 11 (One-Skeleton Reconstruction)
Let K be an unknown simplicial complex GP-immersed
in Rd. Algorithm 1 of [2] and Algorithm 3 of the
current paper reconstruct the one-skeleton of K us-
ing Θ(d + m log n) augmented persistence diagrams
in Θ(dnd+1 + dΠ + n2 +m log n(log n+ d+ Π)) time.

Finally, we note that embedding a graph (or simpli-
cial complex) in R2 is a special case, as m = O(n) and d
is constant. In addition, by [2, Theorem 6], vertex re-
construction of a graph embedded in R2 can be done
with three diagrams and Θ(n log n + Π) time. Hence,
we obtain a result for plane graph reconstruction:

Corollary 12 (Reconstruction in R2) We can use
an oracle to reconstruct the one-skeleton of an unknown
simplicial complex embedded in R2 using O(n log n) di-
agrams and O(n2 + nΠ log n) time.

4 Discussion

One way of proving that a discretization of the APHT
is faithful is through the method of reconstructing the
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(a) At vertex v. (b) Split edge arc. (c) Split again.

Figure 3: We demonstrate one step of Algorithm 2. (a) By assumption, we initially know [v5, v] ∈ E. From Line 1 of
Algorithm 2 we also know that two of the four vertices above v are adjacent to v. Thus, we create an edge arc object
EA with EA.count = 2, and EA.verts = (v1, v2, v3, v4). (b) In Algorithm 1, we choose a direction s such that half of
the vertices in EA are below v. We use this split to create two edge arcs, EAr and EA`, corresponding to the pink
shaded regions on the right and left of the blue line defined by s. We push EAr onto a stack to be processed later
and focus on the arc EA`. Since two edges contribute to v’s indegree in direction s and one is the known edge [v5, v],
we have EA.count = 2−1 = 1. (c) Next, we find a new direction s that splits EA`.verts into two sets of size one. We
push the set above s onto our stack. The edge arc containing only v1 also has EA.count = 2− 1 = 1, so [v1, v] ∈ E.
After all steps of Algorithm 2 are applied to find the edges above a particular vertex, Algorithm 2 is then applied to
the next highest vertex, eventually processing every vertex in V in a sweep (Algorithm 3).

underlying simplicial complex. That is, by showing that
the underlying simplicial complex can be recovered with
the data of the discretization alone. In this paper, we
take that approach and provide an algorithm for recon-
structing a graph immersed in Rd. We use fewer persis-
tence diagrams than presented in alternate approaches.
For example, the algorithm that we present for edge
reconstruction (when the vertex locations are known)
uses Θ(m log n) diagrams. In contrast, [2, Theorem 16]
uses n2 − n diagrams. Note that, for a very dense edge
set, that is, when m = Θ(n2), the method in [2, Theo-
rem 16] uses fewer diagrams. However, if m = O(n), as
is common in many complexes, the represntation com-
puted in this paper has fewer diagrams. Moreover, we
emphasize that the number of diagrams is not exponen-
tial in the ambient dimension.

One might hope to use binary search strategies to
reconstruct a simplicial complexe, but the methods pre-
sented here are unique to one-skeletons. Radially order-
ing higher dimensional simplices is not well-defined, and
this issue prevents the methods presented here from be-
ing immediately transferrable. On the other hand, with
the representation in this paper being output-sensitive
(as opposed to testing if every pair of vertices is a sim-
plex), we have hope for the discretization of the (A)PHT
of a simplicial complex immersed in Rd being propor-
tional to the size of the complex itself.

We also observe that not all diagrams used in our re-
construction algorithms were strictly necessary (i.e., the

set of diagrams used were not a minimal faithful set).
One straightforward way to reduce the number of dia-
grams used without altering the method much would be
to split the region above a vertex in the sweep into arcs
that contain exactly the same number of edges as ver-
tices, or no edges. This property can then be validated
by a simple difference of indegrees. In ongoing work,
we hope to make these claims precise. We also hope to
extend our methods to use topological descriptors that
are not dimension-returning (such as augmented Euler
Characteristic curves).
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A Algorithmic Proofs

In this appendix, we provide the proofs omitted from Sec-
tion 3. These proofs provide justification for the runtimes,
diagram compelxity, and correctness of the algorithms pre-
sented in this paper.

A.1 Proof of Theorem 7

Theorem 7 (Arc Splitting) Algorithm 1 uses one dia-
gram and Θ(logn + d + Π) time to split EA into two new
edge arcs EA` and EAr with the properties:

(i) The sets EAr.verts and EA`.verts partition the vertex
set EA.verts such that the vertices in EA`.verts come
before those in EAr.verts, with respect to the clockwise
ordering around EA.v.

(ii) |EA`.verts| = d 1
2
|EA.verts|e.

(iii) |EAr.verts| = b 1
2
|EA.verts|c.

Proof. For the runtime, we walk through the algorithm and
analyze the time and diagram complexity of each line. In
Lines 1–3, we find the angle α that splits EA.verts into two
equal sets, then in Line 4 compute a direction s orthogonal
to α. See Figure 2. Lines 1–4 use no diagrams and can
be done in constant time when restricting our attention to
the (e1, e2)-plane. However, we need s to be a direction in Rd
(as opposed to only in the (e1, e2)-plane), so the computation
takes Θ(d) time.3 Specifically, s is the vector

s = e
1
2
i(2α−π−θ) (2)

=

(
cos

(
α− 1

2
π − 1

2
θ

)
, sin

(
α− 1

2
π − 1

2
θ

)
, 0, 0, . . . , 0

)
.

To compute m` in Line 5, we compute Indeg(v, s) then sub-
tract the cardinality of the set S := {b ∈ bigedges | ]b <
π + α}, where ]b is taken to mean the angle b makes with
the e1-axis, when viewed as a vector with EA.v as the origin.
By Lemma 5, we compute Indeg(v, s) via the oracle using
one diagram and Θ(log n+ Π) time. Since bigedges is sorted
and since s lies in the (e1, e2)-plane, we can find the set S
in Θ(log(|bigedges|)) time. The subtraction in Line 5 takes
constant time, as does Line 6.

In Lines 7 and 8, we create two edge arc objects. The time
complexity of creating them is proportional to the size of the
obejcts themselves. All attributes of edge arc objects, except
the array of vertices (verts), are constant size. By construc-
tion, EA`.verts and EAr.verts split EA.verts into two sets,
which can be done näıvely in Θ(d|EA.verts|) time by walking
through EA.verts and storing each one explicitly. However,
we improve this to Θ(log |EA.verts|) time if we have a glob-
ally accessible array of vertices (sorted cw around v) and just
computes the pointers to the beginning and end of the sub-
arrays corresponding to the verts attributes of the new edge
arc objects. In total, Algorithm 1 and takes Θ(d + log n +

3With some clever data structures, this Θ(d) can be reduced
to constant time. For example, we could require vectors in R2

are automatically padded with 0’s to become vectors in Rd when
needed. However, this is out of the scope of the real RAM model
of computation.
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Π + log(|bigedges|) + 1 + log(|EA.verts|)) = Θ(logn+ d+ Π)
time and uses uses one diagram.

Now that we have walked through the algorithm and es-
tablished the runtime and diagram complexity, we prove cor-
rectness. To do so, we first show that EA` and EAr are edge
arc objects. In particular, this means showing that they
have the correct values for count and verts. We prove this
for EA`; the proof for EAr follows a similar argument.

EA`.count: We must show that EA`.count is the number
of edges in EA` incident to EA`.v . By Lemma 4, the value re-
turned from Indeg(EA.v , s) counts all edges incident to EA.v
and below s·EA.v in direction s. By Lemma 6, this is exactly
the total number of edges in EA` plus edges (EA.v , v′) ∈ Ev
for which s · v′ < s · EA.v . Thus, by subtracting |{b ∈
bigedges | ]b < π + α}| from Indeg(EA.v , s) on Line 5, we
are left with m`, the number of edges incident to EA.v con-
tained in EA`. Setting EA`.count = m` on Line 7, we see
that EA`.count is correct.

EA`.verts: We must show that EA`.verts contains an ar-
ray of all verices contained in EA` radially ordered clockwise.
This follows from the fact that EA.verts is all vertices con-
tained in EA ordered clockwise, so when we restrict EA.verts
to EA.verts[: mid] on Line 7, we are eliminating vertices not
contained in EA`, so EA`.verts is correct.

Next, we prove Statement (i). Recall that EA.verts
orders the vertices in decreasing angle with e1. In
Line 3, ]π(EA.verts[mid]−EA.v) is the angle made by EA.v
with the middle vertex. We tilt this angle by θ/2 on Line 3
to obtain angle α. By construction of α,

]π(EA.verts[mid]− EA.v) > α.

By definition of θ, the angle α satisfies:

α > ]π(EA.verts[mid+ 1]− EA.v).

Since the array EA.verts is sorted, all vectors in the
set π(EA.verts[: mid] − EA.v) have an angle of at least α
with e1 and all vectors in π(EA.verts[: mid] − EA.v) have
an angle of at most α.

By Lines 1–2 and Line 5, we know that EA.verts contains
the first m = d 1

2
|EA.verts|e vertices in EA.verts. Hence,

Statement (ii) holds. Statement (iii) follows from State-
ments (i) and (ii). �

A.2 Proof of Theorem 8

Theorem 8 (Finding Edges Above a Vertex)
Algorithm 2 finds the sorted array of edges above v
using Θ(deg(v) logn) augmented persistence diagrams
in Θ((deg(v) logn)(logn+ d+ Π)) time.

Proof. First, we analyze the time complexity of the algo-
rithm and the number of diagrams it requires. By Lemma 5,
Line 1 can be computed in θ(logn) time (since we are
given the diagram and do not need an additional oracle
query). Storing A.verts by storing a pointer to Vv, we ini-
tialize eastack and Ev in Lines 2 and 3 in constant time.

To analyze the complexity of the loop in Lines 4–16, we
first note that this is a radial binary multi-search. When
processing an edge arc, we decide whether all edges have
been found or if we need to split the edge arc. If there is

only one edge in the arc (i.e., EA.count = 1), then this loop
is a binary search for an edge, using the angle with e1 in
the (e1, e2)-plane as the search key. When EA.count > 1,
we search for all edges, finding them in decreasing angle
order (since arcs with larger angles are added after arcs of
smaller angles). The if statement in Lines 9–12 is where the
edges are added to Ev. Note that this shortcuts additional
edge arc splitting by stopping the process once we find that
the number of edges in the arc is equal to the number of
potential vertices that can form the edges. As a result, each
edge above v contributes to O(logn) edge arcs being added
to eastack and, in the case that every other vertex is incident
to an edge with v, we have Θ(log n) edge arcs added to the
stack. All operations in the while loop are constant time,
except splitting the edge arc object in Line 13, which uses
one diagram and takes Θ(logn+ d+ Π) time.

The complexity of Algorithm 2 is dominated by
the complexity of the while loop: the algorithm
uses Θ(deg(v) logn) augmented persistence diagrams and
takes takes Θ((deg(v) logn)(logn+ d+ Π)) time.

To prove correctness of this algorithm, we state the loop
invariant for the while loop:

(i) For (v, v′) ∈ E:

• If ](v′ − v) > Ev.α1, then (v, v′) is either in Ev
or inv.

• If ](v′ − v) > Ev.α1, then v′ is in verts for some
edge arc in eastack

• ](v′ − v) 6= Ev.α1

(ii) The edge arc stack is clockwise-ordered.

This loop invariant ensures that the call to Algorithm 1 in
Line 13 has valid input and that all outgoing edges are found
when the algorithm terminates. �

A.3 Proof of Theorem 9

Theorem 9 (Edge Reconstruction) Let (V,E) be a
graph GP-immersed in Rd. Given V , Algorithm 3 recon-
structs E using Θ(m logn) augmented persistence diagrams
in Θ(n2 +m logn(logn+ d+ Π)) time.

Proof. We first analyze the runtime and diagram count for
Algorithm 3 by walking through the algorithm line-by-line.
In Line 1, we ask the oracle for the diagram in direction −e2,
which takes Θ(Π) time. In [2, Theorem 14 (Edge Recon-
struction)], simultaneously find the cyclic ordering around
all vertices in Θ(n2) time by Lemmas 1 and 2 of [13]. In
Line 3, we do that as well; however, we do not store vertices
that are above v in the array vertsabove[v], and thus this
line takes Θ(n2) time. We note that such a cyclic ordering
exists around each vertex by Assumption 1projectedindep.
Once we have vertsabove, to find the minimum angle defined
by any three vertices of V , we check all angles between vec-
tors vertsabove[v][i]− v and vertsabove[v][i+ 1]− v in Line 4
in Θ(n+m) time.

The for loop in Lines 5–8 is repeated n times, once for
each vertex in V . To determine the order of processing the
vertices in V , we follow the births in D̂0, in decreasing or-
der (since D̂0 is the lower-star filtration in direction −e2).
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Thus, finding the order takes Θ(n) time. In each itera-
tion, we compute the incoming edges (those whose other
vertex is below v) in Line 6 followed by all outgoing edges
(those whose other vertex is above v) in Line 7. By As-
sumption 1(iii), every edge is either incoming or outgo-
ing with respect to direction e2. Thus, all edges incident
to v are in E once E is updated in Line 6. By Theo-
rem 8, when processing vertex v, the call to Algorithm 2
on Line 7 takes Θ((deg(v) logn)(logn + d + Π)) time and
uses Θ(deg(v) logn) diagrams. Summing over all vertices,
we see that the loop in Lines 5–8 takes∑

v∈V

Θ((deg(v) logn)(logn+ d+ Π))

= Θ(m logn(logn+ d+ Π))

time and uses
∑
v∈V Θ(deg(v) logn) = Θ(m logn) aug-

mented persistence diagrams.
In total, Algorithm 3 takes Θ(Π) + Θ(n2) + Θ(n + m) +

Θ(n)+Θ(m logn(logn+d+Π)) = Θ(n2+m logn(logn+d+
Π)) time and uses Θ(1)+Θ(m logn) = Θ(m logn) diagrams.

Next, we prove the correctness of Algorithm 3 (i.e., that
all edges are found). In order to process vertices in order of
their heights in the e2 direction, we first sort them in Line 5.
For 1 ≤ j ≤ n, let vj be the jth vertex in this ordering.
To show that Algorithm 3 finds all edges in E, we consider
the loop invariant (LI): when we process vj , all edges with
maximum vertex height equal or less than the height of vj
are known. The LI is trivially true for v1. We now assume
that it is true for iteration j, and show that it must be
true for iteration j + 1. By assumption, all edges (vi, vj)
with 1 ≤ i < j are known, and so by Theorem 8, Algorithm 2
finds all edges (vk, vj), where k > j, and we add them to the
edge set E. Note that, by assumption, all edges (vx, vi)
for 1 ≤ i ≤ j are also already known, and so the invariant
is maintained. Thus, after the loop terminates, all edges
are found. �

B Basis

In Assumption 1(iii), we assume all vertices of the under-
lying graph are unique with respect to the first basis di-
rection e2. In this appendix, we provide details of how to
find a basis where all vertices have a unique height with
respect to the second basis direction. I.e., this appendix al-
lows us to remove one general position assumption by show-
ing it can be satisfied deterministically, at an added cost
of Θ(|P | log |P |+ d+ Π) time.

Lemma 13 (Creation of Orthonormal Basis) Given a
point set P ⊂ Rd satisfying Assumption 1(i) and Assump-
tion 1(ii), we can use two diagrams and Θ(|P | log |P |+d+Π)
time to create the orthonormal basis {b1, b2, e3, e4, . . . , ed} so
that all points of P have a unique height in direction b2.

Proof. Algorithm 6 (Tilt) of [7] takes diagrams from two
linearly independent directions s, s′ ∈ Sd−1, the point set P ,
and returns a direction s∗ in Θ(|P | log |P |+ d+ Π) time4 so
that the following properties holds for all p1, p2 ∈ P :

4While [7] does not account for diagram computation time,
there are two diagrams used in this process, hence our addition
of Θ(Π) to the total runtime.

(i) If p1 is strictly above (below) p2 with respect to direc-
tion s, then p1 is strictly above (below, respectively)
p2 with respect to direction s∗.

(ii) If p1 and p2 are at the same height with respect to
direction s and p1 is strictly above (below) p2 with
respect to direction s′, then p1 is strictly above (re-
spectively, below) p2 with respect to direction s∗.

(iii) If p1 is is at the same height as p2 with respect to both
directions s and s′, then p1 and p2 are at the same
height with respect to direction s∗.

A proof of correctness is given in [7, Lemma 32 (Tilt)].
We start with the standard basis for Rd, {e1, e2, . . . , ed},

and we replace the first two basis elements as follows. Let b2
be the direction obtain by using Tilt with s = e1, s′ = e2,
and P = P .

By Assumption 1(ii), no three points of P are colinear
when projected onto the first two coordinates. In particular,
this means no two points share the same heights in both
the e1 and e2 directions. Then, by Statements (i)-(ii) above,
the direction b2 must order all vertices of P uniquely. Using
only the first two coordinates of b2 and e1, we then perform
Gram Schmidt orthanormalization to compute the first two
coordinates of b1. More precisely, letting b

(j)
i denote the jth

coordinate of bi, we compute

(
b
(1)
1

b
(2)
1

)
=

(
1
0

)
−

〈(
b
(1)
2 b

(2)
2

)T
,
(
1 0

)T 〉
∣∣∣∣∣∣∣∣ (b(1)2 b

(2)
2

)T ∣∣∣∣∣∣∣∣2
(
b
(1)
2

b
(2)
2

)
(3)

We then set b
(j)
1 = 0 for 2 < j ≤ d, so that b1 ∈ span{e1, e2},

b2 ⊥ b1, and ||b1|| = 1. Only considering the first two coor-
dinates of b2 and e1 means this process takes constant time.
The remaining ei for 2 ≤ i ≤ d can be used to fill the basis.

Finally, we have a basis satisfying all assumptions of As-
sumption 1, namely, {b1, b2, e3, e4, . . . , ed}. �
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On the Biplanar and k-Planar Crossing Numbers

Alireza Shavali∗ Hamid Zarrabi-Zadeh†

Abstract

The biplanar crossing number of a graph G is the min-
imum number of crossings over all possible drawings of
the edges of G in two disjoint planes. We present new
bounds on the biplanar crossing number of complete
graphs and complete bipartite graphs. In particular, we
prove that the biplanar crossing number of complete bi-
partite graphs can be approximated to within a factor
better than 3, improving over the best previously known
approximation factor of 4.03. For complete graphs, we
prove an approximation factor of 3.17, improving the
best previously known factor of 4.34. We provide sim-
ilar improved bounds for the k-planar crossing number
of complete graphs and complete bipartite graphs, for
any positive integer k.

1 Introduction

An embedding (or drawing) of a graph G in the Eu-
clidean plane is a mapping of the vertices ofG to distinct
points in the plane and a mapping of edges to smooth
curves between their corresponding vertices. A planar
embedding of a graph is a drawing of the graph in the
plane such that edges intersect only at their endpoints.
A graph admitting such a drawing is called planar. A
biplanar embedding of a graph G = (V,E) is a decom-
position of the graph into two graphs G1 = (V,E1) and
G2 = (V,E2) such that E = E1 ∪ E2 and E1 ∩ E2 = ∅,
together with planar embeddings of G1 and G2. In this
case, we call G biplanar. Biplanar embeddings are cen-
tral to the computation of thickness of graphs [13], with
applications to VLSI design [14]. It is well-known that
planarity can be recognized in linear time, while bipla-
narity testing is NP-complete [12].

Let cr(G) be the minimum number of edge crossings
over all drawings of G in the plane, and let crk(G) be
the minimum of cr(G1) + · · ·+ cr(Gk) over all possible
decompositions of G into k subgraphs G1, . . . , Gk. We
call cr(G) the crossing number of G, and crk(G) the k-
planar crossing number of G. Throughout this paper,
we only consider simple drawings for each subgraph Gi,
in which no two edges intersect more than once, and
no three edges intersect at a point (such drawings are

∗Department of Computer Engineering, Sharif University of
Technology. Email: ashavali@ce.sharif.edu.
†Department of Computer Engineering, Sharif University of

Technology. Email: zarrabi@sharif.edu.

sometimes called nice drawings). Moreover, we denote
by n the number of vertices, and by m the number of
edges of a graph.

Determining the crossing number of complete graphs
and complete bipartite graphs has been the subject
of extensive research over the past decades. In 1955,
Zarankiewicz [20] conjectured that the crossing number
cr(Kp,q) of the complete bipartite graph Kp,q is equal
to

Z(p, q) :=
⌊p

2

⌋ ⌊p− 1

2

⌋ ⌊q
2

⌋⌊q − 1

2

⌋
.

He also established a drawing with that many crossings.
In 1960, Guy [8] conjectured that the crossing number
cr(Kn) of the complete graph Kn is equal to

Z(n) :=
1

4

⌊n
2

⌋⌊n− 1

2

⌋⌊
n− 2

2

⌋⌊
n− 3

2

⌋
.

Both conjectures have remained open after more than
six decades. For the biplanar case, even formulating
such conjectures seems to be hard. As noted in [4], tech-
niques like embedding method and the bisection width
method which are useful for bounding ordinary crossing
numbers do not seem applicable to the biplanar case.

In 1971, Owens [14] described a biplanar embedding
of Kn with almost 7

24Z(n) crossings. The construc-
tion was later improved by Durocher et al. [7], but
the upper bound remained asymptotically the same.
In 2006, Czabarka et al. [4] presented a biplanar em-
bedding for Kp,q with about 2

9Z(p, q) crossings. They
also proved that cr2(Kn) ≥ n4/952 and cr2(Kp,q) ≥
p(p− 1)q(q − 1)/290. Shahrokhi et al. [17] generalized
these lower bounds to the k-planar case. Pach et al. [15]
proved that for every graph G and any positive integer
k, crk(G) ≤

(
2
k2 − 1

k3

)
cr(G). This includes as a special

case the inequality cr2(G) ≤ 3
8cr(G), originally proved

by Czabarka et al. [5].

Our results. In this paper, we present several new
bounds for approximating the biplanar and k-planar
crossing number of complete graphs and complete bi-
partite graphs. Given a positive integer k and a real
constant α ≥ 1, we say that crk(Kn) is approximated
to within a factor of α, if there is an upper bound f(n)
and a lower bound g(n) on the value of crk(Kn) such

that limn→∞
f(n)
g(n) ≤ α. Here, α is called an asymp-

totic approximation factor for crk(Kn). Similarly, we
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say that crk(Kp,q) is approximated to within a fac-
tor of α, if there is an upper bound f(p, q) and a
lower bound g(p, q) on the value of crk(Kp,q) such that

limp,q→∞
f(p,q)
g(p,q) exists and is no more than α. The re-

sults presented in this paper are summarized below.

• We prove that for all p, q ≥ 30, cr2(Kp,q) ≥
p(p− 1)q(q − 1)/213. This significantly improves
the best current lower bound of cr2(Kp,q) ≥
p(p− 1)q(q − 1)/290, due to Czabarka et al. [4].
Combined with the upper bound of cr2(Kp,q) ≤
2
9Z(p, q)+o(p2q2)1 [4], our result implies an asymp-
totic approximation factor of 2.96 for cr2(Kp,q), im-
proving over the best previously known asymptotic
factor of 4.03.

• For complete graphs, we show that cr2(Kn) ≥
n4

694 , improving the best current lower bound of

cr2(Kn) ≥ n4

952 [4]. Combined with the up-
per bound of cr2(Kn) ≤ 7

24Z(n) + o(n4) due to
Owens [14], we achieve an asymptotic approxima-
tion factor of 3.17 for cr2(Kn), improving the best
previously known approximation factor of 4.34.

• We extend our lower bounds for the biplanar cross-
ing number to the k-planar case, for any positive in-
teger k. In particular, we show that for sufficiently
large n, crk(Kn) ≥ n4/(232k2), improving the best
current lower bound of crk(Kn) ≥ n4/(432k2), due
to Shahrokhi et al. [17]. Considering the upper
bound of crk(Kn) ≤ 2

k2Z(n) due to Pach et al. [15],
we obtain an asymptotic approximation factor of
7.25 for crk(Kn), improving the best current ap-
proximation factor of 13.5 available for crk(Kn).

• Finally, we prove that for any positive inte-
ger k, crk(Kp,q) ≥ p(p− 1)q(q − 1)/(73.2k2),
improving the current lower bound of
crk(Kp,q) ≥ p(p− 1)q(q − 1)/(108k2) due to
Shahrokhi et al. [17]. Combined with the upper
bound of crk(Kn) ≤ 2

k2Z(p, q) [15], we obtain
an asymptotic approximation factor of 9.15 for
crk(Kp,q), improving the best current factor of
13.5.

A summary of the asymptotic approximation factors
for the biplanar and k-planar crossing number of Kn

and Kp,q is presented in Table 1.

2 Two Combinatorial Lemmas

We first present two combinatorial lemmas which are
the main ingredients of our proofs. Our first lemma
shows how we can derive a lower bound on the k-planar
crossing number of a graph G based on a lower bound

1By definition, f(x, y) = o(g(x, y)) if limx,y→∞
f(x,y)
g(x,y)

= 0.

Table 1: Summary of asymptotic approximation factors
for the biplanar and k-planar crossing numbers.

Crossing Asymptotic
Number Approx. Factor Ref.

cr2(Kp,q)
4.03 [4]
2.96 [This work]

cr2(Kn)
4.34 [4, 14]
3.17 [This work]

crk(Kp,q)
13.5 [15, 17]
9.15 [This work]

crk(Kn)
13.5 [15, 17]
7.25 [This work]

on the (ordinary) crossing number of that graph, if G
belongs to a family of graphs closed under edge removal,
such as simple graphs and bipartite graphs.

Lemma 1 Let G be a hereditary class of graphs which is
closed under removing edges. Let f(x) = αx, for some
positive constant α, and let g(x) be an arbitrary function
of x. If for every graph G in G, cr(G) ≥ f(m) − g(n),
then crk(G) ≥ f(m)− k · g(n) for all G ∈ G and for all
positive integers k.

Proof. Fix a graph G ∈ G. Let G =
⋃k

i=1Gk be
a decomposition of G into k subgraphs Gi = (V,Ei)

such that
∑k

i=1 cr(Gi) is minimum. By the heredi-
tary property of G, each Gi is a member of G, and
hence cr(Gi) ≥ f(mi)− g(n), where mi = |Ei|. There-

fore, crk(G) =
∑k

i=1 cr(Gi) ≥
∑k

i=1(f(mi) − g(n)) =

α
∑k

i=1mi −
∑k

i=1 g(n) = f(m)− k · g(n). �

Another combinatorial tool typically used for deriving
lower bounds on the crossing number of graphs is the
counting method (see, e.g., [9, 16]). We use the following
generalization of the counting method in this paper.

Lemma 2 (Counting method) Let G be a simple
graph that contains α copies of a subgraph H. If in
every k-planar drawing of G, each crossing of the edges
belongs to at most β copies of H, then

crk(G) ≥
⌈
α

β
crk(H)

⌉
.

Proof. Let D be a k-planar drawing of G, realizing
crk(G). For each of the α copies of H, D contains a
k-planar drawing with at least crk(H) crossings. Since
each crossing is counted at most β times by our assump-
tion, the lemma statement follows. Note that a ceiling
is put in the right-hand side of the inequality, because
crk(G) is always an integer. �
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3 Lower Bounds for Complete Bipartite Graphs

In this section, we provide new lower bounds on the
biplanar crossing number of complete bipartite graphs.
In particular, we improve the following bound due to
Czabarka et al. [4] which states that for all p, q ≥ 10,

cr2(Kp,q) ≥ p(p− 1)q(q − 1)

290
.

From Euler’s formula, we have cr(G) ≥ m−3(n−2) for
simple graphs, and cr(G) ≥ m − 2(n − 2) for bipartite
graphs. Using Lemma 1, we immediately get a lower
bound of cr2(G) ≥ m− 6(n− 2) for simple graphs, and
a lower bound of cr2(G) ≥ m − 4(n − 2) for bipartite
graphs.

To establish stronger lower bounds, we need to in-
corporate more powerful ingredients. A graph is called
k-planar, if it can be drawn in the plane in such a way
that each edge has at most k crossings. It is known
that every 1-planar drawing of a 1-planar graph has
at most n − 2 crossings [6]. (Note the difference be-
tween k-planar graphs, and k-planar crossing numbers.)
Removing one edge per crossing yields a planar graph.
Therefore, every 1-planar bipartite graph has at most
3n−6 edges. Karpov [10] proved that for every 1-planar
bipartite graph with at least 4 vertices, the inequality
m ≤ 3n − 8 holds. In a recent work, Angelini et al. [2]
proved that for every 2-planar bipartite graph we have
m ≤ 3.5n − 7. We use these results to obtain the fol-
lowing stronger lower bound.

Lemma 3 For every bipartite graph G with n ≥ 4,

crk(G) ≥ 3m− (8.5n− 19)k.

Proof. Let G be a bipartite graph with n vertices and
m edges. Fix a drawing of G with a minimum number
of crossings. If m > 3.5n−7, then by [2], there must be
an edge in the drawing with at least three crossings. We
repeatedly remove such an edge until we reach a draw-
ing with b3.5n− 7c edges. Now, by Karpov’s result,
there must be an edge in the drawing with at least two
crossings. We repeatedly remove such an edge until we
reach a drawing with 3n−8 edges. Let G′ be the bipar-
tite graph corresponding to the remaining drawing. We
know by Euler’s formula that cr(G′) ≥ (3n−8)−2(n−2).
Therefore,

cr(G) ≥ 3(m− b3.5n− 7c) + 2(b3.5n− 7c − (3n− 8))

+ (3n− 8)− 2(n− 2)

≥ 3m− b3.5n− 7c − (3n− 8)− 2(n− 2)

≥ 3m− 8.5n+ 19.

Applying Lemma 1 yields crk(G) ≥ 3m − (8.5n −
19)k. �

For complete bipartite graphs, Lemma 3 implies that
cr2(Kp,q) ≥ 3pq − 17(p + q) + 38, for all p, q ≥ 2. We
use Lemma 3 along with a counting argument to obtain
the following improved bound on cr2(Kp,q).

Theorem 4 For all p, q ≥ 30,

cr2(Kp,q) ≥ p(p− 1)q(q − 1)

213
.

Proof. Using the counting method (Lemma 2) for Kp,p

and Kp+1,p we have

cr2(Kp+1,p) ≥
⌈
p+ 1

p− 1
cr2(Kp,p)

⌉
.

This is because Kp+1,p contains p+1 copies of Kp,p, and
each crossing realized by two edges, belongs to at most(
p−1
p−2
)

= p− 1 of these copies. Using a similar argument
for Kp+1,p and Kp+1,p+1, we get

cr2(Kp+1,p+1) ≥
⌈
p+ 1

p− 1

⌈
p+ 1

p− 1
cr2(Kp,p)

⌉⌉
. (1)

By Lemma 3, cr2(K15,15) ≥ 203. Plugging into (1),
yields cr2(K16,16) ≥ 266, Now, we use the recurrence
relation (1) iteratively from p = 16 to 30 to get

cr2(K30,30) ≥ 3554. (2)

We can now apply the counting method on K30,30 and
Kp,q to obtain

cr2(Kp,q) ≥
(
p
30

)(
q
30

)(
p−2
28

)(
q−2
28

) cr2(K30,30)

=
p(p− 1)q(q − 1)

30× 29× 30× 29
cr2(K30,30).

Plugging (2) in the above inequality yields the theorem
statement. �

Remark. The exact value of the denominator obtained
in the above proof is around 212.97. One may continue
applying the recurrence relation (1) to obtain better
bounds for Kp,p, when p > 30. This leads to a slightly
improved constant in the denominator, but it does not
seem to reduce the constant below 212. Indeed, the de-
nominator seems to converge to a value around 212.4,
for large values of p.

4 Biplanar Crossing Number of Complete Graphs

We now consider the biplanar crossing number of com-
plete graphs. Czabarka et al. [4] used a probabilistic
method to prove that for large values of n,

cr2(Kn) ≥ n4

952
.

We improve this lower bound using the counting
method.
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Theorem 5 For all n ≥ 24,

cr2(Kn) ≥ n(n− 1)(n− 2)(n− 3)

698
.

Proof. We know from [1] that for every G with n ≥ 3,
cr(G) ≥ 5m− 139

6 (n− 2). Applying Lemma 1, we get

cr2(G) ≥ 5m− 139

3
(n− 2).

This in particular implies cr2(K25) ≥ 435. Now, we use
the counting method (Lemma 2) on K25 and Kn to get

cr2(Kn) ≥
(
n
25

)
cr2(K25)(
n−4
21

) ≥ n(n− 1)(n− 2)(n− 3)
25×24×23×22

435

,

which implies the theorem statement. �

We can slightly improve this result, using an iterative
counting method similar to what we used in the previous
section.

Theorem 6 For large values of n,

cr2(Kn) ≥ n4

694
.

Proof. Using the counting method (Lemma 2) for Kn

and Kn+1 we have

cr2(Kn+1) ≥
⌈

(n+ 1)cr2(Kn)

n− 3

⌉
. (3)

Starting from cr2(K25) ≥ 435, we use the recurrence
relation (3) iteratively from n = 25 to 50 to obtain
cr2(K50) ≥ 7965. Now, we use the counting method on
K50 and Kn to get

cr2(Kn) ≥
(
n
50

)
cr2(K50)(
n−4
46

)
≥ n(n− 1)(n− 2)(n− 3)

50×49×48×47
7965

≥ n(n− 1)(n− 2)(n− 3)

693.94
,

which implies cr2(Kn) ≥ n4

694 for sufficiently large n. �

5 k-Planar Crossing Number of Kn and Kp,q

In this section, we provide improved lower bounds on
the k-planar crossing number of complete bipartite and
complete graphs. Shahrokhi et al. [17] proved that for
any positive integer k, and sufficiently large integers p,
q, and n:

crk(Kp,q) ≥ p(p− 1)q(q − 1)

108k2
,

and

crk(Kn) ≥ n(n− 1)(n− 2)(n− 3)

432k2
.

We improve these results using the ideas developed in
Sections 3 and 4.

Theorem 7 For all p, q ≥ 8k + 2,

crk(Kp,q) ≥ p(p− 1)q(q − 1)

73.2k2
.

Proof. We apply the counting method (Lemma 2) on
K8k+2,8k+2 and Kp,q. By Lemma 3, for every bipartite
graph G, crk(G) ≥ 3m− (8.5n− 19)k. This yields

crk(K8k+2,8k+2) ≥ 56k2 + 43k + 12.

Hence,

crk(Kp,q) ≥
(

p
8k+2

)(
q

8k+2

)
crk(K8k+2,8k+2)(

p−2
8k

)(
q−2
8k

)
=
p(p− 1)q(q − 1)crk(K8k+2,8k+2)

(8k + 2)(8k + 1)(8k + 2)(8k + 1)

≥ p(p− 1)q(q − 1)
(8k+2)2(8k+1)2

56k2+43k+12

≥ p(p− 1)q(q − 1)
512
7 k2

,

which completes the proof. �

Theorem 8 For all n ≥ 14k − 3,

crk(Kn) ≥ n(n− 1)(n− 2)(n− 3)

232k2
.

Proof. We use the counting method (Lemma 2) for
K14k−3 and Kn. Recall that for every G with n ≥ 3,
cr(G) ≥ 5m − 139

6 (n − 2) [1]. Therefore, crk(G) ≥
5m− 139

6 (n− 2)k by Lemma 1. Thus,

crk(K14k−3) ≥ 497

3
k2 − 775

6
k + 30.

Therefore,

crk(Kn) ≥
(

n
14k−3

)
crk(K14k−3)(
n−4

14k−7
)

=
n(n− 1)(n− 2)(n− 3)crk(K14k−3)

(14k − 3)(14k − 4)(14k − 5)(14k − 6)
,

which implies the theorem. �

6 Conclusion

In this paper, we presented several improved bounds
on the biplanar and k-planar crossing number of com-
plete graphs and complete bipartite graphs. An obvious
open problem is whether the asymptotic approximation
factors presented in this paper can be further improved.
Obtaining similar bounds on the k-planar crossing num-
ber of other graph classes is an intriguing open problem.
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Crossing numbers: bounds and applications. Intuitive
geometry, 6:179–206, 1995.
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A Constant Time Algorithm for Solving Simple Rolling Cube Mazes

Randal Tuggle∗ Davis Murphy† Nicholas Lorch‡

Abstract

In a rolling cube maze, a cube is placed on a board and
the task is to roll it to a desired final space. Many vari-
ations of this puzzle exist. In this paper, we establish
formal notation regarding rolling cube mazes and solve
a simple variant: find a shortest path that puts a desired
label on top at the final space. Utilizing several sym-
metries and reductions, we then produce a description
of the solution path in constant time. This provides a
framework for future researchers to develop algorithms
to efficiently solve more complex mazes.

1 Introduction

Rolling cube puzzles were first popularized by Martin
Gardner [3]. They consist of a labelled cube on a board
with some task in mind. Mathematician Robert Ab-
bott built on this to create a “Rolling Cube Maze”,
which considers an initial space and a final space, and
asks to find a path to the final space. Rolling Cube
Mazes have many variations, two of which are shown in
Figure 1. In the left image, every space is labelled and
a condition is applied such that when the cube lands
on that space, the space’s label must be face up before
flipping onto that space (the spaces with asterisk mean
any label is allowed). In the right image, there are no
labelled spaces, but instead an initial and final space for
the cube to start and end on respectively.

Figure 1: Example Rolling Cube Mazes (Images from
Buchin et al. [2])

∗Department of Computer Science, University of North Car-
olina at Chapel Hill, rtuggle99@gmail.com

†Department of Mathematics, Berry College,
dkmurphy@outlook.com

‡Department of Statistics, University of Georgia,
lorchnd@gmail.com

The rolling cube mazes we consider in this paper have
a labelled final space and no blocked spaces. The aim
is to find a sequence of moves that takes a cube from
an initial position (xi, yi) to a final position (xf , yf ) in
the fewest moves such that the cube visits (xf , yf ) only
on the final move and the desired label ℓ ends on top.
An important distinction to note is that in our problem,
the final label must be face up after flipping onto the
final space, not before.

In Section 2, we define notation. In Section 3, we
present four techniques that allow us to greatly sim-
plify the problem. In Section 4, we describe solutions
for (xi, yi) and (xf , yf ) that are sufficiently far apart.
In Section 5, we describe solutions for all other (xi, yi)
and (xf , yf ). Finally, in Section 6, we prove that the
complexity of our algorithm is O(1). We can formally
define the problem as follows:

Problem: Simplified Rolling Cube (SRC).
Instance: board height m, board width n,
initial space (xi, yi), final space (xf , yf ), and
desired final label ℓ, with the assumption that
the cube starts in the standard orientation de-
scribed in Section 2.1.
Solution: A string description of moves that
takes the cube from initial space (xi, yi) to final
space (xf , yf ) with desired label ℓ on top in the
fewest moves without crossing over (xf , yf ), or
False if there is no solution.

2 Notation

2.1 Describing Faces and Assigning Labels

First, we name the faces of our cube according to the
net provided. We define the North face to be the face
that points North, the East face to be the face that
points East, and so on. Then we define the Top face
and Bottom face to be the face pointing away from and
touching the board respectively. We assign labels to
the starting faces of our cube according to the labeling
of a standard right-handed die and, without loss of
generality, create a standard starting orientation,
pictured in Figure 2:
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Bottom
face

South
face

Top
face

West
face

East
face

North
face

6

3

1

2 5

4

Figure 2: Face descriptions and starting labels

2.2 Describing Moves and Paths

We define North (N), South (S), East (E), and West
(W) moves as flipping the cube onto the space immedi-
ately north/south/east/west of the cube’s current posi-
tion respectively. We also define an identity (I) move
which leaves the cube in its current orientation and po-
sition. We represent a sequence of moves from one space
to another as a Generalized Path String, or GPS. We
can use the following grammar rules to define a GPS
with Z being the start symbol

Z → (M){EXP}Z |MZ | ϵ
M →MM | I | N | E | S |W

EXP→ ∆+D | ∆−D | D
∆→ ∆x | ∆y

D → DD | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

We define ∆x = |xf − xi| and ∆y = |yf − yi|. When
we return the string, however, the string contains the
literal characters “∆x” and “∆y” rather than the num-
bers they represent. We do this because ∆x and ∆y

can be arbitrarily large, and we want the length of the
string to be bounded by a constant. ∆ is either ∆x

or ∆y. EXP is an expression of the form ∆ plus or
minus some D ∈ N (our algorithm never uses D > 4).
EXP evaluates to some number d ∈ N. M is simply
any sequence of the five basic moves described above.
When we have (M){EXP}, we take this to mean that
we perform the moves M in parentheses consecutively
d times.

1

3

4

25
4

3

2 5 11

1

1

→←
↑

↓

N

S

EW
I

1

↑
3 → 2

↑
6 → 4

↓
2

↓
3←6

Figure 3: The moves N, E, S, W, I, and the path ‘NE-
NESSW’ visualized

3 Simplifying the Problem

In this section, we introduce several techniques and a
partitioning that together simplify our problem signifi-
cantly. The first technique is “face-saving” which allows
us to keep track of our desired final top label over arbi-
trarily long distances. The second technique is “Quad-
rant Mapping” which allows us to assume that xf ≥ xi

and yf ≥ yi. The third technique is a series of reduc-
tions which allows us to focus only on solving for ℓ = 1
or ℓ = 6. Following these techniques, we partition the
displacements into two sets, large and small, which we
handle differently.

3.1 Face Saving

In later proofs, we utilize the technique of “saving” the
desired final top label onto one of the two faces that are
unchanged by moving only along a single axis. This al-
lows us to move the cube an arbitrary number of moves
in either direction along that axis and still know exactly
the face on which the desired final label is saved.

Definition 1 A label ℓ is said to be saved with re-
spect to an axis A if and only if moving along A keeps
label ℓ on the same face.

1
3

2 5

4 →
2
3

6 1

4 →
6
3

5 2

4 →
5
3

1 6

4 →
1
3

2 5

4 →
. . .
→

?
3

4

↓
4

↑
3

Figure 4: Saving 4 on the North face with respect to
the E-W axis

3.2 Quadrant Mapping

We say (xf , yf ) is in quadrant 1 if xf ≥ xi and yf ≥ yi,
in quadrant 2 if xf < xi and yf ≥ yi, in quadrant 3 if
xf < xi and yf < yi, and in quadrant 4 if xf ≥ xi and
yf < yi.

Q3 Q4

Q2 Q1

1

Figure 5: Quadrants
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We can perform reflections to create a (x′
f , y

′
f ) and ℓ′

that fall in quadrant 1 via the following steps:

• Step 1: start at (xi, yi) in the standard orienta-
tion and show (xf , yf ) with desired label ℓ where
(xf , yf ) is

• Step 2: reflect the board across N-S axis if (xf , yf )
began in Q3 or Q4

• Step 3: reflect the board across E-W axis if (xf , yf )
began in Q3 or Q2

• Step 4: relabel cube to be in standard orientation
and find ℓ′ corresponding to the new labeling.

As seen in the pseudo code for mapToQuad1 in the
appendix, we can define a tuple q = (xi < xf , yi < yf )
in which the first or second element of q is true if we are
reflecting over the N-S or E-W axis respectively. After
we generate our GPS, we can switch the E’s with W’s
and N’s with S’s as needed to find an analogous path
for the original quadrant. This conversion can be seen
in the pseudo code for convGPS in the appendix.

3.3 Reductions

We can reduce the number of cases by noting certain
symmetries. First, any path to (xf , yf ) ending on ℓ = 2
on an m × n board is analogous to a path to (yf , xf )
ending on ℓ = 3 on an n×m via swapping N ′s with E′s
and S′s with W ′s. The ℓ = 4 and ℓ = 5 cases share the
same symmetry. The pseudo code for handling labels
2 and 5 is shown in the appendix. In the remainder of
this section, we reduce the ℓ = 3, 4 cases to either the
ℓ = 1 or ℓ = 6 case.

Lemma 1 Let ℓ = 3, 4. For any GPS G that places ℓ
on top in k moves, there exists a GPS that begins with
(E){i}N or (E){i}S or (W ){i}N or (W ){i}S for some
i ∈ {0, 1, 2, 3} that also places ℓ on top at (xf , yf ) in k
moves.

The idea for the reduction is that if there is some
GPS G that places ℓ on top at (xf , yf ), then there exists
some GPS that begins with i ∈ {0, 1, 2, 3} E or W moves
followed by a N or S move that places ℓ on the top or
bottom at some (xr, yr) and places ℓ on top at (xf , yf )
in the same amount of moves as G.

Theorem 2 The ℓ = 3 and ℓ = 4 cases can reduce to
the ℓ = 1, 6 cases in constant time

3.4 Displacement Types

For ease of analyzing displacements, we denote the dis-
placements before the reduction to ℓ = 1 or ℓ = 6 as ∆x

and ∆y and the displacements after the reduction as ∆′
x

and ∆′
y. That is, ∆x = ∆′

x + δx and ∆y = ∆′
y + δy for

some natural numbers δx, δy. Furthermore, we define
(xr, yr) to be the initial space after the reduction.

We denote the bottom left square of the m×n boards
as (1, 1). Note that if we ignore ending labels, going
from (xr, yr) to (xf , yf ) takes at least |xr−xf |+|yr−yf |,
or (∆′

x +∆′
y), moves. Unfortunately, finding a path to

(xf , yf ) with label ℓ on top in (∆′
x +∆′

y) moves is not
always possible.

For ℓ = 1, 6, we define threshold values ∆row,∆col for
∆′

y,∆
′
x in Table 1 to separate our problem into cases

requiring different GPS templates. Note that there are
two sets of threshold values for ℓ = 6. This is because
we define two possible paths for ℓ = 6 in Section 4, one
starting with a N move and one starting with an E.

ℓ
# of rows apart # of cols apart

(∆row) (∆col)

1 2 2
6N 4 2
6E 2 4

Table 1: Threshold values for displacement categories

We can now define the large displacements (Section
4) to be the cases where ∆′

y ≥ ∆row and ∆′
x ≥ ∆col and

small displacements to be all remaining cases.

4 Large displacements

To begin, we list the shortest string of moves required
to get ℓ = 1, 6 saved on either the North or East face:

ℓ Prefixes Face ℓ is on

1 N or E North or East
6 EEN or NNE North or East

Table 2: Prefixes to use for ℓ = 1, 6

Once ℓ is saved on either the North face or the East
face on some space, we can follow one of the paths de-
picted in the figure below:

?
ℓ ℓ
→

ℓ
. . .→ ?

?

→

↑

→
?

↑

↑

ℓ

ℓ
...

?ℓ ℓ

? ℓ

ℓ

↑
ℓ

...

↑
? ?

↑
?
ℓ ↑→

→ →
ℓ

. . .

ℓ

?

ℓ

Figure 6: Large-displacement method once ℓ is saved on
the North face (left) or East face (right)
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Then, to generate a GPS, we can apply the aforemen-
tioned prefix to the path found from this face saving
process. Doing this, we can describe the solutions for
large displacements:

ℓ Generalized Path Strings

1 N (E){∆′
x − 2}NE(N){∆′

y − 2}E
6N NNE (N){∆′

y − 4}EN(E){∆′
x − 2}N

6E EEN (E){∆′
x − 4}NE(N){∆′

y − 2}E

Table 3: Large Displacement GPS’s

An important observation is that the number of
moves in these GPS’s is always ∆′

x + ∆′
y. Thus, these

GPS’s use the fewest moves to get from (xr, yr) to
(xf , yf ) with ℓ on top.

5 Small Displacements

When dealing with large displacements we did not need
to worry about potentially rolling off the board or us-
ing a GPS that contains a value such as ∆′

x − 2 which
may now be negative. Thus, we must come up with
a different way to find solutions when ∆′

x < ∆col or
∆′

y < ∆row.

5.1 Breadth First Search Approach

One possible approach is to check all possible paths to
(xf , yf ) using a brute force algorithm and pick the short-
est one. Using this approach, it would be impossible to
find solutions in O(1) time since since the complexity
depends on m and n. So we do not use this approach
in our actual algorithm. However, we use this approach
to prove that some of our results are in fact solutions
of fewest moves. In order to brute force all paths, we
create a graph with one vertex for each possible position
and orientation combination, or state [2], of a cube on
a given board. Edges are between two vertices if their
corresponding states are one N, E, S, or W move apart.

5.2 Systematic Approach

We begin our systematic approach by proving the fol-
lowing Theorem.

Theorem 3 Assume there exists a GPS that begins at
(xi, yi) on an m× n board and places ℓ on top at (xi +
∆x, yi + ∆y) in ∆x + ∆y + 2k moves for some k ∈ N.
Then for all (xc, yc) such that xc ≥ k and yc ≥ k on any
board large enough to allow (xc, yc) and (xc +∆x, yc +
∆y) to exist, all GPS’s from (xc, yc) to (xc+∆x, yc+∆y)
that place ℓ on top in the fewest moves are contained
within an (∆y +2k)× (∆x +2k) rectangle such that the
bottom left corner of this rectangle is (xc−k, yc−k) and
the upper right corner is (xc +∆x + k, yc +∆y + k).

The idea with Theorem 3 is that once we have a GPS
for a given ∆′

x and ∆′
y, we can get an upper bound for

the size of boards we need to check in order to find a
GPS of fewest moves for the given ∆′

x and ∆′
y regardless

of board size.

5.2.1 Symmetry

Because ℓ = 1, 6 begins on the top and bottom faces
respectively, any path to (xf , yf ) with ∆′

y > ∆′
x is anal-

ogous to a path to (yf , xf ) with ∆′
x > ∆′

y, just by swap-
ping Ns with Es and Ss with Ws. Therefore, for the
following cases, we assume ∆′

x ≥ ∆′
y.

→ → →
↑
→

↑

↑

↑
→
↑

1

3

6

4 2

1

2 6 5

3 1

→ → →
↑
→
↑

↑

↑

↑

↑
→
↑
→ →

1

3

6

4 2

1 3 6

2 6 5

3 1

2

6

Figure 7: ℓ = 1 (left) and ℓ = 6 (right) GPS symmetry
about diagonal

We now handle the ℓ = 1, 6 small displacement cases.
We begin by defining the function χ such that χ(ℓ) is the
number of E moves required to place ℓ on top from the
starting orientation. For ℓ = 1, 6 we find that χ(1) = 0
and χ(6) = 2. These are the main cases we use for small
displacements:

1. ∆′
x = 0 and ∆′

y = 0

2. ∆′
x ≡4 χ(ℓ)

3. ∆′
y = 0

4. ∆′
y = 1

5. ∆′
y = 2

6. ∆′
y = 3

To handle the small displacement cases we go through
the above enumeration in order, handling a case only if
the previous case has not been met.

5.2.2 ∆′
x = 0 and ∆′

y = 0

When ℓ = 1, return I. Our formal statement of SRC
allows the cube to be on the final space only when the
correct label is on the top face, so return False when
ℓ = 6.
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5.2.3 ∆′
x ≡4 χ(ℓ)

By the definition of χ, using 4k + χ(ℓ) for all k ∈ Z
consecutive E moves places ℓ on top when our cube is in
starting orientation. Thus, when ∆′

x ≡4 χ(ℓ), a solution
can be obtained by rolling to (xf −1, 1) to save ℓ on the
West face, then performing ∆′

y N moves, and finally
placing ℓ on top via an E move as shown in Figure 8.

... 1 → 2 → 6→ 51

↑
...

↑
51 → 1

... 1→ 26

↑
...

↑
2 →6 6

Figure 8: ℓ = 1 (left) and ℓ = 6 (right) when ∆′
x ≡4 χ(ℓ)

5.2.4 ∆′
y = 0

Theorem 4 All paths from (xi, yi) to (xf , yf ) require
∆x +∆y + 2k moves for some k ∈ N.

Theorem 5 When m > 1, ∆′
y = 0, ∆′

x > χ(ℓ), and
∆′

x ̸≡4 χ(ℓ), the shortest path from (xr, yr) to (xf , yf )
with final label ℓ = 1, 6 is exactly ∆′

x +∆′
y + 2 moves.

It follows that when ℓ = 1, going either N or S then E
as far as needed and then finally S or N, we get a GPS
of fewest moves. We can also do something similar for
ℓ = 6 as shown in Figure 9:

1
↑
3
1
→. . .→→ ?

1

↓
1

1
↓
4
1
→. . .→ ?

1

↑
1

1
↑
3 →. . .→ ?

↓
1 → ? → 6

1
↓
4 →. . .→ ?

↑
1 → ? → 6

Figure 9: ℓ = 1 (top) and ℓ = 6 (bottom) when m > 1,
∆′

x ̸≡4 χ(l) and ∆′
y = 0

When ℓ = 6 there is not room to do this when ∆′
x = 1.

Using the brute force algorithm, we checked on boards
up to size 7 × 8 and found that the GPS’s listed in
small1case4 and small6case4 in the appendix were the
shortest paths that place ℓ on top at (xf , yf ). We know
by Theorem 3 that these are the shortest paths.

5.2.5 ∆′
y = 1

Theorem 6 For the ℓ = 1, 6 small displacement case,
when ∆′

y = 1, ∆′
x > 1 and ∆′

x ̸≡4 χ(ℓ), there is no path
that places ℓ on top at (xf , yf ) in ∆′

x +∆′
y moves.

Notice that the paths in Figure 10 place ℓ on top in
∆′

x + ∆′
y + 2 moves. Therefore, by Theorem 6, these

GPS’s are the shortest paths that place ℓ on top at
(xf , yf ) for ℓ = 6 when ∆′

x > 1 and for ℓ = 1 when
∆′

x > 3.

1

↑
3 → . . . → ?

↓
1 → ? 1

?

↑
1

1 1

6
→

1 ?
→

1→

1
→

26

6

↑
3 →

2
6

↓
6

→ . . . → ?
6

↑
6

Figure 10: ℓ = 1 (left) and ℓ = 6 (right) when m > 1,
∆′

x ̸≡4 χ(ℓ) and ∆′
y = 1

What remains of the ∆′
y = 1 case is when ℓ = 1

and ∆′
x ≤ 3 or when ℓ = 6 and ∆′

x = 1. Applying
our brute force algorithm, we found the paths required
∆′

x + ∆′
y + 6 moves when ℓ = 1, 6,∆′

x = 1. Thus by
Theorem 3, we need to check only boards up to size
8× 8 to find solutions of fewest moves.

5.2.6 ∆′
y = 2

Note that if ℓ = 1, we are not in the small displacement
case. Therefore, ℓ = 6. We can use the GPS depicted
in Figure 11:

1
↑

3
6

→ . . . → ?
6

↑
6

Figure 11: ℓ = 6 when ∆′
y = 2

5.2.7 ∆′
y = 3

The only time we are in this case is when ℓ = 6 and
∆′

x = 3. The GPS depicted in Figure 12 is of fewest
moves:

1

↑
3 → 2

↑
6 → 4

↓
2 → 1

↑
4

↑
6

Figure 12: ℓ = 6 when ∆′
y = ∆′

x = 3
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5.2.8 Putting the cases together

The pseudo code small1 and small6 put the small dis-
placement cases together via the helper functions seen
in the appendix.

6 Finalized Approach

The main approach to solving a rolling cube maze is as
follows. Reduce inputs to a quadrant 1 problem, reduce
the inputs to a ℓ = 1 or ℓ = 6 problem, determine
the displacement type, create a GPS, and invert the
quadrant mapping to return a final GPS. Pseudo code
can be seen in the appendix.

Theorem 7 The length of the GPS returned by SRC is
bounded by a constant and is generated in constant time

7 Future Work

We believe that future work can now easily be done on
other rolling cube mazes by utilizing the fact that a path
from any space to any other space with a desired label
can be generated in constant time. We implemented
SRC and created the following visualization available
on github to aid any potential researchers interested in
exploring mazes with blocked spaces.
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Appendix

Proofs

Proof. (Lemma 1) Assume ℓ = 3, 4 and assume some GPS
G gets ℓ on top in k moves. Since ℓ is saved with respect
to the E −W axis, there must be a N or S in G in order to
get ℓ on top. Without loss of generality, assume a N move
exists in G. The N move is performed after some amount of

E and/or W moves. As stated previously, an E move can
be thought of as a negative W move. Thus, the sequence of
E and W moves prior to the first N move can be written
entirely as E’s or entirely as W ’s. Without loss of generality,
assume the moves can be represented entirely by E’s. That
is, the GPSG can be written as (E){c}NGs for some c where
Gs is the substring of G after the first N move.

We can write c ≡4 i for some i ∈ {0, 1, 2, 3}. Note (E){c}
will keep ℓ face saved. Then N will put ℓ = 3, 4 on either
the top or bottom respectively. Note that if we instead did
(E){i}N first, the same would be true. Then (E){c − i}
would keep ℓ = 3 on top and ℓ = 4 on bottom because
every four E moves puts the labels back on the faces they
started on. Thus the GPS G = (E){c}NGs can be written
as (E){i}N(E){c− i}Gs.

An analogous argument could have been made if G used
W moves rather than E moves at the beginning. Further-
more, an analogous argument could be made if the move
before Gs were a S move rather than a N move. b

Proof. (Theorem 2) As noted in the proof of Lemma 1,
when ℓ = 3, a N or S move must be performed at some
point in order to get label ℓ on top. Note that when a first
N move is performed, ℓ = 3 is on top at some (xr, yi + 1)
and this can be treated as an instance of the ℓ = 1 case,
which is SRC(m,n, xr, yi+1, xf , yf , 1). Similarly, note that
when a first S move is performed, ℓ = 3 is on bottom and
this can be treated as an instance of the ℓ = 6 case. By
Lemma 1, it follows that we only need to consider any paths
that begin with 0,1,2, or 3 consecutive E’s/W’s followed by
a N or S. Since we perform moves before reducing to ℓ = 1
or ℓ = 6, we are changing what ∆x and ∆y are. To take
care of this, we can define a helper function SRCReduction
which takes the same inputs as SRC along with two inputs
δx and δy so that the number of moves in the returned GPS
is correct. Also, since the E moves or W moves may change
the quadrant (xf , yf ) is in, we need to do quad mapping
again before SRCReduction handles the ℓ = 1, 6 case. This
is not a problem because when ℓ = 1, 6, quad mapping does
not change the desired label. We will have that δx is the
difference of |xf −xi| and |xf −xr| and δy is the difference of
|yf−yi| and |yf−yr| where (xr, yr) is the position of the cube
when the reduction is called. The body of SRCReduction
can be seen in the appendix. Following these results, we get
the pseudo code handle3 in the appendix, which handles the
ℓ = 3 case. Since ℓ = 3 reduces to the ℓ = 1 or ℓ = 6 case
and the ℓ = 2 case is analogous to the ℓ = 3 case, it follows
that the ℓ = 2 case reduces to the ℓ = 1 or ℓ = 6 case. By
an analogous argument, we can handle the ℓ = 4, 5 cases, as
seen by the pseudo code for handle4 in the appendix. b

Proof. (Theorem 3) Assume there exists a GPS starting at
(xi, yi) and placing ℓ on top at (xf , yf ) in ∆x + ∆y + 2k
moves on an m× n board. Now consider a GPS G of fewest
moves from (xc, yc) to (xc + ∆x, yc + ∆y) ending with the
same ℓ on top, for some xc > k and yc > k. Assume for the
sake of contradiction that G requires moving west or south
of (xc−k, yc−k) or north or east of (xc+∆x+k, yc+∆y+k).
Without loss of generality, assume G requires moving west of
(xc−k, yc−k). That is, there exists a position (xc−k−1, yd)
for some yd that is visited by G. Note that at a minimum,
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this requires |(xc)−(xc−k−1)| = k+1 moves. Then, at the
very minimum, going from this space (xc − k− 1, yd) to the
ending space (xc+∆x, yc+∆y) requires (xc+∆x)−(xc−k−
1)+(yc+∆y)−(yd) = ∆x+∆y+k+1+yc−yd moves. Thus
in total G requires (k + 1) + (∆x +∆y + k + 1+ yc − yd) =
∆x + ∆y + 2(k + 1) + yc − yd ≥ ∆x + ∆y + 2(k + 1) + 0
moves. Thus G requires more than ∆x + ∆y + 2k moves.
This is a contradiction because we assumed G required the
fewest moves and we already know a path of ∆x +∆y + 2k
exists. b

Proof. (Theorem 4) This statement is equivalent to Theo-
rem 1 in “Research on the Minimum Moves of Rolling Cube
Puzzles” [4]. b

Proof. (Theorem 5) Consider a path from (xr, yr) to
(xf , yf ) with final label ℓ = 1, 6 on a board with m > 1,
such that ∆y = 0, ∆′

x > χ(ℓ) and ∆′
x ̸≡4 χ(ℓ). Since ∆′

y = 0
and ∆′

x ̸≡4 χ(ℓ), in order to place ℓ on top at (xf , yf ), a N
and S move must be performed eventually. Thus, a solution
must have more than ∆′

x +∆′
y moves. By Theorem 4, then,

we know any solution must be at least ∆x +∆y + 2 moves.
Because m > 1, there is either a row above (xr, yr) or be-
low (xr, yr). If there exists a row above (xi, yi), the GPS
N(E){∆′

x−χ(ℓ)}S(E){χ(ℓ)} places ℓ on top in ∆x+∆′
y +2

moves. Similarly, if there exists a row below (xr, yr),
the GPS S(E){∆′

x − χ(ℓ)}N(E){χ(ℓ)} places ℓ on top in
∆′

x + ∆′
y + 2 moves. Thus, the shortest path under these

conditions is exactly ∆′
x +∆′

y + 2 moves. b

Proof. (Theorem 6) Consider the ℓ = 1, 6 small displace-
ment case and assume ∆′

y = 1, ∆′
x > 1 and ∆′

x ̸≡4 χ(ℓ).
Note that a path to (xf , yf ) using ∆′

x + ∆′
y moves must

have exactly 1 N move, which will come after c E moves and
be followed by ∆′

x − c E moves. If c ≡4 0, 2, we find that
ℓ = 1 will be saved on the North or South faces, respectively,
and ℓ = 6 will be saved on the South or North faces, respec-
tively. This means that the remaining E moves cannot get
ℓ = 1, 6 on the top face. If c ≡4 1, 3, we see that ℓ = 1
will be on the East and West faces, respectively, and remain
there after the N move. Similarly, ℓ = 6 will be on the West
and East faces, respectively, and will also remain there after
the N move. For both c ≡4 1, 3, the label ℓ will only be on
top when the total number ∆′

x of E moves is of the form
4k + χ(ℓ). Since we know by initial assumption that this is
not true of ∆′

x, we see that using only ∆′
x+∆′

y moves leaves
us unable to place ℓ = 1 or ℓ = 6 on top at (xf , yf ). Thus,
by Theorem 4, we need at least ∆x +∆′

y +2 moves to place
ℓ = 1, 6 on top at (xf , yf ). b

Proof. (Theorem 7) To avoid the returning a string whose
length depends on the number of digits in |xf − xi| and
|yf − yi|, we return a GPS that uses the literal characters
∆x and ∆y. Note further that δx and δy are at most 3, so
that is why we can use the numbers they represent rather
than also using the literal characters. Therefore, the length
of the GPS returned is bounded by a constant.
We have shown that we perform quadrant mapping and re-
duce any instance of the problem to the ℓ = 1, 6 cases in
constant time. Clearly, the large displacement case can be
handled in constant time. As for the small case, as stated

in Section 5.1, the complexity of the brute force algorithm
used in some of our proofs depends on m and n. How-
ever, this algorithm is only necessary for a finite number of
scenarios. We have provided the output for each of these
scenarios and thus our proposed algorithm finds these solu-
tions by performing a simple lookup. Finally, we can invert
the quadrant mapping in constant time. Therefore, the final
GPS is generated in constant time. b

Algorithms

def mapToQuad1 (m,n,xi,yi,xf,yf,ℓ):
set newL = ℓ and set q = [0,0]
if xf < xi:

q[0] = 1
if ℓ = 2:

newL = 5
elif ℓ = 5

newL = 2
if yf < yi:

q[1] = 1
if ℓ = 3:

newL = 4
elif ℓ = 4

newL = 3
newXi = (n - xi) + 1 if q[0] == 1 else xi
newYi = (m - yi) + 1 if q[1] == 1 else yi
newXf = (n - xf) + 1 if q[0] == 1 else xf
newYf = (m - yf) + 1 if q[1] == 1 else yf
return (newXi ,newYi),(newXf,newYf),newL,q

def convGPS (q,GPS):
if q[0] == 1

switch all Es and Ws in GPS
if q[1] == 1

switch all Ns and Ss in GPS
return GPS

def handle2(m,n,xi,yi,xf,yf):
return handle3(n,m,yi,xi,yf,xf) swapping Ns with Es, Ss with Ws,
and ∆x with ∆y

def handle5(m,n,xi,yi,xf,yf):
return handle4(n,m,yi,xi,yf,xf) swapping Ns with Es and Ss with Ws,
and ∆x with ∆y

def SRCReduction(m,n,xr,yr,xf,yf,ℓ,δx, δy):
(m,n,xr,yr,xf,yf,ℓ,q) = mapToQuad1(m,n,xr,yr,xf,yf,ℓ)
if q[0] == 1:

δx = −δx
if q[1] == 1:

δy = −δy
if ℓ == 1:

GPS = handle1(m,n,xr,yr,xf,yf,δx, δy)
elif ℓ == 6:

GPS = handle6(m,n,xr,yr,xf,yf,δx, δy)
return ConvGPS(q,GPS)

def handle3(m,n,xi,yi,xf,yf)
initialize a list of paths
for i in [0,1,2,3]:

path1 = (E){i}N +
SRCReduction(m,n,xi + i,yi+1,xf,yf,1,
||xf − xi| − |xf − (xi + i)||, ||yf − yi| − |yf − (yi + i)||)
path2 = (E){i}S +
SRCReduction(m,n,xi + i,yi-1,xf,yf, 6,
||xf − xi| − |xf − (xi + i)||,−||yf − yi| − |yf − (yi − i)||)
path3 = (W){i}N +
SRCReduction(m,n,xi - i,yi+1,xf,yf,1,
−||xf − xi| − |xf − (xi − i)||, |yf − yi| − |yf − (yi + i)|)
path4 = (W){i}S +
SRCReduction(m,n,xi - i,yi-1,xf,yf,6,
−||xf − xi| − |xf − (xi − i)||,−||yf − yi| − |yf − (yi − i)||)
add each path to the list of paths

return the computed path of fewest moves or false if none exist

def handle4(m,n,xi,yi,xf,yf):
initialize a list of paths
for i in [0,1,2,3]:

path1 = (E){i}N +
SRCReduction(m,n,xi + i,yi+1,xf,yf,6,
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||xf − xi| − |xf − (xi + i)||, ||yf − yi| − |yf − (yi + i)||)
path2 = (E){i}S +
SRCReduction(m,n,xi + i,yi-1,xf,yf,1,
||xf − xi| − |xf − (xi + i)||,−||yf − yi| − |yf − (yi − i)||)
path3 = (W){i}N +
SRCReduction(m,n,xi - i,yi+1,xf,yf,6,
−||xf − xi| − |xf − (xi − i)||, ||yf − yi| − |yf − (yi + i)||)
path4 = (W){i}S +
SRCReduction(m,n,xi - i,yi-1,xf,yf,1,
−||xf − xi| − |xf − (xi − i)||,−||yf − yi| − |yf − (yi − i)||)
add each path to the list of paths

return the computed path of fewest moves or false if none exist

def handle1(m,n,xr,yr,xf,yf,δx, δy):
dxPrime = xf - xr, dyPrime = yf - yr
if dxPrime > 1 and dyPrime > 1:

return the large displacement template
else:

return the small displacement template

def handle6(m,n,xr,yr,xf,yf,δx, δy):
dxPrime = xf - xr, dyPrime = yf - yr
if dxPrime > 3 and dyPrime > 1 or dxPrime > 1 and dyPrime > 3:

return the large displacement template
else:

return the small displacement template

def large1(δx,δy):
return N(E){∆x - δx- 2}NE(N){∆y - δy - 2}E

def large6(dxPrime,dyPrime,δx,δy):
if dxPrime > 1 and dyPrime > 3:

return NNE(N){∆y - δy - 4}EN(E){∆x - δx - 2}N
elif dxPrime > 3 and dyPrime > 1:

return EEN(E){∆x - δx - 4}NE(N){∆y - δy - 2}E

def small1symmetry(m,n,xr,yr,xf,yf,dxPrime,dyPrime)
answer = small1(n,m,yr,xr,yf,xf,dyPrime,dxPrime,δy ,δx )
return answer but switch Ns with Es and Ss with Ws and ∆x with ∆y

def small6symmetry(m,n,xr,yr,xf,yf,dxPrime,dyPrime)
answer = small6(n,m,yr,xr,yf,xf,dyPrime,dxPrime,δy ,δx )
return answer but switch Ns with Es and Ss with Ws and ∆x with ∆y

def small1case1(m,n,xr,yr,xf,yf,dxPrime,dyPrime): return I

def small6case1(m,n,xr,yr,xf,yf,dxPrime,dyPrime): return False

def small1case2(m,n,xr,yr,xf,yf,dx,dy,δx,δy)
return (E){∆x - δx - 1}(N){∆y - δy}E

def small6case2(m,n,xr,yr,xf,yf,dx,dy,δx,δy)
return (E){∆x - δx - 1}(N){∆y - δy}E

def small1case3(m,n,xr,yr,xf,yf,dxPrime,dyPrime,δx,δy)
if yf < m:

return N(E){∆x - δx}S
elif yr > 1:

return S(E){∆x - δx}N
else:

return False

def small6case3(m,n,xr,yr,xf,yf,dxPrime,dyPrime,δx,δy)
if m == 1:

return False
elif dxPrime > 1 and yf < m:

return N(E){∆x - δx - 2}SEE
elif dxPrime > 1 and yr > 1:

return S(E){∆x - δx - 2}NEE
elif dxPrime == 1:

if xr > 1:
return NWSEE

elif yf < m - 1:
return NENWSSE

elif yr > 2
return SESWNNE

elif xr < n - 1 :
if yf < m:

return NEEESWW
elif yr > 1:

return SEEENWW
elif (xr > 1 and yr > 1):

return SWNESEENW
else:

return False

def small1case4(m,n,xr,yr,xf,yf,dxPrime,dyPrime,δx,δy)
if dxPrime > 3:

return N(E){∆x - δx - 4}SENEEE
elif dxPrime == 2 or dxPrime == 3:

if yf < m:
return N(E){∆x - δx - 2}NESE

elif yr > 1:
return ESEN(E){∆x - δx - 2}N

else:
return ENWS(E){∆x - δx}N

elif dxPrime == 1:
if yr > 1:

return SENWNE
elif xr > 1:

return WNESEN
elif yf < m - 1:

return NNENWSES
elif xf < n - 1:

return EENESWNW
else:

return False

def small6case4(m,n,xr,yr,xf,yf,dxPrime,dyPrime, δx, δy)
if dxPrime > 1:

return ENES(E){∆x - δx - 2}N
elif dxPrime == 1:

if yr > 1:
return ESWNEN

elif xr > 1:
return NWSENE

elif yf < m-2:
return NNNESWSE

elif xf < n-2:
return EEENWSWN

else:
return False

def small6case5(m,n,xr,yr,xf,yf,dxPrime,dyPrime,δx,δy)
return N(E){∆x - δx}N

def small6case6(m,n,xi,yi,xf,yf,dx,dy)
return NENESENN

def small1(m,n,xr,yr,xf,yf,dxPrime,dyPrime,δx,δy)
if dyPrime > dxPrime:

return small1symmetry(m,n,xr,yr,xf,yf,dxPrime,dyPrime,δx,δy)
elif (dxPrime,dyPrime) == (0,0):

return small1case1(m,n,xr,yr,xf,yf,dxPrime,dyPrime,δx,δy)
elif dxPrime == 0 mod 4:

return small1case2(m,n,xr,yr,xf,yf,dxPrime,dyPrime,δx,δy)
elif dyPrime == 0:

return small1case3(m,n,xr,yr,xf,yf,dxPrime,dyPrime,δx,δy)
elif dyPrime == 1:

return small1case4(m,n,xr,yr,xf,yf,dxPrime,dyPrime,δx,δy)

def small6(m,n,xr,yr,xf,yf,dx,dy,δx,δy):
if dyPrime > dxPrime:

return small6symmetry(m,n,xr,yr,xf,yf,dxPrime,dyPrime,δx,δy)
elif (dxPrime,dyPrime) == (0,0):

return small1case1(m,n,xr,yr,xf,yf,dxPrime,dyPrime,δx,δy)
elif dxPrime == 2 mod 4:

return small6case2(m,n,xr,yr,xf,yf,dxPrime,dyPrime,δx,δy)
elif dyPrime == 0:

return small6case3(m,n,xr,yr,xf,yf,dxPrime,dyPrime,δx,δy)
elif dyPrime == 1:

return small6case4(m,n,xr,yr,xf,yf,dxPrime,dyPrime.δx,δy)
elif dyPrime == 2:

return small6case4(m,n,xr,yr,xf,yf,dxPrime,dyPrime,δx,δy)
elif dyPrime == 3:

return small6case6(m,n,xr,yr,xf,yf,dxPrime,dyPrime, δx,δy)

def SRC(m,n,xi,yi,xf,yf,ℓ):
xi,yi,xf,yf,ℓ,q = mapToQuad1(m,n,xi,yi,xf,yf,ℓ)
if ℓ == 1:

GPS = handle1(m,n,xi,yi,xf,yf,0,0)
elif ℓ == 2:

GPS = handle2(m,n,xi,yi,xf,yf)
elif ℓ == 3:

GPS = handle3(m,n,xi,yi,xf,yf)
elif ℓ == 4:

GPS = handle4(m,n,xi,yi,xf,yf)
elif ℓ == 5:

GPS = handle5(m,n,xi,yi,xf,yf)
elif ℓ == 6:

GPS = handle6(m,n,xi,yi,xf,yf,0,0)
return ConvGPS(q,GPS)
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A Theory of Spherical Diagrams

Giovanni Viglietta*

Abstract

We introduce the axiomatic theory of Spherical Occlu-
sion Diagrams as a tool to study certain combinatorial
properties of polyhedra in R3, which are of central inter-
est in the context of Art Gallery problems for polyhedra
and other visibility-related problems in discrete and com-
putational geometry.

1 Introduction

Geometric intuition. Consider a set P of internally
disjoint opaque polygons in R3 and a viewpoint v ∈ R3

such that no vertex of any polygon in P is visible to
v. An example is given by the set of six rectangles in
Figure 1 (left) with respect to the point v located at the
center of the arrangement.

Let S be a sphere centered at v that does not intersect
any of the polygons in P, and let SP be the set of pro-
jections onto S of the portions of edges of polygons in P
that are visible to v (i.e., where polygons occlude projec-
tion rays). We call SP a Spherical Occlusion Diagram.
Figure 1 (right) shows an example of such a projection.

In this paper we set out to study the combinatorial
structure of Spherical Occlusion Diagrams.

Applications. Spherical Occlusion Diagrams naturally
arise in visibility-related problems for arrangements of
polygons in R3, and especially for polyhedra.

An example is found in [3], where an upper bound is
given on the number of edge guards that solve the Art
Gallery problem in a general polyhedron. That is, given
a polyhedron P, the problem is to find a (small) set of
edges that collectively see the whole interior of P (refer
to [2, 9] for more results on this problem). An edge e
sees a point x if and only if there is a point y ∈ e such
that the line segment xy does not properly cross the
boundary of P.

The idea of [3] is to preliminarily select a (small) set
E of edges that cover all vertices of P . Note that E may
be insufficient to guard the interior of P, as some of its
points may be invisible to all vertices; Figure 1 (center)
shows an example. Thus, an additional (small) set of
edges E′ is selected, which collectively see all internal

*School of Information Science, Japan Advanced Institute of
Science and Technology (JAIST), viglietta@gmail.com

points of P that do not see any vertices. Clearly, E ∪E′

is a set of edges that see all internal points of P.
The selection of the edges E′ is carried out in [3] by

means of an ad-hoc analysis of some properties of points
that do not see any vertices of P. Spherical Occlusion
Diagrams offer a systematic and general tool to reason
about points in a polyhedron that do not see any vertices.

Spherical Occlusion Diagrams have also provided a
framework for proving the main result of [8]: Any point
that sees no vertex of a polyhedron must see at least 8
of its edges, and that the bound is tight.

2 Axiomatic Theory

Toward an axiomatization. The construction outlined
in Section 1 produces an arrangement SP of arcs on the
surface of a sphere S. For each arc a ∈ SP , let ea be the
edge of a polygon in P whose orthographic projection on
S (partly occluded by other polygons) contains a. Since
ea is a line segment, a must be an arc of a great circle.
The fact that each vertex of a polygon in P is occluded
by some other polygon translates into the property that
each endpoint of each arc in SP must lie in the interior of
another arc of SP . Also, since ea is an edge of a polygon
P ∈ P , all arcs of SP that end on the interior of a must
reach it from the same side (as these correspond to edges
of polygons partially hidden by P ).

Axioms. In the following, S will denote the unit sphere
immersed in R3, and we will abstract from a specific set
of polygons P and a viewpoint v. Some terms will be
useful.

Definition 1 Let a and b be two non-collinear arcs of
great circles on a sphere. If an endpoint p of a lies in
the relative interior of b, we say that a hits b at p (or
feeds into b at p) and b blocks a at p.

We are now ready to formulate an abstract theory of
Spherical Occlusion Diagrams.

Definition 2 A Spherical Occlusion Diagram, or sim-
ply Diagram, is a finite non-empty collection D of arcs
of great circles on the unit sphere in R3 satisfying the
following axioms.

A1. If two arcs a, b ∈ D have a non-empty intersection,
then a hits b or b hits a.
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Figure 1: Construction of a Spherical Occlusion Diagram (right) from an arrangement of six rectangles (left) or a
polyhedron whose central point does not see any vertices (center)

A2. Each arc in D is blocked by arcs of D at each end-
point.

A3. All arcs in D that hit the same arc of D reach it
from the same side.

Figure 2 shows a Diagram with 18 arcs.

Figure 2: Example of a Diagram with 18 arcs

Realizability. It is immediate to recognize that the Di-
agrams SP constructed in Section 1 indeed provide a
model for our theory, as they satisfy all its axioms. The
proof of the following statement is essentially contained
in the first paragraph of Section 2.

Proposition 1 Any set SP , as constructed in Section 1
for an arrangement of polygons P and a viewpoint v
that sees no vertices of such polygons (re-scaled in such
a way that S is the unit sphere), satisfies the axioms
of Spherical Occlusion Diagrams, provided that v is in
general position with respect to P, i.e., no ray emanating
from v intersects the interiors of more than two distinct
edges of polygons of P. �

Observe that the general-position requirement in
Proposition 1 is irrelevant in the context of the Art
Gallery problem and was introduced only for the sake of
a more aesthetically pleasing axiomatization of Diagrams.
Indeed, the set of points in general position with respect
to P is dense in R3, whereas the set of points that are
visible to any finite set E of edges is topologically closed.
Thus, for instance, if the edges in E collectively see all
points in general position, then they also see all points
that are not in general position.

Although there is compelling evidence that the con-
verse of Proposition 1 is not true, we do not yet have a
definitive answer to this fundamental problem, which we
leave open. We actually formulate a stronger conjecture.
We say that a Diagram D is irreducible if no proper
subset of D is a Diagram.

Conjecture 1 There is an irreducible Spherical Occlu-
sion Diagram D (satisfying the conditions in Defini-
tion 2) such that D 6= SP for any set of internally dis-
joint polygons P.

It can be shown that Conjecture 1 is equivalent to
its restricted version where P is a polyhedron of genus
zero. Indeed, a set of polygons P that gives rise to a
Diagram D with respect to a viewpoint v can easily be
extended by adding a mesh of polygons whose edges are
either shared with P or concealed from v by polygons
in P. The resulting polyhedron gives rise to the same
Diagram D.

3 Elementary Properties

We will prove some basic properties of Diagrams.

Proposition 2 Every arc in a Diagram is strictly
shorter than a great semicircle.

Proof. Referring to Figure 3, assume that an arc a (in
red) is at least as long as a great semicircle. Then, taking
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an endpoint p of a as the North pole and a itself as the
prime meridian, consider an arc b0 that blocks a at p
(which exists by Axiom 2). The arc b0 has exactly one
endpoint in the Eastern hemisphere; let b1 be an arc
that blocks b0 at this endpoint. We can construct a
sequence (b0, b1, b2, . . . ) of arcs, each of which hits the
next at a point of smaller (or equal) latitude, until one of
them hits a from the East (this must eventually happen,
because a is at least as long as a great semicircle). Note
that no bi other than b0 can pass through p without
contradicting Axiom 1. Symmetrically, we can construct
a similar sequence of arcs starting from the endpoint
of b0 that lies in the Western hemisphere. The last arc
of this sequence hits a from the West, contradicting
Axiom 3. �

p

a

0b

1b

2b

3b

4b

Figure 3: Proof of Proposition 2

We can now prove a stronger form of Axiom 2.

Proposition 3 Every arc in a Diagram hits exactly two
distinct arcs, one at each endpoint.

Proof. Assume for a contradiction that an endpoint
p of an arc a lies in the interior of two arcs b and c.
Then b and c intersect at p. By Axiom 1, without loss
of generality, b hits c at p, and therefore b and a share
an endpoint, which contradicts Axiom 1. Thus, a hits
at most one arc at each endpoint; by Axiom 2, it hits
exactly one. Moreover, a cannot hit the same arc b
at both endpoints p and p′, or else p and p′ would be
antipodal points, and b would be longer than a great
semicircle, contradicting Proposition 2. Thus, a hits
exactly two distinct arcs. �

Proposition 4 No two arcs in a Diagram feed into each
other.

Proof. Two arcs feeding into each other must be longer
than a great semicircle, as Figure 4 shows. This contra-
dicts Proposition 2. �

Figure 4: Proof of Proposition 4

Proposition 5 A Diagram partitions the unit sphere
into spherically convex regions.

Proof. Let D be a Diagram, and let p and q be two
points in the same connected component of S \ ⋃D.
There is a chain C of arcs of great circles (drawn in
green in Figure 5) that connects p and q without inter-
secting the Diagram. The arc of a great circle joining p
with the third vertex of C (drawn in orange) does not
intersect the Diagram either, or else we could reason as
in Proposition 2 to construct a sequence of arcs of D
which eventually intersect one of the first two arcs of
C. Hence, we can simplify the chain by joining p with
its third vertex. Proceeding by induction, we conclude
that the arc of a great circle connecting p and q does not
intersect D, implying that each connected component of
S \⋃D is spherically convex. �

p

q

D

Figure 5: Proof of Proposition 5

Definition 3 Each of the convex regions into which the
unit sphere is partitioned by a Diagram is called a tile.

It is easy to derive the following from Proposition 5.
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Corollary 1 In a Diagram, the topological closure of
no tile contains two antipodal points. Moreover, the
relative interior of any great semicircle on the unit sphere
intersects some arc of the Diagram. �

Proposition 6 The union of all the arcs in a Diagram
is a connected set of points.

Proof. Let the union of the arcs in a Diagram D have
two connected components, given by D1 and D2. Note
that D1 and D2 individually satisfy all axioms, and
therefore both are Diagrams. Hence, D2 is contained
in a tile F determined by D1, as shown in Figure 6.
Take two points p, q ∈ F close to the boundary of F
such that the arc of great circle connecting p and q (in
orange) intersects D2. Observe that there exists a chain
of arcs of great circle (in green) that connects p and q
without intersecting D1 nor D2. Hence p and q are in
the same tile determined by D. However, since the arc
pq intersects D, the tile cannot be spherically convex,
contradicting Proposition 5. �

F

1D

2D

p

q

Figure 6: Proof of Proposition 6

Proposition 7 A Diagram with n arcs partitions the
unit sphere into n + 2 tiles.

Proof. Every endpoint of an arc of a Diagram divides
the arc it hits into two sub-arcs. The set of these sub-
arcs induces a spherical drawing of a planar graph with
2n vertices and 3n edges. Each face of this drawing
coincides with a tile of the Diagram. By Euler’s formula,
the number of faces is 3n− 2n + 2 = n + 2. �

4 Swirls

There is a curious similarity between Diagrams and
continuous vector fields on a sphere. According to the
hairy ball theorem, “it is impossible to comb a hairy ball
without creating cowlicks”. Similarly, it is impossible to
construct a Diagram without creating “swirls”, as we
shall see in this section.

Definition 4 A swirl in a Diagram is a cycle of arcs,
each of which feeds into the next going clockwise or
counterclockwise. The spherically convex region enclosed
by a swirl is called the eye of that swirl.

Figure 2 shows a Diagram with six clockwise swirls
and six counterclockwise swirls. Observe that, in an
irreducible Diagram, the eye of each swirl coincides with
a single tile; in general, the eye of a swirl is a union of
tiles, as it may have internal arcs.

Definition 5 The swirl graph of a Diagram D is the
undirected multigraph on the set of swirls of D having
an edge between two swirls for every arc in D shared by
the two swirls.

1

35

4

6

2

1

3

5

4

6

2

Figure 7: A Diagram and its swirl graph

In Figure 7, the eyes of clockwise swirls are colored
green, and the eyes of counterclockwise swirls are colored
red. Note that the swirl graph is simple and bipartite;
this is true in general.

Theorem 1 The swirl graph of any Diagram is a simple
planar bipartite graph with non-empty partite sets.

Proof. The swirl graph is spherical, hence planar. It is
bipartite, where the partite sets correspond to clockwise
and counterclockwise swirls, respectively. Indeed, if
the same arc is shared by two concordant swirls (say,
clockwise), then it is hit by arcs from both sides, violating
Axiom 3.

Figure 8 shows how to find a clockwise and a counter-
clockwise swirl in any Diagram. For a clockwise swirl,
start from any arc and follow it in any direction until it
hits another arc. Then turn clockwise and follow this
arc until it hits another arc, and so on. The sequence of
arcs encountered is eventually periodic, and the period
identifies a clockwise swirl. A counterclockwise swirl is
found in a similar way.

To prove that the swirl graph is simple, assume for
a contradiction that the swirl S1 shares two arcs a and
b with another swirl S2. Then, the eye of S2 must be
entirely contained in the spherical lune determined by
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Figure 8: Finding swirls in a Diagram

a and b, as shown in Figure 9. Since the eye of S2 is
bounded by a, it must lie in the region A. However, the
eye of S2 is also bounded by b, and thus it must lie in
the region B. This is a contradiction, since A and B are
disjoint. �

A

B

b

a

Figure 9: Two swirls cannot share more than one arc

More is actually known about swirl graphs.

Theorem 2 Every Diagram has at least four swirls. �

This result has been announced in [8]. From Theo-
rem 2, it easily follows that every Diagram has at least
eight arcs. On the other hand, Figure 10 shows an ex-
ample of a Diagram with exactly eight arcs and exactly
four swirls, which is therefore minimal.

It is not yet clear if there are Diagrams with only one
clockwise swirl, but we believe this is not the case.

Conjecture 2 Every Diagram has at least two clockwise
and two counterclockwise swirls.

Figure 10: A Diagram with eight arcs and four swirls

5 Swirling Diagrams

This section is devoted to a special type of Diagrams
whose arcs always meet forming swirls. Patterns arising
in these Diagrams are found in modular origami, globe
knots, rattan balls, etc.

Definition 6 A Diagram is swirling if every arc is part
of two swirls.

An example of a swirling Diagram is found in Figure 2;
further examples are in Figure 14. All of these Diagrams
were obtained from convex polyhedra or, equivalently,
from convex tilings of the sphere, by a process that we
call swirlification.

Definition 7 A subdivision of the unit sphere into
strictly convex spherical polygons is swirlable if each
polygon of the subdivision has an even number of edges.

Proposition 8 A subdivision of the unit sphere into
strictly convex spherical polygons is swirlable if and only
if its 1-skeleton is bipartite.

Proof. The 1-skeleton is bipartite if and only if its has
no odd cycles, which is true if and only if each face has
an even number of edges. �

Hence, we can always deform the 1-skeleton of a
swirlable tiling, turning each of its vertices into a swirl,
going clockwise or counterclockwise according to the
bipartition of the 1-skeleton. Conversely, by “shrinking”
the eye of each swirl of a swirling Diagram to a point,
one obtains a swirlable subdivision of the sphere.

In other words, the swirlification operation establishes
a natural correspondence between swirling Diagrams and
swirlable subdivisions of the sphere.

Theorem 3 Every swirling Diagram is the swirlification
of a swirlable subdivision of the sphere. �
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Note that we can also obtain a swirlable subdivision
of the sphere by taking the dual of a subdivision whose
vertices have even degree, or by truncating it. More
generally, we have the following.

Proposition 9 A subdivision of the sphere is swirlable
if and only if its truncated dual is swirlable. �

6 Uniform Diagrams

We now turn to a class of Diagrams that generalizes the
swirling ones.

Definition 8 A Diagram is uniform if every arc blocks
exactly two arcs.

Proposition 10 A Diagram is uniform if and only if
every arc blocks at most (respectively, at least) two arcs.

Proof. By Proposition 3, each arc hits exactly two dis-
tinct arcs. Hence, each arc blocks two arcs on average.
Thus, if every arc blocks at most two arcs (or at least
two arcs), it must block exactly two arcs. �

Proposition 11 Every uniform Diagram is irreducible.

Proof. Let D be a uniform Diagram, and assume that
there is a proper subset of arcs D′ ⊂ D that is itself
a Diagram. By Proposition 6, D is connected; thus,
removing arcs from D causes some arcs to block fewer
than two arcs. Since D is uniform, it follows that the arcs
of D′ block fewer than two arcs on average, contradicting
Proposition 3. �

Corollary 2 In a uniform Diagram, the eye of each
swirl coincides with a single tile.

Proof. If the interior of the eye of a swirl contains some
arcs, then such arcs can be removed without violating
the Diagram axioms. Hence, such a Diagram is not irre-
ducible, and by Proposition 11 it cannot be uniform. �

Theorem 4 Every swirling Diagram is uniform.

Proof. In a swirling Diagram, each arc a is part of two
distinct swirls. By Theorem 1, these two swirls share
no arcs other than a, and hence a must block one arc
from each of them. Therefore, every arc in a swirling
Diagram blocks at least two arcs, and by Proposition 10
the Diagram is uniform. �

The converse of Theorem 4 is not true in general, as
Figure 11 shows.

Definition 9 An endpoint of an arc of a Diagram is
called a non-swirling vertex if it is not incident to the
eye of any swirl. A walk on a Diagram is non-swirling
if it only touches non-swirling vertices and, whenever it
touches an arc, it follows it until it reaches one of its
endpoints, without touching any other arc along the way.
A cyclic non-swirling walk is called a non-swirling cycle.

Figure 11: A uniform Diagram that is not swirling

Observe that there is a non-swirling cycle that covers
all the non-swirling vertices of the Diagram in Figure 11
(drawn in red). This is not a coincidence.

Theorem 5 In any uniform Diagram, all non-swirling
vertices are covered by disjoint non-swirling cycles.

Proof. Consider a non-swirling walk W on a uniform
Diagram terminating at a non-swirling vertex pi, end-
point of an arc ai, as Figure 12 illustrates. We will prove
that W can be extended to a longer non-swirling walk
in a unique way.

+1ia
1−ia

ia

ip

1−ip
+1ip

Figure 12: Proof of Theorem 5

Let ai+1 be the arc that blocks ai at pi. Since exactly
two arcs feed into ai+1, there is exactly one endpoint
of ai+1, say pi+1, that can be reached from pi without
touching any arc other than ai+1.

By definition of non-swirling walk, pi+1 can be used
to extend W if and only if it is a non-swirling vertex.
However, if pi+1 were incident to a swirl’s eye E, then
an arc of that swirl would either hit ai+1 between pi
and pi+1, contradicting the fact that ai+1 blocks exactly
two arcs, or it would hit ai+1 on the other side of pi,
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implying that E contains the arc ai in its interior, which
contradicts Corollary 2.

Hence, W can be extended uniquely to a non-swirling
walk. By a similar reasoning, we argue that W can also
be uniquely extended backwards to a non-swirling walk.
Thus, W is part of a unique non-swirling cycle. Now we
conclude the proof by inductively repeating the same
argument with any remaining non-swirling vertices. �

We can construct uniform Diagrams with any number
of arbitrarily long non-swirling cycles. An example with
two non-swirling cycles is shown in Figure 13.

Figure 13: A uniform Diagram with two non-swirling
cycles

7 Conclusions

We introduced the theory of Spherical Occlusion Di-
agrams and studied their basic properties, while also
discussing some applications to visibility-related prob-
lems in discrete and computational geometry.

Although we strongly believe Conjecture 1 to be true,
a related and more subtle question can be asked, inspired
by previous work on weaving patterns [1, 7]. Namely,
whether for every Diagram D there is a combinatorially
equivalent Diagram D′ and a set P of internally disjoint
polygons such that D′ = SP . In other words, does every
class of combinatorially equivalent Diagrams contain a
realizable instance?

We have introduced three remarkable families of Di-
agrams: irreducible, uniform, and swirling. We proved
that all swirling Diagrams are uniform, and all uniform
Diagrams are irreducible; moreover, Theorem 5 reveals
a deeper structural connection between swirling and uni-
form Diagrams. A complementary observation is that
it seems to be possible to systematically transform any
uniform Diagram into a swirling Diagram by “sliding”

arcs’ endpoints along other arcs and “merging” coinci-
dent arcs. Making this observation rigorous is left as a
direction for future work.

More generally, we may wonder which Diagrams can
be transformed into swirling ones by sequences of elemen-
tary operations on arcs (defining suitable “elementary
operations” is in itself an open problem). The Diagram
in Figure 10 shows that the question is not trivial. In-
deed, this is the unique configuration of any Diagram
with eight or fewer arcs; since the Diagram itself is not
swirling, it cannot be transformed into a swirling one by
means of operations that only rearrange or merge arcs.

Acknowledgments. The author is grateful to
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[8] C. D. Tóth, J. Urrutia, and G. Viglietta. Minimiz-
ing Visible Edges in Polyhedra. In Proceedings of the
23rd Thailand-Japan Conference on Discrete and Com-
putational Geometry, Graphs, and Games (TJCDCGGG
2020+1), pp. 70–71, 2021.

[9] G. Viglietta. Optimally Guarding 2-Reflex Orthogonal
Polyhedra by Reflex Edge Guards. Computational Ge-
ometry: Theory and Applications, vol. 86, art. 101589,
2020.

312



34th Canadian Conference on Computational Geometry, 2022

Figure 14: Examples of the swirlification method developed in Section 5 to produce swirling Diagrams from convex
polyhedra with a bipartite 1-skeleton (or, equivalently, from swirlable subdivisions of the unit sphere). The pictures
show swirling Diagrams resulting from a truncated antiprism, a trapezohedron, a rhombic triacontahedron, and a
truncated icosidodecahedron, respectively.
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Using Existential Theory of the Reals to Bound VC Dimension

Austin Watkins∗ Jeff M. Phillips†

Abstract

We provide new bounds on the VC dimension of range
spaces beyond logical compositions of polynomials and
other discrete geometric shapes. Our results address the
VC dimension of a seemingly simple class of range spaces
we call inflated polynomials, which are defined as the
Minkowski sum of a polynomial and a ball; in R2 with
degree p the VC dimension is Θ(p), and in Rd the bound
is O(dpO(d)). This addresses natural questions on learn-
ability in the adversarially-robust setting for polynomial
classifiers and of polynomially-defined trajectories. We
use a connection between algebraic geometry and classic
circuit-based approaches of bounding the VC dimension
to derive our results. We believe this connection and our
general results may find other applications in learning
theory, range searching, and other aspects of computa-
tional geometry where the VC dimension plays a key
role.

1 Introduction

This paper studies the VC dimension and learnability
of regions defined by offsets from polynomial curves and
surfaces, which we call inflated polynomials. These off-
sets are no longer polynomial and so little to nothing is
known about the learnability of a large family of classes
that arise this way. We provide new VC dimension
bounds for this family of objects by a connection to
the existential theory of the reals. Application of these
inflated polynomials are broad and we highlight impli-
cations in sweeping out the region around a polynomial
curve and in adversarially-robust learning.
The Vapnik-Chervonenkis-dimension (VC dimen-

sion) [37] is the central combinatorial complexity score
for a range space or a function class. It intricately ties
into many aspects of learning theory [1] where it bounds
how many data samples are needed to learn over a func-
tion class, model theory [2, 4] where it ties into the rich
structure of algebraic geometry, big data [15] where it
governs the size and runtime for creating coresets, com-
putational geometry [19, 5] where it describes the size

∗School of Computer Science, Johns Hopkins University,
awatki29@jhu.edu; This research was supported, in part, by
DARPA GARD award HR00112020004 and NSF CAREER award
IIS-1943251.
†University of Utah, School of Computing, jeffp@cs.utah.edu;

Thanks to NSF IIS-1816149, CCF-2115677, and Visa Research.

of a hitting set, and data structures [8] where it char-
acterizes a class of ranges that admit a near-linear size
data structure which allows for sub-linear time range
queries. In this paper, we significantly generalize the
approaches to analyze function classes defined through
non-polynomial and existential formulations.

Inflated polynomials. In particular, in this paper we
focus on ranges defined by the Minkowski sum of a
Euclidean ball and a polynomial; we call these inflated
polynomials. A simple example of an inflated parabola in
R2 is shown in Figure 1. In particular, observe that the
boundary of this shape is not a polynomial, as clearly
evidenced by the cusp point, directly above the minimum.
Thus, due to this non-polynomial nature, among other
complexities, the VC dimension of such shapes have no
known bound [9]. Let us highlight two other grounded
scenarios where such questions arise.

Figure 1: The inflated
polynomial, shown in
blue, of (x − 1)2 with
radius r.

First, consider learning
a polynomial classifier ro-
bustly, in the sense that
it should protect against
adversarial examples [35].
Typically, the goal is to
learn a classifier so no, or
few, correctly labeled exam-
ples can cross the decision
boundary with small per-
turbations. While this is
perhaps most problematic
in complex classifiers [35,
18], learnability of robust
classifiers has mostly been studied formally [34, 14, 29,
25, 16, 10] for linear (or near-linear) classifiers and/or
when data classes have specific and known (uniform,
Gaussian, accurate under Gaussian noise) distributions.
While polynomial (and other kernel classifiers) can be
“linearized” so the inner-product acts as a linear dot-
product, this distance no longer measures the amount
of perturbation required in the input space needed for a
data point to cross the decision boundary. In particular,
one goal is to learn a perfect polynomial classifier so that
no data points are within a distance r of the decision
boundary (measured using Euclidean distance in the
input space). As we elaborate in Section 4, the number
of samples needed to ensure that such a perfect and
r-robust polynomial classifier on the sample will ensure
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at most ε-fraction of all data (with probability 1 − δ)
will be at least a distance r from the polynomial decision
boundary is O(νε log ν

εδ ), where ν is the VC dimension of
the inflated polynomial around the decision boundary.

Second, consider a drone which moves through a neigh-
borhood and transmits malicious computer code to Wi-Fi
routers. We do not know the exact drone trajectory, but
can model it as a polynomial curve of degree p, and
know it is most effective within 30 meters. Thus its
affected range is an inflated polynomial curve. How
many Wi-Fi routers in the neighborhood do we need
to randomly inspect to accurately estimate the drone
path (i.e., we can predict the probability of malicious
code within ε, with probability 1− δ)? The number of
samples is O( 1

ε2 (ν+log 1
δ )) where ν is the VC dimension

of this inflated polynomial.

Results and techniques. In this paper we develop a
family of techniques to bound the VC dimension of
complex range spaces and apply them to the inflated
polynomials and existentially defined sets. We build on
traditional techniques for bounding the VC dimension [1,
17], which prior-to-this-work were restricted to polynomi-
ally defined sets, a few other specific options like sigmoid,
and their compositions. This approach provides a set
of simple operations and bounds the VC dimension by
the number of such operations needed to determine in-
clusion in the set in question. For our work, as in [17],
we combine this approach with a distinct set of tools
from decision algorithms in logic, algebraic geometry,
and the existential theory of the reals. While ultimately
the proofs are simple; they rely on an observation that
the computation model associated with most algebraic
geometry is compatible with the simple operations of [1].
This allows us to bound the VC dimension of inflated
polynomials and existentially-defined sets. Our main
result is as follows:

Theorem 1 The VC dimension of inflated polynomi-
als in Rd of degree p is O(dpO(d)), and for univariate
polynomials, the bound is Θ(p).

This provides the specific bound needed to address the
two applications (polynomial path learning for detecting
Wi-Fi manipulation and adversarially robust polynomial
separators) highlighted above. In particular, for adver-
sarially robust learning, we view this as an essential step
in how to link the geometry of the decision boundary to
the input space.

2 Background, Definitions, and Prior Work

As this paper unites several technical areas, we start
with a fair number of definitions.

Polynomials. Central to our study are real polynomials,
that is polynomials with real coefficients. When there are
d variables x1, . . . , xd, we denote these as R[x1, . . . , xd].
The degree of the polynomial is the maximum sum of
exponents of the variables in any monomial. Such poly-
nomials define functions f from Rd → R. Hence they can
also be viewed as d-dimensional objects in Rd+1 which
divide Rd+1 into 3 sets. For (x1, . . . , xd, y) ∈ Rd+1 with
x = (x1, . . . , xd), then it can be “below” if y < f(x),
“above” if y > f(x), or “on” if y = f(x).

The Minkowski sum between two sets A,B ⊂ Rd+1

is the set of all pairwise additions between A and B,
{a + b | a ∈ A, b ∈ B}, and is denoted A ⊕ B. Let
Md

p be the set of all these inflated polynomials con-
structed as the Minkowski sum of the points “on" a
polynomial (the set A) and a ball (the set B). Let
Bdr be the set of d-dimensional balls with radius r.
That is, Md

p = {P ⊕ B | B ∈ Bd+1
r , r ∈ R, P ∈

R[x1, . . . , xd] of degree at most p}.

Range spaces and VC dimension. A range space is
a tuple (X,R), where X is called the ground set and
R is called the range set, where all sets in the range
set are a subset of the ground set. R is often defined
in terms of geometric objects. R could be the set of
disks for X = R2, intervals on X = R, linear halfspaces
on X = Rd, or as points below (or on) polynomials in
X = Rd. When X ⊂ Rd is set of points, then these
example ranges R are the induced subset of X contained
in some such shape.
Similar to a restriction over a family of functions to

a subset of the domain, we will define the projection of
range space R onto Y ⊂ X as R|Y := {R ∩ Y | R ∈ R}.
For a range space (X,R), if the projection R|Y contains
all subsets of Y , then R shatters Y . The VC dimension
of (X,R) is the maximum cardinality of any shattered
subset of X.
In this paper we mostly consider real ground sets

X = Rd or X ⊂ Rd, in which case a range space is
defined by its range sets, and thus for simplicity we refer
to the VC dimension of range sets, where the real ground
set and corresponding range space are implicit. Simple
examples of VC dimension ν include: for disks in R2

then ν = 3, for intervals in R2 then ν = 2, for linear
halfspaces in Rd then ν = d+ 1, and for polynomials of
degree p in Rd then ν = O(dp). For polynomials of any
degree in Rd then ν is unbounded – it is infinite.

2.1 Sample Complexity

For a domain X consider a classifier function h : X →
{0, 1}, it maps any element x ∈ X to either 0 or 1. Then
given a probability distribution µ on Z = X × {0, 1},
the error of h with respect to µ, written erµ(h), is the
probability that (x, y) ∼ µ such that h(x) 6= y. The
goal of classification, for some family of classifiers H and
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some µ, is to find an h ∈ H with erµ(h) as small as
possible.

The other side of this seeks to minimize the number of
samples required to achieve a certain error on a learned
classifier h ∈ H for some family H. For a set of m
samples P = (x1, y1), . . . , (xm, ym) drawn i.i.d. from µ,
let µP be the sample distribution induced by this set.
Let ε, δ ∈ (0, 1). The sample complexity is defined as
the smallest m such that erµP

(h) ≤ erµ(h) + ε holds
with probability at least 1 − δ for all h ∈ H. Then
for parameters ε, δ ∈ (0, 1) we seek to minimize m so
that for all h ∈ H we have erµP

(h) ≤ erµ(h) + ε, with
probability at least 1− δ. Since this condition holds for
h∗ := infh∈H erµP

(h), we can then “learn” h∗ on P and
know it will ε-approximately hold (with probability at
least 1− δ) on µ.
The family of classifiers H defines a range set, and

when X ⊂ Rd, the VC dimension ν of this range space
(X,H) determines the sample complexity m. Vapnik
and Chervonenkis [37] and refined by [23, 1] show that
m = O( 1

ε2 (ν + log 1
δ )) samples are sufficient.

When a perfect classifier h exists, one where erµ(h) =
0, the sample complexity is lower; using only m =
O(νε log ν

εδ ) samples is sufficient [20].

2.2 Methods of Bounding VC Dimension

There are two powerful methods for bounding complex
range spaces. The first is via composition arguments,
where we break (via unions and intersections) a complex
range space into simple ranges for which bounds are
known, and then bound the complex range by aggregat-
ing the effect of the simple ranges. The second is via
circuit arguments, where computing set inclusion within
a computational framework is used to derive an upper
bound for the range space.

Composition argument. Let (X,R1), . . . , (X,Rs) be
a set of range spaces with VC dimension ν1, . . . , νs,
respectively. Let f(r1, . . . , rs) be a function defined
element-wise over the domain X (i.e., unions and inter-
sections), that maps any s-tuple of sets r1 ∈ R1, . . . , rs ∈
Rs into a subset of X. That is, f corresponds with
a fixed logical formula (i.e., composed of ∨s and ∧s)
over s binary values determined by if x ∈ X is in
each range ri. A element x ∈ X is in the com-
posite range f(r1, . . . , rs) if the logical function re-
turns 1. This process defines a composition range set
R⊕ = {f(r1, . . . , rs) | r1 ∈ R1, . . . , rs ∈ Rs}. Har-
Peled [19][Theorem 5.22] shows for the VC dimension
of the associated range space (X,R⊕) is bounded by
O(sν(1 + log s)) where ν = max{νi}si=1.

Circuit argument. Goldberg and Jerrum [17], and
slightly generalized to this form [1][Theorem 8.4], uses a
circuit of simple operations, defined to consist of

• the arithmetic operations +,−,×, and / on real
numbers,
• jumps conditioned on >,≥, <,≤,= and 6= as com-

parisons of real numbers, and
• output 0 or 1.

Then suppose ha is a function from Rd to {0, 1} param-
eterized by a ∈ Rk. Let ha define a range Ha = {x ∈
X ⊂ Rd | ha(x) = 1} from the associated family of
ranges H = {Ra | a ∈ Rk}. Suppose that ha can be
computed by an algorithm that takes as input the pair
(x, a) ∈ Rd × Rk and returns ha(x) after no more than t
simple operations. Then the VC dimension of (Rd,H) is
at most 4d(t+ 2).
While this approach (perhaps in combination with

composition arguments) seems like it can be applied
to handle most geometrically defined range spaces (say
including inflated polynomials), there is an important
omission from the simple operations: the square root
operation. A square root is needed, for instance, to
encode distance in a radius r ball. More importantly,
simple composition arguments cannot be made, since an
inflated polynomial is a union of an infinite number of
these balls. Towards addressing some such goals (with
respect to range spaces defined by polynomial curves),
[13][Lemma 12] provides a special case where one can
handle a square root inside of the circuit argument:
Consider values a, b, c, d ∈ R with b, d ≥ 0, then one
can compute the truth values of a+

√
b ≤ c+

√
d and

a+
√
b ≥ c+

√
d using O(1) simple operations. However,

restricting to this use of the square root, to apply this
to general range sets in a metric space where the square
root is needed, such as inflated polynomials, one would
need to perform this comparison at an infinite number of
points, or a composition of an infinite number of sets. So
we will still require more powerful machinery from the
existential theory of the reals in real algebraic geometry.

2.3 Algorithms in Real Algebraic Geometry

We next focus on the interpretation of algebraic geome-
try through the perspective of solutions to polynomial
systems. We will mostly follow notation from [3].

P-atoms for P-formulas. For our purposes (specifying
the field to be R), a P-atom is a polynomial equality
or inequality; if P ∈ R[x1, . . . , xd] then the options are
P = 0, P 6= 0, P > 0, or P < 0. Similarly, a P-formula
is a combination of ∧,∨,¬,∀,∃ with P-atoms to form
a logical statement. For example a P-formula could
be ∀x∃y(x2y + 2 > 0 ∧ y ≤ 0). A semialgebraic set is
a finite union of polynomial equalities and polynomial
inequalities. For instance, x2 − y ≤ 0 ∪ x − y > 0 is a
semialgebraic set in the plane (R2). In [3] they detail a
large number of algorithms on real polynomials. We will
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use two key results from this work: Tarski queries and
existential decidability over a subset of P-formulas.

Arithmetic operations for algebraic geometry. As de-
tailed in [4], the complexity of algorithms within alge-
braic geometry is given in terms of specified allowable
arithmetic operations between elements of a chosen set.
These operations and a chosen set define the structure
of an algorithm. The structures which concern us are a
ring, an integral domain, and an ordered integral domain.
A ring structure defines the allowable operations to be
+,−,×, and = 0, where = 0 is the unary operation of
deciding if an element in the ring is zero. An integral
domain structure defines, in addition to the ring struc-
ture, exact division /, between two elements given that
division will be in the integral domain. An ordered inte-
gral domain structure defines, in addition to the integral
domain structure, comparison between elements with
>,=, and < operations.
Importantly, R is an ordered integral domain, and

the “simple operations” in the circuit argument [17, 1]
include all allowable arithmetic operations for a ordered
integral domain. Hence a bound on arithmetic operations
provides a bound on simple operations.

Univariate Tarski queries. The first real algebraic ge-
ometry result we use is Pollack’s [3] Algorithm 9.5 for
counting roots of a univariate polynomial. The cited
form includes an extra parameter Q ∈ R[x] that repre-
sents a more general query called a Tarski query. By tak-
ing Q = 1 then a Tarski query is equivalent to computing
the number of roots as given in Sturm’s theorem,1 which
is specifically for univariate polynomials. Ultimately, a
univariate Tarski query can take in a univariate poly-
nomial P ∈ R[x] \ {0} (that is, not including the trivial
0 polynomial), it outputs the number of elements in
{x ∈ R | P (x) = 0} using O(p+ 1) simple operations.

Decidability. Next we will use a result regarding decid-
ability, specifically over the language that is the theory
of real closed fields. The Tarski–Seidenberg Theorem im-
plies that the theory of the real closed fields is decidable.
Yet it was only with Collins’s [11] use of cylindrical alge-
braic decomposition that a doubly exponential bound
was found. There is a simpler problem which only allows
for existential quantifiers. This problem is known as
the existential theory of the reals, with the first singly
exponential complexity provided by Renegar [31].

Consider first-order logical statements in the following
form: ∃x1, . . .∃xd F (x1, . . . , xd) where F (x1, . . . , xd) is
a quantifier free P-formula. Determining if that state-
ment is true or false is called the decision problem for the
existential theory of the reals. When P ⊂ R[x1, . . . , xd]
is a finite set of s polynomials each of degree at most

1see Theorem 2.50 and Theorem 2.61 in [3]

p, then there is an algorithm to decide the truth of
∃x1, . . . ,∃xd F (x1, . . . , xd) using sd+1pO(d) simple oper-
ations.

3 New VC Dimension Bounds

We begin with a two-dimensional bound for univariate
inflated polynomials, based on Tarski queries. Then we
generalize to d-dimensional inflated polynomials using
Renegar’s algorithm. We provide a lower bound of the
same order, which matches when d = 1.

3.1 Upper Bound of VC Dimension for Inflated
Polynomials

We first translate inflated polynomials into the lan-
guage of existential algebraic geometry. Consider range
space (Rd+1,Md

p), and a query point w ∈ Rd+1, and
inflated polynomial Pr ∈ Md

p. Then w is in Pr if and
only if ∃x0 ∈ P (Rd)(‖w − (x0, P (x0))‖2 ≤ r) where P
is the polynomial of the inflated polynomial Pr, and
(x0, P (x0)) is a point on that polynomial in Rd+1. A uni-
variate degree-p polynomial curve in R2 is an element of
(R2,M1

p), which is the domain of our first upper bound.

Theorem 2 The range space (R2,M1
p), where M1

p is
composed of only univariate inflated polynomials, has
VC dimension O(p).

Proof. We must find a point on the polynomial close
enough to w = (w1, w2). And ‖w − (x, P (x))‖2 ≤ r
implies (w1 − x)2 + (w2 − P (x))2 − r2 ≤ 0. Notice that
this is a polynomial inequality. As P is defined for all
R, the distance is unbounded from above and, due to
the squared terms, that the final polynomial has even
degree. Therefore, to determine if there exists an x that
satisfies the inequality (≤ 0) above it is sufficient to
count roots of the polynomial. That is, since the number
of roots is the number of times a set satisfies = 0, and it
is +∞ as x→ {−∞,+∞}, then if the number of roots
is non-zero, there must exist a point x where the ≤ 0
condition is satisfied. Using univariate Tarski queries,
we can count the real roots of univariate polynomials in
O(p+ 1) simple operations, with p the degree of P .

Then we can use the circuit argument with a bound on
the number of free variables d = 1 and depth in simple
operations of the circuit as t = O(p+ 1). Hence the VC
dimension is 4d(t+ 2) = O(p). �

Now we will generalize to multivariate polynomials by
using a decision algorithm.

Theorem 3 The range space (Rd+1,Md
p) of inflated

polynomials in Rd+1 has VC dimension O(dpO(d)).

Proof. Consider an inflated polynomial Pr of degree
p and fix w ∈ Rd+1. We must find a point x ∈ Rd
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on the polynomial close enough to w, satisfying ‖w −
(x, P (x))‖2 ≤ r, and equivalently (w1 − x1)2 + . . . +
(wd − xd)2 + (wd+1 − P (x))2 − r2 ≤ 0. As before this is
a polynomial inequality only with more free variables.
Now we will invoke the existential theory of the reals
decidability result of Renegar [31]. To do this we need
to write the inequality into the logical structure desired
by the algorithm.

(∃x1) . . . (∃xd)(
(w1 − x1)

2 + . . .+ (wd − xd)
2 + (wd+1 − P (x))2 − r2 = 0

∨ (w1 − x1)
2 + . . .+ (wd − xd)

2 + (wd+1 − P (x))2 − r2 < 0

)
≡ (∃x1) . . . (∃xd)(
(w1 − x1)

2 + . . .+ (wd − xd)
2 + (wd+1 − P (x))2 − r2 = 0

)
∨ (∃x1) . . . (∃xd)(
(w1 − x1)

2 + . . .+ (wd − xd)
2 + (wd+1 − P (x))2 − r2 < 0

)
Thus we have two d-variate polynomials we must eval-

uate. The existential theory of the reals algorithm takes
O(pO(d)) simple operations to evaluate for each P-atom.
Now we will use a circuit argument with d free vari-
ables/dimensions and t = pO(d) simple operations. Thus
the VC dimension for one P-atom is O(dpO(d)). Then
using a composition argument, we can combine these
together increasing the bound only a constant factor. �

3.2 Lower Bound of VC Dimension for Inflated Poly-
nomials via Interpolation

We show a lower bound of
(
d+p
p

)
where p is the degree

of the polynomial and d is the number of variables in
the polynomial. The proof uses that a polynomial P ∈
R[x1, . . . , xd] can uniquely interpolate

(
d+p
p

)
points in

Rd+1. With some perturbation, we can always shatter
sets of this size.

Theorem 4 The lower bound of the VC dimension of
(Rd+1,Md

p) is
(
d+p
p

)
.

Proof. Given (Rd+1,Md
p) consider X, a set of points

in Rd+1 where |X| =
(
d+p
p

)
points such that the sample

matrix’s determinant, as in [33], is nonzero. Let Z be a
non empty element of the power set of X. To intersect
all points in Z and none in X \ Z we interpolate over
Z and

(
d+p
p

)
− |Z| perturbed points in X \ Z. We will

perturb these points by adding ε to the final coordinate
of the points in X \ Z. Let Pr ∈ Md

p and P be the
polynomial at the center of Pr. Recall that polynomial
P is a function from Rd → R. If we then interpolate
using Lagrange interpolation detailed in [33] over the Z
and the perturbed points of X \ Z the function will not
interpolate the original points of X \ Z. We know that

perturbing these points does not affect the existence of
the interpolant since changing the final coordinate of
our set does not change the determinant of the sample
matrix. We can then take r sufficiently small so that Pr
does not contain any element of X \ Z. Therefore as we
can interpolate any subset of

(
d+p
p

)
points in this way

the VC dimension of the range space must be at least(
d+p
p

)
. �

If we are dealing with univariate polynomials then the
curve lives in R2 and can shatter

(
1+p
p

)
= p+ 1 points by

the above theorem. Note that this is a lower bound due
to the fact that we are not using the expressiveness of
the radius of the inflated polynomial to our advantage.
Yet as the modification of the radius affects the inflated
polynomial globally, not just locally, its expressiveness
is limited.

Comment on tightness. We have an upper bound and
a lower bound on the VC dimension of the inflated
polynomial range space (Rd+1,Md

p). When p is constant
then

(
d+p
p

)
= Θ(dp) and when d is constant, then

(
d+p
p

)
=(

d+p
d

)
= Θ(pd). So for constant d, we have upper bound

of O(pO(d)) and lower bound of Ω(pd). For d = 1, we
have established Θ(p) VC dimension.

4 Application in Robust Adversarial Learning

We highlight an application in robust adversarial learn-
ing. Others implications can be found in Appendix A
and by connecting to results in coresets [15], hitting
sets [5], and range searching [8].

Adversarial attacks on classifiers refers to when some-
one makes small perturbations to input data so it fools
a classifier. This phenomenon has been demonstrated
in images, question answering, voice recognition, among
other areas [35, 7, 34, 18]. Current defenses against
adversarial robustness [24, 6, 12, 26, 27, 29] may have
undesirable consequences, such as decreasing test accu-
racy, leading some to investigate a potential trade-off
between accuracy and robustness [39, 36]. Yet, further
investigation on robustness prevention methods and the
separability of image datasets show that accuracy and
robustness are obtainable for real-life data [38, 30]. Also,
random smoothing of a classifier, a defense in which
you randomly sample around points within the data to
build robustness [10, 32, 22] has been effective in low
dimensions yet may be untenable in high dimension [21].
To formalize this problem, we need to consider a

classifier h : Rd → {−1, 1}. Let Bγ(x) = {x′ ∈ Rd |
‖x′ − x‖2 ≤ γ} be the l2 ball of radius γ around x,
which describes the allowable perturbations around a
data point x ∈ Rd. We say a point (x, y) ∈ Rd ×{−1, 1}
is γ-safe from h if all x′ ∈ Bγ(x) has that h(x′) = y; this
implies it is sufficiently far from the decision boundary.

318



34th Canadian Conference on Computational Geometry, 2022

The γ-error can be measured on a distribution µ as the
probability a sample (x, y) ∼ µ is not γ-safe.
Prior work has defined a few notions of adversarial

robustness. [14] considers the expected minimum Eu-
clidean distance γ of a point x to decision boundary of h,
formally: E(x,y)∼µ[minx′∈Rd ‖x′− x‖2 such that h(x′) 6=
y.] This line of work uses specific function classes (some
linear and quadratic classifiers) H, which can use the
value h(x) to upper bound the expected perturbation
radius γ for specific distributions (e.g., µ is Gaussian or
uniform for each class). [34] defines robust classification
error as the probability of drawing a γ-safe point from
µ, mostly focusing on l∞ perturbations. They show
for linear models on Gaussian mixture distributions µ
that more samples are needed to generalize wrt robust
classifiers error than just classification error.

Our work, extends this to more general distributions,
more complex (polynomial) classifiers, and to Euclidean
perturbations. An important point to make is that while
polynomials can be linearized to a higher-dimensional
space so whether a point is classified correctly by the
polynomial is preserved, this does not preserve the dis-
tance to the decision boundary, and so such techniques
cannot be directly applied to understand the learnability
of these polynomial classification problems.
Let Hp = {sgn ◦ h | h ∈ Pp} where Pp = {f ∈

R[X1, . . . , Xd] : deg(f) ≤ p}. The key insight is to
describe a range space (Rd×{−1, 1},Rp) derived from Pp
and a robustness parameter γ > 0. Each function h ∈ Hp
maps to a function g : Rd × {−1, 1} → {−1, 1}, where
g(x, y) = 1 if and only if (x, y) is γ-safe with respect to
h. This takes on two cases, if y = +1, then h(x) must be
positive and x not in the γ-inflated polynomial around
the decision boundary. Similarly, if y = −1, then h(x)
must be negative and x not in the γ-inflated polynomial.

Lemma 5 The VC dimension of (Rd × {−1, 1},Rp) is
O(p) for d = 1 and O(dpO(d)) for d > 1.

Proof. We can apply the composition argument detailed
in Section 2.2 to the two d-dimensional ranges considered:
at y = +1 the complement of an inflated polynomial
and a polynomial, and at y = −1 the complement of an
inflated polynomial and a polynomial, all of degree p; see
example in Figure 2. All of these ranges are derived from
the same polynomial f ∈ R[X1, . . . , Xd], but this only
restricts the range space and does not increase the VC
dimension. For the composition of a constant number
of range spaces, the VC dimension is asymptotically the
max of them. The stated bounds follow from the inflated
polynomial bounds in Theorem 2 and Theorem 3. �

Next we analyze the learnability of polynomial classi-
fiers which are γ-robust; those deemed successful on data
which is γ-safe. The previous lemma demonstrated that
such classifiers can be characterized with range spaces

Figure 2: Decomposition of robust polynomial classifica-
tion into ranges.

with bounded VC dimension, and directly linked to that
for inflated polynomials.
We first focus on non-agnostic learning, where 0 er-

ror can be achieved on a sample from family H. The
non-agnostic robust sample complexity of a family H, a
parameter γ > 0, and a distribution µ is the size of the
smallest iid sample P = {(xi, yi)} ⊂ µ so that for any
h ∈ H with γ-error of zero on µP , then with probability
at least 1− δ, it has at most γ-error of ε on µ.

Theorem 6 For any γ > 0, the non-agnostic robust
sample complexity is O(pε log p

εδ ) for univariate polyno-

mials of degree at most p and O(pd
O(d)

ε log pdO(d)

εδ ) for
d-variate polynomials of degree at most p.

Proof. Let any function g ∈ Rp have g(x, y) = 1 iff the
point (x, y) ∈ Rd × {−1, 1} is γ-safe. By assumption of
the theorem there is a function g ∈ Rp with erµP

(g) = 0
on a sample P . Then by bounding the VC dimension in
Lemma 5 and applying the non-agnostic bound of [20],
we obtain the claimed result. �

We can also apply this to agnostic settings, where we
cannot guarantee a perfect classifier. The agnostic robust
sample complexity of a family H, a parameter γ > 0,
and a distribution µ is the size of the smallest iid sample
P{(xi, yi)} ⊂ µ so that for any h ∈ H with γ-error of
η on µP , then with probability at least 1− δ, it has at
most γ-error of η + ε on µ. By the same argument as in
Theorem 6 but applying the more general bound of [23],
we obtain the following result which has no assumptions
on the distribution µ.

Theorem 7 For any γ > 0, the agnostic robust sample
complexity is O( 1

ε2 (p+log 1
δ )) for univariate polynomials

of degree at most p and O( 1
ε2 (pdO(d) + log 1

δ )) for d-
variate polynomials of degree at most p.

5 Conclusion & Discussion

This paper uses a combination of traditional techniques
of bounding VC dimension and algorithms in algebraic
geometry to bound the VC dimension of complex range
spaces. These techniques are useful for ranges defined
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with a combination of polynomials and existential quan-
tifiers, such as geometric ranges of all points within a
fixed Euclidean distance from an object. These apply
as long as the geometric object can be described as a
polynomial, or by n polynomial pieces. A key example
is the class of inflated polynomials; for one such range,
a point x0 is inside if there exists a ball, centered on the
defining polynomial, which contains x0. These results
have implications in range searching, hitting sets, and
learning on swept out polynomial curves, as well as in
adversarial learning.

`∞ perturbations. The applications to adversarially-
robust sample complexity we develop focus on how in-
flated polynomials correspond with robust classifiers,
which allow any `2 perturbation of data and still have
the correct classification. Other work in this subarea
has considered `∞ perturbations. We remark here that
the VC-dimension of a polynomial of degree p under `∞
perturbation may not require analysis with existential
theory of the reals. We claim that the Minkowski sum
of an `∞ ball with a polynomial of degree p in R2 can be
described as the composition of 4 polynomial classifiers
of degree p, and O(p) linear segments. Thus, since the
VC dimension of any one of the polynomial parts is O(p),
the composition of the O(p) linear parts is O(log p), and
the composition of these two aspects is O(p).
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A Additional Implications

Smoothed range spaces. Another application related
to robust adversarial learning is the idea of a “smoothed
range space” [28], where the misclassification error is
replaced around a binary decision boundary with a con-
tinuous function, where significantly misclassified points
are given a penalty of 1, but points close to the boundary
(under Euclidean distance) are given a penalty between 0
and 1 according to a continuous rate based on how close.
Zheng and Phillips [28] showed that the VC dimension of
the decision boundary expanded by a Euclidean distance
of r in all directions (i.e., inflated the decision boundary)
governs the sample complexity of this task. However,
this bound was unknown for polynomial decision bound-
aries [9] until this paper. The relevant VC dimension is
that of an inflated polynomial.

Inflated univariate spline classification. An inflated
spline is a polynomial spline that has been inflated with
radius r. A spline is a piecewise polynomial that pre-
serves stronger continuity between pieces. Suppose we
are unaware of an object’s (perhaps a person or vehi-
cle) location over time and that we make a modeling
assumption that the object is traveling along a piecewise
polynomial path. A piecewise polynomial curve, perhaps
a natural cubic spline, could be a more natural assump-
tion than a piecewise polygonal curve. Suppose there is
a low-flying unmanned aerial vehicle (UAV) with a radio
jamming device which is disrupting cellular and GPS
signals within r meters. We would like to approximate
the UAV’s trajectory over time. How many devices with
radio sensors (cell towers, GPS, etc.) do we need to test
(build a binary classifier) with up to 1− ε accuracy, to
induce the path the object took, with probability 1− δ.
It was previously unknown how many radio sensors are
required to be tested, yet in R2 with n polynomial pieces
each with bounded degree p we know now the bound
is m = O( 1

ε2 (np log n + log 1
δ )). The specific applica-

tion described in the Introduction with a polynomial
curve, has n = 1, so the specific bound in that case is
m = O( 1

ε2 (p+ log 1
δ )).

Theorem 8 If points x ∈ R2 within r distance of a uni-
variate polynomial spline are classified as 1 and points
outside r are classified as −1, then to induce a trajec-
tory with ε error, m = O( 1

ε2 (np log n + log 1
δ )) points

randomly chosen are sufficient, with probability 1− δ.

Proof. In R2, by Theorem 2, the VC dimension asso-
ciated with each piece is O(p), if its degree is bounded
by p. Now we must only apply a composition argument
over each piece to get the VC dimension. Therefore
we find the following bound O(np log n) where n is the
number of polynomial pieces used. Hence, the sample
complexity for learning on inflated polynomial splines is
m = O( 1

ε2 (np log n+ log 1
δ )). �
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Budgeted Steiner Networks: Three Terminals with Equal Path Weights

Mario Szegedy Jingjin Yu ∗

Abstract

Given a set of terminals in 2D/3D, the network with
the shortest total length that connects all terminals is
a Steiner tree. At the other extreme, with enough total
length budget, every terminal can be connected to every
other terminal via a straight line, yielding a complete
graph over all terminals that connects every pair of ter-
minals with a shortest path. In this work, we study
a generalization of Steiner trees, asking what happens
between these two extremes. For a given total length
budget, we seek a network structure that minimizes the
sum of the weighted distances between pairs of termi-
nals. Focusing on three terminals with equal pairwise
path weights, we characterize the full evolutionary path-
way between the Steiner tree and the complete graph,
which contains interesting intermediate structures.

1 Introduction

Consider a scenario in which three or more terminals
(e.g., the black nodes A,B, and C in Fig. 1) are to be
connected using a (graph) network, the total length of
which is limited.

??

AB

C

(a) (b) (c) (d)

Figure 1: Evolution of a budgeted Steiner network over
three (black) terminals as the budget increases. (a)
Three terminals, A,B, and C, to be connected. (b)
The minimal non-trivial network that connects two ter-
minals. (c) The minimal network connecting all termi-
nals, which is a Steiner tree. (d) With sufficient budget,
the network is a complete graph. The question is, what
happens between (c) and (d)?

At one extreme, the minimum length budget re-
quired to connect all terminals corresponds to the total

∗Department of Computer Science, Rutgers Uni-
versity, the State University of New Jersey, {szegedy,
jingjin.yu}@cs.rutgers.edu

length of the edges of a Steiner tree over the terminals
(Fig. 1(c)). The well-known Steiner tree problem (STP)
seeks optimal network structures for connecting a set of
terminals while minimizing the total edge lengths [9,16].
STP generally asks for a minimally connected network,
resulting in a topology that is a tree. At the other ex-
treme, when there is no limit on the budget, the best
network structure is clearly a complete graph over all
terminals, where every pair of terminals are connected
through a straight edge. Such a network ensures the
shortest possible travel distance between any pair of ter-
minals. What if, however, the budget falls between the
two extremes?

To address the question, we propose the budgeted
Steiner network (BSN) problem/model. As a natural
generalization of STP, BSN seeks the best network struc-
ture for a given length budget to connect three or more
terminals, which reside in Rd for some d ≥ 1, such that
the sum of the (weighted) distances between pairs of
nodes are minimized. In this work, we mainly focus on
the case of three terminals with d = 2 (for three termi-
nals, d = 2 is the same as d ≥ 2).
The generalization immediately leads to rich and in-

teresting structures, even when only three terminals are
involved. As the budget increases, the network struc-
ture changes continuously between a Steiner tree and a
complete graph over the terminals, a few snapshots of
which are illustrated in Fig. 2.

AB

C

A′

B′

C′

→ → → →

(a) (b) (c) (d) (e)

Figure 2: A spectrum of optimal Euclidean BSN network
structures (solid lines) for three terminals in a typical
setup, as the allowed budget increases.

As a summary of the full evolutionary pathway, if all
internal angles of a △ABC are smaller than 2π/3, the
Steiner tree over terminals A,B, and C has a Steiner
point that is internal to the triangle (e.g., the green dot
in Fig. 2). In this case, for a generic △ABC (that is,
△ABC is not an isosceles triangle), as the budget in-
creases past the length of the Steiner tree, an equilateral
triangle △A′B′C ′ will “grow” out of the Steiner point
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(Fig. 2(b)) and continues to expand until one vertex
of △A′B′C ′ meets one of the terminals, say A. Past
this point, △A′B′C ′ continues to expand as an isosceles
triangle with A′ = A fixed (Fig. 2(c)) as the budget con-
tinues to increase, until another vertex meets B or C,
say B. △A′B′C ′ then continue to expand with A′ = A
and B′ = B fixed, and C ′ moving toward C, until it
fully coincides with △ABC. If △ABC has one angle
equal to or larger than 2π/3, the evolutionary pathway
is similar but shortened; the corresponding BSN does not
have an initial phase containing an equilateral triangle.

The main contribution of this work is the rigorous
characterization of the precise evolution pathway of a
BSN as the available budget increases, for three arbi-
trarily located terminals. The analysis also implies an
efficient algorithm for computing the optimal BSN struc-
ture for any given budget.

2 Related Work

BSN problems are closely related to STPs [8,9,16], which
is a broad term covering a class of network optimization
problems. An STP seeks a minimal network that con-
nects a set of terminals (in Euclidean space or on graphs
that are possibly edge/vertex weighted). There are
four main cases: Euclidean, rectilinear, discrete/graph-
theoretic [6, 11], and phylogenetic [9]. Considering the
paper’s scope, we provide a brief literature review of
Euclidean STPs.
The Euclidean STP asks the following question: given

n terminals in 2D or 3D, find a network that connects all
n points with the minimum total length (the discussion
from now on will be limited to the 2D case). Obvi-
ously, the resulting network is a tree and may only have
straight line segments; it may also require additional in-
termediary nodes to be added. These added nodes are
called Steiner points. The study of Euclidean STP bears
with it a long history; the initial mathematical study
of the subject may be traced back to at least 1811 [3].
According to [12], key properties of Euclidean STP have
been established in (as early as) the 1930s by Jarńık and
Kössler [10]. An interconnecting network T is called a
Steiner tree if it satisfies the following conditions [9]:

(a) T is a tree,

(b) Any two edges of T meet at an angle of at least
2π/3, and

(c) Any Steiner point cannot be of degree 1 or 2.

These conditions turn out to be also relevant in our
study of the BSN problem. The solution to an Euclidean
STP must be a Steiner tree. Note that (b) implies a
node of the network has a maximum degree of 3. To-
gether, (b) and (c) imply that three edges must meet
at a Steiner point forming angles of 2π/3 in a pairwise

manner (see Fig. 1). Because Euclidean Steiner trees as-
sume minimal energy configurations, they also appear
in nature. Indeed, it is possible to employ related natu-
ral phenomena (e.g., using rubber bands and soap film)
to “compute” Euclidean Steiner trees [5, 7, 14].

Our study, which focuses on the case of three termi-
nals with equal path weights, bears similarity with a
recent study [4] which examines a related problem of
characterizing the minimum dilation spanners on three
terminals for a given budget. Whereas there exists a
mild degree of similarity, we note that we independently
developed our results, which provides an exact analysis
of the full evolution pathway between the Steiner tree
and the complete graph. On the other hand, the ana-
lytical result of [4] is mostly limited to the initial stage
of the evolution.

Computing an Euclidean STP is NP-hard, although
there is a polynomial time approximation scheme
(PTAS) for solving it [2]. On the more practical
side, fast methods including the GeoSteiner algorithm
[15,17] have been developed building on the Melzak con-
struction [13]. An open source implementation of the
GeoSteiner algorithm is maintained [1].

3 Preliminaries

Let there be n ≥ 3 terminals N = {v1, . . . , vn}, dis-
tributed in some way in a d-dimensional unit cube, d >
0. For each pair of terminals vi and vj , 1 ≤ i < j ≤ n,
let wij ∈ (0, 1] denote the (relative) weight or impor-
tance of the route connecting vi to vj . In practice, wij

may model the expected traffic flow from vi to vj , for
example. In an Euclidean budgeted Steiner tree (BSN)
problem, straight line segments are to be added for con-
necting the n terminals so that some or all of the termi-
nals are connected. Similar to Steiner trees, intermedi-
ate nodes other than v1, . . . , vn, which we call anchors,
may be added. The terminals, anchors, and the straight
line segments then form a graph containing one or more
connected components. Under the constraint that the
total length of the line segments does not exceed a bud-
get L, the BSN problem seeks a network structure that
minimizes the objective

J(L) =
∑︂

1≤i<j≤n

wijdij , (1)

in which dij denotes the shortest distance between vi
and vj on the network. If no path exists between vi and
vj , let dij be some very large number.

In the current work, we examine the case of n = 3
and wij = 1 for all 1 ≤ i, j ≤ 3, i ̸= j, i.e., paths
between pairs of terminals are equally important. Let
the three terminals be A,B, and C, we are looking for a
BSN minimizing the sum dAB+dBC+dAC subject to the
budget L. For a fixed L, let N(L) denote the optimal
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BSN structure. Let LST be the budget L when N(L) is
a Steiner tree. For convenience, let NST := N(LST).

4 Anchor Structures and Steiner Triangles

4.1 Basic Properties of Anchors

First, we note each anchor must have degree three.

Lemma 1 (Degree of Anchors) For three termi-
nals, any anchor must have degree exactly three.

Proof. Each anchor must connect at least three line
segments; otherwise, the anchor point and the involved
line segments only cause increases to the objective dAB+
dBC + dAC . An anchor’s degree also cannot be four
or larger when there are only three terminals, because
each outgoing edge from an anchor must be on a shortest
path to a unique terminal, if we are to minimize Eq. (1).
But there are only three terminals. □

We analyze what happens when L = LST+ε for small
ε > 0, for the case where the Steiner point lies in-
side △ABC, which happens when all angles of △ABC
are smaller than 2π/3. Due to continuity, the resulting
structure that minimizes Eq. (1) must be a perturbation
ofNST (e.g., Fig. 1(b)). This means thatN(LST+ε) must
start “growing” at the Steiner point. We want to un-
derstand how N(LST+ε) evolves for small ε. This raises
the following questions: (1) how many line segments are
in N(L = LST + ε) and (2) how do they come together?
We note that N(LST + ε) must contain more than three
straight line segments. Otherwise, N(LST + ε) will still
be a tree but with dAB+dBC+dAC = 2(LST+ε) > 2LST,
i.e., J(L) > J(LST).

To answer above-mentioned questions, we start with
establishing essential properties of anchors, concerning
their locations, degrees, and numbers. It is clear that
anchors must always fall within △ABC; otherwise, an
outside anchor (on the convex hull of all terminals and
anchors) can be “retracted” toward the boundary of
△ABC to reduce both the budget and the objective
function value. In fact, anchors cannot reside on the
boundary of △ABC, as shown in the following lemma.

Lemma 2 (Interiority of Anchors) For terminals
A,B, and C, any anchor must fall in the interior of
△ABC, excluding its perimeter.

Proof. Consider the setting illustrated in Fig. 3 where
only a portion of △ABC is drawn. Suppose that D is
the only anchor on AC and the horizontal line segment
passing through D and D′ is part of an optimal net-
work structure. For the setup, DD′ must be part of the
shortest path on the optimal network that connects A
to B as well as C to B; the entire AC must also be part
of the network that connects A and C.

A

C

D

D′′D′

E

Figure 3: Moving C ′ along C ′C for a small amount.

We claim that such a configuration cannot be
optimal. To see this, retract D along DD′ by
some small distance of |DD′′|. This reduces the
budget by ∆L = |DD′′|+(|AC|−|AD′′|−|CD′′|).
At the same time, the cost reduction is ∆J =
2|DD′′|+(|AC|−|AD′′|−|CD′′|).

Let E ∈ AC be a point such that D′′E ⊥ AC. It
is straightforward to derive that |ED′′|≫ |CD′′|−|CE|
and |ED′′|≫ |AD′′|−|AE| for sufficiently small |ED′′|>
0. Therefore, |DD′′|≥ |ED′′|> (|AD′′|+|CD′′|−|AC|).
This means that for small |DD′′|, both ∆L and ∆J are
positive, i.e., we can reduce budget and at the same
time reduce the cost by retracting D along DD′ to D′′.
This means that D cannot be an anchor. If D is not the
only anchor on AC, the same proof works assuming D
is the lowest anchor. □

Building on Lemmas 1 and 2, we show that there can
be at most three anchors for three terminals.

Lemma 3 (Number of Anchors in N(LST + ε))
When all angles of △ABC are below 2π/3, for small
ε > 0, N(LST + ε) contains three anchors that forms a
triangle inside △ABC.

Proof. By Lemma 1, all anchors have degree three. If
there is only a single anchor that is not the Steiner point,
then N(LST + ε) still has a tree structure. This tree is
different from NST which is minimal, so the new tree
must have a larger objective function value which can-
not be optimal.

If there are two anchors, each with degree three, then
both of them cannot be connected to all of A,B, and C;
there must be exactly five line segments in N(LST + ε),
one of which connects the two anchors. This leaves four
line segments connected to the three terminals, which
means that two of these line segments must reach the
same terminal. This will induce a total budget that can-
not be an arbitrarily small amount above LST when the
Steiner point is inside △ABC. That is, this is impossi-
ble with a budget LST + ε for small ε > 0.

There cannot be more than three anchors when there
are only three terminals. To establish this, we note
that a shortest path between any two terminals, when
there are three terminals in total, can make at most two
“turns” due to path sharing. To see this, consider the
shortest path PAB between terminals A and B. PAB

may bend at most two times, once to share with a path
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from A to C and once to share with a path from B
to C. If PAB bends once, say at an anchor A′, then
both AA′ or A′B must be on a shortest path to B and
we must have a tree. This is not possible under the
assumption that ε is small, so there can only be one
edge coming out of a terminal. Therefore, each shortest
path between two terminals must bend exactly twice at
two anchors. The three shortest paths then have a total
of six anchors. Because each anchor is shared by two
shortest paths, there can only be three unique anchors
that form a triangle. □

4.2 Steiner Triangle for Three Anchors

Having shown that there are three anchors, let the an-
chor closest to A,B and C be A′, B′, and C ′, respec-
tively. This suggest that N(LST + ε) contains six line
segments AA′, BB′, CC ′, A′B′, A′C ′, and B′C ′. We
call △A′B′C ′ that “grows” out of the Steiner point a
Steiner triangle. Next, we establish that △A′B′C ′ is an
equilateral triangle, starting with showing that its three
internal angles are bisected by AA′, BB′ and CC ′. The
objective Eq. (1), dAB + dBC + dAC for the current set-
ting, translates to

J(LST + ε) =2|AA′|+2|BB′|+2|CC ′|
+ |A′B′|+|A′C ′|+|B′C ′|.

(2)

Lemma 4 (Bisector of Steiner Triangle) For ter-
minals A,B, and C with a Steiner point, let N(LST+ ε)
be composed of the Steiner triangle △A′B′C ′ and seg-
ments AA′, BB′ and CC ′. Then an angle of △A′B′C ′

is bisected by the line passing the corresponding anchor
and the terminal the anchor is connected to.

Proof. See the Appendix for the technical proof based
on infinitesimal analysis. □

Before moving on to showing that △A′B′C ′ is equi-
lateral, we note that Lemma 4 does not depend on ε
being small. Moreover, the result continues to hold if
there are one or two anchors, which can be readily ver-
ified.

Lemma 5 (Anchor Bisector) For terminals A,B,
and C, suppose C ′ is an internal anchor connected to
C in an optimal network structure N(L). Then CC ′

bisects the angle formed by the other two outgoing edges
from C ′.

We now prove a key structural property of BSN for
three terminals involving three anchors.

Theorem 6 (Steiner Triangle for Three Anchors)
For terminals A,B, and C with a Steiner point, assume
that N(LST + ε) is composed of the Steiner triangle
△A′B′C ′ and segments AA′, BB′ and CC ′. Then

△A′B′C ′ is equilateral with its center being the Steiner
point of the terminals. The center of △A′B′C ′ is the
intersection point of AA′, BB′ and CC ′.

Proof. See the Appendix. □

From Theorem 6, we can draw the following conclu-
sion. For three terminals with a Steiner point, as the
budget L goes just beyond LST, an equilateral triangle
will “grow” out the Steiner point toward the terminals.
Moreover, whenever there are three anchors, they must
form an equilateral triangle. All such equilateral trian-
gles have their vertices lying on the line segments formed
by the terminals and the Steiner point, as illustrated in
Fig. 4. We have not yet show, however, that as L grows,
the anchors cannot go from three to fewer and then be-
come three again. We delay this after the structures
with fewer anchors are characterized.

A

B

C

A′

B′

C′
O

Figure 4: For three terminals with a Steiner point
(which is always internal), when there are three anchors,
they always form an equilateral triangle.

4.3 One and Two Anchors

If there are two anchors, they must both be connected
to one shared terminal, say A, and each connecting to
a unique terminal in B and C. Let the anchors be B′

and C ′. N(L) then consists of five segments AB′, AC ′,
BB′, CC ′, and B′C ′. It can be shown that △AB′C ′ is
an isosceles triangle (see, e.g., Fig. 5).

A(A′)

B

C

B′

C′O′

Figure 5: For three terminals with a Steiner point, when
there are two anchors, they always form an isosceles
triangle with one of the terminals.

Proposition 1 (Steiner Triangle for Two Anchors)
For terminals A,B, and C with a Steiner point, if the
optimal network N(L) has two anchors B′, C ′, then
these two anchors form an isosceles triangle with one
of the terminals, e.g., A. AB′ = AC ′.
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Proof. See the Appendix. □

Following the same line of reasoning, when there is a
single anchor in an optimal network N(L), e.g., C ′ that
is connected to A,B, and C, if C ′ is not the Steiner
point, N(L) must contain one of AB, BC, and AC.
Suppose N(L) contains AB, then all we know is that
CC ′ must bisect ̸ AC ′B. See Fig. 2(d) for an example.

5 Evolution of the Budgeted Steiner Network

5.1 With Steiner Point

Having established the optimal configuration when
there are 1-3 anchors, we now piece them together to
understand the evolution of the network. Intuitively,
as the budget L increases, the evolution of the optimal
network N(L) would look like that shown in Fig. 2, go-
ing from Steiner tree to having three anchors, then two,
then one, and finally becoming the triangle of the three
terminals. To show this is the actual network evolution
pathway, however, we must show that there cannot be
discrete jumps in BSN structures, e.g., going from three
anchors to two anchors and then back to three anchors.

We proceed to show that the sequence in Fig. 2 is
indeed how N(L) evolves as L increases by analyzing
how J(L) changes as L changes, i.e., dJ

dL .

Lemma 7 (Rate of Change at Anchors) For ter-
minals A, B, and C, let C ′ be an anchor connected
to C. Let the angle formed by the other two edges em-
anating from C ′ other than CC ′ be 2α. As C ′ moves
closer to C, the rate of change to the objective function
dJ
dL due to the change to CC ′ is

dJ

dL
=

2 cosα− 2

2 cosα− 1
. (3)

Proof. Fig. 6 shows the setting where C ′ is moved
along C ′C for a small amount. By the bisector
Lemma 5, the addition of length (in green) to the two
edges coming out of C ′ that are not CC ′ is 2|EC ′| while
the reduction of length to |CC ′| is |C ′E|/cosα (the red
segment). Therefore, the change to the budget due to
this is ∆L = 2|C ′E|−|C ′E|/cosα.

CC′E

2α

Figure 6: Moving C ′ along C ′C for a small amount.

On the other hand, the change to the objective func-
tion value is ∆J = −(2|C ′E|/cosα − 2|C ′E|) because
C ′C contributes to two shortest paths. Dividing ∆J
over ∆L yields Eq. 3. □

Proposition 1 (Range of Change, Three Anchors)
For three terminals, when there are three anchors,

dJ

dL
=

1−
√
3

2
. (4)

Proof. For three anchors, α in Eq. (3) is π/6. We then
have dJ/dL = (

√
3− 2)/(

√
3− 1) = (1−

√
3)/2. □

Proposition 2 (Range of Change, 1-2 Anchors)
For three terminals, when there are one of two anchors,
let the angle formed at the anchor belonging to the
triangle structure of the network be 2α, then,

dJ

dL
=

2 cosα− 2

2 cosα− 1
. (5)

Since 0 < 2α ≤ π/2, α ∈ (0, π/4]. Let cosα = x,

x ∈ [
√
2
2 , 1). Eq. 3 becomes g(x) = 2x−2

2x−1 . It is straight-
forward to derive (using derivatives) that g(x) is nega-
tive on the given range of x and monotonically increases
to 0 as x → 1. This means, with reference to Fig. 6, that
the magnitude of dJ

dL becomes smaller as C ′ gets closer
to C (α decreases). This allows us to show that J(L)
decreases faster when there are more anchors. We be-
gin with showing that internal angles at anchors cannot
exceed π/3.

Lemma 8 (Feasible Anchor Configurations)
For three terminals and an optimal Steiner network,
the internal angles of the triangular structure of the
network at non-terminal anchors are always no more
than π/3.

Proof. For three anchors, we have shown they must
assume an equilateral triangle configuration. Suppose
that in a two-anchor network configuration, the opti-
mal network has internal angles at non-terminals an-
chors larger than π/3. For example, suppose that in
Fig. 5, ̸ AB′C ′ = ̸ AC ′B′ > π/3. This requires that
̸ B′AC ′ < π/3. Now, suppose we push down the tri-
angle A′B′C ′ along AA′ by a small δ > 0 and retract
along B′B and C ′C so that L remains unchanged. Be-
cause 0 > dJ

dL |A′> dJ
dL |B′= dJ

dL |C′ , this means that J
will actually decrease due to the change. Therefore, the
configuration cannot be optimal.

The same argument also applies to the single anchor
case: if the internal angle at the single anchor is larger
than π/3, the at least one of the two other internal
angles must be smaller than π/3. □

We are now ready to establish the evolution pathway
of the optimal Steiner network for three terminals with
Steiner points.
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Theorem 9 (BSN Evolution, with Steiner Point)
For terminals A,B, and C with a Steiner point O,
as the budget L > LST increases, the optimal Steiner
network N(L) will first grow an equilateral triangle,
△A′B′C ′, out of O toward the three terminals. The
internal angles of △A′B′C ′ are bisected by AA′, BB′

and CC ′. The growth continues until one of the
anchors, say A′, reaches terminal A, corresponding to
the largest internal angle of △ABC. Then, an isosceles
triangle continuous to grow in place of the equilateral
triangle, with its two internal angles ̸ AB′C ′ and
AC ′B′ bisected by BB′ and CC ′, respectively, until
one of the two anchors B′ reaches a second terminal,
say B, that corresponds to the second largest angle
of △ABC. Finally, the network grows as C ′ finally
reaches C, with CC ′ always bisecting ̸ AC ′B.

Proof. Without loss of generality, assume that
̸ BAC ≥ ̸ ABC ≥ ̸ ACB. By Lemma 3 and Theo-
rem 6, the initial optimal network when L = LST+ε has
an equilateral triangle A′B′C ′ growing out of the Steiner
point O, with AA′, BB′, and CC ′ bisecting ̸ B′A′C ′,
̸ A′B′C ′, and ̸ A′C ′B′, respectively. By Lemma 8, be-
fore △A′B′C ′ reaches A as an equilateral triangle (AA′

is shorter than than BB′ and CC ′ when ̸ BAC is the
largest angle of △ABC), it cannot happen that the
optimal network jumps to a configuration where one
anchor disappears. To see that this is the case, sup-
pose the network jumps to a configuration where A′

merges with A. This would force △A′B′C ′ to have
̸ B′A′C ′ < π/3 < ̸ A′B′C ′ = ̸ A′C ′B′, which is not
possible. The situation gets worse if B′ merges with B
or C ′ merges with C. Using a similar argument, we can
show that it is also not possible for the optimal network
to jump from three anchors to having a single anchor
without the equilateral △A′B′C ′ reaching its maximum
girth. Using the same approach, we can also show that
it is not possible to “jump” from a two-anchor configura-
tion to a single anchor configuration without the anchor
B′ reaching B, as the isosceles triangle expands. □

5.2 No Steiner Point

When an angle of △ABC, say ̸ BAC, is larger than
2π/3, A acts as a “Steiner” point. In this case, it be-
comes impossible for the optimal network N(L) to have
three internal anchors.

Lemma 10 (Anchor Multiplicity) For three termi-
nals without a Steiner point, the optimal network N(L)
for any L cannot have three anchors.

Proof. If there are three anchors, Theorem 6 must
hold. However, this is impossible if one of the angles
formed by the terminals is equal to or larger than 2π/3.

Referring to Fig. 4, suppose that ̸ BAC ≥ 2π/3. How-
ever, also by Theorem 6, ̸ BOC = 2π/3, which is not
possible. □

Following similar reasoning used for establishing the
case where the Steiner point is in the interior of △ABC,
the evolution of the optimal network for the current set-
ting goes through the following phases (assuming termi-
nals A, B, and C, and ̸ BAC ≥ 2π/3):

1. The budget L is sufficient to cover the shortest edge
of △ABC but less than LST. In this case, N(L)
contains one edge of △ABC

2. The budget L equal to LST. In this case, N(L) is
the Steiner tree comprised of AB and AC.

3. For L = LST+ε for small positive ε, a small isosceles
triangle grows out from A, producing a configura-
tion as shown in Fig. 7(a). The network satisfies
the bisector requirement given by Lemma 1. As
L increases, the isosceles triangle expands with the
bisector structure in place, until one of the vertex
of the triangle hits a terminal (B).

4. As one of the two anchors merge with a terminal,
the other anchor will continue to march toward the
last terminal (C) as L increases, eventually merge
with that terminal. A snapshot of this process is
given in Fig. 7(b).

B

A

C
(a) (b)

Figure 7: A spectrum of optimal Euclidean BSN network
structures (solid lines) for three terminals in a typical
setup where ̸ BAC ≥ 2π/3, as the allowed budget in-
creases.

6 Conclusion and Discussions

In this work, we propose the budgeted Steiner network
(BSN) problem to study shortest path structures among
multiple terminals under a path length budget. We es-
tablish the precise evolution of the BSN structure for
three arbitrarily located terminals where paths between
each pair of terminals have equal importance. It is
clear that the characterization yields efficient algorithms
for computing optimal BSN structures for any given 3-
terminal setup and length budget.

The current work just begins to scratch the surface of
the study of BSN; it is natural to study the case where
the weights are not equal as well as the case of more ter-
minals. It is also interesting to explore how BSN struc-
tures are affected by obstacles. Finally, as an alternative
to analytical approaches, it is interesting to explore es-
tablishing BSN structures using numerical methods.
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7 Appendix

Proof. [Proof of Lemma 4] Assume that for a given
budget L = LST + ε, the optimal network N(LST + ε)
has corresponding optimal objective J(LST + ε) as given
in Eq. 2. We show that CC ′ is a bisector of ̸ A′C ′B′

by analyzing the local changes to L and J(LST + ε) if
we perturb C ′.

C

A′

B′

C′D

E
F

Figure 8: Perturbing C ′ in an assumed optimal con-
figuration for the three-terminal Euclidean BSN prob-
lem. The figure zooms in around C ′ without showing A
and B. The drawing intentionally avoids assuming that
△A′B′C ′ is an equilateral triangle.

Referring to Fig. 8, let D be a point on the exten-

sion of
−−→
CC ′. A point E is introduced that shifts C ′ up

vertically (i.e., C ′E ⊥ C ′C) by the amount |C ′E|, as
a small perturbation to C ′. Now draw a line EF such
that EF ⊥ A′C ′ with F ∈ A′C ′. Because |C ′E| is small,
|A′F |≈ |A′E| (this is a second order approximation). As
C ′ is moved to E, the length change of A′C ′ is given by
|A′E|−|A′C ′|, which is approximately |A′F |−|A′C ′|=
−|FC ′|= −|C ′E|cos ̸ A′C ′E = −|C ′E|sin ̸ A′C ′D.
Following a similar analysis procedure, the length

change of B′C ′, |B′E|−|B′C ′|, is approximately
|C ′E|sin ̸ B′C ′D. Because C ′E ⊥ C ′C and |C ′E| is
small, |CC ′|≈ |CE| (also a second order approxima-
tion). Relating the length changes due to moving C ′

up to the change of the budget L, the net change to L
is |C ′E|(sin ̸ B′C ′D− sin ̸ A′C ′D) (i.e., B′C ′ becomes
longer and A′C ′ becomes shorter with CC ′ unchanged,
as a second order approximation). The change to the
objective J(LST+ ε) is the same since CC ′ is unaffected
by C ′E.

Because the changes to L and J(LST + ε) are exactly

the same, if ̸ A′C ′D ̸= ̸ B′C ′D, then either
−−→
C ′E or

a perturbation in the direction of
−−→
EC ′ will cause both
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|A′C ′|+|B′C ′|+|C ′C| and |A′C ′|+|B′C ′|+2|C ′C| to de-
crease, which means that L and J(LST + ε) can be si-
multaneously reduced. This contradicts the assumption
that L is the smallest budget for which the current ob-
jective J(LST+ε) is possible. Since this cannot happen,
it must be the case that ̸ A′C ′D = ̸ B′C ′D in an opti-
mal network configuration. That is, CC ′ is a bisector of
̸ A′C ′B′. By symmetry, BB′ is a bisector of ̸ A′B′C ′

and AA′ is a bisector of ̸ B′A′C ′. □

Proof. [Proof of Theorem 6] Again assuming an opti-
mal solution, extend line segments AA′, BB′, and CC ′

so that they intersect (see Fig. 9).

A

B

C

A′

B′

C′
O′

A′′

B′′

C′′

Figure 9: Applying a perturbation to△A′B′C ′ that lifts
it vertically along CC ′, which keeps the length of CC ′

unchanged in a first order approximation.

Because they are bisectors of △A′B′C ′, by Lemma 4,
they must meet at the same point O′. For this set-
ting, we again apply a perturbation argument used in
proving Lemma 4, this time lift the entire △A′B′C ′ in
a direction perpendicular to CC ′. Let the perturbed
triangle be △A′′B′′C ′′. Using the same argument, this
time applied to the length changes of AA′ and BB′, we
can reach the conclusion that the line CC ′ must be a
bisector of ̸ AO′B. In other words, shifting AA′ and
BB′ synchronously will not reduce the objective func-
tion only if CC ′ bisects ̸ AO′B.
Similarly, AA′ must be a bisector of BO′C and

BB′ must be a bisector of AO′C. Using that CC ′

bisects AO′B and A′C ′B′, it can be derived that
̸ O′A′C ′ = ̸ O′B′C ′, which in turn shows that
̸ B′A′C ′ = ̸ A′B′C ′. By symmetry, it can then be
concluded that △A′B′C ′ is an equilateral triangle. This
further shows that ̸ A′O′B′ = ̸ A′O′C ′ = ̸ B′O′C ′ =
2π/3, implying that O′, the center of △A′B′C ′, is the
Steiner point O of the terminals. □

Proof. [Proof of Proposition 1] By Lemma 5, BB′ bi-
sects ̸ AB′C ′ and CC ′ bisects ̸ AC ′B′. Let the exten-
sions of BB′ and CC ′ meet at O′ (see Fig. 5). Then AO′

bisects ̸ B′AC ′. Using the perturbation argument from
the proof of Theorem 6, applied to perturb the lengths
of BB′ and CC ′, we can show that AO′ is also a bisec-
tor of ̸ B′O′C ′ (we do this by “rotating” △AB′C ′ with

center A slightly). This means that ̸ B′O′A = ̸ C ′O′A,
which in turn implies that ̸ AB′O′ = ̸ AC ′O′ and fur-
ther implies ̸ AB′C ′ = ̸ AC ′B′. Therefore, △AB′C ′ is
an isosceles triangle and AB′ = AC ′. □
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