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Near-Delaunay Metrics

Nathan van Beusekom™
Wouter Meulemans™

Abstract

We study metrics that assess how close a triangulation
is to being a Delaunay triangulation, for use in contexts
where a good triangulation is desired but constraints
(e.g., maximum degree) prevent the use of the Delaunay
triangulation itself. Our near-Delaunay metrics derive
from common Delaunay properties and satisfy a basic
set of design criteria, such as being invariant under sim-
ilarity transformations. We compare the metrics, show-
ing that each can make different judgments as to which
triangulation is closer to Delaunay. We also present
a preliminary experiment, showing how optimizing for
these metrics under different constraints gives similar,
but not necessarily identical results, on random and con-
structed small point sets.

1 Introduction

Delaunay triangulations are a common construct in
computational geometry: practically any class on com-
putational geometry teaches about Delaunay triangu-
lations of point sets and their duality to the Voronoi
diagram. They are efficiently computable, and have
many desirable properties, for instance, lexicograph-
ically maximizing the minimum angle of the corners
of the resulting triangles [20], having bounded dila-
tion [4, 11], minimizing the maximum circumcircle [5],
maximizing the minimum enclosed circle [5, 18] of its
triangles. As such, they form the basis of many algo-
rithms that require some triangulation of a point set.
However, there are various scenarios imaginable
where the Delaunay triangulation is not immediately
applicable due to constraints on the desired triangula-
tion, such as a limited vertex degree or a set of edges
that needs to be included. In such cases, we may want
to find a triangulation that is as close as possible to
the Delaunay triangulation while adhering to the con-
straints. This, however, requires a way to measure how
near-Delaunay a triangulation is. Another scenario in
which such a measure would be useful is when a triangu-
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lation is already given — for example, the triangulation
of a terrain. In such a setting, we could use the measure
to assess the quality of the triangulation.

An example of a triangulation that aims to be as close
as possible to the Delaunay triangulation given a set
of edges that needs to be included is the Constrained
Delaunay Triangulation (CDT) [3, 13]. It provides an
alternative definition of when an edge or triangle may
be part of the triangulation, such that it is “as close as
possible” to being Delaunay for the given constraints.
However, it does not help in assessing how close a trian-
gulation is to being the actual Delaunay triangulation,
nor does it generalize to other forms of constraints.

In this work, we consider various ways to measure how
close a triangulation is to being Delaunay. The prob-
lem of studying the properties of triangulations that
are close to the Delaunay triangulation was proposed
at CCCG 2017 by O’Rourke [16]. In this context, two
measures were already proposed [16, 14], which we dis-
cuss further in Section 2. The aim of our work, is to
explore a broader range of measures together with al-
gorithms to compute them and with an analytical and
experimental comparison. We identify several criteria
for near-Delaunay metrics:

C1 The Delaunay triangulation should obtain the per-
fect score. We do not want to distinguish how nice
Delaunay triangulations are of different point sets
— because this would be a factor of the point set
itself. A non-Delaunay triangulation should always
score less than perfect, such that any non-Delaunay
triangulation is considered less Delaunay.

C2 The measure should behave continuously for slight
perturbations of the point set. Triangles that
“severely” violate properties of a Delaunay triangu-
lation should score worse than those with “slight”
violations.

(8 The measure should be invariant under similar-
ity transformations (translations, rotations, scaling
and reflections). Though this criteria follows from
the first for the Delaunay triangulation (which is in-
variant under similarity transformations), it is de-
sirable for this to also hold for non-Delaunay tri-
angulations, such that triangulations of different
point sets can still be reasonably compared.
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C4 The measure should be decomposable, that is, eval-
uated separately on different elements of the trian-
gulation. Though not strictly necessary, this allows
various forms of aggregation (worst situation, aver-
age situation, etc.).

We observe, that the combination of criterion C3
and C4 suggests that the metric should also be “locally
invariant”. That is, even within the same triangulation,
a decomposition element that is subject to the same
constraints to another element up to similarity trans-
formations should score the same. That is, the metric
should not naturally award higher (or lower) scores to
elements that are larger; instead small and large ele-
ments should contribute equally to the overall metric.
In other words, a triangulation should not be considered
near-Delaunay, simply because the deviations from the
Delaunay property are only at very small elements.
We propose and compare several near-Delaunay met-
rics. These metrics (as shown in Table 1) satisfy our
four criteria. They differ in the properties of the Delau-
nay triangulation they aim to capture, as well as how
they decompose the given triangulation. For this, we
use decompositions into: (1) quadrilaterals — a quadri-
lateral here is an edge and its two incident triangles,
ignoring all other points; (2) edges — an edge is consid-
ered in context of all other points; (3) triangles in con-
text of all other points. We show that these measures
behave differently, capturing different aspects of how
near-Delaunay a triangulation is. Finally, we briefly
compare how our measures relate to the CDT.

Related work. One of the well-known results in com-
putational geometry is that any triangulation can be
transformed into the Delaunay triangulation using Law-
son flips [12]. A natural consideration would thus be to
measure the number of flips necessary to transform a
triangulation into a Delaunay triangulation. Though it
satisfies C'1 and C3, it satisfies neither C2 — it is a dis-
crete measure and it is not immediately based on the
violations of a Delaunay property — nor C4. An addi-
tional complication is that computing such flip distances
is generally hard [17].

Another natural consideration is to measure the num-
ber of points in any circumcircle of a triangle in the
triangulation. This leads to the notion of higher-order
Delaunay triangulations [7]. We do not consider them
in this paper, since a small perturbation can greatly
change the number of points in a circumcircle. That
is, the resulting measure would not adhere to C2. But
when this criterion is not needed, higher-order Delaunay
triangulations are well suited to obtain triangulations
close to the Delaunay triangulation that at the same
time are optimized for another criterion. Van Kreveld
et al. [22] discuss optimizing over first-order Delaunay
triangulations for various criteria like minimizing the
maximum degree.

Computing a triangulation that is as close as possi-
ble to the Delaunay triangulation (given certain con-
straints) can be seen as optimization problem. There
are many papers studying optimal triangulations un-
der various criteria. Bern et al. [2] show how to effi-
ciently compute triangulations under criteria like max-
imizing the minimum height or minimizing the max-
imum eccentricity. Unfortunately for other criteria,
computing optimal triangulations is more difficult. For
instance computing the minimum-weight triangulation
is NP-hard [15]. While the complexity of finding the
minimum-dilation triangulation is open [8], many re-
lated problems on minimizing dilation are NP-hard [6].
Similarly, the complexity of finding the minimum-degree
triangulation seems open, while it is NP-hard if as a
constraint certain edges have to be included [9, 10].

The fact that for many optimization criteria efficient
algorithms are not known, also limits the size of the
point sets that we can include in our experiments, in
which we for instance want to compute near-Delaunay
triangulations with additional constraints like a degree
bound or a bound on the weight of the triangulation.
We here resort to enumerating triangulations, however,
the total number of triangulation for a given point set
is exponential [1, 19].

2 Near-Delaunay metrics

We define seven near-Delaunay metrics as shown in Ta-
ble 1, which all satisfy our four criteria. Throughout,
we assume that we are to measure a triangulation 7" on
a point set P. We further assume, for sake of simplicity,
that P is in general position: no three points are on
a line and no four points are cocircular. We organize
them below into three categories, depending on their
form of decomposition (quadrilateral, edge and trian-
gle). We always describe the measure just for a single
decomposition element, silently assuming some form of
aggregation such as taking their sum or extremal value.

2.1 Quadrilateral-based metrics

We start by introducing intuitive metrics that evalu-
ate quadrilaterals. A quadrilateral consists of a non-
convex-hull edge and the two triangles that are inci-
dent to it, defined by two vertices. Particularly, note
that any point in P that is not one of the four defining
vertices does not influence the metric on this partic-
ular quadrilateral — this contrasts the edge-based and
triangle-based metrics. Thus, to compute the metrics it
is sufficient to be given only the quadrilateral. Conse-
quently, the metrics we introduce for quadrilaterals can
be computed in constant time per quadrilateral and in
linear time overall. Note that for each quadrilateral-
based metric, lower scores mean closer to Delaunay
(contrasting our other two forms of decomposition).
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Table 1: Overview of metrics. Listed with each is the form of decomposition, the Delaunay property it is based on,
and the running time for computing the measure for a given triangulation.

Opposing Dual Edge Dual Area . Triangular Shrunk
) Lens Shrunk Circle . .
Angles Ratio overlap Lens Circumcircle
o ~0
o
O 1 ©
.. lb,,\o
Quadrilateral ‘ Quadrilateral ‘ Quadrilateral ‘ Edge Edge ‘ Triangle ‘ Triangle
Max-min Voronoi Dual Voronoi Dual . . Empty Empty
Empty Circl Empty Circl
angle (edges) (faces) mpty Lircle Pty rcie Circumcircle Circumcircle
Om) | om | Om | oM ow*) | ow) | o

Throughout, we denote by (u,v) the defining edge of
the quadrilateral, and with p and g the opposing vertices
of the two incident triangles Auvp and Auvg. We use
cp and ¢4 to denote the center of the circumcircles of
these triangles. A quadrilateral is locally Delaunay if
the edge (u,v) is part of the Delaunay triangulation of
{u,v,p,q} — in other words, if the circumcircle of the
one triangle does not contain the other vertex.

Opposing Angles. At CCCG 2017, O’Rourke sug-
gested that a triangulation T is a near-Delaunay trian-
gulation if the opposite angles o and 3 of a quadrilateral
sum to at most w+¢ for € > 0 [16] (see Fig. 1). If e = 0,
then T is Delaunay. Hence, it is natural to consider
the smallest ¢ for a triangulation as a metric for how
close a triangulation is to a Delaunay triangulation. We
can readily interpret € on a per-quadrilateral basis for a
metric in our context; O’Rourke’s suggestion is simply
to take their maximum as the overall metric.

The intuition behind the metric is, when the sum of
two opposing angles is larger than 7, the empty circum-
circle property is violated. When the sum is close to =,
a slight movement in the points can restore the empty

Figure 1: Opposing Angles metric. (left) Sum of op-
posing angles is less than 7 for quadrilateral that is not
locally Delaunay. (right) It is at least = for quadrilater-
als that are locally Delaunay.

circumcircle property. However as the sum grows larger,
the points generally need to move further to restore the
property, unless p or ¢ is very close to u or v, in which
case a small movement is sufficient. Thus, we can use
the sum of two opposing angles to evaluate how far from
Delaunay a quadrilateral is.

Dual Edge Ratio. Additionally, Mitchell [16] sug-
gested “measuring the signed distance between circum-
centers of triangles sharing an edge; for Delaunay trian-
gulations this is simply the dual edge length and non-
negative, but for non-Delaunay triangulations the cir-
cumcenters can be in the wrong order and hence have a
negative distance between them. So one could look at
the ratio of the dual edge signed-length to the primal
edge length (for 2D triangulations) as a continuous mea-
sure of how close it is to non-Delaunay.” [16] — which
are also known as Hodge-optimized triangulations [14].
We adapt this metric to evaluate quadrilaterals: we
measure only the negative distance part of the sugges-
tion, to satisfy criterion C7 and not distinguish be-
tween Delaunay triangles. The “wrong order” referred
to above matched to the quadrilateral being not locally
Delaunay. We thus define the Dual Edge Ratio as

0,
d(cp,cq)
d(u,v) ?

Intuitively, if the quadrilateral is not locally Delau-
nay, ratio of the distance between ¢, and ¢, and the
length of (u,v) roughly corresponds to how skinny the
triangles are and thus how far from Delaunay they are
as well (see Fig. 2). Clearly, the Delaunay triangula-
tion scores zero on all its quadrilaterals. Any quadri-
lateral that is not locally Delaunay, and hence does not
locally describe the dual of the Voronoi diagram, will
score greater than zero. Any non-Delaunay triangula-
tion must have at least one such quadrilateral.

if the quadrilateral is locally Delaunay.

otherwise.
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Figure 2: Dual Edge Ratio metric. The dual edge (or-
ange) for a quadrilateral that is not locally Delaunay.
We measure its length relative to the length of (u,v).

Dual Area Overlap. Similar to the previous metric,
we may use the duality to Voronoi diagrams but in a
different manner. Rather than looking at the distance,
we may also consider an area-based metric. Intuitively,
we consider the incorrect area of overlap between the
“local Voronoi cells” that we may construct from the
triangles of the quadrilateral.

The local Voronoi cell of p (and ¢ analogously) is de-
fined by the bisectors of w and v with p, which cross in
cp- If the quadrilateral is locally Delaunay, then the cells
of p and ¢ are disjoint. However, if the quadrilateral is
not locally Delaunay, then they must overlap. The area
of this overlap divided by the squared length of (u,v) is
our Dual Area Overlap metric (see Fig. 3). We normal-
ize using the squared edge length here, to ensure scale
invariance, criterion C3.

The intuition behind this metric is similar to the intu-
ition from the Dual Edge Ratio metric. The area of the
overlap of the two Voronoi regions implies how far the
quadrilateral is from having a proper non-overlapping
Voronoi dual. A larger area means that points will have
to move further to reach a non-overlapping dual, while
a smaller area implies that a small movement in the
points can already achieve this.

Figure 3: Dual Area Overlap metric. The local Voronoi
cells of p and ¢ (dotted) for a quadrilateral that is not
locally Delaunay. We measure the overlap (orange).

2.2 Edge-based metrics

We now turn to edge-based metrics, that evaluate each
edge (u,v) of T in context of all other points in P.
That is, it penalizes edges, even if the defined quadri-
lateral is locally Delaunay. We present two new met-
rics below, both of which are based on the same princi-
ple: as an edge of the Delaunay triangulation must be
the chord of a circle that does not strictly contain any
other vertices of P, we consider how much we much
deform a circle to find such an empty deformed cir-
cle instead. The difference between our two metrics is
how they perform this deformation. Note that in both
cases, higher scores mean closer to Delaunay, contrast-
ing quadrilateral-based metrics.

Lens. When an empty circle exists, it can be seen as
two circulars arcs, one on each side of the edge. The arc
in the one halfplane with respect to the line spanned by
(u,v) excludes from its interior all vertices of P in that
same halfplane. With our Lens metric, we reverse this
idea to deform our circle into a lens; the “sharpness” of
this lens is then our metric.

Specifically, consider all points P’ C P that lie on one
side of the line spanned by edge (u,v). The circular arc
from u to v through some point of P’ that is minimal
in terms of segment area (or equivalently, arc length or
central angle) is the largest arc possible on this side of
the edge that does not contain any point of P’ in its
segment area. Let a and a’ denote the two circular arcs
obtained this way. We consider the “interior” angle «
between the tangent directions of a and a’ at u as our
metric (see Fig. 4). If a > 7, the edge is a Delaunay
edge and we cap the metric to 7 to satisfy criterion C1;
for any non-Delaunay edge, o < .

Figure 4: Lens metric. We find the largest empty arc on
both sides of (u,v), and measure the angle a between
their tangent directions at u.

We can easily compute the metric for a triangulation
in quadratic time: for each edge, find the point that
gives the smallest arc on both sides; then compute the
angle at which the arcs touch.

Shrunk Circle. With our second metric, we consider a
different type of deformation: scaling. That is, we aim
to find a smaller empty circle that relates to the edge
we wish to measure. For a non-Delaunay edge, such a
circle cannot have (u, v) as a chord, but it may still over-
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To._. ,w""o v

Figure 5: Shrunk Circle metric. We find the empty
circle C' that covers edge (u,v) most (orange).

lap the edge. As a Delaunay edge would be overlapped
fully by an empty circle, we define our Shrunk Circle
metric as the maximal fraction of the edge that can be
overlapped by an empty circle C' (see Fig. 5)). Note
that, whereas the Lens metric considers both halfplanes
independently, this is not the case here.

To compute this measure for an edge (u,v) of trian-
gulation T on point set P, we observe the following: if
an empty circle does not touch at least two points of P,
we can readily grow it to a circle C’ that does touch two
points and strictly encompasses the previous circle and
thus the overlap with (u,v) does not decrease. In other
words, we need to consider only maximal circles with
centers on the Voronoi diagram P. The lemma below
argues that the overlap along one edge of the Voronoi
diagram is convex and thus we need to test only its end-
points. In fact, we need to test only its vertices since
unbounded edges occur only for pairs of points on the
convex hull and thus the overlap of such circles with
(u,v) are determined only by the circle’s part inside the
convex hull — which is maximized at bounded side of
the unbounded edge. We can thus first compute the
Delaunay triangulation for P, and then for every edge
(u,v) of T, test the circumcircles of the Delaunay trian-
gulation explicitly. This readily gives an quadratic-time
algorithm for the overall metric.

Lemma 1 Let e be an edge of the Voronoi diagram of
P. The overlap of mazimal circles along e with edge
(u,v) is a convex function.

Proof. Let p and ¢ denote the points defining e. As
the problem is invariant under translation, rotation and
scaling, assume without loss of generality that p = (0,1)
and ¢ = (0,—1); this implies that e is along the hori-
zontal axis. Maximal circles C’ are thus fully defined
by their center (m,0). Let £: y = ax + b denote the line
spanned by (u,v). We first consider the overlap of C’
with ¢ as a function of m.

The two intersection points of §C’ with £ are obtained
by solving |(z,az + b) — (m,0)]2 = |(¢,0) — p|2, which
simplifies to (a4 1)2? +2(ab—m)z + (b>—1) = 0. The

difference in x-coordinates between the two solutions to
this quadratic equation are given by v/D/(a?41), where
D = 4(ab—m)?—4(a®+1)(b*—1) is the discriminant; the
amount over overlap with £ is thus av/D/(a?+1). As D
is a convex quadratic function in m, so is av/D/(a®+1).
To note, D is negative if the circle does not overlap ¢, in
which case the overlap is trivially zero: technically, the
overlap is thus a function ay/max{0, D}/(a? + 1). This
proves that the overlap with £ is a convex function.
Since we are only interested in the values of m along
e, that is, for which C’ is empty, the overlap with ¢ is
either fully within (u,v) or fully outside. Since the in-
tersections behave continuously, the overlap with (u,v)
thus behaves convex as well. (|

2.3 Triangle-based metrics

For our triangle-based metrics, we measure a triangle
Auvw of T in context of all other points in P. Analo-
gous to our edge-based metrics, we deform the circum-
circle C of Auvw (which is empty for a Delaunay tri-
angle) to find a suitable empty deformed circle. In con-
trast to the edge-based metrics, we now have a single
fixed circle C' which guides (and constrains) our met-
ric. Specifically, we restrict our deformations to be con-
tained in the circumcircle. As with edge-based metrics,
higher scores mean closer to Delaunay.

Triangular Lens. Similarly to the Lens metric, when a
empty circumcircle exists, it can be considered as three
circular arcs on the outside of the triangle. We again
replace each arc by the largest arc that is contained in
the arc of the circumcircle and that contains no other
points of P.

For our metric, we measure the fraction of the area in
C but outside Auwvw that is covered by the constructed
lens. Let ayy, @y and aq,, denote the segment areas of
the three arcs constructed (see Fig. 6). Interpreting C

Figure 6: Triangular Lens metric. We compute the
largest arc inside C' that does not contain any points
in its segment area for each edge of the triangle. Note
that the three arcs are determined independently.
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and Auvw as their enclosed areas, the score is then

auv + a’U’UJ + awu
C — Auvw

We subtract the triangle to be able to assess and to
meaningfully aggregate both skinny and fat triangles;
this also means that each triangle’s score lies in (0, 1],
where a score of 0 is only achievable in the limit (a point
converging on each edge).

We easily compute the metric for a triangulation in
quadratic time: for each triangle, find for each edge the
smallest arc by testing all other vertices; then compute
the segment areas and compute the resulting fraction.

Shrunk Circumcircle. As with our edge-based mea-
sures, the Triangular Lens metric deforms indepen-
dently in the three segment areas defined by the edges.
With our Shrunk Circumcircle metric, we consider a
variant that considers all points simultaneously instead.

Specifically, we aim to find an empty circle C’ that is
contained in the circumcircle C' and intersects all three
sides of Auvw. The score we associate with this circle
C'is %/:II , where I is the area of the inscribed circle
and we identify C’ and C with the areas of these circles
as well (see Fig. 7 (left)).

Note that we subtract the areas (numbers), we do not
use set subtraction (difference of the shapes) and their
resulting area; in our figures, we use examples where
the inscribed circle is contained in the largest empty
circle such that these two variants are the same, to easily
visualize the score, but this is not necessarily the case.

The Shrunk Circumcircle metric is the circle C* with
the highest associated score. For any triangle, I and
C are constant, and thus it is simply the largest circle
satisfying the two constraints. We subtract I as a lower
bound on the largest empty circle (since the triangle
itself must be empty), and divide by C' — I to normalize
the the score to the range (0, 1] independent of triangle
shape and make the metric scale invariant.

Figure 7: Shrunk Circumcircle metric. (left) We look for
the empty circle C’ in C of maximal radius. The score
(orange) is its area minus the inscribed circle. (right)
C’" must intersect all three sides, for the measure to be
meaningful when points are close to the triangle.

We constrain C’ to lie within C, such that the area we
count is always an actual circle: if C’ was to be allowed
to grow outside C, it would either count area outside of
the area that the Delaunay triangulation “considers”,
or the region we use the area of is not a circle in itself.

We constrain C’ to intersect all three sides to make
the score meaningful, even for very skinny triangles:
otherwise, the largest empty circle may simply be fully
in one segment, and even yield a relatively high score,
though points are very close to the triangle edges (see
Fig. 7 (right)).

To compute the metric for a triangle Auvw in context
of P, we first argue about the properties of largest C’.
Circle C’ must either touch two points strictly inside
C, or touch one such point and the boundary of C' —
otherwise, we can grow the circle into one that strictly
encloses C’ while still adhering to the constraints. As
such, its center lies on the edges of the local Voronoi
diagram of circle C' and the points of P inside C' (see
Fig. 8). Curved segments for circle centers equidistant
to the boundary of C' and one of the points inside C', and
straight segments defined by two points inside C. These
curved segments are elliptical: the distance from a point
on this curve to the center of C' and to the contained
point of P sums up to the radius of C'. By construction,
segments incident to the outerface of the diagram are
curved segments; interior segments are straight.

In case the entire ellipse is part of the local Voronoi
diagram (and hence in fact the only curve), we may
consider it an elliptical arc, starting and ending at the
furthest point from its defining point. Then, both along
a straight segment as well as along a curved segment
of the local Voronoi diagram, the radius of C’ behaves
unimodally: the function has a single (local and global)
minimum at the closest point of the segment to the
defining point(s). Along a segment, the maximal circle
is hence either one of a small set of critical placements
(if they exist): the endpoints of the segment, the fur-

Figure 8: The local Voronoi diagram (blue) consists
of elliptical and straight segments. The critical place-
ments: endpoints of straight segments (purple), the fur-
thest point on an ellipse (red), and circle touching a
triangle edge (orange).
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thest point of the ellipse, or one of the O(1) placements
where the defined circle touches a triangle edge. We
further observe that the straight segments are a subset
of the (full) Voronoi diagram of P.

With the insights above, we can define an algorithm
to compute the Shrunk Circumcircle metric for all tri-
angles in T in quadratic time. First, we compute the
(full) Voronoi diagram of P. Then, for each triangle, we
compute the metric as follows, in linear time. If there
are no points inside the circumcircle, we have a Delau-
nay triangle and the metric is 1. If the circumcircle
contains one point, then the local Voronoi diagram is
a single ellipse and we test the critical placements. If
the circumcircle contains more than one point, we find
all straight segments local Voronoi diagram by travers-
ing the full Voronoi diagram, testing the critical place-
ments. For any straight segment found as such, we first
shorten it to ensure that it does not define circles ex-
tending outside C. Then we test its critical placements.
If the segment was shortened, we know that its defin-
ing points also define a segment of the local Voronoi
diagram. For these segments, we also test the critical
placements. By “testing” in the above, we mean test-
ing whether the defined circle intersects all three sides
(it is contained in C by construction), and if so, see
if its radius is larger than any circle found so far. As
we test O(1) critical cases per segment, computing the
metric takes linear time per triangle (after computing
the full Voronoi diagram in O(Plog P) time once) and
thus quadratic time for the entire triangulation.

3 Comparing metrics

In the previous section, we defined seven near-Delaunay
metrics. These capture in different ways how close to
Delaunay a triangulation is. Though future work may
endeavor to establish a standard here, it is not a-priori
clear which measure is “the best”: this likely depends
on context, that is, the purpose of evaluating a trian-
gulation. The question we ask here, is whether these
metrics actually capture different facets of being “near-
Delaunay”. Specifically, given two metrics, do they al-
ways evaluate the same triangulation to be closer to
Delaunay, for any given pair of triangulations?
Considering a single decomposition element to an-
swer this question, there is clear distinction between the
forms of decomposition: quadrilateral-based metrics do
not take other points into account, contrasting the other
two forms; edge-based metrics use angles and lengths,
whereas triangle-based metrics use area ratios instead.
We thus focus here on comparisons between metrics us-
ing the same form of decomposition. We study how
the metrics differ from each other, and what properties
they value. Specifically, for each comparison of metrics
u and u', we show that there are triangulations 7' and

T’, such that u(T) = p(T") and @/ (T) > p/(T"). Such
an example answers the above question of making the
same judgments negatively.

Quadrilateral-based  metrics. Our  three
quadrilateral-based metrics use only four points in
measuring one element. Yet, we show that each metric
evaluates a different facet of being near-Delaunay.
Note that a (convex) quadrilateral is immediately a
triangulation on this point set.

The Opposing Angles metric does not consider how
the two summed angles are distributed over the two tri-
angles. Even a very flat triangle (angle approaching
m) can be offset a very tall triangle (angle approach-
ing 0). Yet, these angles behave very differently from
the distances between the circumcenters and thus the
Dual Edge Ratio and Dual Area Overlap. Thus, we can
construct two quadrilaterals (see Fig. 9): one has very
similar triangles, while the other has very different tri-
angles, but both have the same edge (u,v). Whereas
the Opposing Angles metric scores the same on both,
we see readily that the Dual Edge Ratio and Dual Area
Overlap score differently.

Comparing the Dual Edge Ratio to the Dual Area
Overlap, we see that the former is based purely on the
distance between the circumcenters, whereas the latter
depends also on the shape of the triangles. This allows

7_2”600
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Figure 9: Two quadrilaterals with equal (sum of) Op-
posing Angles, but different Dual Edge Ratio (orange)
and Dual Area Overlap (red).

Figure 10: Two quadrilaterals with equal Dual Edge
Ratio (orange) and different Dual Area Overlap (Red).



337? Canadian Conference on Computational Geometry, 2021

us to construct another two quadrilaterals (see Fig. 10):
we move the opposing points along their defined cir-
cumcircles so as to not move the circumcenters, while
changing the area of overlap.

Edge-based metrics. We have two metrics here: Lens
and Shrunk Circle. As already mentioned in the previ-
ous sections, these differ by how they treat points on the
different sides of the edge. Whereas the Lens measure
treats these independently, the Shrunk Circle measure
requires an integrated consideration of all points. This
allows us to construct two triangulations again, using
only four points in convex position (see Fig. 11): we
keep the Lens measure constant, by moving one of the
vertices over the defining arc, thus keeping the tangent
at u constant as well; in contrast, the Shrunk Circle
metric in the first example uses a circle that encom-
passes a large part of the defining arc of the Lens — by
placing the point there, we can force the circle to shrink
further and cover less of the edge (u,v).

Figure 11: Two edges with equal Lens (blue, green)
different Shrunk Circle (orange).

Triangle-based metrics. Finally, we consider the two
triangle-based metrics. They behave somewhat simi-
larly with respect to each other as the edge-based met-
rics do: whereas the Triangular Lens works with inde-
pendent arcs per edge, the Shrunk Circumcircle uses a
single circle that must overlap each of the three edges.
We can thus follow the same principle to show two trian-
gles in a point set that score equally on the Triangular
Lens, but differently on the Shrunk Circumcircle, by
moving the points along the arcs of the former to force
the defining circle of the latter to shrink (see Fig. 12).

Figure 12: Two triangles with equal Triangular Lens
(blue) and different Shrunk Circumcircle (orange).

4 Experiments

Here we explore what the most Delaunay-like triangu-
lation of a point set looks like, for each of our metrics,
given different constraints that can force a triangulation
to be non-Delaunay. For a point set, we try all trian-
gulations that adhere to the given constraints to find
the optimized triangulation that scores best according
to each metric. We use small sets of only 10 points, to
ensure that this is feasible.

Constraints. We consider four types of constraints:
constrained edges, a lower bound or upper bound on
the total edge length, and a maximum degree.

For constrained edges, we are given a set of edges that
must be included in the triangulation. The constrained
edges are handpicked edges, which we consider to be
“interesting”. Most importantly the constrained edges
are not in the Delaunay triangulation, are not chord
of the convex hull, and lie somewhat close to another
point. This is the same constraint as for the CDT and
hence we may also compare how this structure compares
to our result.

The length of the triangulation is the sum over the
lengths of its edges. As the Delaunay triangulation nei-
ther minimizes nor maximizes the length, we can use
an upper bound (maximum length) or a lower bound
(minimum length), to constrain the triangulation to be
non-Delaunay. Specifically, we use either 1.2 times the
length of the Delaunay triangulation as a lower bound,
or 0.8 times the length of the Delaunay triangulation
as an upper bound. However, since the Delaunay tri-
angulation is inherently short for many point sets, such
triangulations often do not exist. We hence also create
a special point set where the Delaunay triangulation is
longer than most other triangulations, to see the differ-
ences between metrics.

Bounding the maximum degree means we consider
only triangulations for which all vertices have degree at
most a given constant. We use maximum degree 5 in
our experiment. This number is sometimes exceeded by
the Delaunay triangulation, but still allows for different
triangulations of the same point set.

Aggregation. For our optimized triangulations, we
have to evaluate each metric on the entire triangula-
tion. So far, we have left the method of aggregation
out of our considerations. For the purpose of our ex-
periment, we consider two methods: using the sum and
using bottleneck values.

The sum is a natural way to aggregate the values of
a triangulation 7', such that all decomposition elements
(quadrilaterals, edges or triangles) have an impact on
the triangulation. For quadrilateral-based metrics, we
minimize the sum; otherwise, we maximize it.

Using bottleneck values means we focus on the worst-
case element (maximum for quadrilateral-based metrics,
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minimum for our other metrics). The goal of this ap-
proach is to let the worst value be the deciding factor. A
problem with this method is that there can be two dif-
ferent triangulations that score the same, as they both
include the same bottleneck. Hence, we compare tri-
angulations lexicographically: this means that the ele-
ments are sorted (increasingly for quadrilateral-based,
decreasingly for other metrics) and the first element in
which the triangulations differ, determines which trian-
gulation is closer to Delaunay.

Results. Tables 3 through 10 in the full version [21]
show our experimental results; Table 2 contains the
most relevant excerpts. For the constrained edges, we
show the CDT for comparison, using red edges to indi-
cate the constraints. For the other constraints, we show
the Delaunay triangulation for comparison. In both
cases, the optimized triangulations use green markings
to show edges that are different from the comparison.

Table 3 in [21] shows optimized triangulations with
constrained edges using sum aggregation. We observe
that most metrics are always similar to the CDT for
such random point sets. The only differences are for
Dual Edge Ratio and Dual Area Overlap: each time
Dual Edge Ratio is different from the CDT, Dual Area
Overlap is also different, though not necessarily vice
versa. One exception is for Shrunk Circle. This suggests
to us that, at least in small random cases, our metrics
capture near-Delaunay quite well, as the CDT is an es-
tablished way of getting a Delaunay-like triangulation,
for these constraints. Using bottleneck aggregation (Ta-
ble 4 in [21]), we observe that the quadrilateral metrics
often behave similarly and are regularly different from
the CDT. With one exception, the other optimized tri-
angulations are again all identical to the CDT.

Tables 5 and 6 in [21] show the optimized triangula-
tions with a minimum-length constraint. We can com-
pare the different optimizations to empirically evaluate
the behavior of the metrics. We observe that in the
sum aggregation quadrilateral-based metrics generally
behave differently than the other metrics. However,
this distinction is less clear using the bottleneck aggre-
gation. Furthermore, with bottleneck aggregation the
Shrunk Circle metric often produces a unique triangula-
tion. Note that this is the same case that was excepting
from the general trend for constrained edges.

Table 7 and 8 in [21] show the optimized triangu-
lation with a maximum-length constraint. If no such
triangulation exists, we simply show the Delaunay tri-
angulation. In every point set except the one specifically
created for this constraint, there was no such triangula-
tion. For this case, we observe that the Dual Edge Ratio
and Dual Area overlap produce different triangulations
from the other metrics. In the bottleneck variant, we
also see that the Lens measure procedures another dis-
tinct triangulation.

Table 9 and 10 in [21] shows the optimization with a
maximum-degree constraint. In only few of the random
point sets, the maximum degree exceeds the constraint.
Most metrics flip the same edge, the notable exception
being the Shrunk Circumcircle metric which flips two
different edges for one case (shown). The two other
point sets shown were specifically created for this case.
We see considerable differences here between metrics, as
well as between sum and bottleneck aggregation.

With the wheel example here, we may perhaps see the
one case where there is a somewhat clear case of a “visu-
ally nice” optimized triangulation. Specifically, a some-
what regular pattern emerges for Lens and Shrunk Cir-
cle using sum aggregation as well as all metrics except
for the Dual Edge Ratio and Dual Area Overlap using
bottleneck aggregation — in the other cases we see very
skinny triangles occurring. Whether this form of being
near-Delaunay, however, is the most useful remains pos-
sibly context dependent. This hints at bottleneck aggre-
gation perhaps being more useful — indeed, it matches
the traditional lexicographic optimization of the mini-
mum angle that the Delaunay triangulation achieves.

5 Discussion

With a suite of metrics, we now have a common frame-
work to think about situations where we need a good
(Delaunay-like) triangulation to compute with, but con-
straints such as bounded degree prevent us from actually
using the Delaunay triangulation itself. We have shown
how these metrics differ among themselves as well as
how they result in different triangulations when consid-
ering optimizing under the constraint of including given
edges (like the Constrained Delaunay Triangulation).

We leave to future work to establish efficient algo-
rithms to compute the best triangulation (given one of
the metrics) given a set of constraints. It may further
be interesting to investigate how humans (or computa-
tional geometers) assess the quality of a triangulation,
how close it is to being Delaunay, and how this relates
to the metrics provided here. This may uncover that at
least to match intuition, we may need combinations of
metrics, or possibly a different metric altogether.

A possible avenue for further metrics is to consider the
empty ellipse as the generalization of the empty circle,
trying to optimize for the ellipse’s aspect ratio. This
seems mostly relevant for edge-based or quadrilateral-
based metrics, since triangles do not necessarily allow
for empty ellipses passing through their corners. But
for a single edge or quadrilateral, a general ellipse seems
to provide too much freedom, allowing for somewhat
arbitrary-seeming results. Restricting one of the axes of
the ellipse to be parallel to the defining edge may offer
a solution; yet, this seems to cause a counterintuitive
relation between the two sides of the edge.
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Table 2: Excerpt with the most relevant results, summarizing the appendix in the full version [21].
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Shortcut Hulls: Vertex-restricted Outer Simplifications of Polygons

Annika Bonerath* Jan-Henrik Haunert'

Abstract

Let P be a crossing-free polygon and C a set of short-
cuts, where each shortcut is a directed straight-line seg-
ment connecting two vertices of P. A shortcut hull of
P is another crossing-free polygon that encloses P and
whose oriented boundary is composed of elements from
C. Shortcut hulls find their application in geo-related
problems such as the simplification of contour lines. We
aim at a shortcut hull that linearly balances the enclosed
area and perimeter. If no holes in the shortcut hull
are allowed, the problem admits a straight-forward so-
lution via shortest paths. For the more challenging case
that the shortcut hull may contain holes, we present a
polynomial-time algorithm that is based on computing
a constrained, weighted triangulation of the input poly-
gon’s exterior. We use this problem as a starting point
for investigating further variants, e.g., restricting the
number of edges or bends. We demonstrate that short-
cut hulls can be used for drawing the rough extent of
point sets as well as for the schematization of polygons.

1 Introduction

The simplification of polygons finds a great number of
applications in geo-related problems. For example in
map generalization it is used to obtain abstract rep-
resentations of area features such as lakes, buildings,
or contour lines. A common technique, which origi-
nally stems from polyline simplification, is to restrict
the resulting polygon @) of a polygon P to the vertices
of P, which is also called a vertez-restricted simplifica-
tion [21, 25, 39]. In that case @Q consists of straight
edges' that are shortcuts between vertices of P. In the
classic problem definition of line and area simplification
the result ) may cross edges of P.

In this paper, we consider the vertex-restricted
crossing-free simplification of a polygon P considering
only shortcuts that lie in the exterior of P or are part of
the boundary of P. In contrast to other work, we con-
sider the shortcuts as input for our problem and do not
require special properties, e.g., that they are crossing-
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IThroughout this paper, we use the term edge instead of
straight-line segment.
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Figure 1: 1st column: Input polygon (blue) with a set
C of all possible shortcuts (gray). 2nd-3rd columns:
Optimal C-hulls (blue and red area) for different A.

free, or that they comprise all possible shortcuts. The
result of the simplification is a shortcut hull () of P pos-
sibly having holes. We emphasize that the edges of a
shortcut hull do not cross each other. Figure 1 shows
polygons (blue area) with all possible shortcuts and dif-
ferent choices of shortcut hulls (blue and red area). Such
hulls find their application when it is important that
the simplification contains the polygon. Figure 2 shows
the simplification of a network of lakes. We emphasize
that the lakes are connected to the exterior of the green
polygon at the bottom side. In that use case, it can be
desirable that the water area is only decreased to sus-
tain the area of the land occupied by important map
features. The degree of the simplification of @) can be
measured by its perimeter and enclosed area. While a
small perimeter indicates a strong simplification of P, a
small area gives evidence that @) adheres to P. In the
extreme case (@ is either the convex hull of P minimiz-
ing the possible perimeter, or @) coincides with P min-
imizing the enclosed area. We present algorithms that
construct shortcut hulls of P that linearly balance these
two contrary criteria by a parameter A € [0, 1], which
specifies the degree of simplification. With increasing



337? Canadian Conference on Computational Geometry, 2021

P

a) input map (b) input polygon P

.
%ﬁ%ﬁ%\% N

¢) optimal shortcut hull Q

(d) simplified map

Figure 2: Simplification of a network of lakes in Sweden.

(a) (b) (c)

Figure 3: Weakly-simple polygons. (a)—(b) Valid input
polygon as the exterior is a connected region. (c) Invalid
input polygon as the exterior consists of two regions.

A the enclosed area is increased, while the perimeter is
decreased. We show that for the case that @@ must not
have holes we can reduce the problem to finding a cost-
minimal path in a directed acyclic graph that is based
on the given set of possible shortcuts. However, espe-
cially for the application in geovisualization, where it is
about the simplification of spatial structures, we deem
the support of holes in the simplification as an essential
key feature. For example, in Figure 2d the connections
between the lakes are not displayed anymore as they are
very narrow, while it is desirable to still show the large
lakes. We therefore investigate the case of shortcut hulls
with holes in greater detail.

Input Polygon. As input we expect a clockwise-
oriented polygon P that is weakly-simple, which means
that we allow vertices to lie in the interior of edges as
well as edges that point in opposite directions to lie
on top of each other; see Figure 3. In particular, the
edges of P do not cross each other. Such polygons are
more general than simple polygons and can be used to
describe more complex geometric objects such as the
faces of a graph embedded into the plane; see Figure 4
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Figure 4: Shortcut hull of a minimum spanning tree.

for minimum spanning tree. For the input polygon P
we further require that its exterior is one connected re-
gion; we say that the exterior of P is connected; see Fig-
ure 3. Hence, both a simple polygon and the outer face
of the plane embedding of a planar graph are possible
inputs. Finally, we emphasize that P may have holes.
We can handle every hole separately assuming that we
have inserted a narrow channel in P connecting it with
the exterior of P; consider the lakes in Figure 2. We
can force the algorithm to fill the artificially introduced
channel with the interior of Q.

Formal Problem Definition. We are given a weakly-
simple polygon P with connected exterior and a set C
of directed edges in the exterior of P such that the
endpoints of the edges in C are vertices of P; see Fig-
ure 5a. We call the elements in C shortcuts. A C-hull is
a weakly-simple polygon whose oriented boundary con-
sists only of directed edges from C, whose exterior is
connected, and that contains P. We allow C-hulls to
have holes. We observe that such holes can only lie in
the exterior of P. We are interested in a C-hull @ that
linearly balances the perimeter and enclosed area of Q.
Formally, we define the cost of a C-hull @ as

Q) =XA-cp(Q) + (1= A)-cal@), (1)

where A € [0,1] is a given constant balancing the
perimeter cp(Q) and the area ca (Q) of Q. Further, Q is
optimal if for every C-hull Q' of P it holds ¢(Q) < ¢(@’).

SHORTCUTHULL.
given: weakly-simple polygon P with n vertices
and connected exterior, set C of shortcuts
of P, and X € [0,1]
find: optimal C-hull @ of P (if it exists)
Further, we observe that it holds |C| € O(n?) as the
edges of C have their endpoints on the boundary of P.

Our Contribution. We first discuss how to construct
an optimal C-hull in O(|C]) time for the case that it
must not have holes (Section 3). Afterwards, we turn
our focus to C-hulls that may have holes (Sections 4-6).
In particular, we show that finding an optimal C-hull @
of P is closely related to finding a triangulation T' of
the exterior of P such that each triangle A € T either
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Q

@
| 4 6’

(a) input P and C (b) C-hull Q

(c) pocket Ple] + e

Figure 5: The input, a solution, and a subinstance for
an instance of the problem.

(a) x=1 (b)x=17

Figure 6: Two examples of set C' with different spa-
tial complexities x. (a) C-triangulation and C-hull. (b)
connected components of the crossing graph.

belongs to the interior or exterior of @; see Figure 6a.
We present an algorithm that solves SHORTCUTHULL in
O(n?) time if we forbid holes and in O(n?) time in the
general case. Moreover, in the case that the edges of
C do not cross each other, it runs in O(n) time. More
generally, we analyse the running time based on the
structure of C. Let S be the region between P and the
convex hull of P. Let G be the crossing graph of C, i.e.,
each node of G corresponds to an edge in C and two
nodes of G are adjacent if the corresponding edges in
C cross each other. The spatial complexity of C is the
smallest number x € N for which every connected com-
ponent of G' can be enclosed by a polygon with x edges
that lies in the exterior of P and only consists of ver-
tices from P; see Figure 6. We show that the purposed
algorithm runs in O(x® + nx) time. We emphasize that
X € O(n). Moreover, we present two variants of C-hulls
that restrict the number of permitted edges or bends.
We further discuss relations of shortcut hulls with re-
spect to problems from application in cartography and
computational geometry (Section 7).

2 Related Work

In the following, we consider two major research fields
that are closely related to our work. At first, the field of
representing geometric objects by less complex and pos-
sibly schematized geometric objects and, secondly, the
field of constrained and weighted triangulations. Ap-
plication fields for the representation of geometric ob-
jects by less-complex and possibly schematized objects
are found, for example, in cartography: administrative

borders [8, 12, 27, 52|, building footprints [29, 54], and
metro maps [31, 43, 55]. In particular, we want to
point out the generalization of isobathymetric lines in
sea charts where the simplified line should lie on the
downbhill side of the original line to avoid the elimina-
tion of shallows [56]. In this context, it is important
to find a good balance between the preservation of the
information and the legibility of the visualization [13].
Considering a polygon as input geometry, a basic tech-
nique for simplification and schematization is the con-
vex hull [6, 18, 26, 45]. An approach for rectilinear input
polygons are tight rectilinear hulls [10]. Multiple other
approaches for polygonal hulls of polygons exist—some
of them can be solved in polynomial time [29], while oth-
ers are shown to be NP-hard [30]. A closely related field
is the topologically correct simplification and schemati-
zation of polygonal subdivisions [12, 24, 38, 40, 53]. For
the case that multiple geometric objects are the input of
the problem, there exist several techniques for combin-
ing the aggregation and representation by a more simple
geometry. In the case that the input is a set of polygons,
a common technique is to use a partition of the plane,
such as a triangulation, as basis [17, 32, 36, 37, 46, 50].
In the case that the input is a set of points, we aim at
representing this by a polygonal hull. Many approaches
such as a-shapes [23] and x-shapes [22] use a triangu-
lation as their basis. Another approach is based on
shortest-paths [19]. Note that there also exists work
on combining the aggregation of point sets resulting in
schematized polygons [11, 54]. For considering polylines
as input there exists work on computing an enclosing
simple polygon based on the Delaunay triangulation [3].
The schematization of polylines is also closely related to
our approach. On the one hand, there is the schemati-
zation of a polyline inside a polygon or between obsta-
cles [2, 35, 41, 49]. Alternatively, there also exists work
on the simplification of a polyline based on a Delaunay
triangulation [3, 4, 5]. For the general simplification
of polylines we also refer to the Douglas-Peucker algo-
rithm, which is most widely applied in cartography [20],
and similar approaches [1, 42, 44].

Triangulating a polygon is widely studied in com-
putational geometry. Triangulation of a simple poly-
gon can be done in worst-case linear time [14]. A
polygon with h holes, having in total n vertices, can
be triangulated in O(nlogn) time [28] or even O(n +
hlog'™® h) time [7]. Our approach is particularly related
to minimum-weight triangulations [47] and constrained
triangulations [15, 16, 33, 34, 48].

3 Computing Optimal Shortcut Hulls without Holes
Let G¢ be the graph induced by the edges in C. We

call G¢ the geometric graph of C. If we do not allow
the shortcut hull to have holes, we can compute an op-
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Figure 7: Containing box B and sliced donut D of P.

timal C-hull ) based on a cost-minimal path in G¢; see
Figure 5b. For each edge e let Ple] be the polyline of
P that is enclosed by e. We call the polygon describ-
ing the area enclosed by e and Pl[e] the pocket of e; see
Figure 5¢c. We direct e of G¢ such that it starts at the
starting point of Ple] and ends at the endpoint of Ple].
For each edge e we introduce costs that rate the length
cp(e) of e as well as the area ca (P[e]) of the pocket of e
with respect to A, i.e. c(e) = A-cp(e)+(1—A)-ca(Ple]).

Observation 1 The wvertices of the convexr hull of P
are part of the boundary of any shortcut hull of P.

Due to Observation 1, any C-hull of P contains the top-
most vertex v of P. Hence, G¢ does not contain any
edge e that contains v in its pocket and when removing
v from G¢ we obtain a directed acyclic graph. We use
this property to prove that a cost-minimal path in G¢
corresponds to an optimal C-hull.

Theorem 1 The problem SHORTCUTHULL without
holes can be solved in O(|C|) time. In particular, in
the case that the edges in C do not cross each other it
can be solved in O(n) time and O(n?) time otherwise.

The proof of Theorem 1 is deferred to the full version [9].
If we allow @) to have holes, we cannot rate the costs for
the area of a pocket in advance.

4  Structural Results for Shortcut Hulls with Holes

In this section, we present structural results for SHORT-
CUTHULL, which we utilize for an algorithm in Sec-
tion 5. We allow the shortcut hull to have holes.

4.1 Basic Concepts

Let P be a weakly-simple polygon with connected exte-
rior. Let p1,...,p, be the vertices of P; see Figure 7a.
We assume that the topmost vertex of P is uniquely
defined; we always can rotate P such that this is the
case. We denote that vertex by p; and assume that P
is clockwise oriented. Further, let C be a set of shortcuts
of P and A € [0, 1]; see Figure 5a. Due to Observation 1,
any C-hull of P contains p;.
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First we introduce concepts for the description of the
structural results and the algorithm. Let B be an axis-
aligned rectangle such that it is slightly larger than the
bounding box of P; see Figure 7a. Let ¢1,...,q4 be
the vertices of B in clockwise order such that ¢; is the
top-left corner of B. We require that the diagonal edges
q1q93 and g2q4 intersect P, which is always possible. We
call B a containing box of P. Let D be the polygon
q1---94q1P1Pn - --P1q1. We call D a sliced donut of P;
see Figure 7Tb. We observe that D is a weakly-simply
polygon whose interior is one connected region. Further,
we call e* = p1q; the cut edge of D. For an edge e in the
interior of D connecting two vertices of D let Dle] be
the polyline of D that connects the same vertices such
that e* is not contained; see Figure 7c. Let Dle] + e be
the polygon that we obtain by concatenating Dle] and
e such that e* lies in the exterior of D[e] 4+ e. Note that
if e € C then Dle] = Ple]. We call D[e] + e the pocket
e. In particular, we define D to be the pocket of e*.

Observation 2 The edges of a C-hull of P are con-
tained in the sliced donut D.

In the following, we define a set CT of edges in D
with C C C* that we use for constructing triangulations
of D, which encode the shortcut hulls. Generally, a
triangulation of a polygon H is a superset of the edges
of H such that they partition the interior of H into
triangles. Further, for a given set E of edges an E-
triangulation of H is a triangulation of H that only
consists of edges from E. Moreover, we say that a set F
of edges is part of a triangulation T if F is a subset of
the edges of T. Conversely, we also say that T' contains
FE if E is part of T. Note that the edges of H are part
of any E-triangulation of H.

We call a set CT of edges with C C CT an enrichment
of the shortcuts C and the sliced donut D if (1) ev-
ery edge of CT is contained in D, (2) every edge of
C* starts and ends at vertices of D, and (3) for ev-
ery set C' C C of pair-wisely non-crossing edges there
is a CT-triangulation T of D such that C’ is part of T.
First, we observe that CT is well-defined as every edge
in C satisfies the first two properties. Further, by def-
inition for any C-hull Q there is a CT-triangulation T
of D that contains (). Hence, as an intermediate step
our algorithm for computing an optimal C-hull @ cre-
ates an enrichment of C and D, and then constructs
a CT-triangulation that contains . In Section 4.2
we discuss the structural correspondences between C*-
triangulations of D and (optimal) C-hulls. In Section 4.3
we then show how to construct C*. For example a sim-
ple approach for an enrichment of C is the set of all pos-
sible shortcuts in D. We observe that any enrichment
Ct of C has O(n?) edges. In general, the size of C*
can be described by the spatial complexity of C, which
impacts the running time of our algorithm (Section 5).
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(a) Q is part of T

(b) labels

(c) dual graph G*

Figure 8: CT-triangulation 7. (b) The red triangles are
active, while all other triangles are inactive. (c) The
restricted dual graph G* of T forms a tree with root p.

4.2 From C*-Triangulations to C-Hulls

In this section, we assume that we are given an enrich-
ment CT for the set of shortcuts C and a sliced donut
D. Let T be a C*-triangulation of D; see Figure 8.

Observation 3 For each enrichment CT of C and each
C-hull Q there exists a C*-triangulation T of the sliced
donut D such that Q) is part of T.

Let T be a C*-triangulation of D such that the C-
hull @ is part of T'; see Figure 8a. We can partition the
set of triangles of T" in those that are contained in the
interior of ) and those that are contained in the exterior
of Q. We call the former ones active and the latter ones
inactive; see Figure 8b. Further, we call an edge e of
T a separator if (1) it is part of P and adjacent to an
inactive triangle, or (2) it is adjacent to both an active
and an inactive triangle. Conversely, let ¢: T' — {0,1}
be a labeling of T' that assigns to each triangle A of T
whether it is active (¢((A) = 1) or inactive (£(A) = 0).
We call the pair T = (T, /) a labeled C*-triangulation.
From Observation 3 we obtain the next observation.

Observation 4 For each enrichment CT of C and each
C-hull Q there exists a labeled C -triangulation such that
its separators stem from C and form Q.

Let T = (T,¢) be a labeled C*-triangulation of the
interior of a polygon H. We denote the set of separators
of T by St. We define

cp(St) = Z cp(e) and ca(T) =

eeSr

Z CA(A)7

A€T,
oA)=1

where cp(e) denotes the length of e and ca(A) denotes

the area of A. The costs of T are then defined as
c(T)=X-cp(St)+ (1= A)-ca(T).

For any e € CT \ C we define cp(e) = co. Thus, we have

¢(T) < oo if and only if St C C. We call a labeled C-

triangulation T of H optimal if there is no other labeled
C"-triangulation T/ of H with ¢(T") < ¢(T).

Next, we show that a labeled C*-triangulation T =
(T,¢) that is optimal can be recursively constructed
based on optimal sub-triangulations. Let G* be the re-
stricted dual graph of T', i.e., for each triangle G* has a
node and two nodes are adjacent iff the corresponding
triangles are adjacent in T'; see Figure 8c.

Lemma 1 The restricted dual graph G* of a C™-
triangulation T of D is a binary tree.

Proof. Aseach edge of T starts and ends at the bound-
ary of D, each edge of T splits D into two disjoint re-
gions. Hence, G* is a tree. Further, since each node of
G* corresponds to a triangle of T', each node of G* has
at most two child nodes. (]

We call G* a decomposition tree of D. Let p be the
node of G* that corresponds to the triangle of 7" that
is adjacent to the cut edge e* of D; as e* is a boundary
edge of D, this triangle is uniquely defined. We assume
that p is the root of G*; see Figure 8c. Let G}, be an
arbitrary sub-tree of G* that is rooted at a node u of
G*. Further, let e, be the edge of the triangle A, of u
that is not adjacent to the triangles of the child nodes of
u; we call e, the base edge of A,. The triangles of the
nodes of G}, form a C*-triangulation T, of the pocket
A, = Dley]+e, of e,. Thus, G is a decomposition tree
of A,. A labeled CT-sub-triangulation T, = (Ty,¢y)
consists of the CT-triangulation T, of A, with T,, C T
and the labeling ¢,, with £,,(A) = £(A) for every A € T,,.

Lemma 2 Let T be a labeled CT-triangulation of D
that is optimal. Let T\, = (Ty,%y,) be the labeled CT-
sub-triangulation of T rooted at the node uw and let
T., = (T.,0,) be an arbitrary labeled C* -triangulation
of the same region. We denote the triangles of T, and
T, adjacent to e, by A, and Al,, respectively.

If A, and Al have the same labels, i.e., £,(A,) =
2. (AL), then ¢(Ty) < ¢(T%).

The proof is deferred to the full version [9]. We use
Lemma 2 for a dynamic programming approach that
yields a labeled CT-triangulation T of D that is optimal.

Lemma 3 Let T be a labeled CT-triangulation of D
that is optimal and has cost ¢(T) < oo. The separa-
tors of T form an optimal C-hull of P.

Proof. We show the following two claims, which proves
the lemma. (1) For every C-hull @ of P there is a labeled
CT-triangulation T of D such that the separators of T
form @ and ¢(T) = ¢(Q). (2) For every labeled C*-
triangulation T of D with ¢(T) < oo the separators of
T form a C-hull @ with ¢(T) = ¢(Q).

Claim 1. Let @ be a C-hull of P. By the definition
of C* there is a CT-triangulation T" of D such that Q is
part of T'. We define the labeling ¢ such that ¢(A) =1
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Figure 9: Proof of Lemma 3. (a) The triangles inci-
dent to the vertices q1, g2, g3 and g4 form a path in the
dual graph of the labeled triangulation T. (b) The ver-
tices p1,...,ps form a CT-hull of P containing all active
triangles (red) of T.

K Ke K

(a) ¢

Figure 10: Inductive construction of the boundary
path K. of an edge e that is a base edge of an inac-
tive triangle A. (a) Base case. (b) ey is a base edge of
an inactive triangle, and ey is a separator. (c) Both e;
and eq are base edges of inactive triangles.

for every triangle A € T' that is contained in the inte-
rior of @ and ¢(A) = 0 for every other triangle A € T.
Hence, the separators of the labeled CT-triangulation
T = (T, ¢) are the edges of ). Further, by the construc-
tion of T we have ¢(T) = ¢(Q). This proves Claim 1.
Claim 2. Let T = (T,¢) be a CT-triangulation of
D with ¢(T) < oo and let St be the separators of T.
By the definition of the costs of T we have St C C.
Moreover, as T is a triangulation, the edges in St do
not cross each other. We show that the edges in St
form a C-hull Q with ¢(Q) = ¢(T). Let G* be the dual
graph of T'. As the diagonal edges of the containing box
B intersect P, each triangle of T' that is incident to one
of the vertices of B is also incident to a vertex of P;
see Figure 9a. The vertices of the triangles incident to
the vertices of B form a path vy,...,v; in G* such vy is
the root of G* and vy, is a leaf. We denote the triangles
represented by this path by Aq,..., Ay, respectively.
Let p1,...,p; be the vertices of P in the order as they
are incident to the triangles Ay, ..., Ay in clockwise or-
der; see Figure 9a. We define p;;1 = p1. The vertices
p1,...,p form a weakly-simple polygon Q' that con-
tains P; if P crossed @', this would contradict that the
vertices are incident to the disjoint triangles Ay, ..., Ag.
We observe that Q' is a CT-hull of P without holes. Let
T’ C T be the set of triangles that are contained in @’
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and let £’ be the edges of these triangles. We first show
that for each edge e € E’ that is a base edge of an inac-
tive triangle in T there is a path K. in the pocket of e
such that (1) K. only consists of edges from S, (2) K.
connects the endpoints of e, and (3) the polygon K. +e
only contains inactive triangles of T. We call K. the
boundary path of e; see Figure 10. Later, we use these
boundary paths to assemble Q.

Let A be the inactive triangle of which e is the base
edge and let e; and es be the other two edges of A. We
do an induction over the number of triangles of T that
are contained in the pocket of e. If the pocket of e only
contains A, both edges e; and es are edges of P; see
Figure 10a. Hence, by definition they are separators.
We define K. as the path e; + es, which satisfies the
three requirements above. So assume that the pocket
of e contains more than one triangle; see Figure 10b—c.
If e; is not a separator, then it is the base edge of an
inactive triangle. Hence, by induction there is a path
K., that satisfies the requirements above. If e; is a
separator, we define K., = e;. In the same way we
define a path K., for the edge es. The concatenation
K., + K., forms a path that satisfies the requirements
above, which proves the existence of the boundary path
for an edge e € E'.

We now describe the construction of the boundary of
Q. For a pair p;, p;+1 with 1 <1 <[ the adjacent trian-
gle incident to one of the vertices of B is inactive. Let
K, = pipit+1 if pipi41 is a separator. Otherwise, p;p;+1
is the base edge of an inactive triangle in T. Thus, it has
a boundary path K, ., and we define K; as K.. The
concatenation K7 + - .-+ K; forms the boundary B of a
weakly-simple polygon @) that encloses P; see Figure 9b.
By construction it consists of edges from C.

Finally, we show how to construct the holes of ). Let
e € St be a separator that is contained in the interior
of B and that is a base edge of an inactive triangle; see
e and €’ in Figure 9b. The polygon Z. that consists
of e and the boundary path K. only contains inactive
triangles of T and is entirely contained in B. Further,
for any pair e and ¢’ of such separators in the interior of
B the interiors of the polygons Z. and Z. are disjoint.
Hence, we set these polygons to be the holes of Q. Thus,
we obtain a C-hull () of P with holes such that the
inactive triangles of T lie in the exterior of @, while all
active triangles lie in the interior of Q). This implies that
¢(Q) = ¢(T), which concludes the proof of Claim 2. [

43 From(CtoC™t

Solving SHORTCUTHULL relies on the considered enrich-
ment C*. For an edge e € CT let 6, be the number of
triangles that can be formed by e and two other edges
from C*, and let §(C*) be the maximum . over all
edges e in C*. In Section 5 we show that the problem
can be solved in O(|C*|-§(CT)) time.
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Figure 11: Obtaining the enrichment C* from C.

A simple choice for CT is the set of all edges that lie
in D and connect vertices of D. It is an enrichment of
C as it contains any choice of C and any triangulation of
D that is based on the vertices of D is a subset of CT.

Observation 5 There is an enrichment C* of C with

IC*| € O(n?) and 6(C*) € O(n).

If C has no crossings, we can do much better. We first
observe that the edges of any triangulation T of the
sliced donut D are an enrichment of C and D if C is a
subset of these edges. Hence, we can define an enrich-
ment as the set of edges of a triangulation T" of D such
that the edges of C are part of T'; for this purpose we can
for example utilize constrained Delaunay triangulations,
but also other triangulations are possible.

Observation 6 If the edges in C do not cross, C has
an enrichment Ct with |C*| € O(n) and 6(C*) € O(1).

In the following we generalize both constructions of
C™ and relate |CT] and 6(C™) to the number n of vertices
of P and the spatial complexity x of C. Let Cy,...,Cp
be subsets of C such that two edges e € C; and €’ € C;
with 1 <4, j < h cross each other if and only if 1 = j; see
Figure 11. We call C; a crossing component of C. Let R;
be the polygon in D with fewest edges, that is defined by
vertices of P and contains C;. We call R; the region of
C;. Let C* be the set of edges that contains (i) all edges
of C, (ii) the edges Er of a constrained triangulation for
the interior of D, and (iii) for each 1 < i < h the set
ERr, of all possible shortcuts of region R; such that these
start and end at vertices of R; and are contained in D.
Hence, an enrichment is of size O(x?+n) as each region
R; has at most x vertices.

Theorem 2 There is an enrichment Ct of C with

ICT] € O(x% +n) and 6(CT) € O(x).

Proof. Let C* be the set of edges that contains all
edges of C, Er, and Eg,,...,ER,. We show that
CT is an enrichment, by proving that for each set
C' C C of pair-wisely non-crossing edges there is a C*-
triangulation T of D such that C’ is part of T.

Observe that the regions Ry, ..., Ry of crossing com-
ponents induce a partition R of D that contains
Ry,..., Ry and regions Rj,..., R, partitioning D \
Ule R;. Since an edge e € C* cannot cross the bound-
ary of two regions R, R’ € R, the triangulation of each
region R € R can be constructed independently.

Let E be the edges of C’ that are contained in region
R € R. If R is a region of a crossing component, C*
contains all shortcuts in this region. Since the edges of
E are crossing-free, there exists a CT-triangulation of
R that is constrained to E. Thus, the edges of E are
part of a Ct-triangulation of R. If R is not a region of
a crossing component, the enrichment C* contains the
edges of a triangulation of D constrained to all edges
of C that are contained in R. Since E C C, this tri-
angulation contains all edges of E. By joining the C*-
triangulations for each region of the partition, we obtain
a CT-triangulation of D such that C’ is part of it. O

5 Computing Optimal Shortcut Hulls with Holes

The core of our algorithm is a dynamic programming
approach that recursively builds the decomposition tree
of T as well as the labeling ¢ using the sliced donut D
of the input polygon P and the input set of shortcut C
as guidance utilizing Lemma 2. The algorithm consists
of the following steps.

1. Create a containing box B and the sliced donut D
of P and B. Let e* be the cut edge of D.

2. Create an enrichment C* of C and D.

3. Create the geometric graph G+ based on Ct. Let
T be the set of triangles in Ge+ .

4. Determine for each edge e of Ge+ the set T, C T
of all triangles (e, e1,e2) in Ge+ such that e; and
eo lie in the pocket of e.

5. Create two tables A and I such that they have an
entry for each edge e of Ge+.

e Ale]: minimal cost of a labeled C*-trian-
gulation T of the pocket Dle]+e s.t. the tri-
angle adjacent to e is active.

e I[e]: minimal cost of a labeled C*-trian-
gulation T of the pocket Dle]+e s.t. the tri-
angle adjacent to e is inactive.

6. Starting at I[e*] apply a backtracking procedure to
create a CT-triangulation T of D that is optimal.
Return T and the corresponding optimal C-hull @
of T (see proof of Lemma 3 for construction of Q).
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Figure 12: The possible cases for the (a)—(d) active (red)
and (e)—(h) inactive cost of a triangle A.

We now explain Step 5 and Step 6 in greater detail.

Step 5. We compute the table entries of A and I in
increasing order of the areas of the edges’ pockets. Let
e be the currently considered edge of G¢+. For a triangle
A = (e,e1,e9) € To of e we define its active cost xa as

INES Z min{Ale;], Ie;] + X - cp(e;)}.
i€{1,2}

Hence, xa is the cost of a labeled CT-triangulation T,
of the pocket D[e]+ e such that A is active and the sub-
triangulations of T, restricted to the pockets Dlei]+e;
and Dles] + eo are optimal, respectively; see Figure 12
for the four possible cases.

o0 €€C
ﬂ~CA(€) €€C,7:3:®,
min{za | A €T} +B-cale) eclC, T # 0,

Ale] =

where 8 = (1 — ). Analogously, we define for A its
inactive cost ya as

ya= > min{Ale;] + X cp(e;), Ies]}-
i€{1,2}

Hence, ya is the cost of a labeled C*-triangulation T, of
the pocket D[e] + e such that A is inactive and the sub-
triangulations of T, restricted to the pockets D[e;] +e;
and Dles] + e2 are optimal, respectively. We compute
the entry I[e] as follows.

T[] = 00 ec€Cand 7T, =0,
"~ |min{ya | A € T.} otherwise.

By the definition of the tables A and I and Lemma 2
it directly follows, that I[e*] is the cost of a labeled
C*-triangulation of D that is optimal. In particular, by
Lemma 3 the entry I[e*] is the cost of an optimal C-hull.
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Step 6. When filling both tables, we further store for
each entry Ale] the triangle (e, e1,e2) € T with mini-
mum active cost. In particular, for the edge e; (with
i € {1,2}) we store a pointer to the entry Ale;] if
Ale;] <TIe;] + A - cp(e;) and a pointer to the entry I[e;]
otherwise. Similarly, we store for each entry I[e] the tri-
angle (e,e1,ez) € T, with minimum inactive cost. In
particular, for the edge e; (with ¢ € {1,2}) we store a
pointer to the entry Ife;] if Ile;] < Ale;] + A - cp(e;) and
a pointer to the entry Ale;] otherwise. Starting at the
entry I[e*], we follow the pointers and collect for each
encountered entry its triangle —if such a triangle does
not exist, we terminate the traversal. If the entry be-
longs to A we label A active and if it belongs to I, we
label A inactive. The set T of collected triangles forms
a labeled CT-triangulation T of D that is optimal. By
Lemma 3 the separators of T form an optimal C-hull.

Running Time. The first step clearly runs in O(n)
time. By Theorem 2 there is an enrichment C* of C and
D that has size O(x? + n). It can be easily constructed
in O(x®+xn) time, which dominates the running times
of Step 2, Step 3 and Step 4. Further, for each edge e of
G+ the set T, contains 6(CT) triangles. Hence, filling
the tables A and I takes O(|C*|-4(CT)) time. Hence,
by Theorem 2 we obtain O(x® + yn) running time. The
backtracking takes the same time.

Theorem 3 SHORTCUTHULL can be solved in O(x3 +
nx) time. In particular, it is solvable in O(n®) time in
general and in O(n) time if the edges in C do not cross.

6 Edge and Bend Restricted Shortcut Hulls

In this section, we discuss two variants of SHORT-
CUTHULL in which we restrict the number of edges and
bends of the computed shortcut hull. These restrictions
are particularly interesting for the simplification of ge-
ometric objects as they additionally allow us to easily
control the complexity of the simplification.

6.1 Restricted C-Hull: Number of Edges

Next, we show how to find a C-hull @ that balances
its enclosed area and perimeter under the restriction
that it consists of at most k edges. We say that @ is
optimal restricted to at most k edges, if there is no other
C-hull Q' with at most &k edges and ¢(Q’) < ¢(Q).

k-EDGESHORTCUTHULL.
given: weakly-simple polygon P with n vertices
and connected exterior, set C of shortcuts
of P, \€0,1], and k € N
find:  optimal C-hull @ of P (if it exists)
restricted to at most k edges.
To solve k-EDGESHORTCUTHULL we adapt Step 5 of the
algorithm presented in Section 5. We extend the tables
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A and I by an additional dimension of size k¥ modelling
the budget of edges that we have left for the particular
instance. For a shortcut e € Ct and a budget b we
interpret the table entries as follows.

o Ale][b]: cost of labeled CT-triangulation T of the
pocket of e s.t. T is optimal, the triangle adjacent
to e is active and T contains at most b separators.

e I[e][b]: cost of labeled C*-triangulation T of the
pocket of e s.t. T is optimal, the triangle adjacent
to e is inactive and T contains at most b separators.

Let e be the currently considered edge of Ge+ when
filling the tables. For a triangle A = (e,e1,e2) € Te
of e its active and inactive costs depend on the given
budgets b, and by with 1 < by, bs < k that we intend to
use for the sub-instances attached to e; and es.

TA by by = Z min{A[ei][biLI[ei][bi — 1] + A Cp(ei)}
ic{1,2}

Yabbe = Y min{Ale;][b; — 1] + X cp(e;), Ies][bi]}
ie€{1,2}

Hence, for the case that e € C and T, # () we define
A[e][b] = min{xAbl,bz ‘ A€ T, by +by= b} + 8- cale),

where 8 = (1 — X). There are b possible choices of b;
and by that satisfy by + by = b. Thus, we can compute
Ale][b] in O(b) time. For the remaining cases we define

Afe][t] = {;" onle)

eégC
eeC, T, =1,

which can be computed in O(1) time. Moreover, for the
case that e € C or T, # ) we define

I[e} [b} = IIliIl{yA’bhb2 | A€ T, by + by = b}

For the same reasons as before we can compute I[e][b]
in O(1) time. For e € C or T, # ) we define I[e][b] = cc.
Finally, to cover border cases we set Ale][0] = oo and
I[e][0] = oo. Altogether, the entry I[e*][k] contains the
cost of an optimal C-hull that is restricted to k edges.
Apart from minor changes in Step 6 the other parts of
the algorithm remain unchanged.

Running time. Compared to the algorithm of Sec-
tion 5 the running time of computing a single entry
increases by a factor of O(k). Further, there are O(k)
times more entries to be computed, which yields that
the running time increases by a factor of O(k?).

Theorem 4 The problem k-EDGESHORTCUTHULL can
be solved in O(k?(x3 + ny)) time. In particular, it can
be solved in O(k?n3) time in general and in O(k*n) time
if the edges in C do not cross.

6.2 Restricted C-Hull: Number of Bends

A slightly stronger constraint than restricting the num-
ber of edges is restricting the number of bends of a
C-hull. Formally, we call two consecutive edges of a
simply-weakly polygon a bend if the enclosed angle is
not 180°. We say that @ is optimal restricted to at most
k bends if there is no other C-hull Q' with at most k
bends and ¢(Q’) < ¢(Q).

k-BENDSHORTCUTHULL.

given: weakly-simple polygon P with n vertices
and connected exterior, set C of shortcuts
of P, A€[0,1], and k € N

find:  optimal C-hull Q of P (if it exists)

that is restricted to at most k bends.

If the vertices of P are in general position, i.e., no
three vertices lie on a common line, a C-hull @ of P is
optimal restricted to at most k bends if and only if it
is optimal restricted to k edges. Hence, in that case we
can solve k-BENDSHORTCUTHULL using the algorithm
presented in Section 6.1. In applications, the case that
the vertices of P are not in general position, occurs likely
when the input polygon is, e.g., a schematic polygon or
a polygon whose vertices lie on a grid. In that case, we
add an edge p1py, to C for each sequence py, ..., pp of at
least three vertices of P that lie on a common line; we
add pipp only if it lies in the exterior of P. The newly
obtained set C’ has O(n?) edges. Hence, compared to
C it possibly has an increased spatial complexity with
X € O(n). From Theorem 4 we obtain the next result.

Theorem 5 The problem k-BENDSHORTCUTHULL can
be solved in O(k*-n?) time.

7 Relations to other Geometric Problems

We have implemented the algorithm presented in Sec-
tion 5. For example, computing a shortcut hull for the
instance shown in Figure 2 one run of the dynamic pro-
gramming approach (Step 5) took 400ms on average.
This suggests that despite its cubic worst-case running
time our algorithm is efficient enough for real-world ap-
plications. However, more experiments are needed to
substantiate this finding.

Balancing the Costs of Area and Perimeter In Fig-
ure 1 we display a series of optimal C-hulls?. We use
the same polygon and the set of all possible shortcuts
as input while increasing the parameter A of the cost
function. To find relevant values of A\ we implemented a
systematic search in the range [0, 1]. It uses the simple
observation that with monotonically increasing A the
amount of area enclosed by an optimal shortcut hull
increases monotonically. More in detail, we compute

2Figure 1b: A = 0.906; Figure lc: A\ = 0.995; Figure le: A =
0.914; Figure 1f: A = 0.975
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Figure 13: Simplification (a) and schematization (b)—(c)
of the main island of Shetland.

the optimal shortcut hull for A = 0 and A = 1. If the
area cost ¢4 of these shortcut hulls differ, we recursively
consider the intervals [0,0.5] and [0.5,1] for the choice
of X\ similar to a binary search. Otherwise, we stop the
search.

As presented in Equation 1, we consider costs for the
area and perimeter in SHORTCUTHULL. The second col-
umn of Figure 1 shows a result for a small value of A, i.e.,
the costs for the area are weighted higher. As expected
the resulting optimal C-hull is rather close to the input
polygon. In contrast, the last column of Figure 1 shows
the optimal C-hull for a larger A-value. We particularly
obtain holes that represent large areas enclosed by the
polygon, while small gaps are filled.

Simplification and Schematization of Simple Polygons
In the following, we discuss how our approach relates to
typical measures for simplification and schematization.
These are the number of edges, the number of bends [20]
or the perimeter [51], which are implemented by short-
cut hulls; e.g., Figure 13a shows the simplification of
the border of the main island of Shetland by a C-hull
as defined in SHORTCUTHULL. The schematization of a
polygon is frequently implemented as a hard constraint
with respect to a given set O of edge orientations. For
schematizing a polygon with C-hulls, we outline two pos-
sibilities: a non-strict and a strict schematization. For
the non-strict schematization, we adapt the cost func-
tion of the shortcuts such that edges with an orientation
similar to an orientation of O are cheap while the oth-
ers are expensive; see Figure 13b for O consisting of
horizontal, vertical, and diagonal orientations and Fig-
ure 13c for O consisting of the horizontal and vertical
orientations. The strict schematization restricts the set
C of shortcuts, such that each edges’ orientation is from
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() (d)

Figure 14: Optimal C-hulls for increasing values of A for
a point set using a minimum spanning tree as basis.

O. For example, one can define C based on an under-
lying grid that only uses orientations from O. We then
need to take special care about the connectivity of C,
e.g., by also having all edges of the input polygon in C.

Aggregation of Multiple Objects and Clustering We
can adapt C-hulls for multiple geometric objects, e.g. a
point set. We suggest to use a geometric graph that
contains all vertices of the input geometries, all edges of
the input geometries and is connected as input for prob-
lem SHORTCUTHULL, e.g., a minimum spanning tree of
the point set; see Fig 14. With increasing A-value the
regions of the shortcut hull first enclosed are areas with
high density. By removing all edges of () that are not
adjacent to the interior of ), we possibly receive multi-
ple polygons which each can be interpreted as a cluster.

8 Conclusion

We introduced a simplification technique for polygons
that yields shortcut hulls, i.e., crossing-free polygons
that are described by shortcuts and that enclose the in-
put polygon. In contrast to other work, we consider the
shortcuts as input. We introduced a cost function of a
shortcut hull that is a linear combination of the covered
area and the perimeter. Computing optimal shortcut
hulls without holes takes O(n?) time. For the case that
we permit holes we presented an algorithm based on
dynamic programming that runs in O(n?) time. If the
input shortcuts do not cross it runs in O(n) time.

We plan on considering (i) the bends as part of the
cost function, (ii) more general shortcuts, e.g. allowing
one bend per shortcut, and (iii) optimal spanning trees
for the case of multiple input geometries.
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Stochastic Analysis of Empty-Region Graphs

Olivier Devillers™*

Abstract

Given a set of points X, an empty-region graph is a
graph in which p,q € X are neighbors if some region
defined by (p,q) does not contain any point of X. We
provide expected analyses of the degree of a point and
the possibility of having far neighbors in such a graph
when X is a planar Poisson point process. Namely the
expected degree of a point in the empty axis-aligned-
ellipse graph for a Poisson point process of intensity A
in the unit square is O(In A). It is O(In 3) if the ellipses
are constrained to have an aspect ratio between 1 and
B > 1, and O©(S) when the aspect ratio is constrained
but ellipses are not axis-aligned.

1 Introduction

We start by defining the notion of empty-region
graph [2]:

Definition 1 For each pair (p,q) € R?xR?, let R(p, q)
be a family of regions. Consider a locally finite point set
X C R We denote by G% (X) the graph on X in which
p s a neighbor of q if and only if there exists an empty
region in R(p,q).

This notion unifies the classical Delaunay triangula-
tion [3] where R(p, q) is the set of disks whose bound-
aries contains p and ¢, the Gabriel graph [6] where
R(p,q) is reduced to the disk of diameter pq, the [-
skeleton [7, 1], the empty-ellipse graph [4], the nearest
neighbor-graph, the ©-graphs, and the Yao graphs [9].

In this paper, we will assume that X is a Poisson point
process in the plane and compute quantities like the ex-
pected degree of a point p € X in g%(X ) or the proba-
bility that p has neighbors further than some threshold.
Computing such quantities when R(p, q) is a singleton,
as for the Gabriel graph, is much easier than when it is
a bigger set, as for Delaunay triangulation. To this aim,
it is interesting to try to get upper and lower bounds by
comparing empty-region graphs. This idea was already
used by Devroye, Lemaire and Moreau [5] to bounds
the size of the Delaunay triangulation by the sizes of
the Gabriel graph and the half-moon graph.
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In this paper we formalize the process through two
lemmas: the Combination lemma and the Partition
lemma, and we illustrate these tools with empty-ellipse
graphs. In a forthcoming paper we apply these results
to equations of higher degree appearing when parame-
terizing 3D surfaces.

2 First Example: Delaunay and Gabriel Graphs

2.1 Delaunay Triangulation

The Delaunay triangulation is the empty-region graph
where R(p,q)={D(p,q,7);7 €R?} and D(p,q,r) is the
open disk with p, ¢, and r on its boundary.

Although the expected degree of a random point in
any kind of triangulation is well known to be 6 using
Euler formula, we prove it using stochastic tools to il-
lustrate the complexity of such a computation:

Theorem 2 Let X be a Poisson point process with in-
tensity A in R? and p a point of RZ. The expected de-
gree E[deg(p,Del)] of p in the Delaunay triangulation
Del(X U {p}) is 6.

Proof. Without loss of generality, we assume that p is
at the origin. Let D(p, ¢,r) denote the open disk with
p, q, and r on its boundary. The number of neighbors
of p in Del(X U{p}) is the number of distinct sets {¢,r}
in X2 with ¢ # r such that D(p,q,r) does not con-
tain any point of X. It is given by the random value:
deg (p, Del) = %qux ZTEX\{q} 1ip(p.q.rynx=0), where
the factor % corrected the double counting of each set
{q,r} in the sum. We compute the expectation of this
formula:

1
Eldeg (p. De)] =E | 5 > > lpamnx=o
geX reX\{q}

:1/ / N P[D(p,q,r)NX = 0]drdg
2 R2 R2

by Slivnyak-Mecke Theorem [8]

1/ / A2e-MDEa) drdg
2 Jr2 Jr2

by definition of Poisson point process.

The computation of this integral is a bit techni-
cal and is given in appendix. It involves a Blaschke-
Petkantschin like variables substitution to turn the
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cartesian coordinates of ¢ and r in the coordinate of
the center of D(p,q,r) and two angles to place ¢ and r
on the boundary of D(p,q,r).

It finally turns out that the value of this integral is 6,
as anticipated. O

2.2 Gabriel Graph and Half-Moon Graph

We now turn our interest to cases where R(p,q) is a
singleton. We consider the three following possibilities:
R(p,q) = {Gab(p, ¢)} the disk of diameter pg, R(p, q) =
{hm,(p,q)} the half-disk of diameter pq to the right of
pq, and R(p,q) = {hme(p,q)} the half-disk of diameter
pq to the left of pg. Then Q?Gab} is the Gabriel graph,

g?hmr} is the right half-moon graph, and Q?hm[} is the
left half-moon graph. The half-moon graph is Q?hmr} U

0
g{hmz} :

Lemma 3 Let X be a Poisson point process with in-
tensity A in R? and p a point of R2. The expected degree

E [deg (p7 Q?Gab})] of the origin p in the Gabriel graph
Gliiany (X) s 4.
Proof.

E [deg (1, Flany ) | = E | D Licamanx=o
geX

:/ AP [Gab(p,q) N X = (] dg
geR?
— / Ae M Gab(p,q)\dq

R2

27 rp2
:/ Ae AT pdAdp =4. O
R+ JO

Lemma 4 Let X be a Poisson point process with in-
tensity A in R% and p a point of R%. Then

E [deg (9, G,y ) | = E [deg (.69 )| =5

Proof. By symmetry, we only do the computation for
o0t

E {deg (p, Q?hmr}ﬂ =E Z Linm, (p,g)nx=0)
geX

— / )\e*/\\hmr(p,q)ldq
R2
2m o2
:/ e A pdldp =8
R+ Jo
As one can see, the fact that R(p,q) is a singleton

made the computation much simpler than in the case of
the Delaunay triangulation.
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Figure 1: The Gabriel graph, on the left, is included
in the Delaunay triangulation, in the middle, itself in-
cluded in the half-moon graph, on the right.

2.3 Graph Relations

The following relations between the graphs are straight-
forward since any disk with p and ¢ on its boundary
contains either hm,.(p, q) or hmg(p,q) (see Figure 1):

0 _ 9 0
GiGaby = Y{hm,} VG hmeps
0 0 0 a0
GiGaby C Dl C 1 y YU Gihmy = Yihm, hme}

From this, we deduce

deg (pa g?@,ab}) < deg (p, Del) < deg (pv g?hmr,hm[}>
4 < deg(p,Del) <8+8—4=12.

This result is weaker than the exact bound of Theo-
rem 2 but the computations are much simpler. It also
illustrates that, given regions of similar areas, the degree
remains of equal order of magnitude. In that case, for
two points p and ¢, Gab(p, q) and hm,.(p, q) or hmy(p, q)
have both an area quadratic in the distance between p
and ¢, and this induces a constant expected degree.

3 General Method

We propose a general method that both formalizes and
generalizes the half-moon method to link the degree in
general empty-region graphs to the degree in empty-
region graphs defined by singletons. We formalize the
following facts: (i) the Delaunay disks can be param-
eterized by their center on the bisector of pg, (i) this
bisector can be partitioned in two rays at the midle of
pq, and (i) each half-moon is contained in all disks
centered on one of the rays.

In a more general setting, the general idea is (i) to
identify a parameter space in R* defining the regions,
(1) to partition this space in convex domains, and (i)
have inclusion relations for regions at the vertices of the
partition.

The following lemma is instrumental for proving that
if a set of region depends on k parameters and if the
k-tuple of parameters belongs to a convex polyhedron
P of R* then, if we want to prove that all regions pa-
rameterized by P contain a given region, it is enough
to prove this inclusion for the regions parameterized by
the vertices of P. If P is not bounded, we can extend
the lemma to limit points at infinity: for a point ¢ going
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to infinity along some ray of R* the region r. has a limit.
The result also holds using this limit regions. We will
show below as a didactic example how this lemma can
be applied on Delaunay disks.

Lemma 5 (Combination Lemma) Let ¢ € R* and
E. : R — R such that for any x € R, ¢ — E.(x)
is an affine function, and let r. be the region {x €
RY, E.(x) < 0}. Let P be a subset of R, if c € P, then

Nry Cr., where X(P) denotes the extreme points of
veEX(P)
the convex hull of P.

Proof. Consider two points a,b € P C R¥. Let z €
r, N1y and, for t € [0,1], ¢; = (1 —t)a + tb be a point
on [ab]. The function f : ¢t — E.,(x) verifies f(0) =
E.(xz) <0 and f(1) = Ep(z) < 0. Since f is affine, for
any t € [0,1], B¢, (z) = f(t) = (1 = )f(0) +tf(1) <0,
so x € re,. Thus r, N1}y C 1, for any ¢; on the edge [ad].
The extension from an edge [ab] to the convex hull of P
follows directly from the its convexity. 0

We now show, as an example, that any Delaunay disk
contains one of the two half-moons using the Combina-
tion lemma:

Corollary 6 Let p,q two points in the Euclidean plane
and D a disk with p and q on its boundary, then
hm(p,q) C D or hmy(p,q) C D

Proof. We choose the coordinate system so that p is
the origin and ¢ = (x4,y,) with y, # 0. A disk D
with p and ¢ on its boundary can be parameterized by
the inequality E.(z,y) : 2% — 222, + y? — 2yy. < 0
zgf2mqwc+y§
2yq
ally the equation of the bisector line of [pq], the centers

¢ = (Z.,y.) are the actual geometric centers of the disks.
That provides a 1-dimensional family of disks parame-
terized by z.. In that parameterization, z. — E.(x,y)
is an affine function.

Then we can consider the center cgay, of the Gabriel
disk and the center ¢, at the infinity of the bisector
line to the right of ﬁ; their associated regions are the
Gabriel disk Gab(p, ¢) and the half-plane hp,.(p, ¢) to the
right of pg. Since the ray [cgab,Cr) IS convex, we can
apply the Combination lemma with (k,d) = (1,2) to
ensure that any disk whose center belongs to [cgab, ¢)
contains hm,(p,q); indeed hm,(p,q) = Gab(p,q) N
hp,(p,q). We apply the same reasoning for hmy(p,q)
to conclude that if a disk has p and ¢ on its boundary,
it contains either hm..(p,q) or hme(p,q) depending on
the position of its center on the bisector line. O

where c¢ verifies y. = Since this is actu-

After the Combination lemma, the second ingredient
of our demonstration scheme is the Partition lemma:

Lemma 7 (Partition Lemma) Let G% be an empty-
region graph with R(p,q) = {re;c € P C R*} a set of

regions parameterized by c. Let (P;)1<i<n be a convex
subdivision of P, the parameter space. Let R} (p,q) =
{r¥(p,q)} ben singletons. IfVe € P;; r¥(p,q) C 7. then
g% s a subgraph of Ulgigng%: and

deg (p.G%) < > deg (p, Gk ).

1<i<n

Proof. If pq is an edge of g%(X), according to Defini-
tion 1, there exists ¢ € P such that r.(p,q) N X = 0.
Using the convex subdivision, there is some j such that
c € Pj and r7(p,q) C rc(p,q) by the hypothesis in the
lemma. Thus 5 (p,q) N X = () and pq is also an edge of

g%; : O

Using these two lemmas, the general idea of the
method we apply to compute an upper bound on the
degree of a point in a given empty-region graph of a
Poisson point process can be outlined as follows: (i)
find a good affine parameterization of the regions to be
able to apply the Combination lemma, (i) find a good
partition of the parameter space to be able to apply
the Partition lemma, and (i) analyze the size of the
relevant empty-singleton-region graphs.

4 Empty Axis-Aligned Ellipse Graphs

In this section, we analyze empty-region graphs where
the regions are axis-aligned ellipses. By “axis-aligned”,
we mean that their axes of symmetry are parallel to the
x and y axes. We then call aspect ratio, the ratio of the
lengths of the vertical axis to the horizontal axis of the
ellipse.

4.1 Some Features of Axis-Aligned Ellipses

We give some explanations on the expression of ellipses
we consider, and some properties that will be used there-
after. In R?, we consider an axis-aligned ellipse with the
origin p on its boundary. We denote the ellipse r since it
is seen as a region. Such an ellipse has three degrees of
freedom, that can be set by considering a positive num-
ber o and a point ¢ = (x,, y.), so that r can be defined
by the inequality:

r:a’x? — 2zx. +y? — 2yy. < 0.

In that parameterization, c is the affine parameter of
r, and « its aspect ratio. To ensure that the boundary
of the ellipse passes through a second point ¢, the three
parameters ., y. and o must satisfy: o’z? — 2z, +
yg — 2yqy. = 0. Expressing o in terms of ¢ and ¢, we
define

2.2

Ec(z,y) ==a’za” — 2zx. + y* — 2yy., (1)

23T —Yo+2YqYe

with o? = 1
qu
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The inequality E.(z,y) < 0 is an affine parameter-
ization of r.(p,q), the only axis-aligned ellipse passing
through p and ¢ with ¢ for parameter. We stress that c
is not the usual geometric center of the ellipse.

In some proofs, we bring the expression back to its
canonical form namely ‘;—z + lé—z — 1 = 0, in which the
ellipse has aspect ratio 2 and area mab.

Proposition 8 For a given q € R?, the parameters c of
the ellipses r.(p, q) with same aspect ratio lie on a line
perpendicular to (pq).

Proof. The aspect ratio is given by the coefficient of
22 in Equation (1). The set of points ¢ = (z.,y.) that
yields to a constant aspect ratio deﬁneSQa line parallel
to L : xxy+yy, = 0, by multiplying by %q and omitting
the constant terms in the expression of o2. This line is
perpendicular to (pq). O

Proposition 9 For a given ¢ € R? and for a €
RT, consider the ellipse r.(p,q) parameterized by ¢ =

(022, %).

The geometric center of r.(p,q) is the midpoint of
2
[pq], and its area is T (agjg + %)

Proof. Transforming the equation E.(z,y) < 0 of
r.(p, q) we get, its canonical form:
402 Zq 4 Yq

2
———(y— =) —-1<0.
a2x3+y§(y 2)

242 2
Ty + Yy

We identify, with that expression, that r.(p,q) is
the translated copy of an ellipse of center p, and area

2
T (ozxﬁ + %“) by the vector %]ﬁ Details can be found

in appendix. O

4.2 Unbounded Aspect Ratio: Right-Triangle Graph

In this section, we prove, using our framework, a loga-
rithmic bound for the empty axis-aligned ellipse graph
of a Poisson point process in a bounded domain. A sim-
ilar result was proven for a uniform distribution instead
of a Poisson distribution [4].

For two points p and ¢ in R?, we consider the family
Eli(p, q) of all axis-aligned ellipses with p and ¢ on their
boundaries. Assuming that p is the origin, we show
that the expected degree of p in the associated empty-
region graph G% (X) is ©(In\) when X is a Poisson
process of intensity A. In order to identify an upper
bound, we consider the graph Q?AT?A[} where A,.(p,q)
(resp. Ag(p,q)) denotes the axis-aligned right triangle
with hypotenuse [pg] on the right (resp. left) side of pg.

Lemma 10 Q?AT Ay U8 a super-graph of g%zr
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Py

Figure 2: Partition of space of parameters into

{P;, P.}.

Proof. For each region r.(p,q) € Ell(p,q), we consider
the parameterization r.(p, q) : E.(z,y) < 0 where E, is
defined in Equation (1).

The space P C R? where c lives is delimited by the
inequality: 2z,x. — yg +2y4y. > 0 that is the half-plane
whose boundary is the line £y perpendicular to (pq)
passing through co = (0, %) and that does not contain
p (if ¢ is not in this half-plane, the equation for o has no
positive solutions). With a small abuse of notation, we
define two points at infinity at the two extremities of Lg:
¢, to the right of p§ and ¢y to its left. (see Figure 2). On
the boundary Ly of P, elliptic regions degenerate into
parabolas. At point ¢g it degenerates to the horizontal
strip re, = {|ly—%| < @} that can be seen as an ellipse
with aspect ratio 0 (see Figure 3). At the limit when
going at infinity along Ly the parabola degenerates in
two half-planes: r.. and r., bounded by (pq).

Figure 3: Ellipses corresponding to points in Figure 2.
They all contain either A, or Ay. Regions whose pa-
rameter are on L, are in purple, they range from r.,
(in yellow), to reo. Any region whose parameter is in
P, like r., contains Ay.
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Then, we consider the ray L, ,:y = y—; N P, starting
at cg, named after the fact that it will distinguish right
and left regions. Let ¢y, be the point at infinity on
this ray. When the parameter c is equal to c.,, the
ellipse degenerates into the vertical strip ... = {|x —

< |I2“‘ }, seen as a vertical ellipse with infinite aspect
ratio. For con L, ¢, ellipses are centered on the midpoint
of [pg] and ranges from the horizontal strip r., to the
vertical strip r._ .
By the Combination lemma, if ¢ € P, then

Ay =1 N1 Nre C I
and if ¢ € P, then

Ap =1, NTe, NTe C I
This ensures, by the Partition lemma, that

Giu © Gla,an = 9lay(X)UGA,(X).

Now, we bound from above the expected degree of
p in Q?AT}(X) or Q?AL]}(X) when X is a Poisson point
process with intensity A.

The area of both triangles A, and Ay is ‘qu—yql Unfor-

tunately, for any positive A, [; [; e~ **¥dydz does not
converge. In that case, we assume that X is distributed
in a rectangle D = [—L, L] x [—,{] for positive L and .

Lemma 11 Let X be a Poisson point process with in-
tensity A in D = [—L,L] x [=1,1]. The expected de-

gree E [deg (p7 Q?Ar}ﬂ of the origin p in Q?AT}(X) 18
O(InA+InL +1Inl) .

Proof. Let ¢t be a positive number such that tLI > 1,
we start by bounding from above the following integral:

//l Y qyda
s
:/ ;Idx

I ,(t

with u = zy

LI
= %/ 1= with v = tlx
_ tLl 1 _ —v
= 1 / +/ 1 € dv)
t 1 v
< n ( U) since 1—e~"<min(1,v)
1
= 2 (Lt In(eLD).
And bounding from below:
1 tLl 1—e "
Ip(t) == d
L’l( ) t /0 v v
tLl _ v
21/ L dv since1 € > ! ifv>0
t ), v+1 v v+1
= % (In(tLl + 1)) > L(i”).

Figure 4: Left: Some zy-ell ellipses whose color depends
of the aspect ratio. Right: An instance of Q?my_e”} where

p is the central (red) point. For any point ¢, zy-ell(p, q)
has the smallest area among ellipses passing through p
and ¢ so that a far point keeps chance to be a neighbor
of p as long as it is close to an axis.

Then we can give an upper bound on the expected
degree:

> Lia,@nx=o)

qeX

- /D AP [A(g) N X = 0])dg

//Ae"\m Ndydz
o[ [

= 4)\ILl

€ [des (».91s.1)

A dydz
=0O(In(ALl)). U

We can compare with the Delaunay triangulation, the
Gabriel and the half-moon graphs. In those cases, the
empty region had an area quadratic in the distance pq
and the expected degree was constant. In this new case,
the “xy” area provides a logarithmic degree.

Lemmas 10 and 11 give an upper bound on the degree
of a point in the empty-axis aligned-ellipse graph. To
get a lower bound, we will exhibit a subgraph of g%”.
In order to get a tight bound, the area of the chosen
region must be O(z,y,).

To find such an ellipse, that we name zy-ell(p,q), we
use Proposition 9, with a = i—‘; We define zy-ell(p,q)

2
to be the ellipse parameterized by ¢y, = (2@/7:, y—;) (see
Figure 4), then according to Proposition 9, the area of

this ellipse is §z4y,-
Lemma 12 Q?xy_e”} s a subgraph of Q%“,
Proof. Straightforward because xy-ell € Fll. (]

Lemma 13 Let X be a Poisson point process with in-
tensity A in D = [—L, L] x [-1,1]. The expected degree
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E [deg (p, Q?xy_e”})] of the origin p in g?xy_e”} (X) is
O(InA+1InL +1Inl).

Proof. As said above, for any ¢ € R2, the area of

zy-ell(p,q) is FTqYq-
Then we can express the expected degree:

E [deg (p’ g?fcy-ell})} =E Z Loy-clitp,q)nx =0
qgeX

/ )\efklzy-ell(p,q)\dp

_4)\// e M3 dyda

= O(In(A\L1)) 0

The above lemmas allow to conclude:

Theorem 14 Let X be a Poisson point process with
intensity X in D = [—L, L] x [—1,1] and p the origin:

E [deg (p, gg”ﬂ —O(nA+InL+nl).

4.3 Bounded Aspect Ratio: Rhombus Graph

In the previous part, we proved that when the aspect
ratio is not bounded, neither is the expected degree.
One can wonder what happens when the aspect ratio
ranges between two finite numbers. For two points p
and ¢ in R? and a number 3 € (0,1), we consider the
family E11l%1(p, q) of horizontal elliptic regions with p
and ¢ on their boundary and whose aspect ratio ranges
between 8 and 1. An important fact to be considered
is that, when the aspect ratio is not bounded, a point ¢
far from p could be a neighbor of p as long as it is close
enough to the axis, since in that case, ellipses passing
through p and ¢ may have a small area, and that leads to
a logarithmic bound. When the aspect ratio is bounded,
all ellipses preserve an area Q(;Eg —|—y§)7 so that we expect
a constant bound on the expected degree. In this section
we will prove that it is actually the case and detail how
this constant depends on £.
In order to apply the same
method as above, we search
for simple geometrical regions
that fit inside the whole fam-
ily EUPY(p,q). A good
choice is the following: as be-
fore, we consider the intersec-

tion of ellipses that are centered on the midpoint of
[pq], and we cut the intersection along (pg). The re-

maining regions hm!P:! (p,q) and hmy’” (p, q) look like
two axis-aligned right triangles with rounded sides for

almost all g (see above figure).
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Figure 5: Partition of space of parameters into { P, P}
in the bounded aspect ratio case.

Lemma 15 The graph Q Bl is a super-

graph of QE”[BYI] .

Proof. The proof is very similar to the one of
Lemma 10, so we just spell out the important points.
For each r.(p, q) € Ell»Y(p, q), we consider the param-
eterization r.(p, q) : E.(x,y) < 0 defined in Equation (1)
with 8 < a < 1.

The space P C R? where c lives is delimited by the

w < 1 that is the strip

perpendicular to (pq) Whose boundary are the lines Lg
and Ly, where Lo = {(z,y), 0z} = 2z4x — y2 + 2y,y}.
We consider the segment defined by y = %" inside P and
its extremities cg on Lz and ¢; on £;. We partition P
into P, and P, where P, is the part of P on the right of
[cg,c1), and Py the part on its left (see Figure 5).

cg and c; have for regions the ellipses r., and r., with
respectively 8 and 1 for aspect ratio. Furthermore, any
parameter ¢, in P at infinity on the right of ;@ has its
region that degenerates into the half-plane bounded by
(pq) on the right side of P4 (and the same holds for ¢,
and the left side).

By the Combination lemma, if ¢ € P, then hm;

rc1 ﬂrcﬁ Nre, Cr.and if ¢ € Py then hmé .- e, N

, Nre, C 1. (see Figure 6). By the Partition lemma,

inequality: (2

[6:1] .

an edge of QE” (5.1 is an edge of ggm[m] or ggm[ﬁfu. O

The problem now is that it may be complicated to
compute an integral involving the area of hmlP! (p,q) or
hm [5 1 (p,q). To solve this issue, we consider a strictly
smaller region. We could have used the axis-aligned
right triangles A, and A, but their areas do not respect
the order of magnitude (as illustrated by Figure 7). A
more suitable region is what we call the half-rhombus.
We define the rhombus Rh”(p, q) as the one whose ver-
tices are the horizontal extreme points of r., (p,¢) and
the vertical extreme points of rc,(p,¢). Then we sepa-

rate it into two halves RhZ(p, q) and Rhf (p,q), delim-
ited by (pq). By convexity, it is clear that RhZ(p,q) C
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Figure 6: The green ellipse with parameter to the right
of p{ contains Rh2.

P (p,q) and RR(p,q) C hm) 1(p,q) (see Fig-

ure 6). Finally, we can say that Q{Rhﬂ} is a super-
graph of G? (hml11) and that Q{Rhﬁ is a super-graph
of g{h 8, 1]}

Before proceeding to the computation of the expected
degree, we introduce a lemma that provides properties
on the involved integral.

Lemma 16 Lett >0, 8 € (0,1) and

t)://e*t (@2 +y2) (5222 +9%) 4y,
RJR

Is(t) = %Iﬁu) <2 (1+m().

Proof. The computations are in appendix. O

Lemma 17 Let X be a Poisson point process with in-
tensity A in R?, and 8 € (0,1).

E {deg( ,Q{Rhﬁ})} = O(ln%).

Proof. We first compute the area of the rhombus
RhP(p, q). We identify its width and height as being re-

spectively y/x2 +y2 and , /3222 + y2 so that the value

of its area is given by %\/(azg + yg) (52:63 + yg).

Ay

Figure 7: The area of A, and Rh? can have different
order of magnitude.

Figure 8:
instance of G? {(5-ell} where p is the red point. A far point
reduces strongly its probability to be a neighbor of p
because it cannot anymore be close to the axes.

Some B-ell ellipses for points in Dg and an

Then we can compute the expected degree of p in

g{RhB}( )

Z l[Rhf*(p QONX =0
geX

:/ AP [RRE(p,q) N X = 0]

R2

:/ e MRV ()l g,

_ / / e~ 1V (@E+2) (B203+0) gy gy
RJR

= M5 (3)
<47 (1 —1n(B))

{deg ( ’g{RhB})}

by Lemma 16. i

We obtain a tight lower bound, when 3 goes to 0,
by identifying, for each ¢, a particular region, named
B-ell(p, q), such that S-ell(p, q) is or contains an element
of Elll®(p,q). To achieve this, we partition the plane
into two parts (see Figure 8):

1. if ¢ € Dg := {(z,9),Blz|] < |y| < |=|}, then, as in
Lemma 12, we define 8-ell(p, q) = zy-ell(p,q),

2. otherwise B-ell(p,q) = R?, that is another way to
say that ¢ is not a neighbor of p.

Lemma 18 Q{ﬁ ell} s a subgraph of QE”[B 1
Proof. If ¢ € Dy, we have to prove that 8-ell(p, q), i.e
zy-ell(p,q), is in E1I%, This is true because the aspect
ratio of if zy-ell(p,q) is |z—q\, and verifies 8 < \z—q| <1if
Blzg| < |yql < lzql.

Otherwise, it is clear that B-ell(p, q), i.e. R?, is larger
than any other ellipse from FI[%:1], O

Lemma 19 Let X be a Poisson point process
with intensity A in RZ. The expected degree
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E [deg (p, Q?B_e”})} of the origin p in Q?ﬁ_e”}(X) is

Proof. S-ell(p,q) is actually chosen to simplify the
computation. Recall that Dg is the domain

{(@,y), Blz| <yl < |z]};

E [deg (IL g{@ﬁ-cll})] =E [Z 1[,8-ell(p,q)ﬂX—(B]:|

geX

/ AP [B-ell(p,q) N X = (0] dp
R2

/ AP [zy-ell(p,q) N X = 0] dp + / 0dp
Dy R2\Dy

)\e—/\lzy—ell(pﬂ) | dp

Dgs
= 4/ / )\e_M%dydac
0 x
T Rl Cam p2 cos(0) sin(0)
= 4 Ape 2 dpdf
tan—1(B) JO

5 1
/tan—l(ﬁ) A A7 cos(6) sin(6) dé
(ln(tan(g)) —ln(ﬂ))

1n(%).

Il
i~

d
since — In(tan(6))= —
de cos(60) sin(6)

EREER N

O
We can finally conclude using Lemmas 15 to 19:

Theorem 20 Let X be a Poisson point process with in-

tensity A in R2. The expected degree E [deg (p, ggmml)]

of the origin p in g%u[ﬁvll (X uU{p}) is© (111(%))
If p > 1 we have by symmetry,

E {deg( 7ggl1[1,m>} =E [deg <p,g(2) [

1
El'B’

])] — O(Inf).

4.4 Non-Axis-Aligned Ellipses

We turn our interest to the case of non-axis-aligned el-
lipses. We consider the graph in which two points p and
q are neighbors if there exists an empty ellipse passing
through p and ¢ whose aspect ratio is between g and
1, for 5 € [0,1]. For two points p and g, we define the
family EllLB Al (p, q) of all ellipses with such aspect ratios
passing through p and ¢, and gg”[ﬁ_ﬂ , the corresponding
empty region graph. ’

The case where 8 = 1 corresponds to the Delaunay
triangulation, and the case where 8 = 0 corresponds
to the complete graph, since we can consider that a
segment between two points is an ellipse with aspect
ratio 0 and random points are in general position. Thus
we assume that 8 € (0, 1).
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Figure 9: Non-axis-aligned ellipses.

Consider two points, p at the origin and ¢, and an el-
lipse £ passing through p and ¢. Since £ is not anymore
axis-aligned but has its great axis in some direction 6,
we can consider the regions hmgf3 él] and hmy 0’1] as in
the previous sections but parameterized by direction 6.
Clearly the circle Cg centered at the midpoint of pg and
of diameter fS|pq| is inside hm%’” u hm%l] (see Fig-
ure 9). Consider the isosceles triangles p;st and pqsy
such that s, s, € Cg with s, on the right of zﬁ and sy

on its left. Then pgs, C hm[fé” and pgsy C hm%”.

Since this is true for any ellipse, we can assume that
any ellipse whose aspect ratio is between § and 1 and
passing through p and ¢ contains either pgs, or pgs,.
Notice that these triangles are independent of the di-
rection #. So we can apply the Partition lemma to yield
that gg”?,” is a subgraph of Q?pqsmpqw}.

Now we consider a Poisson point process X of inten-
sity A, and we compute an upper bound on the expected
degree of p in gg”m,u (X U{p}).

E {deg (Pa g?pqs,-,pqse}ﬂ

< 2E ) Lpgs,nx=n)
qgeX

= 2 [ MPlpgs, N X = (]dg
R2

= 2 [ NeAlPasrlgq

R2
2 00
16
= 2/ / )\e_%ﬁ”zpdpdﬁ -7
o Jo B

On the other hand, among the ellipses passing
through p and ¢, we can choose the ellipse £3, whose
great axis is [p, q] and has aspect ratio 8 to obtain a

0
subgraph of QE”[*M] .
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The expected degree of p in this graph is

E [deg (p7 Q?gﬁ*})] =E [Z 1[53*ﬁX=@]:|
qeEX

:/ AP[E5. N X = 0] dg
R2

=/ Aeik‘gﬁ*‘dq
R2

27 oo
- / / A pdpdg = 2
0 0 6

We deduce the following theorem:

Theorem 21 Let X be a Poisson point process in R2.
The expected degree of the origin p in G° (Xu{p}

EulP
i 1
is © (ﬁ) .

5 Probability of Existence of Far Neighbors

At some point, for a given graph G and a positive num-
ber t, we may be interested in computing the probability
for p to have a neighbor in G at a distance greater than ¢.

As before, for illustration on a simple case, we start
by the Delaunay triangulation:

Lemma 22 Let X be a Poisson point process with in-
tensity X in R?, p a point of R, and t a positive number.
The probability that p has some Delaunay neighbor at a
distance greater than t is smaller than ge Vet
Proof. If ¢ is a Delaunay neighbor of p, Let ¢ be an
empty disk whose boundary passes through p and ¢. If
q is at distance greater than ¢ from p, then the diameter
of o is obviously also greater than ¢, so its homothet ¢’
toward p that has exactly diameter ¢ is included in o
and by consequence empty.

Consider the triangle with vertices p, (%t,O), and
(3t, 3t) and its seven adjacent copies around p (see Fig-
ure 10). We name them 7; for ¢ € {1,...,8}. Their area
is || = 22,

One can notice that, at least one triangle is included
in ¢’: the one whose angular sector from p contains the
center of o”’.

So we get:

P3¢ € X; [pg] € Del(X U {p}) | Ipg| > 1]
PEicll,....8,7NX =0
< > PmNX =90

i=1...,8

= 8P[nNX=0 = 8

IN

e”‘gg 0

We establish in the next lemma a similar bound for
the empty axis-aligned ellipse graph with bounded as-
pect ratio in [3,1]. We are mainly interested in the
behavior of the probability when [ is small, thus we
assume f3 < %

—_
~+

Figure 10: If |pg| > ¢, any disk passing through p and
q contains one of the 8 triangles.

Lemma 23 Let X be a Poisson point process with in-
tensity A in R%, p a point of R%, t and B two positive

numbers with § < % The probability that p has some

0
Ell

3
smaller than 4 (e—,\\l/%gﬁ + e—/\‘l/%ﬁ?tz).

neighbor in G, ., (X) at a distance greater than t is

Proof. The proof idea is similar to the previous one,
except that we apply a homothety on the empty ellipse
o until its image o’ fits inside the axis-aligned square
inscribed in the circle of radius ¢ (see Figure 11).
We consider eight triangles (¢r;)1<i<s, that have the
property that for any ellipse o, ¢’ contains one of them.
To this aim we define the four points

(%1 :(%ta 0)7 V2 :(§t7 %67»7
vg =(¥2Bt, 2 31), vs =(0, 38¢).

The triangles tr; and try are respectively pvivs and
pusvs. Their respective areas are 1—‘/6561?2 and %ﬁ%tQ.
We will show that any ellipse tangent to the square in
the upper right quadrant contains try or tro. We com-
plete the set of triangles by their symmetrical copies
with respect to the x-axis, to the y-axis and to the point
p, and name them according to the trigonometric order

Figure 11: If |pg| > t, any ellipse passing through p
and ¢ contains one of the 8 triangles.
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from tr; to trg to cover the ellipses tangent to other
parts of the square.

Without loss of generality, we assume that the center
c of ¢’ is in the upper right quadrant. In such a case,
the right most point of ¢’ has abcissa gt, its left most
point has negative abcissa, and its center verifies 0 <
wo < Y2t

Aslong as xo > %t, using the symmetry of the ellipse
with respect to its vertical axis, v is between p and the
symmetric of p, and thus is inside oy. We prove that
such ellipses, with z. > itv also contain vs. Actually
vg is chosen as the highest point of the thinnest ellipse
of center ¢ = (%t,O) (in yellow on Figure 11), with
aspect ratio 8. Since the abscissa of vy is between p
and vy, moving the center ¢/ upward or to the left or
increasing 8 imply that v remains inside ¢’. So as long
as Ty > it, the triangle tr; is inside o”.

Suppose now that z. < %t. The ellipse o/, if its
aspect ratio is «, has equation:

o?r? — 20”20 + y* — 2yye < 0.

For a fixed «, the lowest possible center is reached when
T = %t and since ¢’ is tangent to the right side of the

square at (?L Ye ), by substitution we have:
%aQtQ — \/§a2t%t - yf, =0.

Thus y. is minimized for o = 3, and so:

1
Yo = 5\/2 — /2 Bt ~ 0.383t.

We can deduce, by symmetry with respect to the hori-
zontal axis of ¢/, that all those ellipses contain the seg-
ment between p and (0,v/2 — v/2 t), including vy.

To prove that v3 € ¢, we make a distinction between
the side of tangency of ¢’. We call contact point of an
ellipse, the point of the ellipse in which it is tangent to
the square, for ¢/ we name it ¢’. Suppose first that o’ is
tangent to the right side of the square. We consider the
two extreme ellipses opign and ooy, with highest and

lowest contact points gnigh and giow, at respectively %t
and %\/ 2 — \/2ft for ordinate. They both contain vs:

V3 € Olow :
67 (LE0)" = 57 () 4+ (or)" 2 (for) L2

=,62t2(§—‘/1£6ﬂ+§— 4*2ﬁ>go for B < 0.6

V3 € Ohigh *

We call bottom part of the ellipse, the counterclock-
wise arc from p to the contact point, and top part the
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following arc from the contact point to the intersection
with the y-axis. :

We show that the
bottom part of o'
is below the bottom ¥
part of onigh. We ap-
ply a vertical affine

transformation that i Pt

flattens opign until its contact point becomes ¢’. The
new ellipse clearly has its bottom part lower since the
transformation lowered every point. Then we shift hori-
zontally the center into ¢/, maintaining the points p and
q'. Since that makes the aspect ratio grow, here again
we lowered the bottom part. So the bottom part of ¢’
is below the bottom part of opigh.

On the other hand
we apply a homo-
thetic transforma-
tion on ooy cen-
tered on its contact
point such that the | :
length  of  the

horizontal axis is the same as the length as o', followed
by a vertical translation until the contact point coincides
with ¢/, finally completed by a vertical affine transfor-
mation that makes it reach the correct aspect ratio, that
is greater. All these transformations make the upper
part of the ellipse go upward. We deduce that any el-
lipse tangent to the right side of the square and whose
center has abscissa smaller than %t contains trs.

Then we can go to ellipses tangent to the top side of
the square. The proof is quite identical so we do not
develop it but keep in mind that the important point is
that v belongs to circle centered at (0, %t) because vs
lies on the parabola y = 27‘/5332, that is above the circle
for y < %t.

Above arguments proved that any ellipse whose center
is in the upper right corner of the triangle contains either
(pv1v2) or (puvsvy). By extension, we deduce that any
ellipse contains at least one of the 8 triangles tr;.

So we get:

P [[pa] € Gl (X) | lpal > ¢]
< P[Eiel,... . 8,triNnX =10]
= A4P[triNX =0]+PltraNX =0])

- 4 <6,\{§Bt2 i 6,\{65;33#)
— e VIE(E) 0
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Appendix

Proof. Integral for Theorem 2
We have to compute

E [deg (p7 Del)} — %/R2 /RQ A26—)\‘D(p’q7’r)|drdq.

We use a Blaschke-Petkantschin like variables substitu-
tion [8, Theorem 7.2.7] from R* to R* x [0,27)3, to express
the parameterization of ¢ and r into (p, ¢, 04, 0-) where (p, @)
denotes the polar coordinates of the center ¢ of the circle cir-
cumscribing p, ¢, and r, and 64 and 6, denote the angles of
the points ¢ and r from ¢ to the horizontal line (see Figure
12).

T4 = p(c0s 9 + 08 6,), yq = plsin g+ sin6,),
zr = p(cosp + cosby), y, = r(sine + sin ;).

The Jacobian matrix J of the transformation can be writ-
ten:

cosp+costy; —psing —psinf, 0
_ | sinp+sind, pcosep  pcosby 0
(P, 9,04, 0r) = cosp—+cosh, —psing 0 —psing,.
sinp+sinf,.  pcosp 0 p cosO,.
and has the following determinant:
det (J (p, 9, 04, 01)
cosp +cosly; —psing —psinf, 0
__|sinp+sinf; pcose  pcosb, 0
" |cosp +cosB,. —psinp 0 —psin 6,
sinp +sinf,  pcosy 0 pcos b,
pcosp  pcosby 0
= (cosp +cosby) |—psine 0 —psin 6,
pCOS 0 pcos b,
—psing —psinb, 0
— (sinp 4 sinfy) |—psinp 0 —psin 6,
P COS 0 pcost,
—psing —psinb, 0
+ (cosp +cos,)| pcosp  pcosby 0
pCoS @ 0 pcos b,
—psing  —psinf, 0
— (sinp +sinf,) | pcosp  pcosby 0
—psing 0 —psin 6,

We develop from the coefficient that is the only not zero in
a column,

= (cosyp + cosbly) (—pcosby) (pr sing cosf, + p° cosp sind,.)
— (sing + sinfy) (psind,) (—p” sing cosd, + p* cosp sind,.)
+ (cosp + cosb,.) (pcosb,) (—p2 sing cosfy + p cosp sinf)
— (sing + sind,) (—psind;.) (pr sing cosfly + p° cosp sinf, )
=0’ ((— cosep cosfly — cos’6,) (— sing cost, + cose sinf,.)
— (singsind, + sin®6,) (— sing cos,. + cosy sind,.)
+ (cosy costy + cos?0,.) (— sing cosly + cose sinf, )

(
— (— singpsind, — sin®6,) (— sing cosf, + cospsingy) ).

Figure 12: The Blaschke-Petkantchin variables substi-
tution converts the Cartesian coordinates of ¢ and r into
polar coordinates related to the circle circumscribing p,
q and r.
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We factorize by the right factor,

=p° ((— cos ¢ cos Oy — cos® 0, — sin @ sin 0, — sin® 0,)
- (—sin ¢ cos 0, + cos psin 6,)
+ (cos @ cos 0, + cos? 0, + sin psin b, + sin? 0r)
- (—sin p cos by + cos psinby) )
= p3( (—cosp cosby —sinp sinfy — 1) (—sing cosb, + cosy sinb;,)
+ (cosep cost +sing sinfr. +1) (—sing cosy +cosp sinby)).

We distribute the 1, develop, and many terms cancel each
other,

= p3 ( sin 04 cos 0, — cos O, sin 6, + sin ¢ cos 6,
— cos psin B, — sin ¢ cos 84 + cos psin Oq) .
Finally we apply the formulae: cosasinb — cosbsina =
sin(a — b), on the three well-chosen pairs of terms,
= p*(sin(6g — 0:) + sin(6; — @) + sin(p — 6))
— 1 (sin(r — (0, — 0,)) + sin(8, — ) + sin( — 6,)
= 4p3 sin (w_(eg_or)> sin (GQ;VJ) sin (‘PEG"‘) ,

where the last line derives from the formula: sina + sinb +

sinc:4sin%singsin§ when a+ b+ ¢ = w. So that we get:

E [deg (p, Del)]
//277/277/
/2p3)\26_’\w dp

21 27 P2
X/ / sm 77 (9 )) sin(eq;“o) sin(‘p_;r)

simplified by the translation (04,60,) — (0 — 7 — , 60, —
m — ¢) applied in the (2, 27)-periodic function (6q,60,) —

i T—=(0g—0r)\ _: O0q—p . o—0,
Sin ( B) S ) S ( ) )7

2m 2m
—x/ d<p></ /
0

:—2><27r><37r—6 d
Vi

™ |det (J(p, @, 04, 6,))] A6, dBydipdp

d6,-d6,dy

0,6

)| sin % sin % do, de,

sin (

Proposition 9 For a given ¢ € R? and for o € RT, con-

sider the ellipse rc(p, q) parameterized by ¢ = (ozz%q, %),
The geometric center of rc(p,q) is the midpoint of [pq],

2

Yq

. . 2
and its area is § | azg +

Proof. of Proposition 9 We note E.(z,y) = a’z” —

TqTe— 2 c
2z, + y? — 2yy. with o = %ﬂ If yo = 4%,
q
then o’z] — 2z4z. = 0, and so z. = o =L,
E.(z,y) = o*z® — 222, + y° — 2uy.
:OCQ(QU2 ,qu)er? — YYq
2 2
_ 2, Tgy2 _Yq\2  2Tq  Ygq
=a (z 2 )"+ (y 2) o’ 1
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Cx2$2 2
Dividing by #, another equation of rq(p, q) is:
4o? Lq\2 4 Ya 2
B S (S SN Y D)

We identify, with that expression, that r.(p, ¢) is the trans-
lation by the vector %175 of the ellipse defined by:

407 9 4
+ 2
a:v + yg

2
1 (ozngr%q). O

—1=0,
oz%?,-i-ygw 2y

whose center is p, and area is

Lemma 16 Lett >0, 8 € (0,1) and

- / / (DI CETD
RJR

I5(t) = 2 s() < T (14+1n(3)).

Proof. of Lemma 16
We apply, in the integral, the variables substitution:
(z,y) = (%X, %Y) with Jacobian determinant 1.

:/R/Reff\/mdydx
//%@7\/(X2+Y2)(62x2+y2)deX
RJR

%13(1).

Then we compute an upper bound:

// \/ 2+y ﬁz 2+y dydl‘
/ / \/mdydz
— / / 2\/[32 cos? §+sin? edrdﬁ

:2/ (ﬂ cos 0+sin29)7%d9.
0

1

On [0, 5], (,82 cos? 6 + sin? 9) "2 js smaller than both

W= =

and g5; on the one hand, because (52 cos? 6 + sin® 9)7
1 on the other hand, because

decreases from 5 to 1,
1
(52 cos? 6 + sin? 9) 2 >sinf > %6, so that:
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Rearranging a Sequence of Points onto a Line*

Taehoon Ahnf Jongmin Choif

Chaeyoon Chung?

Hee-Kap Ahnt Sang Won Bae¥

Sang Duk YoonT

Abstract

Given a sequence of n weighted points (p1,pa,...,pn)
in the plane, we consider the problem of finding a re-
arrangement of the points, g; for each p;, onto a line
such that any two consecutive points ¢; and ¢;4+1 are at
distance no more than their weight difference, and the
maximum distance between p; and ¢; over all ¢ is mini-
mized. We present efficient algorithms that compute an
optimal rearrangement for three variants of the prob-
lem under the Euclidean metric. When the line is fully
specified or partially specified by only its orientation,
our algorithms take near-linear time. When we need to
find a target line, onto which the input sequence can
be rearranged with the optimal rearrangement cost, we
present an O(n? polylog n)-time algorithm.

1 Introduction

Consider an object moving in the plane and its trajec-
tory data which can be represented by a sequence of
pairs, each consisting of a time stamp and the coordi-
nates of the object at the time. One popular problem
concerning such trajectories is to determine whether the
object follows a path of a certain shape. The quality of
the trajectory with respect to the path can be mea-
sured by their similarity, that is, how closely the trajec-

*T.Ahn, J.Choi, C.Chung, and H.-K.Ahn were supported by
the Institute of Information & communications Technology Plan-
ning & Evaluation(IITP) grant funded by the Korea govern-
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ported by Basic Science Research Program through the National
Research Foundation of Korea (NRF) funded by the Ministry of
Education (2018R1D1A1B07042755). S.D.Yoon was supported
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Technology Development (Project No. PJ015269032021)” Rural
Development Administration, Republic of Korea.
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I Department of Service and
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Korea.

tory follows the path in increasing order of time stamps.
Therefore, in a good trajectory, every trajectory point
can be translated to a point in the path such that the
translation distance is small and two consecutive trajec-
tory points are translated to points close to each other
along the path. Formally, we define this problem for
linear paths as follows.

Weighted point-to-line rearrangement. Given a se-
quence of n points (py, pa, ..., py) in the plane and their
weights w; for p; with w; < we < --+ < w,, find a re-
arrangement of the points, g; for each p;, onto a line
such that any two consecutive points ¢; and ¢;41 are at
distance no more than w;1; — w;, and the maximum
distance between p; and g; over all ¢ is minimized. We
call such a rearrangement an optimal rearrangement of
the point sequence, and the maximum distance of an
optimal rearrangement the optimal rearrangement cost.

Observe that the constraint on the distance of two
consecutive points implies that any two points ¢; and
g; (i < j) are at distance no more than w; — w;. See
Figure 1 for an illustration of rearranging five points
onto a line /.

We consider three variants of the problem: (1) the
rearrangement line is given, (2) only the orientation of
the rearrangement line is given, or (3) the rearrange-
ment line is not specified at all. For the variants (2)
and (3), we need to find a best line, onto which the
input sequence can be rearranged with the optimal re-
arrangement cost, and realize such a rearrangement.

For ease of presentation, we will discuss a special case
in which w; =i for every index i. We first describe our
algorithms for this special case and then show how to
extend to the general weighted problem without increas-
ing time complexities. The special case is equivalent to
the following unweighted problem.

(Unweighted) point-to-line rearrangement. Given a
sequence of n points (p1,pa, ..., ps) in the plane, find a
rearrangement of the points, ¢; for each p;, onto a line
such that any two consecutive points ¢; and ¢;41 are at
distance no more than 1, and the maximum distance
between p; and g; over all ¢ is minimized.

Again, the constraint on the distance between two
consecutive points implies that any two points ¢; and g;
(i < j) are at distance no more than j — i.
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Figure 1: A rearrangement (qi,...,q5) of five points
(p1,...,p5) onto £. Any two points ¢; and ¢; (i < j)
are at distance no more than w; — w;. The cost of this
rearrangement is the maximum distance between p; and
g; over alli=1,....5.

Related work. There has been a fair amount of work
on rearranging points with respect to certain objectives.
One of those problems the most related to ours asks to
find the center line that minimizes the maximum dis-
tance from the input points to the line. This can be
solved in O(nlogn) time by computing the center line
of a minimum-width slab for the points from the convex
hull [11, 12]. Notice that the center line problem implic-
itly assumes rearrangements of input points obtained by
their orthogonal projections onto a line, and hence the
center line problem is equivalent to our rearrangement
problem where the proximity constraint of consecutive
points is relaxed.

Similarly, a circle that aggregates a point set can
be found from the minimum-width annulus for the
points [9]. There is a deterministic O(n®/>*+)-time algo-
rithm [2] and an expected O(n3/2+)-time algorithm [1]
for computing the minimum-width annulus for n points
in the plane. When the radius r of the aggregating cir-
cle is fixed, there is an O(nlogn)-time algorithm [8, 10]
that finds the minimum-width annulus with median ra-
dius 7.

For a sequence of n points in the increasing order of
z-coordinates in the plane, there has been a series of
work to find an z-monotone curve with minimum error
under various settings on the curve. When the curve is
a polyline, the segmented least squares algorithm finds
the polyline that minimizes a combination of the total
squared errors and the number of segments in the poly-
line in O(n?) time [4].

When the weights of the input points are the same,
we have w;11 —w; = 0 for all ¢, and any rearrangement
{(q1,-..,qn) has the same point for all ¢;’s. Thus, the
optimal rearrangement is achieved by the point ¢ € ¢
such that the smallest disk centered at ¢ and enclosing
the input points has minimum radius among all enclos-
ing disks centered at points of £. There is an O(n)-time
algorithm [14] for finding the center, and an O(nlogn)-
time algorithm for k centers restricted to a line [18].
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Our results. We present efficient algorithms for find-
ing an optimal rearrangement among the rearrange-
ments of the sequence S of n points onto a line under
the Euclidean metric. For the case that the rearrange-
ment line ¢ is given, we observe that the cost of the
optimal rearrangement of S onto ¢ is determined by at
most two points, and present a simple O(n?)-time al-
gorithm. Then we improve the running time to near-
linear by applying several optimization techniques. We
present an expected O(n)-time algorithm using random-
ized optimization [6] and a deterministic O(nloglogn)-
time algorithm using parametric search [7] with some
additional preprocessing.

For the case that only the orientation of the rear-
rangement line is given, we compute an optimal rear-
rangement line ¢ among all lines of the orientation and
an optimal rearrangement onto ¢ using a set of O(n)
convex functions, each representing the optimal rear-
rangement cost of a contiguous subsequence of S. The
upper envelope of those functions coincides with the
function of the optimal rearrangement cost of S. By
applying convex programming, our algorithm computes
an optimal rearrangement in O(nlogn) time. For the
case that the rearrangement line is not specified at all,
we present an O(n? polylog n)-time deterministic algo-
rithm that finds an optimal rearrangement line £ and an
optimal rearrangement onto ¢. The detailed algorithms
for the case that the rearrangement line is not specified
can be found in the full version of this paper.

2 Preliminaries

Let S = (p1,...,pn) denote the input sequence of
points, and w1, .. ., w, be their weights with w; < --- <
wy. Throughout the paper, we mainly discuss the un-
weighted problem, so we assume w; = ¢ for each i =
1,...,n, unless stated otherwise. Forany 1 <i < j <mn,
we denote by S;; the contiguous subsequence of S from
pi to pj, that is, S;; = (p;,...,p;). Let || - || denote
the Euclidean norm on the plane so that we use ||p — ¢/|
to denote the distance between two points p and ¢. A
sequence (g;, ..., q;) of points is a rearrangement of S;;
onto a line £ if g lies on ¢ and ||qxr — qx || < wir —wy for
every k and k' with 1 < k <k’ < j. Its cost is defined
to be maX;<g<j ||qk — pkH

An optimal rearrangement of S onto a line ¢ is a rear-
rangement with the minimum cost among all rearrange-
ments of S onto ¢. An optimal rearrangement of S onto
a set of lines is a rearrangement with the minimum cost
among all optimal rearrangement of S over the lines in
the set. We use 0*(¢) to denote the cost of an optimal
rearrangement of S onto . We may simply write 6* if
it is understood from the context.

For a real number r > 0, we denote by I(r) the seg-
ment of length 2r joining two points (—r,0) and (r,0)
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Figure 2: (a) R; is defined as the intersection of Dj(dp)
and £. (b) R; is defined as the intersection of D;(dy)
and R;_1 & I(1).

on the z-axis. We will often consider the Minkowski
sum of a compact set X in the plane and the segment
I(r), denoted by X & I(r).

3 Rearrangement onto a Fixed Line

In this section, we consider the problem when the rear-
rangement line is given as an input, so we are given a
sequence S = (p1,...,p,) and a line ¢, and want to find
an optimal rearrangement of S onto ¢. Without loss
of generality, assume that ¢ is the x-axis. For any real
number 7, we abuse the notation so that r also denotes
the point (r,0) on the z-axis ¢ if there is no confusion
from the context.

We first present an O(n)-time decision algorithm de-
termining for a given real value dg > 0, whether there
exists a rearrangement of S with cost at most dg. We
define a feasible range R; for each point p; of S, rep-
resenting the range in the z-axis in which ¢; of a
rearrangement (qi,...,q;) of Si; onto £ with cost at
most dy can be placed. The decision algorithm com-
putes feasible ranges as follows: Ry = £ N D;(dp) and
R, = (Ri—1 ® I(1)) N D;(dp) for 1 < i < n, where
D;(60) = {q | llg — pill < o} denotes the disk with
center p; and radius Jg. See Figure 2 for an illustration
of the ranges.

Lemma 1 There is a rearrangement of S1; with cost at
most dg and p; rearranged to q; if and only if ¢; € R;.

Proof. We first prove the if part by induction. If i = 1,
it is trivial. For any ¢ > 1, we pick a point ¢; € R;. Then
we have (¢;®I(1))NR;—1 #0Dasq € Ri_1®I(1). Picka
point ¢;—1 in (¢; ® I(1)) N R;—1. Then, by the induction
hypothesis, there is a rearrangement (gi,...,q;—1) of
S1(i—1) with cost at most do. Since [lg; — qi—1]| < 1,
(q1,---,qi—1,¢;) is a rearrangement of Sy; with cost at
most dg.

We now prove the only if part by induction. It is
trivial for ¢ = 1. For any ¢ > 1, let {g1,...,q;) be a
rearrangement of S7; with cost at most §o. We have ¢; €
R;,_1®I(1) because ||¢;—1—¢;|]| <1,and ¢;—1 € R;—1 by

the induction hypothesis. We also have ¢; € £ N D;(d)
because the cost of the rearrangement is at most dg.
Therefore, ¢; € R;. O

By Lemma 1, the decision problem can be answered
by checking whether R,, # 0 (yes) or R, = 0 (no).
Since we can compute Ry in O(1) time, and R; in O(1)
time once we have R;_1, we can compute R, in O(n)
time. If R, # ), we can compute a rearrangement
(q1,---,qn) of S 'in O(n) time, by choosing ¢, from R,,,
and then choosing ¢; from (g;11 @ I(1)) N R; repeatedly
for ¢ from n — 1 to 1.

Lemma 2 Given a point sequence S of n points, a line
£, and a real value g, we can decide whether there exists
a rearrangement of S onto £ with cost at most dg in O(n)
time. If such rearrangement exists, we can compute a
rearrangement of S with cost at most 6y in O(n) time.

We present some characterizations of an optimal re-
arrangement of S. We first show that there are at most
two points of S which determine the cost ¢* = §*(¢) of
an optimal rearrangement in the following lemma.

Lemma 3 There exists an optimal rearrangement
(q1,...,qn) of S onto £ satisfying one of the followings.

(1) There is a point p; in S such that ||p; — g;|| = 6*
and q; is the orthogonal projection of p; onto £.

(2) There are two points p; and p; (i < j) in S such
that [|pi — aill = llp; — il = 0", e — g5l =7 — 4,
and both q; and q; lie in between the orthogonal
projections of p; and p; onto £.

Proof. Among the feasible ranges of the points of S for
6%, there must be a feasible range that is a single point.
Otherwise, there is a real value ¢ > 0 such that R, # ()
with cost (6* — €), which contradicts the optimality of
o*.

If a feasible range R; is a single point, then £ is tan-
gent to D;(6*), or D;(6*) intersects R;_1 & I(1) only
at an endpoint. The former case implies that g; is the
orthogonal projection of p; onto ¢ with ||p; — ¢;|| = 6%,
and thus we have case (1). For the latter case, ob-
serve that an endpoint of R;_; & I(1) is an endpoint of
the intersection of D;(6*) ® I(j — i) and ¢ for some i
with 1 < ¢ < j. Therefore, the common intersection of
D;(6*)® I(j — 1), £, and D;(6*) is just a single point.
Then, |pi — ¢ll = lIp; — q;l = 6%, llg; — @ill = j — 4, and
both ¢; and g; lie in between the orthogonal projections
of p; and p; onto ¢. Thus, we have case (2). O

For an optimal rearrangement, we call the points of
S that satisfy cases (1) or (2) of Lemma 3 the determi-
nators of the rearrangement. We now define a value d;;
for every two indices 1 <4 < j < n. Let ¢; and g; be the
points on ¢ minimizing max{||p; — ¢, |lp; — ¢;||} with
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Figure 3: (a) d;; is the length of the projection from
p;j to £. (b) When the difference of z-coordinates be-
tween two points p; and p; (¢ < j) is bigger than j — ¢,
di; is defined by two points in between the orthogonal
projections of p; and p; with distance j —i. (c¢) One of
the points that define d;; can be the orthogonal projec-
tion of p;, so that d;; = d;;. (d) When the difference of
z-coordinates between two points p; and p; is smaller
than or equal to j — i, 6;; = max{d;, d;; }.

llg: —q;ll < j—1. Then &;; = max{|p; — qill, lp; — a;[I}-
(Figure 3). Note that d;; is the length of the orthogonal
projection of p; to £. Then ¢;; denotes the minimum
cost required by two points p; and p; of S such that
there is a rearrangement of S.

Lemma 4 §* = max; ; d;;.

Proof. By Lemma 3, there is an optimal rearrange-
ment with determinators. If the optimal rearrangement
belongs to case (1) of Lemma 3, then §* = §;; for the
determinator p; (Figure 3(a)). If it belongs to case (2)
of Lemma 3, then 0* = §;; for the determinators p; and
pj. Therefore, §* < max; ; §;; holds (Figure 3(b)).

If 6* < §;;, there is no point ¢ € £ such that
llpi — q|| < 6*, which is a contradiction. Assume that
there are two indices 4,5 (¢ < j) such that §* < J;;.
There is an optimal rearrangement Q* = (q7,...,q})
with cost 0*. However, ||g; — ¢}|| > j — 7 holds by the
assumption, which contradicts that Q* is a rearrange-
ment. Therefore, max; ; 4;; < ¢* holds. U

3.1 Randomized algorithm

This problem can be solved in O(n) expected time using
the randomized optimization technique by Chan [6] as
follows. We consider the weighted version of the prob-
lem in which a sequence S = (p1,...,pn) of n weighted
points is given, the weight of p; denoted by w;, satisfy-
ing w; < wjy for every pair of indices 7, 7 with « < j. The
objective is to find a rearrangement Q = {(q1,...,¢q,) of
S onto ¢ such that |l¢; — ¢;|| < w; — w; for every pair
of indices 4,7 with ¢ < j, and the rearrangement cost
max; ||p; — ¢:|| is minimized.
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Figure 4: The definition of R; for ¢ > 1 is replaced.

Observe that Lemmas 2, 3, and 4 also hold for this
weighted version, by replacing the definition of R; with
R, = (Ri