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Optimally Tracking Labels on an Evolving Tree

Aditya Acharya*

Abstract

Motivated by the problem of maintaining data struc-
tures for a large sets of points that are evolving over the
course of time, we consider the problem of maintaining a
set of labels assigned to the vertices of a tree. We study
the problem in the evolving data framework, where la-
bels continuously change over time due to the action
of an agent called the evolver. An algorithm, which
can only track these changes by explicitly probing the
individual vertices, is tasked with maintaining an ap-
proximate sketch of the underlying tree. Such a frame-
work necessitates an algorithm which is fast enough to
keep up with the changes, while simultaneously being
accurate enough to maintain a close approximation. We
present an algorithm that allows for both randomized
and adversarial evolution of the data, subject to allow-
ing a constant speedup factor over the evolver. We show
that in the limit, it is possible to maintain labels to
within an average distance of O(1) of their actual loca-
tions. We also present nearly matching lower bounds,
both on the distance, and the speed-up factor.

1 Introduction

Many modern data sets are characterized by two quali-
ties: massive size and dynamic variation with time. The
combination of size and dynamics makes maintaining
them extremely challenging. Algorithms that recom-
pute the structure can be prohibitively expensive, owing
to scale of the data set. Standard models for dynamic
structures (e.g., [6]) may not be applicable because we
may not know where or when changes occur within the
structure. These qualities together challenge the tradi-
tional single-input /single-output model used in the field
of algorithm design.

Anagnostopoulos et al. [1] proposed the evolving data
framework to capture the salient aspects of such data
sets. In this framework, the structure varies continu-
ously through the actions of an ewvolver, which makes
small, random changes to the structure behind the
scenes. Instead of taking a single input and produc-
ing a single output, an algorithm judiciously probes the

*Department of Computer Science, University of Mary-
land,College Park MD, USA, adach@umd.edu

fDepartment of Computer Science and Institute for Advanced
Computer Studies, University of Maryland, College Park MD,
USA, mount@umd.edu

David M. Mount'

current state of the structure and attempts to continu-
ously maintain a view of the structure that is as close
as possible to its actual state.

In this paper, we consider the problem of maintain-
ing a tree with n distinct labeled nodes in this frame-
work. The tree topology is assumed to be fixed over
time, but the evolver changes label locations by swap-
ping the labels of two adjacent vertices. We consider the
problem both in the classical evolving framework, where
swaps are chosen uniformly at random, and an adversar-
ial framework, where the evolver’s swaps are arbitrary.
To probe the structure’s current state, we assume the
existence of an oracle, which given a pair consisting of
a label and a vertex, either reports that the label truly
resides at this vertex, or it returns an edge incident to
the vertex indicating the first edge along the path lead-
ing from the probed vertex to the vertex where the label
currently resides.

We model our current state by means of a hypothe-
sized labeling, that is, a mapping of labels to the vertices.
Unlike the actual labeling, the mapping need not be 1-1.
Our update algorithm is extremely simple. With each
step, it queries a label-vertex pair. If the label is not
at this vertex, it moves the label hypothesis one vertex
closer to its actual location in the tree. To measure how
close our hypothesis is to the truth, we define a distance
function, which is just the sum of distances over all the
labels between their hypothesized and true locations.
Note that the evolver moves two labels with each step,
while our algorithm moves only one. For this reason
we provide our algorithm with a speedup factor ¢ > 1
(not necessarily an integer), which allows our algorithm
to perform multiple steps for each single action of the
evolver. (Further details are given in Section 2.)

We present four main results. We first show that,
even in the most benign case of a uniform random
evolver and any constant speedup, the steady-state dis-
tance over a bounded degree tree is (n) (Theorem 3).
Second, we show that given a speedup factor of ¢ = 2
and a uniform random evolver, there exists a simple al-
gorithm that achieves a steady-state distance of O(n),
for any bounded degree tree (Theorem 7). Next, we
show that given a speedup factor of ¢ > 2, for any
evolver, the same simple algorithm achieves a steady-
state distance of O(n) (Theorem 9). Finally we show
that for any speedup ¢ < 2, there exists a tree, and an
adversarial evolver, such that the steady state distance
is not in o(n?) (Theorem 10).
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1.1 Related Work

The problem we consider here falls under the general
category of pebble motion problems. Given a graph
G ={V,E}, asetoflabels L = {ly,la,...,1;}, alabeling
configuration is defined as a mapping M : L — V, such
that M(l;) # M(l;), for I; # l;. A single move of a
label I, where M (l) = v, can be defined as updating the
mapping to M (l) = u, where u is a neighbor of v.

Given two such label assignments M; and M, on a
common graph, the problem of deciding whether there
is a sequence of moves to transform M7 to My, was first
referred to as the pebble motion problem by Kornhauser
et al. [9]. Under the restriction that a label can only be
moved to an unmapped neighboring vertex, Goraly and
Hassin et al. [7] show that the feasibility problem can
be decided in linear time. Ratner et al. [13] proved that
the associated problem of finding the optimal sequence
of moves is NP-hard.

A variant of pebble motion that is more closely re-
lated to this paper is the problem of token swapping.
Again we have a graph with n vertices, and there are
n distinct labels. A single move involves swapping the
labels of two neighboring vertices. It is easy to see that
on a simple path, transforming one configuration to an-
other is akin to sorting the path, and therefore such a
sequence of swaps can be generated by a variant of bub-
ble sort. Yamanaka et al. [14] showed that there exists
a polynomial time 2-approximation when the graph is
tree. Miltzow et al. [11] generalized this to a polynomial
time 4-approximation on general graphs. Graf consid-
ered a very similar problem of moving objects along a
tree by a robot and presents an excellent collection of
similar problems [8, Section 6].

Another related line of work involves algorithms for
evolving data sets, which was first introduced by Anag-
nostopoulos et al. [1]. In their framework, the input
data set is constantly changing through the actions of a
random evolving agent, or evolver, and an algorithm is
tasked with maintaining an output that is close to the
one corresponding to the current data. The algorithm
can only access the data set through a series of probes,
each of which returns some relevant local information.
They considered the problem of maintaining a sorted or-
der of points, where the true ranking of points evolves
over time. Besa et al. [4] gave an optimal algorithm that
maintains an approximate ordering with only O(n) in-
versions. They showed that a repeated run of an O(n?)
time sorting algorithm like the insertion sort suffices.

Researchers have considered other problems in the
evolving context, including path connectivity, minimum
spanning trees [2], shortest paths [16], and page rank [3],
among others. A common theme across these papers is
the evolution of the list of edges of the graph, either
through introducing a new edge, and deleting an exist-
ing one, or by changing the ranking of the edge weights.

1.2 A New Framework for Evolving Data

Our framework differs from the standard evolving data
framework in few significant aspects. The first involves
the behavior of the evolver. An important characteris-
tic of the evolving model introduced in [1] is that the
evolver acts randomly, and algorithms in this model ex-
ploit the fact that the evolver will occasionally improve
matters. In this paper we consider both uniformly ran-
dom evolvers as well as evolvers that are non-uniform,
possibly deterministic, which may act in an adversarial
manner.

The second difference is that our structure is more
general in that the mapping of labels to vertices need
not be 1-1. We think of the structure that the evolver
acts on as a “real world” object, which has capacity con-
straints on the number of labels each vertex can hold.
In contrast, we think of our hypothesized labeled point
set as a theoretical model of this real-world structure,
which is not constrained by real-world limitations. We
also provide our algorithm with a constant speed-up fac-
tor, to handle cases when each step of the evolver effects
a bigger change than that of the algorithm. In compen-
sation for this asymmetry, our algorithms and analyses
are much simpler.

The final difference is the nature of the oracle. We
can view our problem as a generalization of evolution-
ary sorting, but where the domain is a tree structure,
rather than a linear list. In sorting, the oracle deter-
mines whether two objects are out of order, but this is
not really meaningful in our tree-based setting. Instead,
our oracle provides a directional pointer to the current
location of the label.

2 Problem Formulation

In this section we provide the specifics of our evolving
token/label swapping problem. We are given a fixed
undirected tree T = (V, E) with n vertices and max-
imum degree k. Each vertex of the tree is assigned a
unique label from the set of labels L = {l3,...,[,}, that
is, there is a bijective mapping My : L — V. At any
time, let 7 = {T, Mp} denote the current “true” labeled
tree (see Figure 1(a)).

The evolver, denoted &, introduces changes to the
labelings. Each time it runs it selects a pair of adjacent
vertices in T and swaps their labels. The evolver may
either be random or adversarial. In the former case the
pair to be swapped is chosen uniformly at random, and
in the latter the adjacent pair can be chosen arbitrarily,
deterministically or adversarially. In Figure 1(a) and
(b), the evolver swaps labels X and G.

Our algorithm maintains a model of current labeled
tree in the form of a structure we call a hypothesis tree,
denoted H = {T, My}, where T is the same tree, and
My : L — V is a (not necessarily bijective) mapping
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Figure 1: The action of the algorithm on a labeled tree
T, evolver £, a labeled hypothesis tree H, and oracle
O. (a): The current state of the underlying labeled
tree T. (b): The state of T after the evolver swapped
labels across a pair of adjacent nodes. (c): A single step
in our algorithm A on H—Query label X, find that the
oracle is pointing us to the location of X on 7, and then
move the label X to the adjacent node in the returned
direction. (d): The final state of our hypothesis tree H
after a single step of A.

from labels to vertices. Note that My may assign mul-
tiple labels to a vertex of T (see Figure 1(c)).

In order to probe the current actual state, we assume
the existence of oracle, denoted O. Each query to the
oracle is presented in the form of a pair (I;, u), where I;
is a label and u is a vertex. If [; is currently located at
u, the oracle returns a special value null. Otherwise, it
returns the edge incident to u that lies on the shortest
path from u to Mp(l;), the vertex that contains I; in
the true labeling. (In Figure 1(c), the query O(X,u)
returns the edge (u,v) because in the actual tree, the
path to the node w containing X contains this edge.)

Each single step of algorithm A involves the following
actions: A selects a label [ and a vertex u. Then queries
the oracle to find O(l,u) and then is free to move the
label I from Mg (1) to any adjoining node in the tree. A
step of one such algorithm is illustrated in Figure 1(c)
and (d), where the algorithm is applied to label X. The

query O(X,u) returns (u,v), and the algorithm moves
label X to v. We define C as the class of such algorithms,
and throughout this paper we only consider algorithms
from this class.

To measure how close our hypothesized labeling is to
the true labeling we introduce a natural distance func-
tion. Given two vertices v and v in T, define their dis-
tance d(u,v) = dr(u,v) to be the tree distance, i.e.,
the length (number of edges) of the path between them.
Given the true labeling 7 and the hypothesized labeling
‘H and any label I;, let D; = d(Mr(l;), Mg (l;)) denote
the distance between the assigned label positions. De-
fine the overall distance to be D(T,H) = >, . Di.
Remark: D(T,H) is a metric since it is the sum of tree
distances, which are themselves metrics for a particular
label.

Observe that with each step the evolver can affect
the overall distance by at most 2, moving each of the
labels being swapped one node farther from our current
hypothesis. Since we have n vertices and the maximum
distance between two nodes on the tree is n— 1, we have
D(T,H) € O(n?). It is easy to see that there exists a
tree T and a sequence of swaps by the evolver, which
results in D(T,H) € Q(n?). Specifically, consider the
case where T is a path and the labels are swapped in
a sequence to result in a labeled path with the labels
sorted in the opposite order. On the other hand, our
algorithm clearly satisfies the following invariant: Every
step of an algorithm from class C reduces the overall
distance D(7T,H) by at most 1.

Given the disparity between the evolver’s and our al-
gorithm’s effect on D(T,H), we will allow our algorithm
a modest speedup factor. We denote this by a constant
¢ > 1. This means that the time taken by a single step
of the evolver is ¢ times as that of the algorithm. Or
in other words, over a large enough time interval if the
algorithm takes m steps, the evolver takes m/c steps.

The problem considered for a given speedup factor
¢ and any arbitrary starting configuration of H: Does
there exist an algorithm with this speedup factor such
that, in the steady state, after arbitrarily long execution
sequences, D(T,H) = o(n?)? We will in fact show that
(depending on the nature of the evolver) that there ex-
ists a deterministic algorithm and an associated speedup
factor such that D(7,H) = O(n) from the underlying
labeled tree, after some sufficiently large time and with
high probability.

3 Probabilistic Tools

In this section we mention the probabilistic tools we
use through out the paper. First, as a concentration
bound, we use a weak version of Chernoff’s inequality
(Theorem 4.5 in [12]).
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Lemma 1 (Chernoff Bound) Let X, Xs,..., X, be
independent random indicator variables, let X =Y. X;,
and let = E[X]. Then, Pr[X < &] < exp(—4).

Next we use a concept called Poisson approximation.
Suppose X1, Xo, ..., X,, are the random variables indi-
cating the number of balls in the i*" bin, when m balls
are thrown into n bins uniformly at random. We call
this the exact case.

Let Yi7,Y5,...,Y, be independent Poisson random
variables with Pr[Y; = k] = e‘A%, where A = m/n.

In other words, Y; represents the load in a bin, when
the number of balls in each of them is a Poisson dis-
tribution with parameter A. We note the following on
any event that is a function of the loads of each bin.
(Corollary 5.9 [12].)

Lemma 2 (Poisson Approximation) Any event
that takes place with probability p in the Poisson case
takes place with probability at most p e \/m in the exact
case.

4 Lower Bounds on the Distance

We first prove a lower bound on D(7,H), when the
maintaining algorithm is in the class C'(A) as defined in
Section 2 and for any constant speedup factor c¢. Our
proof follows the same structure as a similar proof by
Anagnostopoulos et al.[1]. We prove the following for
D(T,’H)(t), for a sufficiently large t, where D(T,H)(t)
denotes D(T,H) at time ¢.

Theorem 3 For any speedup factor ¢ > 1 and for
all sufficiently large t, irrespective of the algorithm A,
D(T,H) ) = Qn) with high probability, even in the
case of a random evolver.

Proof. For ease of analysis we let our algorithm A run
a single step every time unit, and the evolver, which
runs c¢ times slower perform a swap every c time units.
Consider the time interval [t—n/w, t], where w is a large
constant. The algorithm and the evolver can reduce
D(T,H) by at most n/w and 2n/cw during this time
interval, respectively. So if D(T,H),_,, ., Was at least
n/w+2n/cw + Q(n), then D(T,H) ;) remains Q(n).

Next, let us assume D(T,H),_,, /,, is at most n/w-+
2n/cw + o(n). That implies there are at most n/w +
2n/cw+o(n) labels displaced from their true location at
time ¢ — n/w. Let L’ denote the set of displaced labels,
that is, L = {ll | D; > O} We define V' = {MT(ZL) |
l; € L'}, as the set of corresponding vertices on 7. And
then the set of incident edges as B = {(u,v) | u €
V' Vv € V'}. Since the degree of the T is k, we have
|E'| < k(n/w+ 2n/cw + o(n)).

In the same time frame, the algorithm A can act on
at most n/w labels. Call that set of labels L 4. Define

Va = {Mrp(l;) | l; € la}, as the set of corresponding
vertices on T. And then the set of incident edges as
Eq={(u,v) |u€VaVveVa} Now, |[Ea|l < kn/w.

Next we look at the set of edges that were unaltered
at time, t —n/w, and were not affected by the algorithm
throughout the time interval. Callit E* = E\(E'UE 4).
Now, |E*| > n — 2kn/w — 2nk/cw — k - o(n) > nr, for
some sufficiently large w, and v = (1 — 2k/w — 2k /cw —
k/w). The evolver picking any edge from E* exactly
once, guarantees that the labels stay swapped at the
end of the time interval.

Let X, be the indicator variable, representing the fact
that e is picked by the evolver exactly once. We use
the Poisson approximation scheme from Lemma 2. The
evolver chooses n/cw edges at random from the n avail-
able ones. Therefore A = (n/cw)/n = 1/cw, which is a
constant. Hence, Pr[Y, = 1] = Ae™ = s, a constant.
That implies, E[} . p. Ye] > syn. Using a Chernoff
bound (Lemma 1), we have

Pr

Z Y, < S'yn/Z] < e 8,
ecE*

Using Lemma 2 again, we have

Pr lz X, < syn/2

ecE*

<e 2 opy Z Y, <57n/2]
V cw oyt

< e le—ﬂ(n) < e—Q(n)
V cw

Therefore with exponentially high probability, the
evolver picks at least syn/2 edges from E*, ensuring
that those edges stay swapped at the end of the interval.
Therefore, D(T,H) ) = syn € €)(n), as desired. O

5 Algorithm

Here, we describe a simple algorithm to track the la-
bels. We use the same algorithm in both the cases of
a random and an adversarial evolver. Recall the set of
labels L = {l1,...,l,}, and the definition of the oracle
from Section 2.

Intuitively, the algorithm works as follows. For each
l; € L, we query the oracle on (I;, Mg (l;)) and update
its location by moving it one step in the direction re-
turned by the oracle. We keep doing this until the oracle
returns null, that is, when [; is in its true location. We
then move on to the next label, repeating the process
indefinitely. A single pass over all the labels is called an
iteration of the algorithm.
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Algorithm 1 Tracking Labels

/*Continuously run the algorithm*/
for j < 1,2,...,00do
/*For every label in order*/
for i < 1 ton do
/*Until the label is in its true location*/
/*Query the oracle to find the direction*/
(u,v) < O(l;, M (1))
/*Update the location of the label*/
MH(ll) — v
end while
end for
end for

6 Analysis

Again for ease of analysis, we let our algorithm A run a
single step every time unit, and the evolver, which runs
¢ times slower, perform a swap every c time units.

Let tp be the time when the algorithm starts. Let
t; be the time when the jth iteration of the algorithm
ends. Let D(7,H) at the start of the jth iteration be
D(T,H);. And for a specific label /; we denote the
distance at the start of the jth iteration to be D; ;.

We set the total number of moves effected on I;, by
the algorithm in the j'" iteration as A;;. Therefore
the total decrease in D;, the distance with respect to
label ;, in the j* iteration is A; j. We define the total
decrease in D(T,H) due to the algorithm, in the j*"
iteration as A;, Aj = >, o1 Aij.

We note the following about At;, the time taken by
the j iteration.

Lemma 4 Atj = tj — tj_l = n—i—.Aj.

Proof. Every step of the algorithm either moves a label
in the direction of its true location, or fixes it, i.e., finds
the label is in its true location. Since there are n labels,
and A; is the total moves effected by the algorithm, we
have the result O

Next we show a lower bound for the time taken by
the jt* iteration.

Lemma 5 At; > 35 (D(T,H); +n).

Proof. For a specific label [;, our algorithm reduces
its distance by A; j, then finds that the label is at its
true location, and then moves on to the next label.
This implies that for some subset of steps taken by the
evolver, the distance associated with [; was reduced by
D; j — A; ;. Otherwise, the algorithm would not have
moved on to the next label.

This further implies that in the j** iteration for some
subset of its steps, the evolver reduced the overall dis-
tance by at least >, (D; j—A; ;) = D(T,H);—A;. That

th

takes the evolver at least (D(7,H); — A;)/2 steps, or
at least (c¢/2)(D(T,H); — A;) time.

Therefore we have At; > (¢/2)(D(T,H); — A;). Us-
ing Lemma 4, we have At; > §(D(T,H); — At; +n).
Simplifying the inequality gives us the desired result [J

6.1 Random Evolver and Speedup 2

In this section we prove the following: In the case of a
random evolver, where the evolver £ picks an edge at
random and swaps its labels, an algorithm that runs at
least twice as fast as the evolver maintains an optimal
distance. Or in other words, we show that for ¢ > 2,
our algorithm ensures D(7,H) € O(n) with high prob-
ability. Using Theorem 3, we can conclude that our
algorithm is optimal for ¢ > 2 and a random evolver.

As in [4], we first prove an interesting result about
the random evolver. We show that a constant fraction
of the steps taken by the random evolver do not increase
the overall distance D(T,H).

Lemma 6 For ¢ = 2 and degree k, there exists a con-
stant €, 0 < € < 1, such that for all j, the random
evolver does not increase the overall distance in at least
eAt; steps in the ™ iteration, with high probability.

Proof. From Lemma 4, we know At; is at least n. We
look at the first n/10k steps of this particular iteration.
The algorithm can process at most n/10k nodes in this
time. The number of edges incident on these nodes is
at most n/10. Let E’ denote the set of edges left un-
altered by the algorithm in this time interval. Then
|E'| > 9n/10. In the same time period, the evolver picks
edges at random from the edge set E, n/20k times with
replacement.

For every edge e in E, we set X, =1, if e € E’, and
the evolver picks e, at least twice in the time-frame, but
picks none of the edges incident on e.

We use the Poisson approximation scheme from
Lemma 2. The evolver chooses n/20k edges from the
n available ones. Therefore A = (n/20k)/n = 1/20k,
which is a constant. Now let Y. be the independent
Poisson approximations of X., with A = 1/20k.

Next we find Pr[Y, = 1]. That represents the event
when e is picked from E’, and e is picked twice but none
of the edges incident on e are picked. In the Poisson
approximation scenario, each edge is picked j times with
a probability e=*\7/j!. Therefore, the probability that
an edge is picked at least twice is (1 —e™* — Xe™*), and
the probability that it is not picked whatsoever is e™*.
Since at most 2k edges can be incident on e, we have

PrlY.=1] > 19—0 (1- e N — )\e*)‘) e 2kA,

Since the right hand side is a constant, there ex-
ists s = O(1) such that Pr[Y, = 1] > s. Therefore,
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E[} .cp Ye] > sn. Using a Chernoff bound (Lemma 1),
we have

Pr

ZYe < sn/21 < e 9

eckE

Using Lemma 2 again, we have

Pr [ZXe<sn/2] e,/ﬁPr
eeFE

Z Y, < sn/Z]
ecE

N _q(n) —Q(n)
< — < .
T =€

We note that if X, = 1, then e is left unaltered by the
algorithm, but it is altered at least twice by the evolver.
That further means, one of those steps by the evolver
either decreases the overall distance D(7,H) or leaves
it unchanged. And since the number of such edges e,
with X, = 1, is at least sn/2 with exponentially high
probability, we conclude that in at least sn/2 of the
evolver steps, in the first n/10k steps of the iteration,
D(T,H) does not increase. Dividing the iteration into
chunks of n/10k steps, we obtain the desired result. O

IN

Finally we prove one of the main theorems of this
paper, that for a long enough passage of time, D(T,H)
converges to O(n), in the case of ¢ = 2, and a random
evolver.

Theorem 7 Given a tree of size n and a constant de-
gree, and a random evolver, there exists z (a function
of m) such that for all j > z, Algorithm 1 achieves
D(T,H); € O(n), with a speed-up factor c = 2.

Proof. Consider the j'" iteration. From Lemma 6, the
evolver increases D(7T,H) by at most (1 —e)At;. In the
same iteration the algorithm reduces D(T,H) by A;.
Therefore, with high probability:

DT M),
< D(T,H); + (1 —e)At; — A,
< D(T,H); +n— €At [Lemma 4]
< (1- 5) D(TH),; + (1~ %) n

[¢c =2 in Lemma 5]
- (1-9) D(T,H>O+i(1_;)fn
< (1 — %)j n® +O(n) [since D(T,H) < n?]

By choosing 2 = 10g; (1 _¢/9) 1, we have D(T,H), , €
O(n). O

Remark: We showed that for large enough j,
D(T,H); € O(n). Can we conclude the same about

D(T,H) throughout the j* iteration as well? In par-
ticular we look at D(T,H), ;.;- Wenote that in our Algo-
rithm 1 we could have started with processing the label
l; first (instead of l1), l;+1 next, and so on. Therefore
for a large enough j, D(T,H), ; € O(n) as well. Since

D(T, H);y1; < DT H),,; + O( ), we conclude that
for a large enough passage of time D(7,H) converges
to O(n).

In our labeled hypothesis tree H multiple labels could
reside at a particular node. We show a simple result on
the maximum number of labels that could be mapped
to single vertex in T

Corollary 8 Let Ly, be the set of labels residing at a
node v in H, after a long enough passage of time. Then,

(Ll € O(Vn)

Proof. Let |Ly | = w. For l;’s, l; € Ly ., we consider
the corresponding distances D;’s. Consider that set as
D,, D, ={D;|l; € Ly ,}. Since the tree has degree has
k, there can be at most k 1’s in D,,, similarly £ number
of 2’s, and so on. At most one member of D, can be
zero. Therefore

DT H) > Y = > k(14+2+ +(w-1)/k) € Qw?).
x€D,

Since D(T,H) € O(n) after a long enough time from
Theorem 7, we conclude w € O(y/n). O

6.2 Adversarial Evolver and Speedup > 2

We conclude with the case when the evolver is adver-
sarial. That means we cannot rely on a result similar
to Lemma 6. We show that for a speedup factor of
¢ > 2, or in other words, if there exists § € R, such that
c =2+ J, we can still maintain an optimal distance.

Theorem 9 Given a tree of size n, an adversarial
evolver, there exists z (a function of n) such that for
all j > z, Algorithm 1 achieves D(T,H); € O(n), with
any speed-up factor ¢ > 2.

Proof. Consider the ;' 1terat10n. The evolver in-
creases D(T,H) . Therefore
D(T,H) ;1
2At,
<D(T.H); + —L A
2At;
= D(T,H); + L +n— At [Lemma 4]

D(T,H); +n— (1—) At;.
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By applying Lemma 5, we have

D(T H), .,
c—2
< DT H);+n— g (D(T,’H)j +n>
[Lemma 5]
4 4
= a3 AT

(257—0)]213(7"%)0 +Szi; <2ic>jn
(24+C>J n2+0(n). [c>2, D(T,H)<n?

For ¢ > 2, and by choosing j > log% n, we have

D(T.H),,, = O(n). O

6.3 Adversarial Evolver and Speedup < 2

We adapt a construction from Biniaz et al. [5] to prove
a lower bound on the required speed-up to ensure
D(T, M)y € O(n). Construct two configurations of
a labeled tree Ty, and 7T; as in Figure 2. On such a
tree: D(T1,To) ~ 2 OPT, where OPT is the number
of optimum swaps required to go from one configura-
tion to the other. Intuitively, an algorithm running at
a speed-up factor less than 2, will fail to catch up with
an adversarial evolver that takes OPT swaps to modify
To, to T1. We can show that any algorithm from class C
running with speed-up 2 — §, where 4 is a small positive
constant, cannot achieve D(7,H) € O(n). In fact we
can prove something stronger:

Theorem 10 (Lower bounds on speed-up) Given
any time instant tg, there exists a tree T, an ad-
versarial evolver £, and a time instant t > ty s.t.
D(T, M)y € Q(n?), for any algorithm from class C,
which runs with a speedup 2 — &, where § is a positive
constant

Proof. Suppose we have access to an algorithm A from
the class C, as defined in Section 2, with a speed-up
factor of ¢ = 2—4, ¢ is a positive real constant. We show
the existence of a tree, and an adversarial evolver, where
such a speed-up is not sufficient for D(T,H) € O(n).

We adapt a construction from Biniaz et al. [5]. See
Figure 2. Let 7y be a uniquely labeled tree, with
wings, « tails, and a central vertex. Each wing contains
«a nodes. For our purposes, we let @ € Q(n). n =
af + a+ 1. Let 71 be another labeled instance of the
same tree, where the labels of the wings, are cyclically
permuted. The order of the labels on a wing remains
the same, as do other labels of the tree. This gives us
D(T1,To) = Ba(a +1).

Biniaz et al. [5] show that the optimal number of
adjacent swaps to go from Ty to 77 is opt(a,B) =

To T

Figure 2: 7Ty is a n-node tree with 8 wings, « tails, and a
central vertex. Each wing contains o nodes. 7; has the
labels of the wings of Ty cyclically permuted. Adapted
from [5].

(B+ 1) (a(a+1)/2 4 2a). Consider a time tg, where Ty
is the labeled configuration of the tree, with our hypoth-
esis tree Ho being exact, i.e., D(Tp, Ho) = 0. Next, con-
sider an adversarial evolver £, which performs opt(«, )
number of swaps such that at time t; = to + opt(e, ),
T is the true labeling.

Let ‘H be the hypothesized labeling at time ¢;. Since
A has a speed-up of 2 — 4, and can affect the dis-
tance by at most 1 every step, we have D(H1,7y) <
(2 —6) opt(a, B). Considering S = 2/§, and o = Q(n)
we have the following:

D(H1,Th)

> pa(a+1) - 2= (3+1) (L0 1 00)

[D(-,-) is a metric]

> <§ - (2_(2224_6)) ala+1) —s(d)a

[Set B =2, s(6) is a constant]

>

N

ala+1) —s(0)a € Q(n?).
[For o € Q(n), and constant ¢]

O

7 Concluding Remarks

In this paper, we have presented an efficient algorithm
for tracking vertex labels in a tree in the evolving data
framework. Our algorithm allows for both randomized
and adversarial evolution of the data, subject to allow-
ing a constant speedup factor over the evolver. Our
analysis showed that in the limit, it is possible to main-
tain labels to within an average distance of O(1) of their
actual locations. We also presented nearly matching
lower bounds, both on the distance and the speed-up
factor.
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This raises the question whether the evolving data
framework can be fruitfully applied to tracking the
movement of objects through more complex spaces and
structures. Applications include real-time tracking of
moving agents through GPS tracking of unmanned
aerial vehicles [15] and tracking disease hot-spots that
evolve over the course of time [10].

We would like to thank Michael Goodrich for intro-
ducing us to the evolving data framework and for in-
spiring discussions on this topic.
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Discretization to Prove the Nonexistence of
“Small” Common Unfoldings Between Polyhedra

Elena Arseneva* Erik D. Demainet

Abstract

We show that no < 300-gon is a common unfolding be-
tween any two doubly covered triangles whose angles are
rationally independent algebraic numbers. Here an un-
folding of a polyhedron is a polygon obtained by cutting
anywhere on the polyhedron’s surface and unfolding it.

1 Introduction

An wunfolding of a polyhedron Q is a simple polygon
obtained from @ by cutting anywhere on the surface and
unfolding it flat. A common unfolding between two
polyhedra Q° and Q! is a polygon that is an unfolding
of Q¥ and of Q. It is open whether any pair of Pla-
tonic solids have a common unfolding [4] (though O(1)
“refoldings” suffice [3]). For other classes of polyhedra,
there are some positive results showing common unfold-
ings [1}/2,/4,/5,[6]. However, there are no results proving
nonexistence of common unfoldings. In other words, it
is not known whether there is a pair of polyhedra having
no common unfolding.

One difficulty in proving the nonexistence of common
unfoldings is that we cannot check by a simple exhaus-
tive search whether two polyhedra have a common un-
folding. When we unfold a convex polyhedron Q to a
simple polygon P, the cutting lines on the surface form a
tree structure spanning all vertices of Q, called the cut-
ting tree. A cutting tree can have vertices and edges
anywhere on the surface of Q. Thus there are uncount-
ably many cutting trees, and the number of obtained
unfoldings is also uncountable.

We develop a new algorithmic method to prove the
nonexistence of common unfoldings, when we bound the
number of vertices in the unfolding, between two polyhe-
dra in the class of doubly covered triangles whose angles
are rationally independent algebraic numbers.

In Section[2] we define unfolding and the class of poly-
hedral which we handle in this paper.

In Section we show necessary properties of any
common unfolding P between polyhedra Q° and Q.
First, we consider a correspondence between the bound-
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TCSAIL, MIT, USA, edemaine@nit.edu

fJapan Advanced Institute of Science and Technology,
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Tonan Kamatat Ryuhei Ueharat

ary of P on Q when a polyhedron Q is unfolded to a
polygon P. Next, we define automorphism maps on the
boundary, which are called gluing maps, induced by
two ways of gluing when P is folded into Q° and Q. Fi-
nally, we focus on sequences of points on the boundary
of the polygon, which are called spreading sequences
and have an essential role in common unfoldings.

In Section we introduce a form form of common
unfoldings. First, we define the standard-form com-
mon unfolding using the notion ad sequence. Next, we
show that it is sufficient to consider only standard-form
common unfoldings for checking the existence of com-
mon unfolding. Finally, we show that the number of
standard-form common unfoldings is finite for a given
number of vertices in the unfolding. Moreover, we give
an algorithm to enumerate the candidates of standard-
form common unfoldings.

In Section [3:3] we give a necessary condition and an
algorithm to decide whether a candidate standard-form
common unfolding represented by a sequence of angles
is feasible.

We implement these algorithms and show that, for
n < 300, there is no n-gon that is a common unfolding
between any two doubly covered triangles whose angles
are algebraic and rationally independent.

2 Preliminaries

We consider the common unfolding between two doubly
covered triangles (DCT). DCT is a class of polyhedra
made by gluing the corresponding edges of two copies
of a triangle; see Figure[l] It can be regarded as a kind

e

>

Figure 1: Doubly covered triangle.

of polyhedron whose volume is zero. Let Q° and Q! be
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a pair of DCTs and vertices of Q% be v}, vi, and

Aofine the aciim af anolae oathorine at ot hy AL T

J

Figure 2: The interior angles of Q" and @

Moreover, we impose the following restrictions on the
angles of Q° and Q.

1. ADCT Q' is algebraic if 0} and 6} € Q* where Q*
is the algebraic closure on Q. (Here we note that
05 = 2m — (0f + 0%), and 605 ¢ Q* if 63, 0% € Q*.)

2. A pair of DCTs Q" and Q! are (rationally) inde-
pendent if Vm;(# 0) € Q, mo8] + m1609 + m30% +

Hereafter, we assume that Q° and Q! are algebraic and
independent. Therefore, each of Q° and Q' is not an
isosceles triangle and has no angle that is a rational
multiple of 7. Here we note that we introduce these re-
strictions not to avoid a counterexample but to support
the proof technique. We treat 9;- as symbols and do not
care about the concrete values until Section 3.3 When
we consider an assignment of the values of 9;, we use
map A {087 9?,93, 9(1)3 0%7 0%} - R>O-

Example 1 If(>‘(98)7 )‘(9(1J>7 )\(98), )‘(9(1])7 )‘(9%)7 A(G%» =
(V2,V3,21 — 2 —V/3,V5,V/7,2n — /5 —/T), Q° and

Q! are algebraic and independent.

When we unfold a polyhedron Q to a polygon P, cutting
lines on the surface form a tree structure [4]. We denote
it by 7. Conversely, points on the boundary of P are
glued and make a point on 7 when we fold P to Q.
We call it a folding map and write it by f: 0P — T
where 9P is the boundary of P; see Figure

Let P be the unfolding of a DCT Q by 7. The topol-
ogy of T can be classified into two cases, as illustrated
in Figure 4t a Y-form is a tree with a single point b*
of degree 3 (and with leaves at the vertices of Q), and
a V-form is just a path (through all vertices of Q).

Y-form V-form

Figure 4: Topologies of cutting trees of doubly covered
triangles.

3 Nonexistence of Small Common Unfoldings for

Q0% and 9!

In this section, we assume there is a polygon P that is
a common unfolding of Q¥ and Q' by 7° and 7! with
folding maps f° and f1.

Hereafter, we consider only the case that both 77°
and 7' are Y-form. It can be shown that in other cases
existence of a common unfolding would contradict our
assumption that Q° and Q' are algebraic and indepen-
dent (see the proof in Appendix |A]).

3.1 Gluing Map

On 9P, there are three points [§,1¢,1% corresponding
to vh, v, vh, such as f'(I%) = vi. Moreover, there are
three points mg, m}, mb corresponded to b%, such as b* =
f"(mg)‘: f’(m’l) = f’(mé) We define L := {;6,l§7 £}
and M' := {m{, m}, mb}; see Figure |5l Let I} be the
intervals on 9P between mj, m?, ;. The following holds.
Observation 2 For p € 0P, let a(p) be the interior
angle at p.

o ofl}) =65

o a(mf) + a(mi) + a(mb) = 2r.
Without loss of generality, we can assume that I and m,

appear in counterclockwise order mg, Iy, m¢, 14, mb, 1%
around JP for each i =0, 1.

Definition 3 We define a gluing map gl* : OP — OP
by the map returns the point to which is glued by the
mapping as follows.

o Ifpe L'UM?, then gli(p) := p.

10
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4 i

e mi__"
Figure 5: L' = {1}, 13,15}, M* = {m{, mi, mb}.

o Otherwise, gl'(p) :=p’ such that f'(p) = fi(p'); p’
is determined uniquely.

Observation 4 Let p & L' UM*. The following holds:
epel;=gl'p) el
e pc I; = l;- is the midpoint of (p, gl*(p)) on OP.

e a(p) + algli(p)) = 27 where a(p) is the interior
angle of p € OP.

Definition 5 (spreading sequence spr(l}))

For each I; € L', we define the spreading sequence
spr(l}) by the sequence of points obtained by alternative
iterations of gl* and gl*+1,

P K YO AN T L Y O AW L s W O LT 0 (o N0 LA \

0

gl°gl' (gl°(gl"U)))) = m)

m

So
o~

Figure 6: The spreading sequence of 13.

Observation 6 The interior angles of odd-numbered
points of spr(l}) are 07, and even-numbered ones are
ra 0 . _pi
93‘ where Gj =27 Gj.

IThe superscript indices are taken modulo 2 in this paper.

Specifically, gl*t! means gl° for i = 1 because gl* defined for
i=0,1.

1"

Lemma 7 Ifi#1 orj #j', spr(l;-) and spr(l;'-/,) share
no point.

Proof. If a point appears in both of SpT(l;), spr(l;»/,), by
Observationlﬂ 0 = 0;7/, 9; = 0;'/, 97; = 9;-;, or @ = 0;'-'/
holds. In any case, it contradicts the independence of
the angles. O

Lemma 8 For any l;- € L, the length of spr(lg-) is fi-
nite.

Proof. Because the angles are algebraic and indepen-
dent, 9; = m. It means that all points included in some
spreading sequence are vertices of P. By the definition
of the spreading sequence, a point does not appear twice
or more in a spreading sequence. Therefore if there is a
spreading sequence whose length is infinite, it produces
infinite vertices of P. It is a contradiction. O

Lemma 9 For any l; € L, there exists unique m?jl S
ML such that spr(ll) = (I3, ... ,m?‘l).

Proof. The endpoint of a spreading sequence belongs
to M°U MU L° U L. If the endpoint belongs to L°
or L', it contradicts the independence of the angles.
Therefore, the endpoints belong to M°U M?. Inversely,
each of MY U M" is the endpoint of some spreading
sequence because the numbers of L° U L' and M°U M?!
are the same. Let us consider the spreading sequences

that end at m3, m{, or m9. The sum of the angles of

m3,m?, or mJ must be 27, and it will be realized by
only 09 +609 469 and 6} + 601 + 63 by their independence.
(Note that 6] + 0% + 6% = 67— (6‘?4911 +0%) = 4 #£ 27.)
Therefore, the length of each of the spreading sequences
is odd by Observation [6] By considering the parity, we
can see that these spreading sequences must start from
15,14, or 13. O

Lemma 10 Let Sji» ={p:p€ spr(lé)},
Then U, S; divides into OP equilateral intervals.

Proof. Let di(p) and d_(p) be the distance between
p and its counterclockwise and clockwise nearest point
of U, ; S§ respectively. We prove that d (p) and d_(p)
are uniform for any p in {J, ; Sj. Let s € |J; ; S be the
clockwise nearest point of mJ, and ¢ := d_(m); see Fig-
ure Let take [j € L' such that spr(l}) = (Ij,...,mg).
If there is a point p’ € S} such that d; (p) = ¢ < ¢
or d_(p') = ¢ < ¢, by using Observation [4| induc-
tively, there is a point p” such that the distance between
p”,mY is ¢’; see Figure It contradicts that s is the
nearest. Therefore, ¢ = di(p) = d_(p) for any point
p € Sj. Especially, dy(mg) = ¢. Next, we focus on
dy(m9),d_(m?),d, (md), and d_(m3). Tt is easy to see
that d, (m8) = d_(m0), d, () = d_(m), d. (m3) =
d_(mQ); see Figure Thus, we can check that ¢ =
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d+(p) = d_(p) for any point p € |J; S’? by repeat-
ing the same discussion for m{ and m3J. There exist

— 1t AN

ro— o~

Figure 8: ¢ =d4(p) = d_(p) for any point p € !

3.2 standard

Definition 11 If all wvertices of P are included in
Ui, , S;, we call P is a standard-form common unfold-
m,

g.

Lemma 12 If Q° and Q' have a common unfolding,
Q0 and Q' have a standard-form common unfolding.

Proof. By Lemma |10} the points of |J; S} and |J; S}
are lined up alternately on 9P. Let take a pair of ad-
jacent points and m be the interval between them. Let
(po, P15 D2, - - -, Pr) be the vertices of P on m’. Because
m is glued to another interval m', (po,p1,p2,...,Pk)
make vertices (py, pi,Ph, - - -, P}) such that a(p;) = 2 —
a(p;). In the same way as the proof of Lemma it
spreads into all intervals. On the boundary of P ex-
cept U, ; S?, the interior angles are a(po), . . ., (px) and
2 —a(pr), . .., 2m — a(po) alternately; see Figure@ We
focus on the cutting tree 7 into one side polyhedron.
Let 77 be the cutting tree replacing each interval of T

with a straight line segment. 7" is kept the interior an-
gles at |, ; S;; see Figure Let P’ be the unfolding
by 7’. Then P’ is a standard-form common unfolding
of QY and Q. O

Figure 9: (po,p1,-..,Pm) on the interval m.

’

v ~V

r D//'\
a®v) a(v') =a(v)

Figure 10: The reduction of a common unfolding into
a standard-form common unfolding.

By Lemma if there is no standard-form common
unfolding between two polyhedra, there is no common
unfolding.Therefore, we can search the common unfold-
ing in the standard-form common unfoldings, whose
edges are isometric and vertices are included in (J; j S;
The standard-form common unfoldings are represented
by a sequence of interior angles. By fixing n, we can
enumerate the sequences of interior angles of length n
to be candidates of standard-form common unfolding.
Details of the algorithm are given in Algorithm [1] Be-
cause the length of each spreading sequence is odd, n
should be an integer that is not a multiple of 4 but even.
First, we prepare a cyclic array of length n to store the
interior angles. Next, we choose six array positions to
store the interior angles of I%. Tt causes O(n”) combina-
tions. Next, we compute the spreading sequences and
determine the interior angles. If distinct angles are as-
signed to one point, we return to the step of choosing
positions of l; After the placement of l; is determined,
the construction of the spreading sequences takes O(n)

12
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time because the length of each spreading sequence is
at most n. If we obtain a feasible array, we output this
one as the candidate of a standard.

Algorithm 1: Enumerating candidate angle
squares for standard-form common unfoldings

input : The number of vertices n
output: Sequences of interior angles
1 Let C be a cyclic array of length n.
mg =0
forall m{, m3, m§, m}, md such that 0 = m{ <
m{ <mf <n,0<m}<mi<ml<ndo
for:=0,1and j =0,1,2 do
if m}H — m§ are odd then
‘ Return to line 3.
end
l; = m} + %(mé+1 - mg) mod n
end
10 Define ¢I°, gi' by Definition
11 fori=0,1andj=0,1,2do

W N

© o I o w s

12 pi= lj»

13 k:=(j+1) mod 2

14 C[lt] == 6.

15 while p # gl*(p) do

16 p = gl*(p)

17 if C[p] is not yet defined then
18 if k=1 then
19 | Clp] :=0;

20 else

21 ‘ Clp] := 0;

22 end

23 else

24 ‘ Return to line 3.
25 end

26 k:=(k+1) mod 2
27 end

28 end

29 | if {C[mg], C[m4], Clma]} = {667, 011,051}
for each 7 then

| output: C

30 end

31 end

3.3 Checking Polygon Closure

For example, Algorithm [I| outputs the following se-
quence (see Figure [I1)):

¢ = (0%’937@7 9350%’0?793708’9%7@)

It remains to check whether the sequence of interior
angles corresponds to a simple polygon. First, we fix the

13

o o
0
6 o]
0] 65
0 0!
0, 2
0 6

Figure 11: ¢ = (63,09,601,609,0%,09,6%,69,0%,09); solid
lines represent spreading sequences, and dotted lines

connect m;

values of 0; by A like Example We view the polygonal
line as lying in the complex plane C. We define an
equilateral polygonal line Poly, y = (po,p1,---,pn) by
the following:

po=1p =0€C,
it —pi = (pic1 —pi)e¥

Here, we remark that eV=10 = cos@ + +/—1 sin 6 holds
by Euler’s Formula. In order to be the common unfold-

L0
Ps
P4 Ps
)2
P2 9}) ! 9]1} Lg(()]
gyl
\ o) 0,
0 0,
v 00
1
Po
P~ . — Py ¥
) pil
6, 921 Pe

Figure 12: Poly, , where ¢ = (63,69,6},69,61,69,6},
98,9%7@) and )\{Qé} = (v2,V3,2m — 2 = V/3,V/5,V7,
2 — /5 — \ﬁ)

ing, Poly, y must satisfy closure pg = p;,, and not have
self-intersection. We consider only the closure condition
of pg = p,, because it suffices here to prove the nonexis-
tence of common unfoldings. We can check whether the
polygon is closed using the following lemma:

Lemma 13 For a sequence ¢ = (¢, ¢1, - -

~7¢n—1) Of

the angles 9;- 07’97;- and an angle assignment A, Poly,,

satisfies pg = pn if and only if the following condition
holds:
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(%) Foreach0 < i < n, there exists j uniquely such that
i+ Gip1+ -+ Pj_1+ ¢; is an integer multiple of
21 and j — 1 is odd.

Proof. Let w; be the vector along the edge (p;, pit1)-
Here, po = py, is equivalent to ), w; = 0. The slope of
W; 1S Gpo+ @1+ - -+@; or po+P1+- - -+¢; —m depending on
whether ¢ is odd or even. Thus, the difference between
the slopes of two vectors w; and 1 is ¢;+@ip1+- - -+d;+
T or ¢; + ¢iy1 + - - -+ ¢; depending on whether 4 is odd
or even. By the independence of the angles, w; = —;
holds if and only if j—¢ is odd and ¢; +¢; 11+ -+ 1+
®; is an integer multiple of 27. It is easy to see that
po = pp if the condition (x) holds because all vectors
are canceled with these inverses. We show pg = p,, only
if the condition () holds. Let i, &?,..., @}, be the
subset of Wy, w1, ..., w,—1 choosing without the same
or inverse ones. It is sufficient to show wj, wy,. .., &)
are linearly independent on Z.

We use a classical result on transcendental numbers:

Theorem 14 (Lindemann’s Theorem) For  any
distinct algebraic numbers ag,aq,...,an, the numbers
et e ... e%m aqre linearly independent on Q*, where
Q* s the algebraic closure on Q.

Let 1; be the slope of wj; } is represented by
eV=1%i_ Because we choose wh, W, . .., Wy, without
the same or inverse ones, q,...,%r are distinct al-
gebraic numbers. Similarly, v—1o,...,v/—11 are
distinct algebraic numbers. By Lindemann’s Theorem,
V=1%o eV=Ilvk are linearly independent on Q*.
On Z, they are also linearly independent. Therefore,
eV=Tto 4 oV=Tvn 4. 4 oV=Ton — only when the

condition (*) holds. O

Lemma 15 Whether the condition (x) holds does not
depend on A.

Proof. From the independence, the sum of angles is an
integer multiple of 7 only if (63 + 609 +69), (03 + 01 +63),
or (05 4-0?). Therefore, whether ¢; + ¢ 114 - -+¢; is an
integer multiple of 27 or not depends on only whether
they can be divided into the above pairs or not. O

For a given ¢, we check that there exists j such that the
condition (%) is satisfied for each ¢ one by one. It can
be done in O(n?) time.

4 Computational Experiment

By combining Algorithm [I] and the Lemma [I5] tech-
nique, we can check that, for given n, there is no n-
gon that is a common unfolding between any two dou-
bly covered triangles whose angles are algebraic and ra-
tionally independent. It requires O(n”) time theoret-
ically. We implemented them and checked that in a

range n < 300. It takes 1.5 hours in a normal lap-
top environment (CPU: 1.4GHz Intel Quad-Core i5, OS:
macOS 12.4, Memory: 16GB, compiler: GCC 11.3.05,
optimize: -03).

5 Conclusion

In this paper, we proved the nonexistence of common
unfoldings limited in the number of vertices between
two elements in a restricted polyhedral class. The main
next step is to remove the limitation on the number of
vertices. As you can see from the computational exper-
iments, Lemma [13|requires a strong condition to have a
common unfolding. This condition seems not to be sat-
isfied by any sequence obtained by Algorithm [1} If we
can prove this conjecture, then we will obtain nonexis-
tence without the limitation on the number of vertices.
The extension to polyhedra with more than three ver-
tices would also be interesting. In these cases, there are
more possible cutting trees to consider, and we would
have to consider how to relate restrictions of the interior
angles through the spreading sequences.

Acknowledgments

A part of this research is supported by JSPS KAK-
ENHI Grant Numbers JP18H04091, JP20H05961,
JP20H05964, JP20K11673, JP22J10261.

References

[1] Yoshiaki Araki, Takashi Horiyama, and Ryuhei Uehara.
Common unfolding of regular tetrahedron and Johnson-
Zalgaller solid. Journal of Graph Algorithms and Ap-
plications, Vol. 20, No. 1, pp. 101-114, 2016.

[2] Amartya Shankha Biswas and Erik D. Demaine. Com-
mon development of prisms, anti-prisms, tetrahedra,
and wedges. pp. 202-207, 2017.

[3] Erik D. Demaine, Martin L. Demaine, Yevhenii Diomi-
dov, Tonan Kamata, Ryuhei Uehara, and Hanyu Alice
Zhang. Any regular polyhedron can transform to an-
other by O(1) refoldings. Proceedings of the 33rd Cana-
dian Conference in Computational Geometry (CCCG
2021), Halifax, August 2021.

[4] Erik D. Demaine and Joseph O’Rourke.  Geomet-
ric Folding Algorithms: Linkages, Origami, Polyhe-
dra. Cambridge University Press, 2007. OCLC:

ocm76416607.

[5] Toshihiro Shirakawa, Takashi Horiyama, and Ryuhei
Uehara. On common unfolding of a regular tetrahedron
and a cube (in Japanese). Journal of Science Origami,
Vol. 4, No. 1, pp. 45-54, 2015.

[6] Dawei Xu, Takashi Horiyama, Toshihiro Shirakawa, and
Ryuhei Uehara. Common developments of three in-
congruent boxes of area 30. Computational Geometry,
Vol. 64, pp. 1-12, August 2017.

14



CCCG 2022, Toronto, ON, Canada, August 25-27, 2022

A Appendix

Here we consider the case that either or both cutting trees
are V-form. We assume that at least 7° is V-form, and
that 7° cuts v,v) by leaves and spans v§ without loss
of generality. There are two points d,d? in the bound-
ary of P such that fO(dd) = f°(d?) = v3. Let L :=
{18,193, M° := ¢, D° := {d},d?}. If T is also V-form, we
define L', M*', D' in the same manner. Otherwise, we let
L' = {1§,11,13}, M := {m{,mi,m3}, D' := 0. We modify
the definition of the gluing map.

Definition 16 We define gl* : 9P — 0P as follows.
o Ifpc L'UM"UD, gl'(p) :=p

o Otherwise, gl'(p) := p' such that f'(p) = f'('); v’ is
determined uniquely.

We consider the spreading sequences of each L° U L'. The
endpoints belong to M*UD? by the definition. In both cases,
|L°ULY| = |MPUM*UD®UD!|. Thus, each of M°UM'UD U
D! is the endpoint of some spreading sequence. Therefore,
v§ is made by gluing two points that are the endpoints of
some spreading sequences. It means that 69 is represented by
0 + 0;:/,7 0 + 9;./,, or 0} —1—0;.’,, It contradicts the independence
of the angles. Therefore, it is sufficient to consider only the
case that both are Y-form.

15



CCCG 2022, Toronto, ON, Canada, August 25-27, 2022

Diamonds are Forever in the Blockchain:
Geometric Polyhedral Point-Set Pattern Matching

Gill Barequet*
David M. Mount?

Abstract

Motivated by blockchain technology for supply-chain
tracing of ethically sourced diamonds, we study geomet-
ric polyhedral point-set pattern matching as minimum-
width polyhedral annulus problems under translations
and rotations. We provide two (1 + &)-approximation
schemes under translations with O(e~%n)-time for d
dimensions and O(nloge~! + £~2)-time for two dimen-
sions, and we give an O(f? 'e!~29n)-time algorithm
when also allowing for rotations, parameterized on f,
which we define as the slimness of the point set.

1 Introduction

A notable recent computational geometry application
is for tracking supply chains for natural diamonds,
for which the industry and customers are strongly
motivated to prefer ethically-sourced provenance (e.g.,
to avoid so-called “blood diamonds”). For example,
the Tracr system employs a blockchain for tracing the
supply chain for a diamond from its being mined as
a roueh diamond to a customer purchasine a polished

Blockchain transactions

Figure 1: Blockchain transactions in a diamond
supply chain, providing provenance, traceability, and
authenticity of an ethically-sourced diamond.

Essential steps in the Tracr blockchain supply-chain
process require methods to match point sets against geo-
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metric shapes, e.g., to guarantee that a diamond has not
been replaced with one of questionable provenance [23].
Currently, the Tracr system uses standard machine-
learning techniques to perform the shape matching
steps. We believe, however, that better accuracy can be
achieved by using computational geometry approaches.
In particular, motivated by the Tracr application, we
are interested in this paper in efficient methods for
matching point sets against geometric shapes, such
as polyhedra. Formalizing this problem, we study
the problem of finding the best translation and/or
rotation of the boundary of a convex polytope, P (e.g.,
defining a polished diamond shape), to match a set
of n points in a d-dimensional (d > 3) space, where
the point set is a “good” sample of the boundary of a
polytope that is purported to be P. Since there may
be small inaccuracies in the sampling process, our aim
is to compute a minimum width polyhedral annulus
determined by P that contains the sampled points. In
the interest of optimizing running time, rather than
seeking an exact solution, we seek an approximate
solution that deviates from the real solution by a
predefined quantity € > 0.

Related Work. We are not familiar with any previous
work on the problems we study in this paper. Never-
theless, there is considerable prior work on the general
area of matching a geometric shape to a set of points,
especially in the plane. For example, Barequet, Bose,
Dickerson, and Goodrich [12] give solutions to several
constrained polygon annulus placement problems for
offset and scaled polygons including an algorithm for
finding the translation for the minimum offset of an
m-vertex polygon that contains a set of n points
in O(nlog*n + m) time. Barequet, Dickerson, and
Scharf [13] study the problem of covering a maximum
number of n points with an m-vertex polygon (not
just its boundary) under translations, rotations, and/or
scaling, giving, e.g., an algorithm running in time
O(n3m*log(nm)) for the general problem. There has
also been work on finding a minimum-width annulus
for rectangles and squares, e.g., see [9,11,19,21].

Chan [15] presents a (1 + €)-approximation method
that finds a minimum-width spherical annulus of n
points in d dimensions in O(n log(1/¢)+°(M) time, and
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Agarwal, Har-Peled, and Varadarajan [1] improve this
to O(n +1/e2@)) time via coresets [2,3,22,24]. A line
of work has considered computing the spherical annulus
under stronger assumptions on the points samples.
Most notably Devillers and Ramos [17] combine various
definitions for “minimum quality assumptions” by Mel-
horn, Shermer and Yap [20] and Bose and Morin [14]
and show that under this assumption the spherical
annulus can be computed in linear time for d = 2
and present empirical evidence for higher dimensions.
Arya, da Fonseca, and Mount [6] show how to find an e-
approximation of the width of n points in O(nlog(1/¢)+
1/e(@=1/2+) time, for a constant a > 0. Bae [10] shows
how to find a min-width d-dimensional hypercubic shell
in O(nl?/21og?~! n) expected time.

Our Results. Given a set of n points in R?, we
provide an O(e~%n)-time (1+ ¢)-approximate polytope-
matching algorithm under translations, for d > 3, and
O(nloge™ + £72) time for d = 2, and we provide
an O(f9 'e!'=2dp)-time algorithm when also allowing
for rotations, where the complexity of the polytope is
constant and for rotations is parameterized by f, which
we define as the slimness of the point set.

The paper is organized as follows. In Section 2, we set
the ground for this work by providing some necessary
definitions. In Section 3, we approximate the MWA
under only translations. In this section, we provide
a constant factor approximation scheme, a (1 + ¢)-
approximation scheme and describe how to improve
the running time in two dimensions. In Section 4, we
consider the MWA under rotations.

2 Preliminaries

Following previous convention [4,5,7,8,18], we say that a
point set S is a §-uniform sample of a surface ¥ C R?
if for every point p € X, there exists a point ¢ € S
such that d(p,q) < 6. Let C C R? be a closed, convex
polyhedron containing the origin in its interior. Given
C, and z € R?, define 2 +C = {x +y : y € C} (the
translation of C' by ), and for r € R, define rC' = {ry :
y € C}. A placement of C is a pair (x,r), where x €
R? and r € RZ°, representing the translated and scaled
copy « + rC. We refer to z and r as the center and
radius of the placement, respectively. Two placements
are concentric if they share the same center.

Let C be any closed convex body in R? containing
the origin in its interior. The convex distance function
induced by C'is the function d¢ : R?xR% — RZ9, where

dc(p.q) = min{r:7 > 0 and g € p+7C)

Thus, the convex distance between p and ¢ is deter-
mined by the minimum radius placement of C' centered
at p that contains ¢ (see Figure 2). When C'is centrally

do(p.g) = =2, MinBall(e)

MWA (c)

195}

Figure 2: Left: a visual representation of a polyhedral
distance function and the distance between two points.
Center: The MinBall under d¢ containing all points in
S, centered at ¢. Right: The MWA of S with all points
within MinBall(c)\MaxBall(c).

symmetric, this defines a metric, but for general C, the
function d¢ may not be symmetric. We call the original
shape C the unit ball Us under the distance function
dc. Note that do(a,c) = de(a,b) + de (b, ¢) when a, b
and c are collinear and appear in that order.

Define an annulus for C' to be the set-theoretic
difference of two concentric placements (p + RC) \ (p +
rC), for 0 < r < R. The width of the annulus is R —r.
Given a d-uniform sample of points, S, there are three
placements of C' we are interested in:

e Minimum enclosing ball (MinBall): A place-
ment of C of the smallest radius that contains all of the
points in S.

e Maximum enclosed ball (MaxBall): A place-
ment of C of the largest radius, centered within the
convex hull of S, that contains no points in S.

e Minimum width annulus (MWA): A placement
of an annulus for C of minimum width, that contains
all of the points in S.

Note that, following the definition of the MaxBall,
we require that the center of the MWA must also lie
within the convex hull of S. For each of the above
placements, we also refer to parameterized versions, for
example MinBall(p), MaxBall(p), or MWA(p). These
respectively refer to the minimum enclosing ball, maxi-
mum enclosed ball, or minimum width annulus centered
at the point p.

Further, we use |[MinBall(p)| and |[MaxBall(p)| to
denote the radius of MinBall(p) and MaxBall(p), re-
spectively, and we use [MWA(p)| to denote the width of
MWA (p).

The ratio, F', of the MinBall over the MaxBall of
S C R? under distance function d¢ defines the fatness
of S under d¢, such that F := |MinBall|/|MaxBall|.
Also, we define the concentric fatness as the ratio of
the MinBall and MaxBall centered at the MWA, such
that F, := [MinBall(c,p:)|/|MaxBall(copt)| where cope
is the center of the MWA. Conversely, we define the
slimness to be f~! = 1 — F_ 1 which corresponds
to the ratio of the MinBall(c,p;) over the MWA, i.e.,
f = [MinBall(cop: )| /|[MWA].

Remark 1 In order for a §-uniform sample to rep-
resent the surface, ¥, with sufficient accuracy for a

17
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meaningful MWA, we assume that the sample must
contain at least one point between corresponding facets
of the MWA. Where corresponding facets refer to facets
of the MinBall and MaxBall representing the same facet
of Uc. Therefore, in the remainder of the paper, we
assume we have a §-uniform sample and that 6 is small
enough to guarantee this condition for even the smallest
facets.

In practice, it would be easy to determine a small
enough ¢ before sampling 3, since only sufficiently slim
surfaces would benefit from finding the MWA, and very
fat surfaces would yield increasingly noisy MaxBall.
One easy approach would be setting § to the smallest
facet of the MinBall and scaling down by an arbitrary
constant larger than the maximum expected fatness,
such as 100. This example imposes a very generous
bound on fatness since it would allow the inner shell to
be 1% of the size of the outer shell, practically a single
digit constant would often suffice.

Also, note that, for a given center point ¢, MWA(c)
is uniquely defined as the annulus centered at c
with inner radius min,egdc(c,p) and outer radius
maxpes do(c,p).  Further, let us assume that the
reference polytope defining our polyhedral distance
function has m facets, where m is a fixed constant,
since the sample size is expected to be much larger
than m. Thus, do can be calculated in O(m) time;
hence, MWA (c) can be found in O(mn) time, which is
O(n) under our assumption.

3 Approximating the Minimum Width Annulus

Let us first describe how to find a constant factor
approximation of MWA under translations. Note that,
by assumption, the center ¢ of our approximation lies
within the convex hull of S. Let us denote the center,
outer radius, inner radius, and width of the optimal
MWA as copt, Ropt, Topt, and wept.

We begin with Lemma 1, where we prove ¢,y is within
a certain distance from the center of the MinBall e,
providing a search region for c,p:. In Lemma 2, we
bound the width achieved by a center-point that is
sufficiently close to cop:. We then use this in Lemma 3
to prove that |MWA(c)| achieves a constant factor
approximation.

Lemma 1 The center of the MWA, cope, is within
distance wopt of the center of the MinBall, c. That is,
dC(Ca Copt) S Wopt -

Proof. Recall our assumption from Remark 1. By
our assumption that at least one sample point lies on
each facet, MinBall cannot shrink past any facets of
MaxBall(copt)-

Suppose for contradiction that dc (¢, Copt) > Wopt- Let
s be the point where a ray projected from c¢ through
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Copt intersects the boundary of MaxBall(c,: ), and let R
denote the radius of the MinBall. Observe that R must
be large enough for MinBall to contain s and therefore
R>dc(c, s).

R Z dC(C; Copt) + dC(Copt7 S)
> Wopt + dc (Copt7 3)

by collinearity
by assumption

= Wopt + Topt by MaxBall(copt).

Thus, since Wopt +Topt = Ropt, We find R > Rypt, which
is a contradiction since R must be the smallest radius
of the MinBall across all possible centers. Therefore, we
have that dc(c, copt) cannot be larger than wepe. O

Lemma 1 helps us constrain the region within which ¢
must be contained. Let us now reason about how a given
center point, ¢, would serve as an approximation. For
convenience, let us define R := |[MinBall(¢)| and r :=
|[MaxBall(c)| as the radii of the MinBall and MaxBall
centered at ¢, respectively.

Lemma 2 Suppose ¢ is an arbitrary center-
point in our search region, and the two directed
distances between c¢ and cop are at most t, i.e.,
t > max{dc(c,copt),dc(Copt,c)}. Then, we have that
IMWA(c)| < wept + 2t.

Proof. Knowing that all sample points must be con-
tained within the MWA, the MWA(¢) cannot expand
past the furthest or closest point in MWA from ¢ under
do. Let us now define these two points and use them to
bound the radii for MinBall(¢) and MaxBall(c).

Let p be the point where the ray from c through cop¢
intersects the boundary of MinBall(c,,). MinBall(c)
cannot extend further than p.

dC(Cvp) = dC (Ca Copt) + dC (Coptap) <t+ dC(Coptvp)
R< Rop +1.

Conversely, let ¢ be the intersection point where the ray
projected from c,p: through c intersects the boundary
of MaxBall(cop), in which case MaxBall(c) cannot
collapse further than q.

dC(C, Q) = dC(Copta Q) - dC(Copta C) 2 dC (copt7 Q) —t
T2 Topt — T

Combining these bounds with the fact that
|[IMWA(c))] = R — r we find that [MWA(c)| <
Wopt + 2t. O

For simplicity, let us consider two points a, b to be ¢-
close (under C') whenever t > max{dc(a,b),dc(b,a)}.

Lemma 3 If ¢ is the center of MinBall, then MWA(c)
s a constant factor approximation of the MWA, that is,
IMWA (¢)| < bMWA|, for some constant b > 1, under
translations.
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Proof. From Lemma 1, we have that dc(c,copt) <
Wopt. If ¢ and copt are wepe-close, then we can directly
apply the second part of Lemma 2 to find r > 74, —wWopt
and R < Ry, such that [MWA(c)| < Ropt — (Topt —
Wopt ), thus proving that this is a 2-approximation. If d¢
is a metric, then de(copt, €) = do(c, copt) and this must
always be the case. However, if dc(copt, €) > Wopt, then
we must use the Euclidean distance to find de(cope, €)-
Let vector u := ¢ — copt, and let us define unit vectors
with respect to dc and dg, such that

~ U —~ u
UC = ——— — - —
dC(Copta C) ’ © dC (C; Copt)
[icllde(copt,c) = lull = [luglldo(c, copt)
de(copt, ) < ||,\6||wopt from Lemma 1.
|[ac||
Under any convex distance function, % is bounded

from above by A = max,cgad %, which corresponds to
finding the direction, v, of the largest asymmetry in Ue.
Thus, by Lemma 2, [MWA(c)| < (A + 1)wep:. Under
our (fixed) polyhedral distance function, A is constant;

hence, MWA (c) is a constant-factor approximation. [J

(1 4 &)-approximation. Let us now describe how to
compute a (1 + ¢)-approximation of MWA. We begin
with Lemma 4, which defines how close to cop: is
sufficient for a (1 + €)-approximation. In Theorem 5,
we define a grid of candidate center-points so that any
point in the search region has a gridpoint sufficiently
close to it.

Lemma 4 Suppose cope and ¢ are (ew/(2b))-close,
where w = [MWA ((cpr)|, ear is the center of MinBall,
and b is the constant from Lemma 3. Then, MWA(c)
is a (1+ €)-approzimation of MWA under translations.

Proof. It suffices to show that the width of our approx-
imation only exceeds the optimal width by a factor of at
most (1+4¢). Assuming ¢ and ¢,y are t-close, and using
Lemma 2, we require that wep + 2t < (1 + €)wopt, i.e.,
t < ewept/2. Let us then choose t < ew/(2b), knowing
that w < bwep: from Lemma 3, which is sufficient for
achieving a (1 + ¢)-approximation. O

Knowing how close our approximation’s center must
be, we can now present a (1 + £)-approximation algo-
rithm to find a center satisfying this condition.

Theorem 5 One can achieve a (1 + €)-approximation
of the MWA under translations in O(s~%n) time.

Proof. The MinBall can be computed in O(n)
time [16]. By Lemma 1, we have that dc(c, copt) < Wopt,
where c is the MinBall center. This implies that copt
must lie within the placement ¢ 4+ w,,:C' or more

generously in P, defined as ¢ + wC. Furthermore,
from Lemma 4, we know that being (ew/(2b))-close
t0 ¢ope suffices for an (1 + ¢)-approximation. Therefore,
overlaying a grid G that covers P, such that any point
in p € Pis (ew/(2b))-close to a gridpoint, guarantees
the existence of a point g € G for which MWA(g) is a
(1 + )-approximation.

Since P and (sw/(2b))-closeness are both defined
under d¢, we translate this to a cubic grid for simplicity.
Let @ be the smallest cube enclosing P and ¢ be the
largest cube enclosed by (ew/(2b))C. Let us now define
a grid, G, to span over ) with cells the size of gq.
This grid, G, has O(Fb/e) gridpoints per direction and
O(F%~9) gridpoints in total, where I corresponds to
the fatness of C' under the cubic distance function.

Let us define the cubic distance function, d4, with
unit cube U, = ¢ (2b)/(ew), such that U, is the largest
cube enclosed by C. The grid G guarantees that for
every point p, there exists a gridpoint g € G such that
de(p,g) < ew/(2b). Since the unit cube is contained
within the unit polyhedron, we have that dco(a,b) <
dq(a,b) Va,b; and since d, defines a metric, p must
also be (ew/(2b))-close under d¢. Finding the gridpoint
providing the (1+¢)-approximation takes O(F9bs=%n)
time,! which, under a fixed d¢, is O(e~n) time. O

Faster grid-search in two dimensions. The algorithm
of Theorem 5 recalculates the MWA at every gridpoint.
However, small movements along the grid should not
affect the MWA much. We use this insight to speed up
MWA recalculations for two dimensions.

Let us first define the contributing edge of a sample
point, p € S, as the edge of C + g intersected by the ray
emanating from a gridpoint, g, towards p. Under this
center-point, p will only directly affect the placement
of the contributing edge. Observe that given vectors
T € C, defined as the vectors directed from the center
towards each vertex, the planar subdivision, created by
rays for each o originating from g, separates points by
their contributing edge. For any two gridpoints, g; and
g2, and rays projected from them parallel to 7, any
points within these two rays will contribute to different
edges under g; and go. We denote this region as the
vertex slab of vertex v, and the regions outside of this
as edge slabs. Points within an edge slab contribute to
the same edge under both gridpoints, maintaining the
constraints this imposes on the MWA, can therefore be
achieved with the two extreme points per edge slab. If
we consider vertex slabs for all g € G, we must be able
to quickly calculate the strictest constraints imposed by
points in a subset of vertex slabs. An example of the
planar subdivision for two points is shown in Figure 3.

IFor metrics, MinBall provides a 2-approximation, thus b=2.
For non-metrics, we can remove this constant by first using this
algorithm with e=1 in order to find a 2-approximation in linear-
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Figure 3: Planar subdivision defining vertex slabs (red)
and edge slabs (blue) for two candidate center-points,
and showing membership of some sample points.

Given a grid G, we write g; ; € G to be the gridpoint
at index (i,7). Consider the set of all grid lines L,
defined by rays parallel to o starting at each gridpoint.
L, defines a planar subdivision corresponding to the
edge slabs between gridpoints. Before attempting to
identify the extreme points for each edge slab, we first
need to find a quick way to identify the slab in L, that
contains a given sample-point, p.

Lemma 6 For a specific vector Y and an m xm grid,
we can identify which slab contains a sample point, p,
in O(logm) time with O(m?)-time preprocessing.

Proof. Consider the orthogonal projection of grid lines
in L, onto a line v/ perpendicular to o, the order in
which these lines appear in v defines the possible slabs
that could contain p (see Figure 4a). We can project
a given grid line [ € L, onto v7 in constant time.
With the grid lines in sorted order, we can perform a
binary search through the m? points in O(logm) time
to identify the slab containing p.

Using general sorting algorithms, we could sort the
grid lines in O(m?logm) time. However, since these
lines belong to a grid, we can exploit the uniformity to
sort them in only O(m?) time. Consider the two basis
vectors defining gridpoint positions 7 = g(1,0) — 9(0,0)
and J = g(0,1) — 9(0,0), and their sizes after orthogonal
projection onto vy, |ii|, and |[ji|. Without loss of
generality, assume that |¢,| > [j.[, in which case grid
lines originating from adjacent gridpoints in the same
row must be exactly |, | away. In addition, any region
i, |-wide, that does not start at a grid line, must contain
at most a single point from each row. Furthermore,
since points in the same row are always |7, | away, they
must appear in the same order in each region.

We can therefore initially split o7 into regions i1 |
wide. Sorting the grid lines [ € L, into their region can
therefore be calculated in O(m?) time. Now we can sort
the m points in the region containing points from every

time, and using this approximation for gridding in the main step.
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(a) A demonstration of the
point location problem with
the subdivision, L., and a
visualization of the gridpoints
and sample point projections
onto v7.

(b) Finding the extreme
points (red) under €. in
subdivision L, for each re-
gion (solid) and for all re-
gions to its left (dashed).

Figure 4: A visual representation of the projections
involved while point locating within the vertex slabs
and while finding the extreme points in each slab.

row in O(mlogm) time. Since each region has the same
order, we can place points in other regions by following
the order found in our sorted region, thus taking O(m?)
preprocessing time for sorting the points. O

Recall that points to the left of a given line [ € L,
contribute to the edge to the left of v, i.e., all points
belonging to slabs to the left of I. We can therefore
isolate the points in these slabs causing the largest
potential change in MWA.

Lemma 7 For a verter v € C and grid linel € L,
through gridpoint g, let l;, and lr refer to the slabs on
the subdivision imposed by L, immediately to the left
and right of 1, respectively. Assuming l;, maintains the
points to the left of | imposing the strictest constraints
on MWA(g), and lg to the right, one can calculate
MWA(g) in O(1) time.

Proof. Finding min,cs dc(g,p) and maxpes dc(g, p)
can now be achieved by optimizing only over the set of
points in {l; Ulg, YoeC} and all points in edge slabs.
This set would contain two points per vertex and two
points per edge, yielding a constant number of points.
Thus, MWA(g) can be found in constant time. O

Theorem 8 A (1 + ¢)-approximation of the MWA in
two dimensions can be found in O(nloge™! +e72) time
under translations.

Proof. For each vertex, v, we use Lemma 6 to identify
the slab for every sample point. For each slab, we
maintain only the two extreme points for each of the
edges incident on ¥. Let €, € C denote the vector
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describing the edge incident on ¥ from the left, and
vice versa for € i € C incident from the right. For each
slab, we maintain only points which when projected
in the relevant direction, ?, cause the furthest and
closest intersections with the boundary (shown for €L
in Figure 4b). With a left-to-right pass, we update a
slab’s extreme points relative to A 1 to maintain the
extreme points for itself and slabs to its left. With a
right-to-left pass, we do the same for ¢ g and maintain
points in its slab and slabs to its right.

Thus, for each vertex, we create the slabs in O(¢~2)
time, place every sample point in its slab in O(nloge~1)
time, and maintain only the extreme points per slab in
constant time per sample point. With O(e=2) time to
update each slab after processing the sample points, we
can update the slabs such that they hold the extreme
points across all slabs to their left or right (relative to
1 and ?R, respectively).

For each edge slab, finding the extreme points is much
simpler since finding min d¢(g, p) and maxde (g, p) will
always be based on the same contributing facet for all
points within the same edge slab .

Thus, after finding the extreme points in both vertex
slabs, we can calculate MWA(g) in constant time
as described in Lemma 7. Taking O(e72) time to
find mingeq MWA(g), which by Theorem 5 provides a
(1 + ¢)-approximation of the minimum width annulus,
and considering the O(nloge~!) pre-processing time
completes the proof of the claimed time bound. O

4 Approximating MWA allowing rotations

In this section we consider rotations. As with Lemma 4,
our goal is to find the maximum tolerable rotation
sufficient for a (1 + ¢)-approximation. Observe that
when centered about the global optimum, the solution
found under both rotation and translation is at least
as good as the solution found solely through rotation
(i.e., under a fixed center). We will therefore first prove
necessary bounds for a (1 4 &)-approximation under
rotation only with the understanding that they remain
when also allowing for translation.

Consider the polyhedral cone around ¥, and define
the bottleneck angle as the narrowest angle between
a point on the surface of the polyhedral cone and .
Let 6 be the smallest bottleneck angle across all v eC.
Let MWA, (¢) denote the MWA centered at ¢, where C
has been rotated by angle «. Let us also use similar
notations for MinBall and MaxBall.

Lemma 9 Rotating by a causes MinBall, (¢) to grow by
at most W (and the reciprocal for MaxBall,(c) ).

Proof. Similarly to Lemma 2, all sample points must
be contained within MinBall(c). MinBall,(¢) can only
expand to the furthest point within MinBall(c) under

21

sin(r—f—a)
sin 0

r2
r

(a) A demonstration of the scale increase necessary for a
polyhedron rotated by « to contain the original.
«

¢ Copt

(b) A rotation by « in an arbitrary direction about .

Figure 5: Visual representations for the effect of
rotating by «, demonstrating the scale increase and
demonstrating how a rotation by « is defined for higher
dimensions.

the new rotated distance function. Let us now consider
the triangle formed between ¢, the vertex v of the
original MinBall, vy, and the rotated vertex v, (shown
in Figure 5a). Since our calculations focus towards the
same vertex, we can work with Euclidean distances. The
quantity |vg — ¢| defines the radius r; of the original
polyhedron, and r = |v, — ¢| the radius of the rotated
one. With v =7 — 0 — « as the remaining angle in our
triangle and using the sine rule, we find that

ry _siny _ sin(r — 6 —a)

1 sin 0 sin 0

Observe that 6 is the angle maximizing this scale
difference. This applies to rotating by « in any direction
about ¥ (as shown in Figure 5b), and since this direc-
tion need not coincide with 6, the scaled polyhedron
might not touch the original. For MaxBall,(c) to be
contained within MaxBall(c), the same example holds
after switching references to the scaled and original. In
this case, § minimizes r1/rs. O

Let us now determine the rotation from the optimal
orientation that achieves a (1 4 ¢)-approximation.
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Lemma 10 Given a center ¢, we have that MWA,(c)
is a (1 + &)-approxzimation when « is smaller than

in 6
arcsin <S;I} (142 + Ve +47(7 - 1))) —0.
Proof. Define f as the ratio of the radius of
MinBall(copt) to wopt (i-€., fwopr = |MinBall(copt)|)-
Note that f corresponds to the slimness of S under d¢
over all rotations of C'. Using Lemma 9, we know that

sinvy,. . sin
< _
IMWA,(c)] < g IMinBall(copt )| sinfy|MaXBau(60pt)|
sin 7y sin 6
> 7 I <
sin@fwom siny(f Dwopt < (14€)wopt (1)
sin 7y sin 6
— 1)< (1 . 2
sin 0 sinfy(f ) < (1+¢) (2)

For a (1 4 ¢)-approximation, |[MWA,(c)| < (1+&)wept
imposing the right side of Relation (1), its left side fol-
lows by definition of f, and Relation (2) by cancellation
of wepe. Since 0 is constant, we can rearrange the above
into a quadratic equation and solve for sin~y.
. sin 0

siny = (1+s +/(1+e)2 + 4f(f71)) E))
However, arcsin will find v < 7, whereas we need the
obtuse angle m — «y. Thus, proving this lemma’s titular
bound, and achieving a (1 + €)-approximation. O

Let us now establish a more generous lower-bound
that will prove helpful when developing algorithms.

Lemma 11 The angular deflection required for a
(1 + €)-approzimation is larger than 0c/(2f).

Proof. Observe that v is of the form arcsin(k sin @) and
thus, in order for a = y—#@ to be positive, we must have
0 < /2 and k > 1. We will prove this is the case.

_l4e 4e)* 1
’“‘2f+\/<2f) 7l @)
1 1 1
e R T ©)
1+ 1 €

Equation (4) follows from Equation (3) after expanding.
Relation (6) follows after using Equation (5) as a
lower bound for the square root term in Equation (4)
since ¢ > 0 and f > 1. This allows us to bound

arcsin ((1 + ;f> sin 9> by using a Taylor’s series ex-

pansion to find (1 + k) - § < arcsin((1 + k) sin ), thus
proving that the bound from Lemma 10 is greater than

[)
27 O
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Lemma 12 For fized rotation of C, assume we have
an O(g(n))-time algorithm for the optimal minimum-
width annulus under translation.  We can find a
(14 ¢&)-approximation of the MWA under rotations and
translations in O(f%1e'=g(n)) time.

Proof. A d-dimensional shape has a (d—1)-dimensional
axis of rotation. Let us evenly divide the unit circle
into k directions. Let us also define a collection of all
possible direction combinations as a grid of directions.
For each grid direction, rotate C' by the defined direction
and calculate the MWA in O(g(n)) time. The optimal
orientation must lie between the (d—1)-dimensional
cube formed by 297! grid directions. Therefore, as
long as the diagonal is smaller than 9—;, there exists
a grid direction within g—; of the optimal orientation,
which implies a (1 + €)-approximation by Lemma 11.
Thus, we can achieve a (1 + ¢)-approximation in time

d—1
O |g(n)- (% Vadfl) , where d and 6 are constant

under a fixed distance function d¢. O

With a fixed center, Lemma 12 can be used to
approximate MWA under rotations in O(nf?le!=9)
time.

Theorem 13 One can find a (1 + €)-approzimation
of MWA wunder rotations and translations in
O(fi=tel=2dn) time for d>3, and O(fne 'loge™' +
fe=3) time for d=2.

Proof. Consider using an approximation algorithm
(from Theorems 5 or 8) instead of an exact algorithm as
in Lemma 12. Let us define (14¢) as the approximation
ratio necessary from the subroutines in order to achieve
an overall approximation ratio of (1 + ¢), such that
(14+&2=1+¢ Sinceé =yI+e—land0<e<1,¢&
must be larger than (v/2—1)-¢, and thus, we can always
pick a value for £ which is O(e) and achieves the desired
approximation. Thus, by following Lemma 12, we can
find a (1 + (v/2 — 1) - £)-approximation using the (1 +
(V2 — 1) - £)-approximation algorithm from Theorem 5
to find a (1 + ¢)-approximation in O(f?le!=?.¢=n)
time. Alternatively, for two dimensions, we can instead
use the algorithm from Theorem 8 to find a (1 + ¢)-
approximation in O(fne !loge™! + fe=3) time. O
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Optimally Confining Lattice Polymers

Robert D. Barish*

Abstract

We introduce the Lattice Polymer Confinement Prob-
lem (LPCP), where provided a graph G correspond-
ing to a solid or hole-containing finite lattice, and pro-
vided a finite set of vertex-wise lengths £ C N of lat-
tice polymers modeled as Self-Avoiding Walks (SAWSs),
the objective is to delete the fewest possible number
of vertices in G' to satisfy a bound Sig ) < © on
a sum over the configuration entropies of each poly-
mer. In this context, we use Boltzmann’s expression
S,y = kp -In(W +1) for the system configuration
entropy, where kp ~ 1.380649 - 10723 J - K~ is Boltz-
mann’s constant, and W corresponds to a sum over the
number of SAWs modeling lattice polymers in a speci-
fied host graph. We also propose a novel Self-Avoiding
Walk (SAW) centrality measure, Csaw (£, v;), for a ver-
tex v; in a lattice or graph as a variation on the standard
notion of betweenness centrality, which for a specified
finite set £ C N, corresponds to the fraction of length
l; € L SAWs that cover v;.

Letting G be an input lattice or graph for LPCP
with vertex set Vi and edge set Eg, we show that
LPCP is NP-hard as well as APX-hard VQ2 > 0 and
for all finite £ C N>. On the other hand, letting
tr (G) be the treewidth of G, letting (s = f (tr (Q)) -
O (|Vg| + |E¢g|) for some computable function f, and
letting V;n:t be the initial system configuration entropy,
we prove the existence of an O (G - [Val? - In([Val))
time (1n (e(y"'"“) — eQ))-approximation algorithm for
LPCP. We moreover establish that an O (¥) determin-
istic algorithm for SAW centrality with multiplicative
error 1 & ¢, which we remark can be derived from ex-
isting PTAS algorithms for counting bounded-length
SAWs in graphs, correspondingly implies the existence

) ln(e(yinit)feg)
of an O (V- [Vg|* - In(|Ve])) time 1_2€>—
approximation algorithm for LPCP.

Finally, we briefly analyze variations on LPCP, in-
cluding a variant where we delete edges in lieu of ver-
tices, and variant with “rigid” lattice polymers (e.g.,
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lattice proteins) where every embedding must satisfy a
set of consecutive dihedral angles for adjacent bonds.

1 Introduction

We introduce and analyze what we denote the Lat-
tice Polymer Confinement Problem (LPCP), which con-
cerns minimally modifying a solid or hole-containing
finite lattice G such that, provided a finite set of
vertex-wise lengths £ C N of lattice polymers mod-
eled as Self-Avoiding Walks (SAWSs), the system con-
figuration entropy Siq,r) = kp - In(W+1) falls be-
low a specified threshold €2 > 0. In this context,
kg ~ 1.380649 - 10723 J - K—! is Boltzmann’s con-
stant, W corresponds to a sum over the number of SAWs
(modeling lattice polymers) of length I; € £ in a spec-
ified host graph, and €2 should everywhere be assumed
to have units J - K ~'. Briefly, we can observe that the
system configuration entropy is equivalently expressed

as Sq,c) = —kp - Zlﬁl ((ﬁ) -In (ﬁ)), allowing
us to obtain the expression for Shannon entropy by sub-
stituting kp with the reciprocal of the logarithm of the
number of observed events for a discrete random process

and (ﬁ) with the probability of a specific event.

We remark that such lattice polymer models have ex-
tensive precedence in the field of protein structure pre-
diction and engineering [14, 22]. For illustrative exam-
ples, we refer the reader to Fig. 1 and Fig. 2, where we
show LatFit [23, 24] generated (semi-rigid) embeddings
of the peptide backbones for the NMR solution struc-
ture of an ShK potassium channel inhibitor toxin from
sea anemone (PDB ID: 1ROO) on a Z? integer lattice,
and the crystal structure of an antifreeze protein from
notched-fin eelpout (PDB ID: 5XQN) on a 210 “knight’s
tour” lattice, respectively.

Our inspiration for LPCP is a visually stunning ex-
perimental demonstration by Turner et. al. [26] of how
entropy gradients can invoke forces on polymers. To
briefly describe their experiment, Turner et. al. [26] be-
gan by manufacturing a microfluidic cell with two adja-
cent quasi-two-dimensional volumes, which we will re-
fer to as Jopen and Jpiiars, where Jope, is an otherwise
open volume and Jyiqrs is populated with ~ 35 nm
diameter pillars with a ~ 160 nm center-to-center spac-
ing. The authors then used an electric field to drag
double-stranded T2-phage genomic DNA (having a con-
tour length of = 51 um) from Jopen t0 Jpitiars, signifi-
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cantly restricting the polymer’s configuration freedom.
Once the electric field was lifted and one end of a given
polymer diffused into J,pen, a CCD camera was used to
observe the remainder of the molecule rapidly “recoil-
ing” out of Jpiars, acting against a hydrodynamic drag
with a force of = 5.7 fN. The authors then determined
that this force was driven almost entirely by a config-
uration entropy gradient, noted that it was within an
order of magnitude of the ~ 40 fN force expected by a
~ Al kB change in configuration entropy per polymer
Kuhn length (i.e., length units of a semi-rigid polymer
that can be approximated as segments of a freely-jointed
chain [16]) moving from Jpiiars t0 Jopen-

We now ask the question: if we treat the configu-
ration entropy S(g,c) for one or more lattice polymers
embedded in a solid lattice as roughly equivalent to the
embedding of real polymers in an open volume akin to
Jopen, how can we minimally modify the lattice (e.g.,
by deleting vertices) to create a volume akin to Jyars?
Here, the aforementioned LPCP problem, which we for-
mally define below, represents our attempt to formalize
and generalize this problem.

Definition 1 Lattice Polymer Confinement Problem,
LPCP (G, L,Q)

Input: A graph G with vertex set Vi, corresponding
to a solid or hole-containing finite lattice, a finite
set of vertex-wise lengths £ C N of lattice polymers
modeled as Self-Avoiding Walks (SAWs), and an
upperbound 2 for the configuration entropy Sg,r)
of the system. Here, S(¢ ry = kp - In (W + 1), where
kp ~ 1.380649 - 10=23.J - K—! is Boltzmann’s constant,
and W corresponds to a sum over the number of
embeddings in G of each lattice polymer corresponding
to a SAW of length I; € L.

Objective: Return a minimum cardinality set of
vertices @ C Vi whose deletion converts G into a graph
G’ where we have that S £y < Q.

For illustrative examples of LPCP (G, L, ) and what
(approximate) witnesses look like, we refer the reader
to Fig. 3, where we show instances of input graphs G
corresponding to: (a) a 6 x 6 induced subgraph of a
72 integer lattice; (b) a 3 x 3 x 3 induced subgraph
of a Z3 integer lattice; (c) an induced subgraph of a
triangular lattice; and (d) an induced subgraph of a
honeycomb lattice. In each of the examples from Fig.
3(a—d), we also show a set of (white) vertices that would
be selected in the specified order (first 1, then 2, etc.) for
deletion by a greedy algorithm attempting to minimize
S(c,c)- In the Fig. 3(e) table, we show the approximate
configuration entropy for the examples in Fig. 3(a—d)
(recall that kp ~ 1.380649-10723J- K1), as well as the
configuration entropies following each vertex deletion.

As a subroutine of our greedy algorithms for the
LPCP problem, we also introduce a novel Self-Avoiding

Walk (SAW) vertex centrality measure as a variation
on betweenness centrality. This measure assigns a
score to the vertices of a simple undirected graph
based on the fraction of all possible SAW embeddings
of specified lengths I; € L they are covered by, and
accordingly allows one to rank vertices in a graph
according to the effect of their deletion on the system
configuration entropy. More specifically, letting G
be a simple graph with vertex set Vg, and letting
fispan) (Gyva,vp) and fsp,) (G,vq,vp) be functions
which return the number of shortest paths from a
vertex v, € Vg to a vertex v, € Vg and the number
of such paths traversing the vertex v; ¢ {vs,vp},
respectively, we can recall that the betweenness cen-
trality [17, 18, 27] for a vertex v; € Vg is given
by Cpetweenness (G5 Vi) = 324 bel1,|Vallrna<brastinbri)
G,vg,v

<)W> , f(SP,all) (vaa,vb) # 0

0, f(SP,all) (G,’Ua,Ub) =0
Now, letting G and Vi be defined as before, and letting
fsaw,an) (G, £) be a function which returns the num-
ber of all simple paths (equiv. SAWSs) of all possible
vertex-wise lengths [; € £ in G, we can define the SAW
centrality for a vertex v; € Vg as Csaw (G, L,v;) =
{(f‘ig‘;”jc;i’;,iicfzf)) Ror fisawan (G, £) # 0}

0, for fisaw,au) (G,L£) =0

To begin our analysis of LPCP, we first establish hard-
ness results. In particular, we show that LPCP is N P-
hard even if G is a subgraph of a Z? integer lattice and
we have either the constraint that |£| = 1 or the con-
straint that £ = {1,2,...,|Vg|} (Proposition 1). If G is
allowed to be an arbitrary simple undirected graph, we
moreover show that LPCP is N P-hard as well as APX-
hard V2 > 0 and for all finite £ C N>, (Proposition 2).

We next detail approximation algorithms for LPCP.
In particular, letting tr (G) be the treewidth of G, let-
ting G = f(tr (G)) - O(|Vg| + |Egl) for some com-
putable function f, and letting Y;,;+ be the initial
system configuration entropy, we prove the existence
of an O (th Va3 -ln(|Vg|)) time (ln (e(y““") — eQ))—
approximation algorithm (Theorem 3). We additionally
show that an O (V¥) deterministic algorithm for SAW
centrality with multiplicative error 1 + € correspond-
ingly implies the existence of an O (¥ - [V|? - In (|Vg))

Vinit) _ S
time (m((l_Q:))-approximation algorithm (The-

orem 5).

Finally, we show how the aforementioned approxima-
tion algorithms extend to variations on LPCP where we
delete edges in lieu of vertices (Corollary 8), as well as
a variant where we consider the configuration entropies
of “rigid” lattice polymers (e.g., lattice proteins) akin
to those shown in Fig. 1 and Fig. 2 (Remark 1).
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Figure 1: LatFit [23, 24] generated Z? integer lattice embedding of the backbone for the NMR solution structure of
an ShK potassium channel inhibitor toxin from sea anemone (PDB ID: 1ROO); the lattice embedding of the protein
backbone is illustrated with (blue) vertices and edges, and the original structure of the protein backbone is illustrated

with (white) vertices and edges.

Figure 2: LatFit [23, 24] generated 210 “knight’s tour” lattice embedding of the backbone for the crystal structure
(obtained via X-ray diffraction techniques) of an antifreeze protein from notched-fin eelpout (PDB ID: 5XQN); the
lattice embedding of the protein backbone is illustrated with (blue) vertices and edges, and the original structure of
the protein backbone is illustrated with (white) vertices and edges.

2 Preliminaries

2.1 Graph theoretic terminology

We will generally follow definitions that are more-or-
less standard (see, e.g., Diestel [11]). However, for
some brief clarifications, when we use the term graph
we are everywhere referring to simple undirected and
unweighted graphs. We call a graph cubic if and only
if all of its vertex degrees are uniformly equal to 3, and

26

subcubic if and only if it has maximum vertex degree
3. Concerning paths and cycles in graphs, a path or
cycle is called simple, or a Self-Avoiding Walk (SAW)
in the case of paths, if it does not revisit either edges
or vertices, called Hamiltonian if it is simple and covers
all vertices, and called induced if it is also an induced
subgraph. Here, the Hamiltonian cycle problem is the
problem of deciding the existence of a Hamiltonian cycle
in a graph, and the st-path problem and st-Hamiltonian
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Deleted Vertices: None {1 (1,2} (1,23} {1.2,34} {12345} {1.2,3456}
(8) 6x6 Integer Lattice, Sy (3K™) - (k)™ :  10.8946 18.2877 16,5245 14.7857 13.0960 11.2828  9.36888
(b) 3x3x3Integer Lattice, Sy (3K™?) - (kg)>: 201267  18.0250 16.3276 145983 12.8702  11.1030  9.48562

)

)
(c)  Triangular Lattice, Sg.z) (3K™) -(kg)™:  16.3800  14.2045  12.1922  10.0761 851759  6.90174  4.95583
(d) Honeycomb Lattice, Sjg_r) (3 K™?) - (k) : 165431 150823 13.5212 11.9914 105050 9.06439  7.23778

Figure 3: Hlustrative examples of LPCP (G, L, Q) problem instances, where letting £ be the set of all possible SAW
lengths, for each graph G in (a—d) the order of the first 6 vertices (colored white) selected by a naive greedy algorithm
minimizing the system configuration entropy is shown (with the labels “1” for the first selected vertex, “2” for the
second selected vertex, etc.). The approximate system configuration entropies before and after each successive vertex
deletion event, divided by kp, are given in the table shown in (e). Here, (a) corresponds to a 6 x 6 induced subgraph
of a Z? integer lattice (36 vertices and 60 edges), (b) corresponds to a 3 x 3 x 3 induced subgraph of a Z* integer
lattice (27 vertices and 54 edges), (c) corresponds to an induced subgraph of a triangular lattice (21 vertices and 45
edges), and (d) corresponds to an induced subgraph of a honeycomb lattice (48 vertices and 63 edges).

path problem is the problem of deciding the existence 2.2 Fixed-parameter tractability and intractability
of a simple path (equiv., SAW) and Hamiltonian path,

respectively, between a pair of vertices vs and v;. A problem can be denoted Fized-Parameter Tractable

(FPT) if, letting x be a string encoding a given prob-
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lem instance and f(k) be any computable function, its
time complexity can be written as f(k) - |#|°()). With
regard to parameterized hardness, we concern ourselves
with completeness for the class W[1] of all parameter-
ized languages that can be encoded as Boolean decision
circuits with weft at most 1 (see, e.g., ref. [13]). Here,
a circuit with weft k can have at most k large gates (i.e.
degree > 3 vertices in the finite directed acyclic graph
representation of the circuit) along any given path from
an input node to an output node.

2.3 Approximation tractability and intractability

Concerning approximation tractability, we concern our-
selves with the notion of a Polynomial-Time Approxi-
mation Scheme (PTAS) and Fully Polynomial-Time Ap-
proximation Scheme (FPTAS). Here, for some error pa-
rameter € > 0, a PTAS is a deterministic algorithm
which produces a solution for a given optimization prob-
lem with a multiplicative error of 14¢ (typically 1—e and
1 + € for maximization and minimization problems, re-
spectively), with a running time polynomial in length of
an input string specifying the optimization problem. If a
PTAS also has a running time polynomial in %, then we
refer to the PTAS as a FPTAS. With regard to approx-
imation hardness, we concern ourselves with hardness
for the class APX of problems admitting a constant-
ratio approximation algorithm. As there are problems
in the class APX that do not admit a PTAS unless
NP = RP, including a number of interesting special
cases of the geometric set cover problem [5], this corre-
spondingly implies that an AP X-hard problem cannot
admit a PTAS unless P = NP.

3 Hardness results

Proposition 1 For a subgraph G of a Z? integer lat-
tice with vertex set Vi, we have that LPCP (G, L,Q) is
N P-hard under both the constraint that || = 1 and the
constraint that L ={1,2,...,|Vg|}.

Proof. Letting G be a subgraph of a Z? integer lattice
with vertex set V7, by the proof argument for “Theorem
77 of Liskiewicz et. al. [20] we have that there is an effi-
cient polynomial time counting reduction (more specif-
ically, a polynomial time many-one counting “weakly
parsimonious” reduction) from counting (case 1) SAWs
of a specific length [, € N in G, and (case 2) SAWs
of all possible lengths in G, to counting st-Hamiltonian
paths in a subcubic planar graph H. The aforemen-
tioned proof argument also gives specific polynomial-
time computable formula for the number of SAWs that
must exist in (case 1) and (case 2), which we will denote
T1 and Ty, respectively, for there to exist at least one
st-Hamiltonian path in H. We can also observe, as de-
tailed in “Section 3” of Liskiewicz et. al. [20], that H is
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constructed via a polynomial time many-one counting
reduction from an instance of #3SAT to the problem
of counting st-Hamiltonian paths in a subcubic planar
graph.

Now, let G; and G2 correspond to subgraphs of a
Z? integer lattice constructed from a subcubic planar
graph H for (case 1) and (case 2), respectively, in the
proof argument for “Theorem 7”7 of Liskiewicz et. al.
[20]. Observe that by specifying parameters £ = {I,.}
and Q = kp-In (71 + 1), a witness for LPCP (G, L, )
will be the null set if and only if H possesses an st-
Hamiltonian path. Similarly, observe that by specifying
parameters £ = {1,2,...,|Vg|} and Q = kp-In (T5 + 1),
a witness for LPCP (G3, £, ) will be the null set if and
only if H possesses an st-Hamiltonian path. As the st-
Hamiltonian path problem is N P-complete for arbitrary
instances of the graph H due to the manner in which
the graph is constructed, this yields the proposition. [

Proposition 2 LPCP (G,L,Q) is NP-hard and
APX-hard ¥ > 0 and for all finite L C N>q.

Proof. By metatheorems of Yannakakis & Lewis [28,
19] and Lund & Yannakakis [21], we have that the prob-
lem of deleting a minimum set of vertices in a simple
undirected graph G to satisfy a property II is N P-hard
and APX-hard, respectively, if II is a nontrivial and
hereditary property. Here, a property being nontrivial
means that it both holds and fails to hold for infinitely
many graphs, and a property being hereditary means
that it is satisfied for a graph if and only if it is satisfied
for all of the graph’s induced subgraphs.

Now, letting £ C N> be some finite set of vertex-
wise lengths for SAWs, observe that there are infinitely
many independent sets having no embeddings of SAWs
of length [; € L, and infinitely many finite undirected
graphs having more than an arbitrary number of em-
beddings of SAWSs of length I; € £. Accordingly, in the
context of the LPCP problem where we model lattice
polymers as SAWs having vertex-wise lengths from a
set L, VQ > 0 we have that there are infinitely many
graphs failing to satisfy and satisfying a property II that
S(a,c) < 2. This implies that the aforementioned prop-
erty II is nontrivial. We also trivially have that IT is
hereditary, as deleting vertices in a graph will cause the
number of embeddings of SAWs with lengths in £ to
weakly monotonically decrease.

Putting everything together, and recalling that a
witness for an instance of LPCP (G, L,{?) is a mini-
mum set of vertices in a simple undirected graph G
whose deletion yields a graph G’ satisfying the property
Sy < Q, we have that LPCP (G, L,Q) is N P-hard
and APX-hard V§2 > 0 and for all finite £ C N>o. O
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4 Approximation algorithms for LPCP

Theorem 3 Letting G is a simple undirected graph
with vertex set Vg, edge set Eg, and treewidth
tr(G), letting Gy = [ (tr(G)) - O(|Va| + |Ec|) for
some computable function f, and letting Yini be
an initial system configuration entropy, we have that
LPCP(G,L,Q) admits an O ((uw - [Val*  In(|Va]))
time (ln (e(ym“) — e”))—approzimation algorithm.

Proof. Interpreting SAWs in G with lengths drawn
from the set £ as a universe of elements, and treat-
ing each vertex in Vg as the set of SAWs it is cov-
ered by, observe that we can correspondingly interpret
LPCP (G, L,Q) as a partial set cover problem wherein
the objective is to cover at least ~ (eYinit) — %) such
elements (i.e., SAW embeddings) with the minimum
possible number of sets (i.e., vertices). Accordingly, we
immediately have a (ln (e(yi"“) — eQ))—approximation
algorithm as a consequence of the harmonic approxi-
mation guarantee for the greedy algorithm for partial
set cover [15] (see also Slavik [25] for a detailed perfor-
mance analysis of the greedy algorithm for the original
set cover problem).

In the current context, we can observe that: (obs.
1) there will be an O (|V|?) overhead for the subrou-
tines of the greedy algorithm, where for at most |Vg|
iterations, we scan at most |Vg| vertices to find the
ones whose deletion will maximize coverage of the el-
ements corresponding to SAW embeddings in G; (obs.
2) the selected vertex for each iteration will necessarily
be a vertex v; € Vg having the largest SAW central-
ity, Csaw (G, L,v;) (as defined in the introduction of
the current work); and (obs. 3) that there will be at
most O (|Vg|!) SAWSs of all possible lengths in G, im-
plying that there will be at most the same number of
elements to cover in the partial set covering formulation
of LPCP (G, L,Q) = we will need to read at most
the first O (|Vg| - In (|Vg])) bits of each vertex SAW cen-
trality Csaw (G, £, v;) to determine the largest values.
Letting ¥ be the cost of computing the SAW centrality
for a vertex v; € Vg, (obs. 1) through (obs. 3) imply
that the aforementioned approximation algorithm will
have a time complexity of O (® - |[Vg[* - In (|Va])).

We can now observe the following lemma concerning
the treewidth fixed-parameter tractability of computing
Csaw (G, L, v;):

Lemma 4 For a simple undirected graph G with ver-
tex set Vi and edge set Egq, the problem of determin-
ing the SAW centrality values for a vertex v; € Vg,
Csaw (G, L,v;), is treewidth FPT, and can be calcu-
lated in Gy = O(|Vg|+ |Eg|) time if G has bounded
treewidth.

Proof. It suffices to show there exists a linear time
treewidth FPT algorithm for counting the number of

SAWs between an arbitrary pair of vertices vs and vy in
a graph. Observe that we can simply run this procedure
for an instance of a graph with or without a specified
vertex to determine Csaw (G, L, v;).

We proceed by appealing to an extension of Cour-
celle’s well-known algorithmic metatheorem [6, 7, 8, 9]
to counting and optimization problems [1, 10]. In
particular, we appeal to “Theorem 32” of Courcelle,
Makowsky, & Rotics [9], which states in part that if
we can express the existence of a graph property ¢ in
the fragment of second order logic denoted “extended”
Monodic Second Order (M Ss) (see, e.g., Downey & Fel-
lows [13] for an elaboration), then we are guaranteed
an algorithm for this problem having time complexity
c¢-O (V| + |E|), where ¢ is a constant that depends only
on ¢ and the graph treewidth tw(G). Here, this time
complexity is a consequence of the proof being based on
the bottom-up traversal of a tree decomposition for a
finite simple undirected graph G, which has time com-
plexity linear in the size of the tree, and the existence
of an O (|V| + | E|) algorithm due to Bodlaender [3] for
computing a tree decomposition of G having width at
most tw(G).

To establish the lemma at hand, it now suffices to note
that the existence of a path between an arbitrary pair
of vertices vy and v; in a graph is expressible in first-
order (F'O1) logic. In particular, we refer the reader to
“pg. 47 of [7], where Courcelle discusses the use of an
FO; auxiliary predicate “ QuasiPath’ ” for expressing
reachability between a pair of vertices in an undirected

graph. O
Putting everything together, we can set ® =
Ctw in the earlier asymptotic time analysis of

the (ln (e(yi"““) — eQ))—approximation algorithm for
LPCP (G, L,Q) to yield the time complexity in the
statement of the current theorem. O

Theorem 5 Letting G be a simple undirected graph
with verter set Vo and letting Vinit be an initial sys-
tem configuration entropy, if an O (¥) deterministic
algorithm ezists for computing the SAW centrality of
a vertex v; € Vg, Csaw (G, L,v;) with multiplica-
tive error 1 + €, then we correspondingly have that
LPCP (G, L,9Q) admits an O (¥ - [Ve|* - In(|Vg)) time

< In (e(yinit) _eﬂ)

T3¢ )—approm'mation algorithm.

Proof. Recalling our earlier reformation of
LPCP(G,L,Q) as a partial set cover problem in
the proof argument for Theorem 3, we begin by
observing the following lemma:

Lemma 6 Leiting P be an instance of the partial set

cover problem, where U is the universe of elements, X
is a collection of sets of elements fromU, and 0 < p <1
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s the fraction of elements that must be covered, and
letting fe—greeay be an instance of the greedy algorithm,
which in each iteration selects a set uniformly at random
from all sets in X covering a fraction (1 —2¢) of the
mazimum possible number of elements that can covered

in the iteration, we have that fe_greedy will be a (122(_1? ) -

approximation algorithm for P.

Proof. Letting « be the size of the minimum partial set
cover for P, observe that the kth iteration of fc_greedy
will, in the worst case, reduce the number of uncovered
elements in U by a fraction (1 — ﬁ) Accordingly,
we can express the number of uncovered elements in
U after r iterations of fe_greeay as [U] - (1 —1=26)", or
equivalently, as [U] - ((1 — 1=2¢)%)=.

We next establish that (1 — ﬂ)a will weakly mono-

tonically increase with « for 0 < e <1 and o > 1. To
begin, we can note that:

0 1—2¢\¢
- — >
w (-) =0
(1) (a+26_1><“—1>
“— — . PR .
[0 a

((1—26)+(a+26—1)-1n<a+26_1)> >0

(07

— <(1—26)+(a+26—1).1n<‘”26_1)> >0

Now let w = ((1 —2€) + (a + 2¢ — 1) - In (2£2=1)),
Here, we can observe that % (w) = 2In (2E2=1) and
accordingly, that for fixed o > 1, the expression w will
be minimized for € = % As e = % — w =0, we
therefore have that w is non-negative whenever @ > 1
and 0 < e < 1, and therefore that % [(1 — %)a] will
be non-negative Voo > 1. It now suffices to note that
a=land0<e<1 = (1-122)">0.

Putting everything together, we can use the ap-
proximation limg_ s (1 - %)a = e {0 express

the fraction of covered elelmentS after r iterationls of
fe—greedy as ‘u| : (6(2671))a . Thus, ‘u| : (6(2671))(){ =

p- U = r= (%ﬁ@), yielding the lemma.

O

To establish the theorem at hand, following the proof
argument for Theorem 3, it now suffices to observe that
p - |U| from Lemma 6 can be understood to correspond
to (e(yi"“) — eQ), and that fc_greedy from Lemma 6 can
be understood to correspond to the O (¥) determinis-
tic algorithm for computing Csaw (G, £, v;) with mul-
tiplicative error 1 + €. O

Corollary 7 There exists an instance of the

n(eVinit) _e2
O(¥-|Vg* In([Vgl))  time (1(126>>
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approzimation algorithm for LPCP(G,L,Q) from
Theorem 5, where letting G be a simple undirected graph
with vertex set Vg and edge set Eq, we have that ¥ €

O (Ll (41O ())) - Bg| - n (Val) ).

Proof. This result follows directly from a re-
cent result of Bjorklund et. al. [2] that an

o ((4k+o(\/E.(1n2(k)+1n2(%)))) - |Eg| 'ln(IVG\))
and polynomial-space deterministic PTAS exists for
counting the number of length & SAWs in a simple

undirected graph G with vertex set Vi and edge set
E¢. O

time

Corollary 8 For a wvariant of LPCP (G, L,Q) where
we delete edges in lieu of vertices, the time complex-
ities of the Theorem 8 and Theorem 5 approximation
algorithms become O (G - |Ecl| - [Val? - In(|Vg])) and
O (V- |Eg|-|Va|* - In(|Vgl)), respectively.

Proof. Observe that we can measure the SAW cen-
trality of edges in a lattice or graph G in exactly the
same manner (and with the same time complexity) as
we computed the SAW centrality of vertices — e.g., by
simply computing the change in the number of relevant
SAW embeddings with and without a given edge being
present. Therefore, the only change in the time com-
plexity for the Theorem 3 and Theorem 5 approxima-
tion algorithms comes from having to compute the SAW
centralities of |Eg| edges instead of |Vg| vertices. O

Remark 1 For a variant of LPCP (G, L,Q)) where we
consider the configuration entropies of “rigid” lattice
polymers (e.g., lattice proteins) where every embed-
ding must satisfy a set of consecutive dihedral angles
for bond edges, for an interpretation of “rigid” lattice
polymers as SAWs required to have a specific geome-
try when embedded in a lattice or graph, the time com-
plexities of the Theorem 8 and Theorem 5 approxima-
tion algorithms becomes O (|Eq|-|Va|* - In(|Ve])) and
O (|Eg| - [Va|* - In(|Val)), respectively.

Proof. It suffices to observe that if we require SAWs
to have a specific geometry, we can trivially enumerate
the number of embeddings of such SAWs in O (|E¢|)
time, as any edge of a specific SAW will fix the remain-
ing edges. The stated changes in the time complexities
for the Theorem 3 and Theorem 5 approximation al-
gorithms then follow as a consequence of removing the
cost of computing SAW centralities. O

5 Concluding Remarks

For a universe of elements U, the general set cover prob-
lem is known not to be approximable within a factor of
(1 -0(1))-In(|H|) unless P = NP [12]. Accordingly, as
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we establish the Theorem 3 and Theorem 5 approxima-
tion algorithms via reduction to equivalent partial set
cover problems, it is unlikely that we can significantly
improve the current approximation guarantees in either
case. However, concerning a future research direction,
we remark that much better performance guarantees
can be achieved for the geometric set cover problem (see,
e.g., Bronnimann & Goodrich [4]). Here, it should be
possible to take advantage of a particular embedding
of a lattice or graph to treat sets of vertices or SAWs
(e.g., in a geometric hitting set formulation) as poly-
gons or other shapes, and in some cases achieve better
approximation guarantees or time complexities.
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Efficiently Enumerating Scaled Copies of Point Set Patterns

Aya Bernstine* and Yehonatan Mizrahif

Abstract

Problems on repeated geometric patterns in finite point
sets in Euclidean space are extensively studied in the lit-
erature of combinatorial and computational geometry.
Such problems trace their inspiration back to Erdos’
original work on this topic. In this paper, we investi-
gate the problem of finding scaled copies of any pattern
within a set of n points, that is, the algorithmic task of
efficiently enumerating all such copies. We initially fo-
cus on one particularly simple pattern of axis-parallel
squares, and present an algorithm with an O(n./n)
running time and O(n) space for this task, involving
various bucket-based and sweep-line techniques. Our
algorithm’s running time is worst-case optimal, as it
matches the known lower bound of Q(ny/n) on the max-
imum number of axis-parallel squares determined by n
points in the plane, thereby solving an open question for
more than three decades of realizing that bound for this
pattern. We extend our result to an algorithm that enu-
merates all copies, up to scaling, of any full-dimensional
fixed set of points in d-dimensional Euclidean space,
that runs in time O(n'*'/9) and space O(n), match-
ing the more general lower bound due to Elekes and
Erdés.

1 Introduction

The problems of geometric point pattern matching and
the identification of repeated geometric patterns are
fundamental computational problems with a myriad of
applications, ranging from computer vision [12, 10],
image and video compression [1], model-based object
recognition [15], structural biology [11] and even com-
putational chemistry [9]. Such problems were motivated
in part by questions regarding the maximal number of
occurrences of a given pattern determined by a set of
points, a field historically inspired by Erdés’ well-known
Unit Distance Problem (1946) regarding the maximal
number of unit distance pairs induced by such sets [8].
Our paper approaches the computational problems of
identifying patterns using tools and techniques encoun-
tered in the framework of computational geometry, en-
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suring exact, provably correct and efficient solutions.

In this paper, we analyze the problem of identify-
ing and listing all translated and scaled copies of any
point set pattern in Euclidean space, termed homothetic
copies of this set, where the scaling is applied identically
in all axes. We begin with focusing on the problem of
repeated patterns of squares having axis-parallel edges
in the plane, where a square is defined by a subset of
four points that constitute its vertices. As articulated
in 1990 by van Kreveld and de Berg [13], the maximum
possible number of axis-parallel squares determined by
n points in the plane is ©(n4/n) (attained, for example,
in a regular \/nx+/n grid), and those can be enumerated
in time O(ny/nlogn)! and space O(n) by an algorithm
whose extension also treats the enumeration of all full-
dimensional axis-parallel d-dimensional hypercubes in
d-dimensional Euclidean space in time O(n'*/41logn).
This exhibits a logarithmic-factor gap separating this
computational result from the lower bound of a max-
imum of ©(n't1/4) possible hypercubes, raising the
challenge of overcoming this gap as an open question.
We remark that in [14], a later journal version of [13],
an algorithm for the planar case that works in time
O(ny/nlogn) is presented. However, as the authors
point out, its approach does not generalize to higher
dimensions.

The combinatorial result from [13] was further ex-
tended by Elekes and Erdés [7], establishing a bound
of ©(n'*/?) on the maximum number of copies of any
full-dimensional pattern (i.e., a set of points that gener-
ates the vector space) in Q¢. The computational aspect
of it occurs in [4], providing an algorithm that works in
time O(n'*'/4logn), assuming that the pattern and d
are constant, for the task of enumerating all such copies,
exhibiting the same logarithmic-factor gap between the
two results.

1.1 Our Results

Our main result of this paper is an efficient determin-
istic algorithm that enumerates all scaled copies of any
fixed d-dimensional pattern, for any constant d. The
treatment of general patterns appeared, e.g., in [4], but
[13] were the first to raise the question of whether it
is computationally feasible to realize the combinatorial

IThe analysis given throughout this paper of time and space
complexities is based on the relatively non-restrictive Pointer Ma-
chine model of computation [3], as mentioned later in this paper.
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bound of ©(n+/n) possible axis-parallel squares, thereby
improving their algorithmic result. Our algorithm fully
answers this question which was open for more than
three decades. To this end, we use in our algorithm a
reduction from arbitrary input points to points having
“compressed” coordinates, that is, we relabel the coor-
dinates, allowing the use of linear-time sorting methods.
Second, we deploy a sweep-line scanning sub-procedure
that marks points forming a square, instead of searching
those in a set, avoiding the logarithmic cost of search-
ing a point in a set. Third, we relabel the sum and the
difference of the input coordinates, in addition to the
relabeling of the coordinates themselves. We show why
the last step is crucial for the algorithm to succeed in
Section 2.

Theorem: Given a planar set P of points of size n,
all axis-parallel squares defined by points from P can be
enumerated in time O(ny/n) and O(n) space.

Our main result for general patterns relies on the
ideas from the previous theorem. Specifically, we relabel
some affine transformations of the input coordinates, a
relabeling that creates a representation of the points for
the purpose of sweep-line scanning them.

Theorem: Given a fized set Q of points of full dimen-
sion in the d-dimensional Euclidean space, and a set P
of points of size n, all scaled copies of Q determined by
subsets of P can be enumerated in time O(n'*/?) and
O(n) space.

The running time in this theorem matches the corre-
sponding lower bound of the same magnitude, and im-
proves the best known running time of O(n'*/4logn)
for the specific case of d-dimensional hypercubes [13],
extended later for general arbitrary patterns [4]. Note
that although the improvement suggested is by a log-
arithmic factor, the upshot is an asymptotically worst-
case optimal algorithm? in terms of running time analy-
sis, even for the most general case of arbitrary patterns.
This can be compared with [6], where the authors stud-
ied the problem of enumerating all rotated copies of a
given pattern, improving the running time of the trivial
algorithm for this companion task by a logarithmic fac-
tor as well. An excellent survey that covers this variant
of our problem can be found in [2].

Aside from the worst-case optimality of our results,
the techniques deployed form a rather general scheme,
and may therefore be potentially useful to treat other
variants of the problem studied.

2For the task of outputting an explicit representation of all
copies of the pattern, rather than some other representation of
this set of copies, that later needs to be further parsed.

2 Axis-Parallel Squares

In this section, we present an efficient algorithm that
reports all axis-parallel squares defined by a planar set
of n points. A relatively efficient algorithm, devised by
van Kreveld and de Berg [13], works as follows (Note
that we refer, for any g, to the set of all points whose
x coordinate is xg, as the “column” corresponding to x.
Moreover, we refer to columns with at most /n points
as “short columns”).

Squares-Listing(p1, ..., pn):

1. Build a balanced search tree T and an array A on
the input, sorted by the x coordinate.

2. For every pair of points p and ¢ in A residing in
a short column, search in T" whether they can be
complemented to a square from the right or from
the left. Report each square found unless the other
two vertices defining it are on a short column to
the left of p and ¢.

3. Delete all short columns from T and A, and convert
each remaining point (x,y) to (y,x).

4. Apply step 2 on the remaining converted points.

It operates correctly with a running time of
O(n+/nlogn) and O(n) space, in essence, since the to-
tal number of searched points defined in each of the two
iterations of step 2 is

0 (Zs2> <0 (st/ﬁ> =
e (ﬁZs) < O (ny/n)

where s; denotes the length of the 7’th column scanned.
Every pair is scanned during its course, since there are
at most % original long columns (otherwise there are
more than n points), so the length of each column in
step 4 is at most 7= = /n. We strive for an algorithm
with a running time of O(ny/n) and space O(n). As
shown in [13]:

Theorem 1 (van Kreveld, de Berg) For a set P of n
points in d-dimensional space, the mazimal number of
24 points that are subsets of P and that form the vertices
of an azis-parallel hypercube is ©(n'T1/d).

This theorem induces a lower bound on the running
time of the optimal relevant algorithm. Our result
bridges the gap between this bound, and the previously
best known upper bound.
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2.1 Main ldeas Towards an Improvement

Assume that all input points have coordinates in
{1,...,n}. Instead of searching in a set for the query
points that complement the pair (z,y), (z,y + J) to a
square, i.e., the points in the pair (z+9,y), (z+7J,y+0)
and those in the pair (z — 6,y), (x — d,y + §), we apply
the following procedure: We put all query points along
with the original points in an array, apply radix sort on
it, treating each point as a two-digit number in base n
corresponding to its two coordinates, and then scan and
mark all positive query points. That is, we mark each
query point adjacent to an existing input point sharing
the same coordinates, or to an already marked identical
query point. The resulting marked query points define
the existing squares.

However, we cannot generally assume that all coordi-
nates are taken from {1,...,n}. We address this issue
by “shrinking” the coordinates of all input points by re-
labeling their coordinates to values in {1,...,n}. The
main caveat, though, is that arithmetical considerations
regarding these labels are invalid, as the proportions are
not necessarily preserved after relabeling.

So, we avoid using arithmetic considerations when
defining the query points q1, g2 that complement the
pair p1 = (z,y),p2 = (x,y + 0) to a square (from the
right, assuming ¢ > 0). Instead of using the invalid la-
bel x + § as a coordinate, we make use of the diagonals
by replacing each point (z,y) with (z,y,2 + y,z — y)
and relabel each of those four coordinates for all points
to values in {1,...,n}. We call the points after this
relabeling the post-labeled points. Then, the pair q1, g2
(with g2 above ¢p) is defined using identical labels as
those of p1,p2. The query point ¢; is defined having
the same horizontal y label as p; and the same diagonal
x4y label as pa. The point g5 is treated similarly, only
with the second diagonal. Searching in this manner, we
can use two out of the four coordinates for each point
we search, leaving the other two as wildcards.

Another related observation is that the linear trans-
formation that rotates a vector (x, y) in the plane by 45°
and stretches it by /2 yields the vector (z + y,y — z),
as illustrated in Figure 1. So, this process is in fact a
labeling of the post-rotated points.

2.2 The Efficient Solution

The ideas from the previous subsection lead to our main
theorem of this section. We will first describe our algo-
rithm in full detail, and then analyze its correctness and
its complexity.

Theorem 2 Given a planar set P of points of size n,
all axis-parallel squares defined by points from P can be
enumerated in time O(ny/n) and O(n) space.

Proof. The following algorithm is considered:
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Amplified-Squares-Listing(p1, ..., pn):

1. Change the representation of each point p = (z,y)
to the representation (z,y,z + y,y — x). Map each
x coordinate in the input to a value in {1,...,n}
according to its ranking, using a sorting algorithm.
Perform a similar procedure for the y coordinates,
the x + y coordinates and the y — x coordinates.
Apply this mapping on the input, to obtain the
post-labeled points.

2. Build an array A on the input points, sorted by the
x coordinate.

3. For each pair of post-labeled points p; =
(z,y1, w1, 21) and pz = (¥, yo2, w2, 22) With y2 > y1,
out of the first n pairs of points in A that reside
in a short column — construct the query points
q1 = (%Y1, w2,%),q2 = (*,y2,%,21) that comple-
ment p1, p2 to a square from the right, both pointed
by the same pointer R, and the query points ¢ =
(*,91, %, 22), g5 = (*,y2,wy, *) that complement to
a square from the left, both pointed by the same
pointer L. The wildcards replace the unknown co-
ordinates.

4. Place each query point defined by its y and w coor-
dinates in an array B along with all input points,
and apply radix sort on B; based on those two co-
ordinates. Perform a similar procedure for points
of the form of ¢s and ¢} from step 3 in another array
Bs.

5. Scan B; and mark each query point adjacent to an
input point sharing the same coordinates, or to an
already marked identical query point. Act similarly
on Bs. Scan the list of pointers defined in step
3, and report each square found (a pointer with
both points marked), unless the other two vertices
defining it are on a short column and complement
to a square from the left, to avoid reporting the
same square more than once.

6. Perform steps 3-5 iteratively on each subsequent n
pairs of points in A in a short column.

7. Delete all points that are on short columns from
A. Convert each remaining point (z,y) to (y,z).
Apply steps 1-6 on the remaining converted points.

Algorithm’s Correctness: Most of the main ideas
behind the algorithm’s correctness were described in
Subsection 2.1. Some other details: All squares hav-
ing at least one edge on a short column are reported
in step 5 of the algorithm, before applying step 7. The
rest have both edges on long columns, and so they are
reported in step 7.

Given a pair p; = (21,y1) and ps = (x1,y2) with
Y2 > y1, the pair ¢; = (x2,y1) and g2 = (22,y2) that
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Figure 1: Illustrating the rotation by 45° and the stretch by a factor of v/2 applied on four points in the plane. Each
point (z,y) was converted to the point (x + y,y — x) as a result.

complements to a square from the right (i.e., zo > 1)
maintains that xs + y1 = 1 + yo since

xo = z1+|y2—y1| = Toty1 = x1+(Y2—v1)+y1 = z1+y2

As for g9, the latter equality also shows that zo — yo =
x1 — y1 by subtracting y; + yo from both sides. These
are exactly the query points defined by the algorithm,
up to the labeling that maintains those properties. The
analysis for the pair that complements to a square from
the left is symmetric.

Algorithm’s Complexity: As for the running time,
the first two steps of the algorithm cost O(nlogn) us-
ing some standard sorting algorithm, e.g., merging sort.
Each time step 3 is performed, at most 2n query points
are constructed in O(n) time. Each time steps 4-5 are
performed, two arrays, each of size at most n, are sorted
and then scanned in a linear time. Marking the obtained
squares in step 5, based on the marked queries, is also
carried out in O(n) time by scanning the constructed
pointers from step 3. The total number of query points
constructed after finishing step 6 is

(o)l
0(%«;&-) <O (nv/n)

where s; denotes the length of the i’th short column, i.e.,
the number of points in it. As mentioned, each batch
of O(n) queries is handled in O(n) time, so the total
running time analysis for steps 1-6 of this algorithm is
O(n+/n). The analysis for the converted points in step 7
is symmetric. It only remains to notice that the number

of pairs, this time, is
o) (Zd$> <0 <Zdi\/ﬁ> =
=0 <¢ﬁ- Z@) < O (nv/n)

where d; denotes the length of the i'th row out of the
remaining rows, after deleting the short columns. We
used the fact that there are at most % long columns,
as otherwise there are more than n input points. There-
fore, the length of each remaining row, after deletion, is
at most % = /n, and all points are treated.

As for the space complexity, note that each of the
data structures defined in the above algorithm is of size
O(n), and that each step involving those structures does
not cost more than O(n) space. t

Note that both of these algorithms need not rely on
any random-access operation, as no pointer arithmetic
or tests on pointers other than equality tests need to be
performed. Dereferencing of pointers, along with arith-
metic operations on data and comparisons on data are
performed, but those are allowed in the Pointer Machine
model [3]. The only step which classically involves ran-
dom access to array cells is the one in which radix sort
is used, but even this can be be adjusted to work in the
mentioned model ([5]). This statement is true also for
the algorithms given in the following sections.

3 Axis-Parallel Hypercubes

This subsection discusses the particular case of axis-
parallel hypercubes in d-dimensional Euclidean space.
Although following immediately from Theorem 3 given
in the following section, it presents some of the ideas
behind it in a clearer manner, and can serve as a warm-
up for that theorem. We provide an algorithm with a
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running time complexity of O(n'*'/?) and with a lin-
ear space complexity, addressing the open question of
matching the lower bound from Theorem 1. Our al-
gorithm builds on the techniques and the observations
from Section 2, with some additions and adjustments
so it complies with the properties of the d-dimensional
space.

One observation that is true for the d-dimensional
case, is that any two points with all but one equal co-
ordinate, determine 2?~! full-dimensional possible hy-
percubes. Denote such a pair of points by ¢ and 7.
Each of these hypercubes is uniquely associated with
a vector e € {—1,1}471, in which the j'th coordinate
determines the direction of progress from ¢ and r along
the j’th axis, where j is any coordinate except the one
in which they differ. In a similar fashion to the pla-
nar case, we would like to relabel the input coordinates,
their sums and their differences, place them in an array,
radix sort it and mark the correct vertices that com-
plement to a hypercube in an efficient manner, while
scanning this array. Moreover, we scan only pairs of
points lying on short axis-parallel lines, similarly to the
planar case, only that this time, by “short” we mean
having not more than n'/¢ point on it.

Proposition: Given a set P of points of size n in
d-dimensional Euclidean space, all axis-parallel full-
dimensional hypercubes defined by points from P can
be enumerated in time O(n'*'/?) and O(n) space.

Proof. The following algorithm establishes the propo-
sition’s statement:

Amplified-Hypercubes-Listing(pi, ..., pn):

1. For each input point p = (z1,22,...,24), add the
following additional list of coordinates:

(wi — ), (s +x5) | VI<i<j<d)

Map each of those augmented coordinates, includ-
ing the original ones, to a label in {1,...,n}.

2. Build an array A on the input points, sorted by
each of their coordinates based on the coordinates’
order, except for the last original coordinate (i.e.,

{Ed).

3. For each pair of points ¢, r that lie in the same short
axis-parallel line, having the same coordinates ex-
cept for the last, out of the first n pairs with this
property, add 2% — 2 query points which define to-
gether a hypercube. Do this for all 2¢~! possible
hypercubes in the following manner. First, any
axis-parallel hypercube having ¢ and r as its ver-
tices, is defined using one additional vertex

r = (ri+ei-0,...,rq—1 +eq—1-0,tq)
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where r; is the #’th coordinate in r (and similarly
for t), § =74 —tq and e € {—1,1}4"1. The rest of
the vertices in each such hypercube are defined sim-
ilarly, except for replacing all subsets of the coordi-
nates in the vector e by zeros, and using t instead
of r.

Now, define the coordinates that are to be searched
— not in the aforementioned arithmetic manner, but
using the labels from step 1 instead. That is, trans-
late 7; + e; - § to the label of r; + 74 if e; = 1, and
to that of r; — r4 otherwise. Fill in the unknown
coordinates using wildcards, as those are uniquely
defined anyway, given the others.

4. Place all query points defined by the same coordi-
nates in an array along with all input points. Apply
radix sort on each of those arrays, according to the
known coordinates in it.

5. Scan each array from step 4, and mark each query
point adjacent to an input point sharing the same
coordinates, or to an already marked identical
query point. Report all hypercubes that were found
(by checking that all vertices are present for each
hypercube), except for hypercubes that have two
vertices on a short axis-parallel line of the same
type, only with a smaller index.

6. Perform steps 3-5 on each subsequent n pairs of
points in A on a short axis-parallel line of that type.

7. Delete all points that are on a short axis-parallel
line of a currently analyzed type from A, and
convert each remaining point (z1,za,...,24) to
(g, 2z1,...,24-1). Apply steps 1-6 on the remain-
ing converted points. This step is carried out d — 1
times.

Algorithm’s Correctness: Almost all details re-
garding the analysis of the correctness of this algo-
rithm already appeared in that of Amplified-Squares-
Listing(p1,...,pn). As for the phase of searching by
labels, note that if r} is some unknown coordinate, for
which we only have an undesired arithmetic definition
based on the coordinate 7; and on 4§, then it holds that

ri=1rj+0=rj+ (rqa —ta) =1 +ta =17 + 74
which exactly corresponds to the labels that the algo-
rithm searches (the treatment of positive or negative
values of J is symmetric), and similarly for subtraction.

Algorithm’s Complexity: The running time anal-
ysis is similar to the running time analysis of Amplified-
Squares-Listing(p1, ..., pn) with the following differ-
ences. The relabeling in step 1 and the sorting of A
in step 2; the definitions of 24~1 hypercubes, each con-
sisting of additional 2¢ — 2 points in step 3; applying
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radix sort on 294 arrays in step 4; the linear scanning
of those arrays in step 5 and applying step 7 for d — 1
times — all of those involve multiplying the complexity
of the planar case by at most a constant factor of 20(4).
The only major difference concerns the total number of
query points defined each time step 7 in the algorithm is
invoked. In the treatment of the first d — 1 axis-parallel
lines, only short lines are considered, so the cost for each
line is

0 (Z 8?) <0 (Zs : nl/d> _
_o (nw | ZS) < 0 (w10d)

where s; denotes the length of the i’th short axis-parallel
line of that form. Regarding the treatment of the last
axis-parallel line, we note that all remaining such lines
are short. Assume that there exists a long remaining
line. Then all points on it are on long axis-parallel lines,
with respect to some axis, which induces more points
that are on long lines with respect to another axis, yield-

ing that there are more than (nl/ d)d input points in
total, which is obviously a contradiction. Thus, all in-
put points are treated with the mentioned running time,
so the total running time analysis is indeed O(n!*+1/%),
The analysis of the space complexity is similar, with a
constant multiplicative factor of 2949 compared to the
analysis of the planar case. Note that although being
exponential in d, as also occurs in the solution from [13],
the running time can be regarded as polynomial in d and
the size of the pattern, as presented in Section 4. O

4 The General Case

In this section, we describe an algorithm that enu-
merates all scaled copies of any fixed arbitrary full-
dimensional pattern in d-dimensions. For general fixed
patterns, where d is fixed, our algorithm works in time
O(n'*'/?) and O(n) space. This answers the open ques-
tion of realizing the lower bound of [7].

Theorem 3 Given a fized set Q of points of full dimen-
sion in the d-dimensional Euclidean space, and a set P
of points of size n, all scaled copies of Q determined by
subsets of P can be enumerated in time O(n't/?) and
O(n) space.

Proof. We first assume that no three points in ) are
on the same line, and present an appropriate algorithm
for this case. Then we describe how this algorithm can
be adjusted to handle the more general case.

Amplified-Patterns-Listing(p1, ..., pn):

1. Rotate the pattern points such that two of them, p
and ¢, share afterwards all coordinates except the
last one. Apply this rotation on the input points.

2. For each point r # p,q in @, compute d — 1 hy-
perplanes of dimension d — 1 that include p and
r, and an additional hyperplane including ¢ and r,
altogether defining r uniquely. Apply each of the
d - |Q| transformations corresponding to those hy-
perplanes on each input point, attach those values
to the original points’ list of coordinates, and label
the resulting values — the augmented coordinates
(original coordinates along with those correspond-
ing to the transformations) using {1,...,n}.

3. Build an array A on the input points, sorted by all
original coordinates by their order.

4. Scan A. For each pair r and ¢ on an axis-parallel
line that corresponds to step 1 that also has at most
n1/¢ points (“short” line), construct the rest of the
|Q| — 2 points that complement to a pattern using
the labels obtained from step 2, until constructing
n such sets of queries. Point each such set that
corresponds to a single copy by the same pointer.

5. Place all query points that are defined by the same
augmented coordinates in an array with all input
points, forming several such arrays. Apply radix
sort on each such array.

6. Scan each array from step 5, and mark each query
point adjacent to an identical input point or an
already marked query point. Scan the list of point-
ers defined in step 4, and report each copy found (a
pointer with all points marked), only after applying
on it the rotation which is inverse to that of step 1.

7. Perform steps 4-6 on each subsequent n pairs of
points in A of the form of step 4.

8. Apply steps 2-7 for each pair among the pat-
tern points that determines a line parallel to that
through p and ¢, excluding enumeration of dupli-
cate copies (similarly to the identification of dupli-
cate squares, i.e., using an appropriate ordering).
Delete all points on those “short” lines from step
4. Apply steps 1-7 on the remainder, for a different
pair of points from the pattern, and perform this
d — 1 times.

As for the case where at least three points from @
are collinear: If d > 2, then in step 2 of the above algo-
rithm, if the point 7 lies on the line that goes through p
and ¢, it is not uniquely defined as the intersection of a
line that goes through p and a hyperplane of dimension
d — 1 that goes through ¢q. However, since @ is full-
dimensional, there is another point r’ which is not on
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that line. So, instead, define r as the intersection of a
line that goes through p and a hyperplane of dimension
d — 1 that goes through 7/, and label the additional ex-
tra coordinate that corresponds to 7’ in the augmented
form. However, note that in step 4 of the above algo-
rithm we scan input points that correspond to p and g,
and not to 7, yet for each such a pair (that corresponds
to p and ¢) we still need to know the value of the corre-
sponding extra coordinate of v which is associated with
them, and is unknown at that moment. This is bypassed
by first defining the query points that corresponds to r’
for each such a pair, then marking all of the positive r’
query points that also exist in the input, and only then
defining the query points that corresponds to r based on
the 7’ coordinate fetched during the scanning process.

If d = 1, one can use a completely different approach
than that described earlier. We sort the input points on
the line, and then place |@Q| pointers on the |Q] leftmost
input points. If the point which is pointed by the third
pointer is too close to the second one in terms of the
proportions from @, increment the third pointer. If it
is too far, increment to second pointer. If they align
correctly, increment the rest of the pointers until either a
copy of the pattern is found, or until one of the pointers
is too distant. Then continue and advance the second
pointer, and proceed similarly. In this manner, for each
leftmost point, the rest of the pointers only advance
forward with a cost of O ((|Q| —1)-n). Since this is
performed n times, the desired running time of O(n?)
is obtained.

Analysis: The main ideas behind the correctness
of Amplified-Patterns-Listing(p1, ...,p,) already ap-
peared in Section 2. Aside from those ideas, note that
step 2, in fact, defines each point as the intersection of
a line and a (d — 1)-dimensional hyperplane, and under
the assumption that no three points are on the same
line, the points are uniquely defined in that manner.

As for the running time, note that there is no remain-
ing long line analyzed at the ultimate iteration. Other-
wise, all points on it are on another long line defined by
a linearly independent vector. This induces more points
on a different long line, and so forth, yielding that there
are more than (nl/ d)d = n input points, a contradic-
tion. Other than that, we did not need the lines to be
axis-parallel, but rather merely that the corresponding
vectors form an independent set.

Compared to the squares or the hypercubes case,
steps 1-3 cost O(poly(d - |Q]) - nlogn) using a sorting
algorithm; constructing O(n) sets of queries in step 4
costs O(poly(d-|Q|) -n) and constructing O(|Q)|) arrays
of size O(n) in step 5 has a similar running time; ap-
plying radix sort and then scanning and marking those
arrays also cost O(poly(d - |Q]) - n) (this is multiplied
by |Q| due to pairs among the pattern points which are
parallel). As mentioned, only short lines are scanned
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during the algorithm’s course, and since each batch of
size n costs O(poly(d-|Q])-n), then each dimension costs
O(poly(d - |Q|)) multiplied by

o) (Zsf) <O <Z$i'n1/d> =

A %

=0 (nl/d . Zsz> <0 (n1+1/d)

where s; denotes the length of the i’th short line of that
form. This is multiplied by d iterations, and results
in a running time of O(poly(d - |Q|) - n'*T1/?), which is
O(n*+1/4) under our assumptions. Space complexity is
linear due to similar arguments to those above, and to
those presented in Section 2. (]

5 Conclusion and Further Work

In this paper, we analyzed the problem of enumerating
all scaled copies of a pattern in a set of n points in time
O(n'*+1/4), answering open questions from [13] and [4]
by realizing the lower bound due to Elekes and Erdds
[7]. We relied on some existing ideas, amplified using
bucket-based methods, sweep-line scanning and more.
As far as we are aware of, the combinations of these
techniques this way was not noted in the literature so
far for similar tasks. One open question is whether these
techniques can be adjusted for different pattern match-
ing problems. Other questions include comparing the
task of finding one copy of a pattern with the task of
enumerating all copies of it ([13] show a separation be-
tween those for d-dimensional boxes), and similarly for
the task of counting the number of copies instead of out-
putting them. In addition, the existence of an output-
sensitive algorithm for our problem, and the existence
of an efficient enumeration algorithm for patterns not
of a constant size, form another two open questions for
further research.
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A Sub-quadratic Time Algorithm for the Proximity Connected k-center Problem
on Paths via Modular Arithmetic

Binay Bhattacharya*

Abstract

The k-center problem is one of the most well-known prob-
lems in combinatorial optimization which has been exten-
sively studied in the past. In this paper, we introduce a
generalized version of the k-center problem called prozim-
ity connected k-center (PCkC) problem. In this problem,
we are given a set of demand points in a metric space and
a parameter § > 0. We are going to locate k center points
such that the maximum distance of a demand point to its
nearest center is minimized and each pair of centers can
communicate with each other either directly or via other
centers assuming that each center can directly communi-
cate with any other center within the range of § of itself.
Note that when § is large enough, the problem turns to
the k-center problem and when ¢ tends to zero, the prob-
lem turns to the 1-center problem. We consider the PCkC
problem when the underlying space is a path and present a
sub-quadratic time algorithm for both the unweighted and
the weighted demand points cases.

1 Introduction

The k-center problem is one of the most important facility
location problems which has been extensively studied in
the past [4, 6, 10, 11, 16]. In this problem, we are given a set
of n demand points U = {v; ..., v,} in a metric space such
that each demand point v; € U has a non-negative weight
w;. The objective is to find a k-center (a set of k points in
the space) C such that cost(C') := max,,cy{w;d(v;,C)} is
minimized, where d(v;, C) := min.ccd(v;, ¢) (here d(v;,c)
is the distance between v; and ¢ in the space). We call
this minimum cost the optimal cost for the problem. If
we have unit weights on all demand points, the problem is
called unweighted. We say that a k-center C satisfies the
prozimity connectedness condition (PCC) with respect to
a parameter & > 0 if the d-distance graph of C'is connected
(the d-distance graph of C' is a graph with the vertex set
C such that there is an edge between ¢; an ¢y in C' if and
only if d(c1,¢2) < §). In the prozimity connected k-center
(PCkC) problem, in addition to U, we are also given a
parameter 0 > 0 and we are going to find a k-center with
the minimum cost that satisfies the PCC.

In practice, if we consider the centers as facility loca-
tions, the parameter § can represent the range for which,
each facility can directly communicate with any other fa-
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cility within the range § of itself. So, if the centers sat-
isfy the PCC, each pair of facilities can communicate with
each other directly or via other facilities. For example,
suppose that we need to locate k communication/control
equipment to observe n sensors while the equipment need
to send/receive messages between themselves (directly or
via other equipment). Also, each equipment can safely
send/receive data with any other equipment within the
range ¢ of itself. The problem of locating the equipment as
close as possible to the sensors can be modeled as PCkC
problem in the plane.

Note that if § is sufficiently large, the problem reduces
to the k-center problem which is known to be NP-hard in
both the plane and metric graphs [6, 13] (a metric graph
is a graph for which each of its edges has a length and the
lengths satisfy the triangular inequality). This implies that
the PCkC problem is also NP-hard in the plane and metric
graphs and so it is not possible to solve it efficiently. In [6],
Kariv and Hakimi showed that the k-center problem can
be solved in polynomial time when the underlying space is
a metric tree and gave an O(n?logn) time algorithm for
the problem. In 1991, Frederickson [4, 5] showed that the
unweighted k-center problem can be solved in linear time
in trees. Finally, in 2018, Wang and Zhang [16] provided an
O(nlogn) time algorithm for the k-center problem in trees.
The PCC condition first appeared in the context of wire-
less networks in 1992 [7]. Later, Huang and Tsai studied
the 2-center problem in the plane, considering the proxim-
ity condition between the centers [8, 9]. As another work,
in 2022, Bhattacharya et al. [2] presented an O(n?logn)
time algorithm to solve the proximity connected 2-center
problem in the plane improving the previous algorithm for
the problem with O(n®) time complexity [7]. Although
there are some related works in the context of theory of
wireless sensor networks [1, 14], the k-center problem has
not been studied when we have the proximity condition
between the centers. In this paper, we address this prob-
lem by providing a sub-quadratic time algorithm for the
k-center problem on paths having the PCC.

2 PCkC Problem for Unweighted Paths

Let P = (v1,...,v,) be the given unweighted path (con-
sisting of both the vertices and the edges between them)
such that the vertices lie on the z-axis from left to right
and vy lies on the origin. Without loss of generality, we
assume that n is a power of 2. Also, we use the nota-
tion v; (1 < ¢ < n) for both the vertex itself and the
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Figure 1: An example of the PCkC problem on a path with
8 vertices.

z-coordinate of the vertex. Thus, we have an order on the
vertices based on their z-coordinates. Also, if v; < vy,
we denote the interval between v; and v; on the z-axis by
[vi,v;]. In this section, we are going to find a k-center C*
for P such that C* satisfies PCC and,

cost(C*) = min{cost(C) :
C'is a k-center for P and satisfies PCC}

We call C* an optimal solution and its cost the optimal
cost. We denote the optimal cost by r* and the centers in
C* by (cf,...,c}) from left to right on the z-axis. Figure 1
shows an example of the PCkC problem on a path and its
corresponding optimal solution.

The idea of obtaining an optimal solution for the prob-
lem is first computing r* and then, using it to build an
optimal solution. In order to do that, we first design a
feasibility test for the problem which gets a value r > 0
and determines whether it is feasible (r > r*) or infeasible
(r < r*). Algorithm UPATH-FT presents such a feasibil-
ity test for the unweighted PCkC problem on a path. Note
that if » > r*, UPATH-FT(P,r) also gives us a k-center
with a cost at most r. Using the feasibility test, we can
check whether 7* = 0. In this case the trivial solution is
putting a center at each vertex. So henceforth, we assume
that »* > 0. Note that in Algorithm 1, the vertices in V are

Algorithm 1 UPATH-FT(P,r)

1: Set Counter =1 and V = (v, ..., v,).

2: Put a center at x. =r.

3: while there is an element in V do

4: Eliminate all vertices v € V with d(z.,v) <.
5: Put a center at . = min{z. + §, V[1] 4+ r}.
6: Counter = Counter + 1.

7 if Counter > k then

8: return infeasible.

9: end if

10: end while

11: return feasible.

eliminated in order and so the time complexity of UPATH-
FT would be O(n + k). It is important to mention that
we might have more than one optimal solution for a given
problem instance but, having r* (which is unique), the al-
gorithm UPATH-FT gives us a unique optimal solution. In
order to avoid confusion, henceforth we exclusively use the
notation C* for this optimal solution. We say that a vertex
v is covered by a center ¢f € C* if d(v, ¢}) = d(v,C*). Also,
d(v, cf) is called the cost that ¢ induces on v. We say that
a sequence of ¢ points (¢1,...,¢;) (the order is left to right
on the z-axis) is a t-train if V1 < ¢ <t, d(c;,ci41) = 9.

41

Proposition 1 There exists a pair of vertices (v;, v;) such
that the subset C' C C* of centers in [v;, v;] is a t-train (for
some t) and d(v;, C") = d(v;,C") = r*.

The reason of the above proposition is that if such a pair
does not exist, for any vertex v with d(v, C*) = r*, we can
move the covering center of v (and possibly other centers
to ensure the PCC) towards v to get a solution with a
cost smaller than r*, which contradicts the optimality of
r*. We call any pair (v;,v;) satisfying the condition of
Proposition 1, a determining pair for the problem.

Proposition 2 If d(vy,v,) > kd, then (v1,vy,) is a deter-
mining pair for the problem.

Proof. For any vertex v in [c}, ¢f], d(v, C*) should be at
most d/2 because of the PCC. So, if d(vy,v,) > kd, the
cost of C* should be greater than or equal to 6/2 which
means that (v1,v,) is a determining pair. O

Based on the above proposition, if d(vq,v,) > kd, we have
d(ci,c;) = (k—1)6 and d(v1,¢f) = d(c, v,). Therefore,
r* = (d(vi,vn) — k0)/2. Now, UPATH-FT(P,r*) will
give us C*. Henceforth in this section, we assume that
d(v1,v,) < kd and so 0 < r* < §/2 (because of the PCC).
In order to find r*, we build a set of candidate values C
and iteratively use the feasibility test to discard its values
until 7* becomes clear. Consider a pair of vertices (v;, v;)
and a t-train T such that d(v;,v;) > (¢t —1)5. We say that
T is fitted in [v;,v;] if d(v;, T) = d(v;,T). Note that if T' is
fitted in [v;,v;], the induced cost of T on v; and v; would
be (d(v;,v;) — (t —1)d)/2 and is denoted by IC;(v;,v;). If
d(vi,v;) < (t — 1), we say that (v;,v;) does not accept
a t-train. Note that any pair of vertices accepts 1-train
which is indeed the mid-point of the connecting segment
of v; and v;. Based on Proposition 1, the set of candidate
values C can be considered as follows:

C = {IC:(v;,v;) : (vi,v;) accepts a t-train}
Because each pair of vertices can generate up to O(k)
candidate values, the size of C would be O(n?k). A naive
algorithm to find r* is computing the entire C, then sort
it and perform binary search using the feasibility test
to find r*. It is easy to see that the time complexity
of this approach is O(n%klog(n + k)). In the rest, we
show that how we can reduce this bound and get a
sub-quadratic algorithm but before, it is useful to discuss
about the geometric interpretation of the candidate values.

Geometric View: Let L; and R; be two half-lines
from v; with angles w/4 and 37/4 with the positive direc-
tion of the z-axis respectively. Note that the y-coordinate
of the intersection of a vertical line at point x with L; U R;
is the cost that a center at x will induce on wv; (this is
because we assumed that the vertices are unweighted).
Based on this observation, for a pair (v;,v;), IC1(vi,v;)
is the y-coordinate of the intersection point of R; and L;.
Furthermore, if (v;,v;) accepts a t-train, IC;(v;, v;) would
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Figure 2: The geometric view of the candidate values gen-
erates by (v;,v;,) and the effective candidate value gener-
ated by (vi,vj,).

be the y-coordinate of the horizontal segment with length
(t — 1)0 with sides on R; and L; (see Figure 2). Based
on this geometric view, the following observation can be
concluded:

Observation 1 If (v;,v;) accepts a t-train (t > 1) then
ICt(Ui,vj) = Ithl(’Ui,’Uj) - 5/2

Consider a pair (v;,v;) and the non-zero candidate value
ICy (vi,vj) such that either ¥’ = k or (v;,v;) does not ac-
cept a (K’ + 1)-train (equivalently, k’-train is the longest
train that can be fitted in (v;,v;)). According to Observa-
tion 1, ICy (v;,v;) is the only candidate value that (v;,v;)
can generate in (0,d/2). If (v;,v;) generates a candidate
value in (0,9/2), we call this candidate value an effective
candidate value. Because r* € (0,6/2), we only need to
search the effective candidates generated by the pairs in
P in order to find r*. Let us gather all the effective can-
didates into an n x n matrix M such that M[s, j] is the
effective candidate value generated by (v;,v;) if i < j and
zero otherwise. We can see that M is not a sorted matrix
because for a fixed 7, by increasing j, the number of centers
in the train that induces M|i, j] might change. Indeed, this
is the main obstacle to get a linear time algorithm like [4, 5]
for the unweighted PCkC problem. Precisely, the k-center
problem is equivalent to the PCkC problem when § = oo.
In this case, all the effective candidates are generated by
1-trains. The key point here is that the effective cost gener-
ated by a 1-train on a pair (v;,v;) is an increasing function
of d(v;, vj). This monotonicity makes the matrix M sorted
which plays a pivotal role in obtaining a linear time algo-
rithm.

In order to search M in a sub-quadratic time, we define
an auxiliary matrix M such that applying the feasibility
test on its elements enables us to discard the elements of
M in an efficient way. We define M as an n x n matrix
such that:

M[i, j] = maz{M]Ji,j'] : i < j < j}

Note that M is a row sorted (increasing) matrix but may
not be sorted column-wise. We define the remainder func-
tion remg(x) as follows:

X

rems(z) = x — LiJ X
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Observation 2 If i < j, then we would have Mli,j] =
rems(d(vi,vj))/2.

This is from the fact that the size of the portion of
[v;,v;] not covered by the longest train in the interval is
rems(d(vi, vj)).
Proposition 3 If M[i, j| =
M[i, '] < r*.

r* then for all i < j' < j,

Proof: We proceed by contradiction. Suppose that
MJi,j] = r* and 35" : i < j° < j such that M[i,j'] > r*.
Let C" = (¢j,,---,¢;,) € C* be the train in [v;,v;] that
induces r* on v; and v;. Also, let C = (c1,...,¢q) be
the longest train that can be fitted in [v;, v;/] that induces
the cost M]i, j’]. Note that |C| < |C’|, otherwise because
v < v;, MJi,j'] could not be greater than Mf[i, j]. Note
that ¢ < ¢; because we assumed M[i, j'| > r*. Now, if
Chitq < vjr, we can fit a (¢ + 1)-train in [v;, vj], which
contradicts the way we chose C. So, let us assume that
Chytq > Uy (see Figure 3).

2k -k
47—> . . 3 ° L ° -7 >
¢ * E3 * . * * .
Vi cp, €1 Chy41 C2Cpipq1Cq Uy Chitq Chy Vi
S TIRL 2l
Mli, j'] MTi, ']

Figure 3: Proof of Proposition 3.

Here, ¢}, ., is the center that covers v; in c*. If
d(vj/,c;‘ll+q) = 7r*, d(v;,v;) would be a multiple of ¢
and so M][i, j'] = 0 which is against our assumption that
M{i,j'] > r*. Thus, we have d(vj/,c; ,,) < r* but in
this case we can fit a (¢ + 1)-train in [v;,vj] which is a
contradiction. ]

Example: In Figure 4, the fitted 4-train (cf,...,c})
between v; and v; induces the optimal cost r* for
the problem. In order to have MJi,j'| > r* for some
1 < j/ < j, vy should lie on a forbidden region, which
are the set of points with distances greater than r* to
their closest center (these regions are specified in red in
Figure 4).

2M[1,x]

y =rems(z)

271, 7]

2r”

Figure 4: An example for Proposition 3.

Observation 3 By applying the feasibility test on M]i, j],
one of the following cases will happen:
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1. Mli,j] is feasible. In this case, we can discard all
MTi,j') with j' > j (based on Proposition 3).

2. M[i,j] is infeasible. In this case, we can discard all
MTi, j'] with 7/ < j (based on the definition of M ).

Note that in the part 1 of the above observation, when
M(i, j] is feasible, then either M[i,j] > r* or M[i, j] = r*.
For the former case, if M[i, j'] = r* for some j' > j, it con-
tradicts Proposition 3 and for the later case we still have r*
in our undiscarded values. According to the above obser-
vation, we can find r* by iteratively applying the feasibil-
ity test on the elements of M and discard the elements of
M until 7* becomes clear. Algorithm DISC-ROUND(M)
shows how we can discard 1/4'" of the undiscarded ele-
ments in M at each iteration. We can see that at the be-
ginning of each iteration the undiscarded elements of each
row make a connected region. We call this region the undis-
carded region. Because M is row sorted, if d; and dsy are
the first and the last indices of the undiscarded region of an
ith-row in M, if we know whether M[i, d; + | (d, +dz)/2]] is
feasible, we can discard half of the elements in the region.
Note that in Algorithm 2, the variables dy, ds and w; can be

Algorithm 2 DISC-ROUND(M)

1: for ¢ from 1 to n do
2: Set dy, do and n; as the first index, the last index
and the number of elements in the undiscarded region
of the i*"-row of M respectively.
3: Set m; as M[Z,d1+ L(dl +d2)/2“
4: end for
Compute the weighted median m of {m; : 1 < i < n}
where m; has weight n;.
Run UPATH-FT(P,m).
if m is feasible then
For each ¢ with m; > m, discard M[i,j'] : j' > m;.
else
For each ¢ with m; < m, discard M[i,j'] : j' < m;.
end if

o

10:
11:

updated after the discarding phase of the previous iteration
(so we don’t need to search the entire matrix to compute
them at the beginning of the current iteration). Also, we
compute the weighted median of the mid-indexes of the
undiscarded region of the rows because at the beginning
of an iteration, the undiscarded region of the rows in M
may not have the same size. We can see that in each itera-
tion, we need to compute the median of O(n) values in M.
The bottleneck of the time complexity of DISC-ROUND
is the cost of obtaining an element of M. Precisely, if the
time complexity of computing an element of M is O(g(n)),
then the total time complexity of DISC-ROUND would be
O(ng(n)+k) and so the overall time complexity of our algo-
rithm for the unweighted PCkC problem on paths would be
O((ng(n)+k)logn) (because we have O(logn) iterations).
In the next subsection, we discuss how we can compute an
element of M efficiently.
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2.1 Computing an Element of M

In this subsection, we provide a preprocessing phase
that enables us to compute M][i,j] in sub-linear time.
Let M;; = {Mli,i +1],...,M[i,j]} and so, M[i,j] =
max M; ;. We first build a balanced binary tree 7 on
top of the vertices in P (we assumed that n is a power
of 2). Thus, each leave of T corresponds to a single vertex.
For a node v € T, span(v) is defined as the set of vertices
that have v as a common ancestor. Note that the root of
T spans the entire P. Also, we denote the first and the last
indexes of the vertices in span(v) by left(v) and right(v)
respectively. In each node v € T, we store the sequence
o(v) obtained from sorting {2M[vq,v] : v € span(v)} in-
creasingly. It is easy to see that the time complexity of
building 7 and the sequences in its nodes is O(nlogn).

Observation 4 For any two numbers a and b, we have:
rems(a + b) = remg(rems(a) + remg(b))

Based on the above observation and Observation 2, for any
j' > 1 we can write M[i, j'] as:
Mli, j'] = rems(d(vi,vj))/2 =
rems(d(vi,vy) — d(vi,v;))/2 =
rems(rems(d(vi, vy ) — rems(d(vi, v;)))/2
rems(2M vy, vj] — 2M[v1,v;])/2

Now, for each vertex v with o(v) = (s1,...,s;) and 7 <
left(v), we define o;(v) as:
oi(v) = (remgs(s1 —2M|v1,v3)), ..., rems(s, — 2M[v1,v;]))

Let p;(v) be the maximum of o;(v). Based on the
above argument, we can see mazx{M|left(v), left(v) +
1, ..., M[left(v), right(v)]} is indeed p;(v)/2. An impor-
tant observation here is that because the elements of M
are at most 0/2, 0;(v) is a concatenation of two sorted se-
quences namely o} (v) and o2(v) (note that one of these
sequences might be empty). So, in order to find p;(v),
we need to compare the last elements of o (v) and o2(v)
(if they exist) and pick the greater value. Precisely, if
sy — 2M|vq,v;] is negative (resp. positive) for some s; €
o(v), rems(sj —2M vy, v;]) belongs to o} (v) (resp. o2 (v)).
Thus, we can do binary search to obtain the index of the
last element of o} (v) and so p;(v) in O(log |span(v)|) time.

We can use the above data structure to find M][i, j] as
follows: we first obtain two paths m; and m; and their split
vertex vgpi¢ from the root of 7 to v; and v; respectively.
Let V; ; be the set of right (resp. left) children of m; (resp.
7;) from vy to its leaf (including v;). Now, M, ; =
1/2U,ey, ; 0i(v) where the multiplication is done element-
wise. Therefore,

Mli, j] = maz M; ; = maz{u;(v) :v €V, ;} (1)
because |V; ;| = O(logn) and computing each p;(v) in (1)
also costs O(logn), the total complexity of computing
M{i, j] would be O(log®n) which leads to an overall
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O((nlogzn + k) logn) time complexity for the PCkC
problem in unweighted paths.

Further improvements: First, we observe that if
for two nodes v,/ € T, v/ is a parent of v then o(v)
is a sub-sequence of o(¢’). This property enables us to
use a technique called fractional cascading [3] to avoid
doing binary search on each of the nodes in V;; to find
their maximum. Precisely, we equip each element s of
o(v') with a pointer that points to the smallest element
in v larger than or equal to s. This structure can be
constructed in O(nlogn) time [3]. So, in order to obtain
all {u;(v) : v €V, ;}, we only perform one binary search
on o;(root(T)) with cost O(logn) and follow the pointers
along the paths to obtain each p;(v) : v € V;; in a
constant time. So, the total complexity of computing
MTi, j] would be O(logn) and so, the total running time
would be O((nlogn + k)logn).

As another improvement, note that we only need to do
binary search on o;(root(T)) once for each row i in the
entire algorithm. Also, by spending O(nlogn) time, for
each root-leaf path m; and each v/ € m;, we can store
max{p;(v) : v isright child of a node in m;[v/,v;]} in v/
(m;[V', v;] is the portion of 7r; from v’ to v;) by walking along
m; twice. So, having v, we only need to take care about
computing maz{u;(v) : v € V,;; and hanging from 7, }.
To address this problem, consider a fixed i*"-row. Based
on Algorithm 2, at each iteration r, the undiscarded region
of the i"-row corresponds to span(v") for some v" € T.
Let v}, be the left child of v" (if we are not at the last
iteration) with m” = right(v],). We can see that m” is
the median of the undiscarded region. Now, v/;t! is either
the left child of v], or the left child of the right neighbor
of v],. Let ro be the last iteration for which v]? is on ;.
For iterations r < 7y, we only need to consider the maxi-
mum of the values in ¢;(v’) where v/ the first right child
on m; after v], . Also, for iterations r > 7, we only need to
have the set of maximum values in the left hanging nodes
of Tor [Vspiat, V)] and v, itself. Now, it is easy to see that
as r increases to r + 1, these set of values can be updated
in a constant time. Thus, we can conclude that computing
M{[i,m"] for all iterations r only takes O(logn) time and
because we have linear number of rows, we would have the
following theorem:

Theorem 1 The unweighted PCkC problem can be solved
in O((n+ k)logn) time.

3 PCkC Problem for Weighted Paths

Let P = (v1,...,v,) be the given weighted path such that
w; is the weight of v;. For a point x on P, we define
wd(v;, ) = wid(v;, x). Again each pair of vertices (v;, v;)
generates O(k) candidate values which corresponds to the
trains that can be fitted in [v;,v;]. Here, because the
weights of v; and v; might be different, a train may not
be required to have the same distance from v; and v; in
order to induce the same cost on them. Again, we denote
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the cost that a fitted ¢-train in [v;, v;] induces on v; and v,
by IC¢(v;,v;). Suppose that d(v;,v;) > té for some t > 1.
We define the width of (v;,v;) as IC_1 (v, v;) —IC(vs, v;)
and denote it by W (v;,v;). Note that this value is inde-
pendent of ¢ and only depends on w; and w; and so, we can
compute it in a constant time (in the unweighted case, the
width of all pairs in P are §/2). Because here the widths
of the pairs in P might not be equal, we first need to find
an interval I* such that each pair of vertices can gener-
ate at most one cost in I*. But before going into that, we
need to update our feasibility test to support weighted ver-
tices. Algorithm 3 presents the feasibility test procedure
WPATH-FT(P,r) which gets a weighted path P and a test
value r and determines whether r» > r* or r < r*.

Algorithm 3 WPATH-FT(P,r)

1: Set Counter =1
2: for i=1 to n do

Let z; be the point on the right side v; such that
wd(vi, ;) =71,
end for
Let X = (a1, ...
Let . = x1.
while There is an element left in X do

Eliminate z;s from X corresponding to the vertices
for which wd(v;, z.) < 7.
9: Put a center at x. = min{z. + §, X[1]}.

@

71.774)'

10: Counter = Counter + 1.
11: if Counter > k then
12: return infeasible.
13: end if

14: end while

15: return feasible.

Note that in the while loop of Algorithm 3, we eliminate
x;s according to the order in the sequence X and so, the
running time of the above feasibility test is O(n + k). The
geometric view for the weighted case is similar to the un-
weighted case but here, for each vertex v;, the magnitude
of the slopes of R; and L; is w;. For each pair (v;,v;), the
y-coordinate of the intersection point of R; and L; is the
cost that a fitted 1-train (single point) in [v;,v;] induces
on v; and v; which is denoted by ICi(v;,v;). Similarly, if
d(vi,v;) > (t—1)6, IC¢(v;, v;) would be the y-coordinate of
the horizontal segment with length (¢t — 1) and endpoints
on R; and L; (see Figure 5).

3.1 Matrix Search for Weighted Paths

First, we need to build an interval I; = [a,b] such that
r* € I, and it’s interior does not contain any IC' (v;, v;) for
any i < j (note that IC4(v;,v;) is indeed the y-coordinate
of the intersection point of R; and L;). If we use Lemma
2.5 [16] on all R; and L; (1 <4,j < n), we can get [; in
O((n + k) logn) time. Let us define W* as follows:

W* = min{W(v;,v;) : i < j and ICy(v;,v;) > b}
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Figure 5: A weighted path (v1,v2,vs3,v4), the width of
(v2,v4) and three costs generated by the pair. Note that
only one of them lies inside I*.

We can see that r. € Iy := [b — kW*,b] N I;. This is
because r* can’t be smaller than the cost that a fitted k-
train induces on the generating pair of W*.

Proposition 4 W* can be computed in O(nlogn) time.

Proof. We first compute the intersection points of all
L; and R; for 1 < 4,5 < n with the horizontal line
y = b. Then, we sort these intersections on the line
from left to right in O(nlogn) time. So, each of these
intersections corresponds to a line with a positive or a
negative slope. We traverse these intersections from left
to right and store the minimum positive slope and the
minimum width we have seen in variables min_slope and
man_width respectively. Finally, we set min_width as W*.
Precisely, when we visit an intersection point, if it came
from a line with a positive slope, we update min_slope
if necessary and if it came from a line with a negative
slope, we compute the width it creates with the line that
generated min_slope and update min_width if necessary. [

We can see that the length of I, is at most EW™.
This implies that by applying the feasibility test O(log k)
times at the costs b — iW* (0 < i < k) we get an
interval Is C I, with length at most W* containing r*.
Because W* is the minimum width, each pair (v;,v;) with
ICy(v;,vj) > b can generate at most one candidate value
in 13.

Consider the set of half-lines {Ry,...,R,—1} (all with
positive slopes) and their upper-envelope polygonal chain
as a function fyg(z). We can see that fyg is a piece-wise
linear and an increasing function. Also, fyg(z) is the
cost of covering all the vertices on the left side of x if we
put a center at x. We can compute fyg in linear time
as follows: suppose that we have already computed the
upper-envelope of {Ry,...,R;_1} consisting of it’s lines
and break points. Now, when we add R; and update our
envelope, if R; is below the last break points, we consider
R; and the last line of the envelope for a possible new
break point. Otherwise, we find the first break point
below the line (be checking the break points one by one
from the last) and consider the line next to it (on its left)
for a break point. Note that when we check a break point
and it turns out it is below R;, the line next to it (on
its right) can never be a part of the envelope. Because
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we have linear number of lines, the time complexity of
computing fyg is linear.

Let (z1,...,xs) be the z-coordinates of the break points
of fyg where s is the number of break points. Then, we can
use our feasibility test to do binary search on {fyg(x;) :
1 <4 < s} to find an interval [x4, z411] such that r* €
[fue(zg), fue(zq+1)]- Let Ry (generated by v,) be the line
corresponding to the portion of fyg in (x4, z4+1]. Then we
have the following observation:

Observation 5 If c¢i induces r*, then v, is the first vertex
of a determining pair.

Based on the above observation, we can consider all pairs
{(vg;vg41);- - -, (vg,vn)}, obtain the candidate value that
each generates, sort them and do binary search (using our
feasibility test) to get an interval I(). Now, ¢ can’t gen-
erate any candidate value in the interior of (V). Similarly,
we can do the above process on {La, ..., L,} to get an in-
terval 1(®) such that cj, can’t generate any candidate value
in the interior of 1. Let I* = IsNIMW NI, So, it is
only left to resolve the candidates in the interior of I*.

Observation 6 If (v;,v;) is a determining pair and a
train (cj ..., ¢y, ) in [v;,v;] induces r* on the interior of
I*, then

1. 0 < d(v, ¢, ),d(vj, cj,) <0/2.

2. (ch,s--
[vi, v5].

-5 Ch,) is the longest train that can be fitted in

The first part of the above observation comes from the
fact that if r* lies on the interior of I*, then h; # 1 and
ha # k. So, if for example d(v;, ¢j ) > §/2 then because of
the PCC, ¢}, can cover v; in the optimal solution. For
the second part, note that if we are able to fit a longer
train in [v;, v;] then either d(v;, cj, ) or d(v;, ) should be
greater than §/2 which contradicts the first part.

Based on Observation 6, for any pair of vertices (v;,v;),
we define our matrix M for the weighted case such
that M]i,j] is the cost r induced by the longest train
(c1,...,¢q) that can be fitted in [v;,v;] if » € I* and
0 < d(vi,e1),d(vj,cq) < §/2. If we didn’t have either of
these two conditions, we assign M[i, j] = 0. It is clear that
r* is an element of M. Similar to the unweighted case,
we define M][i, j] as max{M[i,i + 1],..., M[i,j]}. Again,
we can see that M is a row sorted matrix but may not be
sorted column-wise. Next, we show Proposition 3 is still
valid for our new definition of M and M in the weighted
case.

Proposition 5 If M[i,j] = r*, then for all i < j' < j,
Mli, j'] < r*.

Proof. We proceed by contradiction. Suppose that
(vi,v5) induces r* and 3 < j' < j such that M[i, j'] > r*.
Let C' = (cq,...,¢q) be the longest train that can be fitted
in [v;,vj/] and induces the cost M[i, j'] on v; and vjr. Also,
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let ¢' = (¢ ,---,c;,) © C* be the train that induces
r* in [vi,v;]. Now, ¢ ..y < ¢4 (because we assumed
that M[i, j'] > r*) and |C] < |C’| (because v; > v;/). We

consider two cases:

case 1: ¢} < wvj: In this case, we could fit a
(g + 1)-train namely C” = (c,...,cq4q) in [v;,v}] which

contradicts the fact that C' was the longest train in [v;, vj/].

case 2: cj > wj: In this case, v; should be
covered from its right in C* (because CZﬁ-q—l < ¢q and
we assumed M[i,j’] > r*). Also, the cost of covering
v; in C* should be no more than r*. So, if w; < wj,
d(vi, ¢, ) = d(vjr,cp, 4,) and thus, we can fit a (¢+1)-train
in [v;, v;,] which is a contradiction.

Now, assume that w; > wj;. Let ¢; and t3 be the
points on the right side of v; such that wd(v;,t:1) = r*
and wd(vj,t2) = M]i,j']. Note that to > t; and i,
is the mirror image of ¢, with respect to v;. Now,
d(cy ,c1) < d(ti,t2) (because w; > w; and the cost that
v; induces on ¢ and c¢; are 7* and M[i, j'] respectively).
Also, because M[i, j'] # 0, d(cq,vj) < 6/2 (based on the
definition of M), ¢q + 3 > vy + §/2 which implies that
[t1,t2] C [cf, 14o¢q + 0]. This contradicts the fact that
d(ch, 42 Cq +0) = d(cp,,,c1) < d(t1,t2) (see Figure 6). [

Figure 6: Proof of Proposition 5

The above proposition implies that Observation 3 is valid
for M and M in the weighted case and so we can use Algo-
rithm 2 to find r* and get C*. Based on Algorithm 2, the
time complexity of finding r* would be O((ng(n)+k)logn)
where g(n) is the time complexity for computing an ele-
ment of M. In the Appendix, we show how we can compute
an element of M in O(log® n) time by spending O(n log® n)
time for preprocessing. This gives us the following theo-
rem:
solved in

Theorem 2 The PCkC problem can be

O((nlog®n + k) logn) time.
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Figure 7: Three points e;j,,€;5, and e;;, located at dis-
tances F;j, , E;;, and E;;, respectively and their generating
points. In this example, (v;,v;,) generates the maximum
of {M[Zajlh M[i7j2]7 M[’Lz]3]}

Appendix: Computing an Element of M for Weighted
Paths

In this section, we build a data structure such that for
any query pair (,7) (¢ < j), it enables us to compute
MTi, j] = max{M]Ji,j'] : i < j' < j} in a sub-linear time.
Suppose that I* = [yo,y1]. We denote the z-coordinates
of the intersection points of L; and R; (1 < i < n) with
line y = y1 by l; and r;, respectively (see Figure 5). Note
that if for a pair (v;,vj/), I < r;, it can not generate any
candidate value in I* (because of the way we built I*) and
so, M[i,j'] = 0. Thus, we only consider the pairs (v;,v;)
for which ;s > r;. Let us define the complement function
with respect to ¢ as:

comps () = {%—‘ X0 —
We also denote comps(l;) and comps(r;) by I; and #; re-
spectively where 1 < i < n. For any pair (i, ;") with j* > i
and l;; > r;, let Ejjy = comps(lyy — ;) = remg(ij/ —7)
and D = Ey/(w;* + wj_,l) (note that w; and wj
are the magnitudes of the slopes of R; and L; respec-
tively). Based on the geometric view, it is easy to see
that M[i,j'] = y1 — D;j if D;y < |I*| and zero other-
wise. So, the problem of finding M[i, j] is equivalent to
find Dypip, = min{D;;» : i < j* < j}. It is convenient to
visualize this set as follows: for each i < j' < j, we con-
sider e;;; as the point located at (E;;/,0) on the z-axis.
Each e;; has a half-line L;;, attached to it with slope w;
and a half-line L;;, from the origin with slope —w;: (see
Figure 7). We can see that the distance between the in-
tersection point of Lj'j and L;; from the z-axis is indeed
D;;. We call this distance the D-coordinate of the inter-
section (when a point moves downward, its D-coordinate
increases). So, each value F;; generates exactly one value
D;j call it the D-value of E;j/. Like the unweighted case,
we build a balanced binary tree 7 on top of the vertices
and in each node v € T we store {l, : v, € span(v)} as
an increasingly sorted sequence o(v). So, if we preprocess
each v € T such that for a given vertex v;, we can quickly
compute p;(v) = min{D;p : v, € span(v)}, we can decom-
pose the set {v; : i < j" < j} into Uyey, ;span(v) (as we
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did in Section 2.1) and set Di,in = min{p;(v) : v € V; ;}

Let v € T be a fixed node. In the rest, we show how
we can preprocess v such that given a query vertex v;, we
can efficiently compute p;(v). First, note that the set of
half-lines {L;, : v, € span(v)} is independent of i. Also,
for each i, {E;p, : v, € span(v)} is the union of two sorted
sequences o} (v) and 02 (v), where o} (v) (resp. o?(v)) is ob-
tained by a shift (adding a constant value) of the elements
in o(v) smaller than (resp. greater than or equal to) #;.
Consider the lines L;-;,(x):wi(xfeij/) and L, (z)=—w; z,
where e;;: is a variable (see Figure 7). When e;; increases,
the D-value of e;; (the intersection of ij, and L) in-
creases linearly. Let f(x) be the minimum D-value gener-
ated by {ei;y = Iy +x : j' € span(v)}. We can see that
f(z) is the lower-envelope of a set of lines which can be
computed in O(|v|log|v|) time (|v| is the number of ver-
tices in span(v)) using the divide-and-conquer algorithm
(use the order in o(v) for breaking the vertices). Because
we need to work with the sub-sequences of o(v), we store
the entire recursion tree [15] (with the solutions of its sub-
problems) of the divide-and-conquer algorithm and denote
this tree by R;(v). Based on the above discussion, one way
to preprocess v is that for each 1 < ¢ < n, we compute and
store R;(v). Now, when we are given a vertex v;, we first
use binary search to get o}(v) and o?(v). Next, we use
Ri(v) to get p;(v). Note that this process costs O(log? |v|)
time (one O(log |v|) factor because of the height of R;(v)
and the other for binary search to get the minimum point
of the envelopes in the nodes of R;(r) needed to construct
ol(v)(resp. oZ(v)) at an specific z-coordinate determined
by the shift in o} (v)(resp. 0?(v)). Because the height of 7°
is O(logn), the total time complexity of computing M3, j]
would be O(log®n). Note that the values o(v) of any (non
root) node v € T is a subset of the values of its parent
node. So, using the fractional cascading technique, this
cost can be reduced to O(log®n) time.

The problem here is that if we build R;(v) for all
1 <i<mnandallv € T, the time complexity of the prepro-
cessing phase would be O(n?log®n). In order to make the
preprocessing cost sub-quadratic, consider an internal node
w of the recursion tree of v (note that the vertices in w are
independent of i). Let 7;(w) be the sequence of points in
w who generate a line in its corresponding lower-envelope
in R;(v) where the order is according to the appearance of
the lines in the envelope.

Proposition 6 If for two indices i1 and iz, w;, < w;,,
then 7, (w) C 7, (w)

The proof of the above proposition is straightforward using
elementary geometry. In order to use the above proposi-
tion, we first sort all the slopes increasingly into a sequence
(wiy,...,w;, ). Now, when we preprocess w, instead of
building R;(w) for all 1 < i < n, we can use a binary tree
structure for the slopes which leads to O(Jw|logn) time
complexity for preprocessing w. This, reduces the overall
preprocessing time to O(nlog3 n) and increases the time
complexity of computing M[i, j] to O(log® n).
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Drawing complete outer-1-planar graphs in linear area

Therese Biedl*

Abstract

A complete outer-1-planar graph is a graph that can be
drawn such that every edge has at most one crossing, all
vertices are on the infinite face, and the so-called dual
tree is a complete ternary tree. We show that every
complete outer-1-planar graph has a straight-line grid-
drawing that has area O(n).

1 Introduction

In this paper we consider the question of how to cre-
ate a straight-line grid-drawing of a graph, i.e., we want
to map the vertices to grid points, and draw edges as
straight-line segments between their endpoints such that
vertex-points are distinct and no edge-segment contains
a vertex-point except at its endpoints. If the input
graph is planar (it has a planar drawing without cross-
ing), then we further require that the drawing is likewise
planar. Generally, whenever the given graph comes with
a drawing (not necessarily using straight lines), then we
expect the created straight-line grid-drawing to reflect
the given drawing of the graph.

The objective is usually to achieve small area of the
drawing (i.e., the area of the minimum enclosing axis-
aligned bounding box of the drawing). Let n be the
number of vertices. Any graph can be drawn with area
O(n?) by placing the vertices on the moment-curve. For
planar graphs, it has long been known that O(n?) is
always sufficient [15, 16], and for some planar graphs
Q(n?) area is required in a planar drawing [14]. For
some subclasses of planar graphs, sub-quadratic area
can be achieved. Of particular relevance to this pa-
per are the results for outer-planar graphs, i.e., graphs
that have a planar drawing where all vertices are inci-
dent with the unbounded region (the outer-face). Such
graphs have straight-line grid-drawings in sub-quadratic
area [9], and very recently the area has been reduced to
O(n'*#) [13].

We are interested here in drawing I-planar graphs,
i.e., graphs that have a drawing that is not necessarily
planar but every edge is crossed at most once. Such
graphs do not always have a straight-line grid-drawing
[10] but if they are 3-connected then there is a straight-
line drawing after deleting at most one edge [2] and the
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area is quadratic. Clearly some 1-planar graphs require
(n?) area since all planar graphs are also 1-planar.

The natural question is now whether there are sub-
classes of 1-planar graphs that have straight-line grid-
drawings in sub-quadratic area? The most obvious
class to consider are outer-1-planar graphs, which are
1-planar graphs with a 1-planar drawing where all ver-
tices are on the outer-face. It is known that outer-1-
planar graphs can be drawn in sub-quadratic area in
the drawing style of “visibility representations” (not
reviewed here) [4]. Straight-line drawings of outer-1-
planar graphs appear to have studied only a little bit.
Dekhordi and Eades showed that they have so-called
RAC-drawings [8] but they did not analyze the area.
Auer et al. [3] showed that they have a straight-line
grid-drawings in quadratic area. Bulatovic [5] achieved
sub-quadratic area in some special situations.

In the pursuit of sub-quadratic-area drawings for
outer-planar graphs [9, 13], one helpful ingredient was
to first study a complete outer-planar graph, i.e., an
outer-planar graph for which the dual graph (minus the
outer-face vertex) is a complete binary tree when root-
ing it suitably. By exploiting its recursive structure, Di
Battista and Frati showed that a complete outer-planar
graph has a straight-line grid-drawing in O(n) area [9].

In the same spirit, we ask here whether we can cre-
ate small straight-line grid-drawings of complete outer-
1-planar graphs (defined formally below). Bulatovic
[5] showed that these have a grid-drawing of area
O(n?1°8:2) = O(n'25). In this paper, we improve on
this result and show that all complete outer-1-planar
graphs have a straight-line grid-drawing of area O(n).
This fits into a long line of research of achieved opti-
mal O(n) area for straight-line grid-drawings of special
graphs, see e.g. [1, 6, 7, 9].

2 Preliminaries

We assume familiarity with graph theory and planar
graphs, see for example [11]. Assume throughout that
G is an outer-1-planar graph with n vertices that is
maximal in the sense that no edges can be added while
maintaining simplicity and outer-1-planarity. Then G
consists of an n-cycle as the outer-face and chords of
the n-cycle. The skeleton G*® of G is the subgraph of G
formed by the uncrossed edges, i.e., edges without cross-
ing. The inner faces of G° are the maximal bounded
regions that contain no edges of G°; it is known that
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Figure 1: The complete outer-1-planar graph of depth
4. The dual tree is orange (striped/dotted).

all inner faces of G* are triangles or quadrangles if G is
maximal outer-1-planar [8]. The dual tree of G is ob-
tained by creating a vertex for every inner face of G*
and making them adjacent if the corresponding faces
share an edge. The dual tree of an outer-1-planar graph
is (as the name suggests) a tree and all vertices have
degree at most 4.

We call G a complete outer-1-planar graph if the dual
tree 7 is a complete ternary tree after rooting it suit-
ably. See Figure 1. The depth D of G is the number of
vertices on the path in 7 from the root to the leaves.
If D > 2, then G consists of K4 (drawn with one cross-
ing and corresponding to the root of the dual tree) with
three copies of a complete outer-1-planar graph of depth
D—1 attached at three of the four uncrossed edges of
K4. The poles of G are the endpoints of the uncrossed
edge (z,y) of K4 that is on the outer-face of G.

For an uncrossed edge (a, b) not on the outer-face, the
hanging subgraph Hgy, at (a,b) is the maximal subgraph
that has (a,b) on the outer-face and does not contain
both poles of G. The poles of H,; are a and b.

The complete outer-1-planar graph of G depth D has
O(3P) vertices, hence D € O(logn). It is very easy to
draw G in a grid of width O(n) and height O(D) [5],
so with area O(nlogn). But achieving linear area with
this approach seems hopeless since even the skeleton of
G requires Q(logn) width and height in any drawing.
(This follows from [12] since its so-called pathwidth is
logarithmic.) Instead for a linear-area drawing we con-
struct a drawing of width and height O(y/n).

Triangular grids. One ingredient for drawing com-
plete outer-1-planar graph in linear area will be to use
the grid points of a triangular grid (with grid-lines of
slope v/3,0, —\/g)7 rather than the standard (orthogo-
nal) grid. This makes no difference overall, since the
triangular grid can be mapped to an orthogonal grid
with a shear, but allows us to treat hanging subgraphs

symmetrically.

The following shortcuts will be useful. We use arrows
such as  and \_ for grid-lines of slope v/3 and —+/3,
and so for example speak of a -ray or the distance
in N -direction. An axis-aligned equilateral triangle is a
triangle with three equal sides that all lie along grid-
lines. An axis-aligned isosceles triangle is a triangle
where two equal-length sides lie along grid-lines while
the third side connects two grid points and has angle
30° on both ends. We will usually drop “axis-aligned”
as we study no other equilateral or isosceles triangles.
A triangle is called upward if it has a unique top cor-
ner, i.e., point with maximum y-coordinate. We use
terms such as top/bottom/left/right side/corner only
when this uniquely identifies the feature.

3 Drawing types

Let G be the complete outer-1-planar graph of depth
D, and let x,y be its poles. We will need three kinds of
drawings of G that will be combined recursively:

A type-A drawing A of G is contained within an equi-
lateral upward triangle T'. Vertices x and y are placed on
the left and right side of T', respectively, with distance
exactly D from the top corner. Drawing A occupies no
points on the right side of T" except for y. See Figure 2.

Furthermore, A must have the flexibility to move x
as follows. Let the wedge of A be the smaller wedge
between the “-ray and the N\ -ray emanating from z.
We require that for any position =’ within the wedge,
moving z to x’ gives a drawing of G for which all edges
are either within 7' or within the triangle spanned by
z',y and the left corner of T

A type-B drawing B of G is contained within an equi-
lateral upward triangle T'. Vertices z and y are placed
at the top and right corner of T', respectively, and the
left corner is empty. See Figure 2.

Furthermore, B must have the flexibility to move y as
follows. Let z be the point on the bottom side of T" that
has distance exactly D to y (we call this the attachment
point of B). Let the wedge of B be the smaller wedge
between the \ray and the —-ray emanating from y.
We require that for any position 3’ within the wedge,
moving y to ¢’ gives a drawing of G. Furthermore, the
drawing is contained within 7" and the triangle spanned
by z,v/, 2.

We call a type-B drawing a type-BT -drawing if addi-
tionally no point other than x is on the left side of trian-
gle T'. With the exception of D =1 all type-B drawings
that we construct are actually type-BT-drawings.

A type-C drawing C of G is contained within an isosce-
les upward triangle T'" where the left and bottom side
have the same length. Vertices x and y are placed at
the top and right corner of T', respectively. Drawing
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Figure 2: Drawings of type A, B and C. The wedge is green (striped).

C occupies no points on bottom side of T" except for y
and (possibly) points within unit distance from y. See
Figure 2.

Furthermore, C must have the flexibility to move x
as follows. Let the wedge of C be the smaller wedge
between the N -ray and a ray with slope —\/5/2 (i.e.,
extending Zy) emanating from x. For any position z’
within the wedge, moving z to z’ gives a drawing of G.

Define the following function w(+) on positive integers:

2 itD=1
w(D):=< 6 if D=2
3w(D-2)+4(D-2)+6 ifD>3

A simple proof by induction shows that
w(D) < 16-3P/271 —2D —5 ¢ O(3P/?).
We will show the following by induction on D:

Lemma 1 The complete outer-1-plane graph of depth
D has drawings of type A, B and C where the shortest
side of the bounding triangle T has length exactly w(D).
It also has a type-BT drawing where the side-length of
T is at most w(D) + 1.

In the base case (where D = 1 or 2) these drawings are
easily created, see Figure 3 for some cases and Figure 10
in the appendix for all remaining ones.

Figure 3: The drawings for D =1 for type A, B, C.

4 The inductive step

Assume that the dual tree 7 of G has depth D + 2
where D > 1. We can hence split the graph into

50

the subgraph @ corresponding to the root of 7 and
and its three children, and the hanging subgraphs that
are attached at the uncrossed edges that bound Q.
(Each hanging subgraph is a complete outer-1-plane
graph of depth D.) Enumerate the outer-face of @ as
(x,a,b,c,d, e, f,g,h,y) in ccw order where x,y are the
poles of G. See Figure 4.

S y
H;, Hpy
a h
Hap Hgp,
b g
Hy c Hipg
Hea \_g e/ Hef
Hge

Figure 4: Splitting the graph into @ and nine hanging
subgraphs.

The idea. Building a drawing of G uses the obvious
recursive approach: create drawings of the nine hanging
subgraphs of ), combine them, and add the edges of Q.
However, there are some intricate details with regards
to placement of poles and spacing of subgraphs. We
therefore first give a rough idea.

Observe that both an equilateral and an isosceles tri-
angle T can be split into 9 equal-area triangles that are
either equilateral or isosceles, see Figure 5. We assign
the hanging subgraphs to these triangles as indicated in
the figure, and plan to draw @ within the thick black
lines (after expanding a bit).

Note that in our plan to place the vertices, some poles
(e.g. vertex c for subgraph Hp.) are far away from the
corresponding triangle; here the flexibility to move one
pole within the wedge of the drawing will be crucial.
However, this comes with the price that we must keep
line segment ¢z free of other drawings, where z is the
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Figure 5: The idea of combining subgraphs. Locations
for the vertices of @) are approximate.

attachment point of the drawing of Hy.. Therefore sub-
graphs cannot be placed exactly edge-to-edge as Fig-
ure 5 suggests and we must be more careful in spacing
them.

Placing four subgraphs. We first explain how to place
drawings of H,o, Hap, Hpe, Heg; this will be the same for
all three constructions below. Consult Figure 6. For
any hanging subgraph H,,, let Ty, be a (recursively
obtained) drawing of H,,—the text below will specify
its type. Sometimes we will rotate I'y,; we use T,
(drawn in cyan/light gray) for the bounding triangle of
I'y, after such a rotation has been applied.

e Let 'y, be a type-A drawing for H,,. The white
circle in Figure 6 shows where pole = would be
within T';,, but it will actually be placed later
somewhere within the wedge of I'y,.

e Let 'y, be a type-A drawing for H,,, rotated by
+60°. Place the left corner of T,;, one unit in \-
direction from the top corner of T,,. This puts pole
a within the wedge of 'y, as required.

e Let I'y. be a type-B drawing for Hy., rotated by
+120° and placed such that the two locations of b
coincide. Pole ¢ will be placed somewhere within
the wedge of T'y..

e Let ',y be a type-C' drawing for H.4, rotated by
—60° and placed such that the left corner of T.q4
coincides with the attachment point z of T;.. Pole
¢ will be placed somewhere within the wedge of ' 4.

e Consider the point where the A-ray from b inter-
sects the P-ray from d, and let r. be the A-ray
emanating from here. We will later place ¢ some-
where on ray 7., which keeps it within both wedges
of 'y, and T'.y, and keeps line segment ¢z outside
all other drawings.

Observe that all drawings are disjoint except where
they share a vertex. This holds because in a type-A
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Figure 6: Placing Hq, - ..

chd~

drawing the right side only contains the pole, and in
I'cq the shorter side at d contains points only within
distance 1 from d, but these points are not used by I'y..
Also observe that for any placement of x within the
wedge of I'y,, line segment ax will be outside all other
drawings. Finally observe that the path a-b-¢ (shown
thick dashed) is drawn with slopes alternating between
[0,4/3) and v/3; this will be crucial below.

Completing a type-A drawing. To complete the draw-
ing to a type-A drawing, we copy and flip the existing
drawing along a vertical line. See also Figure 7(a). More
precisely, let £, be a vertical line that has —-distance
D/2 from d. Mirror 'y, ..., along this line to get
Ly, .. The only subgraph missing is Hyg., for
which we use a type-A drawing that fits exactly with
the existing points for d and e. One verifies that all
drawings are disjoint except at common poles.

We define the bounding triangle T' of the drawing
to be the upward equilateral triangle that touches the
left side of T,,, has -distance one to the bottom side
of Tye, and has -distance three from the right side of
Thy. (This is slightly asymmetric; the line £, does not go
through the top corner of T'.) Elementary computation
shows that 7" has side-length 3w(D)+4D+6 = w(D+2)
as desired. Place x and y (as required for a type-A
drawing) at distance D+2 from the top corner of T;
this puts = within the wedge of T'y,.

Thy.
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Figure 7: Creating (a) a type-A drawing and (b) a type-C' drawing.

We place ¢ at the start-point of ray r., which has \-
distance D+1 from the left side of 7. Let r; be the
copy of ray r. on the right side; we place vertex f on
this ray with \-distance D+2 from the left side of T
With this, fy has slope v/3 while ¢f has slightly smaller
slope.

We must argue that we have the flexibility to move x
within the wedge W of the drawing. Consider the path
T = (w1, Ws,...,waps1) of neighbours of x. [The last
five vertices on 7 are a, b, ¢, f,y, and this part is shown
purple/dotted in Figures 3, 7, 10.] Path 7 connects the
left side of T" with the right side, and hence separates
vertex x from all other vertices of the drawing. Also (as
argued directly above or known by induction for the part
of min T',,) the slopes along 7 alternate between a value
in [0,1/3) and exactly v/3. For 1 <1i < D, let W, be the
smaller wedge between the two rays emanating from wo;
through wo;_1 and ws;41. By the slopes of the edges, W
is strictly inside W;. Therefore {wa;—1,wa;, wo;y1,2'}
forms a strictly convex quadrangle for any location of
z' € W, and the K, formed by these four vertices is
drawn with a crossing as required. Also, the quadran-
gles for different values of ¢ are disjoint. So moving z’
within W gives a drawing of G.

Creating a type-B drawing. To create a type-B draw-
ing, we place all hanging subgraphs except H}, exactly
as in construction for the type-A drawing. Vertex h is
placed as dictated by I'g,. For Hy, we use a type-BT
drawing I'y,, that we place such that the two drawings
of h coincide. See Figure 8. One verifies that all draw-
ings are disjoint except where they have common poles
(this holds for I'y,, since we use a type-B™T drawing).
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We define the bounding triangle T of the drawing to
be the upward equilateral triangle that has N\ -distance
one from the left side of T, /-distance two from the
line through gh and has side-length 3w (D) + 4D + 6 =
w(D+2). Elementary computation shows that this tri-
angle then includes I'y, since Tj, has side-length at
most w(D) + 1. The left side of T is empty, so the cre-
ated type-B drawing is automatically a type-BT draw-
ing. We place x and y as required at the top and the
right corner of T

Figure 8: Creating a type-B drawing. e
Let R be the right side of T. Place vertex ¢ on r.
and vertex f on the T-ray from e, both with ~-distance

one to R. In particular 7y is on R, cf has slope —/3
and -distance one to R, and gh has slope —v/3 and
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-distance two to R; with this the complete graphs
{z,y,¢, f} and {f,y,g,h} of Q are drawn correctly (al-
beit with very small angles). All other edges of @ are
also drawn correctly, see Figure 8. Also f is above e
and to the right of the N -ray from g, hence within the
wedges of I'.y and I'y, as required.

Also note that the attachment point of I'y, is the
lowest point of the drawing, and its \,-projection onto
the bottom side of T has distance D42 from y. Finally
path z-c-f-g-h is drawn alternating between slopes in
[—o0, —\/3) and —+/3. Therefore as for type-A draw-
ings one argues that y has the flexibility to move within
its wedge, as long as nothing is placed between the at-
tachment point z of T and the new location of y.

Creating a type-C drawing. Start with ['y,,..., g,
placed as described above, but rotate everything by 60°.
Let ¢ be the -line that has \distance w(D) from
d. Copy and mirror I'yq,...,[cg along line ¢ to get
Ief,...,I'py. The only subgraph missing is then Hge,
for which we use a type-C drawing that fits exactly with
the existing points for d and e. See Figure 7(b). One
verifies that all drawings are disjoint except where they
have common poles.

We define the bounding triangle T" to be the upward
isosceles triangle where the left side is parallel to the
left side of T, and at -distance 1, the bottom side is
parallel to the bottom side of 1},, and at “-distance 1,
and the right side is parallel to the top side of Ty, and
at —-distance 2. (Line £ is the axis of symmetry for
T.) Place z and y (as required for a type-C' drawing)
at the top and right corner of 7. We place ¢ and f
on the rays r. and 7y, with distance one from the start-
point of the ray. This places the line through cf halfway
between the line through de and the line through Zy.
With this the complete graphs {z,y, ¢, f} and {¢,d, e, f}
of @ are drawn correctly (albeit with very small angles).
All other edges of @@ can clearly be added.

As for the flexibility of moving z, the same argument
as for the type-A drawing applies with respect to the
complete graph formed by {z,a,b,c}. For the complete
graph formed by {z, ¢, f,y}, observe that Ty and cf are
parallel and therefore moving x to some point z’ in the
wedge (hence strictly above the line through cf keeps
{’,¢, f,y} as a strictly convex quadrilateral.

To analyze the length of the shorter sides of T, let
¢o be the top corner of T,.4. Observe first (see also Fig-
ure 7(b)) that ¢y has <—-distance 2D+2 to the left side
of T and \-distance 3w (D) + 2D + 2 to the bottom side
of T. Now consider the close-up in Figure 9, let ¢; be
the «—-projection of ¢y onto the left side of T', and let
¢2 be the place where the line through de intersects the
left side of T'. Since de has slope —\/3/2 while ¢geg has
slope 0 and ¢z has slope —v/3, the triangle {co, c1,co}
is isosceles, and therefore d(cq,c2) = 2D42. The N-

distance from cs to z is 2 by definition of T'. Therefore
the left side of T" has length 3w(D)+4D +6 = w(D+2).

This ends the proof of Le L)
outer-1-planar graph has n =

Theorem 2 FEvery complete outer-1-
straight-line drawing in a grid of O(n)

construct the drawing in linear time.

5 Remarks

Our result is easily stated, but its proof is annoyingly
complicated. The corresponding result for complete
outer-planar graphs by Di Battista and Frati [9] has
a very elegant proof: Draw a complete binary tree with
a special property called “star-shaped”, and one can de-
rive a drawing of the balanced outer-planar graph from
it. This does not translate to outer-1-planar graphs
for multiple reasons. First, any complete outer-planar
graph contains a complete binary tree (of roughly the
same depth) as a subtree, so after drawing the complete
binary tree one “only” has to add some edges. Attempts
to generalize this for drawing a complete outer-1-planar
graph G led to super-linear area [5]. The dual tree T
of G is a complete ternary tree, but it does not map
naturally to a subtree of G, and it would not be clear
how to expand a drawing of T" to one of G. Is there a
simpler way to prove Theorem 27

Also, in the paper by Di Battista and Frati [9] drawing
the complete outer-planar graph was really just a warm-
up to get results for all outer-planar graphs via star-
shaped drawings of trees, useful also for [13]. We stud-
ied drawings of complete outer-1-planar graphs in the
hopes that it would lead to sub-quadratic area-bounds
for drawing all outer-1-planar graphs. But this seems
significantly harder and obtaining area-bounds that are
sub-quadratic (and ideally O(n!*¢)) remains open.
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Appendix

In Figure 10 we show the drawings for the base case in the
other situations.

Figure 10: The type-B™ drawing for D = 1 and the
drawings (of type A, B = Bt and C) for D = 2.
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A -approximation of the average-2-MST

Ahmad Biniaz*

Abstract

Motivated by the problem of orienting directional an-
tennas in wireless communication networks, we study
average bounded-angle minimum spanning trees. Let P
be a set of points in the plane and let a be an angle.
An a-spanning tree (a-ST) of P is a spanning tree of
the complete Euclidean graph induced by P with the
restriction that all edges incident to each point p € P
lie in a wedge of angle o with apex p. An a-minimum
spanning tree (a-MST) of P is an o-ST with minimum
total edge length.

An average-a-spanning tree (denoted by a-ST) is a
spanning tree with the relaxed condition that incident
edges to all points lie in wedges with average angle a.
An average-a-minimum spanning tree (a-MST) is an @-
ST with minimum total edge length. In this paper, we

focus on o = %’T Let A (%") be the smallest ratio of

the length of the 2%—MST to the length of the standard
MST, over all sets of points in the plane. Biniaz, Bose,
Lubiw, and Maheshwari (Algorithmica 2022) showed
that 3 < A(2F) < 2. In this paper we improve the
upper bound and show that A (2F) < 13,

1 Introduction

A wireless communication network can be represented
as a geometric graph in the plane. Each antenna is
represented by a point p, its transmission range is rep-
resented by a disk with radius r centered at p, and there
is an edge between two points if they are within each
other’s transmission ranges. The problems of assign-
ing transmission ranges to antennas to achieve networks
possessing certain properties has been widely studied
[3, 5,9, 12, 14, 15, 16, 17].

In recent years, there has been considerable research
on the problem of replacing omni-directional antennas
with directional antennas [1, 2, 4, 6, 8, 10, 11, 13, 14, 18].
Here, the transmission range of each point p is an ori-
ented wedge with apex p and angle a. Directional an-
tennas provide several advantages over omni-directional
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antennas, including less potential for interference, lower
power consumption, and reduced area where communi-
cations could be maliciously intercepted [3, 18].

Motivated by this problem, Aschner and Katz [2] in-
troduced the a-Spanning Tree (a-ST): a spanning tree
of the complete Euclidean graph in the plane where all
incident edges of each point p lie in a wedge of angle
« with apex p. They also presented approximation al-
gorithms for the cases where a = 7, %’T, and 7, with
approximation factors of 16, 6, and 2, respectively, with
respect to the MST. For a = 27” and a = 7, the ap-
proximation ratios have been improved to 1 [6] and 10
[7], respectively. Aschner and Katz further proved the
NP-hardness of the problem of computing the a-MST
for the a = %’T and o = 7 cases.

Most previous research in this context has been done
on the case where « is one fixed value for all anten-
nas [6]. Biniaz et al. [6] extended this concept to an
average-a-minimum spanning tree (@-MST): an o-MST
with the relaxed restriction that the average angle of all
the wedges is at most a. More formally, a total angle
of an must be allocated among n points p so that each
point has a sufficient allowed angle to cover all incident
edges. In the case where @ = %’T, they presented an
algorithm that achieves an @-ST of length at most %
times the length of the MST. They also proved a lower
bound of % on the approximation factor with respect to
the MST.

In this paper, we improve the upper bound on A (%ﬁ)
from 2 to £2. In fact we modify the algorithm of [6] and
obtain an @-ST of length at most 19—3 times the length of
the MST. Our algorithm involves a stronger exploitation
of the Euclidean metric than the previous work.

Our improved upper bound immediately gives an ap-
proximation algorithm with ratio %@’ (with respect to
the MST) for the @-MST problem for any o > 27” Sim-
ilar to that of [6], our algorithm runs in linear time after

computing the MST.

1.1 Notation

We use the terms point and vertex interchangeably de-
pending on the context.

To facilitate comparison, we borrow the following no-
tation from [6]. A mazimal path in a tree is a path with
at least two edges where all internal vertex degrees are
2, and the end vertex degrees are not 2. To contract a
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maximal path is to remove all vertices of degree 2 on
the path and the edges between them, and add an edge
connecting the end vertices. The angle that the inci-
dent edges of a vertex in an a-MST are allowed to fall
within is called its charge. Charges can be redistributed
between vertices. We denote the total length of edges
of a geometric graph G by w(G).

As the length of the optimal solution is not known,
we use the underlying MST of the points as a lower
bound in our analysis. We denote the smallest ratio of
the length of the %{—MST to the length of the standard
MST over all points in the plane as A (2F). In [6], it
was shown that % <A (2?“) < %

1.2 Outline

The approximation algorithm of [6] for the 2%—MST
starts with a standard MST that has maximum degree 5
(which always exists). Then it re-assigns angle charges
from leaves to inner vertices. Their approach first con-
siders the MST with all maximal paths contracted, and
then introduces edge shortcuts in each contracted path.

By exploiting additional geometric properties we en-
sure the connectivity of path vertices with less total
charge. This enables us to save some charges. The saved
charges allow us to introduce fewer shortcuts than the

original algorithm, resulting in a shorter <F-ST.

2 The Algorithm of Biniaz et al.

In this section we briefly describe the algorithm of
Biniaz et al. [6], which we refer to by “Algorithm 1”.
The algorithm starts by computing a degree-5 mini-
mum spanning tree T of the point set, where each vertex
holds a charge of %’r Then the algorithm goes through
two phases that redistribute the charges and also mod-
ify the tree. In the first phase, all maximal paths of
T are contracted (to edges), resulting in a tree with no
vertices of degree 2, and all other vertices having the
same degree as in T. The charge from the leaves are
then redistributed among the internal vertices so that
each vertex of degree 3, 4, and 5 has a charge of 4?77,
27, and %’r, respectively. Since the charge of each inter-
nal vertex with degree n is at least (1 — %) 27, which
covers any set of n edges, all vertices can cover their
incident edges. After redistribution, degree-1 vertices
have 0 charge and each degree-2 vertex holds its origi-
nal %’r charge. This redistribution retains a pool of %’r
charge that can be split among all leaves in the tree at
the end of the algorithm.
In the second phase, the edges of each path pq,ps,
.., pm that was contracted in phase 1 are split into
two matchings, M7 and Ms with equal number of edges
(if the path has odd number of edges then the last
edge is not in either matching). The edges of the

matching with the larger weight are removed, and a set
S = {(p1,p3), (p3,p5), ...} of new edges called shortcuts
are introduced (see Figure 15 of [6], which we include
here as Figure 1). By this process, the charge of ev-
ery new degree-1 vertex is redistributed among other
vertices so that each new degree-2 and degree-3 vertex
along the path has a charge of m and %’T, respectively;
this is handled in four cases based on which matching
is heavier and whether the path length is even or odd,
as shown in Figure 1. Note that the charge given to
vertices assigned degree 2 and 3 allows them to cover
any set of 2 and 3 edges, respectively.

Let M{ and M} be the union of the edges in the
smaller and larger-weight matchings of all contracted
paths, respectively. Let T” be the final tree obtained by
the above algorithm, and let E be the set of edges of T’
not in M{UM)}. Then w(T) = w(E)+w(Mj) +w(M)).
By the triangle equality we have w(S) < w(Mj) +
w(M}). Since w(M4) > w(Mj) we get

3 The Improved Algorithm

We begin by modifying the charge-redistribution of
phase 2 of Algorithm 1 with a more careful charge re-
distribution. In particular we show that the 3 edges,
that are incident to new degree-3 vertices, can be cov-
ered by 4?” — {5 charge (meaning that we can save the 75
charge). We then use the saved charge of 5 to achieve a
better approximation with respect to the original MST.
The following lemma, although very simple, plays an

important role in the design of the modified algorithm.

Lemma 1 [t is possible to save at least {5 charge from
every shortcut performed by phase 2 of Algorithm 1.

Proof. Consider a shortcut ac between two consecutive
edges ab and bc of a contracted path as depicted in Fig-
ure 2. Up to symmetry we may assume that ab is in M,
and thus it has been removed in phase 2 of Algorithm
1. Denote the angle Zbca by . Since the path (a,b, c)
is part of the MST, ac is the largest edge of the trian-
gle Aabe, and thus Zabc is its largest angle. Therefore

B<3.

Figure 2: illustration of the proof of Lemma 1.
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Figure 1: (borrowed from [6]) The contracted path is shown by black segments. The dashed-black edges belong to

M5 and the red edges belong to S.

The replacement of ab by the shortcut ac has not
changed the degree of a, has decreased the degree of b
by 1, and has increased the degree of ¢ by 1. Thus the
charge assigned to a by Algorithm 1 remains enough to
cover its incident edges. Since b has degree 1, its %"
charge is free. Algorithm 1 transfers this free charge
to ¢ to cover its new edge. We show how to cover all
edges incident to ¢ while saving {5 charge. If ¢’s original
degree (i.e. after phase 1 and before phase 2) was 4 or
5 then it carries at least 27w charge which is sufficient to
cover its edges. We may assume that the original degree
of ¢ is 1, 2, or 3, in which case it holds a charge of 0,
23” , Or %, respectlvely Thus the new degree of ¢ (after
phase 2) is 2, 3, or 4. Based on this we distinguish three
cases.

o If deg(c) = 2 then the two incident edges of ¢ are
ac and bc. We can cover these edges by a charge

of B (< %). Thus we transfer 5 charge from b to ¢
and we save %.

6
o If deg(c) = 3 then we cover 8 and the smaller of

the other two angles at ¢. Thus the three incident
edges to ¢ can be covered by charge of

2 — 3 2n+p _2n+35  bmw
= < = —,
5+< 2 ) 2 =7 2 1

Thus by transferring § 7” from b to ¢ 1t will have

charge of 5” (mcludlng its orlglnal T charge).
Thus we save charge of £ — %’ = from b.

o If deg(c) = 4 then we transfer 5 charge from b to ¢
and save the remaining 7 charge of b. The vertex ¢
now holds 32” charge (including its charge = im after

phase 1) which covers its four incident edges

57

The following is a direct implication of Lemma 1.

Corollary 2 It is possible to save § charge from every
four shortcuts that are performed by Algorithm 1.

3.1 Reversing Shortcuts

In this section, we present an approximation algorithm
that uses fewer shortcuts than Algorithm 1. In fact
the new algorithm reverses a constant fraction of the
shortcuts performed by Algorithm 1.

Theorem 3 Given a set of n points in the plane and
an angle o > 2;, there is an @-spanning tree of length
at most 13 times the length of the MST. Furthermore,
there is cm algorithm to find such an @-ST that runs in
linear time after computing the MST.

Proof. Let T be a degree-5 minimum spanning tree of
the point set, and T” be the ——spannmg tree obtained
from T by Algorlthm 1.

Consider the sequence of shortcuts introduced by Al-
gorithm 1 along each contracted path. Let s1, so, ..., Sm
be the concatenation of the sequences for all contracted
paths. We split these shortcuts into nine sets Sy, . .., Sg
such that s; € S(; moa 9) for each i € {1,...,m}. Note
that no two adjacent shortcuts in the same contracted
path will be in the same set S;. Moreover the number
of shortcuts in any two sets S; and S; differ by at most
1. Recall that the edges of each contracted path in Al-
gorithm 1 are split into two matchings M; and M,. Let
M be the set of edges that are kept in the tree (i.e. M]
is the union of the smaller-weight matchings from each
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contracted path), and let the set of edges in the heavier
matchings be M}. Among S, ..., Ss, let Sg be the one
whose corresponding edges in M] have the largest total
weight.

Our plan now is to reverse the shortcuts in S, i.e.,
to replace them by their corresponding edges in MJ.
Let S’ be the union of Sy,...,S;. Notice that |S’| >
8- (]Ss] — 1). Let C denote the pool of charges that is
obtained after phase 1 of Algorithm 1, and recall that it
contains %’T charge. For each shortcut in S’ we reassign
the charges between its corresponding points to save at
least {5 charge (as shown in Lemma 1), and add this
charge to C'. Thus the total charge of C is at least

47 7 2m

?+8'(|SS|_1) D :(|58\+1)'§~

We will show that to reverse each shortcut from Sg it
suffices to take %’T charge from C.

Consider any shortcut ac from Sg between two consec-
utive edges ab and bc of a contracted path as depicted
in Figure 3. We reverse this shortcut by replacing ac
with the removed edge ab. We also reclaim any portion
of b’s charge that was transferred to c. Thus the reverse
operation brings the charges of b and ¢ back to what
it was after phase 1 and before phase 2; in particular
it brings the charge of b back to 2?” There is one ex-
ceptional case where w(M7) < w(Ms) and the path has
odd number of edges (the last case in Figure 1 where
D3, P2, p1 play the roles of a,b, ¢, respectively). In this
case the charge of b (i.e. pz) would be % as p,, holds
the other % portion. (Since no two shortcuts in Sg are
adjacent in the same contracted path, we can analyze a
reverse operation independently of others. Notice, how-
ever, that it is possible that two or more shortcuts of
Sg are adjacent at a vertex that has degree at least 3
after phase 1. In this case, the charge of such a vertex
suffices to cover its edges after reversing the shortcuts
since it will have at least & charge added for each new
edge introduced by the process described in Lemma 1.)
The reverse operation does not change the degree of a
and thus its charge remains sufficient to cover its edges.
The reverse operation makes b of degree 2 and decreases
the degree of ¢ by 1.

We take % charge from C for b to bring it to a charge
of m, which covers its two incident edges. If deg(c) =1
or deg(c) > 3, its charge is sufficient to cover its edges.
If deg(c) = 2 then we take an additional charge of %
from C for ¢ to cover its two incident edges. In the
exceptional where w(M;) < w(Ms) and the path has
odd number of edges (the last case in Figure 1), po = b
holds % charge, so we take 2?” from C for ps to cover
its two incident edges. Since p; = c is of degree 1 or at
least 3 (as the contracted path is maximal), its charge
(acquired after phase 1) is sufficient to cover its edges.
Thus, in the worst case we take %’T from C to reverse
every shortcut.

After reversing all shortcuts in Sy, the pool C' is left
with at least 2?“ charge which can be distributed among
the leaves of the resulting tree.

Figure 3: Left: The tree T” before reversing shortcut
ac. Right: The tree T" after reversing ac.

Let 7" be the 5-ST tree obtained from 7" after re-
versing all shortcuts in Ss. Let E be the set of edges of
T” not in My U M. Let E’ be the set of all edges of
M{ U M} that correspond to the shortcuts in Sg. Let
M{" = M{\ E' and M) = M)\ E’ (i.e. all edges in
M and MY}, respectively, with a shortcut between their
endpoints in 7). Then,

w(T") = w(E) + w(E") + w(S") + w(M{)
w(E) +w(E") + w(M') + w(My) +w(M{)
w(T) + w(MY).

IN

Since Sg has the largest corresponding M| weight,
w(M{) < 3w(M{) < §- fw(T) = §w(T). Thus,

w(T") < w(T) + gw(T) =B

O

With Theorem 3 in hand, we report the following
bound for A (%’r)

Corollary 4 % <A (2?”) < %.

4 Conclusions

An obvious open problem is to further tighten the gap
between the upper bound of % and lower bound of %
for A(%’“) This could be done by either introducing
a new algorithm with a better approximation factor, or

by finding a new set of points whose 2?’T—MST must have
a weight of more than % times that of the MST.
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Weighted shortest path in equilateral triangular meshes*

Prosenjit Bose'

Abstract

Let 7 be a tessellation composed of equilateral tri-
angular regions, in which each region has an asso-
ciated positive weight. We present two approxima-
tion algorithms for solving the Weighted Region Prob-
lem. Our algorithms are based on the method of
discretizing the space by placing points on the cells
of the tessellation and using Dijkstra’s algorithm for
computing the weighted shortest path in the geomet-
ric graph obtained by such a discretization. For a
given parameter ¢ € [0,1], the weight of our paths are
(1+ 14(4\/5\/\/@+87\/@78)716(7+5)) < 14039 and
(—4v2\/V/Be+8+/6e+8)(7—e) = ’
1 + ¢ (using fewer points) times the cost of the actual
shortest path.

1 Introduction

In this paper, we study optimal obstacle-avoiding paths
from a starting point s to an ending point ¢ in the 2-
dimensional plane. Shortest path problems are among
the most studied problems in computational geometry.
These problems have applications in several areas such
as robotics [16], video-games [11, 17], and geographical
information systems (GIS) [7], among others.

Mitchell and Papadimitriou [13, 12] examined a gen-
eralization of the shortest path problem, called the
Weighted Region Problem (WRP). They allowed the
two-dimensional space to be subdivided into regions,
each of which has a (non-negative) weight associated to
it, representing the cost per unit distance of traveling
in that region. They provided an approximating algo-
rithm which computes a (1 + ¢)-approximation path in
O(n®log “YW) time, where N is the maximum integer
coordinate of any vertex of the subdivision, W (respec-
tively, w) is the maximum finite (respectively, minimum
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100/MCIN/AEI/ 10.13039/501100011033 of the Spanish Min-
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non-zero) integer weight assigned to faces of the subdi-
vision.

Motivated by this result, several authors proposed al-
gorithms for computing approximated paths, reducing
the running time and producing geometric problem in-
stances with fewer “bad” configurations (e.g., the De-
launay triangulation is used to maximize the minimum
angle).

The most common scheme followed in the literature
is to position Steiner points, and then build a graph
by connecting pairs of Steiner points. An approximate
solution is constructed by finding a shortest path in this
graph, by using well-known combinatorial algorithms
(e.g., Dijkstra’s algorithm).

Aleksandrov et al. [3, 4] proposed placing Steiner
points on edges of an appropriate mesh, and then, in-
terconnecting the Steiner points within each face. Since
an infinite number of Steiner points would be required
for the approximation, they constructed a star shaped
polygon around each vertex of the mesh; ensuring that
Steiner points are placed outside these regions. They
also deal with the problem of large sized graphs. By de-
riving geometric properties of Snell’s law of refraction
for a discrete domain, they reduced the search space.
They employed a pruned Dijskstra’s algorithm where
the execution is restricted to a sparse set of potential
edges, given that the preceding edge on a path is known.
Employing all these steps together and using geometric
spanners they obtained a (1 + €)-approximation path.

Reif and Sun [18] used the same discretization ap-
proach as in [4]. They employed an algorithm called
BUSHWHACK to compute an optimal path in the dis-
crete graph by dynamically adding edges.

In addition, Aleksandrov et al. [5] used a similar
approach as in [4], but placing, for the first time, the
Steiner points on the bisectors of the angles, and not on
the face boundaries. However, this complicates compu-
tation of the discrete path because now the edges join
Steiner points that belong to neighboring faces.

See Table 1 for the time complexity of the approxi-
mation algorithms designed following these schemes.

Recently, it has been shown that the WRP cannot be
solved exactly within the Algebraic Computation Model
over the Rational Numbers (ACMQ) [6], i.e., a solution
to an instance of the WRP cannot be expressed as a
closed formula in ACMQ. This emphasizes the need
for high-quality approximate paths instead of optimal
paths. So, in practice, the geometric space is discretized
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Time complexity Reference
(¥ log ") [13]
O(N'log (00) 1 log ) [3]
O(N?%log ()2 Jog L +10gn)) [4]
O(N?log ()2 log g log 1) (18]
O(N?log (V) 2 - log % log 1) 5]

Table 1: e-approximation algorithms for the Weighted
Region Problem.

using grids. The concept of grid is essential and heavily
used in digital elevation models (DEMs) [2, 10] and in
video games [8]. Because of their symmetry and natu-
ral neighborhood structure, regular triangle meshes are
preferred over square and hexagonal.

Although it is the most complex among the three reg-
ular tessellations (it has the largest number of vertices),
it has various advantages in applications, e.g., the dis-
tance between the vertices of adjacent cells is always
the same, which simplifies distance calculations. Trian-
gles can represent complex shapes, and they can include
hexagonal grids. Although they are built with triangles
in two different orientations, each pixel has 12 neighbors
sharing at least a corner, which gives a valid alternative
for applications in image processing. Recently, various
image processing algorithms have been defined and im-
plemented for the triangular grid, such as discrete to-
mography [14, 15], thinning [9], and mathematical mor-

phology [1].

1.1 Our results

In this paper, we present algorithms for computing ap-
proximate shortest paths between two vertices s and t
on a triangular tessellation. We work with the particu-
lar case in which every cell of the mesh is an equilateral
triangle. In addition, each cell has a positive real weight
associated to it.

Our results are based on a previous work of Aleksan-
drov et al. [5]. With a finer analysis, we improve the
results in two different ways:

1. If we use the same number of Steiner points as
in [5], we prove that the approximation factor is
minimized when placing the Steiner points on the
edges of the cells. In addition, we provide an upper
bound on the quality of the approximation path
with respect to the actual shortest path. Our re-
sult gives an approximation factor which is at least
% > 14 0.428¢ times better than the pre-
vious result.

2. If we decide to maintain the approximation factor
in each of the cells, we provide a discretization us-
ing fewer Steiner points than in [5]. We increase the

distance between Steiner points in each segment by
about a factor of 71(‘)/5 ~ 0.175 — 0.025+/¢, which
decreases the running time of the algorithm to de-
termine the approximation path.

To solve these problems, we use the traditional tech-
nique of partitioning the continuous 2D space into a
discrete space by designing an appropriate graph. Dif-
ferently from the previous work of Aleksandrov et al. [5],
the discretization is done by placing Steiner points along
a segment from each vertex of the mesh inclined by « ra-
dians. Then, we minimize the number of Steiner points
to be added by optimization over the angle o € [0, Z].
All these improvements were obtained by taking into ac-
count trigonometric properties from the points of entry
of the paths into the cells and carrying out a thorough
analysis when optimizing the results.

The paper is organized as follows: we start Section 2
by introducing the definitions that are needed for the
forthcoming calculations. We also provide Lemma 2,
where two properties about the entry and leaving points
of the shortest path are calculated. Then, in Section 2.1,
with the same number of Steiner points proposed by
Aleksandrov et al. [5] we improve their results on the
approximation factor of the whole path. Similarly, in
Section 2.2, we fix the approximation factor of 1+ 5
for each segment joining two points on the edges of a
cell, and we optimize the number of Steiner points to be
placed in each triangular cell. Finally, in Section 3 we
compare the results that we obtain with the previous
results from [5].

2 Equilateral triangle mesh

Let T be a triangular tessellation in the 2-dimensional
space. We will suppose that T is a connected union
of a finite number of equilateral triangles, denoted by
Ty,...,T,. Two triangles of the set can share a ver-
tex, an edge, or not being adjacent. Each face T;, i €
{1,...,n}, of the tessellation has a positive weight w;
associated to it. This weight represents the cost of trav-
eling through a face per unit of Euclidean distance.
Any continuous (rectifiable) curve lying in 7 is called
a path. Every path in 7T consists of a sequence of seg-
ments, whose endpoints are on the edges of 7. Each of
these segments is of one of the following two types:

e face-crossing: the endpoints belong to adjacent

edges;

e edge-using: the endpoints belong to the same edge
of a face.

The cost of a path 7 is given by ||| = >0, wil|mi],
where ||7;|| denotes the Euclidean length of the inter-
section between 7 and a triangle T;. In case m; is an
edge-using segment, then the cost of traveling along that
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Figure 1: d(z) is the length of the dotted segment. The
vertex vicinity of v is depicted in gray.

edge is the minimum of the weights of the triangles in-
cident to the edge. Given two distinct points s and ¢
in 7, a shortest path 7(s,t) is a path that minimizes
the weighted distance between s and ¢t. Without loss of
generality, we may assume that s and ¢ are vertices of
the tessellation.

A path 7(s,t) is represented by a sequence of points
s =ag,...,ap =t lying on the edges. The points a;, 7 €
{1,...,£ — 1}, that are not vertices of the tessellation
are called bending points of the path.

Following notation from [5], the function d(x) is de-
fined as the minimum Euclidean distance from a point
x on a side of a triangle to the boundary of the union
of the faces containing x, see Figure 1.

For each vertex v of the tessellation T, let wpaz(v)
and wpmin(v) be, respectively, the maximum (finite)
weight and the minimum weight of the faces adjacent
to v. Let r(v) be the weighted radius of the vertex v
defined as follows:

Wmin
(V) = 2t d(o)

Then, for each face adjacent to v, an equilateral tri-
angle with side length er(v) is defined. Around v, a
regular hexagon S(v), called the vertex-vicinity of v, is
obtained, see Figure 1. Let e; be the edge of T} that is
encountered first when traversing the edges of T); from v
in counterclockwise order. We also define ¢, (j, ) as the
segment in 7} from v inclined by o radians with respect
to e;, see Figure 2.

Definition 1 Let T; be an equilateral triangle of the
tessellation T, and let v be a vertex of T;. We define a
set of Steiner points po,p1,...,px on L,(j, ) by:

lpi—1pi| = a(e) sinalvp; 1|, forie{l,... k}, (1)

where a : (0,1] = R, pg is the intersection point between
£,(j, ) and the boundary of S(v), and k is the largest
integer such that |vpg| < £,(j, ).

Lemma 2 Let e;, es be two edges adjacent to v in
T;, and let x1, w2 be two points in e; and ey, Tespec-
tively. Let p' be the intersection point between |xixs]
and £,(j,a). Let p be the closest Steiner point to p'.
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Figure 2: Illustration of Lemma 2.

e Let 0 be the angle Zpx1p', then

0  2v/2Vasina+2—asina — 4
tan — < . (2)
2 a(cosa — 1)
° Let A Qﬁ\/asina+2fasina74 and B —

a(cosa—1)

2v24/asin (3 —a)+2—asin (Z—a)—4 . then

a(cos (5 —a)—1)

AB
< .
feap +pa| < (14 220 ) |zl (9

Proof. Let p’ belong to the segment [p;, p;+1]. We want
to calculate an upper bound on the value of the angle 6,
for any x; and zo. It is well known, that 6 is maximum
when the circle through p,p’ and z; is tangent to eq.
So, let ¢ be this point of tangency, and let C' be the
center of the circle. Then, an upper bound on the angle
0 is given by the angle 8 = Zpgp’, i.e., 0 < 5. Let p
be the radius of the circle through pgp’. Let p + § be
the distance from p to e;, see Figure 2. We define the
angle /p'pC as ¢. So, considering the triangle formed
by p,C and the midpoint of the segment pp’, we have
that m = 5 + 8+ ¢ = ¢ = 5 — 8. We also define the

angle ' as ' = p —a = § —  — a. Hence,

hS)

p+s _ p(ltsin(5—-a))
[vp| [vp] )

sing =2 =d=psin(f§ -8 —a)
sina =
Note that the angle $ is maximum when p’ is the
midpoint of the segment p;p;+1. Thus, if p = p;, and
using equation (1) with the triangle Agp;p’, we get that

€1



34" Canadian Conference on Computational Geometry, 2022

. (14sin (3 —B-a))
R e S - 2]
sin g = =
2p 2p
_3(+sin(G-F—a)) 3(1+cosfcosa—sinfsina)
9 2
2 §in [ sin « 2(1 + cosBcosa
o sing 4 2omPsna_ 5 Jeose)
2 2
24+ 2sina 2(1 4+ cos B cos o
o sinp(2HEsme) _ 0+ cosfoosa)
2 2
2(1 + cos B cos o
Ssinf = 3 6 )
2—|—%sma
2,/gsina+1— gsina —2
@tané: 2 :
9 Z(cosar— 1)

_ 2v/2Vasina + 2 —asina — 4
N a(cosa — 1) '
Now, suppose that p = p;41. Then, following an

analogous reasoning as before, and using the fact that
|vpi| < |vp'| for triangle Agp'p; i1, we get that

m. 1+sin (Z —B—«
T S S
2p 2p
S(1+sin(f —B8—a))
< 2
I5) 2v/2Vasina + 2 —asina — 4
& tan — < .
2 a(cosa — 1)

From the results above, we get that § is maximized
when p = p;, hence equation (2) is proved.

Finally, we prove equation (3). Let 6, 6;, and 65
be the angles of the triangle pxixo at p,z1, and xo,
respectively, see Figure 3.

Since 01 + 05 + 0 = 7w, we known that

2sin % sin %
|z1p| + [pz2| < | 1+ 7 |z172]

sSin 5

2
2tan & tan &
22) 212
Hence, using equation (2) for #; and 63, we get the
desired formula. O

_ [y 02
1 —tan 5 tan 5

The results in Lemma 2 depend on the value of a
function a(e). In order to improve the results in [5]
for equilateral meshes, we need to give a value for this
function.

2.1 Fixing the number of Steiner points

We first fix the distance between consecutive Steiner
points, which implies fixing the total number of Steiner
points in each triangular face. In this way, we are

Figure 3: Illustration of Lemma 2.

improving the upper bound on the distance from x;
to zg through a Steiner point p. In [5], the distance
between Steiner points on a segment was defined as
Ipi_1pi| = \/gsingh)pi_l\, where 8 = 2a. So, if we
substitute a(e) = /5 in equation (2), we get that:

0,  2V2\/\/5sina+2—/Ssina—4
<

t —_—
g = V/5(cosa —1)
. br _ Qﬁ\/\/gsin(gfoz)+27\/§sin(§fa)f4
an == = z T
2 V5(cos (5 —a)—1)

where 61, and 05 are the angles of the triangle Apzixo
at z1, and x4, respectively, see Figure 3.

We want to minimize the upper bound on equation
(3) when a(e) = /5. Thus, we get that this value is
maximized when a = %, i.e., when the Steiner points are
placed at the bisectors of the triangles, and minimized
when a = %, i.e., when the Steiner points are placed on
the sides of the triangles. Hence, using Lemma 2 when
placing the Steiner points on the sides of the triangles

gives us the following result:

Proposition 3 Let x1 and x5 be two points on two
edges e1 and ez of a triangle T, and outside the ver-
tex vicinity of the vertex v incident to ey and es. If p
is the Steiner point closest to the intersection between
segment x1x9 and the segment £,(j, ), then

4\&\/\/&+8—\/6?—24)|m 2
—4v/21/V/6e + 8 + /6 + 8 e

|z1p| + [pz2| = <

Once we have the approximation factor in each of the
cells, we need to calculate the approximation factor of
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the whole path. We first define a graph G. that consists
of a set of vertices V;, and a set of edges F.. Using the
corners of the triangles and the set of Steiner points in-
troduced in Definition 1, we create the set of vertices V..
For the set of edges we need the notion of neighbor bi-
sectors introduced by Aleksandrov et al. [5]. A bisector
is a neighbor to itself. Two different bisectors are neigh-
bors if they belong to the same face of 7. Now, consider
a pair (¢1,¢3) of neighbor bisectors. We join any pair of
nodes p and ¢ lying on ¢; and /5, respectively. The set of
all pairs (p, ¢) is the set E. of edges. Once we have the
graph G associated to the discretization, we proceed to
compare the weighted length of the approximation path
and the actual shortest path in Theorem 4.

Theorem 4 Let 7(s,t) be a weighted shortest path be-
tween two different vertices s and t on T. There
exists a path 7(s,t) in Ge such that ||7(s,t)]] <
<1 + 14(4v2v/ \/@+8—\/@—8)—16(7+6)> (s, ).
(—4v2\/\/Be+8++/6e+8)(T—¢) ’

Proof. Let (s = vg,v1,...,0, = t) be the ordered set
of vertices of T such that 7(s,t) intersects their vertex
vicinities. Let a;,b;, @ € {0,...,n}, be, respectively,
the last and first bending point on 7(s,t) that is in the
vertex vicinity of v;. Thus, we obtain a sequence of
bending points s = by, ag, b1,a1,...,0p-1,bn,a, =1 on
7(s,t) such that segments of m(s,t) between a; and b;
are not contained in the vertex vicinities.

Consider the subsegment 7(a;,b;y1), for some 0 <
i < n. A subpath 7’(v;,v;+1) is defined [5] as the path
from v; to v;4+1 along the sequence of bending points
of m(a;,b;11). Using the triangle inequality, the fact
that a; € S(v;), bit1 € S(vi+1), and the definition of
weighted radius, we get that

7" (vi, vig 1) || < NJviaill + |17 (@i, big 1)l + [|bix1vigal]

< Zwmin(v)d(v3) + |w(as, bir)|
+ ;Wmin(vi—i-l)d(vi—i-l)-
Therefore, we obtain the path 7'(s,t) = w’(s,vl) u
7' (v1,v2)U.. . Un (vp—1,t). Let xé, j=1,...m, be the
inner bending points of the subpath m(a; = ), b1+1 =
Ty,41). Foreach j = 0,...,m, we define the point p} to
be the closest Steiner point to the intersection between
[z}, 2%, 1] and £,(j, §), where v is the common endpoint
of the edges containing =% and x;
path 7 (s,
where

;. Now, we create the
t) =7"(s,v1) U (v1,v2) U...UT"(vp—1,1),

(Ui7p67 xiapiaxé7 e 7$£n7p£n7vi+1)-

Let A = 8Y2VV0e48-2V6e—32 1y 110 from (4) that
—4v/2\/V/Be+8+1/6e+8

[[7" (vi, vig )| < (14 A)||7 (3, viga) |- Thus,

77”(’01'7 UiJrl) =

64

n—1 n—1
17" (s, ) = D _llm” (i, vign) || < (L4 A) D17 (w3, viga) |
i=0 i=0
— ER;
(1+4) Z(HW (ai, bit1)|| + 7 )7 (5)
i=0
where K; = Wimin(0:)d(V;) + Wmin(Vig1)d(Vig1), SO

it remains to determine an upper bound for the sum
S ki So, using the definition of d(-) it follows that

ki < lviail| + 2|7 (@i, biya) || + [|biv1viga]]
14
Ki < mllﬂ(ai,bm)ll-

ER;
< 2[|m(as, biy1)|| + 7@ ==
This, when substituted in equation (5) implies that

1

3
|

ER;
(+4) Y (Ir(as b + )
1=0
— e 14
< 4 ) Y (I bis)l + 5 oo, bes)
i=0 €
n—1
= (1 ) TEE S, b < (14 A7 (s, )]
=0

(6)

Finally, two consecutive Steiner points p’ and p,
lie on neighbor sides, and wv; belongs to the same
edge as p) and v;4; belongs to the same edge
as pi.. Therefore, the sequence of points (v; =
ph,pi, ..., pl, = viy1) defines a path 7(v;,v;11), such
that || 7(vi,vit1)ll < 7" (vi,vigr)|l. I we com-
bine all the paths 7(s,v1),...,7T(vn—1,t), we get that
175, )]l < 7" (s, D]l < (1 + A)ZE[|n(s, D]|. And the
result is proved. O

2.2 Fixing the approximation factor of segment join-
ing two points

The other parameter that we can fix is the approxima-
tion factor in each of the triangular cells. By doing this,
we are optimizing the number of Steiner points placed
in the faces. Using the approximation factor given by
Aleksandrov et al. [5], we prove that the distance be-
tween consecutive Steiner points can be decreased, see
Lemma 5. Due to space limitations, we defer the proof
to the full version of the paper.

Lemma 5 Let e1, es be two edges adjacent to v in T;,
and let x1, T3 be two points in e; and eq, respectively.

Let |pi—1pi| = %Sm%h’pi—ﬂ, ie{l,... Kk},

be the distance between two consecutive Steiner points in
side ey. Let p be the closest Steiner point to x4, then
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Figure 4: Comparison of approximation factor on a cell.

The red function represents y = 14 § from [5], and
4v2\/V6e 18— V6e—24 )

—4y/2\/\Be+8+1/6e+8

the blue function represents y = <

from Proposition 3.

9
9] + [pral < (14 5) laaaal

The next lemma gives us an estimation on the num-
ber of Steiner points inserted on a particular side of a
triangle and on their total number. The result is ob-
tained by using Lemma 5, and the proof can be found
in the full version of the paper.

Lemma 6 1. The number of Steiner points inserted
on a side of a triangle T; is upper bounded by
log, 2! 3(et4)3

(v)
logy e (2e+4v/eVe+4)(20e2+76e—(2e+24)/e\/e+4+48)

2. The total number of Steiner points on T is less than

on(e+4)3 2
C(T) (2e+4+/e/e+4)(20e2 476 — (2e+24)\/e/e+4+48) 1Og2 e’
24|

where C(T) =

logs miny e 7 (v)
log, e

3 Discussion and future work

We provide some figures where we compare our results
with the ones given by Aleksandrov et al. [5]. First,
Figure 4 shows the error we commit when the segment
between two points on the boundary of two adjacent
edges of the tessellation is approximated by the subpath
through a Steiner point. The red function represents the
error obtained in [5], while the blue function represents
the error obtained in Proposition 3, for values of € in
[0, 1]. Looking at Table 2, we notice that the error com-
mitted by our approach in each cell is about 70% less
than using results in [5].

Secondly, in Figure 5 we depict the error obtained
when the actual shortest path is approximated by the
approach in [5] (see red function) and our result in The-
orem 4 (see blue function). The error is shown for values

log, % .

e | 4v2V/Voet+8—V6e—24
€ 1 + 3
—4v2\/V6e+8+16e+8
0 1 1
0.1 1.05 1.0044
0.2 1.1 1.0088
0.4 1.2 1.017
0.6 1.3 1.025
0.8 1.4 1.033
0.9 | 1.45 1.037
1 1.5 1.041

Table 2: Comparison of approximation factor on a cell.

2.2 A

1.8 1

1.6 1

141

1.2 1

1 : : : :

0 0.2 0.4 0.6 0.8 1
Figure 5: Comparison of approximation factor of
paths.  The red function represents y 1+ ¢
from [5], and the blue function represents y
(1 n 14(4\/5\/\/@+8—\/&—8)—16(7+e)) from Theorem 4.

(—4v2y/V/Be+8+/6e+8)(T—e)

of ¢ in the interval [0, 1]. These two functions show that

5049)(7=¢) times better than the

our result is at least 61
one provided in [5], i.e., about 150%. See also Table 3
for certain values of €.

Recall that, in Figures 4 and 5, the approximation fac-
tors are obtained by using the same number of Steiner
points in our result and in [5].

Finally, let p;, p;+1 be two consecutive Steiner points
on a segment from a vertex v on a triangular cell inclined
by a radians. Then, Figure 6 represents the distance be-
tween p; and p;1, divided by the distance |vp;|. The
function in red shows the results from [5] when placing
the points on the bisector from v, while the function in
blue shows our results when placing the points at the
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c l14e |1y 14(4v2y/ V62 +8—/6e—8)—16(7+¢)
(—4v2\/V6e+8+/62+8)(T—c)

0 1 1

0.1 1.1 1.033

0.2 1.2 1.068

0.4 1.4 1.14

0.6 1.6 1.217

0.8 1.8 1.3

0.9 1.9 1.343

1 2 1.3889

Table 3: Comparison of approximation factor of paths.

- 1 /5 | 2(e+2VeVetd)
2V 2 14

0 0 0
0.1 ]| 0.111 0.673
0.2 | 0.158 0.968
0.4 | 0.223 1.387
0.6 | 0.273 1.705
0.8 | 0.316 1.966
0.9 | 0.335 2.081

1 | 0.353 2.188

Table 4: Comparison of distance between consecutive
Steiner points on the same cell.

sides of the cells. This value, using our result, is about
7;(\)ﬁ times larger than the value given by Lemma 5,
which is an improvement of the bound of about 500%.
See also Table 4 for some values of € € [0,1]. For this
result, we are using the same approximation factor for
the segment between two bending points of the short-
est path on the boundary of the same cell as in [5].
Moreover, another consequence of Lemma 5 is that the
number of Steiner points that we add on each cell is less
than in [5], see also Lemma 6, part 1. Hence, we de-
crease the total number of points that are added to the
triangulation, see Lemma 6, part 2. Compared to [5],
our method reduces the number of Steiner points in at
least 4.5 times. Therefore, the space and time complex-
ity of algorithms that compute weighted shortest paths
(e.g., Dijkstra’s algorithm) using our approach is less
than the complexity of these algorithms using previous
results.

As future work, it would be interesting to work with
other types of regular grids, e.g., square or hexagonal,
or take into account other realistic scenarios like trian-
gulated irregular networks. Another possible extension
would be to work with 3D environments.
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Figure 6: Comparison from Lemma 5. The red function
represents y = 3./5 from [5], and the blue function

2(e+2+/ev/e+4

represents y = prw} ) from Lemma 5.
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Maximum Subbarcode Matching and Subbarcode Distance

Oliver Chubet *f

Abstract

We investigate the maximum subbarcode matching
problem which arises from the study of persistent ho-
mology and introduce the subbarcode distance on bar-
codes. A barcode is a set of intervals which corre-
spond to topological features in data and is the out-
put of a persistent homology computation. A barcode
A has a subbarcode matching to B if each interval in
A matches to an interval in B which contains it. We
present an algorithm which takes two barcodes, A and
B, and returns a maximum subbarcode matching. The
subbarcode matching algorithm we present is a gener-
alization of the up-right matching algorithm given by
Karp et al [11]. Our algorithm also works on multi-
set input. It has O(nlogn) runtime, where n is the
number of distinct intervals in the barcodes. We show
that the subbarcode relation is transitive and induces
a partial order on barcodes. We introduce subbarcode
distance and show that the subbarcode distance is a
lower bound for bottleneck distance. We also give an
algorithm to compute subbarcode distance, which has
expected O(nlog®n) runtime and uses O(n) space.

1 Introduction

In persistent homology the barcode is a multiset of in-
tervals encoding topological information. There is new
interest in the implications arising when one has only
partial knowledge or an approximation of the barcode.
For example, in recent work, Chubet et al [3] establish
that one can use subbarcodes in topological data anal-
ysis to make strong claims about an unknown function
given only upper and lower bounds. Having efficient
subbarcode matching algorithms allows one to imple-
ment strategies suggested by these new theoretical de-
velopements. The subbarcode matching algorithm and
subbarcode distance are practical tools for comparing
the topological invariants of two datasets.

2 Background

A multiset A = (A,w4) is a pair consisting of a set A
and a multiplicity function wy : A — N. The weight of

*North Carolina State University,oliver.chubet@gmail.com
TThis work was partially funded by the NSF under grant CCF-
2017980.
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A is the sum of the multiplicities of the elements of A,
denoted, |A| = Z wal(a).
acA
A matching M between multisets A = (A,w4) and
B = (B,wp) is a multiset M = (M, w) where M C AxB
with multiplicity function w : M — N such that

Z w(a,b) <wal(a) for all a € A and
beB

Z w(a,b) <wp(b) for all b € B.
acA

A matching M is a maximum matching if it has maxi-
mum weight over all valid matchings. If M| = |A| = |B|
then we call M a perfect matching.

An interval is a pair (as,ay) for az,a, € R. See
Figure 1. Given intervals s = (s1,sgr) and b = (br,bg),
if

bLSSL, and SRSbR.

then b contains s, denoted s < b. Containment of inter-
vals defines a partial order on intervals.

A barcode B = (B,wg) is a multiset where B is a
set of intervals. A subbarcode matching from S to B is

Y y==c
. ______
®--r---
®---
®---r-
| FHH 1 =

1
I [ | 1
Figure 1: We may represent intervals as points in R? by
taking their endpoints as coordinates .

a multiset matching M = (M, wyy), of S and B, where
(s,b) € M implies s < b. See Figure 2.

The maximum subbarcode matching problem is to
find a subbarcode matching of maximum weight. If
there exists a subbarcode matching M from A to B such
that M| = |A[, then we call A a subbarcode of B, de-
noted A C B.
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T

Figure 2: Any point in the upper shaded region contains
p as an interval. Any point in the lower shaded region
is contained in p as an interval.

3 Related Work

Traditionally, persistence diagrams have been compared
via bottleneck distance. Bottleneck matching is an
instance of the assignment problem. The traditional
Hopcroft-Karp algorithm for maximum matching in bi-
partite graphs runs in O(n3) [10]. However, Efrat et
al [5] reduced this runtime to O(n? log n) by using a ge-
ometric data structure. Kerber et al [12] also improved
this algorithm for persistence diagrams, using k-d trees.

We use a sweepline approach in our subbarcode
matching algorithm [1]. Our algorithm builds upon the
up-right matching algorithm given by Karp et al [11].
In the case of matching finite subsets of the unit square,
this algorithm has been proven to find the optimal
matching. Two additional related problems include the
maximum matching problem for intersecting intervals
[2] and maximum matching in convex bipartite graphs
[7, 13, 8]. The strategy used in these algorithms is to
avoid backtracking to keep the total operations per ele-
ment small.

4 Subbarcode Algorithm

We present an algorithm to compute a linear-sized
maximum multiset subbarcode matching. See Figure 4.

SUBMATCH(A, B):
Input Two barcodes: A = (A,wa), B=(B,wp)
Output A subbarcode matching from A to B

Sort AU B by the z-coordinates.

Initialize T to be an empty balanced binary search
tree to store points from B ordered by y-coordinate.
Initialize residual weights r;, = wp(b) for each b € B
and r, = wy(a) for each a € A.

Initialize (M,W) to store the matching and multiplici-
ties.

xT

Figure 3: Two barcodes for which there exists a
quadratic size subbarcode matchings.

For each p € AU B, where p = (py,y):

If p € B, insert b into T.
Else

While r,, > 0:
Search for b € T with minimum b, such that
by > py.
If there is none, then break.
Let r = min{r,,rp}.
Add (p,b) to M and set W[(p,b)] = r,
then update the residual weights of p and b:
r,=r,—randr, =1, —T.
If r, = 0, then remove b from T.

Return (M, W).

When both input weight functions uniformly map all
elements to 1 this algorithm reduces to the up-right
matching algorithm presented by Karp et al [11]. In
this case, it is clear that the output size is linear. How-
ever, in the case where we are matching multisets, it is
possible for a subbarcode matching to have quadratic
size.

For example, suppose there are n intervals in bar-
codes A and B respectively such that all intervals have
multiplicity n and all intervals in A are subbars of all
intervals in B, as depicted in Figure 3. Then a valid
matching could match each interval in A once with each
of the intervals in B. This illustrates the significance of
a linear-size guarantee.

In the following lemma we prove that the output re-
mains linear.

Lemma 1 Let A = (A,wa) and B = (B,wp) be bar-
codes. The subbarcode matching Ml = SUBMATCH(A, B)
has size O(n), where n = #A + #B.

In particular, #M < n.

Proof. Let (M,w) = SUBMATCH(A,B). Let G = (V, M)
be the weighted graph induced by taking M as the edge
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Figure 4: We find a maximum subbarcode matching from A to B (circles and squares respectively) labeled by their
multiplicities. We iterate through A in order of z-coordinate and match to the point in B with lowest y-coordinate.
Each edge represents the match labeled with the multiplicity, and the residual multiplicities are updated for A and

B accordingly.

set with weights given by w. All edges (a,b) € M C
A x B. Let m =#M, and n = #V.

We know m = % > _vev deg(v) to be a property of all
graphs. Because G is bipartite, it is sufficient to consider
only the degrees of elements in A. We partition A into
high and low degree nodes,

H={acA| deg(a) >2}and L =A\ H.

Then, m = Z deg(a) + Z deg(a).
acH acl
For a € H, consider the sequence (by,...,b,) of all

points in B adjacent to a in G, where by is the first
point to match to a and b, is the last point to match
to a. Then for b; € {by,...,b,—1} we know that a is
the last point to match to b;, because the algorithm
does not proceed to matching b;;1 until the remaining
multiplicity of b; is matched.

Each point in B can only have one point being the
last to match to it, so

Z deg(a) < #H + #B and Z deg(a) < #L.
acH a€l

Therefore, m < #H + #L + #B < n. O

Theorem 2 SUBMATCH uses O(n) space.
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Proof. The only structures maintained during
SUBMATCH are the input, the output, and the
search tree. The input and search tree are linear size.
By Lemma 1, the output of SUBMATCH is linear size as
well. Thus total space used is O(n). O

Theorem 3 The matching from SUBMATCH is maxi-
mum.

Proof. First consider the case where A = (4,w4) and
B = (B,wp) with wqa = wp = 1. Then SUBMATCH
reduces to the up-right matching algorithm given by
Karp et al [11], which has previously been shown to be
optimal.

If we consider two barcodes A = (A,ws) and B =
(B,wg), we can construct A’ = (4’,w'y), B’ = (B',w})
such that Va € A we have wy(a) distinct copies a(® of
ain A, for i € {1,...,wa(a)}. Similarly, b9) € B’ for
je{l,...,wx(b)}. Then we have reduced the input to
the first case described above. O

Theorem 4 SUBMATCH computes a linear-sized maxi-
mum subbarcode matching in O(nlogn) time.

Proof. Let A = (A,wa) and B = (B,wp) be barcodes.
Let T be search tree constructed in SUBMATCH and let
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M = (M,w) be the output matching. Let G = (V, M)
be the graph induced by taking M as the edge set.
Given a € A each time we search T either we find a
match or we don’t. We find a match deg(a) times, and
we don’t find a match at most once. It follows, the num-
ber of searches is at most ) ,(deg(a)+1) = #M +-#A.
In Lemma 1 we proved that #M is linear size. Thus,
the number of searches is O(n). Furthermore, there are
O(n) insertions and deletions and T is balanced, so each
search operation takes O(logn). Therefore, the runtime
is O(nlogn). O

5 Subbarcode Transitivity

For intervals a and b, recall that a < b if b contains a.
Transitivity of set matching follows easily by compos-
ing the matchings. However, functions over multisets do
not have a well-defined composition. In 1957, Ford and
Fulkerson showed that Hall’s Theorem for systems of
representitives could equivalently be expressed in terms
of flow networks [6, 9]. We use this approach to show
the existence of a subbarcode matching is transitive.

Lemma 5 (Transitivity) If A C B and B C C then
ACC.

Proof. Given barcodes A = (A,w4), B = (B,wp), and
C = (C,we) with subbarcode matchings (M,wys) for
A C B and (T,wr) for B C C, there is a corresponding
network, Net(G), where G = (AUBUC, MUT) is a
digraph [6, 4]. See Figure 5.

Figure 5: An (s,t)-flow f in Net(G) corresponds to a
matching of A and C.

If f is a max-flow in Net(G), then the corresponding
matching is maximum and the value of the flow, |f], is
equal to the weight of the matching [4]. In Appendix A

A B c

&
-

=\

s _~W.

Figure 6: The the capacity of an arbitrary cut, (L, L)
of Net(G).

we show that ¢(L, L) > |A| for any cut (L, L) of Net(G).
See Figure 6. Therefore A C C. 0

Corollary 6 The relation = defines a partial order on
barcodes.
We call the poset of barcodes (Bar,C).

6 Shifted Subbarcodes

There are cases where the maximum matching is not
sufficient. Rather, one prefers to know “how far oft” two
barcodes are from having a subbarcode matching. For
example, if we have only an approximation to the input,
we can consider the maximum matching after shifting
one set by distance . There are cases when only a small
shift is needed to obtain a subbarcode matching.

If A Z B, we can determine the minimum shift of
A such that the translation results in a subbarcode of
B. We use this minimum shift to define a metric on
barcodes.

A §-shift of A = (A, w) is a barcode A where

A% = (6(A),wo 1) and
d(a) == (az + d,ay —9).

Let A and B be barcodes such that |A| = |B|. The
subbarcode distance is

= inA° C B, minB’ C A}.
ds(A,B) max{%nzlglA 715%,%1121818% C A}

The subbarcode distance is similar to Hausdorff dis-
tance in that it is bidirectional and asymmetric in na-
ture.

Lemma 7 (Approximation is additive.) If A° T B and
B C C then A°T¢ C C.

Proof. Let A, B, and C be barcodes such that A’ C B
and B C C. Consider intervals, a and b.

If a < b, then a, > b, and ay, < by.
Then, ay + 6 > b, +d and ay — 6 < by — 4.

Thus, §(a) < 4(b).

By extension, if A C B, then A° C B°. By assump-
tion, A® C B, so it follows, A°T¢ C B, Thus by transi-
tivity of subbarcodes (Lemma 5), A%*¢ C C. O

Lemma 8 (Triangle Inequality)
ds(A,C) < dgs(A,B) +dgs(B,C)

Proof. Let A,B, and C be barcodes. Suppose
ds(A,B) = ¢ and ds(B,C) = €. Then by definition,

A°CB, BPC A, B°C C, and C° C B.

By Lemma 7, it follows A%t C C and C°tc C A.
Therefore dg(A,C) < § +e. O

The remaining metric properties are easily verified,
so we may conclude the following theorem.

Theorem 9 The subbarcode distance is a metric on
barcodes.
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7 Subbarcode Distance Computation

In this section we present algorithms which allow us to
compute the subbarcode distance. The goal is to com-
pute the minimum shift such that we have a subbarcode
matching. To find this shift it is useful to determine
cases in which we may easily recognize that we have
shifted by an excesse amount.

Lemma 10 For a subbarcode matching, (M,w), of
AL C B, let

vy= min min{a, + A —b,

b, — Al.
(A(a),b)eM v~y + A}

Then A2~7 C B.

Proof. For all (A(a),b) € M, ac + A — b, > v, and
by, —ay +A > 7. So, az + (A —7) > by, and b, >
— (A — 7). Therefore A2~ C B. O

We can think of v as an excess shift of A. That is,
we could have shifted A by a distance 7 less than we
did and the corresponding matching is still be a valid
matching. So intuitively, if the shift is the subbarcode
distance, then v = 0 because there can be no excess
shift.

In the next lemma we prove that the subbarcode dis-
tance, similar to Hausdorff distance and bottleneck dis-
tance, is determined by a pair from A and B. This
motivates us to devise a search method to find this pair.

Lemma 11 For some (a,b) € A X B,

ds(A,B) = min{a, — by, by — ay}.

Proof. Let A = dg(A,B). Then there is a subbarcode
matching (M, w) for A C B. By Lemma 10, AA~"C B
for v = min(a(a),p)enmr min{a, — bz, by — ay}. It follows
that v = 0 because A is minimum. So A = min{a, —
bg, b, — ay} for some (a,b) € A x B. O

Lemma 11 enables us to compute dg by finding the
correct pair in A x B. There are n? possibilities, how-
ever, we search these possibilities efficiently by taking a
uniform sample of the endpoints for which the difference
is within given upper and lower bounds.

For barcodes (A,w4) and (B,wp), define:

UB := max{(maxb — mina,), (max a, — mmb ), 0}

beB acA a€A
LB := max{(rgleaé( by — max az), ((rlrggl ay — gmnb ),0}.

Here, the upper bound UB is simply the distance be-
tween the farthest corners of the minimum bounding
rectangles of A and B. The lower bound LB is the dis-
tance between the bottom right corners of the minimum
bounding rectangles. These may be replaced with any
suitable upper and lower bounds.
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In MINSHIFT we use these bounds to perform a binary
search through all pairs of coordinate differences in or-
der to find the points that give us the exact subbarcode
distance.

MINSHIFT(A, B, LB, UB):

Input: Barcodes A,B, and upper and lower bounds
LB < ds(A,B) < UB

Output: The subbarcode distance, A

Let X, Y be the sorted x- and y-coordinates of AU B.
A = SAMPLE(X, Y, LB, UB)
While A exists:

(M,w) = SUBMATCH(A®, B)

If (M,w) is a perfect matching, set UB = A.
Else LB = A

A = SAMPLE(X, Y, LB, UB)

Return uB

A binary search is made possible by using SAMPLE to
obtain a uniform random sample of all pairs with co-
ordinate differences contained within the given bounds.
In a linear scan of the sets of x- and y-coordinates we
determine the prevalence of each coordinate in the set
suitable pairs. We then sample a pair from this set and
return the minimum coordinate difference. See Figure 7
and Figure 8.

SAMPLE(X, Y, LB, UB):
Input: Sorted lists X and Y, and bounds LB and UB
Output: A uniform random sample

In a linear scan of X, find indices, I; and u;, such that

x[l; — 1] <x[i] + LB < X[I;],

and X[u;] <X[i] + UB < X[u; + 1.
Similarly, scanning v, find indices, I} and u}, such that

Y[u; — 1] <Y[i] — UB < Y[u}],
and Y[lj] <v[i] — LB < Y[I; +1].

If ; = u; and I} = ] for all 4, return nothing,.
Otherwise, sample an index 7 with probability pro-
portional to (u; — {;) + (I} — u}).
Sample endpoint e uniformly from X[l;
If e is from X then return e —
Y[i] — e.

s |UY[us s 1)

K2
X[i]. Otherwise return

Theorem 12 MINSHIFT computes the subbarcode dis-
tance with an expected O(nlog®n) time.

Proof. Using SAMPLE to get a uniform sample of all
pairwise distances of endpoints, MINSHIFT reduces to a



34" Canadian Conference on Computational Geometry, 2022

XTI

Figure 7: If X[i] is an endpoint and X[j] is from the
range X [l; : u;] then LB < X[j] — X[i] < UB.

°

UB

Figure 8: Depicted above are the points considered by
SAMPLE for a single point @ € A. The points in the
shaded region form a subset of B for which the minimum
coordinate differences are within the bounds given.

randomized binary search over n? elements. Thus there
is an expected O(logn) iterations, where each iteration
is O(nlogn). Therefore MINSHIFT has expected runtime
O(nlog®n). O

8 Persistence Diagrams

In topological data analysis it is common to compare
persistence diagrams rather than barcodes. In this sec-
tion we show that, with slight modification, the algo-
rithms presented in Section 7 also apply in this setting.

The diagonal of R is the set D = {(z,z) | z € R}.
A persistence diagram for a barcode B = (B,wg) is a
multiset PD(B) := (B U D,w), where

w(z) = {wB(az:)7 r €B

00, x €D.

We have added the diagonal of R with infinite multi-
plicity.

Let PD(A) = (AU D,w), be a persistence diagram.
Note that shifting this diagram by § gives us the multi-
set

PD(A)’ = (6(AUD), wod™).

It is useful to refer to only the points above the diagonal,
because points which have been shifted below y = x
can now match to the diagonal. We denote this as [X°],
where X is a barcode.

Lemma 13 Let A = (A,wa) and B = (B,wg) be bar-
codes. Then

PD(A)’ C PD(B) if and only if [A°] C B.

Proof. Let (M,w) be a subbarcode matching for
PD(A)° C PD(B). Consider a € [§(A)]. Note that

if (a,b) € M, then b ¢ D,so we can restrict M to
M N ([6(A)] x B) to obtain a matching for [A%] C B.
Now let (N,w) be a matching for [A%] C B. For any
a € 6(AUD)\[6(A)], there is d = (ay,a;) € D such that
a = d € D. Because d has infinite multiplicity in PD(B),
we can add (a,d) to N and set w(a,d) = wa 0~ 1(a).
Thus N is a subbarcode matching. O

This result allows us to compute a subbarcode match-
ing of persistence diagrams PD(A?) and PD(B) by
computing SUBMATCH([A’],B). Additionally, we can
compute dg(PD(A),PD(B)) by modifying MINSHIFT
slightly. Rather than returning the minimum A such
that A® C B, we return the minimum A such that
[AA] C B.

Note that because persistence diagrams fall under our
definition of barcodes, the subbarcode distance is also a
metric on persistence diagrams.

9 Subbarcode Distance and Bottleneck Distance

In this section we establish the relationship between the
subbarcode distance and bottleneck distance.

Let A and B be barcodes such that |A| = |B|. Let M
be the set of all possible perfect matchings between A
and B. The bottleneck distance is

dp(A,B) := min { max ||a—b||oo}
(Mw)eM | (a,b)eM

A bottleneck matching between barcodes A and B is a
matching M = (M, w) where

max |la — b||ec = dp(A,B).
(a,b)eM

Theorem 14 For any two barcodes A and B, where
|A| = B,
ds(A,B) < dp(A,B).

Proof. Let M = (M, wys) be a bottleneck matching be-
tween A and B. Let 8 := dg(A,B). Then for any edge
(a,b) € M, ||la —b||eo < B. Moreover, |b, —a,| < and
|by—a,| < . It follows that by < a4+ and ay—fF < by,
implying B(a) =< b for each (a,b) € M. We can then con-
struct a matching as follows: Let T = (T, wr), where

T ={(B(a),d) | (a,b) € M} and

wr(B(a),b) := wpr(a,b).

Then T is a subbarcode matching. We note that |T| =
IM| and |A| = |A®]. Additionally, M is a perfect match-
ing, so M| = |A| = [B|. It follows that A® C B. By
a similar argument we may also show that B C A.
Therefore, dg(A,B) < 8 =dg(A,B). O
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10 Conclusion

We have given an efficient method for computing max-
imum subbarcode matchings and subbarcode distance.
We have shown that barcodes are a poset under the
subbarcode relation, and that subbarcode distance is a
metric on persistence diagrams. Subbarcodes present ef-
ficient methods of comparison for persistence diagrams.
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A Subbarcode Transitivity
Lemma 15 (Transitivity) If A C B and B C C then A C C.

Proof. Let A = (A,wa), B = (B,wg), and C = (C,wc) be
barcodes such that A C B and B = C. Then there exists
subbarcode matchings, (M,war) from A to B and (7, wr)
from B to C.

Let Net(G) be the corresponding network to find the the
maximum subbarcode matching from A to C, as described in
Section 5. Let (L, L) be a cut of Net(G). Then L = XUY UZ
and L=XUY UZ for

X=ANL
XA\ X

Y =BNL
Y=B\Y

Z=CnNL
Z-C\z
We examine c(L, L):
oL, L)=c(XUYUZ XUYUZ)
=c(5,X) +c(X,Y)+c(Y,Z) +c(Z,¢t)
We now evaluate each term:

(s, X)=> wala) cX,Y)=)> > wula,b)

aEX a€X peY
(Z,t) =Y wele)  (V,2)=) > wr(bo)
c€Z bEY ccZ

Notice (T, wr) is a subbarcode matching, so by necessity wc
is greater than the marginals of wr for each ¢ € C. Similarly,
wpg is greater than the marginals of wys for each b € B.

ch(c) > Z ZwT(b, c)

cez ceZbeB
S Y wrbh + Y S er(ho)
cEZ bEY c€EZ beY
It follows,
(Y.Z)+c(Z,1) 2 Y Y wrbe) =D ws(d)
yEY ceC bey
> wulab).
beY aeX
Then,
(X, Y)+c(Y,2) +c(Z,t)
= ) IETAES pp Aty
a€X pey a€EX beY
= Z wala).
aeX
Finally,

(5, X)+c(X,Y)+c(Y,Z) +c(Z,t)

> Z wa(a) + Z wal(a)

aeX acX
=Y wa(a) =|Al.
acA

Thus, ¢(L, L) > |A| for any cut (L, L) of Net(G). Therefore
ACC. O
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Approximating Convex Polygons by Histogons*

Jaehoon Chung' Sang Won Bae?

Abstract

We study the problem of finding the largest inscribed
histogon and the smallest circumscribed histogon for a
convex polygon. A histogon is an axis-aligned recti-
linear polygon such that every horizontal edge has an
integer length. Depending on whether the horizontal
width of a histogon is predetermined or not, we con-
sider four different versions of the problem and present
exact algorithms.

1 Introduction

Motivated by optimization problems in shape analysis,
classification, and simplification [I} 2], we consider two
optimization problems of approximating a convex poly-
gon P, one by a largest inscribed histogon in P, and the
other by a smallest circumscribing histogon.

A histogon is an axis-aligned rectilinear polygon such
that every horizontal edge has an integer length. We
call a histogon of width 1 a wunit histogon and histogon
of width k a k-histogon. Thus, a unit histogon is simply
an axis-aligned rectangle of horizontal width 1, and its
height is the length of the vertical sides which is a posi-
tive real number. A k-histogon H for a positive integer
k can be described by k interior-disjoint unit histogons
whose union is H. See Figure [I] for an illustration.

In the inscribed histogon problem, we compute a his-
togon with maximum area that can be inscribed in P.
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(a)

Figure 1: Histogons. (a) The largest inscribed unit histogon
of P. (b) The largest inscribed histogon with width 3 of P.
(c) The largest inscribed histogon of P. (d) The smallest
circumscribed histogon of P

(b)

We call such a histogon a largest inscribed histogon of
P. Depending on whether the horizontal width of a his-
togon is predetermined (1 or a positive integer k) or not,
we consider three versions of the problem.

In the circumscribed histogon problem, we compute a
histogon with minimum area that can be circumscribed
to P. We call such a histogon a smallest circumscribed
histogon of P.

We call a copy of a histogon rotated by 6 € [0, )
in counterclockwise direction a histogon of orientation
0. Our results can be applied to inscribed and circum-
scribed problems for histogons of orientation # with the
same time and space.

Approximation of shapes by histogons found its ap-
plications in several topics in calculus, most notably in
Riemann sums and optimization. For a function graph
(or a curve), the area under the graph can be approxi-
mated by a histogon: an inscribed histogon is an under-
approximation of the area, called a lower sum, and a
circumscribed histogon is an over-approximation of the
area, called an upper sum. Many optimization problems
are concerned with the largest inscribed figure and the
smallest circumscribed figure of a shape. They are also
closely related to real-world cost-optimization problems
such as painting a piece using a spray gun, etching VLSI
masks by electron beams with a fixed minimum width,
and inspection.

Related Work. Extensive research has been done in
past decades in computational geometry for inscribing
and circumscribing polygons, and most of which handle
relatively elementary shapes such as triangles, rectan-
gles or parallelograms in a convex or a simple polygon.
Alt et al. [3] gave an O(logn)-time algorithm for find-
ing a maximum-area axis-aligned rectangle that can be
inscribed in a convex n-gon. Daniels et al. [7] gave an
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O(n log? n)-time algorithm for finding a maximum-area
axis-aligned rectangle in a simple polygon with n ver-
tices, possibly with holes. The running time was im-
proved to O(nlogn) by Boland et al. [4].

DePano et al. [8] gave an O(n?)-time algorithm for
finding a maximum-area equilateral triangle and square
that can be inscribed in a convex n-gon and an O(n?)-
time algorithm for finding a maximum-area equilateral
triangle that can be inscribed in a simple polygon with n
vertices. Cabello et al. [5] first suggested O(n?)-time ex-
act algorithm for finding maximum-area or maximum-
perimeter rectangles in a convex n-gon. Jin et al. [12]
designed an O(n?)-time algorithm for computing all the
parallelograms with maximum area in a convex n-gon.
Choi et al. [6] gave an O(n?logn)-time algorithm for
finding maximum-area rectangles in a simple polygon,
possibly with holes. Lee et al. [I4] studied maximum-
area triangles with various restrictions in a convex or a
simple polygon, possibly with holes.

Using the observation due to Freeman and
Sharpia [I0], Toussaint [16] gave an O(n)-time al-
gorithm for finding a minimum-area rectangle enclosing
a convex n-gon. The algorithm also works for finding a
minimum-perimeter rectangle enclosing a convex poly-
gon. O’Rourke et al. [I5] gave an O(n)-time algorithm
for finding a minimum-area triangle enclosing a convex
n-gon.

Our Results. Our main results are efficient algo-
rithms for computing optimal histogons (largest in-
scribed and smallest circumscribed histogons) for a con-
vex polygon P with n vertices and all our algorithms
use O(n) space. We assume that the vertices of P are
stored in an array in counterclockwise order along the
boundary of P.

For the problem of inscribing a largest histogon in
a convex n-gon, we present an O(logn)-time algorithm
for a largest unit histogon, an O(min{n, klog® 2 })-time
algorithm for a largest histogon of width k for a fixed
k > 1, and an O(min{n, wlog? o })-time algorithm for
a largest histogon. The symbol w denotes the width of
a largest inscribed histogon in P, so the last algorithm
is output-sensitive.

For the problem of circumscribing a smallest histogon
of a fixed orientation for a convex m-gon, we present an
O(min{n, Wlog % })-time algorithm. The symbol W
denotes the (horizontal) width of P, so our algorithm is
output-sensitive.

Sketch of Our Results. For the problem of inscrib-
ing a largest unit histogon, we define a function f that
maps t € R into the height of the largest inscribed unit
histogon of P with the left side at * = t. We show
that f is a concave, piecewise linear function, so we can
perform a binary search to find a maximum of f, which

corresponds to a largest unit histogon inscribed in P.

To find a largest k-histogon inscribed in P with k > 1,
we present a characterization for the existence of k-
histogon inscribed in P. For a k-histogon with the left-
most vertical side at x = ¢, we define a function F(t)
by the height of the k-histogon and show that F' is a
concave, piecewise linear function. We find a closed in-
terval containing the x = t* which maximizes F' and
apply binary search to find ¢* in the restricted domain.
We present two algorithms for finding ¢*, one using O(n)
time which is optimal for k = Q(n) (Section and
the other using O(klog? %) time for k& = O(n) (Sec-
tion [3.2.2]). When there is no restriction on the width
of the histogon, we show that a largest inscribed his-
togon can be computed by invoking the algorithm for
fixed width a constant number of times. (Section [3.3).

For the problem of circumscribing a smallest histogon,
we show that the smallest circumscribed histogon H
has width [WW]. Moreover, either the leftmost vertical
side of H contacts the leftmost vertex or the rightmost
vertical side of H contacts the rightmost vertex of P.
Thus, we compute histogons for two cases, and take the
smaller one. See Section [4l

2 Preliminaries

Let P be a convex polygon with n vertices, stored in an
array in counterclockwise order along the boundary of
P. We denote by 0P the boundary of P. For a point
p € R? let z(p) and y(p) be the z-coordinate and the
y-coordinate of p, respectively.

For a histogon H, let w(H) be the horizontal width
of H and let |H| denote the area of H. We call a line
segment connecting two distinct boundary points of P
a chord of P.

3 Inscribed histogons

We compute a largest inscribed histogon in a convex
polygon P with n vertices for three versions of the prob-
lem: a unit histogon, a histogon of width k& for a given
integer k, and a histogon of any integer width.

3.1 Largest inscribed unit histogon

For ease of discussion, we assume that no two edges of P
are parallel to each other. The case with parallel edges
can be handled with little modification. Observe that
not every convex polygon contains a unit histogon. The
following lemma shows the condition for P to contain a
unit histogon of a positive height.

Lemma 1 The longest horizontal chord in P has length
larger than 1 if and only if there is a unit histogon of a
positive height contained in P.
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Proof. Assume that the longest horizontal chord in P
has length larger than 1. Let s be a horizontal unit
segment contained in the interior of the longest chord.
Then s can be translated vertically upward or downward
while it is contained in P. Let s’ be such a translated
copy of s. Since P is convex, the convex hull of s and s’
is a unit histogon of a positive height contained in P.

Assume that there is a unit histogon H of a posi-
tive height contained in P. Let s be a horizontal unit
segment contained in H, other than its top and bottom
sides. Since no two edges of P are parallel to each other,
one endpoint of s is in the interior of P. By extending s
until both endpoints of s meet 9P, we get a horizontal
chord of length larger than 1 in P. O

By Lemmall] we can determine the existence of a unit
histogon contained in P from the length of the longest
horizontal chord in P. Since P is convex and the vertices
of P are stored in an array in counterclockwise order
along dP, we apply binary search to find the longest
horizontal chord in P in O(logn) time.

From now on, we assume that the length of the longest
horizontal chord in P is larger than 1. Let P be the
translate of P by vector (—1,0). Let Q = PN P, which
is a convex polygon. Then there is one-to-one corre-
spondence between any vertical chord at = t of @ and
the largest unit histogon with left side at x = ¢ inscribed
in P. Moreover, the length of a vertical chord and the
height of its corresponding histogon are the same. Thus,
the height of any largest inscribed unit histogon of P is
the length of a longest vertical chord in Q). See Fig-
ure 2f(a).

Note that P and OP intersect each other at most
twice. If there is a horizontal edge of length larger than
1 in P, one intersection may appear as a horizontal line
segment on the horizontal edge. Then each intersection
corresponds to the horizontal chord of unit length in P
or a horizontal edge of length larger than 1 of P. We
can compute the intersections 9P NAP in O(logn) time
by binary search using the sorted array of vertices of
P. The longest vertical chord in @), and the horizontal
chords of unit length of P, can be computed in O(logn)
time by applying binary search on the boundary of @
using the sorted array of vertices of P.

To sum up, we can determine whether a unit histogon
of a positive height inscribed in P exists in O(logn)
time, and if so, we can compute the largest inscribed
unit histogon in the same time.

Theorem 2 Given a convex polygon P with n vertices
stored in an array in order along its boundary, we can
find in O(logn) time the largest unit histogon inscribed
mn P.
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(a)

Figure 2: (a) For the translate P of P by vector (—1,0),
PN P is also a convex polygon. (b) @ is 5.2 and w(H) =
|w| —2 = 3. (c) The largest histogon has width larger than
@] —2.

w(@) =w

-

Figure 3: (a) Three unit histogons whose union is not a
3-histogon. (b) Every unit histogon intersects @, and every
two consecutive unit histogons share a portion along their
vertical sides. Their union is a 3-histogon.

3.2 Largest inscribed histogon of a fixed width

Given a positive integer k > 1, we compute a largest
inscribed histogon H of P with w(H) = k. Fort € R, let
H(t) denote the largest inscribed k-histogon in P with
the leftmost vertical side at x = ¢, and let H(¢) denote
the largest inscribed unit histogon of P with the left side
at x = t. Then H(t) can be determined by a disjoint
union of k unit histogons H (t), H(t+1),..., H(t+k—1).

It is possible that there is no k-histogon that can be
inscribed in P even if there are k interior-disjoint unit
histogons inscribed in P. Figure a) shows an exam-
ple with three unit histogons whose union is not a 3-
histogon.

Thus, to guarantee a k-histogon inscribed in P, we
need the following lemma. Let Q be the union of /N Q
over all horizontal lines ¢ with [£N Q| > 1. Since Q is a

convex polygon, @ is also a convex polygon.

Lemma 3 Assume that w(Q) # k — 1. Then, w(Q) >
k — 1 if and only if there is a k-histogon that can be
contained in P.

Proof. Assume that w(Q) > k — 1. By letting ¢t =
x(v) + € for the leftmost vertex v of Q and sufficiently
small € > 0 (smaller than w(Q) —k + 1), |t N Q| > 0
for each vertical line ¢; : x =t +1i and |H (¢t +14)| > 0 for
i=0,1,...,k—1. Observe that the union of H (t+1) for
i=0,1,...,k—11is a k-histogon H (¢) if and only if every
two consecutive unit histogons H (¢ +i) and H(t+i+1)
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share a portion (a point or a vertical segment) along
their vertical sides at t =t+i¢+1fori=0,1,...,k—2.
Two consecutive unit histogons H (¢t+i) and H(t+i+1)
share a portion along their vertical sides if and only if
there is a horizontal line ¢ that intersects both H (¢ + 1)
and H(t+i+1).

Suppose that there is no horizontal line that intersects
both H(t +1i) and H(t + i+ 1). Then, we can find a
horizontal line ¢ such that £; N Q and ¢;;; N Q are on
the opposite sides of ¢/, and the length |¢' N Q| must be
smaller than 1. This contradicts to the definition of Q.
Therefore, the union of H(t + i) for i = 0,1,...,k—1
is a k-histogon contained in P. See Figure b) for an
illustration.

Let H be a k-histogon that is inscribed in P. Then H
can be partitioned into k interior-disjoint unit histogons
H(t + i) of positive heights, each corresponding to a
vertical line ¢; : x =t +i fori=0,1,...,k— 1, where ¢
is the z-coordinate of the leftmost side of H. Since every
two consecutive unit histogons H(t+14) and H(t+i+1)
share a portion (a point or a vertical segment) along
their vertical sides at © = ¢+ 1, there is a horizontal line
¢ that intersects both H(t + i) and H(t + i+ 1). Then
|¢ N Q| > 1 which means both ¢; and ¢;,, intersects Q.

Thus w(Q) > k — 1. O

By Lemma |3 we can check whether a k-histogon ex-
ists in P by computing w(Q) using binary search. First,
we compute Q@ = PN P as we do in Section in
O(logn) time. Since the vertices of @ are stored in an
array in order, Q can be computed in O(logn) time by
locating the two horizontal chords of unit length in @
by binary search on the array.

By applying binary search on the array of Q, we can
compute w(Q) in O(logn) time, and decide whether a
k-histogon can be inscribed in P or not by Lemma [3] if
w(Q) >k — 1. If w(Q) = k — 1, we have to check the
existence of H (x(v)+i) in P fori =0,1,...,k—1, where
v is the leftmost vertex of Q. From the convexity of P,
the existence of H(z(v)+i)in P fori =0,1,...,k—1can
be confirmed from the existence of two unit histogons
H(x(v)) and H(z(v) +k — 1) in P, which can be done
in O(logn) time by binary search on the array of Q.

Let I be the set of z-coordinates of all points in @Q, so
I is equivalent to the projection of @) onto the x-axis.
If a k-histogon H(t) can be inscribed in P, there are k
unit histogons H(t), H(t+1),..., H(t+k—1) inscribed
in P such that any two consecutive unit histogons share
a portion along their vertical sides. This implies that
t,t+1,...,t+ k — 1 must be contained in the interval
1.

We define a function f: R — R such that f(¢) =
|H(t)| for any t € I and f(t) = —oo for any t ¢ I.
Observe that f is a concave function consisting O(n)
linear pieces.

Let F(x) = > gcicp f(x 4 4). If there exists a k-

histogon H (z) inscribed in P, F(z) is the area of H(z).
Otherwise, F'(z) is —oo. Observe that F' is also a con-
cave, piecewise linear function with O(kn) complexity.
Our goal is to maximize the function F(z) over z € R.
Let z* € R be a value at which F' attains the maxi-
mum. If there are more than one such value, we choose
the least one as z*.

Let F” be the left-hand derivative of F. There exists
a real value & € R such that F’ () > 0 and F’ (Z +
1) <0, since F' is a concave function. If we restrict the
domain of F to [#, & 4 1), the function consists of O(n)
pieces and we find z* on it.

We present two algorithms for finding z*, one using
O(n) time which is optimal for k = Q(n) (Section [3.2.1]
and one using O(klog? 7) time for & = O(n) (Sec-

tion [3.2.2)).

3.2.1 An O(n)-time algorithm

We present an O(n)-time algorithm for finding x*,
which is optimal for &k = Q(n). Recall that we can
get the interval I in O(logn) time. We compute the
function f that maps t € I to |H(t)| and t ¢ I
to —oo by traversing @ in O(n) time. Assume that
f consists of m + 2 linear pieces, where m = O(n).
ho,hi, ..., hy, huny1 denote the linear functions of these
pieces in the order of their domain. Let h} denote the
derivative of h; and (a;,a;4+1] denote the domain of h;
for + = 0,1,...,m + 1. From the construction of f,
ag = —00, Amy2 = +00, hj = +o0, and h;, , = —oc.

Lemma 4 We can find & such that F' (%) > 0 and
F' (z+1) <0 in O(n) time using O(n) space.

Proof. Let t; be the smallest integer in (a;,a;41] and
let N; be the number of integers in (a;,a;4+1] for i =
L,2,...,m. Then F'(t;) = >, ;. (R} - N;j) + hi, -
(k= X icjer, INj), where r; is the largest integer such
that Zi§j<ri N; < k. Note that r; < r;4; for each
integer i. Then we compute >_,_,_, (h} - N;) for all
integers 7 in O(n) time in total. Thus we compute F” (¢;)
for all integers ¢ in O(n) time. We find an index L
such that F’ (tz) > 0 and F” (t14+1) < 0 in O(n) time.
Similarly, we find an index R such that F’ (tg — k) > 0
and F/_(tR.H — k‘) S 0.

Then there exists an integer sy with 0 < sp, < N,
such that F” (t;, + sr) > 0 and F’ (¢t + s + 1) < 0,
and there exists an integer sp with 0 < sgp < Npg such
that F' (tg —k+sg) >0and F (tr—k+sr+1) <O0.
This means that & =ty + s, =tg — k + Sg.

Observe that F” (tp+a) = > 1< g(h}-Nj)—hp-a+
hp - b, where b= a+k — (tg —tr). Since the first term
> 1<j<r(h;-Nj) remains the same for varying a, we can
find sy, satisfying F’ (t;,+sz) > 0and F’ (t+s,+1) <
0 in O(n) time. Then sg = sy + k — (tg — tr). Thus
we compute & such that F/ (Z) >0 and F' (£ +1) <0
in O(n) time. O
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Then z* = max{z € [&,& + 1) | F_ (z) > 0}. For
each integer ¢ with 1 < i < m, let k;(x) be a function
k; : [0,1) — Z that maps = € [0,1) to the number of
integers j with 0 < j < k satisfying &+x+j € (a;, a;+1].
Note that k; is a step function having at most three steps
in domain [0,1). Let g;(z) = ki(x) - h} be a function
gi : [0,1) — R for each integer ¢ with 1 < i < m.
Then g; is also a step function with at most three steps
in domain [0,1). For given an integer ¢, functions k;,
R}, and g; can be computed in O(1) time. In a step
function, each step has an interval as its domain and
endpoints of the interval are called breakpoints of the
step function. Then Y, ... gi(z) = F' (& + z) and z*
is a breakpoint of g;’s. For a breakpoint s of g;’s, we can
compute F’ (Z+ ) in O(m) = O(n) time by computing
gi(s) for each i and taking the sum of them. Since F”
is decreasing, we can find z* in the set of breakpoints
by using the median of the set.

Lemma 5 We can find z* € [2,Z + 1) in O(n) time
using O(n) space.

Proof. We can construct all g; functions in O(n) time
since each g; can be computed in O(1) time. Let X be
the set of breakpoints in all g;’s. Then |X| = O(n)

We find z* in X iteratively by using the medians of
X. The number of breakpoints of X halves over each it-
eration, and thus the total time spent for computing the
median s and F’ (£+s) is O(n). The median s of X can
be computed by a selection algorithm that takes time
linear to the cardinality of X using Hoare’s selection
algorithm [II]. Note that F' (& + ) = > ;e 9i(T)
and g; remains constant in the rest of iterations if X
contains no breakpoint of g;. Let G' be the sum of g;’s
values such that X contains no breakpoint of g;. In
each iteration, we compute the sum of g;(s) if X con-
tains a breakpoint of g;, and compute F” (% + s) from
the sum and G. Then we update X by removing those
breakpoints larger than s if F” (& + s) < 0, and remov-
ing those breakpoints smaller than s if F’ (& 4 s) > 0.
Finally, we update G. This can be done in time linear
to the number of breakpoints in X. We repeat this until
X consists of at most two breakpoints.

Observe that F’ has a positive value at one of the
breakpoints. We return the breakpoint as z*. Since the
size of X halves over each iteration, the total time spent
over all iterations is O(n). Therefore, z* can be found
in O(n) time using O(n) space. O

Combining Lemma [4] and Lemma [5], we have the fol-
lowing theorem.

Theorem 6 Given a convex polygon P with n vertices
given in order along its boundary and an integer k > 1,
we can find the largest inscribed k-histogon H in P in
O(n) time using O(n) space.
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3.2.2 An O(klog? % )-time algorithm

We present another algorithm for finding z* in
O(klog? 7) time for k = O(n). From now on, we as-
sume that n > 4k. If n < 4k, we apply the algorithm in
Sectiontaking O(k) time. We partition Q = PNP
into two parts along the line ¢ through the leftmost ver-
tex and the rightmost vertex of ). Let QT denote the
upper part and let @~ denote the lower part of it. Ob-
serve that any vertical chord of () can be partitioned
into two pieces by £, one vertical chord of QT and one
vertical chord of Q™.

We group the edges of QT into blocks By, Bs, ..., B,
of size | 7 | consecutively in order from left to right. Sim-
ilarly, we group the edges of @~ to blocks C1,Cy,...,C;
of size |#] consecutively in order from left to right.
Both m and [ are O(k). Every block has size | %], ex-
cept that the last blocks, B, and C}, may consist of less
number of edges. For an edge e of P, we say e contains
an z-coordinate t if the vertical line at x = ¢ intersects
e. We say a block B contains an z-coordinate t if B
contains an edge e and e contains an x-coordinate t.

Our algorithm works as follows. It first computes T
that maximizes f(x), and sets D = f’ (Z). It initializes
indices ¢ = 0 and j = 0. Then it searches Z linearly from
Z by updating D value k—1 times as follows. It increases
i by 1 and sets w = Z + ¢ if D > 0, and it increases j
by 1 and sets w =% — j if D < 0. Then it finds blocks
B and C} that contain w, computes f’ (w) using the
edges containing w, and updates D = D+ f’ (w). After
k —1 iterations, we have D = F’ (Z — j). The algorithm
returns =2 —jif D >0,andz =z —j—1if D <0.

Lemma 7 We can find & such that F' (%) > 0 and
F' (2 +1) <0 in O(klog ) time using O(n) space.

Proof. First we compute Z that maximizes f(z) in
O(logn) time using binary search. Since F(x) =
> o<ick f(x 4 1) and f is a concave, piecewise linear
function, we can get a larger k-histogon than H(z) by
decreasing x if < x or by increasing z if t +k—1 < Z.
Then Z — k +1 < 2* < Z. At the end of iterations,
D=F(Z-j). If D>0 F(z-3j) >0 and
F'(z—j+1) <0, thatisz =z —j5. If D <0,
F'(z—j—1)>0and F' (Z—j) <0, thatis & = z—j—1.
Note that the indices s and ¢ of blocks B, and C; con-
taining w = T + ¢ monotonically increase while ¢ in-
creases. The indices s’ and t' of blocks By and Cy
containing w = T — j monotonically decrease while j
increases. Then the step for finding the blocks takes
O(k) time in total, since the number of blocks is O(k).
Moreover, we can find two edges containing w = T + ¢
or w = I — j in the blocks in O(log %) time using binary
search. Thus the time complexity of the algorithm is
O(klog %) time using O(n) space. O

We define a function ¢; : [0,1) — R for each inte-
ger ¢ with 0 <4 < k by ¢;(x) = f.(& + i+ z). Then
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> o<ick @i(x) = F’ (& + x). Note that ¢; is a step func-
tion on its domain and the total number of breakpoints
of all g;’s is O(n). Let b* be the largest breakpoint of
¢;’s such that » o, , ¢i(b*) = F_(# +b*) > 0. Then
x* is &+ b* since #* = max{z € [£,2+1) | F' (z) > 0}.

Note that each breakpoint is induced by a vertex of
. Consider the sequence of the breakpoints of ¢; in-
duced by the vertices on Q7 from left to right. Let b; ;
denote the j-th breakpoint of ¢g; in the sequence. Sim-
ilarly, in the sequence of the breakpoints of ¢; induced
from the vertices on @~ from left to right, let ¢; ; be
the j-th breakpoint of ¢; in the sequence. Then there
are 2k sequences, two for each ¢;, and there are O(n)
breakpoints in total.

Lemma 8 After O(klog )-time preprocessing, we can
get b; ;j and c; ; in O(1) time for any given indices i and
J.

Proof. We show how to get b; ;. We can get ¢; ; sim-
ilarly. Let u;; denote the vertex corresponding to b; ;.
By the definition of ¢;, z(u;;) = & + ¢ + b; ;. Thus,
for given indices ¢ and j, we can get b; ; in O(1) time
if we can get x(u; ;) in O(1) time. We group the ver-
tices of Q7 into blocks of size | ] consecutively in order
from left to right. Let B and B’ be the two leftmost
blocks containing some ¢ € [& + ¢, & + ¢ + 1). Then u; 1
is the leftmost vertex on edges of B and B’ satisfying
x(u;1) € [T +14,& 411+ 1). We search for B and B’
for every i linearly in O(k) time. For each ¢, we find
u;,1 using binary search in O(log %) time. Thus, we can
find u;,1 for every ¢; in O(klog %) time. Then we can
get z(u; ;) for j > 1 for each ¢; in O(1) time as the
vertices of () are stored in an array in order along its
boundary. O

By Lemma [8] we can construct the collection of 2k
sequences implicitly in O(klog %) time such that each
breakpoint can be accessed in constant time. Our goal
is to find the largest breakpoint b* in the collection such
that 3 ;4 ¢i(b") > 0.

Kaplan et al. [I3] gave a selection algorithm for a
row-sorted matrix A with m rows that computes the &
smallest items of A in O(m + k) time. Frederickson et
al. [9] also gave an O(m)-time algorithm for finding the
k-th smallest item of A. We describe an algorithm that
finds b* in the collection of 2k sequences in O(k log? %)
time. Recall that n > 4k. We partition each sequence
of the collection into blocks of size | |. They are par-
titioned into a number of full blocks, followed possibly
by one block of size less than [ ;3 |. Then the number
of blocks in the collection is ©(k). We set the last el-
ement in each block as the representative of the block.
We select k smallest representatives among all repre-
sentatives in O(k) time using the selection algorithm by
Kaplan et al. We claim that the k-th smallest repre-
sentative r is an approximated median of the collection.

First, the rank of r in the collection is at least g, since
% < kl45] for n > 4k. Second, the number of blocks
containing a breakpoint less than r is at most 3k — 1
in the collection, since r is the k-th smallest represen-
tative. Then the rank of r in the collection is less than
n— (k- Dla)<n—%=1%

We evaluate F (r) =3, ;< ¢i(r). If FZ.(r) <0, we
shrink the search range of each sequence of the collection
to the range of the elements smaller than r. If F” (r) >
0, we shrink the search range of each sequence of the
collection to the range of the elements larger than or
equal to r. The number of breakpoints in the collection
decreases by a constant factor at each iteration.

To evaluate ), ;.. ¢i(r), we need to locate the po-
sition of 7 in each sequence of the collection, except the
sequence where r was selected. For each sequence, we
already know the block containing r, and we can find
the position of r in the block using binary search in
O(log %) time. Thus it takes O(klog %) time to com-
pute the positions of r in all sequences in total.

After O(log ;) iterations, the number of remaining
breakpoints in the collection becomes smaller than 4k.
Then we use the algorithm in Section with all el-
ements in the collection to find b* taking O(k) time.

Taken together, there are O(log %) iterations, each of
which takes O(klog %) time. Thus it takes O(klog? )
time using O(n) space to find z* = & + b*.

Theorem 9 Given a convex polygon P with n vertices
stored in an array in order along its boundary and an
integer k = O(n), we can find the largest inscribed k-
histogon H in P in O(klog® %) time using O(n) space.

3.3 Largest inscribed histogon

Now we consider the variation that no restriction is im-
posed on the width of a largest inscribed histogon in P.
We find the largest inscribed histogon H in P.

Recall that @ is the union of /N Q with [{NQ| > 1
for all horizontal lines . Let @w = w(Q). Then the
largest inscribed histogon has width at most |@ ]+ 1 by
Lemma [Bl

We now claim that the width of the largest inscribed
histogon in P is either |@w|—1, |@] or |w]+1. Suppose
that the largest inscribed histogon H in P has width
k < |w|—2. Then there are k vertical lines intersecting
@ such that all distance between two consecutive lines
is 1. Since w — k + 1 > 3, the leftmost vertical line is
at distance larger than 1 from the leftmost point of Q
or the rightmost vertical line is at distance larger than
1 from the rightmost point of Q. Thus, we can always
attach a unit histogon with positive height to the left or
right of H and get an inscribed histogon with a larger
area in P. Thus, the largest histogon has width |w] —1,
|@w] or @]+ 1. See Figure[2b—c). Once we compute w
in O(logn) time, we can compute the largest histogons
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(of width |@w|—1, |@| and |@]+1) using the algorithms
in Section [3.2] and choose the largest one.

In conclusion, we can compute the largest inscribed
histogon of P in O(n) time using O(n) space by Theo-
rem (6| For w = O(n), we can compute it in O(wlog” 2)
time using O(n) space by Theorem [9]

Theorem 10 Given a convex polygon P with n ver-
tices stored in an array in order along its boundary,
we can find the largest inscribed histogon in P in
O(min{n, wlog® Z}) time using O(n) space, where W
denotes the width of the largest inscribed histogon in P.

4 Smallest circumscribed histogon

We consider the problem of covering a convex polygon
P with n vertices by a histogon with smallest area and
present algorithms for computing the smallest circum-
scribed histogon of P.

We denote by H(t) the smallest unit histogon with
the left side at x =t that covers the part of P between
x =tand x = t+ 1. Let l; denote the intersection
between P and the vertical line x = t. Observe that
H(t) is defined if I; or l;;; has a positive length, and
()] = max{la], 1]}

Let H* denote the smallest histogon covering P, and
let z* be the z-coordinate of the leftmost vertical side of
H*. Then H* can be represented by the disjoint union
of w(H*) unit histogons, H(z*), H(x* +1),... H(x* +
w(H*) —1).

We denote by P the Minkowski sum of P and the hor-
izontal segment with endpoints (—1,0) and (0,0). Note
that the length of the longest vertical segment contained
in P at x =t is the same as |H (t)|.

We define a function g : R — R by g(t) = |H(t)]
if H(t) is defined, otherwise g(t) = —oo. Then g is a
concave, piecewise linear function, since P is convex and
g(t) is the length of the longest vertical segment at x = ¢
contained in P.

Lemma 11 Let H* be a smallest histogon covering P.
Then, w(H*) = [W], where W is the (horizontal) width
of P. There is a smallest histogon covering P whose
leftmost vertical side contacts the leftmost vertex of P
or whose rightmost vertical side contacts the rightmost
vertex of P.

Proof. Let z; and x, be the x-coordinates of the left-
most vertex and the rightmost vertex of P, respectively.
Any smallest histogon H* covering P with its leftmost
vertical side with © = z* satisfies ; — 1 < z* < 1
and z, < z* +w(H*) < z, + 1. Thus, w(H*) >
[, — 2] = [W] and w(H*) < [W] + 1. Suppose
that w(H*) = [W]+1. We define a function G : I — R
by G(z) = > o<iciwi+1 9(® +14), where I is a maxi-
mal interval such that g(x + ¢) > 0 for all integers 4
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with 0 < ¢ < [W] + 1. We minimize G(z) subject to
x < x;and z, <z + [W] + 1, which P can be circum-
scribed by the union of H(z), H(z+1),... H(x+[W]).
If G(z) has a minimum, G(z) is minimized at x =
or x =z, — [W] — 1 since G is also concave and piece-
wise linear as g. Thus 2* = z; or 2* =z, — [W] — 1
which means H* touches either the leftmost vertex
or the rightmost vertex of P. Then either H(z*) or
H(z* + [W]) does not intersect P, a contradiction.
Thus, w(H*) = [W] and H* touches either the left-

most vertex or the rightmost vertex of P. O

By Lemmal[I1} w(H*) = [W] and there are only two
candidate locations for H*, one with z* = z; and one
with 2* = x, — [IW]. To compute their areas, we can
use the method for computing the area of the largest
inscribed histogon in Section [3.3] More precisely, we
show how to compute the area of the smallest circum-
scribed histogon with z* = x;. We construct function g
in O(n) time using the vertices of P stored in an array
in order along its boundary which can be computed in
O(logn) time. For each piece of g, we find in O(1) time
the smallest integer s and the largest integer ¢ such that
x;+s and x;+t are contained in the domain of the piece.
Then we can compute Y, -, g(x;+1) in O(1) time. By
summing the values over all pieces, >3,y 9(21 +1)
can be computed in O(n) time. If W = O(n), similar
to Lemma |8] we find two edges containing r = x; + 4
for all 0 < ¢ < [W] in O(Wlog ) time and com-
pute > oo,y 9(@ + 1) in O(W) time. Among two
candidates for H*, the smaller one is the smallest cir-
cumscribed histogon of P.

Theorem 12 Given a convex polygon P with n ver-
tices stored in an array in order along its boundary,
we can find the smallest circumscribed histogon of P in
O(min{n, O(Wlog #)}) time using O(n) space where
W denotes the width of the smallest circumscribed his-
togon in P.

5 Discussion

We present algorithms for computing the largest in-
scribed histogon and the smallest circumscribed histo-
gon for a convex polygon. The histogons are required
to be axis-aligned. A direction for future work is to
consider a generalization of the problem in which the
histogons can be of arbitrary orientations.
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Fast Deterministic Approximation of Medoid in R

Ovidiu Daescu*

Abstract

For a set P of n points in R?, the medoid is the point
in P with the minimal sum of distances to P. We
present two new deterministic algorithms for approxi-
mating the medoid of P within a factor of (1 + ¢) in
time O(ne~%logn) and O(ne=?% 4 nlogn), respectively.
Our results rely on a quick approximation of the sum
of the distances between P and any given point of P.
Our algorithms are simple, versatile, and easily imple-
mentable.

1 Introduction

In this paper, we consider the following problem:

Given a set P of n points in RY, locate a point in
P that minimizes the sum of the Euclidean distances
between P and the located point.

The optimal point for the problem is commonly re-
ferred to as the medoid. One would encounter the prob-
lem of computing the medoid in various contexts such
as clustering in data science [19, 21, 25|, optimizing fa-
cility location in operations research [10, 11, 15, 22], and
quantifying centrality in network analysis [6, 7, 16, 17,
26].

Naively, one can find the medoid of P by simply com-
puting all (}) pairwise distances. However, it has been
argued that an exact algorithm does not exist for solv-
ing the medoid problem in o(n?) time [23]. Different
approaches have thus been developed to compute the
medoid in sub-quadratic time either approximately or
exactly under statistical assumptions.

Eppstein and Wang [13] proposed a randomized
method that takes O(ne~2logn) distance computations
to approximate the medoid within an additive error of
D with high probability, where D is the diameter of
P, which may not be known apriori. This result was
later improved by Okamoto et al. [24], whose algorithm
requires O(n/3log*/® n) distance evaluations to return
the exact medoid with high probability under certain
statistical assumptions on P. Later on, Newling and
Fleuret [23] presented an algorithm for finding the true

*Department of Computer Science, University of Texas at Dal-
las, ovidiu.daescu@utdallas.edu

TDepartment of Computer Science, University of Texas at Dal-
las, ka.teo@utdallas.edu
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medoid using O(n?/229(4)) distance computations un-
der certain assumptions on the distribution of the given
points near the medoid. Soon after, a sampling-based
algorithm was given by Bagaria et al. [4] for computing
the exact medoid with high probability, and their al-
gorithm takes a total of O(nlogn) distance evaluations
under a distributional assumption on the input points.
By exploiting the underlying structure of the problem,
Baharav and Tse [5] derived an improvement to Bagaria
et al.’s algorithm, obtaining a gain of two to three orders
of magnitude in number of distance computations.

Note that all the algorithms aforementioned have
been derived in the context of network analysis, where
n is the number of nodes in an undirected graph, and
the distance metric is the length of the shortest path
between nodes. Nonetheless, the algorithms can be ef-
fectively applied to any point set under the Euclidean
metric, in which case the time complexity of each said
algorithm would be equal to its associated number of
distance computations multiplied by a factor of d.

In addition, there are randomized algorithms based
on coreset techniques [14, 27] capable of addressing the
problem considered herein. Specifically, one can com-
pute an e-coreset of a point set P in R?, which is a
small weighted subset of P, such that for any point
q € RY the distance sum > pep P — ql| can be ap-
proximated up to a factor of (1 + ¢) by using the dis-
tances between g and the weighted points in the core-
set. A coreset of size O(de=2) and O(poly(1/¢€)) can
be constructed in time O(dn + log*>n + delogn) and
O(nnz(A) + (n + d)poly(1/e) + exp(poly(1/¢))), respec-
tively, where nnz(A) is the number of non-zero entries
in the n X d matrix A of the coordinates of P. As a re-
sult, one can find a (1+¢)-approximation to the medoid
with high probability in O(n - poly(1/¢)) time.

For a set P of n points in R?, Har-Peled et al. [20] ob-
tained an exact algorithm that computes the medoid in
O(nlog®n - (lognloglogn + cp)) expected time, where
cp is the size of the largest subset of P in convex po-
sition. When the points of P are located uniformly at
random on the unit square, cp is bounded by ©(n'/?) in
expectation [2], and thus the medoid can be computed
in O(n*/31og®n) expected time.

2  Our results

Given an ¢ > 0, a point z is said to be a (1 + ¢)-
approximate solution if the sum of the distances from x
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to P is at most (1 4 €) times the sum of the distances
from the true medoid. Throughout the paper, we as-
sume that d and ¢ are fixed constants independent of
n; nevertheless, we include them in some of the asymp-
totic results to indicate their dependencies. In addition,
we assume, without loss of generality, that P has been
scaled so that it is enclosed within a unit hypercube.

We begin in Section 3 by describing an algorithm
to compute a (1 + &)-approximate medoid in time
O(ne~%logn). This algorithm uses a new data structure
named well separated subset decomposition (WSSD),
which extends on the classical idea of the well separated
pair decomposition (WSPD) by Callahan [9]. WSSD
partitions P into O(logn) clusters that preserve the dis-
tances of P to each of the n candidate points.

In Section 4, we encode the pairwise distances be-
tween the points of P by directly using WSPD. We can
then estimate the medoid within a factor of (1 + ¢) in
time O(ne~¢ + nlogn), provided that the pairwise dis-
tances associated with the well separated pairs are com-
puted and summed in the right order. If e=¢ = O(log n),
our algorithm would run in O(nlogn) time.

To the best of our knowledge, all the previous ap-
proximation methods for solving the medoid problem
are randomized, making our algorithms the first deter-
ministic fully polynomial-time approximation schemes
(FPTASs) with a time complexity near-linear in n.

3 O(ne %logn)-time (1 + €)-approximation

We propose an O(ne~%logn)-time approximation algo-
rithm involving the following partitioning scheme.

Well separated subset decomposition (WSSD)

Let C denote a subset of P. Define s > 0 to be a
parameter called separation factor. With respect to a
candidate point p € P, for some r € R>g, if the points
of C can be enclosed within a Euclidean ball of radius
r such that the closest distance from this ball to p is at
least sr, then C' is said to be s-well separated from p.

Definition 1 (WSSD) Given a set P of n points, a
point p, and a separation factor s > 0, an s-well sep-
arated subset decomposition (s-WSSD) with respect to
p is defined as a collection of subsets of P, denoted by
{C1,C4,...,C}, such that (I) C; C P for1 <i <k,
(I) C;NC; =0 forl < 4,5 <k and i # j, (1)
UF_,Ci = P, and (IV) C; is s-well separated from p for
1<i<k.

An s-WSSD can be constructed from either a kd-tree
[8] or a balanced box decomposition (BBD) tree [3].
Both of these data structures are based on a hierarchical
subdivision of space into rectilinear regions called cells.
The size of a cell is given by the length of its longest

side. For a set P of n points in R?, it is possible to
build, in time O(nlogn), an optimized kd-tree [18] or a
BBD-tree with height O(logn) and space O(n). In ei-
ther tree, each internal node has two children, and each
leaf node contains a single point. Unlike a kd-tree, the
cells of a BBD-tree have a bounded aspect ratio, and
the sizes of the cells decrease by (at least) a factor of
1/2 with each descent of 2d levels in the tree.

Theorem 1 For a set P of n points and any s > 0,
with respect to a point p, one can construct an s-WSSD
of size O(s%logn) in time O(nlogn + s?logn).

Proof. We begin by building a kd-tree or a BBD-tree
for P. Each leaf node, which contains a single point, is
treated as having an infinitesimally small cell containing
its point.

The construction of an s-WSSD, with respect to a
point p, is based on a recursive process. Throughout the
construction, we maintain a collection of sets that sat-
isfy properties (I), (II), and (III) as stated in Definition
1. When the procedure terminates, all the sets gener-
ated will fulfill property (IV). Each set of the s-WSSD
will be encoded as a node in the kd-tree or BBD-tree.

Let u denote a node in either tree. Consider the small-
est FEuclidean ball that encloses the cell of node u. If
the ball is s-well separated from point p, then we report
node u as an s-well separated subset. Otherwise, we
apply the procedure recursively to each child node of .
Let WSSD(u,p, s) denote said procedure.

Note that we can determine whether a node u (i.e.,
its smallest enclosing Euclidean ball) is s-well separated
from point p in O(1) time. This requires computing
the smallest Euclidean ball enclosing the cell of node u,
either at the time of determining the separation between
node u and point p or in advance (when creating the tree
data structure).

In the procedure WSSD(), we divide a node u only
if the call WSSD(u, p, s) is non-terminal — that is, node
u is not an s-well separated subset. Each non-terminal
call generates at most two recursive calls, through which
a terminal call may arise. Note that each terminal call
produces at most one well separated subset. Thus, the
total number of well separated subsets is at most two
times the number of non-terminal calls.

To evaluate the number of s-well separated subsets
generated in the recursive process, we use a packing
argument (to count the number of non-terminal calls),
which slightly differs depending on either an optimized
kd-tree or a BBD-tree is used as the basis for the con-
struction of the s-WSSD.

kd-tree-based s-WSSD. Each of the nodes at a
given level in an optimized kd-tree is associated with
(nearly) the same number of points (which is a result
of choosing the median as the cutting value). Consider
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the nodes at a given level A of the kd-tree, where the
cell associated with each node contains by points. Let
V' denote the volume of the cell associated with any
node at level A in the kd-tree. As shown by Friedman
et al. [18], the expected volume of each such cell is
approximately E[V] = an?1 . P%, where P, is the proba-
bility density averaged over the cell (assuming that the
probability distribution of the points within the cell is
approximately constant). Let a be the size of the cell.
Then, the expected size E[a] of the cell is simply the
d-th root of the expected volume of the cell — that is,
E[a] = E[V]Y?. The expected number of nodes at level
A being divided in the procedure must be bounded from
above by the expected number of cells at level A over-
lapping the ball of radius sr centered at p — that is,
(1+ [2sr/E[a]])?. Given that r = E[a]V/d/2, the up-
per bound becomes (1 + sv/d)? = O(s?). Since there
are O(logn) levels in the kd-tree, the expected num-
ber of non-terminal calls to the procedure WSSD() is
O(s%logn). Hence, the expected number of s-well sep-
arated subsets is 2 - O(s%logn) = O(s%logn).

BBD-tree-based s-WSSD. For the case of a BBD-
tree, we use a similar packing argument as that for a
kd-tree. Recall that point set P has been scaled so that
it is enclosed within a unit hypercube. As a result, the
cells of the BBD-tree have sizes that are powers of 1/2.

For analysis purposes, we congregate the nodes in
the BBD-tree into groups according to the sizes of their
associated cells. Define size group ¢ to be the set of
nodes whose cell size is 1/2°. Note that a node and
its child may have the same size, and thus we cannot
apply the packing argument directly to each size group.
Define base group ¢ to be the subset of nodes in size
group ¢ that are leaf nodes or whose children belong to
the next smaller size group. The cells corresponding to
the nodes in a base group are pairwise interior-disjoint.
For each base group i, the number of cells overlapping
the ball of radius sr centered at p is bounded from
above by (14 [2sr/ (1/2iﬂ)d. Since r = (1/2%) Vd/2,
the upper bound becomes O(s?). Note that at most
2d levels of ancestors above the nodes in the base
group can be in the same size group. In addition, the
BBD-tree is O(logn) in height, which implies that the
total number of base groups is bounded by O(logn).
So, the total number of non-terminal calls to WSSD()
is O(2d - s?logn) = O(s?logn). As a result, the total
number of s-well separated subsets generated with
respect to point p is 2 - O(s%logn) = O(s%logn).

In both cases above, the asymptotic upper bound
on the number of s-well separated subsets generated is
O(s%logn), with the distinction that the upper bound
applies to the worst case for the BBD-tree, whereas the
upper bound is derived with respect to the average (ex-
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pected) case for the kd-tree. Together with O(nlogn)
time to build either tree, the overall running time is
O(nlogn + s?logn). O

We now describe a technical lemma associated with
an s-WSSD, which will be used later in approximating
the medoid.

Lemma 2 (WSSD Utility Lemma) If subset C is s-
well separated from point p, and c,c’ € C, then we have
I = pl < (1+2) [lc—p|-

Proof. Due to the triangle inequality, we have ||¢’ —
pll < |le = p|l + |lc = ¢||. Since C is enclosed within a
ball of radius r and is s-well separated from p, we have
" = pll < lle = pll +2r = |le = pl| + ZEsr < |le = pl| +
Hle=pll = (1 +2) lle = pll. O

WSSD-based approximation

This section discusses the usage of a WSSD for approx-
imating the medoid of P. We present the arguments
only for the WSSD constructed from a BBD-tree, since
the analysis is similar for the case of using a kd-tree,
aside from that the resulting time complexity would be
of the average case instead of the worst case.

Theorem 3 Given a set P of n points in R?, for any
e >0, a (1 + ¢e)-approximation to the medoid of P can
be computed in time O(ne~%logn).

Proof. First, we build a BBD-tree for P, using which
we construct an s-WSSD with respect to each of the
n candidate points in P. According to Theorem 1,
the total construction time is bounded by O(nlogn +
ns?logn) = O(ns?logn). We make a small augmenta-
tion to the construction of the WSSD as follows. When
building a BBD-tree, we associate each node u of the
tree with a quantity |u| indicating the number of points
lying within its cell. When we output a node u as an
s-well separated subset with respect to a point p in the
decomposition process, we report |u| and the farthest
point within the cell of node u from p (which may not
necessarily be a point of P). Since the farthest point
within a hypercube from p is one of the 2¢ vertices of
the hypercube, we can find the farthest point in O(2)
time, which is just O(1) given that d is treated as a
constant. Thus, the overall running time for the con-
struction of the WSSD remains the same as before.

Let {C; | 1 < i < kp} be the collection of s-well
separated subsets with respect to a point p. Let ¢(C;)
denote the farthest point within the cell containing C;
from point p, and let |C;| be the number of points in
C;. With respect to each candidate point p € P, we
compute the distance sum ), |C;| - [|¢(C;) — p||, and
output the point p achieving the smallest distance sum.
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Suppose that the aforementioned approach yields
point = as an approximate medoid for P. Let {A; |
1 < i < ky} be the set of s-well separated subsets
with respect to x. Then, by Lemma 2, for each s-
well separated subset A;, we have |4;] - ||¢(4;) — z|| <
Yuca, (14 2) la—z]|. Since ¢(A;) is the farthest point
within the cell containing A; from z, by summing over
all i, we obtain

S =l < 3 1Alo(4) -l < (1+2) T fp-al

pEP ) peP

Let m denote the exact medoid of P. Let {B; : 1 <
i < kn,} be the set of s-well separated subsets with
respect to m. We then have

Yollp—ml <Y lp -zl <D 1A 6(4) — 2

peP peEP 7

<2 1Bil-o(Bi) = ml|
<(1+2) -l

peEP

Given any € > 0, we set s = 2/e. Then, we obtain

dolp—ml <) llp—zl<+e)) llp—m|

peEP peEP pEP

This implies that the output point z is a (1 +
g)-approximation to the medoid of P. The over-
all running time is bounded by O(n(2/e)logn) =
O(ne~logn). O

4 O(ne~?+ nlogn)-time (1 + &)-approximation

In this section, we derive an algorithm for computing a
(1 + €)-approximation to the medoid of P in O(ne=% +
nlogn) time. First, we use a WSPD to represent the
distances between the points of P. After obtaining such
a representation, we carefully enumerate the pairwise
distances in an order such that the sum of the distances
from P to each representative point is approximated
correctly.

Well separated pair decomposition (WSPD)

A WSPD [9] is formally defined as follows. Let A and
B be subsets of P. Define s > 0 to be a separation
factor. Denote by r the smallest radius of a Euclidean
ball such that each of A and B can be enclosed within
such a ball. Set A is said to be s-well separated from B
if the closest distance between the two balls enclosing A
and B is at least sr.

Definition 2 (WSPD) For a set P of n points and a
separation factor s > 0, an s-well separated pair decom-
position (s-WSPD) is a collection of pairs of subsets of

P, denoted as {{A1, B1},{A2, B}, ..., {Ak, Br}}, such
that (I) A;,B; C P for1<i<k, (Il) A;,NB; =0 for
1<i<k, (II) . A,QB;, = PQQP, and (IV) A;
and B; are s-well separated for 1 <i < k.

When estimating the medoid of P, we will make use
of the following utility property of an s-WSPD.

Lemma 4 (WSPD Utility Lemma) If pair {A, B}
18 s-well separated, a,a’ € A, and b € B, then we have
I — bl < (1+2) la - b].

Proof. The proof is similar to that of Lemma 2 and
thus omitted. O

WSPD-based approximation

Theorem 5 Given a set P of n points in R?, for any
e > 0, one can compute a (1 + €)-approzimation to the
medoid of P in O(ne~% 4+ nlogn) time.

Proof. We begin by building a compressed octree for
P. The octree can be built in O(nlogn) time, and is
of size O(n) [1, 12]. For simplicity of arguments, we
assume that the octree is not compressed but of size
O(n). This allows us to assume that nodes of the same
level in the octree have the same cell size. By using
the octree, we construct a WSPD for P such that each
well separated pair of nodes generated are of the same
level in the octree. This requires a slight modification to
the original algorithm given in [9] for creating a WSPD.
Namely, when we fail to separate a pair of nodes v and
v, we proceed to recursively separate the 2% children of u
from those of v, thus keeping the invariant that each pair
of nodes considered are of the same size. The algorithm
is presented as a pseudocode in Figure 1 (where the
code in blue is an augmentation necessary for finding
an approximate medoid, which will be discussed later).
The initial call is WSPD(ug,uo, s,0), where ug is the
root of the octree.

To evaluate the total number of well separated pairs
in the resulting WSPD, it suffices to count the number
of terminal calls to WSPD(), each of which can generate
O(2%4) well separated pairs. Since a terminal call may
only arise as a call to WSPD() in a non-terminal call, we
instead bound the number of calls to WSPD() made by
all the non-terminal calls. We claim that, in any non-
terminal call, for every node u; (iterated in the first
outer for loops of the algorithm), the number of calls
to WSPD() (as in the final for loop in the algorithm)
is bounded by O(s?). Since there are O(n) nodes in
the (compressed) octree, the total number of calls to
WSPD() is O(s%n).

We are now left to establish the claim that for any
node u;, the number of calls to WSPD() is bounded by
O(s%). For a node u;, a call to WSPD() is made only
if u; is not s-well separated from some node v;. Let o
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Algorithm WSPD(u,wv, s, par)

1. let uq, ..., uq be the children of u;

2. let vy,...,ug be the children of v;

3. fori+1toa

4. do S « T « 0;

5. newpar <— par;

6. for j«<1top

7. do if (u; or v; is empty) then ignore (u;,v;);

8. else if (u; and v; are leaves and u; = v;) then ignore (u;,v;);
9. else if (u; and v; are s-well separated)
10. then add (u;,v;) to S;

11. else add (u;,v;) to T;

12. if (S # () then newpar < u;;

13. for each (z,y) € S do output (z,y, par);

14. for each (z,y) € T do call WSPD(x, y, s, newpar);

Figure 1: Augmented algorithm for constructing WSPD.

denote the side length of the cells of nodes u; and v;.
Let r be the radius of the Euclidean ball enclosing each
of the cells of nodes u; and v;. Note that r = av/d/2.
Assume that s > 1; if 0 < s < 1, we replace s with
max(s,1). Let c,, and c,; be the centers of the balls
enclosing the cells of nodes u; and v;, respectively. Since
u; is not s-well separated from v;, the distance between
cy; and ¢,; must be at most 2r +sr < 3sr. Let [ denote
the ball of radius 3sr centered at c,,. The set of nodes v;
that are not s-well separated from w; must correspond
to the cells of side length a overlapping 5. Using a
similar packing argument as in the proof of Theorem 1,
for a node u;, the number of such nodes v; is bounded
by O(s%).

Finally, together with O(nlogn) time to build the
octree, the overall time for constructing the WSPD is
O(nlogn + s%n).

For the convenience of the ensuing discussion, each
well separated pair (u,v) is represented (and produced
by the algorithm WSPD()) as an ordered pair, where u
is referred to as the anchor set of the pair.

Augmenting WSPD construction. In the octree
used for constructing the WSPD, we associate each node
u with 1) a representative point rep(u), which may be
chosen arbitrarily among the points lying inside the cell
of node u, and ii) a quantity |u| indicating the number
of points located within the cell of node u. In addition,
we output each well separated pair (u,v) along with a
set w, if any, where w is the lowest ancestor of u such
that w is s-well separated from some node of the same
level as w (in the octree). We call w the parent set of
(u,v) (and of u), and uw a child set of w. In the pseu-
docode WSPD(), variables par and newpar (i.e., code
in blue) are used for keeping track of the parent set for
each well separated pair.
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Finding an approximate medoid. Let I" denote the
set of well separated pairs in an s-WSPD for P. Each
ordered pair of points (p;,q;) € P x P (where p; # ¢;)
occurs in a unique well separated pair (4, B) in I'. As
a result, we could simply compute the approximate dis-
tance sum for each point p; € P using I', and return the
point with the minimum distance sum as the approxi-
mate solution.

To take a closer look at this idea, let e; denote any
anchor set (of any well separated pair in I') that has
no child anchor set. Recall that rep(e;) denotes the
representative point associated with e;. Note that a
point p; € P must belong to a (unique) childless anchor
set e;, for which p; may or may not be chosen as the
representatives point.

Suppose that p; = rep(e;). Let S; C T be the
subset of well separated pairs, of which e; is either
the anchor set or a child anchor set. We can obtain
an approximate distance sum for point rep(e;) using
S;. Namely, for each pair (A, B) € S;, we compute
|B| - ||rep(B) — rep(e;)||. We then take the sum over all
the pairs in .S; to be the approximate distance sum for
pi. If p; # rep(e;), then the approximate distance sum
for p; only differs by at most a factor of (1 + %) from
that for rep(e;), according to Lemma 4.

Hence, we only need to compute the distance sum
for each representative point associated with a childless
anchor set (which will just be referred to as representa-
tive points for simplicity hereafter). However, observe
that, for any two childless anchor sets e; and e;, S;N.S;
may not be empty. That is, there could be some well
separated pair (A, B) € S; N S; such that e, C A and
ej C A. In other words, e; and e; could have some com-
mon ancestor anchor set. This implies, by computing
the distance sum for each representative point one at a
time, that the running time required to find the repre-
sentative point with the minimum distance sum could
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Algorithm Approz-Medoid(T)

1. F<«0;

2. for each C; € C (in increasing order)

3. do for each P;; € P;

4. do let w be the parent set of the well separated pairs in P;j;

5. for each Ay, € Ayj

6. do let u be the anchor set of the well separated pairs in A;jp;
7. compute ofu] += 32, ,)en,,, (10| - [rep(v) —rep(u)]]);
8. if (w = 0) then add (rep(u),o[u]) to F;

9. if (w #0)

10. then let A = {u | (u,v) € Pi; };

11. Umin — argmin,e 4 oful;

12. olw] < o[tUmin];

13. rep(w) < rep(Umin);

14. output (x,0) € F with the minimum o;

Figure 2: Algorithm for approximating medoid using WSPD.

be Q(sn).

As it turns out, we do not have to compute the dis-
tance sums for all the representative points. If we com-
pute and sum the distances for each representative point
at each level in a bottom-up fashion, allow the represen-
tative point with the minimum “partial” distance sum
thus far at each level to overtake the others with the
same parent anchor set, then we could find the represen-
tative point with the minimum distance sum in O(s%n)
time (since each well separated pair is only used once
for distance sum computation).

Here are the details of the procedure. We group the
well separated pairs in I' according to the cell sizes of
their corresponding node pairs in the octree. Within
each cell-size group, we collect the well separated pairs
into groups with common parent sets. Within each such
parent-set group, we further congregate the well sepa-
rated pairs according to their anchor sets. Formally, for
a given well separated pair (u,v), we denote by cel(u,v)
and par(u,v) the cell size and the parent set of (u,v),
respectively. Note that if a well separated pair (u,v)
has no parent set, then par(u,v) = 0. Define:

i) C = {C;, C T | Y(uv),(z,y) € T, cel(u,v) =
cel(z,y) = (u,v) € G A (z,y) € G},

ii) Py = {Pi; C G | Y(u,v), (z,y) € C;, par(u,v) =
par(z,y) = (u,v) € Pi; A (z,y) € Py}, and

iii) Ajj = {Aijr € Pij | V(uw,v),(z,y) € Py, u=20 =
(u,v) € Agjr A (2,y) € Agjr}-

That is, C = {C; | ¢ = 1,2,...} is the partition of
set I' according to cell size, P; = {P;; | j = 1,2,...}
is the partition of set C; € C according to parent set,
and A;; = {Ajr | K = 1,2,...} is the partition of set
P;; € P; according to anchor set. Assume, without loss
of generality, that for any C;,C; € C, if ¢ < j, then

cel(u,v) < cel(z,y) for all (u,v) € C; and (z,y) € C;.
For any anchor set u, let ofu] denote the distance sum
computed for w. Initially, we set ofu] = 0 for all anchor
sets u. We then process I' as described in the pseu-
docode given in Figure 2.

Briefly, we iterate the well separated pairs by cell size

in ascending order. Within each cell-size group C; € C,
we update o[u] for each anchor set u sharing the same
parent set w by considering its associated well separated
pairs (line 6 of the pseudocode). If w # @), then we find,
among those having the same parent set w, the anchor
set Umin with the minimum distance sum after the up-
date. We record the distance sum for uy;, as that for
its parent set w, and replace the representative point for
the parent set w of Uy, with that for uy;,. When the
algorithm terminates, of all anchor sets without a par-
ent set, we report the one with the minimum distance
sum.
The time complexity of Approx-Medoid() is bounded
by O(s%n), given that each well separated pair is pro-
cessed by a constant number of operations in the pro-
cedure. Along with the construction time for WSPD,
the overall time for approximating the medoid of P is
O(nlogn + sn).

Correctness of algorithm. We now proceed to prove
the correctness of the algorithm Approz-Medoid() to
yield a solution within a multiplicative error of €.

Let m be the exact medoid of P. Let x be the rep-
resentative point returned as the approximate solution
by the algorithm Approz-Medoid(). To establish the
correctness of the algorithm, we have to show that

Slp-ml <3S p—zl <1+ lIp—ml
peP peP peP

The first inequality holds because no other point in P
can have a smaller distance sum than the exact medoid
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m. To prove the second inequality, consider the anchor
set Usuchthati)/me U Az eUandii)m¢U' Az ¢
U’ for all child sets U’ of U.

First, we examine the set of distance computations
for the levels above that of U. Let A = {(U/,V;) |
i =1,2,...} denote the set of all well separated pairs
such that for each pair (U/,V;) € A, U/ is an ancestor
set of U. For each well separated pair (U/,V;) € A,
according to Lemma 4, we have |V;]| - ||rep(V;) — z|| <
(1+ 2) |Vi]- [rep(V;) —m)|. If we sum over all the pairs
in A, we then have

Sl lrep(vi) ~al < (142 ) S Wl lren(vi) -

Secondly, we examine the distance computations for
the levels below that of U. For any anchor set C, let
o|C, c] denote the distance sum computed for C' in the
algorithm, where ¢ € C' is the representative point used
in computing the distance sum. Let M be the child set
of U such that m € M. Similarly, let X denote the child
set of U such that z € X. Recall that M N X = (.

Let M’ be the lowest descendant set of M such that
m € M'. Let m’ be the representative point associated
with M’. If m’ = m, then the distance sum computed
for M' is o[M’',m'] = o[M',m]. Otherwise, according
to Lemma 4, we have o[M’,m'] < (1+ 2) o[M’,m].

Figure 3: Point m” = m* overtakes m’ in the distance
sum computation during the execution of the algorithm
Approx-Medoid() such that o[M,m*] < o[M,m/] <
(1+2) o[M,m).

Let m* € M be the representative point used (in
the algorithm) to compute the distance sum for an-
chor set M. Since z is the representative point pro-
duced by the algorithm as the solution, we must have
olX,z] < o[M,m*]. If m* = m/, then o[X,z] <
o[M,m*] = o[M,m'] < (1+ 2)0o[M,m]. Otherwise,
at some level between that of M and M’, m/ must
be “overtaken” by some other point m” such that i)
m'" is the representative of some anchor set M", and
ii) o[M",m"] < o[M! ,m'], where M/ is an ances-
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tor set of M’ and of the same level as M” (see Fig-
ure 3 for an illustration). Clearly, this sort of “over-
taking” could happen multiple times as we ascend the
levels from that of M’ to M in the algorithm. At
the end of the ascension, m* prevails, and we have
o[X,z] < o[M,m*] < o[M,m] < (1+ 2)o[M,m)].

As the algorithm terminates, (x,0) is yielded as the
approximate solution, where

o= [Vil- |lrep(V;) — x| + o[ X, 2]

is the minimum distance sum reported along with point
x. By applying Lemma 4, we have

> ezl

peP

<(1+3) (Z Vil Irep(Vi) — | + o[ X, x1>

<(1+2) (Z Vil - Irep(Ve) = ml] + o{M, m}>
<(1+2) S mi

pEP

6 12 8
=<1+s+82+83)2||p—m

peP

Since s = max(s, 1), we obtain

6 20
Sl < (1424 2) -

peEP peP
Given an e > 0, if we set § = 3Hv2+20¢ VgHOE, then we have

Yollp—zl <(t+e)d llp—m|

peEP peEP

5 Conclusion

We have presented two deterministic, near-linear time
algorithms for approximating the medoid of a point set
in fixed dimensions within a factor of (1 + ¢). In the
future, we propose to further explore the idea of pair
decompositions for solving minsum location-based op-
timization problems involving more complex geometric
objects.
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The Median Line Segment Problem: Computational Complexity and
Constrained Variants

Ovidiu Daescu*

Abstract

In the median line segment problem, we are given a set
P of n points in R? and a real number ¢ > 0 with
the objective to find a line segment of length ¢ such
that the sum of the Euclidean distances from P to the
line segment is minimized. We prove that, in general,
it is impossible to construct a median line segment for
n > 3 non-collinear points in the plane by using only
ruler and compass. We then consider two constrained
variants of the median line segment problem in R? —
i) point-anchored and ii) constant-slope. In the point-
anchored variant, an endpoint of the median line seg-
ment is given as input, whereas in the constant-slope
variant, the orientation of the median line segment is
fixed. We present a deterministic (14 ¢)-approximation
algorithm for solving each constrained variant. For ap-
proximating a point-anchored median line segment, we
give a space-subdivision method with a time complex-
ity of O(na_Qa(;l), where ay is a parameter dependent
on the coordinates of P. For approximating a constant-
slope median line segment, a prune-and-search approach
is used, and its time complexity is O(knlogn), where k
is inversely proportional to €.

1 Introduction

The median line segment problem is formally defined
as follows.

Given a set P of n points in R? and a positive real
number £, locate a line segment of length £ such that the
sum of the Euclidean distances from P to the located
line segment is minimized.

The problem applies to any real-world scenario that in-
volves finding a best location for any object that could
be modeled as a line segment. The problem could arise
in many industries and sectors, where we wish to find
the optimal placement of various facilities to maximize
their efficiency, impact, and profit. These facilities may
include highways, railroads, pipelines, telecommunica-

*Department of Computer Science, University of Texas at Dal-
las, ovidiu.daescu@utdallas.edu

TDepartment of Computer Science, University of Texas at Dal-
las, ka.teo@utdallas.edu
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tion lines, electronic circuit connectors, and electrodes.
In addition to location science, the median line segment
problem could have potential applications in other sub-
ject areas with less obvious connections such as cluster
analysis in data science and pattern recognition in com-
puter vision.

The median line segment problem is closely related
to one of the oldest non-trivial problems in facility loca-
tion theory — the (generalized) Fermat-Torricelli prob-
lem, which asks to find a point with the minimal sum of
distances to a given set of n points. The optimal point
is referred to as the Fermat-Torricelli point or simply
the (geometric) median. For n > 5 points in general
position, it has been proven that the Fermat-Torricelli
point cannot be constructed by strict usage of ruler and
compass [1, 7]. In other words, the Fermat-Torricelli
problem is unsolvable by radicals over the field of ratio-
nals. Consequently, no exact algorithm exists for solv-
ing the problem under computational models with basic
arithmetic operations and the extraction of k-th roots.
This leaves us with only numerical or symbolic approx-
imation methods for n > 5 points (e.g., see [2, 3, 4]).
Furthermore, it remains unclear whether the problem is

in N'P.

Another problem related to ours is the median line
problem, which asks to locate a line minimizing the sum
of the distances between a given set of n points and the
located line. When considering the median line problem
in two dimensions, the optimal line has been shown to
exhibit the following properties. The median line must
divide the given points into two equal halves, and must
pass through at least two of the given points [8]. As a
consequence, the median line problem could be solved
exactly in O(n?) time (by mainly exploiting the prop-
erty that the optimal line must contain a pair of given
points) [6]. The optimal solution could also be found
in O(hlogn) time, where h is the number of halving
lines [11, 12]. Currently, the best upper bound for h is
O(n*/?). However, no exact algorithm is known to solve
the median line problem in higher dimensions.

Unlike the Fermat-Torricelli problem and the median
line problem, which have been extensively studied over
the years, the median line segment problem has not thus
far received any proper attention in the literature.
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2 Our results

We prove that it is impossible to construct a median
line segment for n > 3 non-collinear points in R? by
using only ruler and compass (Section 4). We then con-
sider the median line segment problem under different
geometric constraints. Particularly, we derive a (1 + ¢)-
approximation algorithm for solving the point-anchored
median line segment problem in the plane (Section 5).
In this constrained problem, an endpoint of the median
line segment is given as part of the input. By essen-
tially dividing the space around the anchor point into
O(n) intervals with certain geometric properties, our al-
gorithm finds an approximate solution in O(ns’zag_l)
time, where «p is a parameter dependent on the coor-
dinates of P. Furthermore, we provide an algorithm
for computing a (14 ¢)-approximate constant-slope me-
dian line segment in R?, where the slope of the median
line segment is fixed at input (Section 6). Our algo-
rithm is a tailored extension of the prune-and-search
approach given by Bose et al. [2], and its running time

is O(knlogn), where k = 605,1(2++E),2

3 Preliminaries

For any two points a and b in R?, let ab denote the line
segment bounded by a and b, and let ||ab||= ||b — a|| be
the Euclidean distance between a and b.

For any line segment ab in R, let H, (resp. H;) be
the hyperplane containing a (resp. b) and orthogonal to
ab. Let S, (resp. Sp) be the closed half-space bounded
by H, (resp. Hp) and not containing ab. Define Sy =
R\ (S, U Sy).

For a line segment ab in R?, let Ly, be the line con-
taining ab. Let H™' denote a closed half-plane bounded
by Lap, and let H= = R?\ HT. Define S} = S, N HT,
Sy =S,NH, S =8 nH", S, = SnNH,
S:b =S NH', and S, = S, N H™ (Figure 1).

Figure 1: Regions defined with respect to a line segment
ab.

We assume, without loss of generality, that the points
of P have been uniformly scaled such that the length of
the median line segment is £ = 1. Let D denote the
diameter of point set P. Note that if ¢ > D, then our
problem effectively becomes the median line problem.
Thus, in this paper, we assume that £ < D, unless spec-
ified otherwise.

A line segment s is said to be a (1 + €)-approximate
solution if the sum of the distances from P to s is at
most (1 + ¢) times that of the optimal line segment.

4 Inconstructibility of the median line segment

Theorem 1 The construction of a median line segment
18, in gemeral, impossible for n = 3 and more points in
the plane by strict usage of ruler and compass.

Proof. In order to prove the theorem, we require the
following lemma.

Lemma 2 Let p* denote the Fermat-Torricelli point for
a point set {p1,p2,p3}. Let B = argmax;||p*p;||. For
i # B, let n; be the distance from pg to the foot of the
altitude from p; in triangle Ap1paps.

A. If £ < ||p*pgl|, then there exists a median line seg-
ment s* = a*b* such that its endpoint a* coincides
with p*, and s* lies in p*pg (Figure 2A).

B. If ¢ > ||p*pgl|, then there is a median line segment
s* = a*b* such that its endpoint a* coincides with

bg-

(1) 1 <min{n; : i # B}. Fori # B, let ¢; be the
acute angle formed by b*p; and the line sup-
porting s*. Endpoint b* must be located such
that ¢; = ¢;, where i,j # B and i # j (Figure
2B).

(2) 1 > min{n; : i # B}. Fori # f3, let q; be
the closest point on s* to p;, and let w; de-
note the distance from a* to q;. Note that
w; € [0,1]. Let d; denote the vector from g;
to pi, and let h; be the component of d; nor-
mal to s* multiplied by w;. For i,j # B and
i # j, endpoint b* must be located such that

1Bl /lldill= 117511/l -

Proof. We refer to the full paper for the proof. O

Part A of Lemma 2 essentially implies that if £ <
lp*pgll, then a median line segment s* can be con-
structed by using ruler and compass, since the exact
Euclidean construction of the Fermat-Torricelli point
for n = 3 points is possible. However, in part B of
Lemma 2 (¢ > ||p*pg||) — case 1 in particular — in order
to construct a median line segment s*, we have to look

92



CCCG 2022, Toronto, ON, Canada, August 25-27, 2022

Figure 2: Illustrations for Lemma 2. (A) Part A. (B)
Case 1 of part B.

for a point b* on the circumference of a circle of radius ¢
centered at a* = pg such that the rays emanating from
p; and p;, where ¢ # j and 4, j # [, meeting at b* make
equal angles with the normal at b*. This is known as
(and equivalent to) the Alhazen’s billiard problem, to
which the general solution has been proven to be incon-
structible using only ruler and compass [9]. Briefly, the
problem requires solving a quartic equation that is irre-
ducible over Q (and so does not have constructible solu-
tions). Hence, we conclude that the ruler-and-compass
construction of a median line segment is, in general, im-
possible for n = 3 (and more) points. O

5 Approximating the point-anchored median line
segment

In this section, we consider the following restricted
variant of the median line segment problem.

Given a set P of n points in R?, a point ¢ € R?, and a
real number £ > 0, find a line segment of length ¢ with
an endpoint at q such that the sum of the Euclidean
distances from P to the line segment is minimized.

Remark 1 It follows from the proof of Theorem 1 that
the point-anchored median line segment problem is, in

general, not solvable by radicals over Q forn > 2 points.

Theorem 3 For the point-anchored median line seg-
ment problem inR?, given any e > 0, one can compute a
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1+¢)-approzimate solution in time O(ne 2a, '), where
0

g 1s a function dependent on the coordinates of P.

Proof. Let s denote any line segment of length ¢ with
an endpoint fixed at g. Assume, without loss of gen-
erality, that the fixed endpoint of line segment s is
a =¢q = (0,0) (by a translation of P), and the length
of line segment s is £ = 1 (through a uniform scaling of
P). Let 0 be the counterclockwise angle of line segment
s with respect to the positive z-axis rooted at a. The
sum of the distances from P = {p1,pa,...,pn} to line
segment s is given by the following objective function:

FO)= Y Vertu
1<i<n
Pi€Sa
+ Z [; (—sinf) + y; cos 0]

1<i<n
pieS:b

+ Z [—z; (—sin ) — y; cos 6]
1<i<n
Pi€Sy,

+ Z \/(acZ —cos0)® + (y; — sinf)?

1<i<n
pi€Sy

where x; and y; are the - and y-coordinates of p; € P,
respectively. We consider 6 € [0,7/2) only, and each
subsequent quadrant can be handled analogously. The
quadrant [0, 7/2) can be divided into a set T of at most
©(n) contiguous intervals, in each of which the subsets
of points of P in S,, S;rb, Sobs S;, and S, , respectively,
remain constant. We partition each interval of T into
a number of small sub-intervals such that the relative
error in computing the sum of the distances from P to
a line segment s, whose angle 6 is given by a boundary
of a sub-interval, does not exceed ¢.

To evaluate the number of sub-intervals, we perform
the following analysis. Let I denote a sub-interval. Sup-
pose that the optimal line segment s* lies within I.
First, we note that the distance from any given point
pi € S, to endpoint a of line segment s remains con-
stant within sub-interval I. For simplicity of notation,
the subscript ¢ is dropped, and p is equivalent to p;
hereafter.

For a point p € SJ}), let d, = d(p,s) denote its or-
thogonal distance to a line segment s whose location is
defined by a boundary of interval I (Figure 3A). Sup-
pose that dj = d(p, s*) is the distance from p to the op-
timal line segment s*. We rotate the coordinate system
such that the positive z-axis contains s, and the first
quadrant of the defined zy-plane contains sub-interval
I (and thus s*). Specifically, consider the worst-case
scenario where s and s* are located at the two ends of
sub-interval I. Let A8 be the size of sub-interval I. In
addition, let x,, and y, denote the z- and y-coordinates,
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Figure 3: A point p € P located in (A) S}, or (B) S;.
respectively, of point p. In order to have d,, < (1+¢)dy,

the following must hold:

dp < (1+¢€)d,
Yp < (1 +¢) (—zpsin A + y, cos AD)

1
< _Ir sin A@ + cos AQ
1+¢ Yp
z,\ 2 T
=4/1+ (p) cos (AH + tan1p>
Yp Yp
—1 1 —1Tp
AO < cos —tan™ —

Yp

(1+e¢) 1+<%)2

Let A}, , denote the right-hand term of the last inequal-
ity above Given that

1
A, >elcos | ——m——= — tan~122
P x 2 yp
zp
2M1+(%)
_ +
=eay,

for 0 < e < 1, if we have Af = Eozab p» then the desired

condition d, < (1 + e)d; is fulfilled. Note that aab’p is
a trigonometric function in terms of the coordinates of
point p. We can satisfy d, < (1 + ¢)d;, for all points
p € SH if weset A =¢- min{oz:bm :p€ Syt

The analysis for S_, is similar to that for S due to
symmetry, and we obtain {a;, :p € S, } accordingly.

We can also perform a similar analysis for each point
p E S;‘. Let d, = d(p, s) denote the distance from p
to endpoint b of a line segment s located at a boundary
of sub-interval I (Figure 3B). Let d; = d(p, s*) be the
shortest distance from p to the optimal line segment s*.
As before, we define a coordinate system on s such that
the positive z-axis contains s, and the first quadrant of
the xy-plane contains sub-interval I, at whose bound-
aries s and s* are positioned. Let A be the size of
sub-interval I. If d;, < (1 +¢)dy, then we have

dp < (1+¢)dy
(zp — 1)2 +yp?
2

<(l1+4¢) \/(xp —cos AD)” + (yp

(zp — 1)2 + yp2

(1+¢)?

< (zp — cos AG) + (yp — sin AG)?
=x,% — 2z, cos A + y,% — 2y, sin A + 1

2
N B ek VS S S
3 P Yp
2 (1+¢)

> x, cos A0 + yp, sin Af

= \/xp? + yp2 cos (AH +tan™! (—?))

p
1
Af < tan™! <xp) —cos | - ———
Yp 2V/xzp? + yp?

(xp_1)2+yp2_x2_ 2 _
()

Let Abfp denote the right-hand side of the last inequality
above. Since

1
Azrp > 2 [tan™! (xp> —cos M| - —————
P yp 2 pr + pr

—sin A9)2

(zp — 1)’ + Y’ 2 2_q
= 52%;;

where & = min(1,¢,),

(zp — 1)2 + yp?
Ep = -1
2 2
T, — _ Tp + Yp — Yp
P Vv zp2+yp? P vV zp?+yp?
and 0 < e < ¢’ < 1, if we set Af = 62a;p, then d, <

(14 €)dy, is satisfied. Note that ab is a trigonometric
functlon dependent on the coordlnates of point p. In
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order to uphold d;, < (1+¢)d,, for all points p € St we
can simply set Af = ¢* - min{a;, : p € S;}.

Points p € S, can be handled analogously as those
in S;7, and we obtain {og,, 1P €S, } as the result.

In summary, for each given interval 7 € T, we
compute o, = Inin{a:bm p € Sh}, ay
tp € S},

:p € S, }. We then use Af =
min {sa:fb, €y, 52042', 62051)_} for partitioning the given
interval 7 into sub-intervals of size at most A#.

We now derive an upper bound on the number
of sub-intervals as follows. Let s(7) denote the set
{a},,a.,,af ,ap } computed for each interval T of T.
Define ap = min{a € s(7) : 7 € T'}. Then, we have
a total of 2m/(e?cy) sub-intervals in the worst case.
Since it takes O(n) algebraic operations to compute the
sum of distances for each candidate line segment (de-
fined by the boundaries of the sub-intervals), we can
obtain a solution, whose sum of distances to P is at
most (1 + €) times that of the optimal solution, in
21n/(e2ag) = O(ne"2ay ") time. O

min{ay, , © p € Sy}, of = min{oz;:p

and o, = min{ey,

6 Approximating the constant-slope median line
segment

In this section, we address a constrained variant of the
median line segment problem stated as follows.

Given a set P of n points in R, an angle 0, and a real
number £ > 0, find a line segment of length { making
angle 6 with the abscissa axis such that the sum of the
Euclidean distances from P to the line segment is min-
1mized.

Theorem 4 For the constant-slope median line seg-
ment problem in R?, given any ¢ > 0, one can find
a line segment, whose sum of distances to P is at most
(1 +¢€) times that of the optimal line segment, in time
O(knlogn), where k = mfl?#),z

Proof. We denote by s = ab any line segment of length
¢ making angle 6 with the positive z-axis. Assume,
without loss of generality, that # = 0 and ¢ = 1. Let
z, and y, be the z- and y-coordinates of the endpoint
a of line segment s, respectively. Then, the sum of the
distances from P = {p1,pa, ..., pn} to line segment s can
be written as the following objective function:

f(S) =f (xaaya)

= Y V@ -2’ + @i - )
1<i<n
Pi€Sa
+ Z (Yi — Ya) + Z (Ya — ¥i)
1<i<n 1<i<n
DPi€S,, Pi€S,,
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where z; and y; are the z- and y-coordinates of p; € P,
respectively.

Remark 2 [ is a piecewise convex function, where
each piece consists of a sum of two convex functions and
two linear functions, and the transition between any two
consecutive pieces corresponds to a point of P moving
between S,, S;;), s and Sy. Since the number of such
transitions is bounded by ©(n?), the minimum of func-
tion f can be obtained by solving ©(n?) two-variable

convex optimization problems.

We begin by defining the so-called k-oriented distance
function dj [5, 10] to approximate the Euclidean dis-
tance as follows.

k-oriented distance. A cone in R? is defined as the
intersection of two half-planes, each of whose supporting
lines contains the origin O. A simplicial cone ¢ has a
diameter bounded by an angle ~ if, for any two points
p and ¢ in ¢, we have /pOg < ~. Let C = {cy,...,c; } be
a set of k cones, each of which has a diameter bounded
by «, and C forms a partition of R?. Note that k is a
function of 7. Thus, C' could be a set of cones defined by
the rays originating at O making angles {(i — 1)2x/k :
1 < i < k} with respect to the abscissa axis. The two
rays that bound a cone c¢ are called the axes of c¢. For
a point p € R2, let ¢;(p) denote p represented in the
coordinate system whose axes are those of ¢;. For a
point p in a cone ¢;, dp(O,p) = ||t;(p)| is called the
k-oriented distance from O to p, and is defined as the
length of the shortest path from O to p traveling only
in the directions parallel to the axes of ¢;. For any two
points p and ¢ in ¢;, we have di(p,q) = di(O,q — p).
Notice that, if v = 7/2, then the corresponding dy, is
known as the rectilinear (Manhattan) distance function.
For any two points p,q € R?, |lpq||< di(p,q) < (1 +
¢)|lpql|, where € is a positive constant that decreases as
k increases.

We now derive an explicit expression for k in terms
of €. Assume, without loss of generality, that point p is
located at the origin O (i.e., p = O). Let p; and py be
the two rays originating at O and defining the cone that
contains point ¢q. Recall that the cone has a diameter
bounded by angle 7. Consider the case that v is less
than 7/2. Define m to be the line with the same slope
as ray p; and passing through ¢. Let r be the inter-
section of m and py. Note that di(p,q) = ||pr|+|rqll-
Furthermore, according to the law of cosines, we have

[pr)|*+lrgl|*=2[|pr|l|lrgllcos(x — v) = ||pq|?
lprI>+rqll>+2[pr|l[rqllcos v = ||pq||?
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Given that 0 <y < 7/2,

(Ilpr [P+ qll*+2llpr|l[I7qll) cosy < [Ipql/?

S
<
(lprl+Hraly? < 2220
rq
lprl+lrql < AL

\/COS 7Y
1

Thus, we have di(p, q) < (14¢)||pq||, where € = e

27
cos*1(1+s)_2 for

1. Since v = 2n/k, we obtain k =
0<e< L

Recall that the objective function f(s) denotes the
sum of the Euclidean distances from P to s. We can
approximate f(s) using

fe(s) =Y di(pya)+ Y di(pi,h)

1<i<n 1<i<n

Pi€Sa Pi€Sy

+ Y Yi—Yat Y Ya— Ui
1<i<n 1<i<n
pi€ST Pi€ES,,

Observe that function fx(s) is convex and piecewise lin-
ear. Hence, we can find the minimum of fx(s) using the
prune-and-search approach described by Bose et al. [2]
after some careful modifications.

Prune and search. Consider the set of cones C used
in evaluating dj. Recall that each cone ¢ € C' is defined
by two lines. Let L be the set of lines defining C. For
each point p € P, we create a point at a distance ¢ to
the right of p. Let P’ denote the newly created set of
points. For each point p € P U P’, we construct a copy
of L such that each of the lines in L passes through
p. The result is an arrangement of lines A. Observe
that each cell of A corresponds to a linear piece of the
surface fr. Consequently, fi reaches a minimum when
the endpoint a of line segment s coincides with a vertex
of A.

We now describe a prune-and-search algorithm to find
the lowest point on the surface fr. Note that A consists
of k sets of parallel lines. Let H; denote a given set
of parallel lines in A, where 1 < i < k. We begin by
finding a median line h € H; that divides H; into two
nearly equal sets. Line h partitions R? into two half-
planes, hi and hs, one of which contains a minimum of
fx- Suppose, without loss of generality, that h; contains
the minimum. Then, we can simply ignore all the lines
in hy, and continue to recurse on h;. This recursive
process takes O(logn) rounds for each set H;.

In each aforesaid round, we first find a point py on h
that minimizes f;. We can then, based on pj,, determine
if the minimum lies in hq or hs.

The problem of finding p; is a one-dimensional in-
stance of our problem (i.e., constrained to line h). Since
fx is piecewise linear, py, lies on an intersection of h with
some other line in H = {Hy, ..., Hi} \ h. Hence, we i)
compute all the intersections of h with H, ii) find the
median intersection point ¢,, and the two intersection
points ¢; and ¢o that are adjacent to ¢, on h, and iii)
determine if p; lies to the left of g,,, right of g,,, or is
qm by evaluating fi(qm), fr(q1), and fi(q2).

Let u be the size of H. The time complexity of finding
pr, is given by the recurrence relation T'(u) = T'(u/2) +
O(u + Q(n)), where Q(n) denotes the query time to
evaluate fj. This recurrence solves to O(u+Q(n) logu).

After finding pp, we determine whether the mini-
mum lies in hy or hy as follows. Consider two oppo-
site rays r; and ro, which are i) originating at py, ii)
orthogonal to h, and iii) contained in h; and hg, re-
spectively. We identify the first lines h,, and h,, inter-
sected by r1 and 79, respectively. Let vy (resp. wv3) be
the intersection point of h,, and 1 (resp. h,, and r3).
There are three possible cases to be considered: (1) If
fe(w1) < fe(pr) < fr(v2), then a minimum of fi lies in
hi. (2) If fr(v1) > fr(pn) > fr(v2), then a minimum of
filiesin ho. (3) If fi(v1) > fu(pn) and fi(v2) > fi(pn),
then pp, is a minimum of fi. Verifying these cases re-
quire the computation of all the intersections of H with
r1 and 7o, and the evaluation of f; at vy and wvs. So,
the time complexity of determining whether a minimum
lies in hy or hy is O(u + Q(n)).

Observe that u = O(kn). Thus, the time taken by the
recursive procedure for each set H; is given by the recur-
rence relation T'(n) = T'(kn/2) + O(kn + Q(n)log kn),
which solves to O(kn + Q(n)logkn). Given that we
have k sets H;, the overall time taken by the prune-and-
search algorithm to compute the point that minimizes
fr 18 O(P(n) + k(kn + Q(n) log kn)), where P(n) is the
preprocessing time to construct the data structure for
evaluating fr, and Q(n) is the query time to evaluate

e

We claim that a data structure with a preprocess-
ing time P(n) = O(knlogn) exists for evaluating f; in
query time @Q(n) = O(klogn) (refer to the full paper
for details). As a result, the overall running time of our
algorithm is O(knlogn). d

Remark 3 Alternatively, the space-subdivision proce-
dure previously used in approxrimating a point-anchored
median line segment could be extended to address
the constant-slope variant.  The resulting (1 + ¢)-
approximation algorithm would have a time complexity
of O(n* + ne~*ayy), where ayy is a function dependent
on the coordinates of P.
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7 Conclusion

We have proven that a median line segment is not con-
structible for n > 3 non-collinear points in the plane
by using only ruler and compass. We have presented
a (1 4+ e)-approximation algorithm for solving the con-
strained median line segment problem in R? where an
endpoint or the slope of the median line segment is given
at input. These algorithms are space-subdivision and
prune-and-search approaches, and their time complex-
ities are near-linear in n. At last, we leave open the
question of whether our approximation algorithms for
solving the constrained variants can be extended to ob-
tain a (14¢)-approximate solution to the unconstrained
median line segment problem.
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Computational Complexity of Flattening Fixed-Angle Orthogonal Chains

Erik D. Demaine* Hiro Itof

Abstract

Planar/flat configurations of fixed-angle chains and
trees are well studied in the context of polymer science,
molecular biology, and puzzles. In this paper, we fo-
cus on a simple type of fixed-angle linkage: every edge
has unit length (equilateral), and each joint has a fixed
angle of 90° (orthogonal) or 180° (straight). When the
linkage forms a path (open chain), it always has a planar
configuration, namely the zig-zag which alternating the
90° angles between left and right turns. But when the
linkage forms a cycle (closed chain), or is forced to lie
in a box of fixed size, we prove that the flattening prob-
lem — deciding whether there is a planar noncrossing
configuration — is strongly NP-complete.

Back to open chains, we turn to the Hydrophobic—
Hydrophilic (HP) model of protein folding, where each
vertex is labeled H or P, and the goal is to find a folding
that maximizes the number of H-H adjacencies. In the
well-studied HP model, the joint angles are not fixed.
We introduce and analyze the fixed-angle HP model,
which is motivated by real-world proteins. We prove
strong NP-completeness of finding a planar noncross-
ing configuration of a fixed-angle orthogonal equilateral
open chain with the most H-H adjacencies, even if the
chain has only two H vertices. (Effectively, this lets us
force the chain to be closed.)

1 Introduction

In this paper, we introduce and investigate a new model
of protein folding. We are given an equilateral fized-
angle chain (“protein”), where each vertex is marked
H or P and has a specified fixed angle, and edges all
have unit length. The goal is to embed the chain into a
given grid (e.g., 2D square, 3D cube, 2D triangular, or
2D hexagonal) while

1. respecting the fixed angles (but each angle is still
free to be a left or right turn in 2D or spin in 3D);

2. without self-crossing in the embedding; and
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tSchool of Informatics and Engineering, The University of
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98

Jayson Lynch?

Ryuhei Uehara®

3. maximizing the number of H-H grid adjacencies.

This is a fixed-angle version of the well-studied HP
model of protein folding (where the angles are normally
free to take on any value), which is known to be NP-
hard in the 2D square grid [4] and 3D cube grid [3].
Fixed angles are motivated by real-world proteins; see
[7, Chapters 8-9]. In the 2D square grid or 3D cube
grid studied here, we can restrict to orthogonal fixed-
angle chains where all fixed angles are 90° or 180°. For
example, the popular “Tangle” toy restricts further to
all fixed angles being 90°; see [B].

In the 3D cube grid, NP-hardness of fixed-angle
HP protein folding follows from [I] which proves NP-
hardness of embedding a fixed-angle orthogonal equi-
lateral chain of n3 vertices into an n x n x n 3D cube
grid. If we make all vertices Hs, then a cube embedding
is the best way to maximize H-H adjacencies, as the
cube uniquely minimizes surface area where potential
adjacencies are lost.

In this paper, we prove that the fixed-angle HP pro-
tein folding problem is NP-hard in the 2D square grid,
even if the chain has only two H vertices and those ver-
tices are its endpoints. In other words, given a fixed-
angle orthogonal equilateral HP chain, we prove it is
strongly NP-hard to find any planar noncrossing em-
bedding where the endpoints (the two H vertices) are
adjacent. This result is tight in the sense that any fixed-
angle orthogonal equilateral chain with fewer than two
H vertices (and hence can have no H-H adjacencies) has
a noncrossing embedding, given by zig-zagging the 90°
angles to alternate between left and right turns.

Fixed-angle HP protein folding where only the two
endpoints are H vertices is nearly equivalent to finding
any planar noncrossing embedding of a closed fixed-
angle chain (where the first and last vertex are identi-
fied, and vertices are no longer marked H or P). This
is called the flattening problem for fixed-angle closed
chains. The only difference is that, in the flattening
problem, the first/last vertex has a fixed-angle con-
straint, whereas in the HP model, the two necessarily
adjacent H vertices could form any angle.

Nonetheless, we show that the flattening problem
for fixed-angle orthogonal equilateral closed chains is
strongly NP-complete. Past work proved strong NP-
hardness when this problem was generalized to fixed-
angle orthogonal equilateral caterpillar tree (instead of
a chain) or when we allow nonorthogonal fixed angles
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(and working off-grid) [6], but left this case open.

Finally our work also addresses two open problems
from [I]. We solve one open problem by proving strong
NP-completeness of deciding whether a given fixed-
angle orthogonal equilateral chain can be packed into
a 2D square (whereas [I] proved an analogous result for
a 3D cube). We also prove that this problem remains
NP-complete when the chain is only a constant factor
longer than the side length of the square (and thus the
square is sparsely filled), answering the 2D analog of a
3D question from [I].

2 Preliminaries

A linkage consists of a structure graph G = (V,E)
and edge-length function £ : E — R*. A configuration
of a linkage in 2D is a mapping C' : V — R? satisfying
the constraint ¢(u,v) = ||C(u) — C(v)| for each edge
{u,v} € E. Let z(C(u)) and y(C(u)) be the z- and
y-coordinate of C(u), respectively. A configuration is
noncrossing if any two edges e1, eo € F intersect only
at a shared vertex v € e1 Nes.

A linkage is equilateral if {(e) = 1 for every e € E.
A linkage with n vertices is an open chain if its struc-
ture graph G is a path (vg,v1,...,v,-1), and it is a
closed chain if G is a cycle (v, v1,...,Vn—1,Un = Up).
A fized-angle chain is a chain together with an angle
function 0 : V' — [0°,180°], constraining configurations
to have an angle of #(v) at every vertex v, except for
the two endpoints of an open chain. For notational con-
venience, we define (vg) = 6(v,—1) = 180° for an open
chain. A fixed-angle chain is orthogonal if we have
O(v;) € {90°,180°} for every vertex v;.

The embedding problem asks to determine whether
a given linkage has a noncrossing configuration in 2D.
For general linkages, this problem is IR-complete [2].
For fixed-angle orthogonal chains, the problem is in NP:
given a binary choice of turning left or right at each
vertex, we can construct an embedding (say, placing the
first vertex at the origin and the second vertex on the
positive z axis), and check for collisions and (for closed
chains) closure. In fact, for fixed-angle orthogonal open
chains, every instance is a “yes” instance:

Observation 1 FEvery fized-angle orthogonal
chain has a noncrossing configuration.

open

Proof. Intuitively, we embed the chain in a zig-zag.
Precisely, let P = (vg,v1,...,v,—1) be the path struc-
ture graph. First we put vg at (0,0), and v; at (1,0). For
eachi=2,3,...,n—1, we define z(C(v;)) and y(C(v;))
as follows. When 6(v;) = 180°, we have no choice:
2(C(v3)) = 2(C(vi-1)) + (2(C(vi-1)) —2(C(vi—2))) and
y(C(vi)) = y(Cvi-1)) + W(C(vi—1)) — y(C(vi-2))).
When 6(v;) = 90° and C(v;—2)C(v;—1) is horizon-
tal, we define z(C(v;)) = x(C(v;—1)) and y(C(v;)) =

y(C(vi—1)) + 1. If it is vertical, we define 2(C(v;)) =
2(C(vi—1)) + 1 and y(C(v;)) = y(C(vi—1)). The ob-
tained configuration is noncrossing because it proceeds
monotonically in x and y, with strict increase in one of
the coordinates. (]

We note that Observation [1] holds for any fixed-angle
orthogonal open chain which is not necessarily equilat-
eral.

In the HP model, the structure graph G = (V, E)
has its vertices bicolored by a color function w : V —
{H, P}. For a configuration C of an equilateral orthog-
onal linkage, a pair (u,v) of vertices forms an H—-H
contact if w(u) = w(v) = H, ||C(u) — C(v)|| =1, and
{u,v} ¢ E. The HP optimal folding problem of a
bicolored fixed-angle orthogonal equilateral chain asks
to find a noncrossing configuration of the linkage in 2D
that maximizes the number of H-H contacts.

A variant of the standard 3SAT problem is planar
3SAT, where the graph G, = (CUYV, E) of the variable
set V and clause set C in a 3SAT formula ¢, with edges
between variables and the clauses that contain them,
has a planar embedding. We use a variant of planar
3SAT with additional planarity restrictions: if we add
edges to form a Hamiltonian cycle xk of C'UV that first
visits all elements of C' and then all elements of V', the
resulting graph G/¢> = G4 Uk must also be planar. The
linked planar 3SAT problem asks, given ¢, G4, and
K, whether ¢ is satisfiable. Pilz [8] proved this problem
NP-complete.

Figure 1: An example instance of linked planar 3SAT,
where ¢; = (v V =03 V —wy), c2 = (vg V v3 V —01),
cs = (-w3 Vo), and ¢4 = (v1 V vy V v3). Hamiltonian
cycle k (drawn dotted) visits ¢1, ¢2, ¢3, ¢4, V1, V2, V3,04 in
cyclic order.

3 Embedding Fixed-Angle Orthogonal Equilateral
Closed Chains is Strongly NP-complete

In contrast to Observation[I} not all fixed-angle orthog-
onal equilateral closed chains are “yes” instances of the
embedding problem. In particular, an orthogonal equi-
lateral closed chain must have an even number of edges
to have a configuration in 2D. Even with this property,
the length-8 chain (vg,v1,v2,vs, V4, Vs, Vg, U7, V8 = Vp)
with angles 0(vy) = 6(vg) = 180° and 0(v;) = 90° for
1=0,1,3,4,5,7 has configurations in 2D but they have
crossings at vertices vy and vg. It is not difficult to show
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that the embedding problem for fixed-angle orthogonal
closed chains is weakly NP-hard by a reduction from
the ruler folding problem (see [7, Chap. 2]); this con-
struction requires exponential edge lengths (or equilat-
eral chains with exponentially long straight sections).
In this section, we prove that the embedding problem is
strongly NP-complete:

Theorem 1 Embedding a fized-angle orthogonal equi-
lateral closed chain in 2D is strongly NP-complete.

Proof. (Outline.) Section 2] argued membership in NP.
To show NP-hardness, we reduce from the linked planar
3SAT problem. We are given a formula ¢, the associ-
ated graph G4 = (CUV, E), and a Hamiltonian path x
visiting ¢1,¢2, ..., Cm, V1,02, ..., Uy in cyclic order. Be-
cause G Uk is planar, there is a planar embedding with
the clauses ¢y, ca,..., ¢y along a single horizontal line
from left to right, and the variables vy, vs, ..., v, along
a lower horizontal line from right to left, as in Figure
but with edges routed via orthogonal paths. We can
find such an embedding in polynomial time. Note that
each edge is either interior or exterior to k. We can
assume that every variable v; has an incident interior
edge and an incident exterior edge, by adding appropri-
ate always-satisfiable clauses (v; Vv; V —w;) to k so that
an edge to v; preserves planarity.

We construct four gadgets that we compose according
to the embedding of G4 and «: the clause gadget, hook
gadget, variable gadget, and frame gadget. Some gad-
gets assume pinned vertices that cannot move in the
plane; we will discuss why they are effectively pinned
when we combine the gadgets together.

Figure [2| illustrates the clause gadget. We call the
two gray vertices the “tabs” of this gadget. When black

pinned
£\

-0 -0
tabs

(a) When black vertices are pinned and forced to turn down,
the two gray tabs can be placed in one of three places.

Ty

b) Representative configurations (modulo reflection).

Figure 2: Clause gadget.

100

vertices are pinned and must turn downward, the tabs
have three locations they can be placed. When we
flip all vertices in the gadget along the horizontal line
through two black vertices, we have three other sym-
metric options above the horizontal line.

We surround each clause gadget with a hook gad-
get, as shown in Figure [3] which consists of an upper

16

>16

) Hook gadget with three options on the lower half.

R

(b) Hook gadget with two options on the lower half and one
option on the upper half.

Figure 3: Two versions of the hook gadget. (Some ver-
tices are not drawn to simplify the figure.)
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half and a lower half to receive tabs of the clause gad-
get at distance 8 from the pinned vertices of the clause
gadget. Again we assume that both endpoints of these
upper and lower halves are pinned, which are depicted
by black vertices. We add long flaps beside the clause
gadget to prevent it from shifting vertically (relative to
the hook gadget). The hook gadget limits the clause to
three of its six options, which we arrange to be on the
upper or lower halves according to which incident edges
of the graph are exterior or interior to k respectively
(see Figure . We illustrate the two possibilities of this
split modulo reflectional symmetry.

In Figure the three upper options of the clause
are prevented by the upper half which is just a horizon-
tal line, which would cross the clause tabs if the tabs
were on the upper half. The lower half consists of three
subgadgets, each with their own pair of tabs. When the
clause gadget chooses one of the downward options for
its tabs, it forces the tabs of the corresponding subgad-
get to be extended down by 2 (to avoid crossing), while
the other tabs can remain retracted (which will always
be better for avoiding crossings). (The figure shows the
unused alternate state with dashed lines.) Each pair
of tabs in the hook gadget has distance more than 16
from the clause gadget, and the linkage to the tabs is
a doubled zig-zag; together, these guarantee that the
tabs of a hook gadget cannot be flipped up because this
would cross with the upper half. The doubled zig-zag
also prevents the tabs from flipping horizontally. Thus
each pair of tabs has exactly two placements (retracted
and extended) if the black vertices are pinned.

In Figure one lower option of the clause (the
middle) is prevented by the lower half being horizontal
there, while the corresponding upper option is allowed
by adding a subgadget to the upper half. Using the same
arguments, the pair of tabs of the subgadget on the up-
per half has two exactly placements: retracted and ex-
tended. When the clause gadget chooses the available
upper option, the pair of tabs of the subgadget is forced
to be extended up by 2, which is the opposite of each
subgadget on the lower half. Moreover, we arrange that
no pair of doubled zig-zag corridors to tabs have the
same height[T]

Figure [4] illustrates the variable gadget. The vari-
able gadget for a variable v consists of two zig-zag paths
of length 4k + 3, where k is the number of appearances
of v or —w as a literal in clauses. The two zig-zag paths
are joined by a horizontal baseline, which separates the
upper and lower zig-zag paths, forcing only two possi-
ble embeddings: the one in the figure and its reflection
through the baseline. Both zig-zag paths contain a hor-
izontal segment of length 4 for each appearance of the

LOtherwise, unexpected pairs of adjacent corridors may be
flipped. For example, consider the pair indicated by an arrow at
the top of Figure @ If these two corridors have the same height,
the linkage joining the pair can be flipped up locally.

Figure 4: A variable gadget for a variable v that appears
five times as v, —v, —w, v, and v. The corresponding tabs
come from above, above, below, above, and below.

variable. The heights of the segments on the upper and
lower zig-zag paths, measured from the baseline, are ei-
ther 3 and —1 respectively, or 1 and —3 respectively.
Which option depends on whether the corresponding
literal uses the variable positive or negated, and on
whether the corresponding tab of the hook gadget comes
from above or below the variable gadget (which corre-
sponds to whether the tab is from the upper or lower
half of the clause/hook gadget, i.e., whether the graph
edge is exterior or interior to ). The heights are (1, —3)
if and only if either the literal is v and the tab comes
from above, or the literal is —v and the tab comes from
below; in Figure[d] these are the first, third, and fourth
pairs of horizontal segments. In the other cases, the
heights are (3, —1).

We arrange the variable gadgets with different heights
(see Figure @ so that the minimum vertical distance be-
tween two baselines of two variable gadgets is at least
4n. This minimum distance guarantees that no pair
of horizontal segments in variable gadgets for v; and
v; with ¢ # j has the same height, which may cause
an unexpected flip between them. In addition, our as-
sumption that every variable has connections to clauses
both above and below it means that there is a tab both
above and below the variable, forcing an approximately
correct height of the baseline.

The last gadget is the frame gadget, shown in Fig-
ure [, which surrounds all other gadgets. For a given
closed chain, we consider the minimum rectangle that
contains but does not intersect the chain (one step out-
side the bounding box on all sides). Then we remove an

Figure 5: Frame gadget for closed chains.
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Figure 6: An example of the reduction from the instance in Figure|l} and the solution embedding corresponding to
assignment vy = true, vy = true, vs = true, and v4 = false, where clauses ¢y, co, c3, and ¢4 choose the variables vy,
vs, v1, and vy as their true literals, respectively. (Note: vertical distances between two gadgets are not to scale.)

extreme edge {u, v} in the gadgets, and attach the frame
gadget that essentially doubles the minimum rectangle,
as shown in Figure[] The inside of the frame gadget in-
cludes the minimum rectangle, except for three edges, as
part of the chain. The doubling prevents any part of the
frame from being flipped with respect to the surrounded
gadgets. This frame also inhibits the surrounded gad-
gets from illegal flips to outside the minimum rectangleEl

Figure [6] shows how all the gadgets fit together for
the example instance from Figure [II We join together

all upper halves of hook gadgets for cy,co,...,cp; all
clause gadgets (and their flaps) for ¢, ¢—1,...,c1; all
lower halves of the hook gadgets for ci,cs,...,cn; and

all variable gadgets for vy, vs,...,v,, in these orders.
Finally, we attach the frame gadget by replacing an edge

2In the most common case, including the example in Figure@
the frame is not necessary, as the hook gadgets will wrap around
both sides of the construction.
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on a path joining the upper halves of the hook gadgets,
or an edge on a path joining the variable gadgetsEl

This reduction can be done in time polynomial in the
size of ¢. It remains to show that an instance (¢, G4, k)
of linked planar 3SAT is satisfiable if and only if the
resulting fixed-angle orthogonal equilateral closed chain
has a planar embedding. Due to the space limitation,
we only outline the proof.

When the linked planar 3SAT instance is satisfiable,
at least one literal of each clause is satisfied by the as-
signment. The clause gadget then chooses the corre-
sponding tabs of the corresponding hook gadget and
extends it, while retracting the other tabs. The ex-
tended tabs force the corresponding variable gadget to
take the true position, to avoid crossing. Because the
assignment is satisfiable, all variable gadgets can avoid

3We omit the case that no edge can be seen from the outside
of these gadgets.
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crossing with tabs. On the other hand, when the loop
has an embedding, all gadgets must be inside the frame
gadget. Each clause gadget then has to indicate some
tabs to be extended. Because the corresponding variable
does not have any crossings, the corresponding variable
satisfies the clause. Therefore, the instance of the linked
planar 3SAT is satisfiable. O

4 HP Optimal Folding a Fixed-Angle Orthogonal
Equilateral Open Chain is Strongly NP-complete

We now turn to orthogonal equilateral open chains in
the HP model, where the vertices are bicolored H or
P, and we wish to find a noncrossing configuration in
2D that maximizes the number of H-H contacts. In
this section, we prove that this problem is NP-complete,
despite the chain being open:

Theorem 2 HP optimal folding of a bicolored fized-
angle orthogonal equilateral open chain is strongly NP-
complete, even if the chain has just two H vertices.

Proof. We use the same reduction in the proof of The-
orem [}, except for the frame gadget, which we replace
with Figure [7] The inside of the frame gadget covers
the minimum rectangle except two edges, but now the
bottom doubled edge extends very far to the left, more
than 10 times the total length L of all other gadgets.
The leftmost two vertices of the bottom doubled edge
are H (and the chain is not closed there), and all other
vertices in the chain are P.

Gadgets of
total length L

10L+1 ¢
ce 06 006 0

Figure 7: A frame gadget for an HP chain. The two H
vertices are drawn red at the far left.

This reduction can be done in polynomial time. Thus
it suffices to show that this arrangement of the frame is
the only way to obtain the H-H contact at the two H
vertices. Because the total length of the gadgets inside
of the frame is at most L, we must arrange the two
long segments attached to the H vertices in parallel as
shown in the figure to make the H-H contact. Thus we
must put all other gadgets inside the frame, and hence
correctness follows from the proof of Theorem O

5 Packing Fixed-Angle Orthogonal Equilateral Open
Chains into Squares is Strongly NP-complete

We now address some of the open questions from [IJ.
First, the authors ask whether a fixed-angle orthogonal

equilateral open chain (or in their terminology, an S—-T
sequence of squares, where each S square must continue
straight and each T square must turn left or right) can
be packed into a 2D square. Second, they ask whether
the problem remains hard when the chain occupies a
small fraction of the volume of the target shape. (They
ask this question for the 3D version of the problem, but
it naturally extends to the 2D version we consider.) We
answer both questions by showing that packing a fixed-
angle orthogonal equilateral open chain of length O(s)
into an s x s square is strongly NP-complete. This result
is tight up to constant factors: if the chain has length
< s, then it can be packed into an s X s square via
Observation [1I

Theorem 3 Embedding a given fized-angle orthogonal
equilateral open chain into an s X s square is strongly
NP-complete, even if the chain has length O(s).

Proof. We use the same reduction in the proof of The-
orem [2] except for the frame gadget, which we replace
with Figure

10L+1

Gadgets of

total length L

10L+1

Figure 8: A frame gadget for an open chain which must
fit in a 10L + 1 by 10L + 1 square.

This frame gadget starts the chain with two connected
segments of length s. Any embedding into the s x s
square must place these segments along two boundary
edges of the square, say left and bottom as in the fig-
ure. The next two segments on the outside of the frame
gadget must turn left to remain within the square. At
the other end of the chain, we have a vertical (by par-
ity) segment of length s — 1 and a horizontal segment
of length > 9L, which forces these segments against the
first two segments. With these segments in place, the
prior argument ensures that the rest of the frame and
thus the rest of the gadgets are correctly placed.

The chain has length at most 47L + 6 vertices (from
the SAT gadgets, the smaller frame, and the three long
bars). Thus the length | = O(s). O

It remains open whether the problem of densely pack-
ing a fixed-angle orthogonal equilateral open chain of

103



CCCG 2022, Toronto, ON, Canada, August 25-27, 2022

length s? into an s x s square is NP—completeH The
analogous problem in 3D is strongly NP-complete [1].
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A bound for Delaunay flip algorithms on flat tori

Loic Dubois*

Abstract

We are interested in triangulations of flat tori. A Delau-
nay flip algorithm performs Delaunay flips on the edges
of an input triangulation 7" until it reaches a Delaunay
triangulation. We prove that no sequence of Delaunay
flips is longer than Cr - n? - A(T) where A(T) is the
maximum length of an edge of T, n is the number of
vertices of T, and Cr > 0 depends only on the flat
torus. The bound improves on the upper bound previ-
ously known [4] in three ways: the dependency in the
“quality” of the input triangulation is linear instead of
quadratic, the bound is tight, and the “quality parame-
ter” is simpler.

Acknowledgments. The author thanks Vincent
Despré, Benedikt Kolbe, and Monique Teillaud for their
help and discussions.

1 Introduction

Delaunay triangulations are mostly known in the Eu-
clidean plane setting. In this context a triangulation T'
can be defined as a maximal planar subdivision of a fi-
nite set of points P [3, Chapter 9]. If the two bounded
faces of T incident to an inner edge e form a strictly
convex quadrilateral then the edge e can be replaced,
in T, by the other diagonal of the quadrilateral. Such
operation is called a flip. The flip graph of P is the
graph whose vertices are the triangulations on P and
such that two triangulations are linked by an edge if
there is a flip transforming one into the other. This
graph is connected and its diameter is quadratic in the
cardinal of P [5]. A triangulation is Delaunay if the cir-
cumdisk of every bounded face contains no point of the
triangulation in its interior. A Delaunay flip algorithm
takes as input a triangulation and performs Delaunay-
flips until it reaches a Delaunay triangulation. Such an
algorithm terminates [3l, Observation 9.3].
Generalizing Delaunay triangulations [2] [I] and De-
launay flip algorithms [4] to other geometric spaces than
the Euclidean plane is a natural question that has been

*loic.dubois@ens-lyon.fr. LIGM, CNRS, Université Gus-
tave Eiffel, F-77454 Marne-la-Vallée, France. This work was
done while the author was working at Université de Lorraine,
Inria, LORIA, F-54000 Nancy. It was partially supported by
the grant ANR-17-CE40-0033 of the French National Research
Agency ANR (project SoS https://sos.loria.fr/). It also was
partially supported by ENS de Lyon.
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studied (and implemented [7] [6]). In that setting De-
launay flip algorithms present the advantage of handling
triangulations containing loops and multi-edges. A flat
torus Tr is the quotient space of the Euclidean plane
under the action of a group I' generated by two inde-
pendent translations (Section . In this paper we are
interested in the complexity (number of flips) of Delau-
nay flip algorithms on flat tori. We prove Theorem [f}

Theorem 1 Every sequence of Delaunay flips starting
from a triangulation T of a flat torus Tr has length at
most

CF . n2 . A(T)

where A(T) is the maximum length of an edge of T, n
is the number of vertices of T', and Cr > 0 depends only
on Tr. This bound is asymptotically tight.

An upper bound was already proved [4, Theorem 16],
together with the connectivity of the flip graph, as a
particular (easy) case of a more general result on geo-
metric triangulations of hyperbolic surfaces:

Ch . 712 . A(T)2

where C}, depends only on Tr and A(T) is a parameter
measuring in some sense how “stretched” T is. The def-
inition of A(T') is not used in this paper but we give it
(in the special case of triangulations of flat tori) for the
interested reader: the real A(T) is the smallest diame-
ter that can have a domain of R? that is the union over
every face t of the triangulation T of a lift (Section
of the face t.

To obtain their bound the authors showed that the
edges flipped in a sequence of Delaunay flips cannot be
longer than 2A(T) [4, Lemma 10]. The upper bound
follows from the observation that the number of seg-
ments no longer than L > 0 between two given points
of Tr is at most quadratic in L.

Our first (small) improvement is to replace the pa-
rameter A(7") by the maximum length A(T') of an edge
in T. The inequality A(T) < A(T) is easily observed to
be true. Moreover the definition of A(T) is more intri-
cate than the definition of A(T) and it is not obvious
how to compute A(T).

Our second (main) improvement is to replace the
quadratic dependency by a linear dependency in A(T),
obtaining a bound that is asymptotically tight.
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2 Background

In this paper R?, d > 1, denotes the usual d-dimensional
Euclidean space with the Lo norm. We call segment
of R? the convex hull [%,9] of any two distinct points
u,v € RY. We call interior of [u,v] the set [, 7]\ {u,V}.
The interior of a segment of R? is not empty.

2.1 Flat tori

A flat torus Tr is the quotient of R? under the action of
a group I' generated by two independent translations.
For the needs of this section we introduce the projection
p : R? = T mapping every point of R? to its I-orbit.

We call segment of Tr any projection s = p(s) of a
segment 5 of R? such that the restriction of p to the
interior of § is injective. If @ and v are the endpoints of
S then p(uw) and p(v) are the (possibly equal) endpoints
of s. We call interior of s the image by p of the interior
of s.

A lift of a point p € Tr is any point p in the I'-orbit
p~(p). A lift of a segment s of Tr is any segment 5
of R? whose interior is, through p, in one-to-one corre-
spondence with the interior of s.

The length [ (s) of a segment s of Tr is the length of
a lift of s in R2. It is independent of the lift.

2.2 Delaunay triangulations and flip algorithms

A topological triangulation of a flat torus Tt is any em-
bedding of a finite undirected graph onto Tt such that
each resulting face is homeomorphic to an open disk and
is bounded by exactly three distinct edge-embeddings.
Observe that this graph may have loops or multiple
edges. A geometric triangulation of Tr is a topolog-
ical triangulation in which each edge is embedded as
a segment of Tr. In this paper every triangulation is
geometric so we just use the term triangulation.

The lift of a triangulation T of Tr is the infinite tri-
angulation of R? whose vertices and edges are the lifts
of the vertices and edges of T'.

A Delaunay triangulation of Tr is a triangulation T
of Tr whose lift T' is a Delaunay triangulation of R2
(Figure . In other words for each face t of T' the disk
circumscribing f contains no vertex of T in its interior.
We refer to the literature for an introduction to Delau-
nay triangulations of R? [3, Chapter 9].

Consider a triangulation 1" of Tr, an edge e of T and
a lift € of e. The segment € of R? is an edge of the lift
T of T and ¢ is incident with two faces t1 and t5 of T.
Let D; and D5 be the open disks of R? circumscribing
t; and to respectively. Let also v; be the vertex of t
that is not a vertex of ¢, and ¥ be the vertex of to
that is not a vertex of t1. The condition ¥; € Dy is
equivalent to vo € D;y. If it is satisfied we say that
the edge e is Delaunay-flippable in the triangulation T

TR

SEA)
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JLTAVANTATA

QO SEKN
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Figure 1: A portion of the lift of a Delaunay triangula-
tion of a flat torus. (Gray) Six lifts of a single face.

and this definition is independent of the choice of the
lift €. In such a case the union of the closures of t~1
and ¢, is a convex quadrilateral and replacing, in the
triangulation 7', the edge e by the segment p([v1, U2]) of
Tr yields another triangulation 7”7 of Tr. We say that
the triangulation 7" results from the Delaunay flip of
the edge e in the triangulation 7'

We call sequence of Delaunay flips any sequence
Ty, - .., Ty, of triangulations of Tr, for some m > 0,
such that for every k € {1,...,m} the triangulation
Ty, results from the Delaunay flip of an edge in the tri-
angulation Tj_1. We say that m is the length of the
sequence.

Every Delaunay flip algorithm takes as input a trian-
gulation of Tr and flips Delaunay-flippable edges until
there is none left to flip. Such an algorithm terminates
and outputs a Delaunay triangulation [4].

2.3 Stereographic projection and Delaunay flips

In R? let Sy denote the 2-dimensional sphere of radius
1 centered at (0,0,0). The point P = (0,0, —1) belongs
to So. We identify R? with the plane of R? containing
the points whose third coordinate is 1. Given p € R? we
denote by I the unique line of R? containing the points
p and P (Figure [2)).

The stereographic projection = is a bijection from R?
to Sp \ P. It maps every point p € R? to the unique
intersection of the line I; with Sy \ P.

A triangle in R? is the convex hull of three points
that do not belong to a common line. We call triangular
surface any connected union of triangles satisfying the
following properties. Firstly if the intersection of any
two distinct triangles of the union is not empty then it
is either a vertex or an edge of both of the two triangles.
Secondly every edge belongs to at most two triangles.
Finally the triangles incident to a common vertex v can
be either circularly or linearly ordered so that two such
triangles share an edge e that is incident to v if and
only if the two triangles are adjacent in the (circular or
linear) ordering.
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Every infinite triangulation 7 of R? is mapped
uniquely to a triangular surface S as follows. The ver-
tices of S are the images of the vertices of 7 under
and the triangles of S are in one-to-one correspondence
with the faces of 7: the three vertices v1,v5 and v3 of a
face of T are mapped to the three vertices 7(v1), 7(v32),
and 7(v3) of a triangle of S. We say that such a trian-
gular surface (issued of an infinite triangulation of R?)
is standard.

We emphasize that every standard triangular surface
shares no other point with the sphere S, than its ver-
tices. In fact if a point belongs to, but is not a vertex
of, a standard triangular surface then it is at distance
less than one from the point (0,0, 0).

Figure 2: Mapping a lift of a triangulation of flat torus
to a standard triangular surface.

Every standard triangular surface S induces bijection
s : R? — 9 sending every p € R? to the unique in-
tersection with S of the line I5. Given two standard
triangular surfaces S and S’ (possibly with S = S’) we
say that S is above S’ if for every p € R? the point
7s/(p) lies on the closed segment [P, 7s(p)] of R3, on
the line Iz. The aboveness relation is a partial order
on the set of standard triangular surfaces. Lemma 2] is
folklore and follows from the fact that every circle on
R? is mapped under the stereographic projection to a
circle on S \ P, the latter being the intersection with
Sy \ P of a plane of R3.

Lemma 2 Assume that a triangulation T of a flat torus
Tr results from the Delaunay flip of an edge €' in a
triangulation T' of Tr and let e be the edge of T resulting
from the flip. Let S and S’ be the standard triangular
surfaces associated to the lifts of T and T', respectively.
Then S is above S’. Let also p € Tr be the intersection
point of the interiors of e and ¢’ and p € R? be any lift
of p. Then wg(p) # 7s/(P)-

3 Lower bound

On a flat torus Tr the length of a sequence of De-
launay flips ending at a Delaunay triangulation cannot
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be bounded from above by a function depending only
on the number of vertices of the starting triangulation.
This fact follows from two observations. The first ob-
servation is that it is easy to construct an infinite set
of triangulations of Tr all having a single common ver-
tex, say v, as their vertex set (Figure [3). The second
observation is that there can only be a finite number of
Delaunay triangulations of T having v as their unique

vertexﬂ

Figure 3: On a flat torus, three portions of the lifts of
three triangulations with a single common vertex.

To understand this phenomenon more precisely, we
consider a second parameter of the starting triangula-
tion T the maximum length A(T) of an edge in T. We
exhibit in Proposition [ a family of starting triangula-
tions T' for which we prove a lower bound on the length
of every sequence of Delaunay flips starting from T and
ending at a Delaunay triangulation.

We are interested in a particular flat torus. Consider
the two independent translations by the vectors (1,0)
and (0,1) respectively. We are interested in the flat
torus T that is the quotient of R? under the action
of the group generated by those two translations. We
denote by pg the canonical projection from R? to Tp.
We say that T is the unit flat torus.

Proposition 3 For everyn > 1 and every Ay > 0 there
s a triangulation T of the unit flat torus Tg such that
every sequence of Delaunay flips starting from T and
ending at a Delaunay triangulation is longer than

c-n?- A(T)

where A(T) > Ao is the mazimum length of an edge in
T, n is the number of vertices of T, and ¢ > 0 is a
constant.

The quadratic dependence in the number of vertices is
also a consequence of a more general fact about flips (not
necessarily Delaunay flips) of triangulated polygons in
the plane [5 Theorem 3.8]. Our construction is inspired
from one previously known in that setting [5].

1Pick’s theorem [§] infers the existence of A1 > 0 depending
only on Tr such that in R2 every disk of diameter A; intersects a
lift of v. It follows that the edges of any Delaunay triangulation
of Tr with vertex set {v} are not longer than A;. There can only
be a finite number of such edges.
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Figure 4: A portion of the lift of a triangulation belong-
ing to F in the proof of Proposition [3] The fixed edges
are in gray.

Proof. We fix n > 1 and Ag > 0. See Figure [

For every z € Z and every € € {0,1} we define the
point p; = (Z,¢) in R? and the point p, of Tg by p, =
po(p?). Observe that if 2,2’ € Z are such that z = 2/
mod n then p, = p,, and the points p?, pt, p%, and pl,
are all lifts of p,. For every z,z' € Z we define the
segment s .. of T as po([p2,pL ).

We are interested in the set F of the triangulations
of Ty satisfying the following. The vertices of every
triangulation T € F are pi,...,p, and the edges of
T are partitioned as follows: T contains n edges that
we call fized and 2n edges that we call free. For k €
{1,...,n} the k' fixed edge of T is pry([p}_1,P%]). The
only restriction on the free edges of T' is that they must
belong to {s, . : z,2' € Z}.

Claim 1. For every T € F the following holds:

(a) The fixed edges of T are not Delaunay-flippable.

(b) The Delaunay flip of a free edge e in T results in a
triangulation T' € F.

(¢) Such a Delaunay flip replaces the edge e in T by an
edge ¢’ in T” such that I(e") > I(e) — 2/n.

(d) The lengths of two free edges of T' cannot differ by
more than 2.

Claim 2. There is a triangulation in F having a free
edge longer than Ag.

Claim 3. There is a constant A; > 0 such that
the edges of every Delaunay triangulation in F are not
longer than Aj.

Claims 2 and 3 are straightforward. We will prove
Claim 1 in the end. We first show that those claims
imply the result. By Claim 2 there is a triangulation
To € F having a free edge longer than Ag. Let A(T)
denote the maximum length of an edge in Tp; A(T) is
the length of a free edge of Ty. Indeed the free edges
of Ty have length at least 1 while the fixed edges of Ty
have length 1/n.

We assign to every triangulation T € F a weight w(T')
that is the sum of the lengths of its edges. By Claim
1.d w(Tp) > 14 2n(A(T) — 2). Indeed Tp has n fixed
edges of length 1/n and 2n free edges of length at least
ANT) —2.

Consider a sequence Ty, ..., Ty, of Delaunay flips for
some m > 0 that starts from 7y and ends at a Delaunay
triangulation T;,. By Claims 1.a and 1.b all the trian-
gulations Ty, ..., T, belong to F. By Claim 1.c holds
w(Ty) > w(Tp) —2m/n. By Claim 3 there is a constant
A7 > 0 such that w(T},) < 3nA;. Thus

2m > n(w(Ty) — w(Ty)) > n+ (2A(T) — 3A; — 4)n?.

That proves the result. Now we prove Claim 1.

Proof of Claim 1. To prove (a) consider a fixed
edge e of the triangulation 7. There is k € {1,...,n}
such that the segment ¢ of R? between pf)_; = (£1,0)
and p) = (%, 0) is a lift of e. Consider the two faces #;
and 5 of the lift T of T that are incident to €. Let v1 be
the vertex of #; that is not a vertex of £ and let 95 be the
vertex of ¢ that is not a vertex of ¢;. Up to renaming
01 and 0 there are z, 2’ € Z such that o, = p. = (£,1)
and Uy = (%, —1). It is straightforward to check that
the open disk whose boundary contains p?_,,p%, and o,
does not contain vs.

To prove (b) and (c) consider a free edge e of the
triangulation T and assume that e is Delaunay-flippable.
There are z,z € Z such that e = s, ,,. The segment

e = [p% pL] is a lift of e so it is incident to two faces

t; and t5 of the lift T of T. Let 71 be the vertex of #;
that is not a vertex of ¢ and let Uy be the vertex of ts
that is not a vertex of t;. Up to renaming v; and U,
there is € € {1, —1} such that v, = p?__ and 05 = p., :
every other case would contradict the fact that both T’
and the triangulation resulting from the flip of e in T
are indeed triangulations. The edge e’ resulting from
the lift of e in T' admits the segment [v7, 2] as a lift and
l(e) >1e) —2/n.

To prove (d) consider a lift € of a free edge e of T and
the two vertices v; and v of €. Let 71 be the translation
by the vector (1,0) (one of the two translations defining
Th). The four points of R? that are v1, v, 71(v2) and
71(071) are the vertices of a closed parallelogram P,. The
closed parallelogram P, contains a lift of every free edge
of T. Indeed every free edge f of T' distinct from e
admits a lift f whose interior intersects the interior of
P, |} and the interior of f cannot intersect a side of
P, because that would imply that the interior of the
edge f intersects another edge of the triangulation T'.
To conclude observe that by construction the sides of
P, are of length 1 (for the sides v371(v1) and U271 (02))
and of length [(e) (for the sides U102 and 71 (v1)71(02))).
Thus every free edge of T has its length between [(e) — 2
and [(e) + 2. O

2The closed parallelogram P, is a fundamental domain for the
flat torus T.
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4 Upper bound

In Section [3] we exhibited a family of triangulations T
for which the length of a sequence of Delaunay flips
starting from 7" and ending at a Delaunay triangulation
is bounded from below (Proposition . In this section
we show that our construction was actually “the worst
possible” and that the lower bound of Proposition [3] is
asymptotically matched by a general upper bound over
all possible starting triangulations on a flat torus. This
upper bound comes from an observation formalized by
Proposition[d Informally, given two “long” edges e; and
eo among the edges flipped in a sequence of Delaunay
flips, if e; and ey have “comparable” lengths then they
must be “roughly parallel”.

4.1 Statement of Proposition [4]

Consider a flat torus Tr. We say that a segment s of
Tr follows a segment s’ of Tr (possibly with s = ') if
there are triangulations T and 7" of Tr (possibly with
T = T') such that s is an edge of T, s’ is an edge of
T’, and there is a sequence of Delaunay flips (possibly
of length 0) starting from 7" and ending at 7.

We map every segment s of Tr to a pair {p, —p} of
opposite nonzero vectors of R? as follows. We consider
the endpoints u and v of a lift of s and define the point
p as the image of Og2 under the translation that maps u
to v. The resulting pair {p, —p} does not depend on the
choice of w and v. We call these two points the signature
points of the segment s.

Consider two segments s and s’ of Tr and assume
that s and s’ have the same endpoints « and v (u and v
may be equal) and the same signature points p and —p.
Consider also a lift @ of u. For € € {1, —1} let ¥, denote
the image of @ under the translation that maps Og2 to €p.
There are €, €’ € {1, —1} such that the segment [u, U] of
R? is a lift of s and such that the segment [, v./] of R?
is a lift of . If € = €’ then s = s’. Thus there cannot be
more than two distinct segments of Tt having the same
endpoints and the same signature points.

Proposition 4 Given a flat torus Ty there are kK > 0
and lg > 0 depending only on Tr such that the following
holds. If a segment s of Tr follows a segment s’ of Tr
and if 1(s) > lp and 1(s") € [l(s)/2,2l(s)] then the
signature points of s' are at distance at most k from the
line containing the signature points of s.

See Figure ] for an illustration of Proposition [

4.2 Proof of Proposition [4]

Lemma 5 Assume that a segment s of a flat torus Tr
follows a segment s' of Tr_and consider a lift s of s and
a lift ' of s'. If 5 and s’ intersect in their respective
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Figure 5: Tlustration of Proposition (Black disks)
Signature points of s. (Black squares) Signature points
of s’. (Gray) Points at distance at most x from the line
containing the signature points of s.

interiors and if there is an open disk D whose bound-
ary oD contains the two endpoints of s and one of the
endpoints of s’ then the other endpoint of s’ lies outside
D.

Observe that in Lemma [5] if a point lies outside the
open disk D it may still lie within the boundary circle
dD. TIn particular the conclusion of the lemma holds
when s = s’ and 5 = ¢'.

Proof. Let u,v denote the two endpoints of s, and 17, v
denote the two endpoints of s’. Assume that the points
u,v, and v/ belong to the circle D. The projection
7(0D) is the intersection with Sy \ P of a plane P C R3.
The plane P bounds two closed half-spaces whose union
is Ij@?’ and whose intersection is P. We will show that
m(v') belongs to the half-space R containing the point
P.

There are triangulations 7' and T’ of Tr such that
s is an edge of T, s’ is an edge of T', and there is a
sequence of Delaunay flips starting from 7" and ending
at T. The lift T' of T" and the lift 7" of T’~are infinite
triangulations of R2; 5'is an edge of T and s’ is an edge
of T". Let S and 5’ be the standard triangular surfaces
associated to T and T’ respectively. Lemma |2 I and the
transitivity of the aboveness relation imply that S is
above S’ (possibly with S = S’). Thus any point p € R?
of the intersection of § and s’ is such that 7g (p) lies on
the segment of R? [P, g (p)] on the line . (Section.
The point 7g(p) is the intersection with the line I; of
an edge of S: this edge is the segment of R? [r(@), 7 (v)].
This segment is fully contained in the plane P since its
endpoints 7(u) and 7(v) both belong to P. In particular
ms(p) belongs to P and s/ (p) belongs to the half-space
R. Since mg (p) is distinct from m(u/) and belongs to

[ (ﬁ),w(&)} and since both 75/ (p)
and 7(u') belong to R then so does 7(v'). O

the segment of R3
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Lemma 6 Lete >0 and d > 20e. Let u € Rx] — 00, 0]
and U € Rx]0,+oo[ such that ||u]| < & and |7 — 1| <
4d. There is a unique open disk D whose boundary con-
tains u and the points (d,0) and (—d,0). Ifv lies outside
D then Yy < 100e where yz denotes the second coordi-
nate of v.

Observe that in Lemma [0 if the point ¥ lies outside
the open disk D it may, still, belong to its boundary.
See Figure [6] for an illustration of Lemma [6]

Figure 6: Illustration of Lemma [f]

We put the proof of Lemma [6] in Appendix [f] Now
we prove Proposition [4 using Lemmas [5] and [6]

Proof. (Proof of Proposition

Assume that a segment s of a flat torus Tt follows a
segment s’ of Tr. Consider a lift 5 of s. Up to a rota-
tion and a translation we assume that s is a horizontal
segment whose center is the point (0,0). We claim that
there exist € > 0 depending only on Tr and a lift s of
s’ whose endpoints ¥ = (23, yz) and U = (z7, yy) satisfy
the three following conditions: ||u]| < e, yz < 0, and
yz < yz. To prove this claim start with any lift of s’
and let p = (zp,y5) and ¢ = (z3,y5) denote the end-
points of this lift. Up to renaming p and ¢ we assume
Y5 < yz. There is € > 0 such that any open disk of
diameter ¢ intersects the I'-orbit of p. Hence there is a
point u € R? at distance less than /2 from the point
(0, —€/2) and a translation 7 € I' such that 7(p) = .
Setting v = 7(q) proves the claim.

The signature points of s belong to the line R x {0}.
We set k = 101e and consider one of the two signature
points of s’, namely ¥ — u. Since —¢ < yz < 0 and
ya < ygy proving yy < 100e will infer the proposition.
Having yz < 0 would conclude so we assume yz > 0.
There are two cases: either § and s’ intersect in their
interiors or they do not.

First assume that s and s’ intersect in their interiors.
We set d = [(s) /2 and we can enforce that d > 20e.
Indeed we assumed [ (s) > lp and we can choose [ large
enough with respect to € (recall that ¢ depends only on
Tr). Lemma [5| implies that v lies outside the open disk
D whose boundary contains % and the endpoints (d,0)
and (—d,0) of 5. Thus the conditions of Lemma [] are
satisfied and y; < 100e.

If 5 and s’ do not intersect in their interiors then o lies
outside D and the conditions of Lemma [6| are satisfied
again. U

4.3 Proof of the upper bound

Lemma [7] is folklore. We prove it in Appendix [§] for
completeness.

Lemma 7 Consider a flat torus Tr, an integer m > 0,
and a sequence of Delaunay flips Ty, ..., Tm. For every
ke{l,...,m} we let e, denote the edge of Ty,—1 that is
flipped to obtain Ty. The segments ey, ..., ey of Tt are
pairwise distinct.

The edges flipped in a sequence of Delaunay flips are
not longer than 2A(T") where A(T) is a parameter mea-
suring in some sense how “stretched” the starting trian-
gulation 7" is [4, Lemma 10]. The arguments yielding a
bound in terms of A(T') easily infer a bound in terms of
the maximum length of an edge in 7. This new bound is
stated by Lemma 8] As the proof of Lemma [§]is only a
slight adaptation of the anterior proof [4, Lemma 10] we
omit it here and put it in Appendix [7] for completeness.

Lemma 8 Consider triangulations T and T’ of a flat
torus Tr and assume that there is a sequence of De-
launay flips starting from T’ and ending at T. Then
the edges of T' cannot be more than twice as long as a
longest edge of T".

Now we prove Theorem [I]

Proof. (Proof of Theorem [1]) Consider m > 0 and a
sequence of Delaunay flips Ty, . . ., T3, such that Ty = T.
For every k € {0,...,m} the edges of T} constitute a
set B}, of segments of Tr. We are interested in the union
E of the sets Fy, ..., E,,. By Lemma[7] the cardinal of
FE is not smaller than m. We partition the elements of
E into n(n + 1)/2 subsets according to their endpoints,
as follows. For every unordered pair {u,v} of vertices
of the triangulation 7" we consider the set of segments
in F that end at u and v. For every single vertex v
of T we consider the set of segments in E that admit
v as their unique endpoint. Proving that each of those
subsets contains at most Cr - A(T') segments will infer
the result.

So consider such a subset F' C E in the partition that
we just described and let u and v be the (possibly equal)
endpoints of the segments in F. Let x > 0 and [y > 0
be given by Proposition [4]

As explained in Section [f.I]there cannot be more than
two distinct segments of Tr having the same endpoints
and the same signature points. Fix a lift w of u and a lift
v of v. For any signature point p of a segment in F' there
is 7 € T such that either p or —p is equal to 7(v) — u.
Thus there is a finite number of such signature points
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that are at distance at most [y from the point (0,0),
and this finite number depends only on Tr (recall that
lop depends only on Tr). That implies that there is only
a finite number of segments in F' that are not longer
than [y.

Consequently we let F/ C F be the set of segments
in F' that are longer than lp: we will now bound the
cardinality of F’. By Lemma |8 no segment in F’ is
longer than 2A(T"). We partition the segments in F’ by
their lengths as follows. We consider jo = Iy < j1 <
-+ < jn = 2A(T) for some N > 1 such that for every
ke {l,..., N} thereals jp_1 and j; differ by a factor of
at most 2. For every k € {1,..., N} welet F], denote the
set of segments in F’ whose length belongs to |jx—_1, ji]-
We now fix k and claim that F}, contains at most C[. -
(jk — Jk—1) segments, where C} > 0 is a constant that
depends only on Trp.

To prove this claim observe that if F} is not empty
then it contains a segment s that follows every other
segment s’ € F} \ {s}. For such another segment s’
Proposition 4] states that the signature points of s’ are
at distance at most k from the line containing the sig-
nature points of s. Also the distance to (0,0) of the
two signature points of s’ is the length of s’ and thus
lies between ji_; and ji. Consequently the number of
signature points of elements of Fj is at most linear in
jr — jr—1 and the constant coefficient depends only on
Tr.

To clarify this statement observe that the signature
points of elements of F}, all belong, by definition, to the
I'-orbit O of some point of R?. We just proved that such
signature points also belong to the set D of points of R?
(1) that are at distance x from the line containing the
signature points of s and (2) whose distance to (0, 0) lies
between ji_1 and ji. The cardinality of the intersection
of O and D is linear in j; — jg—1, and the constant
coefficient depends only on O and k&, that both depend
only on Tr.

That, together with Proposition for the lower
bound, concludes the proof of Theorem O
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Appendix
5 Proof of Lemma [0l

Proof. We write u = (zg,ys) and v = (z%,ys) and recall
that yz > 0 and yz < 0 both hold by assumption. The latter
enforces the existence of the open disk D. Now let ¢ denote
the center of D. The segment [—d, d] x {0} is a chord of D
and its midpoint is the point (0, 0). Thus the first coordinate
of ¢ is 0 and the radius of D is VY2 + d? where yz denotes
the second coordinate of ¢. One easily gets yz > 0 from the
assumptions yz < 0, ||@]| < ¢, and d > e. See Figure [f]

We first prove a few inequalities that may seem arbitrary
at first but will be used in the end of the proof. Pythagorean
Theorem gives (yz — ya)> + 22 = y2 + d* which simplifies to
—2yays = d* — 22 — y2. We assumed ||| < € and d > v/2¢,
that implies 22 + y2 < d*/2 and —yz < € and thus

deyz > d>. (1)

Equation combined with the assumption that d > 20e
implies

yz > 100e. (2)

The triangular inequality gives |[7]] < |[o — @l| + ||u|]. The
later is smaller than 4d + ¢ < 5d by assumptions. So ||7]|* <
25d? and by Equation [1| we obtain

[5]* < 100zye. (3)
Equation (3) and Equation (2) imply
0l < ve. (4)

Now we prove y; < 100e. Since v lies outside D then
(yz — yz)® + 22 > 32 + d°, which simplifies to y2 — 2yzys +
2 — d?> > 0. We study this inequality to derive a bound
on y;. Equation implies 4(y2 + d* — 22) > 0 hence the
polynomial X? — 2yzX + 22 — d? univariate in X admits
two real roots yz = \/y2 + d*> — z2. Equation enforces
¥ < Yz — /Y2 + d? — 22, which implies

ya<yz(1—\/1—w§/y§>.

Equation and Equation successively infer

vs < v (1 /1= 1007z < 100c.

That proves the lemma. d

6 Proof of Lemmal7l

Proof. Assume there are k, k' € {1,...,m} such that k <
k' and ex = ep. Let Sp_1, Sk and S,/_1 be the standard
triangular surfaces associated to the lifts of Tx—_1, Tk and
Ty _1, respectively. Consider the edge f of T} resulting from
the Delaunay flip of the edge ex in Tx_1. Let p € Tt be the
intersection point of the interiors of f and ej. Let also p € R2
be a lift of p.

Since ex = ey then 7s,_, (p) = 7s,, ,(p). By Lemma
Sk/_1 is above Sy, and Sy, is above Si_1. We deduce 7g, (p) =
Ts,_, (D) = 7s,,_, (). But Lemma [2] also gives ms, (p) #
7s,_, (P) hence a contradiction. O

7 Proof of Lemma[§

Proof. Let A(T’) be the maximum length of an edge of
T’ and assume that there is an edge e of T such that
I(e) > 2A(T’). Consider a lift € of e and let 7 € R? be
the middlepoint of &. There is a face ¢ of the lift 7" of T"
such that p belongs either to ¢ or to the boundary of #. The
three edges of the triangle # are not longer than A(T) so, by
the triangular inequality, the distance from p to any vertex
of # is not greater than A(T) and the closed disk D C R? of
diameter A(T) and centered at § contains #. Also the two
endpoints u and v of € lie outside D.

Consider the standard triangular surfaces S and S’ asso-
ciated to the lifts of T" and ~T/7 respectively. The projection
w(0D) of the boundary 0D of D is the intersection with
Sa \ P of a plane P C R3. The plane P bounds two open
half-spaces. The points 7(%) and 7(v) both belong to the
half-space R that contains P. Thus 7s(p) € R. The vertices
w1, ws and w3 of t all belong to 9D thus m(w1), m(wz) and
7(ws) all belong to P and 7g/(p) € P. Consequently 7g/(p)
does not lie on the segment [P,7s(p)] of R®, contradicting
Lemma 2 O
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Computing Batched Depth Queries and the Depth of a Set of Points

Stephane Durocher*

Abstract

Simplicial depth and Tukey depth are two common mea-
sures for expressing the depth of a point g relative to a
set P of points in R%. We introduce definitions that gen-
eralize these notions to express the depth of a set @ of
points relative to a set P of points in R?, and we exam-
ine algorithms for computing these in R?, capitalizing
on the relative cardinalities of P and Q.

1 Introduction

Depth measures quantify the centrality of an object rel-
ative to a set of objects. For univariate quantitative
data, a natural definition for the depth of a point ¢ rel-
ative to a set P of points in R is to measure how deeply
nested ¢ is in P by the lesser of the number of points
of P less than ¢, and the number of points of P greater
than ¢. By this measure, outliers relative to P have
low depth, whereas a median of P has maximum depth.
Various generalizations to higher dimensions exist, in-
cluding simplicial depth and Tukey depth.

The simplicial depth of a query point ¢ relative to a
set P of points is the number of simplices determined
by points in P that contain g¢:

Definition 1.1 (Simplicial depth [14]) Given a set
P of n points in R? and a point q in R?, the simplicial
depth of g relative to P is

SDp(q) =) I(g € S), (1)

Ses

where S denotes the set of (dil) closed simplices, each
of which is the convex hull of d+1 points from P, and I
is an indicator function such that I(A) =1 if A is true
and 1(A) = 0 otherwise.

The Tukey depth of a query point ¢ relative to a set
P of points is the minimum number of points of P in
any closed half-space containing ¢:

Definition 1.2 (Tukey depth [19]) Given a set P of
n points in R? and a point q in R?, the Tukey depth (or
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half-space depth) of q relative to P is

TDp(g)= min |HNP|, (2)
HNq#2

where H is the set of all closed half-spaces in RY.

Given ¢ and P in R2, the simplicial depth and the
Tukey depth of ¢ relative to P can be computed in
O(nlogn) time, respectively, where n = |P| [9, 17, 10],
both of which have matching lower bounds of Q(n logn)
worst-case time [1].

A depth median of a set P is a point of maximum
depth relative to P for a given depth measure. We refer
to a simplicial median and Tukey median, which can be
computed in O(n*) time [2] and O(nlog®n) time [12] in
R2, respectively. An in-sample median of P is a point
of P with maximum depth, which can be identified in
O(n?) time in R? for simplicial depth [9].

Depth measures are typically defined to describe the
location of a single query point (an individual) relative
to a set of points (a population). In this paper, we
examine (1) computing a batch of depth queries relative
to a common set of points, and (2) deriving a single
estimator for the depth of a set of query points relative
to another set of points.

Computing a batch of depth queries by iteratively
running an algorithm designed to calculate the depth
of a single query point can be inefficient. To address
this, we present algorithms to compute a batch of depth
queries; the choice of which algorithm to apply to mini-
mize running time depends on the relative cardinalities
of the query point set @ to the input point set P. Defin-
ing and evaluating the depths of a set of query points
has various applications in data analysis, e.g., finding a
center-outward ordering of a set @) relative to a set P.
Next, we derive a single estimator to express the depth
of @ relative to P. Applications include (1) measur-
ing the centrality of @ relative to P (e.g., the position
of one soccer team relative to the opposing team), (2)
classifying a set @) selected from the same distribution
as the sets Py, ..., P, to determine within which set P;
the set @ is most deeply contained.

Our results In Section 3.1 we present three algorithms
for computing a batch of k simplicial depth queries in
R? in O(knlogn) time, O(n? + nk) time, and O(n* +
klogn), respectively. The first algorithm is fastest when
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k € O(ig;), the second when k € Q(2) and k €

O(n?), and the third when k € Q(n?). In Section 3.2 we
present two algorithms for computing a batch of k Tukey
depth queries in R? in O(knlogn) time and O(n? +
klogn) time, respectively. The first algorithm is fastest
when k € O(;;), and the second when k € (7).

In Section 4 we introduce definitions for the simpli-
cial depth and Tukey depth of a set @ relative to a
set P, which can be computed in R? by applying the
algorithms above. Finally, we examine properties and
probabilistic interpretations for the simplicial depth of
a set of points.

2 Related Work

2.1 Simplicial Depth and Simplicial Median

Multiple algorithms compute the simplicial depth of a
point ¢ relative to a set P of n points in R? in O(n logn)
time [9, 17, 10]. Given the radial ordering of P around
g, the simplicial depth of ¢ can be computed in O(n)
time [9]. Given a set P = {p1,...,pn} of points in
R?, Lee and Ching [13] showed that the radial order of
P\ {p;} with respect to p; for all : € {1,...,n} can be
determined in O(n?) time. Consequently, the simplicial
depths of all points in P can be obtained in O(n?) time
[9], and an in-sample simplicial median can be identified
in O(n?) time [9]. Khuller and Mitchell studied a similar
problem independently [10].

When defined in terms of closed simplices, a simplicial
median lies at an intersection of simplex boundaries [2].
Rousseeuw and Ruts described how to find a simplicial
median by searching the set of intersection points in
O(n®logn) time [17]. Aloupis et al. [2] derived a faster
algorithm to compute a simplicial median in O(n* logn)
time, which they further reduced to O(n*) time. We
apply a technique similar to that of Aloupis et al. [2] in
Algorithm S.IIT in Section 3.1.

2.2 Tukey Depth and Tukey Median

The Tukey depth of a point ¢ relative to a set P of n
points in R? can be computed in O(nlogn) time [17].
Tukey depth contours are a collection of nested poly-
gons that partition the plane into regions of equal Tukey
depth, which can be computed in O(n?) time [15]. A
Tukey median can be found in O(nlog® n) time [12].

2.3 Depth of a Set of Points

Recently, Pilz and Schnider introduced a definition for
the Tukey depth of a set of points [16]:

Definition 2.1 (Generalized Tukey depth [16])
The generalized Tukey depth of a set Q@ C R? with

respect to a set P C R s

. |HnP
GTDp(Q) = min :HM?', (3)
QNH#£D

where H is the set of all closed half-spaces in RY.

Definition 2.1 differs from our Definition 4.2 intro-
duced in Section 4.2. Definition 2.1 selects a single non-
empty half-space that minimizes the ratio (3), i.e., the
number of points of P in the half-space H relative to
the number of points of @ in H. On the other hand,
Definition 4.2 incorporates the respective Tukey depths
for each point in @), i.e., different half-spaces may be
selected for each point.

Depth histograms provide a characterization of
the combinatorial structure of a point set [6, 4].
Bertschinger et al. studied Tukey depth histograms of
k-flats [4] and defined variations of Tukey depth for a
set @ relative to P, including affine Tukey depth and
convex Tukey depth.

Recently, Barba et al. [3] introduced a definition for
the cardinal simplicial depth! of a set of points:

Definition 2.2 (Cardinal simplicial depth [3])
The cardinal simplicial depth of a set Q@ C R% with
respect to a set P C R s

CSDp(Q)=>_ I(QNS # o), (4)

ses

where S denotes the set of (dil) closed simplices, each
of which is the convex hull of d+1 points from P, and I
is an indicator function such that I(A) =1 if A is true
and I(A) =0 otherwise.

Definition 2.2 differs from our Definition 4.1 intro-
duced in Section 4.1. Definition 2.2 counts the number
of non-empty simplicies (the cardinality of the set of
non-empty simplicies), whereas Definition 4.1 is a nor-
malized sum of the number of points of Q contained
in each simplex. See further discussion in Section 4.1.
Barba et al. gave an algorithm to compute CSDp(Q)
for given sets P and Q in O(N7/310g®®) N) time, where
N=|P|+|Q|=n+k.

3 Computing a Batch of Depth Queries

In this section, we describe algorithms that compute a
batch of simplicial depth queries or Tukey depth queries
for k£ points in a set @ relative to a set P of n points,
where P U Q is in general position in R2. For simplicial
depth we propose three algorithms: Algorithm S.I is not

ITo disambiguate between Definitions 2.2 and 4.1, we refer to
Definition 2.2 as the cardinal simplicial depth because it corre-
sponds to the cardinality of the set of non-empty simplicies.
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new [9, 17, 10]; Algorithms S.IT and S.IIT are new. For
Tukey depth we propose two algorithms: Algorithms T.I
and T.IT apply techniques used in existing algorithms
for Tukey depth and Tukey depth contours.

3.1 Computing a Batch of Simplicial Depth Queries
3.1.1 Algorithm S.I

In Section 2.1 we mentioned algorithms for computing
the simplicial depth of a single query point g relative to
a set P of n points in R? in O(nlogn) time [9, 17, 10].
When the number of query points k is small relative to
n, a straightforward approach for computing the depths
of k points is to iteratively compute the simplicial depth
of each query point using one of these existing algo-
rithms. Using this approach, we can compute the sim-
plicial depth of all k points in O(kn logn) time and O(n)
space to store the angular order of P around each query
point (this space is reused for each query point). Due
to the lower bound of 2(nlogn) on the worst-case time
required for computing the simplicial depth of a single
point [1], this approach is optimal when & € O(1).

Lemma 1 Given a set P of n points and a set QQ of
k query points in general position in R?, Algorithm S.I
computes SDp(q) for every ¢ € Q in O(knlogn) total
time and O(n + k) space.

3.1.2 Algorithm S.II

Algorithm S.I is efficient when k is small relative to
n, but more efficient approaches are possible for larger
values of k. We describe an algorithm that computes
the simplicial depths of points in @ relative to P in
O(n? + nk) time and O(n?) space. Using an approach
similar to the in-sample simplicial median algorithm of
Gil et al. [9] (Step 1), we compute the radial order of
the n points of P around each point in @, and (Step 2)
we use this ordering to compute the simplicial depth of
each point in Q.

To perform Step 1, we modify the method described
by Gil et al. [9] and Khuller and Mitchell [10]. First, the
sets P and @ are transformed into sets of lines Lp and
Lg in the dual plane, respectively. The sorted order
of P around a point ¢ can be obtained by considering
the intersection order of Lp with the dual-line L, us-
ing a method described in [13]. This step requires O(n)
time for each point in Q). The planar graph construction
method in [5] can be implemented to find the line inter-
section order of Lp set with each line in L,. We con-
struct a graph G of the arrangement of lines induced by
Lp incrementally by introducing one line at a time, and
construct the doubly connected edge list of Lp, which
requires O(n?) time and O(n?) space. Then we continue
this process by temporarily inserting each line in L, to
G, and finding the order of intersections of lines in Lp
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with L, by traversing the sequence of edges in G along
L,, which takes O(n) time. Then, applying a method
analogous to that described in [13], the angular sorted
order of P around each point ¢ can be obtained in O(n)
time. Step 1 requires O(n?) time and O(n?) space for
preprocessing. In Step 2, the simplicial depth of each
point ¢ € @ relative to P can be found in O(n) time us-
ing the angular order of points of P around ¢ [9]. This
takes O(nk) time, giving a total time of O(n? + nk).

Step 1 requires finding the order of intersections be-
tween Lp and each line in L,. Finding the order of
intersections between one line and a set of m lines can
be achieved using one of various methods: (a) incre-
mental planar graph construction [5] in O(m?) time and
O(m?) space, (b) line sweeping [18] in O(m? logm) time
[8], or (c) topological sweeping [7] in O(m?) time and
O(m) space. Despite its lower costs as a function of
m, when applied to our problem, topological sweeping
takes O(n? + k?) time and O(n + k) space because it
processes additional intersections in Lp and Lg that
are not needed for Step 1. The most efficient method
for finding the ordered intersections between Lp and
each L, line is incremental planar graph construction,
which takes O(n? + nk) time and O(n?) space.

Lemma 2 Given a set P of n points and a set Q of k
query points in general position in R2, Algorithm S.II
computes SDp(q) for every ¢ € Q in O(n? + nk) total
time and O(n* + k) space.

3.1.3 Algorithm S.11I

When k£ is large relative to n, construct the arrange-
ment L formed by lines between every pair of points in
P. This arrangement partitions the plane into ©(n*)
convex cells in which every point within a cell has equal
simplicial depth. By modifying the O(n*)-time simpli-
cial median algorithm of Aloupis et al. [2], we can com-
pute the depths of all cells in O(n*) time. Aloupis et
al. consider the arrangement of line segments connecting
every pair of points in P, which also has O(n?*) inter-
sections and O(n?) cells. This method computes the
number of points on each side of each line segment of
P in O(n?) time. Further, Aloupis et al. showed that
starting from a known depth value on a line segment,
by processing each intersection point in O(1) time, the
simplicial depth along the line segment can be computed
in O(n) time [2]. We adapt this depth-finding method
along a line segment to find the simplicial depth of cells
in our arrangement L as described below.

Each line [ in L is partitioned into three by the two
points p; and py in P that determine I: the line seg-
ment between p; and py (colour this segment blue) and
two rays (colour the rays red) on [ rooted at p; and pa,
respectively. In the arrangement determined by L, only
the blue segments are boundaries of simplices. There-
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fore, when crossing from one cell to an adjacent cell, the
depth changes if the two cells share a blue line segment
on their common boundary. Similarly, if the two cells
share a red segment on their common boundary, then
both cells have the same simplicial depth.

We compute the number of points on each side of
each line in L in O(n3) time. Starting from a cell C;
with known simplicial depth, the algorithm traverses the
arrangement, calculating the simplicial depth of each
cell relative to the depth of an adjacent cell whose depth
was already computed. To find the simplicial depth of
a cell C; that shares a blue edge with Cj, subtract the
number of points in P on the side of C; to the blue edge
and add the number of points in P on the side C; to
the blue edge. The simplicial depth inside C; includes
simplicies (triangles) bounded by the blue line segment
and points in P on the side of C;. When crossing the
blue edge to C;, we exit (subtract) one set of triangles
and enter (add) a new set of triangles based on the blue
line segment and points of P on the C; side of the blue
edge. If depth on simplex boundaries is required, then
the depth on the blue edge is calculated by adding depth
in C; to the number of points in the side of C}; no query
point lies on a simplex boundary when PUQ is in general
position.

All cells outside the convex hull of P have depth zero;
we can initiate our algorithm at any of these cells. The
algorithm proceeds to compute the depths of all cells by
traversing the planar graph determined by L starting
from an extreme cell (with depth zero) using the tech-
nique described above. The depth of each individual
cell is computed in O(1) time. Therefore, the traver-
sal takes time and space proportional to the number of
cells: ©(n?).

Finally, for each point ¢ in @ we apply a point lo-
cation algorithm to identify the cell in the arrangement
determined by L that contains ¢q. Kirkpatrick’s point lo-
cation algorithm can be implemented in a t-edge planar
subdivision with O(¢) preprocessing time, O(t) space,
and O(logt) query time [11]. In our case, t € O(n),
corresponding to ©(n?) cells in the planar subdivision
determined by L (the number of edges is also ©(n?)).
Therefore, Kirkpatrick’s point location algorithm can be
used to find the locations of each point in @ in O(n?)
preprocessing time, O(n*) space and O(klogn) query
time. The simplicial depths of all points in @ can be
computed in O(n* + klogn) time and O(n*) space.

Lemma 3 Given a set P of n points and a set QQ of k
query points in general position in R?, Algorithm S.III
computes SDp(q) for every ¢ € Q in O(n* + klogn)
total time and O(n* + k) space.

Lemmas 1-3 give:

Theorem 4 Given a set P of n points and a set Q of
k query points in general position in R?, the simplicial

depths of points in Q with respect to P can be computed
in O(min{knlogn,n? + nk,n* + klogn}) time.

3.2 Computing a Batch of Tukey Depth Queries

In this section, we describe two methods for computing
a batch of Tukey depth queries based on previous work
related to computing Tukey depth [17] and Tukey depth
contours [15].

3.2.1 Algorithm T.I

In R2, the Tukey depth of a point ¢ relative to a set
P of n points can be computed in O(nlogn) time [17].
Similar to Algorithm S.I in Section 3.1, a straightfor-
ward method for computing the Tukey depths of k query
point is to apply a Tukey depth algorithm iteratively for
each point of ). This process take O(knlogn) time and
O(n) space to store the sorted order of P around each
point of Q.

Lemma 5 Given a set P of n points and a set QQ of
k query points in general position in R?, Algorithm T.I
computes TDp(q) for every g € Q in O(knlogn) total
time and O(n + k) space.

3.2.2 Algorithm T.II

Algorithm T.I is efficient when k is small relative to n,
but more efficient approaches are possible for larger val-
ues of k. Algorithm T.II begins by computing the Tukey
depth contours of P using the algorithm of Miller et al.
in O(n?) time and space [15]. Miller et al. showed how
to build a point location data structure on the contours
in O(n?) time to support O(logn)-time Tukey depth
queries. Therefore, the Tukey depths of k£ points can be
calculated in O(n? + klogn) time and O(n?) space.

Lemma 6 Given a set P of n points and a set Q of k
query points in general position in R2, Algorithm T.II
computes TDp(q) for every ¢ € Q in O(n? + klogn)
total time and O(n® + k) space.

Lemmas 5 and 6 give:

Theorem 7 Given a set P of n points and a set Q of k
query points in general position in R2, the Tukey depths
of points in Q with respect to P can be computed in
O(min{knlogn,n? + klogn}) time.

4 Depth of a Set of Query Points

We introduce definitions for the simplicial depth and
Tukey depth of a set @ of points relative to a set P of
points. As we discuss below, our new definitions differ
from previous definitions introduced by Barba et al. [3]
and Pilz and Schnider [16].
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Figure 1: Relative to the blue set, the green and red sets
have the same cardinal simplicial depth (Definition 2.2).
However, by Definition 4.1, the simplicial depth of the
green set is triple that of the red set. An analogous prop-
erty holds for Tukey depth: the green and red sets have
the same generalized Tukey depth (by Definition 2.1)
relative to the blue set, but their Tukey depths differ
(by Definition 4.2).

4.1 Simplicial Depth of a Set of Query Points

We define the simplicial depth of a set @ relative to a
set P as the normalized sum of the number of points of
@ contained in each simplex determined by points in P:

Definition 4.1 (Simplicial depth of a set of points)
Given a set P of n points and a set QQ of k points in
R?, the simplicial depth of Q relative to P is

‘Q| dlens, (5)

Ses

SD5(Q

where S denotes the set of (dil) closed simplicies, each
of which is the convex hull of d + 1 points from P.

SD%(Q) can be expressed as the average simplicial
depth of points in Q:

SDH(Q = a0 QI > SDp(q (6)

q€Q

A derivation of (6) is given in Appendix A. (6) implies
that SD%(Q) also has a natural probabilistic interpre-
tation. If ¢ is selected uniformly at random from @, the
expected value of the simplicial depth of ¢ relative to P
is SD%(Q).

Definition 4.1 differs from CSDp(Q) (Definition 2.2)
introduced by Barba et al. [3]. CSDp(Q) counts the
number of non-empty simplicies, which can result in
similar depth values for significantly different point sets.
Specifically, a small subset of points in the set @) can de-
termine the depth of @ relative to P. See Figure 1. On
the other hand, Definition 4.1 is a normalized sum of
the number of points contained in each simplex. Equa-
tion (6) also suggests a family of measures that can be
used to define the simplicial depth of a set () with re-
spect to a set P by substituting the average with another
summary statistic of the distribution of the depths of
points in Q. We discuss this briefly in Section 5.

We can compute SD}5(Q) by computing the simpli-
cial depth SDp(q) for each point ¢ € @, and taking the
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average of these depth values. This can be achieved ef-
ficiently using the algorithms introduced in Section 3.1,
which gives the following corollary.

Corollary 8 Given a set P of n points and a set Q of
k points in general position in the plane, SD%(Q) can
be computed in O(min{knlogn,n? + nk,n* + klogn})
time.

As mentioned earlier, CSDp(Q) can be computed in
O(N7/310g°M) N) time, where N = n + k. By Corol-
lary 8, the simplicial depth, SD%(Q), introduced in this
paper can be computed asymptotically faster for any
values of n and k.

Next, we consider another generalization of simplicial
depth to sets, which we show is equivalent to Defin-
ion 4.1. For this, we introduce the normalized simplicial
depth (NSD) of a query point g relative to P as

SDP(Q)
=5 2 1@ S

Ses

NSDp(

that is, it is the proportion of simplices from S that con-
tain ¢. Interestingly, this normalized simplicial depth
can also be interpreted as the probability that the query
point ¢ lies in a simplex whose vertices are selected at
random from P or, equivalently,

P(q € 5), (8)

where S is selected uniformly at random from S.
Liu [14] argued that this is an estimator of the prob-
ability that the query point ¢ lies in a simplex formed
from d + 1 independent random points selected from a
common distribution F in R?.

Now, consider generalizing the idea described above
by selecting a simplex at random from S, but by in-
stead focusing on the expected number of points of Q
that lie in that simplex. This depth measure, which we
denote ERSp(Q) (Expected number of points of @ in
a Random Simplex from P) is then

NSDp(q) =

ERSp(Q) = E[Yo(5)], (9)

where S is again randomly selected from S, and where
the random variable Y5 (S) denotes the number of points
of @ that lie inside S. This is a reasonable measure
of the depth of @ with respect to P, has an elegant
and intuitive interpretation, and reduces to (8) when
() contains a single point. Indeed, when () contains a
single point, E[Y(S)] = E[I(q € S)] = P(q € S), the
normalized simplicial depth of ¢. We now justify that
ERSp and SD} are equivalent measures of depth.

The number of points of () that lie inside a simplex
S constructed from points of P can be expressed as

Yo($) =) I(a€S),

q€Q

(10)
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and takes values in {0,1,...|Q|}. Also, the proportion
of simplices in S that contain exactly y points of @ is

s () \S|Z [Yo(s (11)

seS

for y =0,1,...,|Q|. This also corresponds to the prob-
ability that the simplex constructed from three points
selected at random from P contains exactly y points of
Q.

In this context, the expectation of Yg(S), which cor-
responds to the mean of the probability distribution in
(11), can be shown to satisfy (see Appendix A)

S|
Q|

From this, the simplicial depth of (), as defined in Defi-
nition 4.1, is equivalent to ERSp(Q), the expected num-
ber of points in ) that lie a randomly selected simplex
constructed from points of P, as the two depth measures
are always proportional to each other.

We conclude this section by highlighting how CSDp,
defined in (4) as the number of simplices constructed
from points of P that contain at least one point of @,
relates to the discussion above. Specifically, it is possible
to write (see Appendix A)

CSDp(Q) = S| B(Yo(S) > 0). (13

)
This implies that, as a measure of depth, CSDp(Q)
is equivalent to P(Yo(S) > 0), the probability that a
random simplex contains at least one point of Q.
the case where () contains a single point, this further
reduces to P(Yg(S) > 0) = P(¢ € S) and justifies that
CSDp(Q) is also a direct generalization of simplicial
depth that applies to sets, but differs from ERSp(Q).

SD5(Q) = 2 ERSp(Q). (12)

4.2 Tukey Depth of a Set of Query Points

We define the Tukey depth of a set @ relative to a set
P as follows:

Definition 4.2 (Tukey depth of a set of points)
Given a set P of n points and a set Q of k points in
R?, the Tukey depth on relative to P is

TD5(Q = a0 %TDP (14)

As with (6), (14) corresponds to the average Tukey
depth of points in @ relative to P, and carries the same
probabilistic interpretation as for simplicial depth: (14)
corresponds to the expected depth of a point selected
uniformly at random from Q.

To compute TD}:(Q), we can compute the Tukey
depth of each point in @ relative to P using the algo-
rithms introduced in Section 3.2, and take the average
of those depth values. Therefore, we have the following
corollary.

Corollary 9 Given a set P of n points and a set Q of
k points in general position in the plane, TD%(Q) can
be computed in O(min{knlogn,n? + klogn}) time.

As mentioned in Section 2.3, Pilz and Schnider [16]
introduced the generalized Tukey depth of a set () rela-
tive to a set P, GTDp(Q). This definition can result in
similar depth values for significantly different point sets.
Specifically, a small subset of points in the set @) can de-
termine the depth of @ relative to P. See Figure 1. Pilz
and Schnider did not provide an algorithm to compute
GTDp(Q), but based on Definition 2.1, a straightfor-
ward iterative approach for computing GT'Dp(Q) would
require O(n3+k3) time. This time can likely be reduced
to O(n? + k?) time by constructing the arrangement of
lines determined by pairs of points in QU P, and travers-
ing the arrangement to examine all possible subsets of
QU P contained in a half-plane; traversing from one cell
in the arrangement to a neighbouring cell corresponds
to adding or removing O(1) points from Q U P.

5 Discussion and Directions for Future Research

In this paper, we introduced new definitions for the sim-
plicial depth and Tukey depth of a set @) of points rel-
ative to a set P of points in R?, and we presented algo-
rithms for computing these in R2.

This work suggests various possible generalizations of
simplicial depth and Tukey depth to measure the depth
of a query set Q. As the computation of these depth
measures involves computing the depth of each point in
Q, we could instead define a depth measure as a func-
tion of a different summary of the distributions of the
simplicial depths and Tukey depths of individual points
of @) relative to P. For instance, we could summarize
the distribution of depths using a median, a minimum,
a maximum, or a measure of spread, such as variance,
range, skewness, or quantiles of this distribution. These
different summaries of the constructed depth distribu-
tions over the points of Q can all be computed in the
same time and space complexities as in Corollaries 8
and 9. One could also define the depth of a set using
another depth for individual points altogether.

Future work is warranted to investigate the character-
ization of these depth measures of sets of points. SD}
and T'D} are invariant under affine transformations and
vanish at infinity. 7D} is consistent across dimensions.
Other properties such as convexity, stability, and ro-
bustness remain to be analyzed, requiring appropriate
generalizations for the depth of a set of points. Finally,
some questions remain unanswered with respect to the
possibility of improving the running times of the algo-
rithms presented in Theorems 4 and 7. In particular,
can we show corresponding lower bounds on the worst-
case running time expressed in terms of n and k?
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A Proofs

In this Appendix we include complete details of proofs and
arguments omitted from the main text due to space con-
straints.

Derivation of Equation (6): Starting with Definition 4.1,
and noting that

RQNS|=> Ige9),

q€Q

we see that

as claimed.

Derivation of Equation (12): To avoid confusion in what
follows, we reserve S to denote a randomly selected simplex
and use s otherwise. First, we note that

Q|

E[Yo(S)] =Y yPs(y)

y=0

= EZYQ(S). (15)
Now, using (10), we can further simplify (15) to get

E[Yo(S)] = |?1\ S S Iges)

s€ES qeQ

PN

qeQ seS

= 5 2 5Dr(0)

qeQ
_ el

=5l SDp(Q). (16)

Finally, (9) and (16) together imply that

ERSp(Q) = %SD;@),

which is equivalent to (12).

Derivation of Equation (13): First, we write
CSDp(Q) = > I[Ya(s) > 0].
s€S

Then, making use of (11), derivations similar to those pro-
vided above allow one to see that

QI
CSDp(Q) = ZZI[YQ(S) =y
seSy=1
QI
= ZZI[y > 0]1[Yo(s) =y
s€S y=0
Q|
=> Iy >0]> I[Yo(s) =]
y=0 seS
Q|
=81 Iy > 0]Ps(y)

= [S|E[I(Yo(S) > 0)]
= |S[P(Yo(S) > 0),

as claimed.
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Curve Stabbing Depth: Data Depth for Plane Curves*

Stephane Durocher’

Abstract

Measures of data depth have been studied extensively
for point data. Motivated by recent work on analy-
sis, clustering, and identifying representative elements
in sets of trajectories, we introduce curve stabbing depth
to quantify how deeply a given curve @ is located rel-
ative to a given set C of curves in R2. Curve stab-
bing depth evaluates the average number of elements
of C stabbed by rays rooted on ). We describe an
O(nm? + n?*mlog? m)-time algorithm for computing
curve stabbing depth when @ is an m-vertex polyline
and C is a set of n polylines, each with O(m) vertices.

1 Introduction

Processes that generate functional or curve data are be-
coming increasingly common within various domains,
including medicine (e.g., ECG signals [16] and analy-
sis of nerve fibres in brain scans [11]), GIS techniques
for generating and processing positional trajectory data
(e.g., tracking migratory animal paths [4], air traffic con-
trol [8], and clustering of motion capture data [12]), and
in the food industry (e.g., classification of nutritional in-
formation via spectrometric data [13]). In this paper,
we consider depth measures for curve data.

Traditional depth measures are defined on multidi-
mensional point data and seek to quantify the centrality
or the outlyingness of a given object relative to a set of
objects or to a sample population. Common depth mea-
sures include simplicial depth [18], Tukey (half-space)
depth [23], Oja depth [20], convex hull peeling depth [3],
and regression depth [21]. See [19] and [22] for fur-
ther discussion on depth measures for multivariate point
data. Previous work exists defining depth measures for
sets of functions and functional data [13, 10, 16, 9], of-
ten with a focus on classification. Despite the fact that
curves can be expressed as functions, depth measures
for functions typically do not generalize to curves, as
they are often sensitive to the specific parameterization
and most are restricted to functions whose range is R,
which can only represent z-monotone curves.

New methods are required for efficient analysis of tra-
jectory and curve data. Recent work has examined iden-

*This work is funded in part by the Natural Sciences and En-
gineering Research Council of Canada (NSERC).

TUniversity of Manitoba, Winnipeg, Canada,
stephane.durocher@umanitoba.ca, szabados@myumanitoba.ca
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tifying representative elements [4] and clustering in a set
of trajectories [5, 12]. In this work, we introduce curve
stabbing depth, a new depth measure defined in terms
of stabbing rays to quantify the degree to which a given
curve is nested within a given set of curves.

Our main contributions are:

e In Section 2, we define curve stabbing depth, a new
depth measure for curves in R?, and we describe a
general approach for evaluating the curve stabbing
depth of a given curve @ relative to a set C of curves
in R2.

e In Section 3, we present an O(nm? + anlog2 m)-
time algorithm for computing the curve stabbing
depth of a given m-vertex polyline @ relative to a
set P of n polylines in R?, each with O(m) vertices.

e In Section 4, we discuss properties of a deepest
curve (depth median) for curve stabbing depth, dis-
cuss the consistency of generalizations to higher di-
mensions, and outline possible directions for future
research.

2 Definitions and Preliminary Analysis

Definition 1 (Plane Curve) A plane curve is a con-
tinuous function Q : [0,1] — R2.

Definition 2 (Polyline) A polyline (polygonal chain)
18 a piecewise-linear curve consisting of the line seg-
ments Pi1Pz, PaD3s - - - s Pm—1Pm determined by the se-
quence of points (p1,pa ..., Pm) in R2.

Definition 3 (Stabbing Number) Given a ray @3
rooted at a point q in R? that forms an angle 0 with
the x-axis, the stabbing number of 7 relative to a set
C of plane curves, denoted stabc(q_g), is the number of
elements in C intersected by %).

Definition 4 (Curve Stabbing Depth) Given  a
plane curve @ and a set C of plane curves, the curve
stabbing depth of Q relative to C, denoted D(Q,C), is

1
TL(Q)

/ / min{stabe (3), stabe (qo14)} d0ds, (D.c)
q€Q J0

where L(Q) = fqu ds denotes the arc length of Q.
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As L(Q) approaches zero (the curve @) becomes a
point ¢), the value of (D.c) approaches

1 /™ . BN
;/ min{stabe (g4), stabe (gos )} dO. (D.p)
0

Curve stabbing depth corresponds to the average
depth of points ¢ € Q. The depth of a point ¢ relative
to C, given by (D.p), is the average stabbing number in
all directions 6 around ¢, where for each 0, either the
stabbing number of the ray q—g or its reflection m is ap-
plied, generalizing the one-dimensional notion of depth
that counts the lesser of the number of elements less
than vs. greater than the query point (outward rank).

As a ray gg rotates about a point g, stabc(q_g) par-
titions the range ¢ € [0, 7) into intervals, such that for
all values # in a given interval, @5 intersects the same
subset of C. These intervals partition the plane around
q into wedges. We generalize this notion and define the
wedges determined by a point ¢ relative to a set C of
curves.

Definition 5 (Wedge) The wedge of the curve C rel-
ative to the point q is the region determined by all rays
rooted at q that intersect C':

wg,0)= |J @
WNCAD
0e0,2m)

Cy

Figure 1: The set of wedges wi,ws,ws, and wy induced
by curves C1,C2,C3, and Cy rooted at the point g on the
curve ). Moving counterclockwise around ¢, the positive
angle between 71 (w2) with the horizontal is indicated by
¢(11(w2)), the tangent points of wy are labelled 71 (w2) and
T2(w2), and the internal angle of ws is highlighted by 6(ws).

Definition 6 (Tangent Points) When C U {q} is in
general position in R2, the tangent points of the wedge
w = w(q,C), denoted T7(w) = {71, 72}, are those points
of C incident with the boundary of w; i.e., T(w) =
Ow N C, where dw denotes the boundary of w. (If C

18 a curve for which all rays from q intersect, the tan-
gents points of w(q,C) are taken to be coincident on C,
with an internal wedge angle of 2w radians.) 11 (w) de-
notes the tangent point that is the most clockwise of the
two around q. The angles between the horizontal and
each tangent point of w are denoted by ¢(m(w)) and
@(m2(w)), with O(w) denoting the interior angle of w.

See Figures 1 and 2. The sequence of wedges deter-
mines an ordering of the curves stabbed about a given
point ¢. A ray q_g always stabs the associated curve
C as ¢ sweeps through the wedge determined by the
extreme points of C. For a given set C of curves and
associated wedges W rooted at a common point g,

stabe (g3) = {w € We | 6 € [¢(71(w)), $(r2(w)]}]. (1)

That is, stabe(gg) is the number of wedges that con-
tain the ray @, where each wedge is associated with a
curve in C. See Figure 1.

Our algorithm for computing curve stabbing depth re-
quires calculating the interior angle 6(w) of each wedge
w, which we now describe. We consider two cases for
the relative positions of a given query line segment @,
a curve C, and the wedge w(q,C) rooted at a point ¢:
(1) when ¢ ¢ CH(C'), where CH(C') denotes the convex
hull of C, i.e., @ does not pass through the interior of C,
and (2) when ¢ € CH(C'). When points and curves are
in general position, C' cannot coincide with a bounding
edge of w. See Figure 2.

(a) A curve C existing entirely above (below) the
query line segment Q. y(w)
»

ni(w)’y

(b) A curve C crossing through the query line seg-
ment Q.
Figure 2: Two ways a query line segment C' and a wedge
rooted at a point on C' can be arranged under general po-
sition. Case 1 is drawn in black while Case 2 is outlined in
blue.

122



CCCG 2022, Toronto, ON, Canada, August 25-27, 2022

In Case 1, when C' lies entirely above or below @ the
angles formed between the tangent points, root, and
horizontal can be evaluated as

).

Qe — TQ(w)x
T2(w)y — qy
Qe — T1(W)g
Ti(w)y — gy

O(w) + ¢(m1) = g —a = g —tan~! <

(b(Tl):g—,@ :g—tan_1<

Where the interior angle of w is found to be

f(w) = tan ™! (qz—ﬁ(w)w>

T2(W)y — gy

- (£

Ti(w)y — gy (4.

This can be done rather than evaluating distinct cases
due to the order in which the signs of each inverse tan-
gent change while ¢ transitions past each dropped per-
pendicular. When C' crosses in front of @, as illustrated
in Figure 2b, we calculate

tan—! (qu’ - TQ(w)a:>

T2 (w)y — gy

+tan ! <%_ﬁ(w)z> ’

T (w)y — gy

O(w) =m —

(A.2)

Once ¢ enters CH(C'), we transition to Case 2, in which
the calculations are similar to those of Case 1, except
for modifications needed to account for taking an an-
gle greater than 7 radians, as shown in Figure 2b in
blue. Every case considered by our algorithm reduces
to Case 1 or Case 2. We sometimes limit discussion to
instances of Case 1 depicted in Figure 2a to simplify the
presentation; our results apply to all cases.

Definition 7 (Circular Partition) The circu-
lar partition induced by the set of wedges We =
{wy,ws,...,w,} rooted alt a common point q is the
sequence 0 = 0y < 01 < -+ < Oy, < 27 of angles, corre-
sponding to the ordered sequence of bounding edges of
wedges in We ; i.e., it is the ordered sequence of values in
{0: 1 0; € {¢(7;), ¢(5) + 7 mod 27}, 7; € T(w), w € We}.
Denote this sequence by c(We) = (00,61, ..., 04n).

See Figure 3. Applying Equation (1) to Definition 7,
we arrive at the following observation:

Observation 1 Given a set We of wedges and induced
partition o(We) = (00,61, ...,04,) for a given point q
and set C of curves, for everyi € {1,...,4n—1} and ev-
ery é1,¢2 € (0;,0;11), the set of curves in C intersected
by qﬁ s the same as that intersected by q?;

Observation 1 remains true when the point g at the
root of the wedges moves within a bounded neighbour-
hood: given a curve ) and a set C of curves, for each
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Figure 3: A configuration similar to that shown in Fig-
ure 1 for three curves C1,C2, and C5 is depicted, with their
respective wedge boundaries extended through the origin.
The circular partition induced is shown by the sequence of
angles towards the right-hand side of the figure.

point ¢ on @, the relative ordering of wedge boundaries
in the circular partition of ¢ remains unchanged when ¢
moves along some interval of Q). By partitioning () into
such cyclically invariant segments, this property allows
us to calculate the curve stabbing depth of @ relative
to C discretely. Formally:

Cl

Cy

—
Q\‘/\/

Figure 4: A configuration similar to that shown in Fig-
ure 1 for two curves C; and Cj is depicted, the highlighted
segment being cyclically invariant with respect to the given
population, as can be seen by inspecting the wedge bound-
aries

Definition 8 (Cyclically Invariant Segments) A
segment along a curve that maintains the same cyclic
ordering of boundaries within the circular partitions of
each point along its length, is called cyclically invariant.
Specifically, for a given curve Q, a segment I C @Q
is cyclically invariant provided o(Weg) has the same
ordering of wedge boundaries as c(W},), for all We and
W, defined relative to any q,q" € I respectively.

See Figure 4. Clearly such segments exist when {Q}U
P is a set of polylines in R?. This property does not hold
more generally for all plane curves'. For the remainder
of this article, we assume {Q} U P is a set of polylines.

I1We use C to denote a general set of plane curves, and P to
denote a set of polylines in R2.
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Lemma 1 (Invariant Segments along Polylines)
Given a polyline Q and a set P of polylines, Q) can
be partitioned into line segments, each of which is
cyclically invariant with respect to P.

Proof. Consider any line segment L in @, and as-
sume without loss of generality that every element of
P ={P,P,,...,P,} lies above the line determined by
L. An analogous argument can be applied to polylines
that lie below L (any polyline that crosses L can be
partitioned into separate polylines above and below L).
The tangent points in a circular partition can only un-
dergo a change in relative positions when the reference
point (root) g becomes collinear with one of the com-
mon tangents between a pair of polylines defining the
associated wedges, common to the convex hulls of each
polyline. Consequently, as at most four such tangents
exist for each pair of polylines, the set of points along
L that trigger change in wedge orderings must be fi-
nite. Therefore, L can be partitioned into cyclically
invariant segments, each of which is a maximal line seg-
ment on @ between two consecutive points that trigger
changes. O

By Observation 1 and Lemma 1, the double integral
in (D.c) can be reformulated as a sum of integrals mea-
suring the total angular area swept out by the wedges
of P with stabbing number weights along all cyclically
invariant segments. This reformulation, which is made
explicit in Section 3.2, is possible due to the fact that
stabbing numbers remain constant within circular par-
titions, and that the cyclic ordering of each circular par-
tition remains unchanged along each invariant segment.

3 Computing Curve Stabbing Depth for Polylines

In the following section we develop an algorithm for
computing the curve stabbing depth of a given polyline
Q relative to a given set P of polylines, based on the
identification of critical curve features, such as tangent
update points for curve wedges and the partitioning @
into invariant segments.

3.1 One Invariant Segment and One Polyline

We first describe an algorithm for computing the curve
stabbing depth of one cyclically invariant segment I =
g1gz on a query polyline @) relative to another polyline
P = (p1,p2,-.-,Pm), before generalizing the algorithm
to the complete polyline @ and a set P of polylines.

The wedge w(q, P) associated with polyline P and a
given point ¢ is determined by the tangent points of P
(see Figure 5) which can be found by computing the
convex hull of P and examining its vertices relative to
¢ using binary search in O(logm) time. Thus, start by
computing the convex hull CH(P), which can be com-
pleted in O(mlogm) total time [14, 6].

In Case 1, begin by deriving the initial tangent points
71 and 73 of w(q, P) for ¢ = ¢; € I by using CH(P) as
described in the previous paragraph. Additionally, de-
termine all points of intersection between I and the set
of lines corresponding to the extension of all line seg-
ments that form, 0 CH(P), the boundary of CH(P).
Denote this set of intersection points along I by T.
The points of T signal when and how tangent points of
w(q, P) need to be updated as g traverses along I; see
Figure 7. The cyclical invariance of I allows the angular
area swept out by w along each subsegment I; = ab of
I formed by points of T" to be evaluated as

A; = /,Je[i O(w(q, P)) ds. (WA)

We can apply a coordinate transform to render I
collinear with the z-axis, which for Case 1(a) using (A.1)
in the integral results in (WA) becoming

a [ o (505)

o () o

for the transformed points a’, b’ and resulting wedge w’
defined by the tangent points associated with the points
of T delineating I;. This being an integral with known
antiderivative

A= |(r(w)y — x)tan™? (%)
+ (z — 11 (w'),) tan ™ (11 (w')y (11 (w')r — )
1
27'1(w’)y

_ %TQ(w’)y In(r2(w')2 — 279 (w') 2 + TQ(U)/)Z + 3:2)}
As a consequence of the circular partition induced by
w being straightforward and w having stabbing num-
ber one, we find D(I,P) = > ; .; Ai/mL(I). Analo-
gous analysis can be applied using (A.2) for problems
in Case 1(b) reassembling that depicted in Figure 2b.
In Case 2, where ¢ € I is in the interior of CH(P),
begin by processing P to identify points of self intersec-
tion, some of which form closed loops (closed regions).
Let L denote the set of points of self intersections of
P. The planar subdivision formed by P and 0 CH(P)
consists of polygonal faces, each of which can include at
most one window edge on its boundary, i.e., an edge of
0 CH(P) that is not on P, as well as subpaths of P that
do not cross into other faces.? This planar subdivision

20bserve that the faces of the planar decomposition are ef-
fectively simple polygons. Any polyline that protrudes into the
interior of a face could be twinned to form a proper simple polyg-
onal face.
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In(7y (W), (11 (w")2 — 27 (W) ez + 2%) + 1)

b
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can be computed in O(m?) time using a line segment
intersection algorithm (e.g., [2]) and updating a doubly-
connected edge list each time a point of intersection is
identified.

Next, we construct the shortest geodesic path query
data structure given in [15] augmented using the result
from [7] in linear time for each face of the planar sub-
division, taking O(m?) total time.

For any endpoint of I within CH(P) and for every in-
tersection point a between I and the boundary of a face
of the planar subdivision (or when I crosses an edge of
P while remaining in the same face), we query the two
shortest geodesic paths between a and the endpoints of
the window edge on 9 CH(P) belonging to the current
face. When ¢ is in a face with no window edge, no visi-
bility computation is required as all rays rooted at g stab
P. The intersections between I and the extended seg-
ments along the shortest paths identify when and which
tangent points of the visibility wedges that look out of
CH(P) need to be updated. If the two shortest paths
intersect at a vertex of P, then ¢ loses external visibil-
ity after one of the two update points corresponding to
these extended intersecting segments. Shortest geodesic
path queries can be performed in O(logm? + t) time,
where t is the number of turns on the reported shortest
path. Intersection testing between extended segments
and [ takes at most O(t) time per path. Thus, this step
takes O(m) worst-case time for each such query along
1.

The depth for the portion of I within CH(P) can be
calculated as a discrete sum of the depth accumulated
by each subsegment I; of I that result from partition-
ing I by shortest path update points, by calculating the
total wedge area of the difference between 27 and the
window visibility wedge at each point along I;. A cal-
culation that is otherwise analogous to those discussed
for Case 1 above.

3.2 A Polyline Q and a Set P of Polylines

We generalize the algorithm described in Section 3.1 to a
query polyline @ = (g1, qo, - - -, ¢m) and a set of polylines
P = {Pl, PQ, cee 7F’n}, with B = (pi,lapi,Qa cee 7pi,m) for
1=1,...,n.

The algorithm is organized into three stages: an ini-
tial preprocessing stage applied to P, a separate pre-
processing method applied to @ based on results of the
first stage, and the final computation of D(Q,P).

Preprocessing P. Begin by computing the convex hull
CH(P;) of each polyline P; € P to determine wedge
tangent points, as done in Section 3.1; see Figure 5. Let
H denote the resulting set of convex hulls. This stage
can be completed in O(nmlogm) total time.

Having determined H, compute the collection 7(H)
of all common tangent lines that separate each pair of

125

Figure 5: A query polyline @ and tangent points of P high-
lighted along the boundary of CH(P). The tangent points
and boundary rays for the wedge w(q, P) are also shown.

convex hulls. See Figure 6. That is, compute

7(H) ={lines ! | for some {P;, P;} C P
(INCH(FR)) U (1N CH(F;)) = {pi.ir,pijts

where p; ;» and p; ;- are vertices of CH(F;) and CH(F;),
respectively.

Figure 6: Illustration of the common tangents between con-
vex hulls CH(P: ), CH(P2), and CH(Ps). To simplify the fig-
ure, only those tangents that intersect ) are shown, with
their points of intersection marked along @ by boxes.

There are three distinct cases to consider when com-
puting these common tangents: (1) the two convex
hulls are disjoint, (2) their boundaries intersect, and
(3) one convex hull entirely contains the other. Case 1
is the simplest, in which the common tangents be-
tween two convex hulls CH(P;) and CH(P;) can be
computed in O(log | CH(Py)| + log | CH(P%)|) time [17].
Case 2 requires O(m) time to compute in the worst
case. However, if the two convex hull boundaries in-
tersect at most twice, the common tangents can be
found in O(log(| CH(P,)|+| CH(F,)|) log k) time, where
k = min{| CH(P;) N CH(P,)|, | CH(Py) U CH(P,)|} [17].
In Case 3, no computation is performed after identifying
that the hulls are nested. It takes up to O(m) time to
identify which of the three cases must be applied. Thus,
this stage can be computed in O(n?m log?m) time.

Preprocessing Q. After preprocessing P, mark the
points of intersection between elements of 7(#H) and Q,
which, per the proof of Lemma 1, partition @ into cycli-
cally invariant segments. Additionally, as outlined in
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Section 3.1, determine all points of intersection between
@ and the set of lines corresponding to the extension of
all line segments on @ CH(P;) for each ¢ = 1,...,n. See
Figure 7 for the latter. If the intersection between one
of these extended segments and Q) occurs on the bound-
ary of the convex hull, ) must pass into the interior
of the convex hull. Here we enter Case 2 of the algo-
rithm described in Section 3.1, and perform the same
computations. In the worst case, () passes through the
convex hulls of all n polylines in P, leading to O(nm?)
worst-case processing time.

This yields two point sets on @, say S and T, that
respectively identify when wedge stabbing numbers and
tangent points need to be updated relative to the po-
sition of g along Q. Let Z denote the resulting parti-
tion of @ into cyclically invariant segments by points
of S, after further refinement from the vertices of
itself. Likewise, for all I € Z, let I; € I denote a sub-
division of I delineated by tangent update points of 7.
There are at most O(n?) many points in S as there are
at most four common tangents for each pair of convex
hulls. Additionally, there are at most O(m) segments
composing each of the n convex hulls, and O(m?) in-
ternal update points for each crossed convex hull, so
T contains at most O(nm?) points. Consequently, this
step takes O(n?m + nm?) worst-case time to compute
all possible intersections.

Figure 7: Depiction of a query polyline @ with tangent up-
date points of a polyline P shown along its length as open
circles. These points are derived from the intersection be-
tween @ and lines passing though the parameter segments of
CH(P). Only those lines that intersect @ are shown. Then
q traverses the length of @ (in the indicated direction) the
tangent points of the wedge w(q, P) change whenever one
such point is crossed. The update points are color matched
with the resulting tangent point (line) change.

Computing the curve stabbing depth of Q. Let «
denote the unit direction vector associated with a line
segment I = gqigz € T along Q. Construct the ma-
trix Pz + B, composed of the transition matrix Pz
from the standard basis of R? to the orthonormal ba-
sis {@,—1/u}, and a vertical translation matrix B that
displaces I to have height zero after the transforma-
tion. Applying this transformation to P pointwise for
each I € 7 allows us to calculate the area swept out by

wedges along a path as described in Section 3.1. Let
P ={P|,P;,...,P,} be the set of transformed poly-
lines.

Starting at ¢, construct the set of wedges Wp:. This
is accomplished by calculating the tangent points of
each convex hull within H relative to ¢; using binary
search in O(nlogm) time. The set Wp: is updated in-
crementally by monitoring the points of T crossed by
g while traversing I. Each update takes O(1) time
by walking one vertex clockwise or counterclockwise
around the perimeter of the convex hull depending on
the relative motion between ¢ translating along I and
the convex hull.

Afterwards, construct c(Wp:) = (6o,01,...,04,) by
sorting the lines associated to each tangent point by
slope, treating the portion of the line extended through
the origin separately. During this process, take note of
which regions overlap to calculate the stabbing num-
bers of each angular region in the partition (subdi-
vided wedges) as in (1) and Observation 1. These stab-
bing numbers are iteratively updated by monitoring the
points of S crossed in O(1) time per event as is done
for tangent points above. From the circular partition
o(Wp»), select a minimizing subset iteratively by defin-
ing the indicator variable (bit sequence)

1 if stabp(ge?) < stabp(go-14)

6i = fOI“ 97;71 S 0* S 91
0 otherwise,
for i =1,...,4n. This selection procedure performs the

same task as the minimization operation within (D.c).

At last, we can compute the depth of Q accumulated
along I, by reformulating (D.c) in terms of summations
over all I; € I, specifically,

1 4n .
D; = T(Q) Z Z5J Stabp/ (qfo;?)A]a (Dl)

I;€Z j=1

for any ¢ along I; and sample angle 07 € [0;_1,60;), and
the angular area A; swept out by the wedge bounded
between the angles [0;_1,6;] while ¢ is translated across
I;, as calculated above using (WA).

The total depth of @ is found by evaluating the sum
D(Q,P) = ez i

Forming the partition c(Wp/) and selecting the cho-
sen subset takes at most O(nlogm) time. The query
polyline Q contains at most O(n? +nm?) update points
from S and 7" which are used during the computation of
Dy, and at most O(m) directional transitions from its
m constitutional line segments where each transforma-
tion to the set P takes O(nm?) time. Thus, this final
stage takes O(n? 4+ nm?) time.

These results are summarized in the following theo-
rem:
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Theorem 2 Given an m-vertex polyline Q) and a set
P of n polylines, each with m vertices, we can compute
the curve stabbing depth of Q relative to P in O(nm? +
n?mlog?m) time.

Expressed differently, the running time is O(k?),
where k denotes the total number of vertices in the in-
put polylines {Q} U P.

4 Discussion and Directions for Future Research

In this section, we discuss depth medians, possible gen-
eralizations of curve stabbing depth to higher dimen-
sions, and other possible measures of curve depth. Due
to space constraints, discussion of properties has been
omitted (e.g., stability, robustness, etc.).

4.1 Median Curves and Depth Median Points

The depth for any particular curve in a set can be com-
puted by treating it as a query curve . The compari-
son of all the resulting depth scores allows for a median
outwards ranking of all curves.

Moreover, observe not all points along the length of a
curve () contribute equally to the curve stabbing depth
of @ relative to the set C of curves. The depth of a point
(a degenerate curve) is given by (D.p). It follows that for
some point ¢ on @, D(q,C) > D(Q,C). Consequently,
this gives:

Observation 2 For any given set C of plane curves,
there exists a point m € R? that is a depth median of C.
That is,

D(m,C) = glggD(Q,C),

where Q@ denotes the set of all plane curves.

4.2 Generalizations to Higher Dimensions

When a curve @ and a set C of curves lie in a k-
dimensional flat of R? for some k < d, the d-dimensional
curve stabbing depth of @ as calculated using a ray
relative to C is zero; whereas, the k-dimensional curve
stabbing depth of @ relative to C is non-zero in gen-
eral, meaning that the straightforward generalization of
Definition 4 is not consistent across dimensions.

Alternatively, another natural generalization of Defi-
nition 4 to higher dimensions is to replace the rotating
stabbing ray by a k-dimensional half-hyperplane, and
to measure the number of curves it intersects as it ro-
tates. This second generalization is consistent across
dimensions.
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4.3 Alternative Definitions

Alternative possible definitions for the stabbing depth
of curves considered by the authors include:

/ min min{stabe(3}), stabe (@32)} ds,  (2)
qEQO§9<7r

which differs from (D.c) by a minimum in place of the
second integral (maximum was also considered). Equa-
tion (2) often gives a zero depth value regardless of the
position of @ relative to C. For example, consider a
set C’' of n parallel line segments of equal length. Each
of these line segments has depth zero relative to C’ by
(2) because every point on every segment is the root of
some ray that does not intersect any other segment in
C’. Conversely, using Definition 4 instead, the line seg-
ment at the centre (median) of ¢’ has greatest depth,
with depth values decreasing monotonically toward the
two line segments on the outside of C’, which are the
only two curves in C’ with depth zero.

4.4 Approximation Algorithms using Randomization

Definition 4 suggests that efficient approximate compu-
tation by Monte Carlo methods is likely possible using
a random sample of rays rooted along the query curve
Q. One possible direction for future research is to bound
the expected quality of approximation and the expected
running time as functions of the number of random rays
selected.

4.5 Upper Envelopes of Sets of Pseudolines

Our algorithm for computing curve stabbing depth in-
volves identifying the extreme points of each curve
P € P relative to a point ¢ that follows the query curve
Q. When P is a polyline, the extreme points can be
identified by computing the upper and lower envelopes
of the angle formed by each vertex of P relative to g as
a function of the position of g on ). These functions are
a set of pseudolines when (@ is a line segment; it may be
possible to compute upper and lower envelopes of this
set efficiently by constructing the convex hull of a set
of points dual to the set of pseudolines (e.g., [1]), which
may lead to a simpler and more efficient algorithm for
computing curve stabbing depth.
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Reflections in an Octagonal Mirror Maze

David Eppstein*

Abstract

Suppose we are given an environment consisting of axis-
parallel and diagonal line segments with integer end-
points, each of which may be reflective or non-reflective,
with integer endpoints, and an initial position for a light
ray passing through points of the integer grid. Then
in time polynomial in the number of segments and in
the number of bits needed to specify the coordinates
of the input, we can determine the eventual fate of the
reflected ray.

1 Introduction

There are many problems in graphics and visibility test-
ing where it is of interest to determine the path that
would be taken by a ray of light, through an environ-
ment that may contain mirrors. Figure [I] gives a simple
example of a problem of this type. Even for very re-
stricted environments such as the one depicted, where
the starting point of the ray and all endpoints of mir-
rored segments have integer coordinates and where the
mirrors are all either axis-aligned or at 45° angles to
the axes, the path of such a ray may be very compli-
cated, taking a number of reflections that may depend
on the geometry of the input and not merely on its com-
binatorial complexity. For instance, a ray that bounces
diagonally between two parallel mirrors on opposite sides
of a long thin rectangle will only exit the rectangle after
a number of bounces proportional to the aspect ratio of
the rectangle, even though such an environment consists
of only two segments. Nevertheless, in that simple two-
mirror example, the eventual path of the ray is easy to
predict, without resorting to separately simulating each
bounce. What about for environments of more than two
mirrors? Is it still easy to ray-trace reflected rays in such
environments?

We formalize this problem as follows. The input en-
vironment is described as a collection of line segments,
with integer endpoints and either parallel to a coordinate
axis or at a 45° angle to the axes. Each side of each line
segment may be marked as reflective or non-reflective.
We are also given an integer position for the start of
a light ray, and an integer vector describing the initial
direction of the light ray. The restricted orientation of

*Department of Computer Science, University of California,
Irvine. Research supported in part by NSF grant CCF-2212129.
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Figure 1: The reflections of a light ray (red) among
mirrors that are axis-aligned or at 45° angles to the axes
(blue)

the mirrors ensures that each reflection of the ray in one
of the reflective segments continues to have integer slope,
on a line through infinitely many points of the integer
grid. If, after repeated reflections, the ray eventually
hits a non-reflective segment, the endpoint of a segment,
or its initial position and orientation, it stops; otherwise,
it must eventually escape the environment along an un-
obstructed infinite ray. The output of the problem is the
eventual fate of the ray: the point where it stops, or the
ray along which it escapes. Our main result is that we
can determine this outcome in polynomial time.

Let n denote the number of segments of the input,
and suppose that all of the integers in the input specifi-
cation (including the ones specifying the initial vector
of the traced ray) have magnitude at most N. For these
problem size parameters, it would be trivial to solve the
problem in time polynomial in N — simply trace the ray
one reflection at a time — but this time bound is not poly-
nomial, as it is exponentially larger than the input size.
Our time bound is weakly polynomial, but not strongly
polynomial: it is a polynomial of the number of bits
required to specify the input, which is O(nlog N). For
the purposes of polynomial-time complexity, it would
be equivalent to allow input coordinates that are ra-
tional numbers, rather than integers, with numerators
and denominators of magnitude at most N. Clearing
denominators would produce an integer input whose
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coordinates have magnitude N©( (the product of the
input numerators and denominators), still requiring only
a polynomial number of bits to specify, O(n?log N).

The main idea of our algorithm is to transform the
problem into one of determining the iterated behavior
of a certain type of discrete one-dimensional dynamic
system, which in a related recent paper [4] we called
an iterated integer interval exchange transformation. In
turn, following that paper, we can transform the iterated
integer interval exchange transformation problem into a
previously-studied problem in computational topology,
of following paths along normal curves on triangulated
topological surfaces. To solve this path-following prob-
lem on normal curves in triangulated surfaces, we apply
algorithms of Erickson and Nayyeri [5].

The general topic of visibility and ray-shooting with
reflection is one with much prior work, both heuristic
as part of the computer graphics rendering pipeline and
with more rigorous bounds in computational geometry,
for which see, e.g., |[IH3L/6-10]. However, this past work
has a combinatorial complexity that blows up with the
number of reflections. In contrast, our results give a poly-
nomial time algorithm whose complexity is independent
of the number of reflections.

2 lterated interval exchange transformations

In a recent paper of the author [4] we investigated a
broad class of problems, involving computing the nth
iterate of a polynomial-time bijective function. One moti-
vation for this investigation was in ray-tracing problems
like the one studied here: if an environment consists
only of mirrors, with no absorbing barriers for light,
then (modulo representational issues involving whether
reflections preserve the integer nature of a light ray) the
mapping from each reflected position and direction of
a light ray to the next is just such a polynomial-time
bijection. Most of the problems considered in our recent
paper have high computational complexity. However,
our paper also identified a special class of bijections,
the integer interval exchange transformations, for which
iterates can be computed in polynomial time. We will
use the resulting iterated integer interval exchange trans-
formation problem as a subroutine in our algorithm for
finding the result of a sequence of reflections. In this
section we summarize the definitions needed to apply
this problem, following our previous paper.

We define an integer interval exchange transformation
to be a certain type of piecewise-linear bijective mapping
on a range of consecutive integers. It may be defined
by a partition of the range into subintervals, and by a
permutation of those subintervals. The transformation
then translates each subinterval (meaning that it acts on
this interval by addition of the same value to each integer
in the interval), so that the translated subintervals again

form a partition of the same range, reordered into the
given permutation. An example, used in is the
transformation on [0,15) that permutes the intervals
a=10,3],b=1[4,5],¢ = [6],d = [7,14] into the permuted
order b,d, ¢, a. This permutation describes the function

x+11, for z €]0,3]

x—4, forxe[4,5)
x

z+4, forz € [6]

x—5, forxel7,14]

A transformation of this type, with m intervals on the
range [0, M — 1], can be specified by O(mlog M) bits of
information, specifying the endpoints and permuted po-
sition of each subinterval. The resulting integer function
may be evaluated on any integer x in its range in time
O(m), by a sequential search of the listed subintervals
to find the one containing x, and a second scan of the
subintervals to determine which ones have permuted
positions before the one containing x and contribute to
the translation offset for x. Even faster evaluations are
possible if the intervals are stored in sorted order with
their translation offsets. The iterated interval exchange
transformation problem takes as input an integer interval
exchange transformation p, represented in either of these
ways, an integer x in its range, and another non-negative
integer k. The goal is to compute p*)(z), the result of
repeatedly replacing = by its transformed value, &k times.

Following a suggestion of Mark Bell, our paper [4]
shows that, for every integer interval exchange transfor-
mation, it is possible to find a corresponding triangulated
two-dimensional manifold, and a normal curve on the
surface, such that tracing the normal curve for a specified
number of steps corresponds to evaluating the integer
interval exchange transformation (Figure . Here, a
normal curve is a curve through the triangles of the
surface, avoiding triangle vertices and passing straight
across each triangle from edge to edge, without cross-
ing itself. It can be specified by a system of numbers
on each edge counting the number of segments of the
curve that cross that edge; this specification must obey
certain consistency constraints (the numbers of cross-
ings on the three edges of each triangle must obey the
triangle inequality and sum to an even number). This
specification is sufficient to reconstruct the curve itself,
up to topological equivalence.

In the transformation from our paper [4], the integers
in the range [0, M — 1] of an integer interval exchange
transformation are represented as the sequence of M
crossings of a normal curve, along a central horizontal
edge of a triangulated surface. Each of these crossing
points x is connected by the normal curve, along a path
of exactly s segments for a number s determined as part
of the construction, to its image pu(z) according to the
integer interval exchange transformation. Following this
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Figure 2: A normal curve (light blue) on a triangulated
double torus (black triangles and red vertices, glued from
top to bottom and from left side to right side with the
pairing indicated by the letters). Traversing the normal
curve upwards from its central horizontal line, through
the glued edges from top to bottom, and continuing
upwards back to the same central line, permutes the
branches of the curve according to the integer interval
exchange transformation that maps [0,3] — [11,14],
[4,5] — [0,1], 6 — 10, and [7,14] — [2,9]. From [4].

construction, the iterated interval exchange transforma-
tion problem can then be reduced to finding the crossing
point that is sk steps ahead of x along the normal curve.
This problem, of tracing paths for a given number of
steps on a normal curve, has been given a polynomial-
time solution by Erickson and Nayyeri [5]. It follows that
the iterated interval exchange transformation problem
can also be solved in polynomial time. More precisely,
the time is O(m?log M), after an initial step in which
the input parameter k is reduced modulo the total num-
ber of steps in (a component of) the normal curve [4]. As
an integer division of a log k-bit number by a log M-bit
number, this reduction step can be performed in time
O(log klog M) using naive division algorithms.

3 Partial integer interval exchange

Reflection in a mirror is a reversible transformation
on systems of rays, but absorption by a non-reflective
surface is not: many different rays could be absorbed
at the same point. To mimic this non-reversibility in
an integer exchange problem, while still allowing the
polynomial-time procedure from our previous paper to
apply, it is convenient to generalize the integer interval
exchange problem to allow transformations that are only
partially defined, as follows.

We define a partial integer interval exchange transfor-
mation, for the range [0, M —1], to be a system of disjoint
subintervals of this range, together with a transformation
that offsets each of these subintervals to another system
of disjoint subintervals (necessarily of equal lengths).
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For instance, by omitting the subinterval [6] from the
previous example, we obtain a partial integer exchange
transformation that maps that maps [0,3] — [11, 14],
[4,5] — [0,1], and [7,14] — [2,9]. The domain of the
transformation is the union of the given subintervals, and
the codomain is the union of their target subintervals.
This example has domain [0,5] U [7,14] and codomain
[0,9] U [11, 14].

Lemma 1. If a partial integer interval exchange trans-
formation is repeatedly applied to an input x that does
not belong to the codomain, it eventually reaches a trans-
formed value that does not belong to the domain.

Proof. Consider the directed graph that connects each
value to its transformed image. This graph has in-degree
and out-degree at most one at each vertex, and has
finitely many vertices, so it consists of a disjoint union
of directed paths and directed cycles. An input = that
does not belong to the codomain has no incoming edge,
so it is the starting vertex of a path, and is eventually
transformed into the ending vertex of the same path, a
value that does not belong to the domain. O

We define the iterated partial integer interval exchange
transformation problem to be a computational task that
takes as input the description of a partial integer interval
exchange transformation (as a system of subintervals
and their targets) and a value x that does not belong
to the codomain, and that produces the corresponding
value that does not belong to the domain, according to

[Lemma Tl

Lemma 2. The iterated partial integer interval ex-
change transformation problem can be solved in time
O(m?log M + log? M), polynomial in the input repre-
sentation size.

Proof. We transform the problem in polynomial time
into an equivalent instance of the (non-partial) iterated
integer interval exchange transformation problem. Let
I, 15, ... be the intervals of the given partial transfor-
mation f, and let f(I;) etc. denote their images after
the transformation. Suppose also that the given partial
transformation operates on the range [0, M — 1] of length
M. Let m denote the total number of elements in this
range that are missed by f: they are not in its domain.
We define a new transformation f that operates on the
range [0, M'm + M +m — 1] of length Mm + M +m, as
follows:

e For each subinterval I; in the given transformation,
with image f(I;), we include in f the mapping I; —
f(L).

e For each maximal subinterval J; of [0, M —~]\ UI; (a

subinterval not in the domain of f) we include in f a
mapping from J; to a subinterval of [M, M +m — 1],
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so that the images of these subintervals are disjoint
and completely cover [M, M +m — 1].

e We include in f the mapping [M, Mm + M — 1]
[M 4+ m, Mm + M +m — 1]. Tterating this mapping
eventually transforms any value in [M, M +m — 1]
to a value in [Mm + M, Mm + M +m — 1], but it
takes M iterations to do so.

e For each maximal subinterval K; of [0, M —]\Uf(I;)
(a subinterval not in the codomain of f) we in-
clude in f a mapping from a subinterval of [Mm +
M,Mm+ M +m — 1] to K;, so that the preimages
of these mappings are disjoint and completely cover
[Mm+ M, Mm+ M +m —1].

For instance, for the example partial integer interval ex-
change transformation f given above, M = 15 and m =1
(there is only one missing value from the transformation),
and we have f mapping [0, 3] — [11,14], [4,5] — [0, 1],
[7,14] — [2,9]; [6] — [15]; [15,29] — [16,30]; and
[30] — [10].

Suppose we apply the algorithm to the iterated in-
teger interval exchange transformation problem, with
transformation f, on an input value z that does not
belong to the codomain, and that the output of this
algorithm is a value z. If we iterate f for a total of M
iterations, starting with a value x that does not belong
to the codomain, it will reach a value y that does not
belong to the domain in fewer than M iterations, by
Lemma 1| The next iteration will map y into a value 3’
in the subinterval [M, M + m — 1], and the subsequent
(again fewer than M) iterations will each add m to this
value y'. We may therefore obtain 3’ by z as the unique
value in the subinterval [M, M +m — 1] that is congruent
to z modulo m. From %, we may obtain the desired
value y as f~1(y/).

The time bound is obtained by plugging in the number
of pieces of the resulting transformation, O(m), the range
of its values, O(Mm), and the number of iterations,
O(M), into the previous time bound for iterated integer
interval exchange transformations. O

4 Converting reflection to partial integer interval ex-
change

The reason that we have restricted our attention to
reflections in line segments that are horizontal, vertical,
and diagonal is that these kinds of reflections preserve
the integrality of the reflected rays. We formalize these
observations as follows.

Lemma 3. If a ray whose direction is specified by a vec-
tor (x,y) is reflected by a sequence 