
Proceedings of the 33rd Canadian
Conference on Computational Geometry

(CCCG 2021)

August 10-12, 2021
Dalhousie University
Halifax, Nova Scotia

Canada

Logo designed by Meng He

Compilation copyright © 2021 Meng He and Don Sheehy

Copyright of individual papers retained by authors

Preface

This volume contains the proceedings of the 33rd Canadian Conference on Computational Geometry
(CCCG 2021), which took place on August 10–12, 2021. It was originally schedule to be held on
campus at Dalhousie University, in Halifax, Nova Scotia, Canada. However, due to the COVID-19
pandemic, it was organized as a virtual event.

We are grateful to the CCCG 2021 Program Committee members and external reviewers, for
their effort and hard work on reviewing all submissions. Each submission was reviewed by at least
three members of the program committee. The committee decided to accept 43 papers out of 56
papers submitted. We thank the authors of all submitted papers and all those who have registered
to attend the conference. We especially thank the invited speakers: Dr. Pankaj K. Agarwal (the
Memorial Lecture for Paul Erdős) and Dr. Elisabetta Matsumoto (the Joint Memorial Lecture for
Hurtado and Toussaint). In addition, we are grateful for the support and assistance provided by
the CCCG 2021 Local Organizing Committee.

We acknowledge the generous support from our sponsors: Elsevier, the Faculty of Computer Sci-
ence at Dalhousie University, the Atlantic Association for Research in the Mathematical Sciences
(AARMS), the Fields Institute for Research in Mathematical Sciences, and the Pacific Institute for
the Mathematical Sciences (PIMS).

Meng He
Don Sheehy
CCCG 2021 Program Committee Co-Chairs

i

Sponsored by

ii

Invited Speakers

Pankaj K. Agarwal Duke University
Elisabetta Matsumoto Georgia Institute of Technology

Program Committee

Oswin Aichholzer Graz University of Technology
Hugo Akitaya Tufts University
Binay Bhattacharya Simon Fraser University
Prosenjit Bose Carleton University
David Bremner University of New Brunswick
Hsien-Chih Chang Dartmouth College
Jean-Lou De Carufel University of Ottawa
David Eppstein University of California, Irvine
Ruy Fabila-Monroy Cinvestav
Brittany Terese Fasy Montana State University
Marina Gavrilova University of Calgary
Meng He (co-chair) Dalhousie University
Akitoshi Kawamura Kyoto University
Jason Morrison University of Manitoba
Sharath Raghvendra Virginia Tech
Suneeta Ramaswami Rutgers University
Maria Saumell The Czech Academy of Sciences &

Czech Technical University in Prague
Don Sheehy (co-chair) North Carolina State University
Michiel Smid Carleton University
Bettina Speckmann Eindhoven University of Technology
Katharine Turner Australian National University
Yusu Wang University of California, San Diego

iii

Additional Reviewers

Carlos Alegŕıa, Tetsuya Araki, Ahmad Biniaz, Mirela Damian, Ivan Tadeu Ferreira Antunes Filho,
Fabrizio Frati, Younan Gao, Kirk Gardner, Andrei Gonczi, Joachim Gudmundsson, Benjamin Holm-
gren, Ramesh Jallu, Amirhossein Khameneh, Linda Kleist, Fabian Klute, Jesus Leanos, Christian
Lindorfer, Jayson Lynch, Brad McCoy, David L. Millman, Debajyoti Mondal, Klara Mundilova, So-
eren Nickel, Joachim Orthaber, Irene Parada, Daniel Perz, Pablo Pérez-Lantero, Edgardo Roldán-
Pensado, Tadashi Sakuma, Anna Schenfisch, Jordan Schupbach, Siddharth Sheth, Rodrigo Silveira,
Willem Sonke, Arthur van Goethem, Inmaculada Ventura Molina, Kevin Verbeek, Haitao Wang,
Alexandra Weinberger, Aaron Williams

Local Organizers

Nathaniel Brown Travis Gagie Younan Gao
Meng He (chair) Zhen Liu Michael St Denis

(All at Dalhousie University)

iv

Table of Contents

Tuesday, August 10

Session 1

Near-Delaunay Metrics . 1

Nathan van Beusekom, Kevin Buchin, Hidde Koerts, Wouter Meulemans, Benjamin
Rodatz and Bettina Speckmann

Shortcut Hulls: Vertex-restricted Outer Simplifications of Polygons . 12

Annika Bonerath, Jan-Henrik Haunert, Joseph S. B. Mitchell and Benjamin Niedermann

Stochastic Analysis of Empty-Region Graphs . 24

Olivier Devillers and Charles Duménil

Rearranging a Sequence of Points onto a Line . 36

Taehoon Ahn, Jongmin Choi, Chaeyoon Chung, Hee-Kap Ahn, Sang Won Bae and Sang
Duk Yoon

Mapping Points to the Grid with Bounded Hausdorff Distance. 47

Maarten Löffler and Jérôme Urhausen

Session 2

Angles of Arc-Polygons and Lombardi Drawings of Cacti . 56

David Eppstein, Daniel Frishberg and Martha C. Osegueda

Practical Methods for the Embroidery Problem. 65

Michelle Tran

Another Small but Long Step for Crossing Numbers: cr(13) = 225 and cr(14) = 315 72

Oswin Aichholzer

Generalized LR-Drawings of Trees . 78

Therese Biedl, Giuseppe Liotta, Jayson Lynch and Fabrizio Montecchiani

Session 3

Massively Winning Configurations in the Convex Grabbing Game on the Plane 89

Martin Dvorak and Sara Nicholson

Yin-Yang Puzzles are NP-complete . 97

Erik D. Demaine, Jayson Lynch, Mikhail Rudoy and Yushi Uno

Constant Delay Lattice Train Schedules . 107

Jean-Lou De Carufel, Darryl Hill, Anil Maheshwari, Sasanka Roy and Lúıs Fernando
Schultz Xavier da Silveira

Block Dude Puzzles are NP-Hard (and the Rugs Really Tie the Reductions Together) 114

Austin Barr, Calvin Chung and Aaron Williams

v

Wednesday, August 11

The Memorial Lecture of Paul Erdős

Flood Risk Analysis on Terrains . 126

Pankaj K. Agarwal

Session 4

Automatically Testing Containedness between Geometric Graph Classes defined by
Inclusion, Exclusion and Transfer Axioms . 127

Hannes Frey and Lucas Böltz

Algorithms for Covering Barrier Points by Mobile Sensors with Line Constraint 139

Princy Jain and Haitao Wang

Approximability of (Simultaneous) Class Cover for Boxes . 149

Jean Cardinal, Justin Dallant and John Iacono

Efficiently Stabbing Convex Polygons and Variants of the Hadwiger-Debrunner (p, q)-Theorem157

Justin Dallant and Patrick Schnider

Rectangle Stabbing and Orthogonal Range Reporting Lower Bounds in Moderate Dimensions 167

Peyman Afshani and Rasmus Killmann

Session 5

Decomposing Polygons into Fat Components . 175

Maike Buchin and Leonie Selbach

Convex Bichromatic Quadrangulation of Point Sets with Minimum Color Flips 185

Allan Sapucaia, Andre A. Cire, Pedro J. de Rezende and Cid C. de Souza

An Improved Kernel for the Flip Distance Problem on Simple Convex Polygons. 195

Miguel Bosch Calvo and Steven Kelk

Minimum-Link Shortest Paths for Polygons amidst Rectilinear Obstacles . 200

Mincheol Kim and Hee-Kap Ahn

Session 6

An Optimal Algorithm for L1 Shortest Paths in Unit-Disk Graphs . 211

Haitao Wang and Yiming Zhao

Total Domination in Geometric Unit Disk Graphs . 219

Sangram K. Jena and Gautam K. Das

Simple Linear Time Algorithms For Piercing Pairwise Intersecting Disks . 228

Ahmad Biniaz, Prosenjit Bose and Yunkai Wang

vi

Extensions of the Maximum Bichromatic Separating Rectangle Problem . 237

Bogdan Armaselu

Thursday, August 12

The Joint Memorial Lecture of Ferran Hurtado and Godfried Toussaint

Twisted Topological Tangles or: the Knot Theory of Knitting . 248

Elisabetta Matsumoto

Presentation of the Best Student Paper

Axis-Aligned Square Contact Representations . 249

Andrew Nathenson

Session 7A

Folding Polyiamonds into Octahedra . 260

Eva Bolle and Linda Kleist

Folding Points to a Point and Lines to a Line. 271

Hugo A. Akitaya, Brad Ballinger, Erik D. Demaine, Thomas C. Hull and Christiane Schmidt

Cut Locus Realizations on Convex Polyhedra . 279

Joseph O’Rourke and Costin Vı̂lcu

Unfolding a New Class of Orthographs of Arbitrary Genus. 286

Mirela Damian and Robin Flatland

Session 7B

Dispersion on Intervals . 297

Tetsuya Araki, Hiroyuki Miyata and Shin-ichi Nakano

Approximation Algorithms for the Euclidean Dispersion Problems . 303

Pawan K. Mishra and Gautam K. Das

The Discrete Median and Center Line Segment Problems in the Plane . 312

Ovidiu Daescu and Ka Yaw Teo

Oblivious Median Slope Selection. 320

Thore Thießen and Jan Vahrenhold

Session 8A

Any Regular Polyhedron Can Transform to Another by O(1) Refoldings . 332

Erik D. Demaine, Martin L. Demaine, Yevhenii Diomidov, Tonan Kamata, Ryuhei
Uehara and Hanyu Alice Zhang

vii

Edge-Unfolding Prismatoids: Tall or Rectangular Base . 343

Vincent Bian, Erik D. Demaine and Rachana Madhukara

On Guarding Polygons with Holes . 348

Sharareh Alipour

An Acrophobic Guard Watchtower Problem on Terrains . 351

Ritesh Seth, Anil Maheshwari and Subhas C Nandy

Session 8B

Constrained Obnoxious Facility Location on a Line Segment . 362

Vishwanath R. Singireddy and Manjanna Basappa

Succinct Euler-Tour Trees . 368

Travis Gagie and Sebastian Wild

Turning Around and Around: Motion Planning through Thick and Thin Turnstiles 377

Aster Greenblatt, Oscar Hernandez, Robert A. Hearn, Yichao Hou, Hiro Ito, Minwoo
Kang, Aaron Williams and Andrew Winslow

Integer Cow-path Problem and Simple Robot Street Search. 388

Azadeh Tabatabaei, Farehe Soheil, Mohammad Aletaha and Mohammad Ghodsi

viii

CCCG 2021, Halifax, Canada, August 10–12, 2021

Near-Delaunay Metrics

Nathan van Beusekom∗ Kevin Buchin∗ Hidde Koerts∗

Wouter Meulemans∗ Benjamin Rodatz† Bettina Speckmann∗

Abstract

We study metrics that assess how close a triangulation
is to being a Delaunay triangulation, for use in contexts
where a good triangulation is desired but constraints
(e.g., maximum degree) prevent the use of the Delaunay
triangulation itself. Our near-Delaunay metrics derive
from common Delaunay properties and satisfy a basic
set of design criteria, such as being invariant under sim-
ilarity transformations. We compare the metrics, show-
ing that each can make different judgments as to which
triangulation is closer to Delaunay. We also present
a preliminary experiment, showing how optimizing for
these metrics under different constraints gives similar,
but not necessarily identical results, on random and con-
structed small point sets.

1 Introduction

Delaunay triangulations are a common construct in
computational geometry: practically any class on com-
putational geometry teaches about Delaunay triangu-
lations of point sets and their duality to the Voronoi
diagram. They are efficiently computable, and have
many desirable properties, for instance, lexicograph-
ically maximizing the minimum angle of the corners
of the resulting triangles [20], having bounded dila-
tion [4, 11], minimizing the maximum circumcircle [5],
maximizing the minimum enclosed circle [5, 18] of its
triangles. As such, they form the basis of many algo-
rithms that require some triangulation of a point set.

However, there are various scenarios imaginable
where the Delaunay triangulation is not immediately
applicable due to constraints on the desired triangula-
tion, such as a limited vertex degree or a set of edges
that needs to be included. In such cases, we may want
to find a triangulation that is as close as possible to
the Delaunay triangulation while adhering to the con-
straints. This, however, requires a way to measure how
near-Delaunay a triangulation is. Another scenario in
which such a measure would be useful is when a triangu-

∗Department of Mathematics and Computer Science, TU
Eindhoven, the Netherlands; n.a.c.v.beusekom@tue.nl,

k.a.buchin@tue.nl, h.o.koerts@student.tue.nl,

w.meulemans@tue.nl, b.speckmann@tue.nl.
†Department of Computer Science, University of Oxford;

benjamin.rodatz@cs.ox.ac.uk.

lation is already given – for example, the triangulation
of a terrain. In such a setting, we could use the measure
to assess the quality of the triangulation.

An example of a triangulation that aims to be as close
as possible to the Delaunay triangulation given a set
of edges that needs to be included is the Constrained
Delaunay Triangulation (CDT) [3, 13]. It provides an
alternative definition of when an edge or triangle may
be part of the triangulation, such that it is “as close as
possible” to being Delaunay for the given constraints.
However, it does not help in assessing how close a trian-
gulation is to being the actual Delaunay triangulation,
nor does it generalize to other forms of constraints.

In this work, we consider various ways to measure how
close a triangulation is to being Delaunay. The prob-
lem of studying the properties of triangulations that
are close to the Delaunay triangulation was proposed
at CCCG 2017 by O’Rourke [16]. In this context, two
measures were already proposed [16, 14], which we dis-
cuss further in Section 2. The aim of our work, is to
explore a broader range of measures together with al-
gorithms to compute them and with an analytical and
experimental comparison. We identify several criteria
for near-Delaunay metrics:

C1 The Delaunay triangulation should obtain the per-
fect score. We do not want to distinguish how nice
Delaunay triangulations are of different point sets
– because this would be a factor of the point set
itself. A non-Delaunay triangulation should always
score less than perfect, such that any non-Delaunay
triangulation is considered less Delaunay.

C2 The measure should behave continuously for slight
perturbations of the point set. Triangles that
“severely” violate properties of a Delaunay triangu-
lation should score worse than those with “slight”
violations.

C3 The measure should be invariant under similar-
ity transformations (translations, rotations, scaling
and reflections). Though this criteria follows from
the first for the Delaunay triangulation (which is in-
variant under similarity transformations), it is de-
sirable for this to also hold for non-Delaunay tri-
angulations, such that triangulations of different
point sets can still be reasonably compared.

1

33rd Canadian Conference on Computational Geometry, 2021

C4 The measure should be decomposable, that is, eval-
uated separately on different elements of the trian-
gulation. Though not strictly necessary, this allows
various forms of aggregation (worst situation, aver-
age situation, etc.).

We observe, that the combination of criterion C3
and C4 suggests that the metric should also be “locally
invariant”. That is, even within the same triangulation,
a decomposition element that is subject to the same
constraints to another element up to similarity trans-
formations should score the same. That is, the metric
should not naturally award higher (or lower) scores to
elements that are larger; instead small and large ele-
ments should contribute equally to the overall metric.
In other words, a triangulation should not be considered
near-Delaunay, simply because the deviations from the
Delaunay property are only at very small elements.

We propose and compare several near-Delaunay met-
rics. These metrics (as shown in Table 1) satisfy our
four criteria. They differ in the properties of the Delau-
nay triangulation they aim to capture, as well as how
they decompose the given triangulation. For this, we
use decompositions into: (1) quadrilaterals – a quadri-
lateral here is an edge and its two incident triangles,
ignoring all other points; (2) edges – an edge is consid-
ered in context of all other points; (3) triangles in con-
text of all other points. We show that these measures
behave differently, capturing different aspects of how
near-Delaunay a triangulation is. Finally, we briefly
compare how our measures relate to the CDT.

Related work. One of the well-known results in com-
putational geometry is that any triangulation can be
transformed into the Delaunay triangulation using Law-
son flips [12]. A natural consideration would thus be to
measure the number of flips necessary to transform a
triangulation into a Delaunay triangulation. Though it
satisfies C1 and C3 , it satisfies neither C2 – it is a dis-
crete measure and it is not immediately based on the
violations of a Delaunay property – nor C4 . An addi-
tional complication is that computing such flip distances
is generally hard [17].

Another natural consideration is to measure the num-
ber of points in any circumcircle of a triangle in the
triangulation. This leads to the notion of higher-order
Delaunay triangulations [7]. We do not consider them
in this paper, since a small perturbation can greatly
change the number of points in a circumcircle. That
is, the resulting measure would not adhere to C2 . But
when this criterion is not needed, higher-order Delaunay
triangulations are well suited to obtain triangulations
close to the Delaunay triangulation that at the same
time are optimized for another criterion. Van Kreveld
et al. [22] discuss optimizing over first-order Delaunay
triangulations for various criteria like minimizing the
maximum degree.

Computing a triangulation that is as close as possi-
ble to the Delaunay triangulation (given certain con-
straints) can be seen as optimization problem. There
are many papers studying optimal triangulations un-
der various criteria. Bern et al. [2] show how to effi-
ciently compute triangulations under criteria like max-
imizing the minimum height or minimizing the max-
imum eccentricity. Unfortunately for other criteria,
computing optimal triangulations is more difficult. For
instance computing the minimum-weight triangulation
is NP-hard [15]. While the complexity of finding the
minimum-dilation triangulation is open [8], many re-
lated problems on minimizing dilation are NP-hard [6].
Similarly, the complexity of finding the minimum-degree
triangulation seems open, while it is NP-hard if as a
constraint certain edges have to be included [9, 10].

The fact that for many optimization criteria efficient
algorithms are not known, also limits the size of the
point sets that we can include in our experiments, in
which we for instance want to compute near-Delaunay
triangulations with additional constraints like a degree
bound or a bound on the weight of the triangulation.
We here resort to enumerating triangulations, however,
the total number of triangulation for a given point set
is exponential [1, 19].

2 Near-Delaunay metrics

We define seven near-Delaunay metrics as shown in Ta-
ble 1, which all satisfy our four criteria. Throughout,
we assume that we are to measure a triangulation T on
a point set P . We further assume, for sake of simplicity,
that P is in general position: no three points are on
a line and no four points are cocircular. We organize
them below into three categories, depending on their
form of decomposition (quadrilateral, edge and trian-
gle). We always describe the measure just for a single
decomposition element, silently assuming some form of
aggregation such as taking their sum or extremal value.

2.1 Quadrilateral-based metrics

We start by introducing intuitive metrics that evalu-
ate quadrilaterals. A quadrilateral consists of a non-
convex-hull edge and the two triangles that are inci-
dent to it, defined by two vertices. Particularly, note
that any point in P that is not one of the four defining
vertices does not influence the metric on this partic-
ular quadrilateral – this contrasts the edge-based and
triangle-based metrics. Thus, to compute the metrics it
is sufficient to be given only the quadrilateral. Conse-
quently, the metrics we introduce for quadrilaterals can
be computed in constant time per quadrilateral and in
linear time overall. Note that for each quadrilateral-
based metric, lower scores mean closer to Delaunay
(contrasting our other two forms of decomposition).

2

CCCG 2021, Halifax, Canada, August 10–12, 2021

Table 1: Overview of metrics. Listed with each is the form of decomposition, the Delaunay property it is based on,
and the running time for computing the measure for a given triangulation.

Opposing
Angles

Dual Edge
Ratio

Dual Area
overlap

Lens Shrunk Circle
Triangular

Lens
Shrunk

Circumcircle

Quadrilateral Quadrilateral Quadrilateral Edge Edge Triangle Triangle

Max-min
angle

Voronoi Dual
(edges)

Voronoi Dual
(faces)

Empty Circle Empty Circle
Empty

Circumcircle
Empty

Circumcircle

O(n) O(n) O(n) O(n2) O(n2) O(n2) O(n2)

Throughout, we denote by (u, v) the defining edge of
the quadrilateral, and with p and q the opposing vertices
of the two incident triangles 4uvp and 4uvq. We use
cp and cq to denote the center of the circumcircles of
these triangles. A quadrilateral is locally Delaunay if
the edge (u, v) is part of the Delaunay triangulation of
{u, v, p, q} – in other words, if the circumcircle of the
one triangle does not contain the other vertex.

Opposing Angles. At CCCG 2017, O’Rourke sug-
gested that a triangulation T is a near-Delaunay trian-
gulation if the opposite angles α and β of a quadrilateral
sum to at most π+ε for ε ≥ 0 [16] (see Fig. 1). If ε = 0,
then T is Delaunay. Hence, it is natural to consider
the smallest ε for a triangulation as a metric for how
close a triangulation is to a Delaunay triangulation. We
can readily interpret ε on a per-quadrilateral basis for a
metric in our context; O’Rourke’s suggestion is simply
to take their maximum as the overall metric.

The intuition behind the metric is, when the sum of
two opposing angles is larger than π, the empty circum-
circle property is violated. When the sum is close to π,
a slight movement in the points can restore the empty

α

β
u v

p

q

α

β

u v

p

q

Figure 1: Opposing Angles metric. (left) Sum of op-
posing angles is less than π for quadrilateral that is not
locally Delaunay. (right) It is at least π for quadrilater-
als that are locally Delaunay.

circumcircle property. However as the sum grows larger,
the points generally need to move further to restore the
property, unless p or q is very close to u or v, in which
case a small movement is sufficient. Thus, we can use
the sum of two opposing angles to evaluate how far from
Delaunay a quadrilateral is.

Dual Edge Ratio. Additionally, Mitchell [16] sug-
gested “measuring the signed distance between circum-
centers of triangles sharing an edge; for Delaunay trian-
gulations this is simply the dual edge length and non-
negative, but for non-Delaunay triangulations the cir-
cumcenters can be in the wrong order and hence have a
negative distance between them. So one could look at
the ratio of the dual edge signed-length to the primal
edge length (for 2D triangulations) as a continuous mea-
sure of how close it is to non-Delaunay.” [16] – which
are also known as Hodge-optimized triangulations [14].

We adapt this metric to evaluate quadrilaterals: we
measure only the negative distance part of the sugges-
tion, to satisfy criterion C1 and not distinguish be-
tween Delaunay triangles. The “wrong order” referred
to above matched to the quadrilateral being not locally
Delaunay. We thus define the Dual Edge Ratio as

{
0, if the quadrilateral is locally Delaunay.
d(cp,cq)
d(u,v) , otherwise.

Intuitively, if the quadrilateral is not locally Delau-
nay, ratio of the distance between cp and cq and the
length of (u, v) roughly corresponds to how skinny the
triangles are and thus how far from Delaunay they are
as well (see Fig. 2). Clearly, the Delaunay triangula-
tion scores zero on all its quadrilaterals. Any quadri-
lateral that is not locally Delaunay, and hence does not
locally describe the dual of the Voronoi diagram, will
score greater than zero. Any non-Delaunay triangula-
tion must have at least one such quadrilateral.

3

33rd Canadian Conference on Computational Geometry, 2021

u v

p

q

cq

cp

Figure 2: Dual Edge Ratio metric. The dual edge (or-
ange) for a quadrilateral that is not locally Delaunay.
We measure its length relative to the length of (u, v).

Dual Area Overlap. Similar to the previous metric,
we may use the duality to Voronoi diagrams but in a
different manner. Rather than looking at the distance,
we may also consider an area-based metric. Intuitively,
we consider the incorrect area of overlap between the
“local Voronoi cells” that we may construct from the
triangles of the quadrilateral.

The local Voronoi cell of p (and q analogously) is de-
fined by the bisectors of u and v with p, which cross in
cp. If the quadrilateral is locally Delaunay, then the cells
of p and q are disjoint. However, if the quadrilateral is
not locally Delaunay, then they must overlap. The area
of this overlap divided by the squared length of (u, v) is
our Dual Area Overlap metric (see Fig. 3). We normal-
ize using the squared edge length here, to ensure scale
invariance, criterion C3 .

The intuition behind this metric is similar to the intu-
ition from the Dual Edge Ratio metric. The area of the
overlap of the two Voronoi regions implies how far the
quadrilateral is from having a proper non-overlapping
Voronoi dual. A larger area means that points will have
to move further to reach a non-overlapping dual, while
a smaller area implies that a small movement in the
points can already achieve this.

u v

p

q

cq

cp

Figure 3: Dual Area Overlap metric. The local Voronoi
cells of p and q (dotted) for a quadrilateral that is not
locally Delaunay. We measure the overlap (orange).

2.2 Edge-based metrics

We now turn to edge-based metrics, that evaluate each
edge (u, v) of T in context of all other points in P .
That is, it penalizes edges, even if the defined quadri-
lateral is locally Delaunay. We present two new met-
rics below, both of which are based on the same princi-
ple: as an edge of the Delaunay triangulation must be
the chord of a circle that does not strictly contain any
other vertices of P , we consider how much we much
deform a circle to find such an empty deformed cir-
cle instead. The difference between our two metrics is
how they perform this deformation. Note that in both
cases, higher scores mean closer to Delaunay, contrast-
ing quadrilateral-based metrics.

Lens. When an empty circle exists, it can be seen as
two circulars arcs, one on each side of the edge. The arc
in the one halfplane with respect to the line spanned by
(u, v) excludes from its interior all vertices of P in that
same halfplane. With our Lens metric, we reverse this
idea to deform our circle into a lens; the “sharpness” of
this lens is then our metric.

Specifically, consider all points P ′ ⊆ P that lie on one
side of the line spanned by edge (u, v). The circular arc
from u to v through some point of P ′ that is minimal
in terms of segment area (or equivalently, arc length or
central angle) is the largest arc possible on this side of
the edge that does not contain any point of P ′ in its
segment area. Let a and a′ denote the two circular arcs
obtained this way. We consider the “interior” angle α
between the tangent directions of a and a′ at u as our
metric (see Fig. 4). If α ≥ π, the edge is a Delaunay
edge and we cap the metric to π to satisfy criterion C1 ;
for any non-Delaunay edge, α < π.

u

v

α

Figure 4: Lens metric. We find the largest empty arc on
both sides of (u, v), and measure the angle α between
their tangent directions at u.

We can easily compute the metric for a triangulation
in quadratic time: for each edge, find the point that
gives the smallest arc on both sides; then compute the
angle at which the arcs touch.

Shrunk Circle. With our second metric, we consider a
different type of deformation: scaling. That is, we aim
to find a smaller empty circle that relates to the edge
we wish to measure. For a non-Delaunay edge, such a
circle cannot have (u, v) as a chord, but it may still over-

4

CCCG 2021, Halifax, Canada, August 10–12, 2021

u

v

C

Figure 5: Shrunk Circle metric. We find the empty
circle C that covers edge (u, v) most (orange).

lap the edge. As a Delaunay edge would be overlapped
fully by an empty circle, we define our Shrunk Circle
metric as the maximal fraction of the edge that can be
overlapped by an empty circle C (see Fig. 5)). Note
that, whereas the Lens metric considers both halfplanes
independently, this is not the case here.

To compute this measure for an edge (u, v) of trian-
gulation T on point set P , we observe the following: if
an empty circle does not touch at least two points of P ,
we can readily grow it to a circle C ′ that does touch two
points and strictly encompasses the previous circle and
thus the overlap with (u, v) does not decrease. In other
words, we need to consider only maximal circles with
centers on the Voronoi diagram P . The lemma below
argues that the overlap along one edge of the Voronoi
diagram is convex and thus we need to test only its end-
points. In fact, we need to test only its vertices since
unbounded edges occur only for pairs of points on the
convex hull and thus the overlap of such circles with
(u, v) are determined only by the circle’s part inside the
convex hull – which is maximized at bounded side of
the unbounded edge. We can thus first compute the
Delaunay triangulation for P , and then for every edge
(u, v) of T , test the circumcircles of the Delaunay trian-
gulation explicitly. This readily gives an quadratic-time
algorithm for the overall metric.

Lemma 1 Let e be an edge of the Voronoi diagram of
P . The overlap of maximal circles along e with edge
(u, v) is a convex function.

Proof. Let p and q denote the points defining e. As
the problem is invariant under translation, rotation and
scaling, assume without loss of generality that p = (0, 1)
and q = (0,−1); this implies that e is along the hori-
zontal axis. Maximal circles C ′ are thus fully defined
by their center (m, 0). Let ` : y = ax+ b denote the line
spanned by (u, v). We first consider the overlap of C ′

with ` as a function of m.
The two intersection points of δC ′ with ` are obtained

by solving |(x, ax + b) − (m, 0)|2 = |(c, 0) − p|2, which
simplifies to (a2 +1)x2 +2(ab−m)x+(b2−1) = 0. The

difference in x-coordinates between the two solutions to
this quadratic equation are given by

√
D/(a2+1), where

D = 4(ab−m)2−4(a2+1)(b2−1) is the discriminant; the
amount over overlap with ` is thus a

√
D/(a2 +1). As D

is a convex quadratic function in m, so is a
√
D/(a2+1).

To note, D is negative if the circle does not overlap `, in
which case the overlap is trivially zero: technically, the
overlap is thus a function a

√
max{0, D}/(a2 + 1). This

proves that the overlap with ` is a convex function.

Since we are only interested in the values of m along
e, that is, for which C ′ is empty, the overlap with ` is
either fully within (u, v) or fully outside. Since the in-
tersections behave continuously, the overlap with (u, v)
thus behaves convex as well. �

2.3 Triangle-based metrics

For our triangle-based metrics, we measure a triangle
4uvw of T in context of all other points in P . Analo-
gous to our edge-based metrics, we deform the circum-
circle C of 4uvw (which is empty for a Delaunay tri-
angle) to find a suitable empty deformed circle. In con-
trast to the edge-based metrics, we now have a single
fixed circle C which guides (and constrains) our met-
ric. Specifically, we restrict our deformations to be con-
tained in the circumcircle. As with edge-based metrics,
higher scores mean closer to Delaunay.

Triangular Lens. Similarly to the Lens metric, when a
empty circumcircle exists, it can be considered as three
circular arcs on the outside of the triangle. We again
replace each arc by the largest arc that is contained in
the arc of the circumcircle and that contains no other
points of P .

For our metric, we measure the fraction of the area in
C but outside 4uvw that is covered by the constructed
lens. Let auv, avw and awu denote the segment areas of
the three arcs constructed (see Fig. 6). Interpreting C

u v

w

auv

avwawu

C

Figure 6: Triangular Lens metric. We compute the
largest arc inside C that does not contain any points
in its segment area for each edge of the triangle. Note
that the three arcs are determined independently.

5

33rd Canadian Conference on Computational Geometry, 2021

and 4uvw as their enclosed areas, the score is then

auv + avw + awu

C −4uvw .

We subtract the triangle to be able to assess and to
meaningfully aggregate both skinny and fat triangles;
this also means that each triangle’s score lies in (0, 1],
where a score of 0 is only achievable in the limit (a point
converging on each edge).

We easily compute the metric for a triangulation in
quadratic time: for each triangle, find for each edge the
smallest arc by testing all other vertices; then compute
the segment areas and compute the resulting fraction.

Shrunk Circumcircle. As with our edge-based mea-
sures, the Triangular Lens metric deforms indepen-
dently in the three segment areas defined by the edges.
With our Shrunk Circumcircle metric, we consider a
variant that considers all points simultaneously instead.

Specifically, we aim to find an empty circle C ′ that is
contained in the circumcircle C and intersects all three
sides of 4uvw. The score we associate with this circle
C ′ is C′−I

C−I , where I is the area of the inscribed circle
and we identify C ′ and C with the areas of these circles
as well (see Fig. 7 (left)).

Note that we subtract the areas (numbers), we do not
use set subtraction (difference of the shapes) and their
resulting area; in our figures, we use examples where
the inscribed circle is contained in the largest empty
circle such that these two variants are the same, to easily
visualize the score, but this is not necessarily the case.

The Shrunk Circumcircle metric is the circle C ′ with
the highest associated score. For any triangle, I and
C are constant, and thus it is simply the largest circle
satisfying the two constraints. We subtract I as a lower
bound on the largest empty circle (since the triangle
itself must be empty), and divide by C− I to normalize
the the score to the range (0, 1] independent of triangle
shape and make the metric scale invariant.

u v

w
C

C ′ C

u

v

wC ′

Figure 7: Shrunk Circumcircle metric. (left) We look for
the empty circle C ′ in C of maximal radius. The score
(orange) is its area minus the inscribed circle. (right)
C ′ must intersect all three sides, for the measure to be
meaningful when points are close to the triangle.

We constrain C ′ to lie within C, such that the area we
count is always an actual circle: if C ′ was to be allowed
to grow outside C, it would either count area outside of
the area that the Delaunay triangulation “considers”,
or the region we use the area of is not a circle in itself.

We constrain C ′ to intersect all three sides to make
the score meaningful, even for very skinny triangles:
otherwise, the largest empty circle may simply be fully
in one segment, and even yield a relatively high score,
though points are very close to the triangle edges (see
Fig. 7 (right)).

To compute the metric for a triangle4uvw in context
of P , we first argue about the properties of largest C ′.
Circle C ′ must either touch two points strictly inside
C, or touch one such point and the boundary of C –
otherwise, we can grow the circle into one that strictly
encloses C ′ while still adhering to the constraints. As
such, its center lies on the edges of the local Voronoi
diagram of circle C and the points of P inside C (see
Fig. 8). Curved segments for circle centers equidistant
to the boundary of C and one of the points inside C, and
straight segments defined by two points inside C. These
curved segments are elliptical: the distance from a point
on this curve to the center of C and to the contained
point of P sums up to the radius of C. By construction,
segments incident to the outerface of the diagram are
curved segments; interior segments are straight.

In case the entire ellipse is part of the local Voronoi
diagram (and hence in fact the only curve), we may
consider it an elliptical arc, starting and ending at the
furthest point from its defining point. Then, both along
a straight segment as well as along a curved segment
of the local Voronoi diagram, the radius of C ′ behaves
unimodally: the function has a single (local and global)
minimum at the closest point of the segment to the
defining point(s). Along a segment, the maximal circle
is hence either one of a small set of critical placements
(if they exist): the endpoints of the segment, the fur-

u

v

w

C

Figure 8: The local Voronoi diagram (blue) consists
of elliptical and straight segments. The critical place-
ments: endpoints of straight segments (purple), the fur-
thest point on an ellipse (red), and circle touching a
triangle edge (orange).

6

CCCG 2021, Halifax, Canada, August 10–12, 2021

thest point of the ellipse, or one of the O(1) placements
where the defined circle touches a triangle edge. We
further observe that the straight segments are a subset
of the (full) Voronoi diagram of P .

With the insights above, we can define an algorithm
to compute the Shrunk Circumcircle metric for all tri-
angles in T in quadratic time. First, we compute the
(full) Voronoi diagram of P . Then, for each triangle, we
compute the metric as follows, in linear time. If there
are no points inside the circumcircle, we have a Delau-
nay triangle and the metric is 1. If the circumcircle
contains one point, then the local Voronoi diagram is
a single ellipse and we test the critical placements. If
the circumcircle contains more than one point, we find
all straight segments local Voronoi diagram by travers-
ing the full Voronoi diagram, testing the critical place-
ments. For any straight segment found as such, we first
shorten it to ensure that it does not define circles ex-
tending outside C. Then we test its critical placements.
If the segment was shortened, we know that its defin-
ing points also define a segment of the local Voronoi
diagram. For these segments, we also test the critical
placements. By “testing” in the above, we mean test-
ing whether the defined circle intersects all three sides
(it is contained in C by construction), and if so, see
if its radius is larger than any circle found so far. As
we test O(1) critical cases per segment, computing the
metric takes linear time per triangle (after computing
the full Voronoi diagram in O(P logP) time once) and
thus quadratic time for the entire triangulation.

3 Comparing metrics

In the previous section, we defined seven near-Delaunay
metrics. These capture in different ways how close to
Delaunay a triangulation is. Though future work may
endeavor to establish a standard here, it is not a-priori
clear which measure is “the best”: this likely depends
on context, that is, the purpose of evaluating a trian-
gulation. The question we ask here, is whether these
metrics actually capture different facets of being “near-
Delaunay”. Specifically, given two metrics, do they al-
ways evaluate the same triangulation to be closer to
Delaunay, for any given pair of triangulations?

Considering a single decomposition element to an-
swer this question, there is clear distinction between the
forms of decomposition: quadrilateral-based metrics do
not take other points into account, contrasting the other
two forms; edge-based metrics use angles and lengths,
whereas triangle-based metrics use area ratios instead.
We thus focus here on comparisons between metrics us-
ing the same form of decomposition. We study how
the metrics differ from each other, and what properties
they value. Specifically, for each comparison of metrics
µ and µ′, we show that there are triangulations T and

T ′, such that µ(T) = µ(T ′) and µ′(T) > µ′(T ′). Such
an example answers the above question of making the
same judgments negatively.

Quadrilateral-based metrics. Our three
quadrilateral-based metrics use only four points in
measuring one element. Yet, we show that each metric
evaluates a different facet of being near-Delaunay.
Note that a (convex) quadrilateral is immediately a
triangulation on this point set.

The Opposing Angles metric does not consider how
the two summed angles are distributed over the two tri-
angles. Even a very flat triangle (angle approaching
π) can be offset a very tall triangle (angle approach-
ing 0). Yet, these angles behave very differently from
the distances between the circumcenters and thus the
Dual Edge Ratio and Dual Area Overlap. Thus, we can
construct two quadrilaterals (see Fig. 9): one has very
similar triangles, while the other has very different tri-
angles, but both have the same edge (u, v). Whereas
the Opposing Angles metric scores the same on both,
we see readily that the Dual Edge Ratio and Dual Area
Overlap score differently.

Comparing the Dual Edge Ratio to the Dual Area
Overlap, we see that the former is based purely on the
distance between the circumcenters, whereas the latter
depends also on the shape of the triangles. This allows

106◦

104◦

150◦

60◦

u v u v

Figure 9: Two quadrilaterals with equal (sum of) Op-
posing Angles, but different Dual Edge Ratio (orange)
and Dual Area Overlap (red).

Figure 10: Two quadrilaterals with equal Dual Edge
Ratio (orange) and different Dual Area Overlap (Red).

7

33rd Canadian Conference on Computational Geometry, 2021

us to construct another two quadrilaterals (see Fig. 10):
we move the opposing points along their defined cir-
cumcircles so as to not move the circumcenters, while
changing the area of overlap.

Edge-based metrics. We have two metrics here: Lens
and Shrunk Circle. As already mentioned in the previ-
ous sections, these differ by how they treat points on the
different sides of the edge. Whereas the Lens measure
treats these independently, the Shrunk Circle measure
requires an integrated consideration of all points. This
allows us to construct two triangulations again, using
only four points in convex position (see Fig. 11): we
keep the Lens measure constant, by moving one of the
vertices over the defining arc, thus keeping the tangent
at u constant as well; in contrast, the Shrunk Circle
metric in the first example uses a circle that encom-
passes a large part of the defining arc of the Lens – by
placing the point there, we can force the circle to shrink
further and cover less of the edge (u, v).

u v u v

Figure 11: Two edges with equal Lens (blue, green)
different Shrunk Circle (orange).

Triangle-based metrics. Finally, we consider the two
triangle-based metrics. They behave somewhat simi-
larly with respect to each other as the edge-based met-
rics do: whereas the Triangular Lens works with inde-
pendent arcs per edge, the Shrunk Circumcircle uses a
single circle that must overlap each of the three edges.
We can thus follow the same principle to show two trian-
gles in a point set that score equally on the Triangular
Lens, but differently on the Shrunk Circumcircle, by
moving the points along the arcs of the former to force
the defining circle of the latter to shrink (see Fig. 12).

Figure 12: Two triangles with equal Triangular Lens
(blue) and different Shrunk Circumcircle (orange).

4 Experiments

Here we explore what the most Delaunay-like triangu-
lation of a point set looks like, for each of our metrics,
given different constraints that can force a triangulation
to be non-Delaunay. For a point set, we try all trian-
gulations that adhere to the given constraints to find
the optimized triangulation that scores best according
to each metric. We use small sets of only 10 points, to
ensure that this is feasible.

Constraints. We consider four types of constraints:
constrained edges, a lower bound or upper bound on
the total edge length, and a maximum degree.

For constrained edges, we are given a set of edges that
must be included in the triangulation. The constrained
edges are handpicked edges, which we consider to be
“interesting”. Most importantly the constrained edges
are not in the Delaunay triangulation, are not chord
of the convex hull, and lie somewhat close to another
point. This is the same constraint as for the CDT and
hence we may also compare how this structure compares
to our result.

The length of the triangulation is the sum over the
lengths of its edges. As the Delaunay triangulation nei-
ther minimizes nor maximizes the length, we can use
an upper bound (maximum length) or a lower bound
(minimum length), to constrain the triangulation to be
non-Delaunay. Specifically, we use either 1.2 times the
length of the Delaunay triangulation as a lower bound,
or 0.8 times the length of the Delaunay triangulation
as an upper bound. However, since the Delaunay tri-
angulation is inherently short for many point sets, such
triangulations often do not exist. We hence also create
a special point set where the Delaunay triangulation is
longer than most other triangulations, to see the differ-
ences between metrics.

Bounding the maximum degree means we consider
only triangulations for which all vertices have degree at
most a given constant. We use maximum degree 5 in
our experiment. This number is sometimes exceeded by
the Delaunay triangulation, but still allows for different
triangulations of the same point set.

Aggregation. For our optimized triangulations, we
have to evaluate each metric on the entire triangula-
tion. So far, we have left the method of aggregation
out of our considerations. For the purpose of our ex-
periment, we consider two methods: using the sum and
using bottleneck values.

The sum is a natural way to aggregate the values of
a triangulation T , such that all decomposition elements
(quadrilaterals, edges or triangles) have an impact on
the triangulation. For quadrilateral-based metrics, we
minimize the sum; otherwise, we maximize it.

Using bottleneck values means we focus on the worst-
case element (maximum for quadrilateral-based metrics,

8

CCCG 2021, Halifax, Canada, August 10–12, 2021

minimum for our other metrics). The goal of this ap-
proach is to let the worst value be the deciding factor. A
problem with this method is that there can be two dif-
ferent triangulations that score the same, as they both
include the same bottleneck. Hence, we compare tri-
angulations lexicographically: this means that the ele-
ments are sorted (increasingly for quadrilateral-based,
decreasingly for other metrics) and the first element in
which the triangulations differ, determines which trian-
gulation is closer to Delaunay.

Results. Tables 3 through 10 in the full version [21]
show our experimental results; Table 2 contains the
most relevant excerpts. For the constrained edges, we
show the CDT for comparison, using red edges to indi-
cate the constraints. For the other constraints, we show
the Delaunay triangulation for comparison. In both
cases, the optimized triangulations use green markings
to show edges that are different from the comparison.

Table 3 in [21] shows optimized triangulations with
constrained edges using sum aggregation. We observe
that most metrics are always similar to the CDT for
such random point sets. The only differences are for
Dual Edge Ratio and Dual Area Overlap: each time
Dual Edge Ratio is different from the CDT, Dual Area
Overlap is also different, though not necessarily vice
versa. One exception is for Shrunk Circle. This suggests
to us that, at least in small random cases, our metrics
capture near-Delaunay quite well, as the CDT is an es-
tablished way of getting a Delaunay-like triangulation,
for these constraints. Using bottleneck aggregation (Ta-
ble 4 in [21]), we observe that the quadrilateral metrics
often behave similarly and are regularly different from
the CDT. With one exception, the other optimized tri-
angulations are again all identical to the CDT.

Tables 5 and 6 in [21] show the optimized triangula-
tions with a minimum-length constraint. We can com-
pare the different optimizations to empirically evaluate
the behavior of the metrics. We observe that in the
sum aggregation quadrilateral-based metrics generally
behave differently than the other metrics. However,
this distinction is less clear using the bottleneck aggre-
gation. Furthermore, with bottleneck aggregation the
Shrunk Circle metric often produces a unique triangula-
tion. Note that this is the same case that was excepting
from the general trend for constrained edges.

Table 7 and 8 in [21] show the optimized triangu-
lation with a maximum-length constraint. If no such
triangulation exists, we simply show the Delaunay tri-
angulation. In every point set except the one specifically
created for this constraint, there was no such triangula-
tion. For this case, we observe that the Dual Edge Ratio
and Dual Area overlap produce different triangulations
from the other metrics. In the bottleneck variant, we
also see that the Lens measure procedures another dis-
tinct triangulation.

Table 9 and 10 in [21] shows the optimization with a
maximum-degree constraint. In only few of the random
point sets, the maximum degree exceeds the constraint.
Most metrics flip the same edge, the notable exception
being the Shrunk Circumcircle metric which flips two
different edges for one case (shown). The two other
point sets shown were specifically created for this case.
We see considerable differences here between metrics, as
well as between sum and bottleneck aggregation.

With the wheel example here, we may perhaps see the
one case where there is a somewhat clear case of a “visu-
ally nice” optimized triangulation. Specifically, a some-
what regular pattern emerges for Lens and Shrunk Cir-
cle using sum aggregation as well as all metrics except
for the Dual Edge Ratio and Dual Area Overlap using
bottleneck aggregation – in the other cases we see very
skinny triangles occurring. Whether this form of being
near-Delaunay, however, is the most useful remains pos-
sibly context dependent. This hints at bottleneck aggre-
gation perhaps being more useful – indeed, it matches
the traditional lexicographic optimization of the mini-
mum angle that the Delaunay triangulation achieves.

5 Discussion

With a suite of metrics, we now have a common frame-
work to think about situations where we need a good
(Delaunay-like) triangulation to compute with, but con-
straints such as bounded degree prevent us from actually
using the Delaunay triangulation itself. We have shown
how these metrics differ among themselves as well as
how they result in different triangulations when consid-
ering optimizing under the constraint of including given
edges (like the Constrained Delaunay Triangulation).

We leave to future work to establish efficient algo-
rithms to compute the best triangulation (given one of
the metrics) given a set of constraints. It may further
be interesting to investigate how humans (or computa-
tional geometers) assess the quality of a triangulation,
how close it is to being Delaunay, and how this relates
to the metrics provided here. This may uncover that at
least to match intuition, we may need combinations of
metrics, or possibly a different metric altogether.

A possible avenue for further metrics is to consider the
empty ellipse as the generalization of the empty circle,
trying to optimize for the ellipse’s aspect ratio. This
seems mostly relevant for edge-based or quadrilateral-
based metrics, since triangles do not necessarily allow
for empty ellipses passing through their corners. But
for a single edge or quadrilateral, a general ellipse seems
to provide too much freedom, allowing for somewhat
arbitrary-seeming results. Restricting one of the axes of
the ellipse to be parallel to the defining edge may offer
a solution; yet, this seems to cause a counterintuitive
relation between the two sides of the edge.

9

33rd Canadian Conference on Computational Geometry, 2021

Table 2: Excerpt with the most relevant results, summarizing the appendix in the full version [21].

Optimizing with constrained edges (Sum aggregation)

CDT
Opposing

Angles
Dual Edge

Ratio

Dual Area
overlap

Lens
Shrunk
Circle

Triangular
Lens

Shrunk Cir-
cumcircle

Optimizing with constrained edges (Bottleneck aggregation)

CDT
Opposing

Angles
Dual Edge

Ratio

Dual Area
overlap

Lens
Shrunk
Circle

Triangular
Lens

Shrunk Cir-
cumcircle

Optimizing with minimum length 1.2 Delaunay length (Sum aggregation)

DT
Opposing

Angles
Dual Edge

Ratio

Dual Area
overlap

Lens
Shrunk
Circle

Triangular
Lens

Shrunk Cir-
cumcircle

Optimizing with maximum length 0.8 Delaunay length (Bottleneck aggregation)

DT
Opposing

Angles
Dual Edge

Ratio

Dual Area
overlap

Lens
Shrunk
Circle

Triangular
Lens

Shrunk Cir-
cumcircle

Optimizing with maximum degree 5 (Sum aggregation)

DT
Opposing

Angles
Dual Edge

Ratio

Dual Area
overlap

Lens
Shrunk
Circle

Triangular
Lens

Shrunk Cir-
cumcircle

Optimizing with maximum degree 5 (Bottleneck aggregation)

DT
Opposing

Angles
Dual Edge

Ratio

Dual Area
overlap

Lens
Shrunk
Circle

Triangular
Lens

Shrunk Cir-
cumcircle

10

CCCG 2021, Halifax, Canada, August 10–12, 2021

References

[1] O. Aichholzer, F. Hurtado, and M. Noy. A lower bound
on the number of triangulations of planar point sets.
Computational Geometry, 29(2):135–145, 2004.

[2] M. Bern, H. Edelsbrunner, D. Eppstein, S. Mitchell,
and T. S. Tan. Edge insertion for optimal triangula-
tions. Discrete & Computational Geometry, 10(1):47–
65, 1993.

[3] L. P. Chew. Constrained Delaunay triangulations. Al-
gorithmica, 4(1-4):97–108, 1989.

[4] D. P. Dobkin, S. J. Friedman, and K. J. Supowit. Delau-
nay graphs are almost as good as complete graphs. Dis-
crete & Computational Geometry, 5(4):399–407, 1990.

[5] E. F. D’Azevedo and R. B. Simpson. On optimal inter-
polation triangle incidences. SIAM Journal on Scien-
tific and Statistical Computing, 10(6):1063–1075, 1989.

[6] P. Giannopoulos, R. Klein, C. Knauer, M. Kutz, and
D. Marx. Computing geometric minimum-dilation
graphs is NP-hard. International Journal of Computa-
tional Geometry & Applications, 20(02):147–173, 2010.

[7] J. Gudmundsson, M. Hammar, and M. van Kreveld.
Higher order Delaunay triangulations. Computational
Geometry, 23(1):85–98, 2002.

[8] J. Gudmundsson and C. Knauer. Dilation and detours
in geometric networks. In T. F. Gonzalez, editor, Hand-
book of Approximation Algorithms and Metaheuristics.
Chapman and Hall/CRC, 2007.

[9] K. Jansen. One strike against the min-max degree trian-
gulation problem. Computational Geometry, 3(2):107–
120, 1993.

[10] G. Kant and H. L. Bodlaender. Triangulating planar
graphs while minimizing the maximum degree. Infor-
mation and Computation, 135(1):1–14, 1997.

[11] J. M. Keil and C. A. Gutwin. Classes of graphs which
approximate the complete Euclidean graph. Discrete &
Computational Geometry, 7(1):13–28, 1992.

[12] C. L. Lawson. Software for C1 surface interpolation. In
Mathematical software, pages 161–194. Elsevier, 1977.

[13] D.-T. Lee and A. K. Lin. Generalized delaunay trian-
gulation for planar graphs. Discrete & Computational
Geometry, 1(3):201–217, 1986.

[14] P. Mullen, P. Memari, F. de Goes, and M. Desbrun.
HOT: Hodge-optimized triangulations. In Proc. ACM
SIGGRAPH 2011, Article 103, pages 1–12, 2011.

[15] W. Mulzer and G. Rote. Minimum-weight triangulation
is NP-hard. Journal of the ACM (JACM), 55(2):1–29,
2008.

[16] J. O’Rourke. Open problems from CCCG 2017, 2018.

[17] A. Pilz. Flip distance between triangulations of a pla-
nar point set is APX-hard. Computational Geometry,
47(5):589–604, 2014.

[18] V. T. Rajan. Optimality of the Delaunay triangulation
in Rd. Discrete & Computational Geometry, 12(2):189–
202, 1994.

[19] M. Sharir and A. Sheffer. Counting triangulations of
planar point sets. The Electronic Journal of Combina-
torics, 18(P70):1, 2011.

[20] R. Sibson. Locally equiangular triangulations. The
Computer Journal, 21(3):243–245, 1978.

[21] N. van Beusekom, K. Buchin, H. Koerts, W. Meule-
mans, B. Rodatz, and B. Speckmann. Near-Delaunay
Metrics, 2021. https://arxiv.org/abs/2106.11621.

[22] M. van Kreveld, M. Löffler, and R. I. Silveira. Opti-
mization for first order Delaunay triangulations. Com-
putational Geometry, 43(4):377–394, 2010.

11

CCCG 2021, Halifax, Canada, August 10–12, 2021

Shortcut Hulls: Vertex-restricted Outer Simplifications of Polygons

Annika Bonerath∗ Jan-Henrik Haunert† Joseph S. B. Mitchell‡ Benjamin Niedermann§

Abstract

Let P be a crossing-free polygon and C a set of short-
cuts, where each shortcut is a directed straight-line seg-
ment connecting two vertices of P . A shortcut hull of
P is another crossing-free polygon that encloses P and
whose oriented boundary is composed of elements from
C. Shortcut hulls find their application in geo-related
problems such as the simplification of contour lines. We
aim at a shortcut hull that linearly balances the enclosed
area and perimeter. If no holes in the shortcut hull
are allowed, the problem admits a straight-forward so-
lution via shortest paths. For the more challenging case
that the shortcut hull may contain holes, we present a
polynomial-time algorithm that is based on computing
a constrained, weighted triangulation of the input poly-
gon’s exterior. We use this problem as a starting point
for investigating further variants, e.g., restricting the
number of edges or bends. We demonstrate that short-
cut hulls can be used for drawing the rough extent of
point sets as well as for the schematization of polygons.

1 Introduction

The simplification of polygons finds a great number of
applications in geo-related problems. For example in
map generalization it is used to obtain abstract rep-
resentations of area features such as lakes, buildings,
or contour lines. A common technique, which origi-
nally stems from polyline simplification, is to restrict
the resulting polygon Q of a polygon P to the vertices
of P , which is also called a vertex-restricted simplifica-
tion [21, 25, 39]. In that case Q consists of straight
edges1 that are shortcuts between vertices of P . In the
classic problem definition of line and area simplification
the result Q may cross edges of P .

In this paper, we consider the vertex-restricted
crossing-free simplification of a polygon P considering
only shortcuts that lie in the exterior of P or are part of
the boundary of P . In contrast to other work, we con-
sider the shortcuts as input for our problem and do not
require special properties, e.g., that they are crossing-

∗University of Bonn, bonerath@igg.uni-bonn.de
†University of Bonn, haunert@igg.uni-bonn.de
‡Stony Brook University joseph.mitchell@stonybrook.edu
§University of Bonn, niedermann@igg.uni-bonn.de
1Throughout this paper, we use the term edge instead of

straight-line segment.

(a) (b) (c)

(d) (e) (f)

Figure 1: 1st column: Input polygon (blue) with a set
C of all possible shortcuts (gray). 2nd–3rd columns:
Optimal C-hulls (blue and red area) for different λ.

free, or that they comprise all possible shortcuts. The
result of the simplification is a shortcut hull Q of P pos-
sibly having holes. We emphasize that the edges of a
shortcut hull do not cross each other. Figure 1 shows
polygons (blue area) with all possible shortcuts and dif-
ferent choices of shortcut hulls (blue and red area). Such
hulls find their application when it is important that
the simplification contains the polygon. Figure 2 shows
the simplification of a network of lakes. We emphasize
that the lakes are connected to the exterior of the green
polygon at the bottom side. In that use case, it can be
desirable that the water area is only decreased to sus-
tain the area of the land occupied by important map
features. The degree of the simplification of Q can be
measured by its perimeter and enclosed area. While a
small perimeter indicates a strong simplification of P , a
small area gives evidence that Q adheres to P . In the
extreme case Q is either the convex hull of P minimiz-
ing the possible perimeter, or Q coincides with P min-
imizing the enclosed area. We present algorithms that
construct shortcut hulls of P that linearly balance these
two contrary criteria by a parameter λ ∈ [0, 1], which
specifies the degree of simplification. With increasing

12

33rd Canadian Conference on Computational Geometry, 2021

(a) input map (b) input polygon P

(c) optimal shortcut hull Q (d) simplified map

Figure 2: Simplification of a network of lakes in Sweden.

(a) (b) (c)

Figure 3: Weakly-simple polygons. (a)–(b) Valid input
polygon as the exterior is a connected region. (c) Invalid
input polygon as the exterior consists of two regions.

λ the enclosed area is increased, while the perimeter is
decreased. We show that for the case that Q must not
have holes we can reduce the problem to finding a cost-
minimal path in a directed acyclic graph that is based
on the given set of possible shortcuts. However, espe-
cially for the application in geovisualization, where it is
about the simplification of spatial structures, we deem
the support of holes in the simplification as an essential
key feature. For example, in Figure 2d the connections
between the lakes are not displayed anymore as they are
very narrow, while it is desirable to still show the large
lakes. We therefore investigate the case of shortcut hulls
with holes in greater detail.

Input Polygon. As input we expect a clockwise-
oriented polygon P that is weakly-simple, which means
that we allow vertices to lie in the interior of edges as
well as edges that point in opposite directions to lie
on top of each other; see Figure 3. In particular, the
edges of P do not cross each other. Such polygons are
more general than simple polygons and can be used to
describe more complex geometric objects such as the
faces of a graph embedded into the plane; see Figure 4

Figure 4: Shortcut hull of a minimum spanning tree.

for minimum spanning tree. For the input polygon P
we further require that its exterior is one connected re-
gion; we say that the exterior of P is connected ; see Fig-
ure 3. Hence, both a simple polygon and the outer face
of the plane embedding of a planar graph are possible
inputs. Finally, we emphasize that P may have holes.
We can handle every hole separately assuming that we
have inserted a narrow channel in P connecting it with
the exterior of P ; consider the lakes in Figure 2. We
can force the algorithm to fill the artificially introduced
channel with the interior of Q.

Formal Problem Definition. We are given a weakly-
simple polygon P with connected exterior and a set C
of directed edges in the exterior of P such that the
endpoints of the edges in C are vertices of P ; see Fig-
ure 5a. We call the elements in C shortcuts. A C-hull is
a weakly-simple polygon whose oriented boundary con-
sists only of directed edges from C, whose exterior is
connected, and that contains P . We allow C-hulls to
have holes. We observe that such holes can only lie in
the exterior of P . We are interested in a C-hull Q that
linearly balances the perimeter and enclosed area of Q.
Formally, we define the cost of a C-hull Q as

c(Q) = λ · cP(Q) + (1− λ) · cA(Q), (1)

where λ ∈ [0, 1] is a given constant balancing the
perimeter cP(Q) and the area cA(Q) of Q. Further, Q is
optimal if for every C-hull Q′ of P it holds c(Q) ≤ c(Q′).

ShortcutHull.
given: weakly-simple polygon P with n vertices

and connected exterior, set C of shortcuts
of P , and λ ∈ [0, 1]

find: optimal C-hull Q of P (if it exists)

Further, we observe that it holds |C| ∈ O(n2) as the
edges of C have their endpoints on the boundary of P .

Our Contribution. We first discuss how to construct
an optimal C-hull in O(|C|) time for the case that it
must not have holes (Section 3). Afterwards, we turn
our focus to C-hulls that may have holes (Sections 4–6).
In particular, we show that finding an optimal C-hull Q
of P is closely related to finding a triangulation T of
the exterior of P such that each triangle ∆ ∈ T either

13

CCCG 2021, Halifax, Canada, August 10–12, 2021

P

C

(a) input P and C

Q

(b) C-hull Q

e

P [e]

(c) pocket P [e] + e

Figure 5: The input, a solution, and a subinstance for
an instance of the problem.

(a) χ = 1 (b) χ = 7

Figure 6: Two examples of set C with different spa-
tial complexities χ. (a) C-triangulation and C-hull. (b)
connected components of the crossing graph.

belongs to the interior or exterior of Q; see Figure 6a.
We present an algorithm that solves ShortcutHull in
O(n2) time if we forbid holes and in O(n3) time in the
general case. Moreover, in the case that the edges of
C do not cross each other, it runs in O(n) time. More
generally, we analyse the running time based on the
structure of C. Let S be the region between P and the
convex hull of P . Let G be the crossing graph of C, i.e.,
each node of G corresponds to an edge in C and two
nodes of G are adjacent if the corresponding edges in
C cross each other. The spatial complexity of C is the
smallest number χ ∈ N for which every connected com-
ponent of G can be enclosed by a polygon with χ edges
that lies in the exterior of P and only consists of ver-
tices from P ; see Figure 6. We show that the purposed
algorithm runs in O(χ3 +nχ) time. We emphasize that
χ ∈ O(n). Moreover, we present two variants of C-hulls
that restrict the number of permitted edges or bends.
We further discuss relations of shortcut hulls with re-
spect to problems from application in cartography and
computational geometry (Section 7).

2 Related Work

In the following, we consider two major research fields
that are closely related to our work. At first, the field of
representing geometric objects by less complex and pos-
sibly schematized geometric objects and, secondly, the
field of constrained and weighted triangulations. Ap-
plication fields for the representation of geometric ob-
jects by less-complex and possibly schematized objects
are found, for example, in cartography: administrative

borders [8, 12, 27, 52], building footprints [29, 54], and
metro maps [31, 43, 55]. In particular, we want to
point out the generalization of isobathymetric lines in
sea charts where the simplified line should lie on the
downhill side of the original line to avoid the elimina-
tion of shallows [56]. In this context, it is important
to find a good balance between the preservation of the
information and the legibility of the visualization [13].
Considering a polygon as input geometry, a basic tech-
nique for simplification and schematization is the con-
vex hull [6, 18, 26, 45]. An approach for rectilinear input
polygons are tight rectilinear hulls [10]. Multiple other
approaches for polygonal hulls of polygons exist—some
of them can be solved in polynomial time [29], while oth-
ers are shown to be NP-hard [30]. A closely related field
is the topologically correct simplification and schemati-
zation of polygonal subdivisions [12, 24, 38, 40, 53]. For
the case that multiple geometric objects are the input of
the problem, there exist several techniques for combin-
ing the aggregation and representation by a more simple
geometry. In the case that the input is a set of polygons,
a common technique is to use a partition of the plane,
such as a triangulation, as basis [17, 32, 36, 37, 46, 50].
In the case that the input is a set of points, we aim at
representing this by a polygonal hull. Many approaches
such as α-shapes [23] and χ-shapes [22] use a triangu-
lation as their basis. Another approach is based on
shortest-paths [19]. Note that there also exists work
on combining the aggregation of point sets resulting in
schematized polygons [11, 54]. For considering polylines
as input there exists work on computing an enclosing
simple polygon based on the Delaunay triangulation [3].
The schematization of polylines is also closely related to
our approach. On the one hand, there is the schemati-
zation of a polyline inside a polygon or between obsta-
cles [2, 35, 41, 49]. Alternatively, there also exists work
on the simplification of a polyline based on a Delaunay
triangulation [3, 4, 5]. For the general simplification
of polylines we also refer to the Douglas-Peucker algo-
rithm, which is most widely applied in cartography [20],
and similar approaches [1, 42, 44].

Triangulating a polygon is widely studied in com-
putational geometry. Triangulation of a simple poly-
gon can be done in worst-case linear time [14]. A
polygon with h holes, having in total n vertices, can
be triangulated in O(n log n) time [28] or even O(n +
h log1+ε h) time [7]. Our approach is particularly related
to minimum-weight triangulations [47] and constrained
triangulations [15, 16, 33, 34, 48].

3 Computing Optimal Shortcut Hulls without Holes

Let GC be the graph induced by the edges in C. We
call GC the geometric graph of C. If we do not allow
the shortcut hull to have holes, we can compute an op-

14

33rd Canadian Conference on Computational Geometry, 2021

Bq1 q2

q3 q4

p1
p2

pn

...

(a) B

D

e*

(b) D

e

D[e]

(c) pocket of e

Figure 7: Containing box B and sliced donut D of P .

timal C-hull Q based on a cost-minimal path in GC ; see
Figure 5b. For each edge e let P [e] be the polyline of
P that is enclosed by e. We call the polygon describ-
ing the area enclosed by e and P [e] the pocket of e; see
Figure 5c. We direct e of GC such that it starts at the
starting point of P [e] and ends at the endpoint of P [e].
For each edge e we introduce costs that rate the length
cP(e) of e as well as the area cA(P [e]) of the pocket of e
with respect to λ, i.e. c(e) = λ ·cL(e)+(1−λ) ·cA(P [e]).

Observation 1 The vertices of the convex hull of P
are part of the boundary of any shortcut hull of P .

Due to Observation 1, any C-hull of P contains the top-
most vertex v of P . Hence, GC does not contain any
edge e that contains v in its pocket and when removing
v from GC we obtain a directed acyclic graph. We use
this property to prove that a cost-minimal path in GC
corresponds to an optimal C-hull.

Theorem 1 The problem ShortcutHull without
holes can be solved in O(|C|) time. In particular, in
the case that the edges in C do not cross each other it
can be solved in O(n) time and O(n2) time otherwise.

The proof of Theorem 1 is deferred to the full version [9].
If we allow Q to have holes, we cannot rate the costs for
the area of a pocket in advance.

4 Structural Results for Shortcut Hulls with Holes

In this section, we present structural results for Short-
cutHull, which we utilize for an algorithm in Sec-
tion 5. We allow the shortcut hull to have holes.

4.1 Basic Concepts

Let P be a weakly-simple polygon with connected exte-
rior. Let p1, . . . , pn be the vertices of P ; see Figure 7a.
We assume that the topmost vertex of P is uniquely
defined; we always can rotate P such that this is the
case. We denote that vertex by p1 and assume that P
is clockwise oriented. Further, let C be a set of shortcuts
of P and λ ∈ [0, 1]; see Figure 5a. Due to Observation 1,
any C-hull of P contains p1.

First we introduce concepts for the description of the
structural results and the algorithm. Let B be an axis-
aligned rectangle such that it is slightly larger than the
bounding box of P ; see Figure 7a. Let q1, . . . , q4 be
the vertices of B in clockwise order such that q1 is the
top-left corner of B. We require that the diagonal edges
q1q3 and q2q4 intersect P , which is always possible. We
call B a containing box of P . Let D be the polygon
q1 . . . q4q1p1pn . . . p1q1. We call D a sliced donut of P ;
see Figure 7b. We observe that D is a weakly-simply
polygon whose interior is one connected region. Further,
we call e? = p1q1 the cut edge of D. For an edge e in the
interior of D connecting two vertices of D let D[e] be
the polyline of D that connects the same vertices such
that e? is not contained; see Figure 7c. Let D[e] + e be
the polygon that we obtain by concatenating D[e] and
e such that e? lies in the exterior of D[e] + e. Note that
if e ∈ C then D[e] = P [e]. We call D[e] + e the pocket
e. In particular, we define D to be the pocket of e?.

Observation 2 The edges of a C-hull of P are con-
tained in the sliced donut D.

In the following, we define a set C+ of edges in D
with C ⊆ C+ that we use for constructing triangulations
of D, which encode the shortcut hulls. Generally, a
triangulation of a polygon H is a superset of the edges
of H such that they partition the interior of H into
triangles. Further, for a given set E of edges an E-
triangulation of H is a triangulation of H that only
consists of edges from E. Moreover, we say that a set E
of edges is part of a triangulation T if E is a subset of
the edges of T . Conversely, we also say that T contains
E if E is part of T . Note that the edges of H are part
of any E-triangulation of H.

We call a set C+ of edges with C ⊆ C+ an enrichment
of the shortcuts C and the sliced donut D if (1) ev-
ery edge of C+ is contained in D, (2) every edge of
C+ starts and ends at vertices of D, and (3) for ev-
ery set C′ ⊆ C of pair-wisely non-crossing edges there
is a C+-triangulation T of D such that C′ is part of T .
First, we observe that C+ is well-defined as every edge
in C satisfies the first two properties. Further, by def-
inition for any C-hull Q there is a C+-triangulation T
of D that contains Q. Hence, as an intermediate step
our algorithm for computing an optimal C-hull Q cre-
ates an enrichment of C and D, and then constructs
a C+-triangulation that contains Q. In Section 4.2
we discuss the structural correspondences between C+-
triangulations of D and (optimal) C-hulls. In Section 4.3
we then show how to construct C+. For example a sim-
ple approach for an enrichment of C is the set of all pos-
sible shortcuts in D. We observe that any enrichment
C+ of C has O(n2) edges. In general, the size of C+

can be described by the spatial complexity of C, which
impacts the running time of our algorithm (Section 5).

15

CCCG 2021, Halifax, Canada, August 10–12, 2021

e?

Q

(a) Q is part of T

e?

(b) labels

e?

u
eu

ρ

(c) dual graph G?

Figure 8: C+-triangulation T . (b) The red triangles are
active, while all other triangles are inactive. (c) The
restricted dual graph G? of T forms a tree with root ρ.

4.2 From C+-Triangulations to C-Hulls

In this section, we assume that we are given an enrich-
ment C+ for the set of shortcuts C and a sliced donut
D. Let T be a C+-triangulation of D; see Figure 8.

Observation 3 For each enrichment C+ of C and each
C-hull Q there exists a C+-triangulation T of the sliced
donut D such that Q is part of T .

Let T be a C+-triangulation of D such that the C-
hull Q is part of T ; see Figure 8a. We can partition the
set of triangles of T in those that are contained in the
interior of Q and those that are contained in the exterior
of Q. We call the former ones active and the latter ones
inactive; see Figure 8b. Further, we call an edge e of
T a separator if (1) it is part of P and adjacent to an
inactive triangle, or (2) it is adjacent to both an active
and an inactive triangle. Conversely, let ` : T → {0, 1}
be a labeling of T that assigns to each triangle ∆ of T
whether it is active (`(∆) = 1) or inactive (`(∆) = 0).
We call the pair T = (T, `) a labeled C+-triangulation.
From Observation 3 we obtain the next observation.

Observation 4 For each enrichment C+ of C and each
C-hull Q there exists a labeled C+-triangulation such that
its separators stem from C and form Q.

Let T = (T, `) be a labeled C+-triangulation of the
interior of a polygon H. We denote the set of separators
of T by ST. We define

cP(ST) =
∑

e∈ST

cP(e) and cA(T) =
∑

∆∈T,
`(∆)=1

cA(∆),

where cP(e) denotes the length of e and cA(∆) denotes
the area of ∆. The costs of T are then defined as

c(T) = λ · cP(ST) + (1− λ) · cA(T).

For any e ∈ C+ \ C we define cP(e) =∞. Thus, we have
c(T) <∞ if and only if ST ⊆ C. We call a labeled C+-
triangulation T of H optimal if there is no other labeled
C+-triangulation T′ of H with c(T′) < c(T).

Next, we show that a labeled C+-triangulation T =
(T, `) that is optimal can be recursively constructed
based on optimal sub-triangulations. Let G? be the re-
stricted dual graph of T , i.e., for each triangle G? has a
node and two nodes are adjacent iff the corresponding
triangles are adjacent in T ; see Figure 8c.

Lemma 1 The restricted dual graph G? of a C+-
triangulation T of D is a binary tree.

Proof. As each edge of T starts and ends at the bound-
ary of D, each edge of T splits D into two disjoint re-
gions. Hence, G? is a tree. Further, since each node of
G? corresponds to a triangle of T , each node of G? has
at most two child nodes. �

We call G? a decomposition tree of D. Let ρ be the
node of G? that corresponds to the triangle of T that
is adjacent to the cut edge e? of D; as e? is a boundary
edge of D, this triangle is uniquely defined. We assume
that ρ is the root of G?; see Figure 8c. Let G?

u be an
arbitrary sub-tree of G? that is rooted at a node u of
G?. Further, let eu be the edge of the triangle ∆u of u
that is not adjacent to the triangles of the child nodes of
u; we call eu the base edge of ∆u. The triangles of the
nodes of G?

u form a C+-triangulation Tu of the pocket
Au = D[eu]+eu of eu. Thus, G?

u is a decomposition tree
of Au. A labeled C+-sub-triangulation Tu = (Tu, `u)
consists of the C+-triangulation Tu of Au with Tu ⊆ T
and the labeling `u with `u(∆) = `(∆) for every ∆ ∈ Tu.

Lemma 2 Let T be a labeled C+-triangulation of D
that is optimal. Let Tu = (Tu, `u) be the labeled C+-
sub-triangulation of T rooted at the node u and let
T′u = (T ′u, `

′
u) be an arbitrary labeled C+-triangulation

of the same region. We denote the triangles of Tu and
T′u adjacent to eu by ∆u and ∆′u, respectively.

If ∆u and ∆′u have the same labels, i.e., `u(∆u) =
`′u(∆′u), then c(Tu) ≤ c(T′u).

The proof is deferred to the full version [9]. We use
Lemma 2 for a dynamic programming approach that
yields a labeled C+-triangulation T of D that is optimal.

Lemma 3 Let T be a labeled C+-triangulation of D
that is optimal and has cost c(T) < ∞. The separa-
tors of T form an optimal C-hull of P .

Proof. We show the following two claims, which proves
the lemma. (1) For every C-hull Q of P there is a labeled
C+-triangulation T of D such that the separators of T
form Q and c(T) = c(Q). (2) For every labeled C+-
triangulation T of D with c(T) < ∞ the separators of
T form a C-hull Q with c(T) = c(Q).

Claim 1. Let Q be a C-hull of P . By the definition
of C+ there is a C+-triangulation T of D such that Q is
part of T . We define the labeling ` such that `(∆) = 1

16

33rd Canadian Conference on Computational Geometry, 2021

e?
v1

v2

v5v6
v7

v8

v9

v10

v4

v3

q1 q2

q3q4

(a)

p1

p2

p3
p4

p5

p6

q1 q2

q3q4

K1

K2

K3

K5

K6

K4

Ze′ Ze

e
e′

(b)

Figure 9: Proof of Lemma 3. (a) The triangles inci-
dent to the vertices q1, q2, q3 and q4 form a path in the
dual graph of the labeled triangulation T. (b) The ver-
tices p1, . . . , p5 form a C+-hull of P containing all active
triangles (red) of T.

e

e2
∆

e1
e

Ke

(a)

e∆
e1

e2

Ke

(b)

e
e1

e2

∆Ke

(c)

Figure 10: Inductive construction of the boundary
path Ke of an edge e that is a base edge of an inac-
tive triangle ∆. (a) Base case. (b) e1 is a base edge of
an inactive triangle, and e2 is a separator. (c) Both e1

and e2 are base edges of inactive triangles.

for every triangle ∆ ∈ T that is contained in the inte-
rior of Q and `(∆) = 0 for every other triangle ∆ ∈ T .
Hence, the separators of the labeled C+-triangulation
T = (T, `) are the edges of Q. Further, by the construc-
tion of T we have c(T) = c(Q). This proves Claim 1.

Claim 2. Let T = (T, `) be a C+-triangulation of
D with c(T) < ∞ and let ST be the separators of T.
By the definition of the costs of T we have ST ⊆ C.
Moreover, as T is a triangulation, the edges in ST do
not cross each other. We show that the edges in ST

form a C-hull Q with c(Q) = c(T). Let G? be the dual
graph of T . As the diagonal edges of the containing box
B intersect P , each triangle of T that is incident to one
of the vertices of B is also incident to a vertex of P ;
see Figure 9a. The vertices of the triangles incident to
the vertices of B form a path v1, . . . , vk in G? such v1 is
the root of G? and vk is a leaf. We denote the triangles
represented by this path by ∆1, . . . ,∆k, respectively.

Let p1, . . . , pl be the vertices of P in the order as they
are incident to the triangles ∆1, . . . ,∆k in clockwise or-
der; see Figure 9a. We define pl+1 = p1. The vertices
p1, . . . , pl form a weakly-simple polygon Q′ that con-
tains P ; if P crossed Q′, this would contradict that the
vertices are incident to the disjoint triangles ∆1, . . . ,∆k.
We observe that Q′ is a C+-hull of P without holes. Let
T ′ ⊆ T be the set of triangles that are contained in Q′

and let E′ be the edges of these triangles. We first show
that for each edge e ∈ E′ that is a base edge of an inac-
tive triangle in T there is a path Ke in the pocket of e
such that (1) Ke only consists of edges from ST, (2) Ke

connects the endpoints of e, and (3) the polygon Ke + e
only contains inactive triangles of T. We call Ke the
boundary path of e; see Figure 10. Later, we use these
boundary paths to assemble Q.

Let ∆ be the inactive triangle of which e is the base
edge and let e1 and e2 be the other two edges of ∆. We
do an induction over the number of triangles of T that
are contained in the pocket of e. If the pocket of e only
contains ∆, both edges e1 and e2 are edges of P ; see
Figure 10a. Hence, by definition they are separators.
We define Ke as the path e1 + e2, which satisfies the
three requirements above. So assume that the pocket
of e contains more than one triangle; see Figure 10b–c.
If e1 is not a separator, then it is the base edge of an
inactive triangle. Hence, by induction there is a path
Ke1 that satisfies the requirements above. If e1 is a
separator, we define Ke1 = e1. In the same way we
define a path Ke2 for the edge e2. The concatenation
Ke1 +Ke2 forms a path that satisfies the requirements
above, which proves the existence of the boundary path
for an edge e ∈ E′.

We now describe the construction of the boundary of
Q. For a pair pi, pi+1 with 1 ≤ i < l the adjacent trian-
gle incident to one of the vertices of B is inactive. Let
Ki = pipi+1 if pipi+1 is a separator. Otherwise, pipi+1

is the base edge of an inactive triangle in T. Thus, it has
a boundary path Kpipi+1 and we define Ki as Ke. The
concatenation K1 + · · ·+Kl forms the boundary B of a
weakly-simple polygon Q that encloses P ; see Figure 9b.
By construction it consists of edges from C.

Finally, we show how to construct the holes of Q. Let
e ∈ ST be a separator that is contained in the interior
of B and that is a base edge of an inactive triangle; see
e and e′ in Figure 9b. The polygon Ze that consists
of e and the boundary path Ke only contains inactive
triangles of T and is entirely contained in B. Further,
for any pair e and e′ of such separators in the interior of
B the interiors of the polygons Ze and Ze′ are disjoint.
Hence, we set these polygons to be the holes of Q. Thus,
we obtain a C-hull Q of P with holes such that the
inactive triangles of T lie in the exterior of Q, while all
active triangles lie in the interior of Q. This implies that
c(Q) = c(T), which concludes the proof of Claim 2. �

4.3 From C to C+

Solving ShortcutHull relies on the considered enrich-
ment C+. For an edge e ∈ C+ let δe be the number of
triangles that can be formed by e and two other edges
from C+, and let δ(C+) be the maximum δe over all
edges e in C+. In Section 5 we show that the problem
can be solved in O(|C+| · δ(C+)) time.

17

CCCG 2021, Halifax, Canada, August 10–12, 2021

P

D

C

(a) P , C, and D

Ci

Ri

P

D

C

(b) crossing components

P

D

T

(c) edges ET

P

D

C

T

(d) C+

Figure 11: Obtaining the enrichment C+ from C.

A simple choice for C+ is the set of all edges that lie
in D and connect vertices of D. It is an enrichment of
C as it contains any choice of C and any triangulation of
D that is based on the vertices of D is a subset of C+.

Observation 5 There is an enrichment C+ of C with
|C+| ∈ O(n2) and δ(C+) ∈ O(n).

If C has no crossings, we can do much better. We first
observe that the edges of any triangulation T of the
sliced donut D are an enrichment of C and D if C is a
subset of these edges. Hence, we can define an enrich-
ment as the set of edges of a triangulation T of D such
that the edges of C are part of T ; for this purpose we can
for example utilize constrained Delaunay triangulations,
but also other triangulations are possible.

Observation 6 If the edges in C do not cross, C has
an enrichment C+ with |C+| ∈ O(n) and δ(C+) ∈ O(1).

In the following we generalize both constructions of
C+ and relate |C+| and δ(C+) to the number n of vertices
of P and the spatial complexity χ of C. Let C1, . . . , Ch
be subsets of C such that two edges e ∈ Ci and e′ ∈ Cj
with 1 ≤ i, j ≤ h cross each other if and only if i = j; see
Figure 11. We call Ci a crossing component of C. Let Ri

be the polygon in D with fewest edges, that is defined by
vertices of P and contains Ci. We call Ri the region of
Ci. Let C+ be the set of edges that contains (i) all edges
of C, (ii) the edges ET of a constrained triangulation for
the interior of D, and (iii) for each 1 ≤ i ≤ h the set
ERi

of all possible shortcuts of region Ri such that these
start and end at vertices of Ri and are contained in D.
Hence, an enrichment is of size O(χ2 +n) as each region
Ri has at most χ vertices.

Theorem 2 There is an enrichment C+ of C with
|C+| ∈ O(χ2 + n) and δ(C+) ∈ O(χ).

Proof. Let C+ be the set of edges that contains all
edges of C, ET , and ER1

, . . . , ERh
. We show that

C+ is an enrichment, by proving that for each set
C′ ⊆ C of pair-wisely non-crossing edges there is a C+-
triangulation T of D such that C′ is part of T .

Observe that the regions R1, . . . , Rh of crossing com-
ponents induce a partition R of D that contains
R1, . . . , Rh and regions R′1, . . . , R

′
g partitioning D \⋃h

i=1Ri. Since an edge e ∈ C+ cannot cross the bound-
ary of two regions R,R′ ∈ R, the triangulation of each
region R ∈ R can be constructed independently.

Let E be the edges of C′ that are contained in region
R ∈ R. If R is a region of a crossing component, C+

contains all shortcuts in this region. Since the edges of
E are crossing-free, there exists a C+-triangulation of
R that is constrained to E. Thus, the edges of E are
part of a C+-triangulation of R. If R is not a region of
a crossing component, the enrichment C+ contains the
edges of a triangulation of D constrained to all edges
of C that are contained in R. Since E ⊆ C, this tri-
angulation contains all edges of E. By joining the C+-
triangulations for each region of the partition, we obtain
a C+-triangulation of D such that C′ is part of it. �

5 Computing Optimal Shortcut Hulls with Holes

The core of our algorithm is a dynamic programming
approach that recursively builds the decomposition tree
of T as well as the labeling ` using the sliced donut D
of the input polygon P and the input set of shortcut C
as guidance utilizing Lemma 2. The algorithm consists
of the following steps.

1. Create a containing box B and the sliced donut D
of P and B. Let e? be the cut edge of D.

2. Create an enrichment C+ of C and D.
3. Create the geometric graph GC+ based on C+. Let
T be the set of triangles in GC+ .

4. Determine for each edge e of GC+ the set Te ⊆ T
of all triangles (e, e1, e2) in GC+ such that e1 and
e2 lie in the pocket of e.

5. Create two tables A and I such that they have an
entry for each edge e of GC+ .

• A[e]: minimal cost of a labeled C+-trian-
gulation T of the pocket D[e]+e s.t. the tri-
angle adjacent to e is active.

• I[e]: minimal cost of a labeled C+-trian-
gulation T of the pocket D[e]+e s.t. the tri-
angle adjacent to e is inactive.

6. Starting at I[e?] apply a backtracking procedure to
create a C+-triangulation T of D that is optimal.
Return T and the corresponding optimal C-hull Q
of T (see proof of Lemma 3 for construction of Q).

18

33rd Canadian Conference on Computational Geometry, 2021

ee1

e2

τ

(a)

ee1

e2

τ

(b)

ee1

e2

τ

(c)

ee1

e2

τ

(d)

ee1

e2

τ

(e)

ee1

e2

τ

(f)

ee1

e2

τ

(g)

e
e1

e2

τ

(h)

Figure 12: The possible cases for the (a)–(d) active (red)
and (e)–(h) inactive cost of a triangle ∆.

We now explain Step 5 and Step 6 in greater detail.

Step 5. We compute the table entries of A and I in
increasing order of the areas of the edges’ pockets. Let
e be the currently considered edge of GC+ . For a triangle
∆ = (e, e1, e2) ∈ Te of e we define its active cost x∆ as

x∆ =
∑

i∈{1,2}
min{A[ei], I[ei] + λ · cP(ei)}.

Hence, x∆ is the cost of a labeled C+-triangulation Te

of the pocket D[e]+e such that ∆ is active and the sub-
triangulations of Te restricted to the pockets D[e1] + e1

and D[e2] + e2 are optimal, respectively; see Figure 12
for the four possible cases.

A[e] =





∞ e 6∈ C
β · cA(e) e ∈ C, Te = ∅,
min{x∆ | ∆ ∈ Te}+ β · cA(e) e ∈ C, Te 6= ∅,

where β = (1 − λ). Analogously, we define for ∆ its
inactive cost y∆ as

y∆ =
∑

i∈{1,2}
min{A[ei] + λ · cP(ei), I[ei]}.

Hence, y∆ is the cost of a labeled C+-triangulation Te of
the pocket D[e] + e such that ∆ is inactive and the sub-
triangulations of Te restricted to the pockets D[e1] + e1

and D[e2] + e2 are optimal, respectively. We compute
the entry I[e] as follows.

I[e] =

{
∞ e ∈ C and Te = ∅,
min{y∆ | ∆ ∈ Te} otherwise.

By the definition of the tables A and I and Lemma 2
it directly follows, that I[e?] is the cost of a labeled
C+-triangulation of D that is optimal. In particular, by
Lemma 3 the entry I[e?] is the cost of an optimal C-hull.

Step 6. When filling both tables, we further store for
each entry A[e] the triangle (e, e1, e2) ∈ Te with mini-
mum active cost. In particular, for the edge ei (with
i ∈ {1, 2}) we store a pointer to the entry A[ei] if
A[ei] < I[ei] + λ · cP(ei) and a pointer to the entry I[ei]
otherwise. Similarly, we store for each entry I[e] the tri-
angle (e, e1, e2) ∈ Te with minimum inactive cost. In
particular, for the edge ei (with i ∈ {1, 2}) we store a
pointer to the entry I[ei] if I[ei] < A[ei] + λ · cP(ei) and
a pointer to the entry A[ei] otherwise. Starting at the
entry I[e?], we follow the pointers and collect for each
encountered entry its triangle —if such a triangle does
not exist, we terminate the traversal. If the entry be-
longs to A we label ∆ active and if it belongs to I, we
label ∆ inactive. The set T of collected triangles forms
a labeled C+-triangulation T of D that is optimal. By
Lemma 3 the separators of T form an optimal C-hull.

Running Time. The first step clearly runs in O(n)
time. By Theorem 2 there is an enrichment C+ of C and
D that has size O(χ2 + n). It can be easily constructed
in O(χ3 +χn) time, which dominates the running times
of Step 2, Step 3 and Step 4. Further, for each edge e of
GC+ the set Te contains δ(C+) triangles. Hence, filling
the tables A and I takes O(|C+| · δ(C+)) time. Hence,
by Theorem 2 we obtain O(χ3 +χn) running time. The
backtracking takes the same time.

Theorem 3 ShortcutHull can be solved in O(χ3 +
nχ) time. In particular, it is solvable in O(n3) time in
general and in O(n) time if the edges in C do not cross.

6 Edge and Bend Restricted Shortcut Hulls

In this section, we discuss two variants of Short-
cutHull in which we restrict the number of edges and
bends of the computed shortcut hull. These restrictions
are particularly interesting for the simplification of ge-
ometric objects as they additionally allow us to easily
control the complexity of the simplification.

6.1 Restricted C-Hull: Number of Edges

Next, we show how to find a C-hull Q that balances
its enclosed area and perimeter under the restriction
that it consists of at most k edges. We say that Q is
optimal restricted to at most k edges, if there is no other
C-hull Q′ with at most k edges and c(Q′) < c(Q).

k-EdgeShortcutHull.
given: weakly-simple polygon P with n vertices

and connected exterior, set C of shortcuts
of P , λ ∈ [0, 1], and k ∈ N

find: optimal C-hull Q of P (if it exists)
restricted to at most k edges.

To solve k-EdgeShortcutHull we adapt Step 5 of the
algorithm presented in Section 5. We extend the tables

19

CCCG 2021, Halifax, Canada, August 10–12, 2021

A and I by an additional dimension of size k modelling
the budget of edges that we have left for the particular
instance. For a shortcut e ∈ C+ and a budget b we
interpret the table entries as follows.

• A[e][b]: cost of labeled C+-triangulation T of the
pocket of e s.t. T is optimal, the triangle adjacent
to e is active and T contains at most b separators.

• I[e][b]: cost of labeled C+-triangulation T of the
pocket of e s.t. T is optimal, the triangle adjacent
to e is inactive and T contains at most b separators.

Let e be the currently considered edge of GC+ when
filling the tables. For a triangle ∆ = (e, e1, e2) ∈ Te
of e its active and inactive costs depend on the given
budgets b1 and b2 with 1 ≤ b1, b2 ≤ k that we intend to
use for the sub-instances attached to e1 and e2.

x∆,b1,b2 =
∑

i∈{1,2}
min{A[ei][bi], I[ei][bi − 1] + λ · cP(ei)}

y∆,b1,b2 =
∑

i∈{1,2}
min{A[ei][bi − 1] + λ · cP(ei), I[ei][bi]}

Hence, for the case that e ∈ C and Te 6= ∅ we define

A[e][b] = min{x∆,b1,b2 | ∆ ∈ Te, b1 + b2 = b}+ β · cA(e),

where β = (1 − λ). There are b possible choices of b1
and b2 that satisfy b1 + b2 = b. Thus, we can compute
A[e][b] in O(b) time. For the remaining cases we define

A[e][b] =

{
∞ e 6∈ C
β · cA(e) e ∈ C, Te = ∅,

which can be computed in O(1) time. Moreover, for the
case that e 6∈ C or Te 6= ∅ we define

I[e][b] = min{y∆,b1,b2 | ∆ ∈ Te, b1 + b2 = b}.

For the same reasons as before we can compute I[e][b]
in O(1) time. For e ∈ C or Te 6= ∅ we define I[e][b] =∞.
Finally, to cover border cases we set A[e][0] = ∞ and
I[e][0] = ∞. Altogether, the entry I[e?][k] contains the
cost of an optimal C-hull that is restricted to k edges.
Apart from minor changes in Step 6 the other parts of
the algorithm remain unchanged.

Running time. Compared to the algorithm of Sec-
tion 5 the running time of computing a single entry
increases by a factor of O(k). Further, there are O(k)
times more entries to be computed, which yields that
the running time increases by a factor of O(k2).

Theorem 4 The problem k-EdgeShortcutHull can
be solved in O(k2(χ3 + nχ)) time. In particular, it can
be solved in O(k2n3) time in general and in O(k2n) time
if the edges in C do not cross.

6.2 Restricted C-Hull: Number of Bends

A slightly stronger constraint than restricting the num-
ber of edges is restricting the number of bends of a
C-hull. Formally, we call two consecutive edges of a
simply-weakly polygon a bend if the enclosed angle is
not 180◦. We say that Q is optimal restricted to at most
k bends if there is no other C-hull Q′ with at most k
bends and c(Q′) < c(Q).

k-BendShortcutHull.
given: weakly-simple polygon P with n vertices

and connected exterior, set C of shortcuts
of P , λ ∈ [0, 1], and k ∈ N

find: optimal C-hull Q of P (if it exists)
that is restricted to at most k bends.

If the vertices of P are in general position, i.e., no
three vertices lie on a common line, a C-hull Q of P is
optimal restricted to at most k bends if and only if it
is optimal restricted to k edges. Hence, in that case we
can solve k-BendShortcutHull using the algorithm
presented in Section 6.1. In applications, the case that
the vertices of P are not in general position, occurs likely
when the input polygon is, e.g., a schematic polygon or
a polygon whose vertices lie on a grid. In that case, we
add an edge p1ph to C for each sequence p1, . . . , ph of at
least three vertices of P that lie on a common line; we
add p1ph only if it lies in the exterior of P . The newly
obtained set C′ has O(n2) edges. Hence, compared to
C it possibly has an increased spatial complexity with
χ ∈ O(n). From Theorem 4 we obtain the next result.

Theorem 5 The problem k-BendShortcutHull can
be solved in O(k2 · n3) time.

7 Relations to other Geometric Problems

We have implemented the algorithm presented in Sec-
tion 5. For example, computing a shortcut hull for the
instance shown in Figure 2 one run of the dynamic pro-
gramming approach (Step 5) took 400ms on average.
This suggests that despite its cubic worst-case running
time our algorithm is efficient enough for real-world ap-
plications. However, more experiments are needed to
substantiate this finding.

Balancing the Costs of Area and Perimeter In Fig-
ure 1 we display a series of optimal C-hulls2. We use
the same polygon and the set of all possible shortcuts
as input while increasing the parameter λ of the cost
function. To find relevant values of λ we implemented a
systematic search in the range [0, 1]. It uses the simple
observation that with monotonically increasing λ the
amount of area enclosed by an optimal shortcut hull
increases monotonically. More in detail, we compute

2Figure 1b: λ = 0.906; Figure 1c: λ = 0.995; Figure 1e: λ =
0.914; Figure 1f: λ = 0.975

20

33rd Canadian Conference on Computational Geometry, 2021

(a) (b) octilinear (c) rectilinear

Figure 13: Simplification (a) and schematization (b)–(c)
of the main island of Shetland.

the optimal shortcut hull for λ = 0 and λ = 1. If the
area cost cA of these shortcut hulls differ, we recursively
consider the intervals [0, 0.5] and [0.5, 1] for the choice
of λ similar to a binary search. Otherwise, we stop the
search.

As presented in Equation 1, we consider costs for the
area and perimeter in ShortcutHull. The second col-
umn of Figure 1 shows a result for a small value of λ, i.e.,
the costs for the area are weighted higher. As expected
the resulting optimal C-hull is rather close to the input
polygon. In contrast, the last column of Figure 1 shows
the optimal C-hull for a larger λ-value. We particularly
obtain holes that represent large areas enclosed by the
polygon, while small gaps are filled.

Simplification and Schematization of Simple Polygons
In the following, we discuss how our approach relates to
typical measures for simplification and schematization.
These are the number of edges, the number of bends [20]
or the perimeter [51], which are implemented by short-
cut hulls; e.g., Figure 13a shows the simplification of
the border of the main island of Shetland by a C-hull
as defined in ShortcutHull. The schematization of a
polygon is frequently implemented as a hard constraint
with respect to a given set O of edge orientations. For
schematizing a polygon with C-hulls, we outline two pos-
sibilities: a non-strict and a strict schematization. For
the non-strict schematization, we adapt the cost func-
tion of the shortcuts such that edges with an orientation
similar to an orientation of O are cheap while the oth-
ers are expensive; see Figure 13b for O consisting of
horizontal, vertical, and diagonal orientations and Fig-
ure 13c for O consisting of the horizontal and vertical
orientations. The strict schematization restricts the set
C of shortcuts, such that each edges’ orientation is from

(a) (b)

(c) (d)

Figure 14: Optimal C-hulls for increasing values of λ for
a point set using a minimum spanning tree as basis.

O. For example, one can define C based on an under-
lying grid that only uses orientations from O. We then
need to take special care about the connectivity of C,
e.g., by also having all edges of the input polygon in C.

Aggregation of Multiple Objects and Clustering We
can adapt C-hulls for multiple geometric objects, e.g. a
point set. We suggest to use a geometric graph that
contains all vertices of the input geometries, all edges of
the input geometries and is connected as input for prob-
lem ShortcutHull, e.g., a minimum spanning tree of
the point set; see Fig 14. With increasing λ-value the
regions of the shortcut hull first enclosed are areas with
high density. By removing all edges of Q that are not
adjacent to the interior of Q, we possibly receive multi-
ple polygons which each can be interpreted as a cluster.

8 Conclusion

We introduced a simplification technique for polygons
that yields shortcut hulls, i.e., crossing-free polygons
that are described by shortcuts and that enclose the in-
put polygon. In contrast to other work, we consider the
shortcuts as input. We introduced a cost function of a
shortcut hull that is a linear combination of the covered
area and the perimeter. Computing optimal shortcut
hulls without holes takes O(n2) time. For the case that
we permit holes we presented an algorithm based on
dynamic programming that runs in O(n3) time. If the
input shortcuts do not cross it runs in O(n) time.

We plan on considering (i) the bends as part of the
cost function, (ii) more general shortcuts, e.g. allowing
one bend per shortcut, and (iii) optimal spanning trees
for the case of multiple input geometries.

21

CCCG 2021, Halifax, Canada, August 10–12, 2021

Acknowledgements This work has partially been
funded by the German Research Foundation under
Germany’s Excellence Strategy, EXC-2070 - 390732324 -
PhenoRob, and by NSF (Mitchell, CCF-2007275).

References

[1] M. A. Abam, M. de Berg, P. Hachenberger, and
A. Zarei. Streaming algorithms for line simplification.
Discret. Comput. Geom., 43(3):497–515, 2010.

[2] J. Adegeest, M. H. Overmars, and J. Snoeyink.
Minimum-link c-oriented paths: Single-source queries.
Int. J. Comput. Geom. Appl., 4(1):39–51, 1994.

[3] T. Ai, S. Ke, M. Yang, and J. Li. Envelope generation
and simplification of polylines using Delaunay triangu-
lation. Int. J. Geogr. Inf. Sci., 31(2):297–319, 2017.

[4] T. Ai, Y. Liu, and J. Chen. The hierarchical water-
shed partitioning and data simplification of river net-
work. In Progress in spatial data handling, pages 617–
632. Springer, 2006.

[5] T. Ai, Q. Zhou, X. Zhang, Y. Huang, and M. Zhou.
A simplification of ria coastline with geomorphologic
characteristics preserved. Marine Geodesy, 37(2):167–
186, 2014.

[6] C. Alegŕıa, D. Orden, C. Seara, and J. Urrutia. Efficient
computation of minimum-area rectilinear convex hull
under rotation and generalizations. J. Glob. Optim.,
79(3):687–714, 2021.

[7] R. Bar-Yehuda and B. Chazelle. Triangulating disjoint
jordan chains. Int. J. Comput. Geom. Appl., 4(4):475–
481, 1994.

[8] T. Barkowsky, L. J. Latecki, and K. Richter. Schema-
tizing maps: Simplification of geographic shape by dis-
crete curve evolution. In Spatial Cognition II, Integrat-
ing Abstract Theories, Empirical Studies, Formal Meth-
ods, and Practical Applications, volume 1849 of Lec-
ture Notes in Computer Science, pages 41–53. Springer,
2000.

[9] A. Bonerath, J.-H. Haunert, J. S. B. Mitchell, and
B. Niedermann. Shortcut hulls: Vertex-restricted outer
simplifications of polygons. CoRR, abs/2106.13620,
2021.

[10] A. Bonerath, J.-H. Haunert, and B. Niedermann. Tight
Rectilinear Hulls of Simple Polygons. In Proc. of the
36th European Workshop on Computational Geometry,
EuroCG 2020.

[11] A. Bonerath, B. Niedermann, and J. Haunert. Retriev-
ing α-shapes and schematic polygonal approximations
for sets of points within queried temporal ranges. In
Proc. of 27th Int. Conf. on Advances in Geographic In-
formation Systems, SIGSPATIAL 2019, pages 249–258.
ACM, 2019.

[12] K. Buchin, W. Meulemans, A. van Renssen, and
B. Speckmann. Area-preserving simplification and
schematization of polygonal subdivisions. ACM Trans.
Spatial Algorithms Syst., 2(1):2:1–2:36, 2016.

[13] D. Burghardt, S. Schmid, and J. Stoter. Investigations
on cartographic constraint formalisation. In 10th ICA
Workshop on Generalization and Multiple Representa-
tion, volume 19, page 2, 2007.

[14] B. Chazelle. Triangulating a simple polygon in linear
time. Discret. Comput. Geom., 6:485–524, 1991.

[15] L. P. Chew. Constrained Delaunay triangulations. Al-
gorithmica, 4(1):97–108, 1989.

[16] F. Y. L. Chin and C. A. Wang. Finding the constrained
Delaunay triangulation and constrained voronoi dia-
gram of a simple polygon in linear time. SIAM J. Com-
put., 28(2):471–486, 1998.

[17] J. Damen, M. van Kreveld, and B. Spaan. High quality
building generalization by extending the morphological
operators. In 11th ICA Workshop on Generalization
and Multiple Representation, pages 1–12, 2008.

[18] J. J. Daymude, R. Gmyr, K. Hinnenthal, I. Kostitsyna,
C. Scheideler, and A. W. Richa. Convex hull formation
for programmable matter. In Proc. of 21st Int. Conf. on
Distributed Computing and Networking, ICDCN 2020,
pages 2:1–2:10. ACM, 2020.

[19] M. de Berg, W. Meulemans, and B. Speckmann. De-
lineating imprecise regions via shortest-path graphs. In
Proc. of 19th Int. Conf. on Advances in Geographic In-
formation Systems, SIGSPATIAL 2011, pages 271–280.
ACM, 2011.

[20] D. H. Douglas and T. K. Peucker. Algorithms for the
reduction of the number of points required to repre-
sent a digitized line or its caricature. Cartographica:
Int. J. for Geographic Information and Geovisualiza-
tion, 10(2):112–122, 1973.

[21] A. Driemel and S. Har-Peled. Jaywalking your dog:
Computing the fréchet distance with shortcuts. SIAM
J. Comput., 42(5):1830–1866, 2013.

[22] M. Duckham, L. Kulik, M. F. Worboys, and A. Galton.
Efficient generation of simple polygons for characteriz-
ing the shape of a set of points in the plane. Pattern
Recognit., 41(10):3224–3236, 2008.

[23] H. Edelsbrunner, D. G. Kirkpatrick, and R. Seidel. On
the shape of a set of points in the plane. IEEE Trans.
Information Theory, 29(4):551–558, 1983.

[24] R. Estkowski and J. S. B. Mitchell. Simplifying a polyg-
onal subdivision while keeping it simple. In Proc. of
17th Symp. on Computational Geometry, SOCG 2001,
pages 40–49. ACM, 2001.

[25] A. Filtser and O. Filtser. Static and streaming data
structures for fréchet distance queries. In Proc. of Symp.
on Discrete Algorithms, SODA 2021, pages 1150–1170.
SIAM, 2021.

[26] E. Fink and D. Wood. Restricted-Orientation Convex-
ity. Monographs in Theoretical Computer Science. An
EATCS Series. Springer, 2004.

[27] J. Garćıa and J. Fdez-Valdivia. Boundary simplifica-
tion in cartography preserving the characteristics of the
shape features. Computers & Geosciences, 20(3):349–
368, 1994.

22

33rd Canadian Conference on Computational Geometry, 2021

[28] M. R. Garey, D. S. Johnson, F. P. Preparata, and R. E.
Tarjan. Triangulating a simple polygon. Inf. Process.
Lett., 7(4):175–179, 1978.

[29] J. Haunert and A. Wolff. Optimal and topologically safe
simplification of building footprints. In Proc. of 18th
Int. Symp. on Advances in Geographic Information Sys-
tems, SIGSPATIAL 2010, pages 192–201. ACM, 2010.

[30] J.-H. Haunert, A. Wolff, et al. Optimal simplifica-
tion of building ground plans. In Proc. of 21st ISPRS
Congress, pages 372–378, 2008.

[31] B. Jacobsen, M. Wallinger, S. G. Kobourov, and
M. Nöllenburg. Metrosets: Visualizing sets as metro
maps. IEEE Trans. Vis. Comput. Graph., 27(2):1257–
1267, 2021.

[32] C. B. Jones, G. L. Bundy, and M. J. Ware. Map gen-
eralization with a triangulated data structure. Cartog-
raphy and Geographic Information Systems, 22(4):317–
331, 1995.

[33] T. C. Kao and D. M. Mount. Incremental construc-
tion and dynamic maintenance of constrained Delau-
nay triangulations. In Proc. of 4th Canadian Conf. on
Computational Geometry, CCCG 1992, pages 170–175,
1992.

[34] D.-T. Lee and A. K. Lin. Generalized Delaunay trian-
gulation for planar graphs. Discrete & Computational
Geometry, 1(3):201–217, 1986.

[35] D. T. Lee, C. Yang, and C. K. Wong. Rectilinear
paths among rectilinear obstacles. Discret. Appl. Math.,
70(3):185–215, 1996.

[36] C. Li, Y. Yin, X. Liu, and P. Wu. An automated pro-
cessing method for agglomeration areas. ISPRS Int. J.
Geo Inf., 7(6):204, 2018.

[37] J. Li and T. Ai. A triangulated spatial model for detec-
tion of spatial characteristics of GIS data. In Proc. of
Int. Conf. on Progress in Informatics and Computing,
PIC 2010, volume 1, pages 155–159. IEEE, 2010.

[38] T. Mendel. Area-preserving subdivision simplification
with topology constraints: Exactly and in practice. In
Proc. of 20th Workshop on Algorithm Engineering and
Experiments, ALENEX 2018, pages 117–128. SIAM,
2018.

[39] W. Meulemans. Similarity measures and algorithms for
cartographic schematization. PhD thesis, Mathematics
and Computer Science, 2014.

[40] W. Meulemans, A. van Renssen, and B. Speckmann.
Area-preserving subdivision schematization. In Proc.
of 6th Int. Conf. on Geographic Information Science,
GIScience 2010, volume 6292 of Lecture Notes in Com-
puter Science, pages 160–174. Springer, 2010.

[41] J. S. B. Mitchell, V. Polishchuk, and M. Sysikaski.
Minimum-link paths revisited. Comput. Geom.,
47(6):651–667, 2014.

[42] G. Neyer. Line simplification with restricted orienta-
tions. In Proc. of 6th Workshop on Algorithms and Data
Structures, WADS ’99, volume 1663 of Lecture Notes in
Computer Science, pages 13–24. Springer, 1999.

[43] M. Nöllenburg. A survey on automated metro map lay-
out methods. In Schematic Mapping Workshop 2014,
2014.

[44] J. L. G. Pallero. Robust line simplification on the plane.
Comput. Geosci., 61:152–159, 2013.

[45] G. J. E. Rawlins and D. Wood. Optimal computation of
finitely oriented convex hulls. Inf. Comput., 72(2):150–
166, 1987.

[46] A. Sayidov and R. Weibel. Generalization of geological
maps: Aggregation and typification of polygon groups.
2019.

[47] M. I. Shamos and D. Hoey. Closest-point problems.
In Proc. of 16th Symp. on Foundations of Computer
Science, FOCS 1975, pages 151–162. IEEE Computer
Society, 1975.

[48] J. R. Shewchuk and B. C. Brown. Fast segment inser-
tion and incremental construction of constrained De-
launay triangulations. Comput. Geom., 48(8):554–574,
2015.

[49] B. Speckmann and K. Verbeek. Homotopic c-oriented
routing with few links and thick edges. Comput. Geom.,
67:11–28, 2018.

[50] S. Steiniger, D. Burghardt, and R. Weibel. Recognition
of island structures for map generalization. In Proc.
of 14th Int. Symp. on Geographic Information Systems,
SIGSPATIAL 2006, pages 67–74. ACM, 2006.

[51] E. R. Tufte. The visual display of quantitative infor-
mation. The Journal for Healthcare Quality (JHQ),
7(3):15, 1985.

[52] T. C. van Dijk, A. van Goethem, J. Haunert, W. Meule-
mans, and B. Speckmann. Map schematization with cir-
cular arcs. In Proc. of 8th Int. Conf. on Geographic In-
formation Science, GIScience 2014, volume 8728 of Lec-
ture Notes in Computer Science, pages 1–17. Springer,
2014.

[53] A. van Goethem, W. Meulemans, B. Speckmann, and
J. Wood. Exploring curved schematization of territorial
outlines. IEEE Trans. Vis. Comput. Graph., 21(8):889–
902, 2015.

[54] M. van Kreveld, T. van Lankveld, and M. de Rie. (α, δ)-
sleeves for reconstruction of rectilinear building facets.
In Progress and New Trends in 3D Geoinformation Sci-
ences, pages 231–247. Springer, 2013.

[55] H. Wu, B. Niedermann, S. Takahashi, M. J. Roberts,
and M. Nöllenburg. A survey on transit map layout
- from design, machine, and human perspectives. vol-
ume 39, pages 619–646, 2020.

[56] X. Zhang and E. Guilbert. A multi-agent system ap-
proach for feature-driven generalization of isobathymet-
ric line. In Advances in Cartography and GIScience.
Volume 1, pages 477–495. Springer, 2011.

23

CCCG 2021, Halifax, Canada, August 10–12, 2021

Stochastic Analysis of Empty-Region Graphs

Olivier Devillers∗ Charles Duménil∗

Abstract

Given a set of points X, an empty-region graph is a
graph in which p, q ∈ X are neighbors if some region
defined by (p, q) does not contain any point of X. We
provide expected analyses of the degree of a point and
the possibility of having far neighbors in such a graph
when X is a planar Poisson point process. Namely the
expected degree of a point in the empty axis-aligned-
ellipse graph for a Poisson point process of intensity λ
in the unit square is Θ(lnλ). It is Θ(lnβ) if the ellipses
are constrained to have an aspect ratio between 1 and
β > 1, and Θ(β) when the aspect ratio is constrained
but ellipses are not axis-aligned.

1 Introduction

We start by defining the notion of empty-region
graph [2]:

Definition 1 For each pair (p, q) ∈ Rd×Rd, let R(p, q)
be a family of regions. Consider a locally finite point set
X ⊂ Rd. We denote by G∅R(X) the graph on X in which
p is a neighbor of q if and only if there exists an empty
region in R(p, q).

This notion unifies the classical Delaunay triangula-
tion [3] where R(p, q) is the set of disks whose bound-
aries contains p and q, the Gabriel graph [6] where
R(p, q) is reduced to the disk of diameter pq, the β-
skeleton [7, 1], the empty-ellipse graph [4], the nearest
neighbor-graph, the Θ-graphs, and the Yao graphs [9].

In this paper, we will assume thatX is a Poisson point
process in the plane and compute quantities like the ex-
pected degree of a point p ∈ X in G∅R(X) or the proba-
bility that p has neighbors further than some threshold.
Computing such quantities when R(p, q) is a singleton,
as for the Gabriel graph, is much easier than when it is
a bigger set, as for Delaunay triangulation. To this aim,
it is interesting to try to get upper and lower bounds by
comparing empty-region graphs. This idea was already
used by Devroye, Lemaire and Moreau [5] to bounds
the size of the Delaunay triangulation by the sizes of
the Gabriel graph and the half-moon graph.

∗Université de Lorraine, CNRS, Inria, LORIA, F-54000 Nancy,
France. FirstName.LastName@inria.fr. This research has been
funded by grant ANR-17-CE40-0017 of the French National Re-
search Agency (Aspag)

In this paper we formalize the process through two
lemmas: the Combination lemma and the Partition
lemma, and we illustrate these tools with empty-ellipse
graphs. In a forthcoming paper we apply these results
to equations of higher degree appearing when parame-
terizing 3D surfaces.

2 First Example: Delaunay and Gabriel Graphs

2.1 Delaunay Triangulation

The Delaunay triangulation is the empty-region graph
where R(p, q) ={D(p, q, r); r∈R2} and D(p, q, r) is the
open disk with p, q, and r on its boundary.

Although the expected degree of a random point in
any kind of triangulation is well known to be 6 using
Euler formula, we prove it using stochastic tools to il-
lustrate the complexity of such a computation:

Theorem 2 Let X be a Poisson point process with in-
tensity λ in R2 and p a point of R2. The expected de-
gree E [deg(p,Del)] of p in the Delaunay triangulation
Del(X ∪ {p}) is 6.

Proof. Without loss of generality, we assume that p is
at the origin. Let D(p, q, r) denote the open disk with
p, q, and r on its boundary. The number of neighbors
of p in Del(X ∪{p}) is the number of distinct sets {q, r}
in X2 with q 6= r such that D(p, q, r) does not con-
tain any point of X. It is given by the random value:
deg (p,Del) = 1

2

∑
q∈X

∑
r∈X\{q} 1[D(p,q,r)∩X=∅], where

the factor 1
2 corrected the double counting of each set

{q, r} in the sum. We compute the expectation of this
formula:

E [deg (p,Del)] = E


1

2

∑

q∈X

∑

r∈X\{q}
1[D(p,q,r)∩X=∅]




=
1

2

∫

R2

∫

R2

λ2 P [D(p, q, r) ∩X = ∅] drdq

by Slivnyak-Mecke Theorem [8]

=
1

2

∫

R2

∫

R2

λ2e−λ|D(p,q,r)|drdq

by definition of Poisson point process.

The computation of this integral is a bit techni-
cal and is given in appendix. It involves a Blaschke-
Petkantschin like variables substitution to turn the

24

33rd Canadian Conference on Computational Geometry, 2021

cartesian coordinates of q and r in the coordinate of
the center of D(p, q, r) and two angles to place q and r
on the boundary of D(p, q, r).

It finally turns out that the value of this integral is 6,
as anticipated. �

2.2 Gabriel Graph and Half-Moon Graph

We now turn our interest to cases where R(p, q) is a
singleton. We consider the three following possibilities:
R(p, q) = {Gab(p, q)} the disk of diameter pq, R(p, q) =
{hmr(p, q)} the half-disk of diameter pq to the right of
pq, and R(p, q) = {hm`(p, q)} the half-disk of diameter
pq to the left of pq. Then G∅{Gab} is the Gabriel graph,

G∅{hmr} is the right half-moon graph, and G∅{hm`} is the

left half-moon graph. The half-moon graph is G∅{hmr} ∪
G∅{hm`}.

Lemma 3 Let X be a Poisson point process with in-
tensity λ in R2 and p a point of R2. The expected degree

E
[
deg

(
p,G∅{Gab}

)]
of the origin p in the Gabriel graph

G∅{Gab}(X) is 4.

Proof.

E
[
deg

(
p,G∅{Gab}

)]
= E


∑

q∈X
1[Gab(p,q)∩X=∅]




=

∫

q∈R2

λP [Gab(p, q) ∩X = ∅] dq

=

∫

R2

λe−λ|Gab(p,q)|dq

=

∫

R+

∫ 2π

0

λe−λ
πρ2

4 ρdθdρ = 4. �

Lemma 4 Let X be a Poisson point process with in-
tensity λ in R2 and p a point of R2. Then

E
[
deg

(
p,G∅{hmr}

)]
= E

[
deg

(
p,G∅{hm`}

)]
= 8.

Proof. By symmetry, we only do the computation for

E
[
deg

(
p,G∅{hmr}

)]
.

E
[
deg

(
p,G∅{hmr}

)]
= E


∑

q∈X
1[hmr(p,q)∩X=∅]




=

∫

R2

λe−λ|hmr(p,q)|dq

=

∫

R+

∫ 2π

0

λe−λ
πρ2

8 ρ dθdρ = 8.�

As one can see, the fact that R(p, q) is a singleton
made the computation much simpler than in the case of
the Delaunay triangulation.

Figure 1: The Gabriel graph, on the left, is included
in the Delaunay triangulation, in the middle, itself in-
cluded in the half-moon graph, on the right.

2.3 Graph Relations

The following relations between the graphs are straight-
forward since any disk with p and q on its boundary
contains either hmr(p, q) or hm`(p, q) (see Figure 1):

G∅{Gab} = G∅{hmr} ∩ G
∅
{hm`},

G∅{Gab} ⊂ Del ⊂ G∅{hmr} ∪ G
∅
{hm`} = G∅{hmr,hm`}.

From this, we deduce

deg
(
p,G∅{Gab}

)
≤ deg (p,Del) ≤ deg

(
p,G∅{hmr,hm`}

)

4 ≤ deg (p,Del) ≤ 8 + 8− 4 = 12.

This result is weaker than the exact bound of Theo-
rem 2 but the computations are much simpler. It also
illustrates that, given regions of similar areas, the degree
remains of equal order of magnitude. In that case, for
two points p and q, Gab(p, q) and hmr(p, q) or hm`(p, q)
have both an area quadratic in the distance between p
and q, and this induces a constant expected degree.

3 General Method

We propose a general method that both formalizes and
generalizes the half-moon method to link the degree in
general empty-region graphs to the degree in empty-
region graphs defined by singletons. We formalize the
following facts: (i) the Delaunay disks can be param-
eterized by their center on the bisector of pq, (ii) this
bisector can be partitioned in two rays at the midle of
pq, and (iii) each half-moon is contained in all disks
centered on one of the rays.

In a more general setting, the general idea is (i) to
identify a parameter space in Rk defining the regions,
(ii) to partition this space in convex domains, and (iii)
have inclusion relations for regions at the vertices of the
partition.

The following lemma is instrumental for proving that
if a set of region depends on k parameters and if the
k-tuple of parameters belongs to a convex polyhedron
P of Rk then, if we want to prove that all regions pa-
rameterized by P contain a given region, it is enough
to prove this inclusion for the regions parameterized by
the vertices of P . If P is not bounded, we can extend
the lemma to limit points at infinity: for a point c going

25

CCCG 2021, Halifax, Canada, August 10–12, 2021

to infinity along some ray of Rk the region rc has a limit.
The result also holds using this limit regions. We will
show below as a didactic example how this lemma can
be applied on Delaunay disks.

Lemma 5 (Combination Lemma) Let c ∈ Rk and
Ec : Rd → R such that for any x ∈ Rd, c 7→ Ec(x)
is an affine function, and let rc be the region {x ∈
Rd, Ec(x) < 0}. Let P be a subset of Rk, if c ∈ P , then⋂

rv
v∈X (P)

⊂ rc, where X (P) denotes the extreme points of

the convex hull of P .

Proof. Consider two points a, b ∈ P ⊂ Rk. Let x ∈
ra ∩ rb and, for t ∈ [0, 1], ct = (1 − t)a + tb be a point
on [ab]. The function f : t 7→ Ect(x) verifies f(0) =
Ea(x) < 0 and f(1) = Eb(x) < 0. Since f is affine, for
any t ∈ [0, 1], Ect(x) = f(t) = (1 − t)f(0) + tf(1) < 0,
so x ∈ rct . Thus ra∩ rb ⊂ rct for any ct on the edge [ab].
The extension from an edge [ab] to the convex hull of P
follows directly from the its convexity. �

We now show, as an example, that any Delaunay disk
contains one of the two half-moons using the Combina-
tion lemma:

Corollary 6 Let p, q two points in the Euclidean plane
and D a disk with p and q on its boundary, then
hmr(p, q) ⊂ D or hm`(p, q) ⊂ D

Proof. We choose the coordinate system so that p is
the origin and q = (xq, yq) with yq 6= 0. A disk D
with p and q on its boundary can be parameterized by
the inequality Ec(x, y) : x2 − 2xxc + y2 − 2yyc < 0

where c verifies yc =
x2
q−2xqxc+y

2
q

2yq
. Since this is actu-

ally the equation of the bisector line of [pq], the centers
c = (xc, yc) are the actual geometric centers of the disks.
That provides a 1-dimensional family of disks parame-
terized by xc. In that parameterization, xc 7→ Ec(x, y)
is an affine function.

Then we can consider the center cGab of the Gabriel
disk and the center cr at the infinity of the bisector
line to the right of −→pq; their associated regions are the
Gabriel disk Gab(p, q) and the half-plane hpr(p, q) to the
right of −→pq. Since the ray [cGab, cr) is convex, we can
apply the Combination lemma with (k, d) = (1, 2) to
ensure that any disk whose center belongs to [cGab, cr)
contains hmr(p, q); indeed hmr(p, q) = Gab(p, q) ∩
hpr(p, q). We apply the same reasoning for hm`(p, q)
to conclude that if a disk has p and q on its boundary,
it contains either hmr(p, q) or hm`(p, q) depending on
the position of its center on the bisector line. �

After the Combination lemma, the second ingredient
of our demonstration scheme is the Partition lemma:

Lemma 7 (Partition Lemma) Let G∅R be an empty-
region graph with R(p, q) = {rc; c ∈ P ⊂ Rk} a set of

regions parameterized by c. Let (Pi)1≤i≤n be a convex
subdivision of P , the parameter space. Let R∗i (p, q) =
{r∗i (p, q)} be n singletons. If ∀c ∈ Pi; r∗i (p, q) ⊂ rc then
G∅R is a subgraph of ∪1≤i≤nG∅R∗i and

deg
(
p,G∅R

)
≤
∑

1≤i≤n
deg

(
p,G∅R∗i

)
.

Proof. If pq is an edge of G∅R(X), according to Defini-
tion 1, there exists c ∈ P such that rc(p, q) ∩ X = ∅.
Using the convex subdivision, there is some j such that
c ∈ Pj and r∗j (p, q) ⊂ rc(p, q) by the hypothesis in the
lemma. Thus r∗j (p, q) ∩X = ∅ and pq is also an edge of

G∅R∗j . �

Using these two lemmas, the general idea of the
method we apply to compute an upper bound on the
degree of a point in a given empty-region graph of a
Poisson point process can be outlined as follows: (i)
find a good affine parameterization of the regions to be
able to apply the Combination lemma, (ii) find a good
partition of the parameter space to be able to apply
the Partition lemma, and (iii) analyze the size of the
relevant empty-singleton-region graphs.

4 Empty Axis-Aligned Ellipse Graphs

In this section, we analyze empty-region graphs where
the regions are axis-aligned ellipses. By “axis-aligned”,
we mean that their axes of symmetry are parallel to the
x and y axes. We then call aspect ratio, the ratio of the
lengths of the vertical axis to the horizontal axis of the
ellipse.

4.1 Some Features of Axis-Aligned Ellipses

We give some explanations on the expression of ellipses
we consider, and some properties that will be used there-
after. In R2, we consider an axis-aligned ellipse with the
origin p on its boundary. We denote the ellipse r since it
is seen as a region. Such an ellipse has three degrees of
freedom, that can be set by considering a positive num-
ber α and a point c = (xc, yc), so that r can be defined
by the inequality:

r : α2x2 − 2xxc + y2 − 2yyc < 0.

In that parameterization, c is the affine parameter of
r, and α its aspect ratio. To ensure that the boundary
of the ellipse passes through a second point q, the three
parameters xc, yc and α must satisfy: α2x2

q − 2xqxc +
y2
q − 2yqyc = 0. Expressing α in terms of c and q, we

define

Ec(x, y) :=α2x2
qx

2 − 2xxc + y2 − 2yyc, (1)

with α2 =
2xqxc−y2q+2yqyc

x2
q

.

26

33rd Canadian Conference on Computational Geometry, 2021

The inequality Ec(x, y) < 0 is an affine parameter-
ization of rc(p, q), the only axis-aligned ellipse passing
through p and q with c for parameter. We stress that c
is not the usual geometric center of the ellipse.

In some proofs, we bring the expression back to its

canonical form namely x2

a2 + y2

b2 − 1 = 0, in which the

ellipse has aspect ratio b
a and area πab.

Proposition 8 For a given q ∈ R2, the parameters c of
the ellipses rc(p, q) with same aspect ratio lie on a line
perpendicular to (pq).

Proof. The aspect ratio is given by the coefficient of
x2 in Equation (1). The set of points c = (xc, yc) that
yields to a constant aspect ratio defines a line parallel

to L : xxq+yyq = 0, by multiplying by
x2
q

2 and omitting
the constant terms in the expression of α2. This line is
perpendicular to (pq). �

Proposition 9 For a given q ∈ R2 and for α ∈
R+, consider the ellipse rc(p, q) parameterized by c =
(α2 xq

2 ,
yq
2).

The geometric center of rc(p, q) is the midpoint of

[pq], and its area is π
4

(
αx2

q +
y2q
α

)
.

Proof. Transforming the equation Ec(x, y) < 0 of
rc(p, q) we get, its canonical form:

4α2

α2x2
q + y2

q

(x− xq
2

)2 +
4

α2x2
q + y2

q

(y − yq
2

)2 − 1 < 0.

We identify, with that expression, that rc(p, q) is
the translated copy of an ellipse of center p, and area
π
4

(
αx2

q +
y2q
α

)
by the vector 1

2
−→pq. Details can be found

in appendix. �

4.2 Unbounded Aspect Ratio: Right-Triangle Graph

In this section, we prove, using our framework, a loga-
rithmic bound for the empty axis-aligned ellipse graph
of a Poisson point process in a bounded domain. A sim-
ilar result was proven for a uniform distribution instead
of a Poisson distribution [4].

For two points p and q in R2, we consider the family
Ell(p, q) of all axis-aligned ellipses with p and q on their
boundaries. Assuming that p is the origin, we show
that the expected degree of p in the associated empty-
region graph G∅Ell(X) is Θ(lnλ) when X is a Poisson
process of intensity λ. In order to identify an upper
bound, we consider the graph G∅{∆r,∆`} where ∆r(p, q)

(resp. ∆`(p, q)) denotes the axis-aligned right triangle
with hypotenuse [pq] on the right (resp. left) side of −→pq.

Lemma 10 G∅{∆r,∆`} is a super-graph of G∅Ell.

c`

cr

c∞

L0

Lr,`

Pr

P`

c0

c

p

q

Figure 2: Partition of space of parameters into
{P`, Pr}.

Proof. For each region rc(p, q) ∈ Ell(p, q), we consider
the parameterization rc(p, q) : Ec(x, y) < 0 where Ec is
defined in Equation (1).

The space P ⊂ R2 where c lives is delimited by the
inequality: 2xqxc−y2

q +2yqyc > 0 that is the half-plane
whose boundary is the line L0 perpendicular to (pq)
passing through c0 = (0,

yq
2) and that does not contain

p (if c is not in this half-plane, the equation for α2 has no
positive solutions). With a small abuse of notation, we
define two points at infinity at the two extremities of L0:
cr to the right of −→pq and c` to its left. (see Figure 2). On
the boundary L0 of P , elliptic regions degenerate into
parabolas. At point c0 it degenerates to the horizontal

strip rc0 = {|y− yq
2 | <

|yq|
2 } that can be seen as an ellipse

with aspect ratio 0 (see Figure 3). At the limit when
going at infinity along L0 the parabola degenerates in
two half-planes: rcr and rc` bounded by (pq).

rc0

rcr

rc`

rc∞

rc

∆` ∆r

p

q

Figure 3: Ellipses corresponding to points in Figure 2.
They all contain either ∆r or ∆`. Regions whose pa-
rameter are on Lr,` are in purple, they range from rc0
(in yellow), to rc∞. Any region whose parameter is in
P`, like rc, contains ∆`.

27

CCCG 2021, Halifax, Canada, August 10–12, 2021

Then, we consider the ray Lr,` : y =
yq
2 ∩ P , starting

at c0, named after the fact that it will distinguish right
and left regions. Let c∞ be the point at infinity on
this ray. When the parameter c is equal to c∞, the
ellipse degenerates into the vertical strip rc∞ = {|x −
xq
2 | <

|xq|
2 }, seen as a vertical ellipse with infinite aspect

ratio. For c on Lr,`, ellipses are centered on the midpoint
of [pq] and ranges from the horizontal strip rc0 to the
vertical strip rc∞ .

By the Combination lemma, if c ∈ Pr then

∆r = rc0 ∩ rcr ∩ rc∞ ⊂ rc

and if c ∈ P` then

∆` = rc0 ∩ rc` ∩ rc∞ ⊂ rc.

This ensures, by the Partition lemma, that

G∅Ell ⊂ G∅{∆r,∆`} = G∅{∆r}(X) ∪ G∅{∆`}(X). �
Now, we bound from above the expected degree of

p in G∅{∆r}(X) or G∅{∆`}(X) when X is a Poisson point

process with intensity λ.

The area of both triangles ∆r and ∆` is
|xqyq|

2 . Unfor-

tunately, for any positive λ,
∫

R

∫
R e
−λ|xy|dydx does not

converge. In that case, we assume that X is distributed
in a rectangle D = [−L,L]× [−l, l] for positive L and l.

Lemma 11 Let X be a Poisson point process with in-
tensity λ in D = [−L,L] × [−l, l]. The expected de-

gree E
[
deg

(
p,G∅{∆r}

)]
of the origin p in G∅{∆r}(X) is

Θ(lnλ+ lnL+ ln l) .

Proof. Let t be a positive number such that tLl > 1,
we start by bounding from above the following integral:

IL,l(t) =

∫ L

0

∫ l

0

e−txydydx

=

∫ L

0

∫ lx

0

e−tu

x
dudx with u = xy

=

∫ L

0

1− e−tlx
tx

dx

=
1

t

∫ tLl

0

1− e−v
v

dv with v = tlx

=
1

t

(∫ 1

0

1− e−v
v

dv +

∫ tLl

1

1− e−v
v

dv
)

≤ 1

t

(∫ 1

0

dv +

∫ tLl

1

1

v
dv

)
since 1−e−v≤min(1, v)

=
1

t
(1 + ln(tLl)) .

And bounding from below:

IL,l(t) =
1

t

∫ tLl

0

1− e−v
v

dv

≥ 1

t

∫ tLl

0

1

v + 1
dv since

1− e−v
v

≥ 1

v + 1
if v ≥ 0

=
1

t
(ln(tLl + 1)) >

ln(tLl)

t
.

Figure 4: Left: Some xy-ell ellipses whose color depends
of the aspect ratio. Right: An instance of G∅{xy-ell} where

p is the central (red) point. For any point q, xy-ell(p, q)
has the smallest area among ellipses passing through p
and q so that a far point keeps chance to be a neighbor
of p as long as it is close to an axis.

Then we can give an upper bound on the expected
degree:

E
[
deg

(
p,G∅{∆r}

)]
= E


∑

q∈X
1[∆r(q)∩X=∅]




=

∫

D
λ(P [∆r(q) ∩X = ∅])dq

=

∫ L

−L

∫ l

−l
λe−λ|∆r(q)|dydx

= 4λ

∫ L

0

∫ l

0

e−λ
xy
2 dydx

= 4λIL,l(
λ
2) = Θ(ln(λLl)). �

We can compare with the Delaunay triangulation, the
Gabriel and the half-moon graphs. In those cases, the
empty region had an area quadratic in the distance pq
and the expected degree was constant. In this new case,
the “xy” area provides a logarithmic degree.

Lemmas 10 and 11 give an upper bound on the degree
of a point in the empty-axis aligned-ellipse graph. To
get a lower bound, we will exhibit a subgraph of G∅Ell.
In order to get a tight bound, the area of the chosen
region must be Θ(xqyq).

To find such an ellipse, that we name xy-ell(p,q), we
use Proposition 9, with α =

yq
xq

. We define xy-ell(p,q)

to be the ellipse parameterized by cxy =
(
y2q
2xq

,
yq
2

)
(see

Figure 4), then according to Proposition 9, the area of
this ellipse is π

2xqyq.

Lemma 12 G∅{xy-ell} is a subgraph of G∅Ell.

Proof. Straightforward because xy-ell ∈ Ell. �

Lemma 13 Let X be a Poisson point process with in-
tensity λ in D = [−L,L] × [−l, l]. The expected degree

28

33rd Canadian Conference on Computational Geometry, 2021

E
[
deg

(
p,G∅{xy-ell}

)]
of the origin p in G∅{xy-ell}(X) is

Θ(lnλ+ lnL+ ln l).

Proof. As said above, for any q ∈ R2, the area of
xy-ell(p, q) is π

2xqyq.
Then we can express the expected degree:

E
[
deg

(
p,G∅{xy-ell}

)]
= E


∑

q∈X
1{xy-ell(p,q)∩X=∅}




=

∫

D
λe−λ|xy-ell(p,q)|dp

= 4λ

∫ L

0

∫ l

0

e−λπ
xy
2 dydx

= Θ(ln(λLl)). �

The above lemmas allow to conclude:

Theorem 14 Let X be a Poisson point process with
intensity λ in D = [−L,L]× [−l, l] and p the origin:

E
[
deg

(
p,G∅Ell

)]
= Θ(lnλ+ lnL+ ln l).

4.3 Bounded Aspect Ratio: Rhombus Graph

In the previous part, we proved that when the aspect
ratio is not bounded, neither is the expected degree.
One can wonder what happens when the aspect ratio
ranges between two finite numbers. For two points p
and q in R2 and a number β ∈ (0, 1), we consider the
family Ell[β,1](p, q) of horizontal elliptic regions with p
and q on their boundary and whose aspect ratio ranges
between β and 1. An important fact to be considered
is that, when the aspect ratio is not bounded, a point q
far from p could be a neighbor of p as long as it is close
enough to the axis, since in that case, ellipses passing
through p and q may have a small area, and that leads to
a logarithmic bound. When the aspect ratio is bounded,
all ellipses preserve an area Ω(x2

q+y2
q), so that we expect

a constant bound on the expected degree. In this section
we will prove that it is actually the case and detail how
this constant depends on β.

In order to apply the same
method as above, we search
for simple geometrical regions
that fit inside the whole fam-
ily Ell[β,1](p, q). A good
choice is the following: as be-
fore, we consider the intersec-

p

q

hm
[β,1]
`

hm
[β,1]
r

tion of ellipses that are centered on the midpoint of
[pq], and we cut the intersection along (pq). The re-

maining regions hm
[β,1]
r (p, q) and hm

[β,1]
` (p, q) look like

two axis-aligned right triangles with rounded sides for
almost all q (see above figure).

c`

cr

Pr

P`

cβ c1

p

L1

Lβ

q

Figure 5: Partition of space of parameters into {P`, Pr}
in the bounded aspect ratio case.

Lemma 15 The graph G∅
{hm[β,1]

r , hm
[β,1]
` }

is a super-

graph of G∅
Ell[β,1]

.

Proof. The proof is very similar to the one of
Lemma 10, so we just spell out the important points.
For each rc(p, q) ∈ Ell[β,1](p, q), we consider the param-
eterization rc(p, q) : Ec(x, y) < 0 defined in Equation (1)
with β ≤ α ≤ 1.

The space P ⊂ R2 where c lives is delimited by the

inequality: β2 ≤ 2xqxc−y2q+2yqyc
x2
q

≤ 1 that is the strip

perpendicular to (pq) whose boundary are the lines Lβ
and L1, where Lα = {(x, y), α2x2

q = 2xqx− y2
q + 2yqy}.

We consider the segment defined by y =
yq
2 inside P and

its extremities cβ on Lβ and c1 on L1. We partition P
into Pr and P` where Pr is the part of P on the right of
[cβ , c1), and P` the part on its left (see Figure 5).
cβ and c1 have for regions the ellipses rcβ and rc1 with

respectively β and 1 for aspect ratio. Furthermore, any
parameter cr in P at infinity on the right of −→pq has its
region that degenerates into the half-plane bounded by
(pq) on the right side of −→pq (and the same holds for c`
and the left side).

By the Combination lemma, if c ∈ Pr then hm
[β,1]
r :=

rc1 ∩ rcβ ∩ rcr ⊂ rc and if c ∈ P` then hm
[β,1]
` := rc1 ∩

rcβ ∩ rc` ⊂ rc (see Figure 6). By the Partition lemma,

an edge of G∅
Ell[β,1]

is an edge of G∅
hm[β,1] or G∅

hm[β,1] . �

The problem now is that it may be complicated to

compute an integral involving the area of hm
[β,1]
r (p, q) or

hm
[β,1]
` (p, q). To solve this issue, we consider a strictly

smaller region. We could have used the axis-aligned
right triangles ∆r and ∆` but their areas do not respect
the order of magnitude (as illustrated by Figure 7). A
more suitable region is what we call the half-rhombus.
We define the rhombus Rhβ(p, q) as the one whose ver-
tices are the horizontal extreme points of rc1(p, q) and
the vertical extreme points of rcβ (p, q). Then we sepa-

rate it into two halves Rhβr (p, q) and Rhβ` (p, q), delim-
ited by (pq). By convexity, it is clear that Rhβr (p, q) ⊂

29

CCCG 2021, Halifax, Canada, August 10–12, 2021

rcr

rc`

Rhβ`

rc1

rcβ

p

Rhβr

q
hm

[β,1]
`

hm
[β,1]
r

Figure 6: The green ellipse with parameter to the right
of −→pq contains Rhβr .

hm
[β,1]
r (p, q) and Rhβ` (p, q) ⊂ hm

[β,1]
` (p, q) (see Fig-

ure 6). Finally, we can say that G∅{Rhβr } is a super-

graph of G∅
{hm[β,1]

r }
and that G∅{Rhβ` } is a super-graph

of G∅
{hm[β,1]

` }
.

Before proceeding to the computation of the expected
degree, we introduce a lemma that provides properties
on the involved integral.

Lemma 16 Let t > 0, β ∈ (0, 1) and

Iβ(t) =

∫

R

∫

R
e−t
√

(x2+y2)(β2x2+y2)dydx,

Iβ(t) =
1

t
Iβ(1) ≤ π

t

(
1 + ln(1

β)
)
.

Proof. The computations are in appendix. �

Lemma 17 Let X be a Poisson point process with in-
tensity λ in R2, and β ∈ (0, 1).

E
[
deg

(
p,G∅{Rhβr }

)]
= O(ln

1

β
).

Proof. We first compute the area of the rhombus
Rhβ(p, q). We identify its width and height as being re-

spectively
√
x2
q + y2

q and
√
β2x2

q + y2
q so that the value

of its area is given by 1
2

√(
x2
q + y2

q

) (
β2x2

q + y2
q

)
.

∆`

rc1

rcβ

p Rhβr
q

Figure 7: The area of ∆r and Rhβr can have different
order of magnitude.

Figure 8: Some β-ell ellipses for points in Dβ and an
instance of G∅{β-ell} where p is the red point. A far point

reduces strongly its probability to be a neighbor of p
because it cannot anymore be close to the axes.

Then we can compute the expected degree of p in
G∅{Rhβr }(X):

E
[
deg

(
p,G∅{Rhβr }

)]
= E


∑

q∈X
1[Rhβr (p,q)∩X=∅]




=

∫

R2

λP
[
Rhβr (p, q) ∩X = ∅

]

=

∫

R2

λe−λ
1
2 |Rhβ(p,q)|dq

=

∫

R

∫

R
λe
−λ4

√
(x2
q+y

2
q)(β2x2

q+y
2
q)dydx

= λIβ
(
λ
4

)

≤ 4π (1− ln(β)) by Lemma 16. �

We obtain a tight lower bound, when β goes to 0,
by identifying, for each q, a particular region, named
β-ell(p, q), such that β-ell(p, q) is or contains an element
of Ell[β,1](p, q). To achieve this, we partition the plane
into two parts (see Figure 8):

1. if q ∈ Dβ := {(x, y), β|x| < |y| < |x|}, then, as in
Lemma 12, we define β-ell(p, q) = xy-ell(p,q),

2. otherwise β-ell(p, q) = R2, that is another way to
say that q is not a neighbor of p.

Lemma 18 G∅{β-ell} is a subgraph of G∅
Ell[β,1]

.

Proof. If q ∈ Dβ , we have to prove that β-ell(p, q), i.e.
xy-ell(p,q), is in Ell[β,1]. This is true because the aspect
ratio of if xy-ell(p,q) is | yqxq |, and verifies β < | yqxq | < 1 if

β|xq| < |yq| < |xq|.
Otherwise, it is clear that β-ell(p, q), i.e. R2, is larger

than any other ellipse from Ell[β,1]. �

Lemma 19 Let X be a Poisson point process
with intensity λ in R2. The expected degree

30

33rd Canadian Conference on Computational Geometry, 2021

E
[
deg

(
p,G∅{β-ell}

)]
of the origin p in G∅{β-ell}(X) is

Ω(ln 1
β).

Proof. β-ell(p, q) is actually chosen to simplify the
computation. Recall that Dβ is the domain
{(x, y), β|x| < |y| < |x|};

E
[
deg

(
p,G∅{β-ell}

)]
= E

[∑

q∈X
1[β-ell(p,q)∩X=∅]

]

=

∫

R2

λP [β-ell(p, q) ∩X = ∅] dp

=

∫

Dβ
λP [xy-ell(p, q) ∩X = ∅] dp+

∫

R2\Dβ
0 dp

=

∫

Dβ
λe−λ|xy-ell(p,q)|dp

= 4

∫ ∞

0

∫ x

βx

λe−λπ
xy
2 dydx

= 4

∫ π
4

tan−1(β)

∫ ∞

0

λρe−λπ
ρ2 cos(θ) sin(θ)

2 dρdθ

= 4

∫ π
4

tan−1(β)

λ
1

λπ cos(θ) sin(θ)
dθ

=
4

π

(
ln(tan(π

4
))−ln(β)

)
since

d

dθ
ln(tan(θ))=

1

cos(θ) sin(θ)

=
4

π
ln(1

β
).

�

We can finally conclude using Lemmas 15 to 19:

Theorem 20 Let X be a Poisson point process with in-
tensity λ in R2. The expected degree E

[
deg

(
p,G∅

Ell[β,1]

)]

of the origin p in G∅
Ell[β,1]

(X ∪ {p}) is Θ
(

ln(1
β)
)

.

If β > 1 we have by symmetry,

E
[
deg

(
p,G∅

Ell[1,β]

)]
= E

[
deg

(
p,G∅

Ell
[1
β
,1]

)]
= Θ(lnβ).

4.4 Non-Axis-Aligned Ellipses

We turn our interest to the case of non-axis-aligned el-
lipses. We consider the graph in which two points p and
q are neighbors if there exists an empty ellipse passing
through p and q whose aspect ratio is between β and
1, for β ∈ [0, 1]. For two points p and q, we define the

family Ell
[β,1]
∗ (p, q) of all ellipses with such aspect ratios

passing through p and q, and G∅
Ell

[β,1]
∗

, the corresponding

empty region graph.
The case where β = 1 corresponds to the Delaunay

triangulation, and the case where β = 0 corresponds
to the complete graph, since we can consider that a
segment between two points is an ellipse with aspect
ratio 0 and random points are in general position. Thus
we assume that β ∈ (0, 1).

p

q

s`
sr

hm
[β,1]
`,θ

hm
[β,1]
r,θ

E

θ

Cβ

Figure 9: Non-axis-aligned ellipses.

Consider two points, p at the origin and q, and an el-
lipse E passing through p and q. Since E is not anymore
axis-aligned but has its great axis in some direction θ,

we can consider the regions hm
[β,1]
r,θ and hm

[β,1]
`,θ as in

the previous sections but parameterized by direction θ.
Clearly the circle Cβ centered at the midpoint of pq and

of diameter β|pq| is inside hm
[β,1]
r,θ ∪ hm

[β,1]
`,θ (see Fig-

ure 9). Consider the isosceles triangles pqsr and pqs`
such that s`, sr ∈ Cβ with sr on the right of −→pq and s`

on its left. Then pqsr ⊂ hm[β,1]
r,θ and pqs` ⊂ hm[β,1]

`,θ .

Since this is true for any ellipse, we can assume that
any ellipse whose aspect ratio is between β and 1 and
passing through p and q contains either pqsr or pqs`.
Notice that these triangles are independent of the di-
rection θ. So we can apply the Partition lemma to yield
that G∅

Ell
[β,1]
∗

is a subgraph of G∅{pqsr,pqs`}.

Now we consider a Poisson point process X of inten-
sity λ, and we compute an upper bound on the expected
degree of p in G∅

Ell
[β,1]
∗

(X ∪ {p}).

E
[
deg

(
p,G∅{pqsr,pqs`}

)]

≤ 2 E


∑

q∈X
1[pqsr∩X=∅]




= 2

∫

R2

λP [pqsr ∩X = ∅]dq

= 2

∫

R2

λe−λ|pqsr|dq

= 2

∫ 2π

0

∫ ∞

0

λe−
λ
8 βρ

2

ρ dρdθ =
16π

β
.

On the other hand, among the ellipses passing
through p and q, we can choose the ellipse Eβ∗ whose
great axis is [p, q] and has aspect ratio β to obtain a
subgraph of G∅

Ell
[β,1]
∗

.

31

CCCG 2021, Halifax, Canada, August 10–12, 2021

The expected degree of p in this graph is

E
[
deg

(
p,G∅{Eβ∗}

)]
= E

[∑

q∈X
1[Eβ∗∩X=∅]

]

=

∫

R2

λP [Eβ∗ ∩X = ∅] dq

=

∫

R2

λe−λ|Eβ∗|dq

=

∫ 2π

0

∫ ∞

0

λe−λ
π
4
βρ2ρ dρdθ =

4

β

We deduce the following theorem:

Theorem 21 Let X be a Poisson point process in R2.
The expected degree of the origin p in G∅

Ell
[β,1]
∗

(X ∪ {p})
is Θ

(
1
β

)
.

5 Probability of Existence of Far Neighbors

At some point, for a given graph G and a positive num-
ber t, we may be interested in computing the probability
for p to have a neighbor in G at a distance greater than t.

As before, for illustration on a simple case, we start
by the Delaunay triangulation:

Lemma 22 Let X be a Poisson point process with in-
tensity λ in R2, p a point of R2, and t a positive number.
The probability that p has some Delaunay neighbor at a

distance greater than t is smaller than 8e−λ
√

2
8 t2 .

Proof. If q is a Delaunay neighbor of p, Let σ be an
empty disk whose boundary passes through p and q. If
q is at distance greater than t from p, then the diameter
of σ is obviously also greater than t, so its homothet σ′

toward p that has exactly diameter t is included in σ
and by consequence empty.

Consider the triangle with vertices p, (
√

2
2 t, 0), and

(1
2 t,

1
2 t) and its seven adjacent copies around p (see Fig-

ure 10). We name them τi for i ∈ {1, . . . , 8}. Their area

is |τ1| =
√

2
8 t

2.
One can notice that, at least one triangle is included

in σ′: the one whose angular sector from p contains the
center of σ′.

So we get:

P [∃q ∈ X; [pq] ∈ Del(X ∪ {p}) | |pq| > t]

≤ P [∃i ∈ [1, . . . , 8], τi ∩X = ∅]
≤

∑

i=1...,8

P [τi ∩X = ∅]

= 8 P [τ1 ∩X = ∅] = 8e−λ
√

2
8 t2 . �

We establish in the next lemma a similar bound for
the empty axis-aligned ellipse graph with bounded as-
pect ratio in [β, 1]. We are mainly interested in the
behavior of the probability when β is small, thus we
assume β < 1

2 .

Figure 10: If |pq| > t, any disk passing through p and
q contains one of the 8 triangles.

Lemma 23 Let X be a Poisson point process with in-
tensity λ in R2, p a point of R2, t and β two positive
numbers with β < 1

2 . The probability that p has some

neighbor in G∅
Ell[β,1]

(X) at a distance greater than t is

smaller than 4
(
e−λ

√
2

16 βt
2

+ e−λ
√

2
16 β

3
2 t2
)

.

Proof. The proof idea is similar to the previous one,
except that we apply a homothety on the empty ellipse
σ until its image σ′ fits inside the axis-aligned square
inscribed in the circle of radius t (see Figure 11).

We consider eight triangles (tri)1≤i≤8, that have the
property that for any ellipse σ, σ′ contains one of them.

To this aim we define the four points

v1 =(1
2 t, 0), v2 =(

√
2

4 t,
√

2
4 βt),

v3 =(
√

2β
4 t,

√
2

4 βt), v4 =(0, 1
2βt).

The triangles tr1 and tr2 are respectively pv1v2 and

pv3v4. Their respective areas are
√

2
16 βt

2 and
√

2
16 β

3
2 t2.

We will show that any ellipse tangent to the square in
the upper right quadrant contains tr1 or tr2. We com-
plete the set of triangles by their symmetrical copies
with respect to the x-axis, to the y-axis and to the point
p, and name them according to the trigonometric order

Figure 11: If |pq| > t, any ellipse passing through p
and q contains one of the 8 triangles.

32

33rd Canadian Conference on Computational Geometry, 2021

from tr1 to tr8 to cover the ellipses tangent to other
parts of the square.

Without loss of generality, we assume that the center
c′ of σ′ is in the upper right quadrant. In such a case,

the right most point of σ′ has abcissa
√

2
2 t, its left most

point has negative abcissa, and its center verifies 0 ≤
xc′ ≤

√
2

4 t.
As long as xc′ ≥ 1

4 t, using the symmetry of the ellipse
with respect to its vertical axis, v1 is between p and the
symmetric of p, and thus is inside σ0. We prove that
such ellipses, with xc′ ≥ 1

4 t, also contain v2. Actually
v2 is chosen as the highest point of the thinnest ellipse

of center c′ = (
√

2
4 t, 0) (in yellow on Figure 11), with

aspect ratio β. Since the abscissa of v2 is between p
and v1, moving the center c′ upward or to the left or
increasing β imply that v2 remains inside σ′. So as long
as xc′ ≥ 1

4 t, the triangle tr1 is inside σ′.
Suppose now that xc′ ≤ 1

4 t. The ellipse σ′, if its
aspect ratio is α, has equation:

α2x2 − 2α2xxc′ + y2 − 2yyc′ ≤ 0.

For a fixed α, the lowest possible center is reached when
xc′ = 1

4 t and since σ′ is tangent to the right side of the

square at (
√

2
2 t, yc′), by substitution we have:

1
2α

2t2 −
√

2α2t 1
4 t− y2

c′ = 0.

Thus yc′ is minimized for α = β, and so:

yc′ =
1

2

√
2−
√

2βt ' 0.383βt.

We can deduce, by symmetry with respect to the hori-
zontal axis of σ′, that all those ellipses contain the seg-

ment between p and (0,
√

2−
√

2βt), including v4.
To prove that v3 ∈ σ′, we make a distinction between

the side of tangency of σ′. We call contact point of an
ellipse, the point of the ellipse in which it is tangent to
the square, for σ′ we name it q′. Suppose first that σ′ is
tangent to the right side of the square. We consider the
two extreme ellipses σhigh and σlow, with highest and

lowest contact points qhigh and qlow, at respectively
√

2
4 t

and 1
2

√
2−
√

2βt for ordinate. They both contain v3:

v3 ∈ σlow :

β
2
(√

2β
4 t
)2
− β2

(√
2β
4 t
)
t
4 +

(√
2

4 βt
)2
− 2

(√
2

4 βt
) √

2−
√

2
2 βt

= β
2
t
2

(
β
8 −

√
2β
16 + 1

8 −
√

4−2
√

2
8

)
≤ 0 for β ≤ 0.6

v3 ∈ σhigh :
(√

2β
4 t
)2
− 0 +

(√
2

4 βt
)2
− 2

(√
2

4 βt
) √

2
4 t

= βt
2
(

1
8 + β

8 − 2
8

)
≤ 0 since β ≤ 1

We call bottom part of the ellipse, the counterclock-
wise arc from p to the contact point, and top part the

following arc from the contact point to the intersection
with the y-axis.

We show that the
bottom part of σ′

is below the bottom
part of σhigh. We ap-
ply a vertical affine
transformation that

flattens σhigh until its contact point becomes q′. The
new ellipse clearly has its bottom part lower since the
transformation lowered every point. Then we shift hori-
zontally the center into c′, maintaining the points p and
q′. Since that makes the aspect ratio grow, here again
we lowered the bottom part. So the bottom part of σ′

is below the bottom part of σhigh.

On the other hand
we apply a homo-
thetic transforma-
tion on σlow cen-
tered on its contact
point such that the
length of the

horizontal axis is the same as the length as σ′, followed
by a vertical translation until the contact point coincides
with q′, finally completed by a vertical affine transfor-
mation that makes it reach the correct aspect ratio, that
is greater. All these transformations make the upper
part of the ellipse go upward. We deduce that any el-
lipse tangent to the right side of the square and whose
center has abscissa smaller than 1

4 t contains tr2.
Then we can go to ellipses tangent to the top side of

the square. The proof is quite identical so we do not
develop it but keep in mind that the important point is

that v3 belongs to circle centered at (0,
√

2
4 t) because v3

lies on the parabola y = 2
√

2
t x2, that is above the circle

for y <
√

2
4 t.

Above arguments proved that any ellipse whose center
is in the upper right corner of the triangle contains either
(pv1v2) or (pv3v4). By extension, we deduce that any
ellipse contains at least one of the 8 triangles tri.

So we get:

P
[
[pq] ∈ G∅

Ell[β,1]
(X) | |pq| > t

]

≤ P [∃i ∈ [1, . . . , 8], tri ∩X = ∅]
= 4 (P [tr1 ∩X = ∅] + P [tr2 ∩X = ∅])

= 4

(
e−λ

√
2

16 βt
2

+ e−λ
√

2
16 β

3
2 t2
)

= Θ(e−λ
√

2β
3
2 (t4)

2

) �

Acknowledgements

The authors thank Sylvain Lazard for its relevant sug-
gestions.

33

CCCG 2021, Halifax, Canada, August 10–12, 2021

References

[1] N. Amenta, M. Bern, and D. Eppstein. The crust and the
β-skeleton: Combinatorial curve reconstruction. Graph-
ical models and image processing, 60(2):125–135, 1998.
doi:10.1006/gmip.1998.0465.

[2] J. Cardinal, S. Collette, and S. Langerman. Empty re-
gion graphs. Computational geometry, 42(3):183–195,
2009. doi:10.1016/j.comgeo.2008.09.003.

[3] B. Delaunay et al. Sur la sphere vide. Izv. Akad. Nauk
SSSR, Otdelenie Matematicheskii i Estestvennyka Nauk,
7(793-800):1–2, 1934.

[4] O. Devillers, J. Erickson, and X. Goaoc. Empty-ellipse
graphs. In 19th Annual ACM-SIAM Symposium on
Discrete Algorithms (SODA’08), pages 1249–1256, San
Francisco, United States, 2008. URL: https://hal.

inria.fr/inria-00176204.

[5] L. Devroye, C. Lemaire, and J.-M. Moreau. Expected
time analysis for delaunay point location. Computational
geometry, 29(2):61–89, 2004. doi:10.1016/j.comgeo.

2004.02.002.

[6] K. R. Gabriel and R. R. Sokal. A new statistical ap-
proach to geographic variation analysis. Systematic Bi-
ology, 18(3):259–278, 09 1969. doi:10.2307/2412323.

[7] D. G. Kirkpatrick and J. D. Radke. A framework for
computational morphology. In Machine Intelligence and
Pattern Recognition, volume 2, pages 217–248. Elsevier,
1985.

[8] R. Schneider and W. Weil. Stochastic and Integral Ge-
ometry. Probability and Its Applications. Springer, 2008.

[9] A. C.-C. Yao. On constructing minimum spanning trees
in k-dimensional spaces and related problems. SIAM
Journal on Computing, 11(4):721–736, 1982. doi:10.

1137/0211059.

Appendix

Proof. Integral for Theorem 2

We have to compute

E [deg (p,Del)] =
1

2

∫

R2

∫

R2

λ2e−λ|D(p,q,r)|drdq.

We use a Blaschke-Petkantschin like variables substitu-
tion [8, Theorem 7.2.7] from R4 to R+× [0, 2π)3, to express
the parameterization of q and r into (ρ, ϕ, θq, θr) where (ρ, ϕ)
denotes the polar coordinates of the center c of the circle cir-
cumscribing p, q, and r, and θq and θr denote the angles of
the points q and r from c to the horizontal line (see Figure
12).

xq = ρ(cosϕ+ cos θq), yq = ρ(sinϕ+ sin θq),

xr = ρ(cosϕ+ cos θr), yρ = r(sinϕ+ sin θr).

The Jacobian matrix J of the transformation can be writ-
ten:

J(ρ, ϕ, θq, θr)=




cosϕ+cosθq −ρ sinϕ −ρ sinθq 0
sinϕ+sinθq ρ cosϕ ρ cosθq 0
cosϕ+cosθr −ρ sinϕ 0 −ρ sinθr
sinϕ+sinθr ρ cosϕ 0 ρ cosθr


 ,

and has the following determinant:

det (J(ρ, ϕ, θq, θr))

=

∣∣∣∣∣∣∣∣

cosϕ+ cos θq −ρ sinϕ −ρ sin θq 0
sinϕ+ sin θq ρ cosϕ ρ cos θq 0
cosϕ+ cos θr −ρ sinϕ 0 −ρ sin θr
sinϕ+ sin θr ρ cosϕ 0 ρ cos θr

∣∣∣∣∣∣∣∣

= (cosϕ+ cos θq)

∣∣∣∣∣∣

ρ cosϕ ρ cos θq 0
−ρ sinϕ 0 −ρ sin θr
ρ cosϕ 0 ρ cos θr

∣∣∣∣∣∣

− (sinϕ+ sin θq)

∣∣∣∣∣∣

−ρ sinϕ −ρ sin θq 0
−ρ sinϕ 0 −ρ sin θr
ρ cosϕ 0 ρ cos θr

∣∣∣∣∣∣

+ (cosϕ+ cos θr)

∣∣∣∣∣∣

−ρ sinϕ −ρ sin θq 0
ρ cosϕ ρ cos θq 0
ρ cosϕ 0 ρ cos θr

∣∣∣∣∣∣

− (sinϕ+ sin θr)

∣∣∣∣∣∣

−ρ sinϕ −ρ sin θq 0
ρ cosϕ ρ cos θq 0
−ρ sinϕ 0 −ρ sin θr

∣∣∣∣∣∣

We develop from the coefficient that is the only not zero in
a column,

= (cosϕ+ cosθq) (−ρ cosθq)
(
−ρ2 sinϕ cosθr + ρ2 cosϕ sinθr

)

− (sinϕ+ sinθq) (ρ sinθq)
(
−ρ2 sinϕ cosθr + ρ2 cosϕ sinθr

)

+ (cosϕ+ cosθr) (ρ cosθr)
(
−ρ2 sinϕ cosθq + ρ2 cosϕ sinθq

)

− (sinϕ+ sinθr) (−ρ sinθr)
(
−ρ2 sinϕ cosθq + ρ2 cosϕ sinθq

)

= ρ3
(
(− cosϕ cosθq − cos2θq) (− sinϕ cosθr + cosϕ sinθr)

− (sinϕ sinθq + sin2θq) (− sinϕ cosθr + cosϕ sinθr)

+ (cosϕ cosθr + cos2θr) (− sinϕ cosθq + cosϕ sinθq)

− (− sinϕ sinθr − sin2θr) (− sinϕ cosθq + cosϕ sinθq)
)
.

Figure 12: The Blaschke-Petkantchin variables substi-
tution converts the Cartesian coordinates of q and r into
polar coordinates related to the circle circumscribing p,
q and r.

34

33rd Canadian Conference on Computational Geometry, 2021

We factorize by the right factor,

= ρ3
(
(− cosϕ cos θq − cos2 θq − sinϕ sin θq − sin2 θq)

· (− sinϕ cos θr + cosϕ sin θr)

+ (cosϕ cos θr + cos2 θr + sinϕ sin θr + sin2 θr)

· (− sinϕ cos θq + cosϕ sin θq)
)

= ρ3
(
(−cosϕ cosθq−sinϕ sinθq−1) (−sinϕ cosθr+cosϕ sinθr)

+(cosϕ cosθr+sinϕ sinθr+1) (−sinϕ cosθq+cosϕ sinθq)
)
.

We distribute the 1, develop, and many terms cancel each
other,

= ρ3
(

sin θq cos θr − cos θq sin θr + sinϕ cos θr

− cosϕ sin θr − sinϕ cos θq + cosϕ sin θq
)
.

Finally we apply the formulae: cos a sin b − cos b sin a =
sin(a− b), on the three well-chosen pairs of terms,

= ρ3(sin(θq − θr) + sin(θq − ϕ) + sin(ϕ− θr))
= ρ3 (sin(π − (θq − θr)) + sin(θq − ϕ) + sin(ϕ− θr))

= 4ρ3 sin
(
π−(θq−θr)

2

)
sin
(
θq−ϕ

2

)
sin
(
ϕ−θr

2

)
,

where the last line derives from the formula: sin a + sin b +
sin c = 4 sin a

2
sin b

2
sin c

2
when a+ b+ c = π. So that we get:

E [deg (p,Del)]

= 1
2

∫

R

∫ 2π

0

∫ 2π

0

∫ 2π

0

λ2e−λπρ
2 |det (J(ρ, ϕ, θq, θr))| dθrdθqdϕdρ

=

∫

R
2ρ3λ2e−λπρ

2

dρ

×
∫ 2π

0

∫ 2π

0

∫ 2π

0

∣∣∣sin
(
π−(θq−θr)

2

)
sin
(
θq−ϕ

2

)
sin
(
ϕ−θr

2

)∣∣∣ dθrdθqdϕ

simplified by the translation (θq, θr) 7→ (θq − π − ϕ, θr −
π − ϕ) applied in the (2π, 2π)-periodic function (θq, θr) 7→
sin
(
π−(θq−θr)

2

)
sin
(
θq−ϕ

2

)
sin
(
ϕ−θr

2

)
,

=
1

π2
×
∫ 2π

0

dϕ×
∫ 2π

0

∫ 2π

0

∣∣∣sin
(
θq−θr

2

)∣∣∣ sin θq
2

sin θr
2

dθrdθq

=
1

π2
× 2π × 3π = 6. �

Proposition 9 For a given q ∈ R2 and for α ∈ R+, con-
sider the ellipse rc(p, q) parameterized by c = (α2 xq

2
,
yq
2

).
The geometric center of rc(p, q) is the midpoint of [pq],

and its area is π
4

(
αx2q +

y2q
α

)
.

Proof. of Proposition 9 We note Ec(x, y) := α2x2 −
2xxc + y2 − 2yyc with α2 =

2xqxc−y2q+2yqyc

x2q
. If yc =

yq
2

,

then α2x2q − 2xqxc = 0, and so xc = α2 xq
2

.

Ec(x, y) = α2x2 − 2xxc + y2 − 2yyc

= α2(x2 − xxq) + y2 − yyq

= α2(x− xq
2

)2 + (y − yq
2

)2 − α2 x
2
q

4
− y2q

4
.

Dividing by
α2x2q+y

2
q

4
, another equation of rc(p, q) is:

4α2

α2x2q + y2q
(x− xq

2
)2 +

4

α2x2q + y2q
(y − yq

2
)2 − 1 < 0.

We identify, with that expression, that rc(p, q) is the trans-
lation by the vector 1

2
−→pq of the ellipse defined by:

4α2

α2x2q + y2q
x2 +

4

α2x2q + y2q
y2 − 1 = 0,

whose center is p, and area is π
4

(
αx2q +

y2q
α

)
. �

Lemma 16 Let t > 0, β ∈ (0, 1) and

Iβ(t) =

∫

R

∫

R
e
−t
√

(x2+y2)(β2x2+y2)dydx,

Iβ(t) =
1

t
Iβ(1) ≤ π

t

(
1 + ln(1

β
)
)
.

Proof. of Lemma 16
We apply, in the integral, the variables substitution:

(x, y) = (1√
t
X, 1√

t
Y) with Jacobian determinant 1

t
.

Iβ(t) =

∫

R

∫

R
e
−t
√

(x2+y2)(β2x2+y2)dydx

=

∫

R

∫

R

1

t
e
−
√

(X2+Y 2)(β2X2+Y 2)dY dX

=
1

t
Iβ(1).

Then we compute an upper bound:

Iβ(1) =

∫

R

∫

R
e
−
√

(x2+y2)(β2x2+y2)dydx

= 4

∫ ∞

0

∫ ∞

0

e
−
√

(x2+y2)(β2x2+y2)dydx

= 4

∫ π
2

0

∫ ∞

0

re−r
2
√
β2 cos2 θ+sin2 θdrdθ

= 2

∫ π
2

0

(
β2 cos2 θ + sin2 θ

)− 1
2 dθ.

On [0, π
2

],
(
β2 cos2 θ + sin2 θ

)− 1
2 is smaller than both 1

β

and π
2θ

; on the one hand, because
(
β2 cos2 θ + sin2 θ

)− 1
2

decreases from 1
β

to 1, on the other hand, because
(
β2 cos2 θ + sin2 θ

) 1
2 ≥ sin θ ≥ 2

π
θ, so that:

Iβ(1) ≤ 2

∫ π
2

0

min
(

1
β
, π
2θ

)
dθ

= 2

(∫ β π
2

0

1
β

dθ +

∫ π
2

β
π
2

π
2θ

dθ

)

= π (1− ln(β)) . �

35

CCCG 2021, Halifax, Canada, August 10–12, 2021

Rearranging a Sequence of Points onto a Line∗

Taehoon Ahn† Jongmin Choi† Chaeyoon Chung† Hee-Kap Ahn‡ Sang Won Bae§

Sang Duk Yoon¶

Abstract

Given a sequence of n weighted points 〈p1, p2, . . . , pn〉
in the plane, we consider the problem of finding a re-
arrangement of the points, qi for each pi, onto a line
such that any two consecutive points qi and qi+1 are at
distance no more than their weight difference, and the
maximum distance between pi and qi over all i is mini-
mized. We present efficient algorithms that compute an
optimal rearrangement for three variants of the prob-
lem under the Euclidean metric. When the line is fully
specified or partially specified by only its orientation,
our algorithms take near-linear time. When we need to
find a target line, onto which the input sequence can
be rearranged with the optimal rearrangement cost, we
present an O(n3 polylog n)-time algorithm.

1 Introduction

Consider an object moving in the plane and its trajec-
tory data which can be represented by a sequence of
pairs, each consisting of a time stamp and the coordi-
nates of the object at the time. One popular problem
concerning such trajectories is to determine whether the
object follows a path of a certain shape. The quality of
the trajectory with respect to the path can be mea-
sured by their similarity, that is, how closely the trajec-

∗T.Ahn, J.Choi, C.Chung, and H.-K.Ahn were supported by
the Institute of Information & communications Technology Plan-
ning & Evaluation(IITP) grant funded by the Korea govern-
ment(MSIT) (No. 2017-0-00905, Software Star Lab (Optimal
Data Structure and Algorithmic Applications in Dynamic Geo-
metric Environment)) and (No. 2019-0-01906, Artificial Intelli-
gence Graduate School Program(POSTECH)). S.W.Bae was sup-
ported by Basic Science Research Program through the National
Research Foundation of Korea (NRF) funded by the Ministry of
Education (2018R1D1A1B07042755). S.D.Yoon was supported
by “Cooperative Research Program for Agriculture Science &
Technology Development (Project No. PJ015269032021)” Rural
Development Administration, Republic of Korea.
†Department of Computer Science and Engineering, Pohang

University of Science and Technology, Pohang, Korea. {sloth,
icothos, chaeyoon17}@postech.ac.kr
‡Department of Computer Science and Engineering, Graduate

School of Artificial Intelligence, Pohang University of Science and
Technology, Pohang, Korea. heekap@postech.ac.kr
§Department of Computer Science, Kyonggi University, Su-

won, Korea. swbae@kgu.ac.kr
¶Department of Service and Design Engineer-

ing, Sungshin Women’s University, Seoul, Korea.
sangduk.yoon@sungshin.ac.kr

tory follows the path in increasing order of time stamps.
Therefore, in a good trajectory, every trajectory point
can be translated to a point in the path such that the
translation distance is small and two consecutive trajec-
tory points are translated to points close to each other
along the path. Formally, we define this problem for
linear paths as follows.

Weighted point-to-line rearrangement. Given a se-
quence of n points 〈p1, p2, . . . , pn〉 in the plane and their
weights wi for pi with w1 ≤ w2 ≤ · · · ≤ wn, find a re-
arrangement of the points, qi for each pi, onto a line
such that any two consecutive points qi and qi+1 are at
distance no more than wi+1 − wi, and the maximum
distance between pi and qi over all i is minimized. We
call such a rearrangement an optimal rearrangement of
the point sequence, and the maximum distance of an
optimal rearrangement the optimal rearrangement cost.

Observe that the constraint on the distance of two
consecutive points implies that any two points qi and
qj (i ≤ j) are at distance no more than wj − wi. See
Figure 1 for an illustration of rearranging five points
onto a line `.

We consider three variants of the problem: (1) the
rearrangement line is given, (2) only the orientation of
the rearrangement line is given, or (3) the rearrange-
ment line is not specified at all. For the variants (2)
and (3), we need to find a best line, onto which the
input sequence can be rearranged with the optimal re-
arrangement cost, and realize such a rearrangement.

For ease of presentation, we will discuss a special case
in which wi = i for every index i. We first describe our
algorithms for this special case and then show how to
extend to the general weighted problem without increas-
ing time complexities. The special case is equivalent to
the following unweighted problem.

(Unweighted) point-to-line rearrangement. Given a
sequence of n points 〈p1, p2, . . . , pn〉 in the plane, find a
rearrangement of the points, qi for each pi, onto a line
such that any two consecutive points qi and qi+1 are at
distance no more than 1, and the maximum distance
between pi and qi over all i is minimized.

Again, the constraint on the distance between two
consecutive points implies that any two points qi and qj
(i ≤ j) are at distance no more than j − i.

36

33rd Canadian Conference on Computational Geometry, 2021

≤ w2 − w1p1

p2

p3

p4

p5

q1

q2
q3

q4
q5

`

Figure 1: A rearrangement 〈q1, ..., q5〉 of five points
〈p1, ..., p5〉 onto `. Any two points qi and qj (i ≤ j)
are at distance no more than wj − wi. The cost of this
rearrangement is the maximum distance between pi and
qi over all i = 1, . . . , 5.

Related work. There has been a fair amount of work
on rearranging points with respect to certain objectives.
One of those problems the most related to ours asks to
find the center line that minimizes the maximum dis-
tance from the input points to the line. This can be
solved in O(n log n) time by computing the center line
of a minimum-width slab for the points from the convex
hull [11, 12]. Notice that the center line problem implic-
itly assumes rearrangements of input points obtained by
their orthogonal projections onto a line, and hence the
center line problem is equivalent to our rearrangement
problem where the proximity constraint of consecutive
points is relaxed.

Similarly, a circle that aggregates a point set can
be found from the minimum-width annulus for the
points [9]. There is a deterministic O(n8/5+ε)-time algo-
rithm [2] and an expected O(n3/2+ε)-time algorithm [1]
for computing the minimum-width annulus for n points
in the plane. When the radius r of the aggregating cir-
cle is fixed, there is an O(n log n)-time algorithm [8, 10]
that finds the minimum-width annulus with median ra-
dius r.

For a sequence of n points in the increasing order of
x-coordinates in the plane, there has been a series of
work to find an x-monotone curve with minimum error
under various settings on the curve. When the curve is
a polyline, the segmented least squares algorithm finds
the polyline that minimizes a combination of the total
squared errors and the number of segments in the poly-
line in O(n2) time [4].

When the weights of the input points are the same,
we have wi+1 −wi = 0 for all i, and any rearrangement
〈q1, . . . , qn〉 has the same point for all qi’s. Thus, the
optimal rearrangement is achieved by the point q ∈ `
such that the smallest disk centered at q and enclosing
the input points has minimum radius among all enclos-
ing disks centered at points of `. There is an O(n)-time
algorithm [14] for finding the center, and an O(n log n)-
time algorithm for k centers restricted to a line [18].

Our results. We present efficient algorithms for find-
ing an optimal rearrangement among the rearrange-
ments of the sequence S of n points onto a line under
the Euclidean metric. For the case that the rearrange-
ment line ` is given, we observe that the cost of the
optimal rearrangement of S onto ` is determined by at
most two points, and present a simple O(n2)-time al-
gorithm. Then we improve the running time to near-
linear by applying several optimization techniques. We
present an expected O(n)-time algorithm using random-
ized optimization [6] and a deterministic O(n log log n)-
time algorithm using parametric search [7] with some
additional preprocessing.

For the case that only the orientation of the rear-
rangement line is given, we compute an optimal rear-
rangement line ` among all lines of the orientation and
an optimal rearrangement onto ` using a set of O(n)
convex functions, each representing the optimal rear-
rangement cost of a contiguous subsequence of S. The
upper envelope of those functions coincides with the
function of the optimal rearrangement cost of S. By
applying convex programming, our algorithm computes
an optimal rearrangement in O(n log n) time. For the
case that the rearrangement line is not specified at all,
we present an O(n3 polylog n)-time deterministic algo-
rithm that finds an optimal rearrangement line ` and an
optimal rearrangement onto `. The detailed algorithms
for the case that the rearrangement line is not specified
can be found in the full version of this paper.

2 Preliminaries

Let S = 〈p1, . . . , pn〉 denote the input sequence of
points, and w1, . . . , wn be their weights with w1 ≤ · · · ≤
wn. Throughout the paper, we mainly discuss the un-
weighted problem, so we assume wi = i for each i =
1, . . . , n, unless stated otherwise. For any 1 ≤ i ≤ j ≤ n,
we denote by Sij the contiguous subsequence of S from
pi to pj , that is, Sij = 〈pi, . . . , pj〉. Let ‖ · ‖ denote
the Euclidean norm on the plane so that we use ‖p− q‖
to denote the distance between two points p and q. A
sequence 〈qi, . . . , qj〉 of points is a rearrangement of Sij
onto a line ` if qk lies on ` and ‖qk′ − qk‖ ≤ wk′ −wk for
every k and k′ with i ≤ k ≤ k′ ≤ j. Its cost is defined
to be maxi≤k≤j ‖qk − pk‖.

An optimal rearrangement of S onto a line ` is a rear-
rangement with the minimum cost among all rearrange-
ments of S onto `. An optimal rearrangement of S onto
a set of lines is a rearrangement with the minimum cost
among all optimal rearrangement of S over the lines in
the set. We use δ∗(`) to denote the cost of an optimal
rearrangement of S onto `. We may simply write δ∗ if
it is understood from the context.

For a real number r ≥ 0, we denote by I(r) the seg-
ment of length 2r joining two points (−r, 0) and (r, 0)

37

CCCG 2021, Halifax, Canada, August 10–12, 2021

`

p1

D1(δ0)

δ0

`

pi

Di(δ0)

δ0

R1

Ri−1
Ri

Ri−1 ⊕ I(1)

(a) (b)

Figure 2: (a) R1 is defined as the intersection of D1(δ0)
and `. (b) Ri is defined as the intersection of Di(δ0)
and Ri−1 ⊕ I(1).

on the x-axis. We will often consider the Minkowski
sum of a compact set X in the plane and the segment
I(r), denoted by X ⊕ I(r).

3 Rearrangement onto a Fixed Line

In this section, we consider the problem when the rear-
rangement line is given as an input, so we are given a
sequence S = 〈p1, . . . , pn〉 and a line `, and want to find
an optimal rearrangement of S onto `. Without loss
of generality, assume that ` is the x-axis. For any real
number r, we abuse the notation so that r also denotes
the point (r, 0) on the x-axis ` if there is no confusion
from the context.

We first present an O(n)-time decision algorithm de-
termining for a given real value δ0 ≥ 0, whether there
exists a rearrangement of S with cost at most δ0. We
define a feasible range Ri for each point pi of S, rep-
resenting the range in the x-axis in which qi of a
rearrangement 〈q1, . . . , qi〉 of S1i onto ` with cost at
most δ0 can be placed. The decision algorithm com-
putes feasible ranges as follows: R1 = ` ∩ D1(δ0) and
Ri = (Ri−1 ⊕ I(1)) ∩ Di(δ0) for 1 < i ≤ n, where
Di(δ0) := {q | ‖q − pi‖ ≤ δ0} denotes the disk with
center pi and radius δ0. See Figure 2 for an illustration
of the ranges.

Lemma 1 There is a rearrangement of S1i with cost at
most δ0 and pi rearranged to qi if and only if qi ∈ Ri.

Proof. We first prove the if part by induction. If i = 1,
it is trivial. For any i > 1, we pick a point qi ∈ Ri. Then
we have (qi⊕I(1))∩Ri−1 6= ∅ as qi ∈ Ri−1⊕I(1). Pick a
point qi−1 in (qi⊕ I(1))∩Ri−1. Then, by the induction
hypothesis, there is a rearrangement 〈q1, . . . , qi−1〉 of
S1(i−1) with cost at most δ0. Since ‖qi − qi−1‖ ≤ 1,
〈q1, . . . , qi−1, qi〉 is a rearrangement of S1i with cost at
most δ0.

We now prove the only if part by induction. It is
trivial for i = 1. For any i > 1, let 〈q1, . . . , qi〉 be a
rearrangement of S1i with cost at most δ0. We have qi ∈
Ri−1⊕I(1) because ‖qi−1−qi‖ ≤ 1, and qi−1 ∈ Ri−1 by

the induction hypothesis. We also have qi ∈ ` ∩Di(δ0)
because the cost of the rearrangement is at most δ0.
Therefore, qi ∈ Ri. �

By Lemma 1, the decision problem can be answered
by checking whether Rn 6= ∅ (yes) or Rn = ∅ (no).
Since we can compute R1 in O(1) time, and Ri in O(1)
time once we have Ri−1, we can compute Rn in O(n)
time. If Rn 6= ∅, we can compute a rearrangement
〈q1, . . . , qn〉 of S in O(n) time, by choosing qn from Rn,
and then choosing qi from (qi+1⊕ I(1))∩Ri repeatedly
for i from n− 1 to 1.

Lemma 2 Given a point sequence S of n points, a line
`, and a real value δ0, we can decide whether there exists
a rearrangement of S onto ` with cost at most δ0 in O(n)
time. If such rearrangement exists, we can compute a
rearrangement of S with cost at most δ0 in O(n) time.

We present some characterizations of an optimal re-
arrangement of S. We first show that there are at most
two points of S which determine the cost δ∗ = δ∗(`) of
an optimal rearrangement in the following lemma.

Lemma 3 There exists an optimal rearrangement
〈q1, . . . , qn〉 of S onto ` satisfying one of the followings.

(1) There is a point pj in S such that ‖pj − qj‖ = δ∗

and qj is the orthogonal projection of pj onto `.

(2) There are two points pi and pj (i < j) in S such
that ‖pi − qi‖ = ‖pj − qj‖ = δ∗, ‖qi − qj‖ = j − i,
and both qi and qj lie in between the orthogonal
projections of pi and pj onto `.

Proof. Among the feasible ranges of the points of S for
δ∗, there must be a feasible range that is a single point.
Otherwise, there is a real value ε > 0 such that Rn 6= ∅
with cost (δ∗ − ε), which contradicts the optimality of
δ∗.

If a feasible range Rj is a single point, then ` is tan-
gent to Dj(δ

∗), or Dj(δ
∗) intersects Rj−1 ⊕ I(1) only

at an endpoint. The former case implies that qj is the
orthogonal projection of pj onto ` with ‖pj − qj‖ = δ∗,
and thus we have case (1). For the latter case, ob-
serve that an endpoint of Rj−1 ⊕ I(1) is an endpoint of
the intersection of Di(δ

∗) ⊕ I(j − i) and ` for some i
with 1 ≤ i < j. Therefore, the common intersection of
Di(δ

∗) ⊕ I(j − i), `, and Dj(δ
∗) is just a single point.

Then, ‖pi − qi‖ = ‖pj − qj‖ = δ∗, ‖qj − qi‖ = j − i, and
both qi and qj lie in between the orthogonal projections
of pi and pj onto `. Thus, we have case (2). �

For an optimal rearrangement, we call the points of
S that satisfy cases (1) or (2) of Lemma 3 the determi-
nators of the rearrangement. We now define a value δij
for every two indices 1 ≤ i ≤ j ≤ n. Let qi and qj be the
points on ` minimizing max{‖pi − qi‖, ‖pj − qj‖} with

38

33rd Canadian Conference on Computational Geometry, 2021

pj

δjj
`

pi
pj

j − i

`
δij

δij

pi

< j − i

`

pj
δii δjj

(a) (b)

(d)

pi
pj

j − i

`
≤ δjj

δjj

(c)

Figure 3: (a) δjj is the length of the projection from
pj to `. (b) When the difference of x-coordinates be-
tween two points pi and pj (i < j) is bigger than j − i,
δij is defined by two points in between the orthogonal
projections of pi and pj with distance j − i. (c) One of
the points that define δij can be the orthogonal projec-
tion of pj , so that δij = δjj . (d) When the difference of
x-coordinates between two points pi and pj is smaller
than or equal to j − i, δij = max{δii, δjj}.

‖qi− qj‖ ≤ j − i. Then δij = max{‖pi− qi‖, ‖pj − qj‖}.
(Figure 3). Note that δjj is the length of the orthogonal
projection of pj to `. Then δij denotes the minimum
cost required by two points pi and pj of S such that
there is a rearrangement of S.

Lemma 4 δ∗ = maxi,j δij.

Proof. By Lemma 3, there is an optimal rearrange-
ment with determinators. If the optimal rearrangement
belongs to case (1) of Lemma 3, then δ∗ = δjj for the
determinator pj (Figure 3(a)). If it belongs to case (2)
of Lemma 3, then δ∗ = δij for the determinators pi and
pj . Therefore, δ∗ ≤ maxi,j δij holds (Figure 3(b)).

If δ∗ < δii, there is no point q ∈ ` such that
‖pi − q‖ ≤ δ∗, which is a contradiction. Assume that
there are two indices i, j (i < j) such that δ∗ < δij .
There is an optimal rearrangement Q∗ = 〈q∗1 , . . . , q∗n〉
with cost δ∗. However, ‖q∗i − q∗j ‖ > j − i holds by the
assumption, which contradicts that Q∗ is a rearrange-
ment. Therefore, maxi,j δij ≤ δ∗ holds. �

3.1 Randomized algorithm

This problem can be solved in O(n) expected time using
the randomized optimization technique by Chan [6] as
follows. We consider the weighted version of the prob-
lem in which a sequence S = 〈p1, . . . , pn〉 of n weighted
points is given, the weight of pi denoted by wi, satisfy-
ing wi ≤ wj for every pair of indices i, j with i < j. The
objective is to find a rearrangement Q = 〈q1, . . . , qn〉 of
S onto ` such that ‖qi − qj‖ ≤ wj − wi for every pair
of indices i, j with i ≤ j, and the rearrangement cost
maxi ‖pi − qi‖ is minimized.

/2/2

`

pi

Di(δ0)

δ0

Ri−1
Ri

Ri−1 ⊕ I(wi − wi−1)

Figure 4: The definition of Ri for i > 1 is replaced.

Observe that Lemmas 2, 3, and 4 also hold for this
weighted version, by replacing the definition of Ri with
Ri = (Ri−1 ⊕ I(wi − wi−1)) ∩ Di(δ) (R1 remains the
same) and by replacing the condition ‖qi−qj‖ = j−i in
case (2) of Lemma 3 with ‖qi−qj‖ = wj−wi (Figure 4).
Thus, we have the following corollary.

Corollary 5 For a sequence S of n weighted points, a
line `, and a real value δ0, we can decide whether there
exists a rearrangement of S onto ` with cost at most δ0
in O(n) time.

Let S1, S2 and S3 be subsequences of S with
length at most dn/3e and S1;S2;S3 = S where
A;B is the concatenation of two sequences A and
B such that the elements of B comes after the last
element of A in the concatenation. Then δ(S) =
max{δ(S1;S2), δ(S1;S3), δ(S2;S3)} by Lemma 3, where
δ(A) denotes the optimal rearrangement cost of a se-
quence A. Therefore, by applying the randomized op-
timization technique by Chan, we obtain a randomized
algorithm to compute δ∗, which takes the time linear to
the running time of the decision algorithm, O(n). By
Lemma 2, we can compute a rearrangement with cost
δ∗ using O(n) additional time.

Theorem 6 Given a sequence S of n weighted points
and a line `, we can compute an optimal rearrangement
of S onto ` in expected O(n) time.

3.2 Deterministic algorithm

By Lemma 4, we get an O(n2)-time deterministic algo-
rithm to compute δ∗ that computes δij for every pair of
indices i, j with i ≤ j and returns the maximum value
among them. We present a more efficient deterministic
algorithm for the problem. We first extend the defini-
tion of Ri to define a function representing the range

39

CCCG 2021, Halifax, Canada, August 10–12, 2021

within which qi can be placed with respect to the po-
sition of q1 and the cost δ. We present sub-linear time
sequential and parallel decision algorithms using those
functions after preprocessing. By applying parametric
search, we obtain an O(n log log n)-time algorithm to
compute the optimal rearrangement cost δ∗.

Recall that Ri denotes the feasible range for pi of S
with a fixed cost. For the deterministic algorithm, we
consider Ri as a function of the cost variable δ and a
real value r, and thus we use Ri(δ, r) to denote the func-
tion. For a fixed cost δ0 and a fixed value r0, Ri(δ0, r0)
represents the range in ` on which qi of a rearrange-
ment 〈q1 = r0, . . . , qi〉 of S1i with cost at most δ0 can
be placed. Our algorithm takes S as input and com-
putes Rn(δ, r) in the rearrangements of S for all cost
values δ and real values r.

Characterization of Rn(δ, r) for a fixed cost δ0.
To characterize Ri(δ, r), we set δ to a fixed value δ0,
and use Ri(r) to denote Ri(δ0, r). Observe that Ri(r)
is an interval on ` and its two boundary points can be
described by functions Bi and Ti defined on r such that
Ri(r) = [Bi(r), Ti(r)]. In case that Ri(r) = ∅, Bi and
Ti are not defined for r. We use domi to denote the
range of r for which Ri(r) 6= ∅, and thus Bi and Ti are
defined for r ∈ domi.

Observe that Ri(r) can be defined inductively as Ri
in the beginning of Section 3. We have R1(r) = [r, r]
which is defined for r ∈ dom1 = `∩D1(δ0), and Ri(r) =
(Ri−1(r)⊕ I(1)) ∩Di(δ0) for 1 < i ≤ n.

Lemma 7 There is a rearrangement 〈q1 = r, . . . , qn〉 of
S onto ` with cost at most δ0 if and only if qn ∈ Rn(r).

Proof. If S consists of one point, the lemma holds by
the definition of Rn(r). For S consisting of more than
one point, we prove the lemma by induction.

Assume qn ∈ Rn(r). Then Rn−1(r) 6= ∅, and this
implies r ∈ domn−1. Also, by the definition of Rn(r),
‖pn − qn‖ ≤ δ0 and there exists a point q′ ∈ Rn−1(r)
with ‖qn − q′‖ ≤ 1. By the induction hypothesis, we
get a rearrangement 〈q1 = r, . . . , qn−1〉 of S1(n−1) with
cost at most δ0. Then we obtain the rearrangement
〈q1 = r, . . . , qn−1, qn〉 of S with cost at most δ0.

Let Q = 〈q1 = r, . . . , qn−1, qn〉 be a rearrangement
of S onto ` with cost at most δ0. By the induction
hypothesis, we have r ∈ domn−1 and qn−1 ∈ Rn−1(r).
Since we have qn ∈ (qn−1 ⊕ I(1)) and qn ∈ Dn(δ0),
qn ∈ Rn(r) holds. �

Let bi and ti be the two boundary points of `∩Di(δ0)
with bi ≤ ti. If `∩Di(δ0) = ∅, bi and ti are not defined.
If ` is tangent to Di(δ0), bi = ti. We can check in
O(n) time whether bi and ti are defined for every i with
1 ≤ i ≤ n. Since there is a rearrangement with cost
δ0 only if bi and ti are defined for every i, we assume
that they are defined for every i in the remainder of this

section. In the following lemmas, we show that Bn(r),
Tn(r), and domn can be expressed using bi’s and ti’s.

Lemma 8 For r ∈ domn, Bn(r) = max1≤i≤n{r − n +
1, bi+ i−n} and Tn(r) = min1≤i≤n{r+n−1, ti− i+n}.

Proof. We prove the claim by induction. When n = 1,
[B1(r), T1(r)] = [r, r] = [r − 1 + 1, r + 1 − 1]. Since
b1 ≤ r ≤ t1 for any r ∈ dom1, the statement holds. For
an index j > 1, domj ⊆ domj−1 holds since Rj(r) 6= ∅
only if Rj−1(r) 6= ∅. Therefore, for r ∈ domj , r ∈
domj−1. Then [Bj(r), Tj(r)] = [Bj−1(r) − 1, Tj−1(r) +
1]∩[bj , tj]. Using the induction hypothesis, we can show
that Bj(r) = max{Bj−1(r)−1, bj} = max1≤i≤j{r− j+
1, bi + i − j} holds. We can show the claim for Tj(r)
similarly. �

Lemma 9 If domn 6= ∅, domn =
⋂

1≤i≤n[bi− i+ 1, ti+
i− 1].

Proof. Let Rrev
j denote the range in ` on which qj of

a rearrangement 〈qj , . . . , qn〉 of Sjn with cost at most
δ0 can be placed. By Lemma 7, r ∈ domn if and only
if there is a rearrangement 〈q1 = r, . . . , qn〉 of S onto `
with cost at most δ0. Therefore, Rrev

1 = domn. We show
that Rrev

j =
⋂
j≤i≤n[bi− i+ j, ti + i− j] by induction on

j from n to 1.
As the base case, Rrev

n = ` ∩ Dn(δ0) = [bn, tn]. For
any j < n, let Rrev

j 6= ∅. As r ∈ Rrev
j if and only if r ∈

(Rrev
j+1 ⊕ I(1)) and r ∈ Dj(δ0), Rrev

j+1 6= ∅. Then by the
induction hypothesis, we have the following equation.

Rrev
j+1 =

⋂

j+1≤i≤n
[bi − i+ (j + 1), ti + i− (j + 1)]

Since Rrev
j = (Rrev

j+1 ⊕ I(1)) ∩ [bj , tj], the claim holds.
Therefore, we conclude domn = Rrev

1 =
⋂

1≤i≤n[bi − i+
1, ti + i− 1] if domn = Rrev

1 6= ∅. �

Observe that domn = ∅ if Rrev
j = ∅ for some j, even

when
⋂

1≤i≤n[bi − i + 1, ti + i − 1] 6= ∅. Therefore,
we have to check whether domn = ∅. By Lemma 8,
each of Bn and Tn consists of at most two segments as
max1≤i≤n{bi − n+ i} and min1≤i≤n{ti + n− i} remain
unchanged for different r values. See Figure 5.

Observation 1 Bn(r) consists of at most two seg-
ments, one with slope 0 followed by one with slope 1.
Tn(r) consists of at most two segments one with slope 1
followed by one with slope 0.

Observe that Rn(r) = [Bn(r), Tn(r)] is determined by
at most four points of S with indices (a) arg maxi{bi +
i} and (b) arg mini{ti − i} from Lemma 8, and (c)
arg maxi{bi− i} and (d) arg mini{ti+ i} from Lemma 9.
If domn 6= ∅, domn = [b(c)− (c) + 1, t(d) + (d)−1]. For a
real value r ∈ domn, Bn(r) = max{r−n+1, b(a) +(a)−

40

33rd Canadian Conference on Computational Geometry, 2021

Tn(r)

Bn(r)

r
domn

Rn(r)

Figure 5: Rn(r) = [Bn(r), Tn(r)], where Bn and Tn
defined in domn have constant complexity.

n} and Tn(r) = max{r + n− 1, t(b) − (b) + n}. We call
the set of those four points the combinatorial structure
of Rn(r) for δ0.

Computing Rn(δ, r) = [Bn(δ, r), Tn(δ, r)]. Let Bij(r)
and Tij(r) denote the two boundary points of the fea-
sible range Rij(r) = [Bij(r), Tij(r)] of pj with re-
spect to the subsequence Sij with pi rearranged to r.
We can compute Bn(r) and Tn(r) using the feasible
ranges [B1k(r), T1k(r)] and [Bkn(r), Tkn(r)] of two sub-
sequences S1k and Skn of S for any k with 1 < k < n
in O(1) time.

Lemma 10 We can compute Bn(r) and Tn(r) of S in
O(1) time once we have B1k(r), T1k(r), Bkn(r), and
Tkn(r) for any k with 1 < k < n.

Proof. We first check whether domn = ∅. Let
dom1k = [r1, r2], which is the domain of functions
B1k(r) and T1k(r). Note that B1k(r) and T1k(r) are
monotonically increasing functions by Observation 1.
Then the maximal range that qk of a rearrangement
〈q1, . . . , qk〉 of S1k with cost at most δ0 can be placed is
[B1k(r1), T1k(r2)]. There is a rearrangement of S if and
only if [B1k(r1), T1k(r2)] ∩ domkn 6= ∅, where domkn is
the domain ofBkn(r) and Tkn(r). We can check whether
domn = [B1k(r1), T1k(r2)] ∩ domkn = ∅ in O(1) time. If
domn 6= ∅, we can find the combinatorial structure of
Rn(r) from the combinatorial structures of R1k(r) and
Rkn(r) by O(1) comparisions. After finding the combi-
natorial structure, we can compute Bn(r) and Tn(r) of
S in O(1) time. �

Now we treat δ also as a variable of the feasible
range Ri and its boundary points Bi and Ti so that
qi ∈ Ri(δ, r) = [Bi(δ, r), Ti(δ, r)] holds if and only if
there exists a rearrangement 〈q1 = r, . . . , qi〉 of S1i with
cost at most δ. We also use δ as a variable of two bound-
ary points bi(δ) and ti(δ) of `∩Di(δ) with bi(δ) ≤ ti(δ).
We compute Rn(δ, r) by storing all different combina-
torial structures over δ in increasing order of δ.

Lemma 11 The combinatorial structure of Rn(δ, r)
changes O(n) times over δ.

Proof. We prove that arg maxi{bi(δ) + i} changes at
most O(n) times for δ increasing from 0 to ∞. For
any two indices i and j, bi(δ) + i = bj(δ) + j holds for
at most one δ value. Therefore, if arg maxi{bi(δ) + i}
changes from j to j′ at δ′, j = arg maxi{bi(δ) + i} does
not hold for δ > δ′. This implies that each index be-
comes arg maxi{bi(δ)+i} for at most one interval, which
bounds the number of changes to O(n) in total. We can
bound the numbers of changes of arg mini{ti(δ) − i},
arg maxi{bi(δ)− i}, and arg mini{ti(δ) + i} in the same
way. �

Let Bij(δ, r) and Tij(δ, r) denote the two
boundary points of the feasible range Rij(δ, r) =
[Bij(δ, r), Tij(δ, r)] of pj with respect to Sij with
pi rearranged to r. We can compute Bn(δ, r) and
Tn(δ, r) using the feasible ranges [B1k(δ, r), T1k(δ, r)]
and [Bkn(δ, r), Tkn(δ, r)] of two subsequences S1k and
Skn of S for any k with 1 < k < n in O(n) time.

Lemma 12 We can compute Rn(δ, r) of S in O(n)
time once we have R1k(δ, r), and Rkn(δ, r) for any k
with 1 < k < n.

Proof. The functions R1k(δ, r) and Rkn(δ, r) consist of
O(k) and O(n − k) combinatorial structures, respec-
tively, by Lemma 11. As they are stored in the increas-
ing order of δ, we simply merge the functions to compute
Rn(δ, r) in increasing order of δ. For each range where
the combinatorial structures of R1k(δ, r) and Rkn(δ, r)
remain the same, we can compute Rn(δ, r) in O(1) time
by Lemma 10. As there are O(n) such ranges, the algo-
rithm takes O(n) time in total. �

By Lemma 12, we can compute Bn(δ, r) and Tn(δ, r)
of S in O(n log n) time applying divide and conquer.

Lemma 13 We can compute Bn(δ, r) and Tn(δ, r) in
O(n log n) time.

Optimization algorithm using parametric search.
By Lemma 13, we have an O(n log n)-time algorithm for
computing an optimal rearrangement as follows: Com-
pute Rn(δ, r) = [Bn(δ, r), Tn(δ, r)] in O(n log n) time,
and find δ∗ which is the minimum value of δ satisfy-
ing domn 6= ∅. Using O(n) additional time, the algo-
rithm computes an optimal rearrangement by Lemma 2.
Here, we present an algorithm using Cole’s paramet-
ric search [7] to further improve the running time to
O(n log log n) time.

Before applying parametric search, our algorithm pre-
processes the feasible ranges of subsequences. The algo-
rithm subdivides S into dn/te subsequences, each con-
sisting of at most t + 1 points for some parameter t,
which will be chosen later. Every two consecutive sub-
sequences share a point and S is entirely covered by

41

CCCG 2021, Halifax, Canada, August 10–12, 2021

the subsequences. For each subsequence, the algorithm
computes the feasible range over all δ values. This pro-
cedure takes O(t log t) time for each subsequence, and
thus it takes O(n log t) time in total.

After the preprocessing, the algorithm determines (se-
quentially) whether δ ≥ δ∗ as follows. It finds the com-
binatorial structure of the feasible range of each sub-
sequence with respect to δ using binary search. This
takes O(log t) time for each subsequence, and thus it
takes O((n log t)/t) time in total. Then the algorithm
merges the feasible ranges in the sequential order to de-
termine whether domn = ∅ for δ. This takes O(1) time
for merging two feasible ranges in the order, and thus
it takes O(n/t) time in total, which is dominated by
O((n log t)/t) time.

With the preprocessing, we present a parallel deci-
sion algorithm using O(n/t) processors. The algorithm
finds the combinatorial structure of the feasible range
with respect to δ by assigning a processor for each sub-
sequence. Then for the remaining steps, the algorithm
merges two consecutive feasible ranges using a proces-
sor. After O(log n) merge steps, the algorithm computes
Rn(δ, r). This procedure takes O(1) time for each of
O(log n) steps, after finding the combinatorial structure
of feasible range for each subsequence in O(log t) time.
Thus, it takes O(log n) time in total. As each process
of the parallel algorithm depends on at most two other
processes, we can apply Cole’s parametric search [7].

By applying parametric search, the algorithm can
compute the optimal rearrangement cost δ∗ in O(PTP +
TS(TP + logP)) = O((n log n log t)/t) time after
O(n log t)-time preprocessing, where P = O(n/t) is the
number of processors needed for parallel decision, TP is
the running time of our parallel decision algorithm, and
TS is the running time of our sequential decision algo-
rithm. Setting t = log n, we obtain an O(n log log n)-
time algorithm. After finding δ∗ in O(n log log n) time,
we can find an optimal rearrangement of S using O(n)
additional time by Lemma 2.

Theorem 14 For a sequence S of n points and a line
`, we can compute an optimal rearrangement of S onto
` in O(n log log n) time.

3.3 Weighted version

In this section, we show that the deterministic algo-
rithm of Section 3.2 can be extended to the weighted
version without increasing the time complexity. Ob-
serve that Lemma 7 also holds for the weighted version,
by replacing the definition of Ri(r) = [Bi(r), Ti(r)] for
fixed δ0 with Ri(r) = (Ri−1(r)⊕ I(wi−wi−1))∩Di(δ0)
(R1(r) remains the same). Then we can show that
Ri(r) is determined by at most four points of S with
indices (a) arg maxi{bi +wi}, (b) arg mini{ti−wi}, (c)
arg maxi{bi−wi}, and (d) arg mini{ti+wi} as shown in

Lemmas 8 and 9. Observe that the points determining
Ri(δ, r) change O(n) times over δ as in Lemma 11, we
obtain O(n log log n)-time algorithm using parametric
search.

Theorem 15 For a sequence S of n weighted points
and a line `, we can compute an optimal rearrangement
of S onto ` in O(n log log n) time.

4 Rearrangement onto a Line with Fixed Orienta-
tion

Recall that δ∗(`) denotes the cost of an optimal re-
arrangement of S onto a line `. Given a sequence
S = 〈p1, . . . , pn〉 of n points and an orientation ~c, we
find a line ` such that δ∗(`) is minimum among all lines
parallel to ~c in the plane, and compute an optimal re-
arrangement of S onto `.

Without loss of generality, we assume that the orien-
tation is horizontal, and thus our target line is horizon-
tal. For a real value h, we use `(h) to denote a horizontal
line with y = h.

We compute an optimal rearrangement using a func-
tion that represents the optimal rearrangement cost of
S onto all horizontal lines. In doing so, we first com-
pute a convex function for a contiguous subsequence of
S that partially describes the optimal rearrangement
cost of the subsequence. We do this for O(n) contigu-
ous subsequences of S so that the upper envelope of
those functions coincides with the function of the opti-
mal rearrangement cost of S. By applying convex pro-
gramming on the upper envelopes of disjoint subsets of
functions, we can find a horizontal line ` such that δ∗(`)
is minimum among all horizontal lines, and get the op-
timal rearrangement cost of S onto `.

We abuse the function δ∗ so that for a real value
h, δ∗(h) = δ∗(`(h)) denotes the optimal rearrangement
cost of S onto `(h), as defined in Section 3. Then our
goal is to minimize δ∗(h) over all h ∈ R. Let h∗ de-
note a real value such that δ∗(h∗) = minh δ

∗(h), and let
δ∗ := δ∗(h∗) denote the optimal cost over all horizontal
lines. Note that once we know h∗, we can find an opti-
mal rearrangement of S onto `(h∗) with cost δ∗ in O(n)
time by Lemma 2.

Let us define two distance functions, δij(h) and
σij(h), for two indices i, j with 1 ≤ i ≤ j ≤ n with
respect to a horizontal line `(h) for a real value h as
follows.

Recall the definition of δij from Section 3. We define
a function δij(h) of a real value h with respect to `(h)
for every two indices i ≤ j similarly. Let qi and qj be the
points on `(h) minimizing max{‖pi−qi‖, ‖pj−qj‖} with
‖qi−qj‖ ≤ j−i. Then δij(h) = max{‖pi−qi‖, ‖pj−qj‖}.
By Lemma 4, δ∗(h) = maxi,j δij(h) for any fixed h. Let
d(p, s) = minq∈s ‖p−q‖ denote the distance from a point
p to a line segment s. For a point pi ∈ S and an index

42

33rd Canadian Conference on Computational Geometry, 2021

sjk

`(h)

sik

sjk

`(h)

(a) (c)

sik
sjk

`(h)

(b)

wi q wjq

pj pi
pj pi

pj

Figure 6: (a) If i = j, δij(h) is the distance
from pj to `(h). (b) If |x(pi) − x(pj)| ≤ j − i,
max{d(q, sik), d(q, sjk)} = max{δii(h), δjj(h)} for any
point q ∈ `(h) such that the vertical line through q in-
tersects both sik and sjk. (c) If |x(pi)− x(pj)| > j − i,
we can find a point q on `(h) such that δij(h) =
max{d(q, sik), d(q, sjk)}.

k, let sik = pi ⊕ I(|i − k|) denote the horizontal line
segment of length 2 · |i − k| with midpoint pi. In case
i = k, sik is a degenerate line segment with length 0.

Lemma 16 δij(h) = minq∈`(h) max{d(q, sik), d(q, sjk)}
for any index k with i ≤ k ≤ j,

Proof. If i = j, the lemma holds obviously as both
sides denote the distance from pj to `(h) (Figure 6(a)).

Consider the case that i < j. If |x(pi) − x(pj)| ≤
j − i, we have δij(h) = max{δii(h), δjj(h)} by defini-
tion. Moreover, there is a point q ∈ `(h) such that the
vertical line through q intersects both sik and sjk. For
any such point q, we have max{d(q, sik), d(q, sjk)} =
max{δii(h), δjj(h)} (Figure 6(b)).

If |x(pi)−x(pj)| > j− i, there are two points ui, uj ∈
`(h) such that ‖ui−uj‖ = j− i and δij(h) = max{‖pi−
ui‖, ‖pj − uj‖} by the definition of δij(h). Let q be the
point on `(h) such that ‖q−ui‖ = k−i and ‖q−uj‖ = j−
k. Then ‖pi − ui‖ = d(q, sik) and ‖pj − uj‖ = d(q, sjk),
and for any point r ∈ `(h), either d(r, sik) ≥ d(q, sik)
or d(r, sjk) ≥ d(q, sjk). Therefore, we conclude that
δij(h) = max{d(q, sik), d(q, sjk)} (Figure 6(c)). �

We now define another function σij(h) for two in-
dices i, j with 1 ≤ i ≤ j ≤ n as follows. Let far(p,A) =
maxl∈A d(p, l) for a point p ∈ R2 and a set A of hori-
zontal line segments. Let Lab = {sta | a ≤ t ≤ b} and
Rab = {stb | a ≤ t ≤ b} be sets of segments.

σij(h) = min
q∈`(h)

far(q,Rik ∪ Lkj), for k = d(i+ j)/2e.

We now show that σij(h) is a convex function consist-
ing of O(j − i) pieces of quadratic functions. Also, we
show that there are O(n) pairs of indices such that the
upper envelope of σij(h)’s for the pairs coincides with
δ∗(h). The farthest-site Voronoi diagram for line seg-
ments in A, denoted by Vor(A) decomposes the plane
into regions such that every point p in the same region
has the same farthest line segment l among the line seg-
ments in A, that is, d(p, l) = far(p,A) for every point p

in the region. By computing Vor(A) for a given set A,
we identify a full description of far(p,A). It is known by
Aurenhammer et al. [3] that Vor(A) consists of O(|A|)
vertices, edges, and cells. Using this property, we prove
the following lemma.

Lemma 17 σij(h) is a convex function consisting of
O(j − i) pieces of quadratic functions.

Proof. Let A = Rik ∪ Lkj with k = d(i + j)/2e. Since
d(q, l) is a convex function of q ∈ R2 for any fixed line
segment l ∈ A, F (q) := far(q, A) is also convex. There-
fore, σij(h) = minq∈`(h) F (q) is convex. For a value
h ∈ R, let Fh(q) := F |`(h)(q) be a function of q ∈ `(h),
and Q(h) be the set of points in `(h) minimizing Fh.
Then δij(h) = Fh(q) = far(q, A) for any q ∈ Q(h). Since
Fh is convex, Q(h) forms a line segment on `(h), possi-
bly being degenerate to a point.

Let l ∈ A be a farthest segment from Q(h), which
is a farthest segment from every point q ∈ Q(h). Then
σij(h) = d(q, l) for any q ∈ Q(h). Note that there can be
more than two farthest segments fromQ(h). We analyze
σij(h) when the number of the farthest segments from
Q(h) is (1) one, (2) two, or (3) more than two.

(1) Let l1 be the farthest segment of Q(h). Then there
is a point q ∈ Q(h) lying in the interior of the cell
of l1 in Vor(A). Therefore, σij(h) = d(q, l1) is the
difference of y-coordinate of q and l1, which is a
linear function of h (Figure 7(a)). Note that l1 is
a segment with either the largest or the smallest
y-coordinate value among the segments in A.

(2) Let l2 and l2 be the farthest segments of Q(h).
Then there must be a Voronoi edge defined by l2
and l3 in Vor(A), and Q(h) is the intersection of
`(h) and the Voronoi edge. If the Voronoi edge is
a parabolic curve, we can find a point q ∈ `(h)
that lies in the interior of the cell of l2 or l3 with
F (q) = σij(h) as l2 and l3 are horizontal segments
which makes one of two segments not farthest seg-
ment from Q(h). Therefore, the Voronoi edge must
be a line segment, which is the bisector of the end-
points of the segments. Thus, δij(h) is a quadratic
function of h (Figure 7(b)).

(3) Let l1, l2, and l3 be three farthest segments of Q(h).
Then there must be a Voronoi vertex defined by the
segments in Vor(A) and Q(h) is the Voronoi vertex
(Figure 7(c)).

There are at most two (unbounded) intervals of h
with case (1). For the case (2), the farthest segments
from Q(h) do not change while increasing h until `(h)
hits a Voronoi vertex of Vor(A) to make the case (3).
As there are O(j − i) vertices of Vor(A), σij(h) consists
of O(j − i) partial quadratic functions. �

By Lemma 17, the algorithm can compute the func-
tion σij(h) from Vor(A) in O(j− i) time as follows. The

43

CCCG 2021, Halifax, Canada, August 10–12, 2021

`(h)

l1

l2

l3

l2

l3

l1

(a) (b) (c)

Figure 7: q ∈ Q(h) is marked as a red dot. For each q,
red segments are the farthest segments of A from q. (a)
When there is one farthest segment, σij(h) is a linear
function. (b) When there are two farthest segments,
σij(h) is a quadratic function. (c) If there are more
then two farthest segments, q lies on the Voronoi vertex
of Vor(A).

algorithm first identify far(p,A) from Vor(A) in O(j− i)
time. Then it computes σij(h) from far(p,A) by keeping
track of Q(h) and the farthest segments of Q(h) while
increasing h from −∞ to ∞. As the farthest segments
of Q(h) changes O(j − i) times and each change can be
identified from a Voronoi vertex of Vor(A) in O(1) time,
the algorithm takes O(j − i) time in total.

Since far(q, A) is induced by Vor(A), σij(h) is the ra-
dius of the smallest disk intersecting every segment in
Rik ∪ Lkj whose center is restricted to lie on `(h). If the
center is determined by a single line segment sak, then
σij(h) = δaa(h). If the center is determined by two line
segments, sak and sbk with a ≤ k ≤ b, σij(h) = δab(h).
We prove these relations between σij(h) and δab(h) in
Lemmas 18 and 19.

Lemma 18 For any value h, there is a pair (i′, j′) with
i ≤ i′ ≤ j′ ≤ j such that σij(h) ≤ δi′j′(h).

Proof. There is a segment sak with i ≤ a ≤ j such
that minq∈`(h) d(q, sak) = σij(h), or there are two
segments sak, sbk with i ≤ a < b ≤ j such that
minq∈`(h) max{d(q, sak), d(q, sbk)} = σij(h).

In the first case, σij(h) = δaa(h). In the second
case, let q∗ be a point on `(h) such that σij(h) =
max{d(q∗, sak), d(q∗, sbk)}. Then σij(h) = δab(h) for
a ≤ k and k ≤ b. When b < k, sab ⊂ sak and sbb ⊂
sbk. Therefore, σij(h) = max{d(q∗, sak), d(q∗, sbk)} ≤
max{d(q∗, sab), d(q∗, sbb)} = δab(h). We can show that
σij(h) ≤ δab(h) for k < a similarly. �

Lemma 19 For any index pair (i′, j′) with i ≤ i′ ≤
d(i+ j)/2e ≤ j′ ≤ j, we have δi′j′(h) ≤ σij(h).

Proof. For any fixed index a with i ≤ a ≤ j and
k = d(i+ j)/2e, d(q, sak) for q ∈ `(h) is convex. There-
fore, σij(h) = maxi≤a≤b≤j minq∈`(h) far(q, {sak, sbk}).
As minq∈`(h) far(q, {sak, sbk}) = δab(h) for i ≤ a ≤ k
and k ≤ b ≤ j, the inequality holds. �

Data structures and algorithm. Let T be a binary
tree such that the root corresponds to S = S1n, each in-
ternal node v corresponds to a subsequence Sab of S for
some a ≤ b with its left and right children corresponding
to Sac and Scb, respectively, for c = d(a + b)/2e. Each
leaf node of T corresponds to a subsequence consisting
of a single point, so T has O(n) nodes and its height
is O(log n). At each node v of T corresponding to Sab,
we store δv(h) = σab(h). Then we show the following
lemma.

Lemma 20 For any value h, δ∗(h) = maxv∈T δv(h).

Proof. For a node v of T , δv(h) ≤ max1≤i≤j≤n δij(h) =
δ∗(h) by Lemma 18. So we have maxv∈T δv(h) ≤ δ∗(h).

We now show maxv∈T δv(h) ≥ δ∗(h). For any two
indices i, j with 1 ≤ i ≤ j ≤ n, let v ∈ T be the lowest
node of T such that its corresponding subsequence Sab
contains both pi and pj , that is, a ≤ i ≤ j ≤ b. Note
that δv(h) = σab(h). Further, by our construction, a ≤
i ≤ d(a+ b)/2e ≤ j ≤ b. Then, by Lemma 19, δij(h) ≤
δv(h). Hence, δ∗(h) = maxi,j δij(h) ≤ maxv δv(h). �

The algorithm computes δv(h) for nodes v ∈ T in
bottom-up fashion. For each node v corresponding to
Sab, the algorithm stores Vor(Rab) and Vor(Lab). If v
is a leaf node, the algorithm computes δv(h) in O(1)
time. If v is an internal node, the algorithm computes
δv(h) in time linear to the length of the corresponding
subsequence of v by using Vor(Rac) and Vor(Lcb) with
c = d(a + b)/2e stored in the child nodes of v. The
details on computing δv(h) for an internal node v are in
the following.

Since every cell in Vor(A) is unbounded, there is
a cyclic order of the cells of Vor(A) along a closed
curve at infinity. The algorithm by Aurenhammer et
al. [3] computes Vor(A) in two stages: finds out the
cyclic order of the cells in O(|A| log |A|) time, and then
constructs the diagram based on the order in addi-
tional O(|A| log |A|) time. Later, Khramtcova and Pa-
padopoulou [13] showed that the second stage can be
done in O(|A|) time. From the two results, we have the
following lemma.

Lemma 21 Given Vor(A) and Vor(B) for two sets A
and B of O(n) line segments in total, we can compute
Vor(A ∪B) in O(n) time.

Proof. We can compute the cyclic order of the cells of
Vor(A) and the cyclic order of the cells of Vor(B) inO(n)
time. Then we can merge them into the cyclic order of
cells of Vor(A ∪ B) in O(n) time using the algorithm
by Aurenhammer et al. [3]. Finally, we can compute
Vor(A ∪B) based on the order in O(n) time [13]. �

Now we present an O(n) time algorithm to compute
Vor(Rab) from Vor(Rac) and Vor(Rcb) for c = d(a+b)/2e.
We first compute Vor(Rac ⊕ I(b− c)).

44

33rd Canadian Conference on Computational Geometry, 2021

Lemma 22 For a set A of horizontal line segments, the
cyclic order of the cells of Vor(A) and the cyclic order
of the cells of Vor(A ⊕ I(r)) are the same for any real
value r > 0.

Proof. For a direction ~d, we use C(~d) to denote the
cell of a farthest-site Voronoi diagram such that for any
point p, there is a point q on the ray of direction ~d
emanated from p such that q ∈ C(~d). For Vor(A), C(~d)
is the cell of site l ∈ A if and only if there exists an open
half plane with inner normal vector ~d that intersects all
the line segments of A \ {l} but not l. Let h be an
open half plane that intersects every line segment of
A \ {l}. Let h′ be the translate of h along the x-axis

towards ~d by r. Then h′ intersects every line segment of
(A\{l})⊕I(r) but not l⊕I(r). Therefore, for any fixed

direction ~d, Vor(A) and Vor(A⊕I(r)) have the same site

(line segment) defining C(~d) in their diagrams. �

Therefore, the algorithm can compute Vor(Rac⊕I(b−
c)) from Vor(Rac) in linear time by Lemma 22. As
Rab = (Rac ⊕ I(b − c)) ∪ Rcb, the algorithm can also
compute Vor(Rab) in linear time by Lemma 21. Com-
puting Vor(Lab) can be done in linear time as well.

For an internal node v ∈ T , the algorithm computes
Vor(Rac∪Lcb) from Vor(Rac) and Vor(Lcb) in linear time
by Lemma 21. Then the algorithm computes δv(h) from
Vor(Rac ∪ Lcb) in linear time by Lemma 17. Therefore,
we can conclude the following lemma.

Lemma 23 We can compute an explicit description of
function δv(h) for all nodes v of T in O(n log n) time.

Convex programming with δv(h)’s. Recall that
δv(h) for each node v is convex by Lemma 17. To find
the lowest point on the function δ∗(h), the algorithm
computes h∗ and δ∗(h∗) using convex programming by
taking δv(h) as a constraint for each v and f(h) = h as
the objective function. Chan [5] showed that the convex
programming can be done by O(k log k) primitive opera-
tions, where k is the number of constraints and the prim-
itive operations are (1) to find a point that optimizes
the objective function while satisfying two constraints,
or (2) to find intersections between a constraint and a
line. Our problem consists of O(n) constraints (δv(h)’s)
and the primitive operation takes O(log n) time as there
are O(n) nodes in T and δv(h) consists of O(n) partial
functions. Therefore, we obtain an O(n log2 n)-time al-
gorithm to compute h∗ and δ∗(h∗). However, as the
complexity of δv(h) varies through the nodes of T , we
can reduce the number of constraints without increasing
the time complexity of primitive operation as follows.

Improving time complexity. For a node u with
corresponding subsequence of length L with dlog ne ≤
L < 2dlog ne, we compute the upper envelope of δv(h)

for nodes v in the subtree with root u. Observe that
the upper envelope consists of O(log n log log n · 2α(n))
partial functions, where α(·) is the inverse Ackermann
function [16]. The bound comes from the fact that ev-
ery partial function of δv(h) is a quadratic function by
Lemma 17, so that any two partial functions intersect at
most twice. Thus we can compute the upper envelope
in O(log n log2 log n · 2α(n)) time. There are O(n/ log n)
such nodes, and thus computing the upper envelopes for
all such nodes takes O(n log2 log n · 2α(n)) time. Thus,
we have O(n/ log n) convex constraints, each consisting
of O(n) partial functions. Therefore, convex program-
ming can be done in O(n log n) time. Since all δv(h)’s
can be computed in O(n log n) time by Lemma 23, h∗

and δ∗(h∗) can be computed in O(n log n) time. Then
the algorithm computes an optimal rearrangement of S
onto `(h∗) in O(n) time by Lemma 2.

Theorem 24 For a sequence S of n points and an ori-
entation, we can compute an optimal rearrangement of
S onto a line with the orientation in O(n log n) time.

4.1 Weighted version

In this section, we show that the algorithm above can
be extended to weighted version without increasing the
time complexity. By changing the definition of sik to
pi⊕I(wk−wi), Lemmas 17 and 20 hold for the weighted
version. Therefore, by Lemmas 21 and 22, we can com-
pute δv(h) for each node v in T in time linear to the
length of the corresponding subsequence in bottom-up
fashion. By computing δv(h)’s for nodes v in T , we
obtain the following theorem.

Theorem 25 For a sequence S of n weighted points
and an orientation, we can compute an optimal re-
arrangement of S onto a line with the orientation in
O(n log n) time.

5 Rearrangement into an Arbitrary Line

Given a sequence of S = 〈p1, . . . , pn〉 of n points in the
plane, we find a line ` such that the optimal rearrange-
ment cost δ∗(`) of S onto ` is minimum among all lines
in the plane, and compute an optimal rearrangement of
S onto `.

The detailed algorithms can be found in the full ver-
sion of this paper.

Theorem 26 For a sequence S of n points, we can
compute an optimal rearrangement of S onto any line
in O(n3 polylog n) time.

Theorem 27 For a sequence S of n weighted points,
we can compute an optimal rearrangement of S onto
any line in O(n3 polylog n) time.

45

CCCG 2021, Halifax, Canada, August 10–12, 2021

6 Conclusion

We consider the problem of finding an optimal rear-
rangement of sequence of n points onto a line. We
present an expected O(n)-time algorithm and deter-
ministic O(n log log n)-time algorithm for a given line.
When the rearrangement line is given only by its orien-
tation or not specfied at all, we present O(n log n)-time
and O(n3 polylog n)-time algorithm, respectively.

Our algorithms are described for solving the rear-
rangement problems under the Euclidean metric, but
they can be applied to the cases that the underlying
metric is Lp or has the distance function of constant
complexity.

There are few work to study. One is to improve the
deterministic time complexity to linear for a given re-
arrangement line, or to show a tight time bound on the
problem. Another one is to study the optimal rearrange-
ment problem for more general objects.

References

[1] P. Agarwal and M. Sharir. Efficient randomized algo-
rithms for some geometric optimization problems. Dis-
crete Computational Geometry, 16:317–337, 1996.

[2] P. Agarwal, M. Sharir, and S. Toledo. Applications of
parametric searching in geometric optimization. Jour-
nal of Algorithms, 17(3):292–318, 1994.

[3] F. Aurenhammer, R. Drysdale, and H. Krasser. Far-
thest line segment Voronoi diagrams. Information Pro-
cessing Letters, 100(6):220–225, 2006.

[4] R. Bellman and R. Roth. Curve fitting by segmented
straight lines. Journal of the American Statistical As-
sociation, 64(327):1079–1084, 1969.

[5] T. M. Chan. Deterministic algorithms for 2-d convex
programming and 3-d online linear programming. Jour-
nal of Algorithms, 27(1):147–166, 1998.

[6] T. M. Chan. Geometric applications of a randomized
optimization technique. Discrete & Computational Ge-
ometry, 22:547–567, 1999.

[7] R. Cole. Slowing down sorting networks to obtain faster
sorting algorithms. Journal of the ACM, 34(1):200–208,
Jan. 1987.

[8] M. de Berg, P. Bose, D. Bremner, S. Ramaswami,
and G. Wilfong. Computing constrained minimum-
width annuli of point sets. Computer-Aided Design,
30(4):267–275, 1998. Computational Geometry and
Computer-Aided Design and Manufacturing.

[9] M. de Berg, O. Cheong, M. van Kreveld, and M. Over-
mars. Computational Geometry: Algorithms and Ap-
plications. Springer-Verlag TELOS, Santa Clara, CA,
USA, 3rd ed. edition, 2008.

[10] C. A. Duncan, M. T. Goodrich, and E. A. Ramos. Ef-
ficient approximation and optimization algorithms for
computational metrology. In Proceedings of the 8th An-
nual ACM-SIAM Symposium on Discrete Algorithms,

SODA 1997, page 121–130, USA, 1997. Society for In-
dustrial and Applied Mathematics.

[11] R. L. Graham. An efficient algorith for determining the
convex hull of a finite planar set. Information Process-
ing Letters, 1(4):132–133, 1972.

[12] M. E. Houle and G. T. Toussaint. Computing the width
of a set. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 10(5):761–765, 1988.

[13] E. Khramtcova and E. Papadopoulou. Linear-time al-
gorithms for the farthest-segment Voronoi diagram and
related tree structures. In Proceedings of the 26th Inter-
national Symposium on Algorithms and Computation,
ISAAC 2015, pages 404–414, 2015.

[14] N. Megiddo. Linear-time algorithms for linear program-
ming in R3 and related problems. SIAM Journal on
Computing, 12(4):759–776, 1982.

[15] F. P. Preparata. New parallel-sorting schemes. IEEE
Transactions on Computers, C-27(7):669–673, 1978.

[16] M. Sharir and P. K. Agarwal. Davenport-Schinzel Se-
quences and Their Geometric Applications. Cambridge
University Press, USA, 2010.

[17] L. G. Valiant. Parallelism in comparison problems.
SIAM Journal on Computing, 4(3):348–355, 1975.

[18] H. Wang and J. Zhang. Line-constrained k-median, k-
means, and k-center problems in the plane. Interna-
tional Journal of Computational Geometry & Applica-
tions, 26(03n04):185–210, 2016.

46

CCCG 2021, Halifax, Canada, August 10–12, 2021

Mapping Points to the Grid with Bounded Hausdorff Distance

Maarten Löffler∗ Jérôme Urhausen∗

Abstract

We consider the problem of representing a set of m
points using disjoint pixels on a grid with bounded
Hausdorff distance. We prove that optimizing the prob-
lem is NP-complete. Additionally, we present a constant
factor approximation algorithm with running time in
O(m2 log δ∗/ logm), where δ∗ is the Hausdorff distance
in an optimal solution, as well as a slower algorithm
with a constant additive error.

1 Introduction

The field of digital geometry concerns itself with the
representation of geometric objects using pixels on a
grid while preserving geometric properties. Examples
are mapping convex regions to a similar-looking ortho-
convex set of pixels or mapping lines to chains of pixels
that still only intersect at most once. Digital geometry
finds application in image processing and storage. For
a survey, see Klette and Rosenfeld [15, 16].

More recently, error bounds under the Hausdorff dis-
tance have been studied. Chun et al. [7] investigate
the problem of digitizing rays originating in the origin
to digital rays such that certain properties are satis-
fied. They show that rays can be represented on the
n × n grid in a consistent manner with Hausdorff dis-
tance O(log n). This bound is tight in the worst case.
By ignoring one of the consistency conditions, the dis-
tance bound improves to O(1). Their research is ex-
tended by Christ et al. [5] to line segments (not nec-
essarily starting in the origin), who obtain the loga-
rithmic distance bound in this case as well. A possi-
ble extension to curved rays was developed by Chun
et al. [6]. Other results with a digital geometry fla-
vor within the algorithms community are those on snap
rounding [8, 11, 14], integer hulls [1, 13], and discrete
schematization [17].

The present submission is inspired by two recent pa-
pers: Mapping Polygons to the Grid with Small Haus-
dorff and Fréchet Distance, by Bouts, Kostitsyna, van
Kreveld, Meulemans, Sonke and Verbeek [3] and Map-
ping Multiple Regions to the Grid with Bounded Haus-
dorff Distance by van der Hoog, van de Kerkhof, van

∗Department of Information and Computing Sciences, Utrecht
University, {m.loffler|j.e.urhausen}@uu.nl. This work is par-
tially supported by the Dutch Research Council (NWO) under
project number 612.001.651, 614.001.504 and 628.011.005.

Figure 1: An example of a valid mapping of regions to
grid polygons.

Kreveld, Löffler, Staals, Urhausen and Vermeulen [20].
Intuitively the problem discussed in these papers is: for
a given set of regions find a set of pixels from the unit
grid that best represents the input (see Figure 1).

In the following we use the notation H ′(R,P) for the
maximum between the Hausdorff distance between the
sets R and P and the Hausdorff distance between their
boundaries ∂R and ∂P . Amongst others, Bouts et al. [3]
show that for a given connected region R, one can find
a simply connected grid polygon P in the unit grid such
that the Hausdorff distance H ′(R,P) is at most a con-
stant. Note that this result holds, no matter the reso-
lution of R. On the other hand they show that, given a
region R, it is NP-hard to find the grid polygon P that
minimizes the Hausdorff distance H ′(R,P).

Van der Hoog et al. [20] extend this concept to mul-
tiple regions. Whereas the result from [3] was extended
to two regions, for three or more regions there is no con-
stant upper bound on the Hausdorff distance between
the regions and any simply connected grid polygons.
Nonetheless, they show that, if the regions are m β-fat
convex regions, one can construct a set of disjoint grid
polygons within Hausdorff distance H ′ at most O(

√
m),

for β constant. This is tight in the worst case. Note that
points are β-fat convex regions, for any β. Their last re-
sult is that for m convex regions, one can construct a set
of orthoconvex disjoint grid polygons within Hausdorff
distance of O(m), which is again tight in the worst case.

Computation. Previous work focuses on the existence
of solutions with bounded Hausdorff distance, but not
on their efficient computation. When considering the
question of efficiency, we are faced with some additional
modeling questions. The two main ones are:

47

33rd Canadian Conference on Computational Geometry, 2021

1. How do we locate input features (vertices or edges)
on the grid?

2. How do we compactly represent sets of pixels that
correspond to output regions?

Regarding question (1), we note that traditionally, ge-
ometric algorithms are analysed in the Real RAM com-
putation model. In this model, one may work with ar-
bitrary real numbers, but certain natural operations are
not available; in particular the floor operation is known
to be problematic [2]. In the context of digital geometry,
where we have a natural underlying grid, and the whole
objective is to map objects to a grid, such a restric-
tion seems not entirely reasonable. In this work, we will
move away from the Real RAM model and assume that
the input coordinates are all polynomial in the input
size—in other words, the bit complexity is logarithmic—
and that the floor function is available. (Note that un-
der our bit complexity assumption, if desired, the floor
function can also be implemented in logarithmic time
on a Real RAM.)

Regarding question (2), we note that when mapping
large regions (in size, not in description complexity) to
a grid, an explicit representation of the output listing
precisely which pixels are and which are not part of a
set would necessarily be large as well, and may be unre-
lated to the input complexity. Alternatively, one could
compactly represent output regions by providing only
the coordinates of vertices and interpolating boundary
edges onto the grid. Given the complexity of mapping
lines to the grid, however, it is not entirely clear how
to do this in a consistent way. In this work, we make a
first step towards understanding the computational as-
pect of the question by focusing on point regions. For a
single point region and constant Hausdorff distance, the
output is necessarily a set of only a constant number of
pixels, and thus we avoid the issue.

To summarize, in the present submission, we make
the following assumptions:

• The input is a set R of m points in R2, with a
polynomial upper bound on the coordinate sizes;
that is, for every point R ∈ R we have −f(m) <
xR < f(m) and −f(m) < yR < f(m) for some
polynomial function f .

• We have access to a floor operation, which can pro-
vide us with the integer part of any real number in
the range [−f(m), f(m)].

Related Work. Testing whether there exists a set of
pixels within Hausdorff distance δ from R can be seen
as a problem where we are given a set of squares of (L1)-
radius δ, and are asked to place a set of unit squares such
that each square touches an input square. The problem
of placing unit squares in the neighbourhood of points

can be viewed as dual to the problem of placing points
in squares: if we shrink the (L1)-radius of the squares-
to-be-placed by 1

2 and we grow the δ-neighbourhoods of
the points also by 1

2 , a valid solution where points are
placed at integer coordinates at distance at least 2 from
each other corresponds exactly to a valid solution to our
problem.

The problem of placing points in squares such that
the points are not too close to each other has been in-
troduced under the name of distant representatives [10]
and was later also studied in the context of data impreci-
sion [18]. Fiala et al. [10] prove that the problem is NP-
hard (both for disk and square regions), and Cabello [4]
proposes a constant-factor approximation algorithm.

We note that our problem is essentially different, since
for us, valid placements are restricted to a discrete set
of points (the unit grid). Neither the hardness proof nor
the algorithmic result carry over directly to this discrete
setting.

Figure 2: An example of a valid mapping of points to
pixels on the grid.

Contribution. In the present submission, we study the
computational question of mapping point sets to disjoint
pixels on a unit grid with small Hausdorff distance, as
visualized in Figure 2. Van der Hoog et al. [20] observed
that in general the solution constructed with their al-
gorithms might yield a “visually unfortunate” output.
Formally, the algorithm might yield a solution with high
Hausdorff distance, even in the case where the optimal
solution has constant Hausdorff distance. In Section 2,
we show that finding the solution with minimal Haus-
dorff distance to a given set of regions is NP-complete,
even if the regions are just points. Then, in Section 3,
we present an approximation algorithm for points that
produces a solution with Hausdorff distance at most
2
√

2(dδ∗e + 1) ≤ 6
√

2δ∗ and has a running time of
O(m2 log δ∗/ logm), where δ∗ is the maximal Hausdorff
distance in an optimal solution. Finally, we present a
second algorithm which produces a solution with Haus-
dorff distance at most dδ∗e +

√
2 in O(δ∗4m2/ logm)

time.

Notation and Definitions. We denote by Γ the
(infinite) unit grid in two dimensions, whose unit

48

CCCG 2021, Halifax, Canada, August 10–12, 2021

squares are referred to as pixels. The (symmetric)
Hausdorff distance between two sets A,B ⊂ R2 is
defined as H(A,B) = max{maxa∈A(minb∈B(|ab|)),
maxb∈B(mina∈A(|ab|))}, where |ab| is the distance be-
tween the points a and b.

Let R = {R1, R2, . . . Rm} be a set of m points in the
plane. In this paper, we treat the problem on how to as-
sign a pixel Pi ∈ Γ to each point Ri ∈ R such that differ-
ent pixels do not meet in any edge or vertex of the grid.
This is consistent with the problem definition from [20].
We call the set P = {P1, P2, . . . , Pm} of such pixels a
valid mapping for R. Our goal is to find a valid map-
ping P that minimizes maxi∈{1,...,m}{H(Ri, Pi)}. See
Figure 2 for an example.

Note that in contrast to [3] and [20], we disregard the
Hausdorff distance between the boundaries H(∂Ri, ∂Pi)
because we have H(∂Ri, ∂Pi) = H(Ri, Pi), for convex
Ri and Pi.

2 NP-completeness

Bouts et al. [3] proved that for a single simply connected
region R it is NP-complete to test if there is a grid-
polygon within Hausdorff distance 1/2. We extend this
result to multiple point-regions. Formally, we show that
for a set of points R it is NP-complete to test if there
is a valid mapping within Hausdorff distance

√
2. Our

proof is inspired both by the construction of Bouts et
al. [3] and the proof by Fiala et al. [10] for a similar
problem in a continuous setting.

We first prove containment in NP. For each point
there are at most 9 options to place the corresponding
pixel. An oracle can guess the correct placement and
then just has to test that no two pixels share a common
grid vertex.

We now show that the problem is NP-hard. We re-
duce from the NP-complete problem monotone rectilin-
ear planar 3-Sat [9].

Rectilinear monotone planar 3-SAT. Input: a 3-Sat
formula with only all positive or all negated variables
per clause, embedded as a graph with rectilinear, non-
crossing edges. The set of vertices consists of variable-,
split- and clause-vertices; variable-vertices are drawn on
a horizontal line that no edge crosses; clause-vertices for
positive (negative) clauses are drawn above (below) this
line; clauses are connected with the variables they con-
tain with an edge or a path of edges and split-vertices.
Output: “Yes” if there exists a satisfying assignment for
the variables, “No” otherwise.

Such a 3-Sat formula embedded as a graph is illus-
trated in Figure 3. Without loss of generality we can
assume that the embedded graph has the following ad-
ditional properties: edges have at most one bend, each
variable-vertex v has degree at most 2 and the incident

v1 v2 v3 v4 v5

v2 ∨ v3 ∨ v4

v1 ∨ v2 ∨ v4

v1 ∨ v4 ∨ v5

¬v2 ∨ ¬v4 ∨ ¬v5

Figure 3: An example of the embedded formula (v2 ∨
v3∨v4)∧(v1∨v2∨v4)∧(v1∨v4∨v5)∧(¬v2∨¬v4∨¬v5).
The split vertices are highlighted in red.

edges are vertical at v, split-vertices w have degree 3
and only one incident edge is horizontal at w, and for
each variable a, all split-vertices corresponding to a are
vertically aligned with the variable-vertex va of a.

For a given monotone rectilinear planar 3-Sat in-
stance that is embedded as described above, let G be
a drawing of the embedding. Without loss of generality
we assume that G is drawn on the unit grid and that
the horizontal line containing all variables is the x-axis.
We scale G such that each vertex is on an even grid ver-
tex (2x, 2y) and such that the distance between any two
vertices, between any vertex and any bend, and between
any two non-incident edges is at least 8.

Construction. We create a set of points R. We only
place points on grid vertices. In the end, we ask the
question whether one can place pixels within Hausdorff
distance

√
2 from the points of R, that is, we ask the

question if for each point in R, we can choose one of
the four adjacent pixels so that no two chosen pixels of
different points share a common vertex. We say a point
Ri has a top-left (top, top-right, . . .) pixel if Pi is to the
top-left (top, top-right, . . .) of Ri.

These following two observations are the main tools
for the construction of the gadgets, depicted in Figure 4.
When two horizontally aligned points are at distance 1,
the leftmost (rightmost) point has a left (right) pixel.
For two horizontally aligned points at distance 2, if the
leftmost (rightmost) point has a right (left) pixel, the
rightmost (leftmost) point has a right (left) pixel, too.
This is symmetric for vertically aligned points.

49

33rd Canadian Conference on Computational Geometry, 2021

RL

B

B

Q

T

R

B

QL R

Figure 4: The bend, split and clause gadgets. The point
R is highlighted in each gadget.

Variable. We first place a point R ∈ R on each even
grid vertex that is intersected by the drawing. For each
variable a in G, there is a point Ra = (2x, 0) in R where
the variable-vertex va is drawn. We call that point Ra

the indicator of a. Intuitively, if Ra has a bottom (top)
pixel, a is true (false). If the point (2x, 2) has a bot-
tom (top) pixel we say it has a pixel toward the variable
(away from the variable). Symmetrically, if the point
(2x,−2) has a top (bottom) pixel we say it has a pixel
toward the variable (away from the variable). This con-
cept propagates throughout the points corresponding to
a.

Bend. Let R = (2x, 2y) ∈ R be a point at the corner
of a bend of an edge e. We assume e connects a vertex
to the left of R with a vertex below R. The other cases
are symmetric. Thus, the points L = (2x − 2, 2y) and
B = (2x, 2y− 2) are in R. We add another point (2x+
1, 2y + 1) to R. Now, if L has a right pixel, B has a
bottom pixel and if B has a top pixel, L has a left pixel.

Split. Let R = (2x, 2y) ∈ R be a point at a split-
vertex. We assume that the horizontal edge incident to

R is to its right and that the split vertex is above the
x-axis and therefore its corresponding variable-vertex.
Thus, the points T = (2x, 2y + 2), Q = (2x + 2, 2y)
and B = (2x, 2y − 2) are in R. The other cases are
symmetric. We add the points (2x + 2, 2y + 1) and
(2x − 1, 2y − 2) to R. If T has a bottom pixel or if Q
has a left pixel, B has a bottom pixel. That is, if a
point on the top or right edges has a pixel toward the
variable, the points on the bottom edge also have pixels
toward the variable.

Clause. Let R = (2x, 2y) ∈ R be a point at a clause-
vertex. We call R the clause-point. We assume the
three edges connect to the left, right and bottom of
R respectively, else the situation is symmetric. As the
distance between two gadgets is least 8, the points (2x−
2, 2y), L = (2x − 4, 2y), (2x + 2, 2y), Q = (2x + 4, 2y)
and B = (2x, 2y − 2) are in R. We move the points
(2x − 2, 2y) and (2x + 2, 2y) to (2x − 2, 2y + 1) and
(2x+ 2, 2y+ 1) and add two points (2x− 3, 2y+ 2) and
(2x+ 3, 2y + 2) to R. It follows that if the clause-point
R has a top-left (top-right, bottom) pixel, L (Q, B) has
a left (right, bottom) pixel. That means that the points
on at least one of the incident edges have pixels toward
the variable.

Put together the points R and a valid mapping P are
shown in Figure 5.

v1 v2 v3 v4 v5

v2 ∨ v3

v1 ∨ v2 ∨ v4

v1 ∨ v4 ∨ v5

¬v2 ∨ ¬v4 ∨ ¬v5

false true true true false

∨ v4

Figure 5: The complete construction of the NP-hardness
reduction. The pixels corresponding to indicators or to
clause-points are highlighted.

Proof of correctness. Let A be an assignment of vari-
ables to {true, false} such that the 3-Sat formula is

50

CCCG 2021, Halifax, Canada, August 10–12, 2021

satisfied. For each variable a, if a is true, first, we give
the indicator Ra a bottom pixel. Second, we give each
point R ∈ R that is on an edge corresponding to a a
pixel toward (away from) the variable, if p is above (be-
low) the x-axis. For each variable assigned the value
false we do the inverse. As in each positive (negative)
clause there is a variable that is assigned to true (false),
each clause-point can place its pixel in one of the four
adjacent spots. So overall there is a valid mapping such
that the Hausdorff distance between a point and its cor-
responding pixel is at most

√
2.

Inversely, let there be a set of pixels such that the
Hausdorff distance between any point and its corre-
sponding pixel is at most

√
2. For each variable a, if

the indicator Ra has a bottom (top) pixel, we set a to
true (false). We now prove that in each positive (nega-
tive) clause there is a variable that is assigned to true
(false). Let c be a positive clause such that the incident
edges are on the left, right and bottom of the clause
point R of c. The other cases are symmetric. If R has
a top-left (top-right, bottom) pixel, we know that the
points on the left (right, bottom) edge have pixels to-
ward the variable. Let e be an edge incident to R whose
points have pixels toward the variable. If e connects to
a split-vertex w, the points on the vertical edge e′ in-
cident at the bottom at w also have pixels toward the
variable. We then set e = e′. This repeats until we have
an edge e that connects to the variable-vertex of a. It
follows that the indicator Ra has a bottom pixel and a
has been assigned the value true. The theorem follows.

Theorem 1 If R is a set of m points, it is NP-complete
to decide whether there exists a valid mapping such that
for each point Ri ∈ R with corresponding pixel Pi, we
have H(Ri, Pi) ≤

√
2.

3 Approximation Algorithms

We now turn our attention to approximation. We start
by making some observations. Clearly, the optimal
Hausdorff distance δ∗ for any instance is at least 1

2

√
2,

since the distance is taken between a point and (at least
one) unit square. Therefore, a constant additive approx-
imation in this case automatically translates to a con-
stant multiplicative approximation. We also note that,
due to the discrete nature of the output, we cannot hope
to do better than a constant factor approximation.

To illustrate the complexity of the problem, in Sec-
tion 3.1 we first discuss some natural ideas which do not
lead to a working approximation. Then, in Section 3.2,
we then present an algorithm that achieves a Hausdorff
distance of at most 2

√
2dδ∗e + 2

√
2. In Section 3.3 we

show how to improve the approximation to dδ∗e +
√

2,
at the cost of a slower runtime.

3.1 A First Attempt

As discussed in the introduction, Cabello [4] presents
a constant factor approximation algorithm for placing
n points into respective discs or squares. A first ap-
proach could be to dualize our problem and directly
run their algorithm to place a set of points—however,
we would have no guarantee the points are placed at in-
teger coordinates. We would have to snap the points to
the grid before translating them back to squares. The
Hausdorff distance itself would only increase by at most
1
2

√
2 in this way, which would still result in a constant-

factor approximation, albeit with a slightly higher con-
stant. However, the snapping procedure could also re-
sult in touching or even overlapping pixels, so the solu-
tion would not necessarily be valid.

Another approach would be to find a subdivision of
the grid into cells such that for each cell all the points
contained in it can be assigned separate pixels in that
cell. If the minimal size of the cells depends only on the
Hausdorff distance between the points and an optimal
valid mapping, this approach could lead to an approx-
imation algorithm. Formally, let Γk be a coarsening of
the grid Γ whose cells have k × k pixels. We call these
cells superpixels. The following lemma proves that this
approach does not work either.

Lemma 2 There is a set of points R and a point
R ∈ R, such that (1) there is a valid mapping P within
Hausdorff distance at most 3; (2) for any superpixel with

side length s that contains R and at most
⌊
s
2

⌋2
points

from R, we have s ∈ Ω(|R|).

Proof. A pixel is a set [i, i+ 1]× [j, j + 1], for integers
i, j. We define the set of points R =

{
R =

(
1
4 ,

1
4

)}
∪{ (

2i+ 1
2 , 2j + 1

2

)
,
(
2i+ 1

2 ,−2j − 1
2

)
,
(
−2i− 1

2 ,−2j − 1
2

)
,(

−2i− 1
2 , 2j + 1

2

)
| i, j ∈ {0, . . . , n}

}
, as shown in Fig-

ure 6. Let the four endpoints of a superpixel S
containing R be (a, b), (−c, b), (−c,−d) and (a,−d),
with a, b ≥ 1; c, d ≥ 0. The side length of the superpixel
is s = a+ c = b+ d. If s ≤ n, the superpixel S contains
1+da/2edb/2e+dc/2edb/2e+dc/2edd/2e+da/2edd/2e >
bs/2c2 points. �

3.2 A Constant Factor Approximation Algorithm

We present an algorithm that, for a given set of points
R in R2 determines a valid mapping P, such that the
Hausdorff distance between a point and its correspond-
ing pixel is at most 2

√
2(dδ∗e + 1), for δ∗ being the

minimal possible Hausdorff distance betweenR and any
valid mapping P.

For a coarsening Γk of the grid Γ, let Sk be the set
of superpixels that either contain a point in R or are
adjacent to a superpixel that does.

51

33rd Canadian Conference on Computational Geometry, 2021

Figure 6: Any superpixel with side length i containing
the red point R contains more than bi/2c2 points. For
example, the yellow superpixel has side length 10 and
contains 26 points.

Observation 1 Let x ≥ δ∗ and x ∈ N even. Then
we know that for each point Ri ∈ R in a superpixel
S ∈ Sx, the pixel Pi is in S or in one of the 8 superpixels
adjacent to S. Additionally, each superpixel contains at
most (x/2)2 pixels that are disjoint.

Building on that idea, we create the following test
f(·). For an even number i ∈ N, we want f(i) = true
if for each coarsening Γi, there exists an assignment g :
R → Si of points to superpixels such that:

1. ∀R ∈ R, g(R) is the superpixel containing R or one
of the eight adjacent ones;

2. ∀S ∈ Si, there are at most (i/2)2 points R with
g(R) = S.

We call such an assignment g a correct assignment. Oth-
erwise, if for each coarsening Γi no correct assignment
can be found, we want f(i) = false. If a correct assign-
ment g can only be found for some coarsenings, f(i) can
either be true or false. We define f(0) = false.

Binary Search. We use exponential and binary search
to find an even number i ∈ N with f(i) = true and f(i−
2) = false. We start at i = 2. We iterate calculating
f(i): if f(i) = false, we double i and continue, else we
stop. Then we binary search normally. Note that from
Observation 1 we get f(i) = true, for i ≥ δ∗. Therefore,
this binary search algorithm results in a number I ≤
dδ∗e+ 1 and has a running time of O(F × log δ∗), where
F the the time to run the test f(·).

Test. The calculation of f(i) proceeds as follows. We
use a flow algorithm [12] to determine if a correct as-
signment g exists. We choose a coarsening Γi and cre-
ate a directed acyclic graph G = (V,E) as illustrated
in Figure 7. We set V = {s, t} ∪ {Sin, Sout | S ∈ Si}
as the set of vertices. We define (a, b, c) ∈ E as the
edge between the vertices a ∈ V and b ∈ V with ca-
pacity c ∈ N ∪ {∞}. We set E = {(s, Sin, |S ∩ R|) |
S ∈ Si} ∪ {(Sin, S

′
out,∞) | S, S′ ∈ Si ∧ (S = S′ ∨

S adjacent to S′)} ∪ {(Sout, t, (i/2)2) | S ∈ Si} as the
set of edges.

S1

S2

S3

S4

S5

S6

S7

S8

S9

S10

S11

S12

S1

S2

S3

S4

S5

S6

S7

S8

S9

S10

S11

S12

7

1

∞

(i
2)

2

s t

Figure 7: A set R of 8 points and the corresponding
graph G produced by the algorithm in Section 3.2. The
edges are annotated with their respective capacities.
Edges with capacity 0 are omitted; edges starting at
(Si)in are grayed out if Si is empty.

We then calculate a maximal flow from s to t. We
can assume that the flow in each edge is a natural
number. As |E| ∈ O(|V |), the flow algorithm runs in
O(m2/ logm) time [19] because |V | ∈ O(m = |R|).
If G admits a flow from s to t with flow rate |R|,
the flow induces a correct assignment g as follows:
we repeat the following for every superpixel S ∈ Si.
Let {S1, . . . , S9} = {S′ | S′ ∈ Si ∧ (S = S′ ∨
S adjacent to S′)} be the set containing S and the su-
perpixels adjacent to S. Let U1∪· · ·∪U9 = S∩R be any

52

CCCG 2021, Halifax, Canada, August 10–12, 2021

partition of the points in S, where, for j, k ∈ {1, . . . , 9},
we have j 6= k =⇒ Uj∩Uk = ∅ and |Uj | is the flow from
Sin to (Sj)out. For each j ∈ {1, . . . , 9} and each point
R ∈ Uj , we set g(R) = Sj . This results in a correct
assignment g.

Thus, if G admits a flow from s to t with flow rate
|R|, we set f(i) = true. Otherwise f(i) = false. This
test performs as requested and has a running time of
O(m2/ logm).

7/7

1/1

1/4

4/∞

2/∞

1/∞

1/∞

4/4

2/4

1/4

s t

Figure 8: A set R of 8 points and the graph G with a
maximal s-t-flow where edges with flow 0 are omitted,
produced by the algorithm in Section 3.2. The super-
pixels and their respective vertices in G are color-coded.
The pixels P induced by the flow are show in gray.

Placing the Pixels. Let I be the even number that is
the result from the binary search, that is, f(I) = true
and f(I − 2) = false. Let now ΓI be a coarsening and
let g be a correct assignment, calculated by the test
f(I). We place the pixels P as shown in Figure 8: for
each superpixel S ∈ SI , let {RS

1 , R
S
2 , . . . } = {R ∈ R |

g(R) = S} be the points assigned to S. We set the pixel
corresponding to RS

j as
(
2
(
j mod I

2

)
, 2
⌈
2j
I

⌉)
S

, where
(1, 1)S ((I, 1)S , (I, I)S) is the pixel on the bottom-left
(bottom-right, top-right) of S. That way no two pixels
in P touch and for each point R its corresponding pixel
is in the superpixel assigned to R. It follows that the
Hausdorff distance between a point and its correspond-
ing pixel is at most 2

√
2I. Since I is an even number,

I ≤ dδ∗e+ 1, and δ∗ ≥
√

(2)/2, we get:

Theorem 3 Given a set of m points R, we can de-
termine a valid mapping P such that for each point
Ri with corresponding pixel Pi, we have H(Ri, Pi) ≤
2
√

2(dδ∗e+ 1) ≤ 6
√

2δ∗ in O(m2 log δ∗/ logm) time.

3.3 An Algorithm with Constant Additive Error

Contrary to the constant factor algorithm presented in
the previous section, we now present an approximation
algorithm with only a constant additive error: that is,
for a given set R, we determine a valid mapping P, with
H(Ri, Pi) ≤ δ∗ + c for each Ri ∈ R, where c is a con-
stant and δ∗ is the minimal possible Hausdorff distance
between R and any valid mapping P. The algorithm
uses similar ideas to the algorithm in Section 3.2. Let
Γ2 be a coarsening, that is each superpixel only contains
4 pixels forming a square. It follows that when placing
a pixel in each superpixel, the pixels are disjoint. We
define H∗(R,S) = minpixelP∈S H(R,P) as the Haus-
dorff distance between the point R ∈ R and its closest
pixel in the superpixel S. For i ∈ N, let Si be the set
of superpixels S, such that there is a point R ∈ R with
H∗(R,S) ≤ i. Note that here, the size of the set Si is
dependent on i2.

Observation 2 Let x ≥ δ∗ and x ∈ N. For a given
valid mapping P that minimizes the Hausdorff distance,
for each point Ri ∈ R, the pixel Pi ∈ P is in a super-
pixel S ∈ Sx, with H∗(Ri, S) ≤ x. Additionally, each
superpixel contains at most one pixel.

The observation leads us to create the following test
f(·): we want f(i) = true, if there exists an assignment
g : R → Si of points to superpixels such that:

1. ∀R ∈ R, H∗(R, g(R)) ≤ i;

2. ∀S ∈ Si, there is at most one R with g(R) = S.

We again call such an assignment g a correct assignment.
Otherwise, we want f(i) = false. Note that f(0) = false.

Binary Search. Similarly to Section 3.2, we use expo-
nential and binary search to find a number i ∈ N with
f(i) = true and f(i − 1) = false. We start at i = 1.
We iterate calculating f(i): if f(i) = false, we double i
and continue, else we stop. Then we binary search nor-
mally. Due to Observation 2, we have f(i) = true, for
i ≥ δ∗. This binary search algorithm results in a num-
ber I ≤ dδ∗e and has a running time of O(F × log δ∗),
where F the the time to run the test f(·).

Test. The calculation of f(i) proceeds very similarly
to Section 3.2. We use a flow algorithm [12] to determine
if a correct assignment g exists. We create a directed
acyclic graph G = (V,E), as illustrated in Figure 9.
We set V = {s, t} ∪ R ∪ Si as the set of vertices. We
define (a, b) ∈ E as the edge between the vertices a ∈ V
and b ∈ V with capacity 1. We set E = {(s,R) | R ∈
R}∪{(R,S) | R ∈ R, S ∈ Si ∧ H∗(R,S) ≤ i}∪{(S, t) |
S ∈ Si} as the set of edges.

53

33rd Canadian Conference on Computational Geometry, 2021

S3

S4

S1

S2

S5

S6

S1

S2

S3

S4

S5

S6

s t

Figure 9: A small set R of 3 points and the graph G =
(V,E) produced by the algorithm in Section 3.3 for i =
2. All edges have a capcity of 1. The points in R and
their respective vertices in G are color-coded.

We then calculate a maximal flow from s to t. We
can assume that the flow in each edge is a natural num-
ber. As |V |, |E| ∈ O(i2m), the flow algorithm runs in
O(i4m2/(log i logm)) time [19]. If G admits a flow from
s to t with flow rate |R|, the flow induces a correct as-
signment g as follows: for each point R ∈ R, there is
exactly one superpixel S ∈ Si where the edge (R,S)
has flow 1. We set g(R) = S. This results in a correct
assignment g.

Thus, if G admits a flow from s to t with flow rate
|R|, we set f(i) = true. Otherwise f(i) = false. This
test f(i) performs as requested and has a running time
of O(i4m2/(log i logm)).

Figure 10: A set R of 11 points and the valid mapping
P respecting a correct assignment g produced by the
algorithm in Section 3.3.

Placing the Pixels. Let I be the number that is the
result from the binary search, that is, f(I) = true and
f(I − 1) = false. Let g be a correct assignment, calcu-

lated by the test f(I). We place the pixels P as shown
in Figure 10: for each superpixel S ∈ SI , if there is a
point R assigned to S, we place the pixel corresponding
to R in the top-right pixel of S. That way no two pix-
els in P touch and for each point R its corresponding
pixel is in the superpixel assigned to R. It follows that
the Hausdorff distance between a point and its corre-
sponding pixel is at most I +

√
2. Since I ≤ dδ∗e, we

have:

Theorem 4 Given a set of m points R, we can deter-
mine a valid mapping P such that for each point Ri with
corresponding pixel Pi, we have H(Ri, Pi) ≤ dδ∗e+

√
2

in O(δ∗4m2/ logm) time.

4 Conclusion

Overall we extended the previously known results on
mapping regions to the grid with bounded Hausdorff
distance. Where Bouts et al. [3] showed that, for a given
set of regions, it is NP-hard to find the set of grid poly-
gons that minimizes the Hausdorff distance H ′, even if
for just one region, we show that this is hard, even if all
regions are points. On the other hand, where van der
Hoog [20] focused on worst-case tight algorithms, we
present the first approximation algorithm for mapping
regions to the grid.

An interesting open question is whether the concepts
presented in this paper can be extended to an approxi-
mation algorithm that maps convex regions to the grid.

References

[1] E. Althaus, F. Eisenbrand, S. Funke, and K. Mehlhorn.
Point containment in the integer hull of a polyhedron.
In Proceedings 15th Annual ACM-SIAM Symposium on
Discrete Algorithms, pages 929–933, 2004.

[2] L. Babai, B. Just, and F. Meyer auf der Heide. On the
limits of computations with the floor function. Inform.
Comput., 78(2):99–108, 1988.

[3] Q. W. Bouts, I. Kostitsyna, M. van Kreveld, W. Meule-
mans, W. Sonke, and K. Verbeek. Mapping polygons to
the grid with small Hausdorff and Fréchet distance. In
Proceedings 24th Annual European Symposium on Al-
gorithms, pages 22:1–22:16, 2016.

[4] S. Cabello. Approximation algorithms for spreading
points. Journal of Algorithms, 62(2):49–73, 2007.

[5] T. Christ, D. Pálvölgyi, and M. Stojaković. Consistent
digital line segments. Discrete & Computational Geom-
etry, 47(4):691–710, 2012.

[6] J. Chun, K. Kikuchi, and T. Tokuyama. Consistent dig-
ital curved rays. In Abstracts 34th European Workshop
on Computational Geometry, 2019.

[7] J. Chun, M. Korman, M. Nöllenburg, and
T. Tokuyama. Consistent digital rays. Discrete
& Computational Geometry, 42(3):359–378, 2009.

54

CCCG 2021, Halifax, Canada, August 10–12, 2021

[8] M. de Berg, D. Halperin, and M. Overmars. An
intersection-sensitive algorithm for snap rounding.
Computational Geometry, 36(3):159–165, 2007.

[9] M. De Berg and A. Khosravi. Optimal binary space
partitions for segments in the plane. International
Journal of Computational Geometry & Applications,
22(03):187–205, 2012.

[10] J. Fiala, J. Kratochvil, and A. Proskurowski. Systems of
distant representatives. Discrete Applied Mathematics,
145:306–316, 2005.

[11] M. T. Goodrich, L. J. Guibas, J. Hershberger, and P. J.
Tanenbaum. Snap rounding line segments efficiently in
two and three dimensions. In Proceedings 13th Annual
Symposium on Computational Geometry, pages 284–
293, 1997.

[12] T. Harris and F. Ross. Fundamentals of a method for
evaluating rail net capacities. Technical report, RAND
Corporation, Santa Monica, California, U.S., 1955.

[13] W. Harvey. Computing two-dimensional integer hulls.
SIAM Journal on Computing, 28(6):2285–2299, 1999.

[14] J. Hershberger. Stable snap rounding. Computational
Geometry, 46(4):403–416, 2013.

[15] R. Klette and A. Rosenfeld. Digital Geometry: Geo-
metric methods for digital picture analysis. Elsevier,
2004.

[16] R. Klette and A. Rosenfeld. Digital straightness - a
review. Discrete Applied Mathematics, 139(1-3):197–
230, 2004.

[17] M. Löffler and W. Meulemans. Discretized approaches
to schematization. In Proceedings 29th Canadian Con-
ference on Computational Geometry, 2017.

[18] M. Löffler and M. van Kreveld. Largest bounding box,
smallest diameter, and related problems on imprecise
points. Computational Geometry: Theory and Applica-
tions, 43(4):419–433, 2010.

[19] J. B. Orlin. Max flows in o(nm) time, or better. In Sym-
posium on Theory of Computing (STOC), pages 765–
774, 2013.

[20] I. van der Hoog, M. van de Kerkhof, M. van Kreveld,
M. Löffler, F. Staals, J. Urhausen, and J. L. Vermeulen.
Mapping multiple regions to the grid with bounded
hausdorff distance. In Algorithms and Data Structures
Symposium (WADS), 2021. To Appear.

55

CCCG 2021, Halifax, Canada, August 10–12, 2021

Angles of Arc-Polygons and Lombardi Drawings of Cacti

David Eppstein∗ Daniel Frishberg∗ Martha C. Osegueda∗

Abstract

We characterize the triples of interior angles that are
possible in non-self-crossing triangles with circular-arc
sides, and we prove that a given cyclic sequence of an-
gles can be realized by a non-self-crossing polygon with
circular-arc sides whenever all angles are ≤ π. As a
consequence of these results, we prove that every cactus
has a planar Lombardi drawing (a drawing with edges
depicted as circular arcs, meeting at equal angles at each
vertex) for its natural embedding in which every cycle
of the cactus is a face of the drawing. However, there
exist planar embeddings of cacti that do not have planar
Lombardi drawings.

1 Introduction

Artist Mark Lombardi drew beautiful diagrams of inter-
national political and financial conspiracies, often using
curved edges and circular layouts [22]. His name is
commemorated in Lombardi drawing, a style of graph
drawing in which the edges are drawn as circular arcs
that meet at equal angles at each vertex [15,16]. Many
kinds of graph are now known to have Lombardi draw-
ings, including for instance all 2-degenerate graphs, the
graphs that can be formed from a single edge by re-
peatedly adding a new vertex incident to at most two
previous vertices [15]. Beyond their aesthetic quality,
these drawings can be considerably more compact than
straight-line drawings of the same graphs [16], and they
have found application in the realization of soap bubble
foams [18] and in the visualization of knots and links [25].

In this style of drawing, it is of interest, when pos-
sible, to avoid any crossings or intersections of edges
other than at shared endpoints, forming a planar draw-
ing [14]. Obviously, this requires that the graph to
be drawn be planar, but not every planar graph has
a planar Lombardi drawing [15]. The planar graphs
known to have planar Lombardi drawings include the
trees [16], the subcubic planar graphs [18], the 4-regular
polyhedral graphs [18], the Halin graphs [15], and the
outerpaths [14]. However, examples of planar graphs
with no planar Lombardi drawing have been found for
graph classes including the 4-regular graphs [18], planar
3-trees [14], and planar bipartite graphs [19]. In addition,

∗Department of Computer Science, University of California,
Irvine, {eppstein,dfrishbe,mosegued}@uci.edu

for planar graphs with a fixed choice of embedding, a
planar Lombardi drawing might not exist even when the
given graph is series-parallel [19].

For some of the simplest classes of planar graphs
(notably, the outerplanar graphs) the existence of planar
Lombardi drawings has remained unknown. In this
work, we tackle an even simpler class of graphs, the
cacti. Intuitively, a cactus is a tree of cycles; it can
be defined as a graph in which each edge belongs to at
most one cycle. These graphs have a natural class of
planar embeddings in which their cycles form faces of
the embedding, with the rest of the graph always drawn
outside of the cycle. In this paper, we show that these
embeddings of cacti always have Lombardi drawings.
However, we find examples of other embeddings of cacti
(including one as simple as a triangle with four leaf
vertices attached to each triangle vertex) that have no
planar Lombardi drawing.

The cycles of any planar Lombardi drawing form sim-
ple closed curves in the plane, with sides composed of
circular arcs; we call these shapes arc-polygons. The con-
straints of a Lombardi drawing translate into constraints
on the vertex angles of these arc-polygons, and naturally
raise the question of which systems of angles can be real-
ized by an arc-polygon and what other geometric proper-
ties their realizations have. For instance, the analysis of
arc-quadrilaterals with equal angles at all vertices, and
the key property of these arc-quadrilaterals that their
vertices are all cocircular, figured heavily into our previ-
ous work on Lombardi drawings of 4-regular graphs [18],
planar bipartite graphs, and embedded series-parallel
graphs [19]. Here, we focus on arc-triangles, the sim-
plest (and therefore most highly constrained) shapes
needed for the faces of Lombardi drawings of cacti. We
completely characterize the triples of angles that can
be realized by simple arc-triangles; this characterization
forms the basis of our proof that some embedded cacti
have no planar Lombardi drawing. We also use the same
characterization to prove a natural sufficient condition
for the existence of a simple arc-polygon with specified
interior angles: such an arc-polygon exists whenever all
of the specified angles are at most π. Larger angles than
this are not needed for the Lombardi drawings of the
natural embeddings of cacti, from which it follows that
all cacti have planar Lombardi drawings for their natural
embeddings.

56

33rd Canadian Conference on Computational Geometry, 2021

1.1 New results

The main results that we prove in this work are the
following.

• We completely characterize the triples of angles that
can be realized as the internal angles of arc-triangles,
in terms of a system of linear inequalities on the
angles (Theorem 6).

• We prove that every cyclic sequence of three or more
angles, all of which are in the range [0, π], except for
the triple (0, 0, π), can be realized as the internal
angles of an arc-polygon (Theorem 11).

• We prove that every cactus graph has a planar Lom-
bardi drawing in its natural planar embedding, the
embedding in which every cycle is a face (Theo-
rem 17).

• We find an embedded cactus graph that does not
have a planar Lombardi drawing for that embedding
(Theorem 18).

1.2 Related work

As well as in Lombardi drawing, circular arcs have been
incorporated in other ways into graph drawing; see for
instance [3, 8, 10, 17, 30]. Force-directed methods can
often achieve good but not perfect angular resolution for
arc-based graph drawings [5,11,12], and the effectiveness
of curved edges in graph drawing has been tested through
user studies [13,29,34].

The cactus graphs whose drawings we study here are
an old and well-studied class of graphs [21,23]. Cactus
graphs are one of the most basic minor-closed families of
graphs, defined (as simple graphs) by the absence of a
diamond graph minor or (as multigraphs) by the absence
of a 3-edge dipole graph minor. In graph drawing, cactus
graphs play a key role in the proof that polyhedral graphs
have greedy embeddings [26], in the visualization of
minimum cuts [6], and in the approximation of maximum
planar subgraphs [7]. The question of whether cactus
graphs have Lombardi drawings was explicitly posed
by our previous work on the non-existence of Lombardi
drawings for certain bipartite planar graphs [19]; this
question was the main motivation for our present work.

Beyond our work’s contributions to graph drawing, we
believe that it contributes to the fundamental study of
arc-polygons. These are a natural and important class of
two-dimensional shapes whose long history of study can
be traced back to the work of Archimedes and Pappus on
the arbelos, an arc-triangle formed by three semicircles
on the same side of a line, to the use of the Reuleaux
triangle in Gothic architecture and by Leonardo da Vinci
for map projection and fortress floor plans, and to the
work of 18th-century mathematician Roger Boscovich
on shapes that have a center through which every line

Figure 1: Roger Boscovich’s arc-triangle formed from
three semicircles has the property that every line through
its cusp partitions the perimeter into two equal lengths.

bisects the perimeter (Fig. 1) [4]. It has been stated that
“more than 90% of machined parts” have arc-polygon
shapes, because of their ease of manufacturing [9], and
arc-polygons have been used to model the shapes for
irregular parts to be packed into and cut from metal
sheets [28]. Arc-polygons can accurately approximate
arbitrary smooth curves [20, 27], and their approxima-
tions of non-smooth curves form a useful stepping stone
to the Riemann mapping theorem [24]. Aichholzer et
al. [2] argue that for approximating irregular shapes
in this way, arc-polygons have significant advantages
over straight-sided polygons in allowing more concise
and accurate representations while still allowing efficient
computations of basic geometric primitives such as me-
dial axes. For additional work on the computational
geometry of these shapes see [1, 32,33].

2 Preliminaries

2.1 Arc-polygons

Definition 1. We define an arc-polygon to be a cyclic
sequence that alternates between points and closed circu-
lar arcs in the Euclidean plane, with each arc appearing in
the sequence consecutively with its two endpoints. (Here,
we allow line segments to count as a degenerate special
case of circular arcs.) The points of the arc-polygon are
called its vertices and the arcs are called its edges. In
particular, an arc-triangle is an arc-polygon with three
vertices and three edges. An arc-polygon is simple if the
only points of intersection between pairs of its edges are
shared vertices consecutive with both edges. The union
of the arcs in a simple arc-polygon forms a Jordan curve,
which separates the plane into two components, the in-
terior and exterior of the arc-polygon. We define the
interior angle of a vertex of a simple arc-polygon to be the
angle between tangent lines to its two arcs at that vertex,
spanning the interior of the arc-polygon in a (possibly
empty) neighborhood of the vertex.

Unlike classical straight-sided polygons, it is also pos-
sible to form arc-polygons with only two vertices and two

57

CCCG 2021, Halifax, Canada, August 10–12, 2021

sides. As in [19], we call these bigons.

A bigon with two different arcs as sides is automati-
cally simple: two different circles can cross in at most
two points, and these two crossing points are used up
by the vertices of the bigon, so no more crossings are
possible. The two interior angles of a bigon must be
equal, and can be any angle in the open interval (0, 2π).
It will be convenient to consider an arc-polygon with
two identical arcs to be a kind of degenerate bigon, with
interior angle 0.

2.2 Lombardi drawings

Definition 2. We define a Lombardi drawing of a given
graph to be a mapping from the vertices of the graph to
points in the plane, and from the edges to circular arcs or
straight line segments, with the following two properties:

• For each edge, the two endpoints of the edge in the
graph are mapped to the two endpoints of its arc in
the plane.

• For each vertex v, the incident edges form arcs that
are equally spaced around the point representing v,
forming angles of 2π/deg(v) between each consecu-
tive pair of arcs.

A Lombardi drawing is planar if the only points of inter-
section between pairs of its arcs are shared vertices.

2.3 Möbius transformations

By the extended plane we mean the Euclidean plane
augmented with a single point at infinity, denoted ∞.
An inversion of the extended plane, with respect to
a circle C, maps each point p to another point p′, so
that p and p′ both belong to a single ray from the
center of C, with the product of their distances from
the center equal to the squared radius of C. The center
of C is mapped to ∞, and vice versa. We consider a
reflection of the plane to be a degenerate case of an
inversion, and we consider the line of reflection to be
a degenerate case of a circle with infinite radius. A
Möbius transformation is any functional composition
of inversions. These transformations map circles (or
degenerate circles) to other circles (or degenerate circles),
and preserve the angles between any two curves. For an
introduction to these transformations, and the geometry
of circles under these transformations, see e.g. [31].

Because Möbius transformations map circular arcs (or
straight line segments) to curves of the same type, and
preserve angles, they map simple arc-polygons to other
simple arc-polygons and Lombardi drawings to other
Lombardi drawings. It is possible for a Möbius trans-
formation to map the interior of a simple arc-polygon
to its exterior and vice versa, but otherwise these trans-
formations leave the angles of arc-polygons unchanged.

Figure 2: A simple arc-triangle (blue), the circle through
its three vertices (yellow), and the three bigons between
the arc-triangle and the circle, labeled with vertices vi,
arc-triangle angles θi, and bigon angles φi.

As previous work on Lombardi drawing has already
shown [18], these properties make Möbius transforma-
tions very convenient as a tool for bringing pieces of
arc-polygons and of Lombardi drawings into a position
where they can be glued together.

3 Arc-triangles

Consider an arbitrary simple arc-triangle with vertices vi
and interior angles θi (for i ∈ {0, 1, 2}), for instance the
one in Fig. 1 (for which the interior angles are 2π, π, π)
or the one in Fig. 2. Any three points are contained
either in a unique circle or a straight line, but for the
following definitions we need to know which side of the
circle is its inside and which its outside, so we assume
(by perturbing the triangle by a Möbius transformation,
if necessary) that the three vertices are not collinear, and
are clockwise as v0, v1, and v2 on the circle C through
them. We assume also that these three vertices have the
same clockwise ordering on the arc-triangle, as shown in
Fig. 2, meaning that when traveling along the arcs from
v0 to v1, from v1 to v2, and from v2 to v0, the polygon
is consistently on the right side of each arc; if necessary,
this can be achieved by an inversion with respect to C.

Let θi be the interior angle of the arc-triangle at vertex
vi, as labeled on the figure. Each arc of the triangle is
separated from C by a bigon, and (in the case that the
arc is contained in C) we let φi denote the angle of the
bigon opposite vertex vi. It is also possible for an arc
to lie on C, defining a degenerate bigon with φi = 0. If
an arc of the arc-triangle lies outside C, it still defines
a bigon, but in this case we define φi to be a negative
number, the negation of the interior angle of the bigon.

58

33rd Canadian Conference on Computational Geometry, 2021

Observation 3. For angles θi and φi defined as above
from a simple arc-triangle, and for i ∈ {0, 1, 2},

θi + φ(i−1) mod 3 + φ(i+1) mod 3 = π.

Proof. The three angles on the left hand side are the
angles at vi measured clockwise from the arc of C clock-
wise of vi to the side of the arc-triangle clockwise of vi,
from this side of the arc-triangle to the other side, and
from the other side of the arc-triangle to the arc of C
counter-counterclockwise of vi. Therefore, their sum is
the total angle at vi between the two arcs of C, which is
just π.

Corollary 4. Let ψ = (π−∑ θi)/2. Then φi = ψ + θi.

Proof. Simple algebra verifies that this is the solution to
the system of three linear equations in three unknowns
given by Observation 3.

Lemma 5. For three given angles θi with 0 ≤ θi ≤ 2π,
at most one of the angles φi calculated from the formula
of Corollary 4 can fail to satisfy −π ≤ φi ≤ π. If
φi < −π then θi must be the only angle of the three
given angles that is less than π; if φi > π then θi must
be the only angle of the three given angles that is greater
than π.

Proof. Consider the three angles θi and the angle π,
listed in sorted order. Each φi is obtained by adding two
of these angles, subtracting the other two, and dividing
the total by two; in terms of the sorted ordering of the
angles, we can represent this (up to the sign of φi) as one
of the three sign patterns + +−−, +−+−, or +−−+.
However, only the first of these can produce a value of
φi that is out of range. The other two sign patterns
describe the difference of the smallest two angles, plus or
minus the difference of the largest two angles. Because
these two differences span different ranges of angles, they
can sum to at most 2π (and must sum to at least −2π).
Therefore, for these other two sign patterns, division by
two produces a value in the range between −π and π.

For the sign pattern + +−−, π cannot be the maxi-
mum or minimum of the three angles, because if it were
then each difference of angles would be at most π, and
so would the average of two differences. So when this
sign pattern leads to a value of φi that is out of range,
there is a unique angle θi with the same sign in the sign
pattern, implying the second part of the lemma.

The definitions above of θi and φi are only for simple
arc-triangles, but one can also plug in other choices of θi,
compute φi from them, and examine the arc-triangles
that result, which may not be simple. Examples of what
can go wrong are depicted in Fig. 3: the left arc-triangle
of the figure has a vertex on the opposite side arc, and
the right arc-triangle has two crossing pairs of arcs.

Figure 3: For some triples of angles θi, using Corollary 4
to compute angles φi and then drawing arcs with these
angles may not produce a simple arc-triangle. Left:
θi = 0, 4π/3, 5π/3 (at the top, right, and left vertices,
respectively) and φi = −π, π/3, 2π/3. The arc with
angle φi = −π overlays the opposite vertex. Right:
θi = 0, 3π/2, 11π/6, φi = −7π/6, π/3, 2π/3. The arc
with angle φi = −7π/6 crosses the other two arcs.

Theorem 6. Three given angles θi with 0 ≤ θi ≤ 2π can
be realized as the interior angles of a simple arc-triangle
if and only if the angles φi, as calculated by Corollary 4,
satisfy the inequalities −π < φi < π.

Proof. By Corollary 4, a realization must have the form
shown in Fig. 2: three circular arcs making angles of φi
to the circumcircle of the three vertices. The location
of these vertices on the circumcircle, and the location of
the circumcircle, are not important, as any three points
may be transformed into any other three points by a
Möbius transformation. The important question for the
realizability of these angles by an arc-triangle is whether
these three arcs form a simple arc-triangle ∆, or whether
they have undesired crossings.

First, let us disprove the existence of a realization
when the angles φi do not satisfy the inequalities.

Consider the case that some φi = ±π. In this case, the
arc with angle φi, opposite vertex vi, coincides with an
arc of the circumcircle passing through vertex vi. Since
a simple arc-triangle is not allowed to have one of its
sides passing through the opposite vertex, the angles in
this case cannot come from a simple arc-triangle.

Next, instead suppose that there is an angle φi that
is out of range: φi < −π or φi > π. By Lemma 5,
it must be the only angle with this property. In the
case that φi < −π, consider continuously increasing φi
(and decreasing the two given angles that are not θi to
match) until it is greater than −π. By the second part
of Lemma 5, this decrease in the given angles cannot
cause them to become negative. At the end of the
sequence, the angles meet the conditions of the previous
case of the theorem, producing a simple arc-triangle, but
at the point in the sequence where φi becomes equal
to −π, and the arc with angle φi crosses over vertex
vi, two crossings with the other two arcs are removed.

59

CCCG 2021, Halifax, Canada, August 10–12, 2021

Figure 4: Polyhedral visualization of the subset of triples
of angles that can be realized by simple arc-triangles.

There is no combinatorial change to the configuration of
arcs and their crossings anywhere else in the sequence,
so these two crossings must have been present in the
configuration with the given angle φi. In the case when
φi > π, instead continuously decrease φi until it is less
than π; the remaining argument is the same.

Finally, let us prove that angles φi satisfying the in-
equalities must be simple. Suppose all φi obey −π <
φi < π. Then it is impossible for the two arcs at vi to
cross. If the values of φ corresponding to these two arcs
have opposite signs, then one is inside the circumcircle
and the other outside, and if one has sign zero, then it
lies on an arc of the circumcircle inaccessible to the other.
If both arcs have values of φ with the same sign, then
they leave the circumcircle at vi in a relative ordering,
determined by their angle at vi, that is consistent with
the relative ordering at which they reach the circumcir-
cle again at the other two vertices, determined by the
positions of those two vertices. Since circular arcs can
meet only twice, and these two arcs meet once at vi, any
additional crossing would swap their relative positions,
so they cannot cross.

The linear inequalities 0 ≤ θi ≤ 2π can be thought
of as defining a cube in a three-dimensional space hav-
ing the angles θi as Cartesian coordinates. For this
interpretation of these numbers, the additional linear
inequalities −π < φi < π cut off six of the eight corners
of the cube (the corners where not all coordinate values
are equal), replacing them by equilateral triangle faces
whose vertices are midpoints of the cube edges. The
result of this truncation is a feasible region of triples
of angles that can be realized by simple arc-triangles,
bounded by six pentagonal faces (the truncated faces
of the cube) and six triangular faces (the inequalities
on φi). It is depicted in Fig. 4. The result in Lemma 5

Figure 5: Arc-quadrilaterals with interior angles
(0, 0, π, π) (left, yellow) and (0, π, 0, π) (right, blue).

that only one of the inequalities on φi can be exceeded
corresponds geometrically to the fact that the triangular
faces meet only in vertices, not in edges. At the vertices
where two triangular faces meet, two of these inequalities
on φi are exactly met but neither is exceeded.

We remark that it is straightforward to implement this
construction of a simple arc-triangle for given angles and
given triangle vertices, by computing the circumcircle of
the vertices and the angle made by the triangle arcs to
this circumcircle.

4 Arc-polygons

We do not have a complete characterization of the angle
sequences of higher-order simple arc-polygons, as we do
for arc-triangles. Instead, we prove a sufficient condition,
which will be enough for our application to Lombardi
drawing: with a single exception, an angle sequence can
be realized by a simple arc-polygon whenever all angles
are ≤ π. For triangles, this follows from our previous
characterization:

Lemma 7. If a triple of given angles θi all lie in the
range 0 ≤ θi ≤ π and is not a permutation of (0, 0, π)
then there exists a simple arc-triangle having these inte-
rior angles.

Proof. For these angles, the values of φi calculated ac-
cording to Corollary 4 range from a minimum of −π/2
(when θi = 0 and both other given angles are π) to
a maximum of π (when θi = π and both other given
angles are 0). Because the angles (0, 0, π) are the only
combination achieving this maximum, all other triples
of angles result in −π/2 ≤ φi < π. The result follows
from Theorem 6.

We also need the following two special cases:

Observation 8. The sequences (0, 0, π, π) and
(0, π, 0, π) can be realized as the interior angles of
arc-quadrilaterals.

Proof. See Fig. 5, which realizes these sequences using
four vertices equally spaced along a line, with semicircu-
lar arcs.

60

33rd Canadian Conference on Computational Geometry, 2021

Figure 6: Gluing together two simple arc-polygons with
cusps at infinity, realizing angle sequences σ0 and τ0, to
produce a single arc-polygon realizing angle sequence στ .

For higher-order polygons, we will prove the existence
of a simple realization by induction on the order of the
polygon, gluing together arc-polygons with fewer vertices
at cusps, vertices of interior angle zero.

Definition 9. If σ and τ denote sequences of angles,
we let στ denote their concatenation, and we let σ0 and
τ0 denote the sequences of angles obtained from σ and
τ respectively by including one more angle equal to zero.

With this notation, the following lemma describes the
process of gluing together two arc-polygons.

Lemma 10. Let σ and τ both be sequences of angles such
that the augmented sequences σ0 and τ0 are realizable as
the sequences of interior angles of simple arc-polygons.
Then the concatenation στ is also realizable by a simple
arc-polygon.

Proof. Let S and T be simple arc-polygons realizing σ0
and τ0 respectively. Apply inversions separately to S
and T , centered respectively on the cusps of S and T ,
producing arc-polygons S′ and T ′. Both S′ and T ′ have
their cusp transformed to lie at ∞, and the circular arcs
incident to these cusps transformed into infinite rays. All
other vertices and edges of S′ and T ′ remain finite. The
condition that the angle at the cusp be zero in S and T
corresponds, in S′ and T ′, to the condition that these two
rays be parallel. By adjusting the radii of the inversions
we can additionally ensure that in both S′ and T ′ the
rays lie on lines at distance one from each other. By
rotating S′ and T ′ so that their pairs of rays both lie on
the same two lines, in opposite directions, and translating
them far enough apart along these two parallel lines, we
may glue them together into a single simple arc-polygon,
as shown in Fig. 6, giving a realization of στ .

Theorem 11. A finite sequence of three or more angles
θi can be realized as the interior angles of a simple arc-
polygon whenever all angles satisfy 0 ≤ θi ≤ π and the
sequence is not a permutation of (0, 0, π).

Figure 7: Interior angles that alternate between 0 and
2π force the arcs of a simple arc-polygon to be confined
to a sequence of nested circles.

Proof. We use induction on the number of angles, with
Lemma 7 as a base case for sequences of exactly three an-
gles and Observation 8 for the two four-angle-sequences
(0, 0, π, π) and (0, π, 0, π) and their cyclic permutations.

For any other sequence of more than three angles
that includes π as one of its angles, we form a shorter
sequence by removing the π, realize the shorter sequence
as the interior angles of a simple arc-polygon by the
induction hypothesis, and then reinsert the vertex with
angle π anywhere along the circular arc between its two
neighbors in the resulting arc-polygon.

For a sequence of more than three angles that does
not include π as an angle, partition the sequence into a
concatenation στ where both σ and τ contain at least
two angles. By the induction hypothesis, both σ0 and
τ0 are realizable, so by Lemma 10 their concatenation
στ is also realizable.

It is tempting to guess that all sequences of four or
more angles are realizable by simple arc-polygons, but
this is not true, as the following example demonstrates.

Observation 12. In a simple arc-polygon, if the two
interior angles at the vertices of a given arc A are 0 and
2π, then the two adjacent arcs lie on opposite sides of
the circle through A.

Proof. The arcs are tangent to A, and two circles that are
tangent cannot cross. The choice of angles ensures that,
near the point of tangency, the arcs are on opposite sides
of the circle, and because they cannot cross this circle
they remain on opposite sides for their entire length.

Corollary 13. It is not possible for a simple arc-polygon
with an even number of sides to have angles that alternate
between 0 and 2π around the polygon.

61

CCCG 2021, Halifax, Canada, August 10–12, 2021

Proof. The alternation would cause the sides to belong
to a sequence of nested circles (Fig. 7), from which
it would be impossible to loop back around from the
innermost to the outermost circle.

5 Lombardi drawing

5.1 Existence

As stated in the introduction, a cactus is a graph in
which each edge belongs to at most one cycle. In the
natural embedding of a cactus, each cycle forms a face,
with the other edges that are incident to each cycle vertex
placed outside the face. At a vertex of degree d ≥ 2,
the interior angle of the cycle will be 2π/d. Because all
angles are nonzero and at most π, the sequence of interior
angles meets the conditions of Theorem 11, allowing
the face to be drawn as a simple arc-polygon. Each
edge belongs to at most one cycle, and the edges that
do not belong to cycles are even easier to draw (on
their own) as line segments. To construct a Lombardi
drawing for the entire graph, we glue these pieces of
drawings together using Möbius transformations, similar
to the gluing process used to construct arc-polygons in
Lemma 10.

Definition 14. If G is an embedded graph, and H is a
subgraph of G we define a partial Lombardi drawing of
H with respect to G to be a drawing of the vertices and
edges of H as points and circular arcs, in the manner of
a Lombardi drawing, with pairs of circular arcs that meet
at a vertex having the angle that they would be required
to have in a Lombardi drawing of G. We define a partial
Lombardi drawing to be planar in the same way as for
a full Lombardi drawing: the only intersection points of
arcs are shared endpoints.

The biconnected components of a cactus are its cycles
and its edges that do not belong to cycles. Its articulation
points are the vertices that belong to more than one
biconnected component. The reasoning above proves the
following observation:

Observation 15. Each biconnected component of a cac-
tus has a planar partial Lombardi drawing with respect
to the natural embedding of the cactus.

Lemma 16. Let Hi be a collection of subgraphs of a
given graph G that all share a common vertex v, with
no other pairwise intersections, let G be given a planar
embedding in which the edges of each subgraph Hi appear
consecutively at v, and let each Hi have a planar partial
Lombardi drawing with respect to G. Then the union
∪Hi also has a planar partial Lombardi drawing with
respect to G.

Proof. Perform an inversion centered at v on each draw-
ing of Hi, producing a drawing where v is at ∞ and

its incident edges have become rays, radiating outward
from the finite part of the drawing, with relative angles
equal to the angles they should have at v in a Lombardi
drawing of G.

Let v have degree d in G, and draw a system of d rays
meeting at the origin in the plane, separated from each
other by angles of 2π/d. Assign consecutive subsets of
rays to each subgraph Hi, according to its number of
edges incident to v. Additionally assign to each subgraph
Hi a wedge of the plane, with the apex as the origin,
extending beyond these assigned rays to an additional
angle of π/d on both sides. This assignment produces
open wedges for each Hi, within which (after a suitable
rotation) each may be placed; we place each Hi so that
its rays are parallel to the rays it is assigned, but we do
not require these rays to coincide. Because the wedges
are open, they are disjoint from each other and from the
origin.

Once all of the drawings of subgraphs have been placed
in this way, another inversion centered at the origin
returns the drawing to a state in which all vertices and
arcs are finite. All of the angles within each drawing
of each subgraph Hi have been preserved, and the rays
to ∞ invert to circular arcs meeting at v at the desired
angles.

Theorem 17. Every cactus has a planar Lombardi draw-
ing for its natural embedding.

Proof. We construct planar Lombardi drawings for each
biconnected component of the cactus by Observation 15,
and glue these partial drawings into partial drawings
for larger subgraphs by applying Lemma 16 at each
articulation point of the cactus, until the entire drawing
has been glued together. Each step preserves planarity,
so the resulting Lombardi drawing is planar.

5.2 Nonexistence

Theorem 18. The embedded cactus depicted in Fig. 8,
consisting of a 3-cycle with four pendant vertices at each
3-cycle vertex, embedded so that the pendant vertices are
outside the 3-cycle at two 3-cycle vertices and inside at
one, has no planar Lombardi drawing.

Proof. A planar Lombardi drawing of this embedded
graph would draw its 3-cycle as a simple arc-triangle
with angles θi of π/3, π/3, and 5π/3. A calculation
following Corollary 4 shows that these angles produce
corresponding angles φi of −π/3, −π/3, and π, respec-
tively. Since one of the angles φi is π, Theorem 6 shows
that this simple arc-triangle cannot exist.

Additional pendant vertices only make the angles far-
ther from realizability, producing an infinite family of
examples without planar Lombardi drawings.

62

33rd Canadian Conference on Computational Geometry, 2021

Figure 8: An embedded cactus that has no planar Lom-
bardi drawing.

6 Conclusions

We have completely characterized the triples of inter-
nal angles of simple arc-triangles, and proven that for
higher-order simple arc-polygons (with one exception) all
sequences of angles that are at most π are realizable. We
have used these results to find planar Lombardi drawings
for the natural planar embeddings of all cacti, and to
prove that certain other embeddings of cacti do not have
planar Lombardi drawings. In particular, this shows
that it is possible for an outerplanar graph, embedded in
a non-outerplanar way, to fail to have a planar Lombardi
drawing.

This work leaves the following questions open for fu-
ture research:

• Can we characterize more completely the sequences
of angles that can be realized by simple arc-
polygons? (Corollary 13 shows that this question
has a nontrivial answer.) What is the computational
complexity of finding such a realization?

• Similarly, what is the computational complexity
of determining whether an embedded cactus has a
planar Lombardi drawing?

• In previous work, for trees with fixed embeddings,
we were able to prove the existence of Lombardi
drawings whose area is a polynomial multiple of the
minimum separation between vertices, compared
to the exponential area requirement for straight-
line drawings with uniformly spaced edges at each
vertex [16]. What are the area requirements for
Lombardi drawing of cacti?

• As already discussed in our previous work on Lom-
bardi drawing, do all outerplanar graphs have planar
Lombardi drawings? Do they have planar Lombardi
drawings for each outerplanar embedding? What

is the computational complexity of finding these
drawings?

References

[1] O. Aichholzer, W. Aigner, F. Aurenhammer,
K. Čech Dobiásová, B. Jüttler, and G. Rote. Triangu-
lations with circular arcs. J. Graph Algorithms Appl.
19(1):43–65, 2015, doi:10.7155/jgaa.00346, MR3321736.

[2] O. Aichholzer, F. Aurenhammer, T. Hackl, B. Jüttler,
M. Rabl, and Z. Šír. Computational and structural
advantages of circular boundary representation. Internat.
J. Comput. Geom. Appl. 21(1):47–69, 2011, doi:10.1142/
S0218195911003548, MR2777029.

[3] P. Angelini, D. Eppstein, F. Frati, M. Kaufmann,
S. Lazard, T. Mchedlidze, M. Teillaud, and A. Wolff.
Universal point sets for drawing planar graphs with cir-
cular arcs. J. Graph Algorithms Appl. 18(3):313–324,
2014, doi:10.7155/jgaa.00324, MR3213192.

[4] T. Banchoff and P. Giblin. On the geometry of piecewise
circular curves. Amer. Math. Monthly 101(5):403–416,
1994, doi:10.2307/2974900, MR1272938.

[5] M. J. Bannister, D. Eppstein, M. T. Goodrich, and
L. Trott. Force-directed graph drawing using social grav-
ity and scaling. Proc. 20th Internat. Symp. Graph Draw-
ing (GD 2012), pp. 414–425. Springer, Lect. Notes Com-
put. Sci. 7704, 2012, doi:10.1007/978-3-642-36763-2 37.

[6] U. Brandes, S. Cornelsen, C. Fieß, and D. Wagner. How
to draw the minimum cuts of a planar graph. Comput.
Geom. 29(2):117–133, 2004, doi:10.1016/j.comgeo.2004.
01.008, MR2082210.

[7] G. Călinescu, C. G. Fernandes, U. Finkler, and
H. Karloff. A better approximation algorithm for finding
planar subgraphs. J. Algorithms 27(2):269–302, 1998,
doi:10.1006/jagm.1997.0920, MR1622397.

[8] J. Cardinal, M. Hoffmann, V. Kusters, C. D. Tóth,
and M. Wettstein. Arc diagrams, flip distances, and
Hamiltonian triangulations. Comput. Geom. 68:206–225,
2018, doi:10.1016/j.comgeo.2017.06.001, MR3715053.

[9] J.-M. Chen, J. A. Ventura, and C.-H. Wu. Segmen-
tation of planar curves into circular arcs and line
segments. Image Vis. Comput. 14(1):71–83, 1996,
doi:10.1016/0262-8856(95)01042-4.

[10] C. C. Cheng, C. A. Duncan, M. T. Goodrich, and S. G.
Kobourov. Drawing planar graphs with circular arcs.
Discrete Comput. Geom. 25(3):405–418, 2001, doi:10.
1007/s004540010080, MR1815440.

[11] R. Chernobelskiy, K. I. Cunningham, M. T. Goodrich,
S. G. Kobourov, and L. Trott. Force-directed Lombardi-
style graph drawing. Proc. 19th Internat. Symp.
Graph Drawing (GD 2011), pp. 320–331. Springer,
Lect. Notes Comput. Sci. 7034, 2011, doi:10.1007/
978-3-642-25878-7 31.

[12] W. Dong, X. Fu, G. Xu, and Y. Huang. An improved
force-directed graph layout algorithm based on aesthetic
criteria. Comput. Vis. Sci. 16(3):139–149, 2013, doi:10.
1007/s00791-014-0228-5.

63

CCCG 2021, Halifax, Canada, August 10–12, 2021

[13] P. M. Dudas. The Impact of Visual Aesthetics on the
Utility, Affordance, and Readability of Network Graphs.
Ph.D. thesis, University of Pittsburgh, 2016, https://
d-scholarship.pitt.edu/26607/.

[14] C. A. Duncan, D. Eppstein, M. T. Goodrich, S. G.
Kobourov, M. Löffler, and M. Nöllenburg. Pla-
nar and poly-arc Lombardi drawings. J. Comput.
Geom. 9(1):328–355, 2018, doi:10.20382/jocg.v9i1a11,
MR3855883.

[15] C. A. Duncan, D. Eppstein, M. T. Goodrich, S. G.
Kobourov, and M. Nöllenburg. Lombardi drawings of
graphs. J. Graph Algorithms Appl. 16(1):85–108, 2012,
doi:10.7155/jgaa.00251, MR2872431.

[16] C. A. Duncan, D. Eppstein, M. T. Goodrich, S. G.
Kobourov, and M. Nöllenburg. Drawing trees with
perfect angular resolution and polynomial area. Dis-
crete Comput. Geom. 49(2):157–182, 2013, doi:10.1007/
s00454-012-9472-y, MR3017904.

[17] A. Efrat, C. Erten, and S. G. Kobourov. Fixed-location
circular arc drawing of planar graphs. J. Graph Al-
gorithms Appl. 11(1):145–164, 2007, doi:10.7155/jgaa.
00140, MR2354167.

[18] D. Eppstein. A Möbius-invariant power diagram and
its applications to soap bubbles and planar Lombardi
drawing. Discrete Comput. Geom. 52(3):515–550, 2014,
doi:10.1007/s00454-014-9627-0, MR3257673.

[19] D. Eppstein. Bipartite and series-parallel graphs without
planar Lombardi drawings. Proc. 31st Canad. Conf.
Comput. Geom. (CCCG 2019), pp. 17–22, 2019.

[20] L. Fejes Tóth. Approximation by polygons and poly-
hedra. Bull. Amer. Math. Soc. 54:431–438, 1948,
doi:10.1090/S0002-9904-1948-09022-X, MR24640.

[21] F. Harary and G. E. Uhlenbeck. On the number of
Husimi trees, I. Proc. Natl. Acad. Sci. U.S.A. 39(4):315–
322, 1953, doi:10.1073/pnas.39.4.315, MR0053893.

[22] R. C. Hobbs and J. Richards. Mark Lombardi: Global
Networks. Independent Curators International, 2003.

[23] K. Husimi. Note on Mayers’ theory of cluster inte-
grals. J. Chem. Phys. 18(5):682–684, 1950, doi:10.1063/
1.1747725, MR0038903.

[24] O. D. Kellogg. The second edition of the
Hurwitz–Courant Funktionentheorie. Bull.
Amer. Math. Soc. 32(3):288–292, 1926,
doi:10.1090/S0002-9904-1926-04215-4, MR1561208.

[25] P. Kindermann, S. G. Kobourov, M. Löffler,
M. Nöllenburg, A. Schulz, and B. Vogtenhuber. Lom-
bardi drawings of knots and links. J. Comput.
Geom. 10(1):444–476, 2019, doi:10.20382/jocg.v10i1a15,
MR4039890.

[26] T. Leighton and A. Moitra. Some results on greedy em-
beddings in metric spaces. Discrete Comput. Geom.
44(3):686–705, 2010, doi:10.1007/s00454-009-9227-6,
MR2679063.

[27] D. S. Meek and D. J. Walton. Approximating smooth
planar curves by arc splines. J. Comput. Appl. Math.
59(2):221–231, 1995, doi:10.1016/0377-0427(94)00029-Z,
MR1346015.

[28] S. Plankovskyy, Y. Tsegelnyk, O. Shypul, A. Pankra-
tov, and T. Romanova. Cutting irregular objects
from the rectangular metal sheet. Integrated Com-
puter Technologies in Mechanical Engineering, pp. 150–
157. Springer, Adv. Intell. Syst. Comput. 1113, 2020,
doi:10.1007/978-3-030-37618-5 14.

[29] H. C. Purchase, J. Hamer, M. Nöllenburg, and S. G.
Kobourov. On the Usability of Lombardi Graph Draw-
ings. Proc. 20th Internat. Symp. Graph Drawing (GD
2012), pp. 451–462. Springer, Lect. Notes Comput. Sci.
7704, 2012, doi:10.1007/978-3-642-36763-2 40.

[30] A. Schulz. Drawing graphs with few arcs. J. Graph
Algorithms Appl. 19(1):393–412, 2015, doi:10.7155/jgaa.
00366, MR3395765.

[31] H. Schwerdtfeger. Geometry of Complex Numbers. Dover,
1979.

[32] Z.-J. Wang, X. Lin, M.-E. Fang, B. Yao, Y. Peng,
H. Guan, and M. Guo. Re2l: an efficient output-
sensitive algorithm for computing Boolean operations
on circular-arc polygons and its applications. Comput.-
Aided Des. 83:1–14, 2017, doi:10.1016/j.cad.2016.07.004,
MR3577906.

[33] B. Weiß, B. Jüttler, and F. Aurenhammer. Mitered
offsets and straight skeletons for circular arc poly-
gons. Eur. Worksh. Comput. Geom. (EuroCG 2018),
pp. 52:1–52:6, 2018, https://conference.imp.fu-berlin.
de/eurocg18/download/paper 52.pdf.

[34] K. Xu, C. Rooney, P. J. Passmore, D. Ham, and P. H.
Nguyen. A user study on curved edges in graph visual-
ization. IEEE Trans. Vis. Comput. Graph. 18(12):2449–
2456, 2012, doi:10.1109/TVCG.2012.189.

64

CCCG 2021, Halifax, Canada, August 10–12, 2021

Practical Methods for the Embroidery Problem

Michelle Tran∗

Abstract

We consider the problem of optimizing thread usage
while embroidering a given pattern denoted by a Eu-
clidean graph G. A valid embroidery of a pattern is de-
scribed as a closed tour with alternating front and back
edges, each with an associated weight (which, due to
the Euclidean embedding, is equivalent to the distance
between vertices). We explore various options for cal-
culating exact and approximate solutions, and analyze
the feasibility of each in practice.

1 Introduction

Embroidery is a fiber art where the artist creates 2D
designs on fabric. As a purely aesthetic craft, this “im-
age” is created on one side of the fabric, while the other
side is solely for utility. As such, stitches have a ‘front’
and ‘back’ to them: the design on the side of the fab-
ric that is meant to be seen will always be given in the
design, but the back of the fabric can have any number
of paths, depending on how the artist chose to transi-
tion between stitches. There are no restrictions on the
movement on the back side of the canvas, so choosing
how to transition between stitches is what causes the
difference in thread usage.

This paper focuses on finding practical ways of solving
the problem of efficient thread usage: we discuss both
exact and approximate approaches to the optimization
problem, where we minimize the amount of thread used
for a given pattern. In technical terms, the embroidery
problem is a graph traversal optimization problem if we
assume the constraints of forming a cycle (i.e. the end
of the stitching should return to the starting point so
that a knot can be tied) and the thread is not cut at any
point. Given a Euclidean graph G(V,E), where V is a
set of vertices representing Euclidean coordinates and
E is a set of edges with weights corresponding to the
Euclidean distance between vertices, we seek to find the
minimum weight of the optimal tour T that alternates
between front edges (equivalent to set E) and back edges
(the set of edges in the complete graph on vertices V).
The tour must traverse each edge in E exactly once,
while there are no restrictions on how many times back
edges can be traversed.

∗Computer Science Undergraduate Program, University of
Colorado Boulder, michelle.h.tran@colorado.edu

The body of literature for this specific problem is lim-
ited: Arkin et al. has produced the only paper about the
general embroidery problem [4], though Biedl, Horton,
and Lopez-Ortiz have written a paper about a more spe-
cific version of embroidery known as cross stitching [5].
Both papers conclude that even in a restricted form (like
the case of cross stitching), the embroidery optimization
problem is NP-hard, and thus they provide approxima-
tion algorithms. Graphs of arbitrary makeup are shown
to have a 2-approximation, though more specific con-
figurations have better algorithms: in fact, connected
designs can be solved in polynomial time, while inde-
pendent segments (i.e. edges in the design do not share
endpoints) have a 1.5-approximation [4]. In essence,
both papers demonstrate that the difficulty of this prob-
lem is substantial through theoretical results.

There are much more popular problems that are sim-
ilar to the embroidery optimization problem: namely,
the Rural Postman Problem (RPP) (where the main
distinction is that the embroidery problem requires al-
ternating between front and back thread usage, and
thus the tour cannot traverse two required edges con-
secutively) and the Euclidean Traveling Salesperson
Problem (TSP) (which ensures all vertices, rather than
edges, are traversed). Both have been studied exten-
sively, especially TSP. There exist many established
algorithms for TSP, most notably Christofides’ 3/2-
approximation algorithm for metric TSP [6] (though
Karlin, Klein, and Gharan recently discovered a very
slightly improved version of Christofides’ algorithm in
September of 2020 [8]). Dantzig et al. also created an
established approach to approximating TSP using lin-
ear programming [7]. These methods are well tested
theoretically and empirically.

Due to the lack of study, the embroidery problem does
not have any empirical data behind its approximation
algorithms, nor does it have practical implementations.
This paper seeks to change that by providing practi-
cal implementations and benchmarking by using TSP
solvers and approximation algorithms.

2 Technical Specifications & Procedure

All measurements were taken on a MacBook Pro 2017
with a 3.1 GHz Dual-Core Intel Core i5 processor and
8 GB of memory. The scripts are written in Python3
(specifically, Python 3.6.5 at the time of measurement).

65

33rd Canadian Conference on Computational Geometry, 2021

For benchmarking, random instances of the Embroi-
dery Problem were generated with n ”stitches”, i.e. tu-
ples of two coordinates on the Euclidean plane, on a
5x5 grid (dimensions were selected due to the limita-
tions of the experimental hardware and to prevent ex-
cessive sparseness for the average Embroidery instance).
For each n, 100 trials were taken, and the resulting fig-
ures plot the mean of each set of 100 computation time
measurements. Graphs for individual methods (Figures
1, 4, 5, and 6) were all done on their own set of ran-
dom Embroidery Problem instances. For Figure 7, each
method was applied to the same Embroidery Problem
instance for more direct comparison.

All data from this paper can be found here, under the
fair comparison branch.

3 Complexity Classification

As mentioned by Arkin et al., Euclidean TSP can be
reduced to the embroidery problem, and thus we can
classify embroidery as NP-Hard. However, it remains
an open question as to whether the embroidery problem
is NP-Complete: is embroidery in NP?

A major feature of the Embroidery Problem is that
the sum of the length of the thread consists of many
sums of square roots (due to the distance formula).
However, the summation of square roots is widely re-
garded as an open problem, seeing as comparing a deci-
mal value with irrational numbers can be computation-
ally difficult due to cases where the sum is very close,
but not quite, equal to the given quantity [1]. For a
problem to be in NP, it must be a decision problem –
the natural decision problem for the Embroidery Prob-
lem bounds the total thread usage by some k. This
decision problem requires us to compare thread usage
(which will be a sum of square roots) and an integer k,
meaning that verifying embroidery problem instances
likely cannot be done in polynomial time.

This is further evident by the reduction to Euclidean
TSP [4] – Euclidean TSP is likely not in NP due to
this same exact issue. While some researchers claim
that Euclidean TSP is NP-Complete [9], they explicitly
state as an assumption that there exists a large enough
scale factor that each weight can be multiplied by to get
integer weight values. However, this ignores irrational
numbers, and the square root of any non-square integer
is irrational; so, for the sake of accuracy, we will not
make that assumption. Therefore, Euclidean TSP is
likely not in NP, thus it is unlikely for the embroidery
problem to be in NP as well.

This distinction is important as it eliminates the
possibility of using reductions to NP-Complete prob-
lems that have rigorously improved practical implemen-
tations, such as the Constraint Satisfiability Problem
(SAT).

4 TSP Solvers

The embroidery problem is quite similar to the popu-
lar optimization problem, Traveling Salesperson (TSP).
Due to its relevance in practical applications, many TSP
solvers have been written and refined over the years
to become extremely efficient for an NP-Hard problem.
Thus, it could be advantageous to reduce embroidery to
TSP, and then leverage these state-of-the-art solvers.

4.1 Point of Comparison: Backtracking Algorithm

The brute force algorithm for embroidery is quite
simple in concept: we can use a backtracking algorithm
to check every possible traversal of the embroidery pat-
tern, all the while ensuring that the tour is alternating
between front and back edges. We use a boolean flag
to track when we are on the front side or the back
side of the fabric: while on the front side, we use the
adjacency matrix of the vertex to determine which edge
to take next, and keep track of which edges have been
traversed in a visited list. For back edges, we simply
try all other vertices in the graph (seeing as the graph
of back edges in an embroidery instance is a complete
graph). The implementation for this algorithm can be
found here.

Table 1: Mean brute-force computation times

Stitches Mean # Stitches Mean
1 3.65e-05 5 1.64e-01
2 2.52e-04 6 2.28+00
3 1.86e-03 7 3.30e+01
4 1.46e-02 8 6.74e+02

Figure 1: Runtimes for the brute-force algorithm

Whether on the front or the back side of the fabric,
each node in the search tree space will branch at most

66

CCCG 2021, Halifax, Canada, August 10–12, 2021

n−1 times, n being the number of vertices in the graph.
Thus, as expected for a brute-force backtracking algo-
rithm, its time complexity is exponential: O(nn). Em-
pirically, we can see by the benchmarking in Table 1
that despite the small search space, the backtracking
algorithm was extremely slow.

4.2 Reduction to TSP

To utilize the power of TSP solvers, we must first re-
duce embroidery to TSP (EMBROIDERY ≤p TSP).
Given an input graph to the embroidery problem G(V,
E, B), where V is the set of vertices at Euclidean loca-
tions in space, E is the set of front edges in the stitching,
and B is the set of back edges that can be used in the
stitching, we can reduce to an instance of TSP.

There are a few non-TSP properties of the embroi-
dery problem that we must maintain: namely, enabling
some vertices to be repeated (which is technically
allowed for the TSP problem in general, but the TSP
solvers used in this paper do not allow this), the
alternating nature of the stitching, and that all front
stitches are traversed precisely once during the tour.
The idea is that we duplicate all vertices in V by the
degree of the front edges for each vertex to create
Gd(Vd, E) (where the d subscript indicates we are using
the set of duplicated vertices), as shown in Figure 2.
We then copy all of the vertices in Vd to construct a
graph G′d with only the back edges (i.e. the complete
graph of all nodes in Vd, except nodes that correspond
to the same v ∈ V will not be connected), where
G′d(V ′d , Bd).

Figure 2: Example of duplicating vertices by degree of
front edges

We then connect these two graphs Gd(Vd, E) to
G′d(V ′d , Bd) using two edges of weight 1 and a gadget
node that goes between each vertex and its copy. For
example, say we are connecting vertex v ∈ Vd to v′ ∈ V ′d :
use gadget vertex u and two 1-weight edges e1(v, u) and
e2(u, v′) to connect the vertices. With the gadget ver-
tex, optimal TSP tours are now guaranteed to alter-
nate between front and back edges: practically, this is
due to the fact that the TSP solvers used in this paper
do not repeat vertices. Theoretically, optimal tours are
guaranteed to alternate due to the triangle inequality

(consecutive back edges can be eliminated without in-
creasing the length of the tour). These gadget vertices
and edges are the green components shown in Figure 3.
It is important to note that the edges for this gadget
should be weighted zero in concept so that alternating
between sides of the fabric doesn’t have a cost associated
with it. However, zero weight edges are not compatible
with the TSP solvers used in this paper. Thus, we sim-
ply subtract the excess weight after this reduction is run
through a TSP solver, which will always be 2 · |Vd|, since
there exists two 1-weight edges for every vertex in Gd.

As for ensuring that we traverse each front edge,
we can once again use gadget vertices: for each front
edge in the graph, insert a gadget node u “on” an
edge e(vi, vj), as in, remove e, and connect vertices
vi and vj with a similar gadget to before, where the
edges are e1(v1, u) and e2(u, v2). However, this time,
the weights of e1 and e2 must sum to the weight of e
– it does not matter what exactly the weight of each
value is, just that both are non-zero. These gadgets
are represented in Figure 3 as the yellow vertices in
Gd. This reduction is implemented here as the function
multi node reduction().

Figure 3: Final reduction on the embroidery instance
from Fig. 2.

This reduction is in polynomial time. Duplicating
vertices requires iterating through each vertex in V and
getting the number of neighbors per vertex, which takes
O(|V |) time. Creating each gadget is done in constant
time since there are precisely two edges and one vertex
per gadget, and these gadgets only need to be added in a
polynomially bounded number of locations: one for each
vertex in Gd(|Vd|), and one between every front edge
(the maximum size of the front edges E is the complete
graph on the original vertices V, which is would be of

size |V |·(|V |−1)2). Creating the back edges for G′d requires
creating a nearly complete graph on V ′d , which will be at

most |Vd|·(|Vd|−1)
2) edges. The runtime for this reduction

is thus |V |+|Vd|+ |V |·(|V |−1)2 + |Vd|·(|Vd|−1)
2 = |V |+|V |2+

67

33rd Canadian Conference on Computational Geometry, 2021

|V |·(|V |−1)
2 + |V |2·(|V |2−1)

2 = O(|V |4), since Vd is at most
|V |2.

4.3 Concorde TSP Solver

Now that we have a TSP reduction from the embroi-
dery problem, we can leverage the immense progress
made by many theorists by using state of the art TSP
solvers. The Concorde TSP solver from the University
of Waterloo is regarded as the most accurate and
efficient TSP solver to date [3]. Using PyConcorde (a
Python wrapper for the Concorde solver and the linear
program solver QSopt [11]), we can now evaluate the
TSP reduction. See Table 2 for benchmarking.

Table 2: Concorde TSP Solver computation times

Stitches Mean # Stitches Mean
1 0.0137 14 0.0461
2 0.0167 15 0.0556
3 0.0173 16 0.0835
4 0.0170 17 0.0881
5 0.0166 18 0.1036
6 0.0169 19 0.1261
7 0.0181 20 0.1857
8 0.0208 21 0.8137
9 0.0249 22 0.6732
10 0.0252 23 1.5560
11 0.0296 24 8.2427
12 0.0377 25 2.4030
13 0.0445 26 10.3159

Figure 4: Runtimes for the Concorde TSP solver

While the efficiency of the computation times for Con-
corde was impressive (it took only a little longer than
10 seconds on 26-stitch instances, which is over three
times the maximum number of stitches for the brute-
force backtracking algorithm), the results are approx-
imations: the format of the input to PyConcorde re-
quired integer edge weights for non-Euclidean instances,

so before passing the input to Concorde, the ceiling for
each edge weight value was taken. Thus, the resulting
tour length is at most |GR(E)| longer than necessary
(where GR is the final graph produced by the reduc-
tion).

4.4 Python tsp Package

While Concorde is a great option due to its incredible
efficiency, to get more precise results, we can use other
popular TSP solvers. The tsp package is a Python
implementation of the same branch and cut linear
programming strategy [11].

Table 3: tsp package computation times

Stitches Mean # Stitches Mean
1 0.05 14 9.82
2 0.11 15 11.92
3 0.22 16 13.77
4 0.41 17 17.18
5 0.67 18 33.56
6 0.97 19 25.87
7 1.39 20 25.58
8 2.17 21 31.29
9 3.02 22 37.03
10 3.28 23 40.93
11 4.30 24 52.44
12 5.86 25 46.18
13 8.96 26 65.20

Figure 5: Runtimes for the tsp package

While it is slower than Concorde, we get more accu-
rate tour lengths, with a decent runtime that is still sub-
stantially faster than the backtracking algorithm. As
shown in Table 3, for 26 stitches, the tsp package solved
embroidery-reduced instances in a little over a minute
on average.

68

CCCG 2021, Halifax, Canada, August 10–12, 2021

5 Approximation Algorithms

Embroidery is not a massively precise art; it’s usually
fine for thread to be longer than absolutely necessary,
since cutting thread is easy (however, gracefully extend-
ing thread is not). This makes approximation algo-
rithms very useful: for embroidery, it is more important
that an algorithm can efficiently provide a reasonable
upper bound of how much thread is needed, rather than
slowly producing the exact required length.

5.1 Arkin et al. 2-Approximation

As mentioned, Arkin et al. provides a 2-approximation
algorithm for graphs of arbitrary makeup [4]. The al-
gorithm has two cases, depending on which of the two
possible front edge configurations a given pattern has:
either all front stitches are connected, or they are not.

For a connected component, we find the minimum
set of back edges such that for each vertex in G(V, E,
B), degE(v) = degB(v), which is equivalent to the b-
matching problem on the complete graph where b(v) =
degE(v). Anstee has a polynomial time algorithm that
solves the b-matching problem exactly [2], however;
Anstee’s algorithm is arduous to implement. Instead,
we can approximate the necessary length of thread for
connected components, by simply taking the same edges
in the back graph as the front graph. This maintains
the property that all vertices satisfy degE(v) = degB(v),
and the degree of each vertex is even, so there must exist
an Euler tour with no consecutive front edges. Further-
more, this algorithm is a 2-approximation: the optimal
stitching for a connected component contains at least
the front edges, so OPT ≥ |E|. Thus, the approxima-
tion Tapprox ≤ 2 · |E| ≤ 2 ·OPT .

In the case that the front edges do not form a con-
nected graph, we cannot use the b-matching algorithm
(or our approximation) for all instances, as the optimal
solution might not connect each of the stitching compo-
nents (which would violate the idea of using a single
thread). Thus, to approximate disconnected compo-
nents, we take the minimum spanning tree (MST) be-
tween all of the connected components in G. We then
initialize the back edges B to the set of edges containing
two copies of each edge in the MST and a single copy of
the front edges E. We can now approximate the length
of the tour, given by: Tapprox = E∪B. Thus the length
of Tapprox is |Tapprox| = 2|E|+ 2|MST |.

Now, we can modify Tapprox to decrease its length.
G(V, Tapprox) must be connected (due to the MSTs in
Tapprox) as well as have even degrees for each degT (v)
by our construction, and since for all v in V, degT (v) ≥
2 · degF (v), there must exist an Euler tour with no
consecutive front edges. However, that doesn’t mean
there won’t be consecutive back edges: to avoid consec-
utive back edges, we can use the triangle inequality to

eliminate them without increasing |Tapprox|. As in, say
Tapprox contains two edges in B e1(va, vb) and e2(vb, vc),
we can simply use the edge e3(va, vc), which must ex-
ist since B is a complete graph. Note that shortcutting
doesn’t disconnect the tour, since we know that all front
edges are used.

This shows that this modified Tapprox is a 2-
approximation for the optimal solution, as the optimal
solution would have to be at a minimum, the weight
of the front edges plus the MST (to ensure the graph
is connected with the minimum distance possible). As
in, OPT ≥ |E| + |MST |. Thus, we can conclude that
Tapprox ≤ 2(|E|+ |MST |) ≤ 2OPT .

Table 4: Arkin et al. 2-approx. computation times

Mean # Mean # Mean
1 4e-05 21 0.00113 41 0.01969
2 8e-05 22 0.00108 42 0.02488
3 0.00023 23 0.00112 43 0.04107
4 0.00018 24 0.00142 44 0.03571
5 0.00026 25 0.0016 45 0.0694
6 0.00036 26 0.00166 46 0.1005
7 0.00037 27 0.00184 47 0.116
8 0.00048 28 0.00188 48 0.17339
9 0.00054 29 0.00207 49 0.24419
10 0.00067 30 0.00235 50 0.32175
11 0.00069 31 0.00357 51 0.4262
12 0.00081 32 0.00405 52 0.8143
13 0.0009 33 0.00346 53 0.98213
14 0.00104 34 0.00457 54 1.41139
15 0.00087 35 0.00445 55 1.72012
16 0.00101 36 0.00611 56 2.78791
17 0.00086 37 0.00845 57 4.74467
18 0.001 38 0.0101 58 7.80175
19 0.00101 39 0.01352 59 8.6776
20 0.00119 40 0.01394 60 12.59123

Figure 6: Runtimes for Arkin et al.’s approximation

The implementation for this polynomial time approx-
imation algorithm can be found here. See Table 4 for
benchmarking.

69

33rd Canadian Conference on Computational Geometry, 2021

The runtime of this algorithm is in polynomial time.
We know this because there are only two routes the
2-approximation can take: the connected components
or disconnected components approach, and both run in
polynomial time. First consider the connected compo-
nents: this is done after we identify the connected com-
ponents in G, and then find there is only one. Identify-
ing connected components in the front graph of G can
be done using Depth First Search (DFS) on each vertex
in G (if it has not been visited). DFS has a runtime of
O(|V | + |E|), and running this on each unvisited ver-
tex in the graph will result in a worst case runtime of
|V | · O(|V | + |E|) = O(|V |2 + |V | · |E|). Once a sin-
gle component is identified, we can run the b-matching
algorithm provided by Anstee, which has a polynomial
runtime of O((|V |log|V |)(|E|+ |V |log|V |))+O(|V |2|E|)
[2]. For this implementation however, we approximate
in O(|E|) time, as we simply find the sum of the lengths
of the front edges, and multiply by two.

The runtime of the multiple connected components is
also polynomial: once again, we must identify connected
components (which as per the explanation above, has a
runtime of O(|V |2+|V |·|E|)). However, we now have to
find the MST of the connected components. Prim’s al-
gorithm has a runtime ofO(|E|·log|V |), which is polyno-
mial on input G. All we have left is to find an alternating
Eulerian Circuit in Tapprox, which can be found in linear
time in terms of the edges O(|E(Tapprox)|). Shortcut-
ting between consecutive back edges in the Euler tour
can also be done in linear time post-tour selection. As
such, the runtime of Arkin et al.’s 2-approximation for
multiple connected components is also polynomial.

6 Results

The embroidery problem is very difficult to solve ex-
actly, and given the need for efficiency and the le-
niency for precision, approximation algorithms are the
most practical solutions. Arkin et al. provides a fairly
lightweight and fast algorithm that can be produce so-
lutions with little infrastructure (using the approxima-
tion, rather than b-matching, for connected compo-
nents).

However, when more precision is required, reducing
the embroidery problem to TSP provides more precise
solutions (as shown in Figure 8, where the backtracking
algorithm serves as a source of truth for for the precise
amount of necessary thread), though it will take more
time.

Figure 7: Runtime distributions for all four methods
on the same embroidery instances, where measurements
for each method ceased once the mean computation time
exceeded 10 seconds.

Figure 8: Mean tour lengths for all four methods on
the same embroidery instances.

7 Limitations & Further Study

The range of data recorded in this paper is narrow. For
one, this paper takes on the broad issue of arbitrary em-
broidery instances, as opposed to more specialized in-
stances (i.e. segmented patterns as described by Arkin
et al. [4], cross-stitching, etc). Furthermore, these ex-
perimental results were taken on limited hardware, thus
restricting the embroidery instances to a small board
(5x5 units is a very impractical size for cross stitching
patterns). It may be useful to measure the computation
times of more useful sizes of the embroidery problem,
given enough time and resources.

In addition to limited data, the algorithms chosen for
this paper are not necessarily exhaustive. One method
that may be worthwhile to explore is Christofides’ 3/2-
approximation, which boasts a polynomial runtime and

70

CCCG 2021, Halifax, Canada, August 10–12, 2021

greater accuracy than any other approximation algo-
rithm for TSP in P (excepting the recent developments
in 2020). While it was not used in this paper because
of concerns that reducing from the embroidery problem
to TSP produces non-metric instances of TSP by neces-
sity, it may be worthwhile to explore viable methods of
transforming the embroidery TSP instance into a metric
TSP instance.

8 Acknowledgements

The author would like to thank her former professor
Josh Grochow for teaching the class that provided her
with the concepts and frameworks to approach this
problem, as well as CCCG’s anonymous reviewers for
their time and insightful feedback.

References

[1] E. Allender, P. Burgisser, J. Kjeldgaard-Pedersen, and
P. B. Miltersen. On the Complexity of Numerical Anal-
ysis. SIAM J. Comput., 38(5), 1987–2006.

[2] R. P. Anstee. A polynomial algorithm for b-matchings:
an alternative approach. Information Processing Let-
ters, 24(3):153–157, 1987.

[3] D. Applegate, R. Bixby, V. Chvatal, and W. Cook. Con-
corde TSP solver. 2006.

[4] E. M. Arkin, G. W. Hart, J. Kim, I. Kostitsyna, J.
S. B. Mitchell, G. R. Sabhnani, and S. S. Skiena.
The Embroidery Problem. Proceedings of the 20th An-
nual Canadian Conference on Computational Geome-
try, Montreal, Canada, August 13-15, 2008.

[5] T. Biedl, J. D. Horton, and A. Lopez-Ortiz. Cross-
stitching using little thread. In 17th Canadian Confer-
ence of Computational Geometry, pages 196-199, 2005.

[6] N. Christofides. Worst-case analysis of a new heuris-
tic for the travelling salesman problem. Tech. Report,
GSIA, Carnegie Mellon Univ., 1976.

[7] G.B. Dantzig, D.R. Fulkerson, and S.M. Johnson. Solu-
tion of a Large-Scale Traveling-Salesman Problem. Op-
erations Research 2, pages 393–410, 1954.

[8] A. Karlin, N. Klein, S. O. Gharan. A (Slightly)
Improved Approximation Algorithm for Metric TSP.
arXiv preprint arXiv:2007.01409, 2020.

[9] C. H. Papadimitriou. The Euclidean traveling sales-
man problem is NP-complete. Theoretical Computer
Science, 4:237–244, 1977.

[10] S. Tsutomu. tsp. 2020. https://pypi.org/project/tsp
[Online; accessed Nov. 2020]

[11] J. Vankerschaver. PyConcorde. 2018.
https://github.com/jvkersch/pyconcorde [Online;
accessed Nov. 2020]

71

CCCG 2021, Halifax, Canada, August 10–12, 2021

Another Small but Long Step for Crossing Numbers:
cr(13) = 225 and cr(14) = 315

Oswin Aichholzer∗

Abstract

In this paper we consider the crossing number of simple
drawings of complete graphs. Following the iterative
enumeration approach developed in [3] we report on a
heavily computer assisted proof that the crossing num-
ber of the complete graph K13 is cr(13) = 225. This
implies that cr(14) = 315.

1 Introduction

In this paper we report on the long-term application
of methods developed in the work of Ábrego at al [3]
to the computation of the crossing number of the com-
plete graph K13, namely to show that cr(13) = 225 and
cr(14) = 315. The programs we used have been devel-
oped and implemented in the course of [3] and were later
refined for full efficiency on high performance clusters.
The computational power needed to perform all calcu-
lations sums up to the equivalent of over 1000 years on
a single CPU.

Our approach is based on the representation of weak
isomorphism classes of simple drawings of the complete
graph by rotation systems. In the following subsec-
tions we will provide the necessary background on sim-
ple drawings, crossing numbers, and rotation systems.

In Section 2 we briefly describe the iterative enumer-
ation approach developed in [3] and apply it then to
the specific case of K13 in Section 3. We close with a
short discussion on possible extensions and alternative
approaches in Section 4.

1.1 Basics

In a simple drawing of a graph in the plane the ver-
tices are represented by points and the edges are repre-
sented by non-self-intersecting Jordan arcs connecting
two points which represent vertices. These arcs must
not contain any other point representing a vertex in
their interior, two edges meet at most once, either in a
proper crossing (no tangency) or a common endpoint,
and no three edges intersect in a common crossing. Such
drawings are sometimes also called good drawings or
simple topological graphs.

∗Institute of Software Technology, Graz University of Technol-
ogy, Austria, oaich@ist.tugraz.at

Figure 1: Crossing optimal cylindrical drawing of K13

with 225 crossings.

In this work we are especially interested in simple
drawings of the complete graph Kn on n vertices. To
simplify the presentation we will thus limit the following
definitions to this setting. The rotation of a vertex v in
a simple drawing is the clockwise cyclic order of edges
incident to v, represented as a sequence of the opposite
vertices of all edges incident to v. The rotation system
of a simple drawing is the set of rotations of all its ver-
tices. Two such rotation systems are equivalent if one
can be obtained from the other by relabeling the vertices
and optionally inverting all rotations. Rotation systems
obtained from simple drawings are called realizable (by
this simple drawing).

Simple drawings with the same pairs of crossing edges
form the so-called weak isomorphism classes. Rotation
systems can be used to represent these classes. This
is based on the following two results: (1) The rotation
system of a simple drawing of the complete graph de-
termines the pairs of crossing edges [18]. (2) The set of
crossing pairs of edges determines the equivalence class
of the rotation system of a simple drawing of the com-
plete graph [9].

Consequently we do not need to generate all drawings
of Kn to find the minimal possible number of crossings,
but can restrict our considerations to different rotation
systems. This way we have a simple construct to han-

72

33rd Canadian Conference on Computational Geometry, 2021

Figure 2: Crossing optimal 2-page book drawing of K13

with 225 crossings.

dle the combinatorial task and can save an exponen-
tial factor, as there might be an exponential number of
drawings for a given rotation system.

1.2 Crossings of the Complete Graph

There are many different definitions of the crossing num-
ber of a drawing of a graph, see for example [17] and [20].
We use the following setting. For every intersection
point of (at least two) edges in a drawing (which is not
a common vertex) we count one crossing for every pair
of edges that intersects there. For this definition it is
well known and easy to see that for any drawing of a
graph that minimizes the number of crossings there is
a simple drawing with the same number of crossings.
In other words, if we are interested in minimizing the
number of crossings, it is sufficient to consider simple
drawings.

The crossing number of a graph is defined as the min-
imum number of crossings over all (simple) drawings of
this graph. For the complete graph Kn on n vertices we
denote the crossing number of Kn by cr(n).

For the complete graph the Harary-Hill conjecture
states that the number of crossings in any drawing of
Kn is at least H(n) = 1

4bn2 cbn−1
2 cbn−2

2 cbn−3
2 c, that

is, cr(n) ≥ H(n). There exist several types of draw-
ings which obtain this number of crossings, for exam-
ple cylindrical drawings and 2-page book drawings, and
consequently we know that cr(n) ≤ H(n). Figures 1
and 2 show these drawings for n = 13 points with
H(13) = 225 crossings. See the nice survey of Beineke
and Wilson [8] for the history of this conjecture and the
related constructions.

For many classes of simple drawings the Harary-
Hill conjecture is known to be true. This has been
shown for 2-page book drawings [2], monotone draw-
ings [4], and more generally for so-called shellable [5]
and bishellable [1] drawings, where these classes also
include for example cylindrical drawings.

For general simple drawings so far the Harary-Hill
conjecture has been confirmed for n ≤ 12. Already in
1972 Guy [10] showed that it holds for n ≤ 10. For
n ≤ 8 the results can be obtained with reasonable effort
by hand, but for n ≥ 9 the proof used an algorithmic
approach. Consequently in 2015 McQuillan and Richter
provided a computer-free proof for cr(9) = 36 [15]. Us-
ing computers, Pan and Richter [19] proved that the
crossing number of K11 is cr(11) = H(11) = 100, which
implies that cr(12) = H(12) = 150.

The later step follows from the following folklore
observation. To obtain a relation between cr(n) and
cr(n− 1) observe that every n− 1 subset of Kn has at
least cr(n− 1) crossings. If we sum over all n such sub-
sets, every crossing is counted n − 4 times. This gives
the relation

cr(n) ≥ n

n− 4
cr(n− 1) (1)

Plugging this into H(n) it follows that if cr(n) ≥ H(n)
is true for some odd n, then also cr(n+ 1) ≥ H(n+ 1)
is true. This step does not work from even to odd, but
for K13 at least it follows that cr(13) ≥ 217 ≥ 13

9 150.
Kleitman [11, Section 5] proved that any two simple

drawings of Kn, where n is odd, have crossing numbers
that have the same parity1. We will refer to this as the
parity property of drawings of Kn for n odd.

From this parity property it follows that the cross-
ing number of any simple drawing of K13 must be
odd, as it must have the same parity as

(
13
4

)
= 715,

which is the number of crossings in a straight line
drawing of 13 points in convex position. This implies
cr(13) ∈ {217, 219, 221, 223, 225}, and as a first step it
was shown that no drawing with only 217 crossings ex-
ists, that is, cr(13) ≥ 219 [14].

The method of extending rotation systems – see the
next section for details – has already successfully been
used in [3] to show that cr(13) ≥ 223. In our work
we close the gap and report that no drawing of K13

with 223 crossing exists, that is, cr(13) = H(13) = 225.
Using (1) this implies that cr(14) = H(14) = 315.

Theorem 1 The crossing number of K13 is cr(13) =
H(13) = 225 and the crossing number of K14 is cr(14) =
H(14) = 315.

2 Extending Rotation Systems

In [3] it is described how all different realizable rotation
systems of given cardinality n can be generated. This
is equivalent to generate all weak isomorphism classes
of simple drawings with n vertices. The basic idea is
to extend a rotation system of size n − 1 by adding an

1Note that actually Kleitman shows this result for Km,n where
m and n are both odd, but the argument for Kn is precisely the
same.

73

CCCG 2021, Halifax, Canada, August 10–12, 2021

additional vertex and all its incident edges in all possi-
ble ways. With rotation systems this can essentially be
done by inserting the label of the new vertex in all possi-
ble positions between the labels of the existing rotation
around each vertex. In this way the rotation around the
new vertex gets determined, and can be used to check
if all 4-tuples and 5-tuples in the extension are valid;
see [3] for full details.

Kynčl [13] has designed a polynomial time algo-
rithm to check simple realizability of abstract topolog-
ical graphs. These are graphs where in addition to the
graph the set of pairs of its edges which cross is given.
From the discussion in the introduction of this paper it
follows, that (abstract) rotation systems are realizable
if and only if all its K4 and K5 subgraphs are realiz-
able. So for a given (abstract) rotation system, it can
be trivially checked in O(n5) time if it can be realized
as a simple drawing or not. Note that this is in sharp
contrast to the geometric case. There drawings for com-
plete graphs can only be extended in an abstract way
as described for example in [6]. The main reason is
that realizing abstract order types is a notoriously hard
problem which is know to be ∃R-hard [16].

For us this implies that for each generated rotation
system we check that every 4- and 5-tuple is realizable.
For every 4-tuple this is actually guaranteed by the way
the extension takes place, as for a given 4-tuple the order
around one of the vertices is fixed by the rotation of the
other three vertices. For all 5-tuples this test can be
done in O(n4) time, as only those O(n4) 5-tuples which
include the new vertex need to be checked. Here we
assume that the rotation system we extend is realizable,
which is granted by induction and the data base we
start with: In [3] all 7 198 391 729 different realizable
rotation systems of 9 vertices have been generated. This
will serve as the base of our iterative approach.

Note that the number of weak isomorphism classes of

Kn is in 2n
2α(n)O(1)

[12] and 2Ω(n2) [18]. This prevents a
computation of all realizable rotation systems for n > 9.
Thus our approach will only generate rotation systems
which are relevant for us, as explained below.

A natural idea to speed up the extension of rotation
systems would be to show that every crossing minimal
drawing of Kn contains a subdrawing of Kn−1 which
is also crossing minimal. If this so-called subset prop-
erty would be true, then it would be sufficient to only
extend rotation systems for crossing minimal drawings.
In the next section (cf. Table 1) we will see that for
the extension from 12 vertices to 13 vertices we need
to consider 56 043 781 rotation systems. On the other
hand for n = 12 there are only 2 592 crossing minimal
sets. So this subset-property would reduce the effort
to less than 1

20000 of the current work load. Actually, if
the Harary-Hill conjecture holds then it follows from (1)
that for n even for any crossing minimal drawing of Kn

5

4

6

9

2

8

3

1

7

rotation system:

1: 2 3 4 5 6 7 8 9
2: 1 6 8 7 9 3 5 4
3: 1 2 8 9 7 5 6 4
4: 1 2 9 3 5 7 6 8
5: 1 4 2 3 9 8 7 6
6: 1 4 3 5 9 7 8 2
7: 1 6 4 5 3 9 2 8
8: 1 4 6 7 5 9 3 2
9: 1 8 7 6 5 3 4 2

Figure 3: Crossing optimal drawing for K9 with 36
crossings where every subdrawing of a K8 has 20 cross-
ings.

every subdrawing of Kn−1 is also crossing minimal.

Unfortunately this subset property is not true for n
odd. An example for n = 9 can be seen in Figure 3.
There every subdrawing of K8 has 20 crossings, whereas
an optimal drawing of K8 has only 18 crossings. Let us
remark that out of 421 crossing minimal rotation sys-
tems for K9 there are only 4 which do not contain a
subset of size 8 with 18 or 19 crossings. And the de-
picted example is the only one where every subset of
size 5 has only 1 or 3 crossings, but it does not contain
a subdrawing of K5 with 5 crossings. Intuitively this
means that every subdrawing is not too bad, and cross-
ings are evenly distributed. But consequently there is
also no really good subdrawing, that is, no subdrawing
of K8 with the minimum possible number of crossings.

3 The computation for cr(13) = 225

There exist drawings of K13 with 225 crossings (see e.g.
Figures 1 and 2) and we know from the computations
in [3] that cr(13) ≥ 223. Moreover, by the above men-
tioned parity property of Kleitman [11] we therefore
know that cr(13) ∈ {223, 225}. To prove our main re-
sult cr(13) = 225 it is thus sufficient to show that no
drawing of K13 with 223 crossings exist. For this task
we use the iterative approach described in the previous
section, starting with realizable rotation systems of size
9 obtained in [3].

From (1) it follows that a drawing D with n ver-
tices and cr(D) crossings must have a subdrawing D′

of n − 1 vertices with at most cr(D′) ≤ bn−4
n cr(D)c

crossings. If we want to obtain a rotation system which
provides a drawing of K13 with 223 crossings, we know

74

33rd Canadian Conference on Computational Geometry, 2021

cr(9) # cr(10) # cr(11) # cr(12) # cr(13)
36 421 60 37
↪→ 61 516
↪→ 62 4 407
↪→ 63 22 007 100 403 079 150 2 592 217
↪→ ↪→ ↪→ 151 73 014 219
38 4 790 64 75 159 102 6 678 654 153 8 137 376 221
↪→ ↪→ ↪→ 154 46 850 304 223
≤ 38 5 211 ≤ 64 102 126 ≤ 102 7 081 733 ≤ 154 56 043 781 < 225

Table 1: The road from n = 9 to cr(13) < 225: To obtain all rotation systems for a given size and fixed crossing
number, we first need to generate all rotation systems with the parameters given in the table to the left of it (smaller
cardinality) and in the same line or above it (number of crossings according to cr(n − 1) ≤ bn−4

n cr(n)c). The ↪→
indicates that for a given line it is sufficient to consider the next crossing number above.

that it contains a sub-drawing of K12 with at most
154 = b 13−4

13 223c crossings. It is thus sufficient to only
extend rotation systems of size 12 with 150 to 154 cross-
ings. This step can be iterated. So to generate all rele-
vant rotation systems of size 12, we have to extend all ro-
tation systems of size 11 with at most 102 = b 12−4

12 154c
crossings. By the parity property we get that these
drawings have either 100 or 102 crossings. Repeating
this process, Table 1 gives the complete picture of all
steps from 9 to 13 vertices.

As a warm up example consider the task of showing
that cr(13) > 217. To this end it is sufficient to start
with all 421 rotation systems of size 9 with 36 cross-
ings. In the next three extension steps we only keep
generated rotation systems with a limited number of
crossings, that is, for n = 10, 11, 12 sets with ≤ 63, 100,
and 150 crossings, respectively. In the last step we have
to extend the 2592 rotation systems of size 12, and the
result is that no rotation system of size 13 with 217
crossings exists. In total there are 433 059 sets which
are extended in this process. The whole computation
for this task needed 29.25 days on 12 CPUs in parallel,
which is equivalent to approx. 0.96 years on a single
CPU. This has to be compared to the time reported
in [14] where the computation took over 500 hours on
256 CPUs in parallel, equivalent to approx. 14.6 years
on a single CPU. This shows that using non isomorphic
rotation systems instead of non isomorphic drawings re-
duces the computational effort significantly.

To show that cr(13) > 223 it can bee seen from Ta-
ble 1 that we start by extending 5 211 rotation sys-
tems of size 9. This has to be seen in contrast to the
7 198 391 729 realizable rotation systems that exist
for this cardinality. So we need to extend only about
0.0000724% of the possible rotation systems, which ex-
plains why this partial extension is feasible, while a com-
plete generation of all rotation systems for size 10 seems
to be unrealistic within a reasonable time bound.

The computations started in 2013 [3] and have been
running till the beginning of 2021 on various comput-

ers in the background, using their idle time. Table 2
summarizes the time needed for the extension from 12
vertices to 13 vertices. The most intensive part – the
extension from n = 12 with 154 crossings – ended in
September 2020. No rotation system of 13 vertices with
223 crossings has been generated. The last computation
we started was to extend from n = 12 with 153 cross-
ings, and this was done in February 2021. Again, no
rotation systems for K13 with 223 crossings have been
found, showing that no simple drawings of K13 with
223 crossings exist. In total the extension from n = 12
to n = 13 needed the equivalent of over 1000 years on
a single CPU. The computations for smaller cardinal-
ity took significantly less time, and have partially been
performed before this project. As various computer sys-
tems were used, the needed time has to be compared
with care. The following list gives a rough approxima-
tion: n = 9 → n = 10: 11 minutes; n = 10 → n = 11:
12.5 days; n = 11 → n = 12: 15.6 years. All times are
again given as the equivalent on a single CPU.

To compare the last step for the extension n = 12→
n = 13 with geometric drawings, that is, drawings were
edges are straight line segments, it is worth to mention
that from Table 2 it can be seen for n = 12 that there
are 8 137 376 different rotation systems with 153 cross-
ings. For the geometric case the minimum number of
crossings of K12 is 153, and there is only one unique
order type for this. That means that the remaining
8 137 375 rotation systems, as well as all with 150 or
151 crossings, can not be stretched (that is, can not be
drawn with straight lines).

As already mentioned, from (1) it follows that the
crossing number for odd cardinality implies the cross-
ing number for the next larger even cardinality. Con-
sequently we get cr(14) ≥ 14

10225 = 315. As there exist
simple drawings of K14 which have 315 crossings, we in
addition obtain cr(14) = 315.

A natural question is whether we could compute all
rotation systems for n = 13 with 225 crossings. To this
end we would need all rotation systems for n = 12 with

75

CCCG 2021, Halifax, Canada, August 10–12, 2021

No. of No. of input time time
crossings rot. systems in days in years

150 2 592 22.7 0.1
151 73 014 564.4 1.5
152 980 495 6 805.7 18.6
153 8 137 376 53 284.8 146.0
154 46 850 304 320 493.4 878.1

≤ 154 56 043 781 381 171.0 1 044.3

Table 2: Computation time needed for extension from
n = 12 to n = 13. Given is the equivalent if computa-
tions would have been performed on a single CPU.

Number of Number of all Number of convex
crossings rotation systems rotation systems

150 2 592 2 592
151 73 014 73 014
152 980 495 914 882
153 8 137 376 6 592 493
154 46 850 304 30 355 238
155 ? 94 110 607
156 ? 203 940 546
157 ? 327 333 179
158 ? 446 426 769

≤ 158 ? 1 109 749 320

Table 3: General and convex realizable rotation systems
for n = 12 with up to 158 crossings.

up to 155 = b 9
13225c crossings. To obtain these rotation

systems it would still be sufficient for n = 11 to consider
only sets with at most 102 crossings. But given the time
needed to compute cr(13) > 223 this is currently out
of reach. So far we extended all rotations systems for
n = 12 with 150 and 151 crossings, and partially those
with 152 crossings. In this way we already obtained
over 114 million different realizable rotation systems for
n = 13 with 225 crossings.

4 Conclusion

Based on exhaustive extension of rotation systems we
showed that cr(13) = 225 which implies that cr(14) =
315. But how about using this approach to determine
cr(15), and thus also cr(16)? This seems to be illusive.
Even computing all crossing optimal rotation systems
for n = 13 is currently out of reach, as argued above.

Arroyo et al [7, Question 6.6] conjectured that cross-
ing minimal drawings ofKn are always convex drawings.
These are drawings where for every three-cycle in the
drawing there is a side, such that the edge connecting
any two vertices on that side is also entirely on this side;
see [7] for a formal definition. Essentially that means
that out of the 5 possible simple drawings of K5 only
three types are used, namely the three types which are

also realizable as a straight line drawing. With our com-
putations we checked this conjecture to be true for up to
size n = 12, which also implies that all the crossing min-
imal drawings given in this paper belong to that class.
So how about checking the crossing number conjecture
under the assumption that the convexity conjecture is
true? To this end we computed all convex sets of size
12 with small crossing numbers, more precisely with at
most 158 crossings, as this would be the bound needed
to extend the rotation systems to check cr(15). Table 3
shows how many such rotation systems for n = 12 ex-
ist. Unfortunately it turned out that most sets with
few crossings are in fact convex, so the necessary work
load still is way beyond being reasonable even under the
assumption of the convexity conjecture.

A downside of our approach is that a positive result
in the sense that a rotation system with a certain cross-
ing number exists, can easily be checked by providing a
drawing realizing it. If no rotation system is generated,
this can only be checked by repeating the computations
with an alternative implementation. But the needed
time makes this approach unrealistic. Moreover, the
induction base we used, that is, all realizable rotation
systems of size 9, needs about 430 GB of disc space. So
providing this for download is also not realistic. How-
ever, we are happy to provide intermediate files on re-
quest, and also the whole data base for n = 9, e.g. via
different media.

Considering these limitations, we expect that our
work will stimulate alternative approaches to show that
cr(13) = 225 in a less time consuming way.

Acknowledgments. We would like to acknowledge
the use of HPC resources provided by the ZID of Graz
University of Technology. We are especially grateful to
Mario Lang and Simon Kainz for their continuous sup-
port with these resources. Moreover we want to thank
all coauthors of [3] for many fruitful discussions on this
long-term project and the anonymous referees for help-
ful remarks to improve the presentation of this work.
Research partially supported by FWF grant W1230.

References

[1] Bernardo M. Ábrego, Oswin Aichholzer, Silvia
Fernández-Merchant, Dan McQuillan, Bojan Mohar,
Petra Mutzel, Pedro Ramos, R. Bruce Richter, and Bir-
git Vogtenhuber. Bishellable drawings of Kn. SIAM
Journal on Discrete Mathematics, 32(4):2482–2492,
2018. https://doi.org/10.1137/17M1147974

[2] Bernardo M. Ábrego, Oswin Aichholzer, Silvia
Fernández-Merchant, Pedro Ramos, and Gelasio
Salazar. The 2-page crossing number of Kn. Discrete
& Computational Geometry, 49(4):747–777, 2013.

[3] Bernardo M. Ábrego, Oswin Aichholzer, Sil-
via Fernández-Merchant, Thomas Hackl, Jürgen Pam-

76

33rd Canadian Conference on Computational Geometry, 2021

mer, Alexander Pilz, Pedro Ramos, Gelasio Salazar,
and Birgit Vogtenhuber. All Good Drawings of Small
Complete Graphs. In Proc. 31st European Workshop
on Computational Geometry EuroCG ’15, pages 57–60,
Ljubljana, Slovenia, 2015.

[4] Bernardo M. Ábrego, Oswin Aichholzer, Sil-
via Fernández-Merchant, Pedro Ramos, and Gela-
sio Salazar. More on the crossing number of
Kn: Monotone drawings. Electronic Notes in
Discrete Mathematics, 44:411–414, 2013. Special
issue dedicated to LAGOS2013. http://dx.doi.org/
10.1016/j.endm.2013.10.064

[5] Bernardo M. Ábrego, Oswin Aichholzer, Sil-
via Fernández-Merchant, Pedro Ramos, and
Gelasio Salazar. Shellable drawings and the
cylindrical crossing number of Kn. Discrete
and Computational Geometry, 52:743–753, 2014.
https://doi.org/10.1007/s00454-014-9635-0

[6] Oswin Aichholzer and Hannes Krasser. Abstract Or-
der Type Extension and New Results on the Rectilin-
ear Crossing Number. Computational Geometry: The-
ory and Applications, Special Issue on the 21st Euro-
pean Workshop on Computational Geometry, 36(1):2–
15, 2006.

[7] Alan Arroyo, Dan McQuillan, R. Bruce Richter, Gelasio
Salazar. Convex drawings of the complete graph: topol-
ogy meets geometry. arXiv preprint arXiv:1712.06380,
2017

[8] Lowell Beineke and Robin Wilson. The early
history of the brick factory problem. The Math-
ematical Intelligencer, 32(2):41–48, 10 2010.
https://doi.org/10.1007/s00283-009-9120-4

[9] Emeric Gioan. Complete graph drawings up to triangle
mutations. In Graph-Theoretic Concepts in Computer
Science, pages 139–150, 2005.

[10] Richard K. Guy. Crossing numbers of graphs. In
Y. Alavi, D. R. Lick, and A. T. White, editors, Graph
Theory and Applications, pages 111–124, Berlin, Hei-
delberg, 1972. Springer Berlin Heidelberg.

[11] Daniel J. Kleitman. The crossing number of K5,n.
Journal of Combinatorial Theory, 9(4):315 – 323, 1970.
URL: https://doi.org/10.1016/S0021-9800(70)80087-4

[12] Jan Kynčl. Improved enumeration of sim-
ple topological graphs. Discrete & Com-
putational Geometry, 50(3):727–770, 2013.
http://dx.doi.org/10.1007/s00454-013-9535-8

[13] Jan Kynčl. Simple realizability of complete
abstract topological graphs simplified. Dis-
crete & Computational Geometry, 64:1–27, 2020.
https://doi.org/10.1007/s00454-020-00204-0

[14] Dan McQuillan, Shengjun Pan, and R. Bruce Richter.
On the crossing number of K13. Journal of Combinato-
rial Theory, Series B, 115(C):224–235, November 2015.
https://doi.org/10.1016/j.jctb.2015.06.002

[15] Dan Mcquillan and R. Bruce Richter. On the
crossing number of Kn without computer assis-
tance. Journal of Graph Theory, 82:387–432, 10 2015.
https://doi.org/10.1002/jgt.21908

[16] Nikolai Mnëv. On manifolds of combinatorial types of
projective configurations and convex polyhedra. In So-
viet Math. Doklady, volume 32, pages 335–337, 1985.

[17] János Pach and Géza Tóth. Which crossing
number is it anyway? Journal of Combi-
natorial Theory, Series B, 80(2):225–246, 2000.
http://dx.doi.org/10.1006/jctb.2000.1978,

[18] János Pach and Géza Tóth. How many ways can one
draw a graph? Combinatorica, 26(5):559–576, 2006.
http://dx.doi.org/10.1007/s00493-006-0032-z

[19] Shengjun Pan and R. Bruce Richter. The crossing num-
ber of K11 is 100. Journal of Graph Theory, 56(2):128–
134, 2007. http://dx.doi.org/10.1002/jgt.20249,

[20] Marcus Schaefer. The graph crossing number and its
variants: A survey. The Electronic Journal of Combi-
natorics, 20, 04 2013. https://doi.org/10.37236/2713

77

CCCG 2021, Halifax, Canada, August 10–12, 2021

Generalized LR-Drawings of Trees

Therese Biedl∗ Giuseppe Liotta† Jayson Lynch ∗ Fabrizio Montecchiani†

Abstract

The LR-drawing-method is a method of drawing an or-
dered rooted binary tree based on drawing one root-
to-leaf path on a vertical line and attaching recursively
obtained drawings of the subtrees on the left and right.
In this paper, we study how to generalize this drawing-
method to trees of higher arity. We first prove that
(with some careful modifications) the proof of existence
of a special root-to-leaf path transfers to trees of higher
arity. Then we use such paths to obtain generalized
LR-drawings of trees of arbitrary arity.

1 Introduction

Tree-drawing is a very popular topic in the graph draw-
ing literature. Nearly all tree-drawing methods required
that the drawing is planar (has no crossing), but there
are many other variations, depending on whether we
demand that the drawing is straight-line (as opposed to
permitting bends in edges) and/or order-preserving (a
given order of edges at each node is maintained). For a
rooted tree, one also distinguishes by whether the draw-
ing must be (strictly) upward (nodes are (strictly) above
their descendants). In all our drawings, we assume that
nodes (and also bends, if there are any) are placed at
grid-points, i.e., points with integer coordinates. The
main objective is to obtain drawings of small area, mea-
sured via the number of grid-points in the minimum
enclosing bounding box of the drawing. Sometimes one
also considers the width and height of the drawing, mea-
sured by the number of columns (respectively rows) that
intersect the drawing. We refer to a survey by Di Bat-
tista and Frati [6] for many results up to 2014, and to
Chan’s recent paper [3] for some development since.

In 2002, Chan [2] published a tree-drawing paper
that became the inspiration for many follow-up papers.
In particular, he studied rooted trees and only consid-
ered ideal drawings, i.e., drawings that respect all four
of the above constraints (planar, straight-line, order-
preserving and strictly upward). His area-results were
superseded by later improvements [1, 3, 9], but the
techniques introduced in [2] are still widely useful; see
e.g. a recent paper by Frati, Patrignani and Roselli [8]

∗David R. Cheriton School of Computer Science, University of
Waterloo, {biedl,jayson.lynch}@uwaterloo.ca

†Department of Engineering, University of Perugia,
{giuseppe.liotta,fabrizio.montecchiani}@unipg.it

that uses Chan’s recursive approaches to obtain small
straight-line drawings of outer-planar graphs.

Background and related results. One of the meth-
ods proposed by Chan [2] is the one that creates LR-
drawings. The idea is to take a root-to-leaf path π,
drawing it vertically, and attach the left and right sub-
trees of the path just below their parent, using a recur-
sively obtained drawing for the subtree. See Figure 1,
where the nodes of π are white (as in all other figures).
These drawings are defined only for binary trees.

To describe this precisely, we need a few definitions.
Let T be a rooted binary tree that comes with a fixed
order of children at each node (we call this an or-
dered rooted binary tree). A root-to-leaf path π =
〈v1, v2, . . . , v`〉 is a path in T where v1 is the root and v`
is a leaf. A left subtree of π is a subtree rooted at some
child c of a vertex vi ∈ π for which c comes before the
path-child in the order at vi. We call this a left subtree
at vi when needing to specify the node of π. A right
subtree is defined symmetrically.

The LR-drawing-method consists of picking a root-to-
leaf path π, drawing it vertically, and attaching (recur-
sively obtained) drawings of the subtrees of T \V (π) on
the left and right side so that the order is maintained.
Since T is binary, there is only one such subtree at each
v ∈ π; we place its drawing in the rows just below v
(after lengthening edges of π as needed) and one unit to
the left/right of path π.

v1

v`

L1

R2

R3

v2

v3

Figure 1: An LR-drawing where π = 〈v1, v2, . . . v`〉 and
Li and Ri are various subtrees.

Let W (n) be the maximum (over all binary trees T
with n nodes) of the width of the drawing, and note

78

33rd Canadian Conference on Computational Geometry, 2021

that it observes the following recursion:

W (n) ≤ 1 + min
π

(
max
α

W (|α|) + max
β

W (|β|)
)

(1)

where α and β are any left and right subtree, respec-
tively. We are therefore interested in picking a path π
that has useful bounds on the size of α and β. Chan
showed that there exists a path such that |α|+|β| ≤ n/2,
for any left and right subtrees α and β. He then im-
proved this to the following:

Lemma 1 [2] Let p = 0.48. Given any binary ordered
rooted tree T of size n, there exists a root-to-leaf path π
such that for any left subtree α and any right subtree β
of π, |α|p + |β|p ≤ (1− δ)np for some constant δ > 0.

Lemma 1, together with Eq. (1), and an inductive ar-
gument, implies the existence of LR-drawings of width
O(n0.48) (and the height is n, as it is for all LR-drawings
constructed as described above). Later on, Frati et
al. [8] showed that for some binary trees, a width of
Ω(n0.418) is required in any LR-drawing, and this was
improved further to Ω(n0.429) by Chan and Huang [4].
The latter paper also gave another construction-method
that does not follow the above method exactly, instead
the chosen path π may have some non-vertical edges
while the vertically drawn path continues in some sub-
tree of π. In this way, they can obtain drawings of width
O(n0.437).

As should be clear from the above lower bounds, LR-
drawings are not the best tool for small-area ideal tree-
drawings, since other papers can achieve width O(log n)
(or better if the pathwidth is small) [1, 9] while keeping
the height at n. But LR-drawings have a number of
other appealing features:

• Drawings of disjoint rooted subtrees are “vertically
separated”, i.e., if Tv and Tw are two disjoint rooted
subtrees, then there exists some horizontal line that
separates the drawings of Tv and Tw. (This can
be seen by studying the construction at the low-
est common ancestor of the two trees.) As such,
the drawings are perhaps easier to understand than
drawings created with other methods (such as [9])
that delay the drawing of a subtree until further
down, leading to ‘interleaved’ drawings of subtrees.

• LR-drawings (and in particular Lemma 1) has been
used for a number of graph drawing results, includ-
ing for octagonal drawings, orthogonal drawings,
and drawings of outer-planar graphs [5, 7, 10].

• Last but not least, “the question on LR-drawings is
still interesting and natural, as it is fundamentally
about combinatorics of trees, or more specifically,
decompositions of trees via path separators” [4].

Contribution. Our interest in LR-drawings originally
came from the need to generalize Lemma 1 to rooted
trees with higher arity, i.e., maximum number of chil-
dren at a node. (As we will detail in a separate, forth-
coming, paper, such a lemma for ternary trees can be
used to obtain drawings of outer-1-planar graphs with
small area.) In the process, we discovered that all the
results and applications of LR-drawings seem to be only
concerned with binary trees. It is not even clear what
exactly an LR-drawing should be for trees of higher ar-
ity, and no area-bounds are known. Our results in this
paper are as follows:

• We first show (in Lemma 2 in Section 2) that
Lemma 1 holds for trees of arbitrary arity.

There does not seem to be an easy way to derive
this result from Chan’s result, since it is not clear
how we could modify a rooted tree T into a binary
tree without either increasing the number of nodes
or missing a subtree that may be too big. For this
reason, we re-prove the result from scratch. The
proof is similar in structure to the one by Chan,
but we need to be much more careful in defining
the inequalities that hold if we can extend the path
to a subtree.

• We then discuss in Section 3 what the appropriate
generalization of LR-drawings to trees of higher ar-
ity should be. We also give a simple construction
that shows that ideal LR-drawings of area O(n2)
always exist.

• In Section 3.1 and 3.2, we then give construc-
tions for generalized LR-drawings that are directly
based on Lemma 2 and therefore achieve O(n0.48)
width. Unfortunately, neither construction gives
ideal drawings: the first one has one bend per edge,
and the second one is not upward. Both construc-
tions can be modified to achieve ideal drawings, but
at the expense of increasing the height (possibly
more than polynomially).

• In Section 3.3, we give a construction for gener-
alized LR-drawings that are ideal drawings. The
price to pay is that the construction is more compli-
cated, and the height (which was linear in the pre-
vious constructions) increases to O(n1.48), mean-
ing that the area is only just barely sub-quadratic,
namely O(n1.96).

We end in Section 4 with open questions.

2 Choosing a path

In this section, we show that Lemma 1 can be general-
ized to any ordered rooted tree, regardless of its arity.

79

CCCG 2021, Halifax, Canada, August 10–12, 2021

Lemma 2 Let p = 0.48. Given any ordered rooted tree
T of size n, there exists a root-to-leaf path π in T such
that for any left subtree α and any right subtree β of π,
|α|p + |β|p ≤ (1− δ)np for some constant δ > 0.

Proof. We will iteratively expand path π = 〈v1, . . . , vi〉
to get closer to a leaf, and let αi, βi be the largest
left/right subtree of this path (not considering the sub-
trees at vi). Initially set v1 to be the root. We maintain
the invariant that |αi|p + |βi|p ≤ (1 − δ)np for every i;
this holds vacuously initially.

Now assume that path π up to vi for some i ≥ 1

has been chosen. Let S
(1)
i , . . . , S

(di)
i be the subtrees at

vi, enumerated from left to right. Call such a subtree

S
(k)
i feasible if we could use its root to extend π while

maintaining the invariant. Thus S
(k)
i is feasible if

max
{
|αi|, |S(1)

i |, . . . , |S
(k−1)
i |

}p

+ max
{
|βi|, |S(k+1)

i |, . . . , |S(di)
i |

}p
≤ (1− δ)np.

For future reference we note that S
(k)
i is infeasible if one

of the following three violations occurs:

1. |αi|p + |S(`)
i |p > (1− δ)np for some ` > k.

2. |S(h)
i |p + |βi|p > (1− δ)np for some h < k.

3. |S(h)
i |p + |S(`)

i |p > (1− δ)np for some h < k < `.

Case 1: Exactly one subtree S
(k)
i is feasible. Then we

set vi+1 to be the root of S
(k)
i . The invariant holds by

the definition of “feasible”.

Case 2: At least two subtrees S
(k)
i , S

(`)
i (with k < `)

are feasible. We terminate the construction as follows.
Consider first the subcase where |S(k)

i | ≤ |S
(`)
i |. Set

path π to be the concatenation of 〈v1, . . . , vi〉 with the

leftmost path in S
(k)
i down to a leaf. A left subtree

of this path has size at most max{|αi|,maxh<k |S(h)
i |}.

A right subtree of this path up to vi has size at most

max{|βi|,maxh>k |S(h)
i |}. A right subtree of this path

below vi is a subtree of S
(k)
i (and hence no bigger than

|S(k)
i | ≤ |S

(`)
i | ≤ maxh>k |S(h)

i | by assumption). Since

S
(k)
i is feasible the invariant holds.

The other subcase, |S(`)
i | ≤ |S

(k)
i | can be handled in a

symmetric fashion by extending instead with the right-

most path in S
(`)
i .

Claim 1 One of the above two cases always applies.

Proof. Assume not. To show that this leads to a con-
tradiction, we find some subtrees (or collections of sub-
trees) for which we can lower-bound the size. This part
is significantly more complicated than in Chan’s proof

because there are now multiple ways in which a subtree
might not be feasible, and we must choose our subtrees
correspondingly. Consider Figure 2 for an illustration
of the following definitions.

vj
αi

vi

S
(1)
i S

(2)
i S

(di)
i

βi

βj

Figure 2: The situation up to symmetry.

Suppose that the parent of βi’s root, which we denote
by vj , is no higher than the parent of αi’s root; the other
case is symmetric. We first derive one inequality from
vj . We have j < i by definition of βi. Because we did
not terminate the path when extending at vj , Case 2

did not apply at vj . Therefore the subtree S
(k)
j of vj

that contains vi was the only feasible subtree at vj .
Consider Figure 3. Tree βi is a right subtree at vj , say

it was S
(`)
j with ` > k. Let Lj be the set of nodes that

belong to subtrees S
(1)
j , . . . , S

(`−1)
j . We know that S

(`)
j

was infeasible, and study the three possible violations:

(1) |αj |p + |S(`′)
j |p > (1− δ)np for some `′ > `. But this

is impossible since S
(k)
j is feasible and k < `.

(2) |S(k′)
j |p + |βj |p > (1− δ)np for some k′ < ` (possibly

k = k′). In this case, set Bj := βj .

(3) |S(k′)
j |p + |S(`′)

j |p > (1 − δ)np for some k′ < ` < `′.

In this case, set Bj := S
(`′)
j . Note that either way Bj

is disjoint from βi = S
(`)
j and a right subtree of one of

v1, . . . , vj , so also disjoint from Lj . The nodes in the

subtree S
(k′)
j that caused the above violation for S

(`)
j

belong to Lj , and therefore

|Lj |p + |Bj |p > (1− δ)np (2)

Now we define two subtrees Li, Ri at vi. Since the

leftmost subtree S
(1)
i at vi is infeasible, but extending

into it would not add left subtrees to the path, the infea-
sibility must be caused by violation (1), i.e., there exists

some k > 1 such that |S(k)
i |p + |αi|p > (1 − δ)np. Set

Ri to be this subtree S
(k)
i , choosing the largest possible

80

33rd Canadian Conference on Computational Geometry, 2021

vj
αi

vi

S
(k)
j

Lj

Bj?

S
(k′)
j S

(`)
j

Bj?

Figure 3: Close-up on vj . Red arrows indicates pairs of
subtrees that violate feasibility.

index k. We have

|Ri|p + |αi|p > (1− δ)np. (3)

Symmetrically, since the rightmost subtree S
(di)
i at vi is

infeasible, there must be some h < di such that |S(h)
i |p+

|βi|p > (1−δ)np. Set Li to be this subtree S
(h)
i , choosing

the smallest possible index h. We have

|Li|p + |βi|p > (1− δ)np. (4)

Note that it is possible Li = Ri and that both are sub-
sets of Lj .
Case A: Li 6= Ri. See Figure 4. In this case the contra-
diction is obtained exactly as done by Chan, except by
substituting the trees/forests that we have chosen above
suitably. Recall that Hölder’s inequality states that for
p < 1 we have

∑

a

xaya ≤
(∑

a

x1/(1−p)a

)1−p(∑

a

y1/pa

)p

(in some of our applications below xa = 1 for all a). We
can derive a contradiction for the value p = 0.48 (with a
sufficiently small δ) by combining Eqs. (2-4) as follows:

2.5(1− δ)np
<|αi|p + |βi|p + |Li|p + |Ri|p + 0.5|Lj |p + 0.5|Bj |p
≤|αi|p + |βi|p + 21−p(|Li|+|Ri|)p + 0.5|Lj |p + 0.5|Bj |p
≤|αi|p + |βi|p + (21−p + 0.5)|Lj |p + 0.5|Bj |p
≤
(
1 + 1 + (21−p + 0.5)1/(1−p) + 0.51/(1−p)

)1−p
·(|αi|+ |βi|+ |Lj |+ |Bj |)p

<2.499np

since αi, βi,Li and Bj are all disjoint.

vj
αi

vi

Li Ri

βj

βi

Figure 4: Close-up on vi, Case (A).

Case B: Li = Ri. In this case we derive one further
inequality, see Figure 5. Since Ri = S

(k)
i is not feasi-

ble, there must exist a violation, and we consider its

three possible forms. (1) |S(`)
i |p + |αi|p > (1− δ)np for

some ` > k. But this is impossible since Ri was chosen

as the rightmost such violation. (2) |S(h)
i |p + |βi|p >

(1 − δ)np for some h < k. But this is impossible since
Ri = Li was chosen as the leftmost such violation. (3)

|S(h)
i |p + |S(`)

i |p > (1 − δ)np for some h < k < `. In

this case we define L̂i := S
(h)
i and R̂i := S

(`)
i . Summa-

rizing, Lj contains the three mutually distinct subtrees

L̂i, Li=Ri, R̂i and

|L̂i|p + |R̂i|p > (1− δ)np. (5)

vj
αi

vi

Ri

βi

L̂i R̂i

Figure 5: Close-up on vi, Case (B).

Using again Hölder’s inequality we obtain the desired
contradiction: by combining Eqs. (2)-(5) (and Li = Ri)

81

CCCG 2021, Halifax, Canada, August 10–12, 2021

as follows:

3.5(1− δ)np
< |αi|p + |βi|p + 2|Ri|p + |L̂i|p + |R̂i|p

+0.5|Lj |p + 0.5|Bj |p

≤ |αi|p + |βi|p + (21/(1−p) + 2)1−p(|Ri|+ |L̂i|+ |R̂i|)p
+0.5|Lj |p + 0.5|Bj |p

≤ |αi|p + |βi|p + ((21/(1−p) + 2)1−p + 0.5)|Lj |p
+0.5|Bj |p

≤ (1 + 1 + ((21/(1−p) + 2)1−p + 0.5)1/(1−p)

+0.51/(1−p))1−p · (|αi|+ |βi|+ |Lj |+ |Bj |)p

< 3.396np.

So the claim holds. �

So Case 1 or Case 2 always applies, and we can con-
tinue to expand the path until we terminate the proce-
dure at a leaf or in some application of Case 2. �

3 Generalized LR-drawings

LR-drawings for binary trees were defined via two par-
ticular construction operations. In contrast, we want to
define here generalized LR-drawings via the properties
that the drawings must satisfy. Let T be an ordered
rooted tree, and consider an order-preserving planar
drawing Γ of T . We call Γ a generalized LR-drawing (or
GLR-drawing for short) if it (and all induced drawings
of rooted subtrees) satisfies the following two conditions:

(P1) (vertical path): There exists a root-to-leaf path π
〈v1, . . . , v`〉 that is drawn vertically aligned, with vi
above vi+1 for 1 ≤ 1 < `.

(P2) (path-separation): The column that contains π sep-
arates the drawings of the left and right subtrees,
i.e., for any left or right subtree T ′, the drawing Γ′

of T ′ induced by Γ does not use the column con-
taining π.

Clearly any LR-drawing for binary trees satisfies these
two conditions, so this is indeed a generalization. As one
can verify by inspecting the proofs, these are the only
two conditions needed for the lower-bound arguments
in [8] and [4]. We hence have:

Corollary 3 (based on [4]) For every positive n
there exists an n-node ordered rooted tree T such that
any GLR-drawing of T has width Ω(n0.429).

We note that many existing algorithms for ideal draw-
ings of trees (see e.g. [1, 2, 9]) satisfy the condition on
drawing some path π vertically. The real restriction on
GLR-drawings is that the vertical path separates the
left and right subtrees. The algorithms in [1,2,9] all

reuse the column of the vertically-drawn path for some
large subtree that has been “pushed down”.

There are many more properties that are satisfied
by the LR-drawings for binary trees (and so arguably
one could have included them in the definition of GLR-
drawings, though for maximal flexibility we chose not to
do that). All LR-drawings of binary trees, and also all
drawings that we will create, satisfy the following three
properties:

(P3) (vertical separation of subtrees). For any node v of
T , let Tv be the subtree rooted at v. There exists
a horizontal strip that contains all nodes of Tv and
that does not contain any other node of Γ.

(P4) (grouping of subtrees at vi). For any node vi ∈ π,
there exists a horizontal strip that contains vi and
all nodes of all left and right subtrees at vi and that
does not contain any other node of Γ.

(P5) (grouping of left/right subtrees at vi). For any node
vi ∈ π, there exists a horizontal strip that con-
tains all nodes of all left subtrees at vi and does
not contain any other nodes of Γ. There also ex-
ists a horizontal strip that contains all nodes of all
right subtrees at vi and does not contain any other
nodes of Γ.

Finally, there are three more properties that the LR-
drawings of binary trees satisfy, but some of our con-
structions do not (and as we will argue, we cannot hope
to satisfy them and have sub-quadratic area).

(P6) The drawing is straight-line.

(P7) The drawing is strictly upward.

(P8) (minimum-distance) Bounding boxes of subtree-
drawings have the minimum possible distance to
the path and to each other. Formally, we use
B(T ′) to denote the bounding box of the drawing
of rooted subtree T ′. We require that if T ′ is a
left subtree of π, then the right side of B(T ′) lies
one unit left of π, and symmetrically for right sub-
trees. We also require minimal vertical distances
between bounding boxes, most easily expressed by
demanding that every row contains a node.

We first show that all eight conditions given above
can be satisfied simultaneously if we allow for quadratic
area. The construction is the “standard construc-
tion” [3] and hence nearly trivial; we repeat the details
for completeness’ sake.

Lemma 4 Any n-node ordered rooted tree has a GLR-
drawing that additionally satisfies conditions (P3)-(P8)
and has area O(n2). Furthermore, the root is placed in
the top-left corner of the bounding box.

82

33rd Canadian Conference on Computational Geometry, 2021

Proof. If T consists of a single node, draw such node
as an arbitrary point in the plane. Otherwise let
R(1), . . . , R(d) be the subtrees rooted at the children of
the root vT of T , enumerated from right to left. Re-
cursively compute a drawing for each such subtree and
combine them as follows. The drawing of R(1) is placed
such that the top side of its bounding box B(R(1)) is one
unit below vT , while its left side is one unit to the right
of vT . The drawing of R(i), 1 < i < d, is placed such
that the top side of B(R(i)) is one unit below the bottom
side of B(R(i−1)), while its left side is again one unit to
the right of vT . The drawing of R(d) is drawn such that
its root is vertically aligned with vT and the top side of
B(R(d)) is one unit below the bottom side of B(R(d−1)).
(This corresponds to choosing π as the leftmost path of
T .) It is easy to verify that each edge can be drawn as a
straight-line segment, and that the resulting drawing is
a strictly-upward GLR-drawing that satisfies all condi-
tions. Moreover, the construction guarantees that both
the width and the height are at most n. �

1

R(1)

R(2)

R(d)

1

1vT

R(d−1)

Figure 6: Construction of an ideal GLR-drawing of a
d-ary tree in O(n2) area.

Unfortunately, it turns out that we cannot hope for
smaller area if we want to satisfy all conditions.

Lemma 5 For every positive integer k there exists an
ordered rooted tree T with n = 6k − 1 nodes and arity
4 such that any GLR-drawing of T that also satisfies
conditions (P3)-(P8) for all subtrees has area Ω(n2).

Proof. Tree T consists of root v0 with four children
`1, v1, v

′
1, `
′
1 (in left-to-right order). Here `1, `

′
1 are leaves

while v1 and v′1 are each root of a tree of height k.
Specifically, for 1 ≤ i < k, nodes vi and v′i each have
three children (in order): one leaf `i+1 resp. `′i+1, node
vi+1 resp. v′i+1, and another leaf. See Figure 7 for the
case when k = 4. Fix an arbitrary GLR-drawing of T
that satisfies criteria (P3)-(P8). Up to symmetry, we

v0

`1

`2

v1
v2

`3 v3

`4 v4

v′1
`′1

B(Tv2)

B(Tv1)

π0

v0
`1

v1`2

v2 π1

Figure 7: Construction of a family of trees that require
quadratic area in any GLR-drawing that satisfies all
conditions (P3)-(P8).

may assume that the vertically drawn path π0 uses v′1
or `′1, so Tv1 is a left subtree of π0.

We will now show by induction that for i = 1, . . . , k
tree Tvi is a left subtree of the path πi−1 that is drawn
vertically in Tvi−1

. This holds for i = 1 by the above.
Assume Tvi is a left subtree of πi−1 for some i ≥ 1.
By the minimum-distance condition, and since T`i only
consists of `i, the location of `i is one unit left of path
πi−1. Now consider the bounding box B(Tvi) of the
drawing of Tvi . Again by the minimum-distance condi-
tion, its right side must be one unit left of path πi−1.
Since left subtrees at vi−1 are grouped, distances are
minimum and the drawing is ordered, the top side of
B(Tvi) must be one unit below `i. Since the drawing
is strictly-upward, node vi is in the top row of B(Tvi).
Since (vi−1, vi) is drawn with a straight-line segment,
this requires vi to be on the top right corner of B(Tvi),
otherwise the drawing would not be order-preserving at
vi−1 or (vi−1, vi) would overlap `i. So we now know
that Tvi is drawn with its root in the top right corner.
It follows that πi must use the right child of vi, i.e., goes
to a leaf while Tvi+1

is a left subtree of πi. This finishes
the induction step.

So each vi is in a left subtree of the path πi−1, and
therefore one unit further left that vi−1 (which lies on
πi−1). Therefore the drawing has width at least k ∈
Ω(n). We also know that the drawing has height at
least k ∈ Ω(n) since path v0, v1, . . . , vk is drawn strictly
upward. So the area is Ω(n2). �

So in our constructions, we relax some of the con-
ditions (P6)-(P8), and show that then we can achieve
subquadratic-area GLR-drawings.

3.1 Upward 1-bend GLR-drawings

Let T be an ordered rooted tree, and let π =
〈v1, v2, . . . , v`〉 be a root-to-leaf path of T . We give
a simple recursive construction to compute a strictly-
upward generalized LR-drawing of T by using at most
one bend per edge. Refer to Figure 8 for an illustration.

Assume v1 is placed at an arbitrary point of the plane.
For ease of notation, let L(1), . . . , L(l1) be the left sub-

83

CCCG 2021, Halifax, Canada, August 10–12, 2021

v1

v2

L(1)

L(2)

L(l1)

R(1)

R(2)

R(r1)

2

1

1

1

1

1

Figure 8: Construction for 1-bend generalized LR-
drawings.

trees rooted at v1, enumerated from left to right. Re-
cursively compute a drawing for each L(i), 1 ≤ i ≤ l1,
and denote by B(L(i)) the corresponding bounding box.
Place the drawing of L(1) such that the top side of
B(L(1)) is one unit below v1 and so that the right side of
B(L(1)) is one unit to the left of v1. Similarly, for each
1 < i ≤ l1, place the drawing of L(i) such that that the
top side of B(L(i)) is two units below the bottom side
of B(L(i−1)) and so that the right side of B(L(i)) is one
unit to the left of v1. Let R(1), . . . , R(r1) be the right
subtrees at v1, enumerated from right to left. Apply
a symmetric construction as for the left subtrees and
move them down such that the top side of B(R(1)) is
placed one unit below the bottom side of B(L(l1)). Now
place v2 vertically aligned with v1 and one unit below
the bottom side of B(R(r1)). Concerning the edges, ob-
serve that the edge connecting v1 to the root of L(1) can
be drawn with a straight-line segment without crossings,
whereas the other edges that connect v1 to the root of
each subtree L(i), with i > 1, can instead be drawn with
precisely one bend placed one unit above the top side of
B(L(i)) and one unit to the left of v1. The edges that
connect v1 to the roots of the subtrees R(i) are drawn
symmetrically. By repeating the construction for each
vi, with 1 < i ≤ `, we conclude the drawing.

Every row contains a node or a bend, so the height is
O(n). The width obeys Eq. (1). When path π is chosen
as prescribed by Lemma 2, Chan [2] proved that Eq. (1)
solves to O(n0.48). The next lemma follows.

Lemma 6 Any ordered rooted tree of size n admits a
strictly-upward GLR-drawing with at most one bend per
edge, whose width is O(n0.48) and whose height is O(n).

The above GLR-drawings satisfy (P3-P5) and (P7),
but not (P5) or (P8) due to the bends and the space
needed for them. They can be vertically stretched so to
become straight-line and hence an ideal GLR-drawing.
Namely, for each edge (u, v) drawn with one bend, it
suffices to insert sufficiently many rows above the bend
point so to guarantee a direct line of sight between u and
v. This is always possible because each bend point is
such that no other node or bend is placed with the same
y-coordinate. While the above transformation does not
change the width of the drawing, it may produce a
height that is not polynomial in n. Also, it does not
satisfy (P8).

3.2 Non-upward straight-line LR-drawings

In this section, we show how we can avoid using bends.
Thus we create a GLR-drawing that is straight-line, and
in fact satisfies all of (P3)-(P8) except that it is not up-
ward. The crucial idea is to give two drawing-algorithms
to create different types of GLR-drawings.

• In a type-I drawing, the root is located in the top
row (with no restriction on the column).

• In a type-II drawing, the root is located in the left-
most or rightmost column, with no node above it in
the same column. We will use type-II` and type-IIr
to specify whether the root is left or right.

(A somewhat similar idea for tree-drawing, in a very
different model, was used in [5].)

Lemma 7 Let p = 0.48. Given any ordered rooted tree
T of size n, there exist

• a straight-line GLR-drawing of type I that has width
at most cnp − 1 (for some constant c > 0),

• a straight-line GLR-drawing of type II` that has
width at most cnp (for the same constant c), and

• a straight-line GLR-drawing of type IIr that has
width at most cnp (for the same constant c).

Furthermore, all drawings have height n.

Proof. If T consists of a single node then the claim
holds trivially. Otherwise, pick a path π = 〈v1, . . . , v`〉
with Lemma 2.

84

33rd Canadian Conference on Computational Geometry, 2021

We first explain how to create type-I drawings, which
is very similar to Section 3.1 except that we use type-
II drawings to avoid bends. Assume v1 is placed at

an arbitrary point of the plane. Let L
(1)
1 , . . . , L

(l1)
1 and

R
(1)
1 , . . . , R

(r1)
1 be the left and right subtrees at v1, enu-

merated as in Section 3.1. Recursively compute draw-
ings as follows:

• a type-I drawing for L
(1)
1 and R

(1)
1 ,

• a type-IIr drawing for each L
(i)
1 , 2 ≤ i ≤ l1, and

• a type-II` drawing for each R
(i)
1 , 2 ≤ i ≤ r1.

Place the drawings as in Section 3.1, except leave only
one unit vertical distance between the bounding boxes.

As before, the edges from v1 to the roots of L
(1)
1 and R

(1)
1

can be drawn straight-line without crossing. The edges
to all other children can now also be drawn straight-line
since those children are in an adjacent column to v1.

Any left subtree α uses at most c|α|p columns and any
right subtree β uses at most c|β|p columns by induction,
so by Lemma 2 the width is at most

c|α|p + c|β|p + 1 ≤ c(1− δ)np + 1 ≤ cnp − 1

for the constant δ > 0 from Lemma 2 and assuming c is
sufficiently large.

Now we turn towards type-II drawings and only ex-
plain how to create a type-II` drawing; the other type
is symmetric. Let π = 〈v1, . . . , v`〉, and let k ≥ 1 be
the minimal index such that vk has a left subtree. (If
there is no such vk then the type-I drawing is in fact
a type-II` drawing.) We draw v1, . . . , vk−1 as we did
for type-I drawings; since they do not have left subtrees
this places v1, . . . , vk−1 in the leftmost column. At vk,
we proceed as follows:

• As in Section 3.1, let L
(1)
k , . . . , L

(lk)
k and

R
(1)
k , . . . , R

(rk)
k be the left and right subtrees

at vk.

• We use a type-II` drawing for R
(1)
k , . . . , R

(rk)
k , and

denote by B(R
(i)
k) the corresponding bounding box.

Place the drawing of R
(1)
k such that the top left

corner of B(R
(1)
k) is one unit below the bottom left

corner of the bottommost subtree of vk−1. (If k =

1, then place R
(1)
k arbitrarily.) For i = 2, . . . , rk,

place the drawing of R
(i)
k such that the top left

corner of B(R
(i)
k) is one unit below the bottom left

corner of B(R
(i−1)
k).

• Place vk in the next row below. If k > 1, place vk
vertically below vk−1. If k = 1 and r1 > 0, place

vk such that it is one unit to the left of B(R
(1)
k). If

k = 1 and there was no right subtree, then place
vk arbitrarily.

v1

vk

L
(1)
1

L
(2)
1

R
(2)
1

R
(1)
1

L
(1)
k

R
(2)
k

R
(1)
k

v1

vk

R
(1)
1

R
(2)
1

R
(3)
1

R
(1)
k

S(π)

L
(1)
k

L
(lk)
k

vk+1

Figure 9: Constructions of straight-line drawings with
linear height. (Left) Type-I drawings. (Right) Type-II`
drawings. A ‘cut-off’ corner indicates a Type-II drawing
where the column above the root must be empty.

• Let S(π) be the subtree rooted at vk+1 (thus con-
taining the rest of π). Use a type-I drawing for
S(π), and place it in the rows below vk, with the
left side of B(S(π)) one unit to the right of vk.

• We use a type-II` drawing for L
(1)
k , . . . , L

(lk)
k . We

know that lk > 0 by choice of k. If lk > 1, then

place L
(lk)
k such that the top left corner of B(L

(lk))
k)

is one unit below the bottom left corner of B(S(π)).

For i from lk−1 down to 2, place the drawing of L
(i)
k

such that the top left corner of B(L
(i)
k) is one unit

below the bottom left corner of B(L
(i+1)
k). Finally,

place the drawing of L
(1)
k in the next rows such that

the top left corner of B(L
(1)
k) is exactly below vk.

Thus, as in [4], the vertically drawn path is not the
path π that we started out with, instead it is v1, . . . , vk
plus the vertically-drawn path of L(1). But still we ob-
tain a GLR-drawing. To prove that this drawing has
the appropriate width, we need an observation.

Claim 2 Let T ′ be a left or right subtree of path π cho-
sen with Lemma 2. Then T ′ has size at most (1−δ)1/pn,
for the constant δ > 0 from Lemma 2.

85

CCCG 2021, Halifax, Canada, August 10–12, 2021

Proof. This follows directly from the bound in the
lemma since necessarily |T ′|p ≤ (1− δ)np. �

Therefore, at any subtree other than S(π), the width
is by induction at most 1 + c(1 − δ)np ≤ cnp for suf-
ficiently large c. At subtree S(π), the recursively ob-
tained type-I drawing has width at most cnp − 1, and
so the width again is at most cnp as desired.

In all cases, we never insert empty rows between draw-
ings, so every row contains exactly one node and the
height is n as desired. �

As in Section 3.1, we can stretch the drawing verti-
cally to make it upward, by moving all subtrees at vk
downward and leaving a sufficiently large gap between
B(R(rk)) and B(S(π))) so that edge (vk, vk+1) can be
routed straight-line. (Details are left to the reader.)
Again the height may not be polynomial and condition
(P8) no longer holds.

3.3 Upward straight-line LR-drawings

As shown in the previous sections, we can achieve
width O(n0.48), but the drawings are either not straight-
line, or not upward, or have large (possibly super-
polynomial) height. In this section, we show that with
a different construction, we can bound the height to
be O(n1.48) in a straight-line, upward GLR-drawing of
width O(n0.48). The area hence is O(n1.96), just barely
under the trivial O(n2) bound.

The idea for this is to follow a different approach of
Chan (‘Method 4’ [2]) for tree-drawing; here we occa-
sionally double the height used for some subtrees, but
this happens rarely enough that overall the height can
still be bounded. Chan’s Method 4 does not produce
GLR-drawings (he lets the largest subtree re-use the
column of the vertical path) but we can modify the ap-
proach at the cost of increasing the width by one unit.
To compensate for this we use a type-I drawing for the
largest subtree, so that the overall width does not in-
crease too much.

So again we have drawing-types. One of them is ex-
actly the type-I drawing used in the previous section.
The other one, which we call type-III drawing, has the
root located in the top left or top right corner; we use
type-III` and type-IIIr to specify whether the root is
left or right.

Lemma 8 Let p = 0.48. Given any ordered rooted tree
T of size n, there exist

• a straight-line upward GLR-drawing of type I that
has width at most cnp−1 (for some constant c > 0),

• a straight-line upward GLR-drawing of type III`
that has width at most cnp (for the same constant
c), and

• a straight-line upward GLR-drawing of type IIIr
that has width at most cnp (for the same constant
c).

Furthermore, all drawings have height at most 2n1+p.

Proof. If T consists of a single node then the claim
holds trivially. Otherwise, pick a path π with Lemma 2,
so that |α|p+ |β|p ≤ (1−δ)np for any left and right sub-
trees α, β of the path. The creation of a type-I drawing
is exactly as in the previous section, except that we use
type-III drawings in place of type-II drawings so that
we have an upward drawing. Using H(·) to denote the

height, we have H(n) ≤∑d
i=1H(ni) + 1 where d is the

number of subtrees and ni is the size of the ith subtree.
Since ni ≤ n and

∑
i ni = n− 1 we have

d∑

i=1

H(ni) + 1

≤
d∑

i=1

2nin
p + 2np

≤ 2np(

d∑

i=1

ni + 1) = 2n1+p.

To construct type-III drawings, we proceed much as in
Chan’s Method 4. Fix A = n/21/p > 0.23n. (The value
of A is different from Chan’s, but its use is nearly the
same.) We will completely disregard path π and instead
pick one subtree of the root based on A. To simplify
notations, let S1, . . . , Sd be the subtrees at the root,
enumerated from left to right. We only explain how
to construct a type-III` drawing; constructing type-IIIr
drawings is symmetric. We have two cases:

Case 1: Either d ≤ 2 or the subtrees S2, . . . , Sd−1
all have size at most n − A. In this case, recur-
sively construct a type-III` drawing for S1, . . . , Sd−1
and a type-I drawing for Sd. Combine these draw-
ings with the standard method that was used already
in Lemma 4, see also Figure 10. Clearly this is a pla-
nar order-preserving straight-line upward drawing, and
its height is 1 +

∑
iH(ni) ≤ 2n1+p with the same

analysis as for type-I drawings. The width W (n) is
at most 1 + (cnp − 1) = cnp at Sd, and at most
W (n − 1) ≤ cnp at S1. At any other subtree Si, the
size is at most n−A < 0.77n, and the width is at most
1 + W (0.77n) ≤ 1 + c(0.77)pnp ≤ cnp, assuming c is
sufficiently large.

Case 2: d ≥ 3 and at least one subtree Sk with 1 <
k < d has size n−A or more. In this case, use a type-I
drawing for Sk and Sd, and a type-III` drawing for all
other subtrees.

We explain how to build the drawing in Figure 10
bottom-up. Place the drawing of S1 arbitrarily. Place

86

33rd Canadian Conference on Computational Geometry, 2021

Sd

S1

S2

S3

S4

. . .

Sk

R

Sd

S1

. . .

. . .

Figure 10: Constructions of type-III` straight-line up-
ward drawings with subquadratic area. (Left) Case 1.
(Right) Case 2.

S2, . . . , Sk on top of this, with one unit between their
bounding boxes, such that the left sides of their bound-
ing boxes are one unit to the right of the root of S1.
Now place an imaginary W ′ × H ′ rectangle R with
its left side aligned with the left side of B(S1) and
its bottom side coinciding with the top side of B(Sk).
Here W ′ = max{|Sk|p,maxi>k{2W (|Si|)}, while H ′ =
3 + 2

∑
i>kH(|Si|). In particular, the top right quad-

rant of R is big enough to accommodate the drawings
of Sk−1, . . . , S1, plus one and a half rows. We place the
root at the top left corner of R. We place the draw-
ings of Sk−1, . . . , S1 (in this order) below the root and
in the top right quadrant of R, with the left sides of
their bounding boxes aligned and unit vertical distance
between boxes. Note that this does not use the center-
point of R (which is not a grid point due to the odd
height of R). The root of Sk is somewhere along the bot-
tom of R, hence the edge from it to the root of T does
not enter the top right quadrant of R and the drawing
is planar. Clearly it is a GLR-drawing and also strictly
upward. In fact, conditions (P3)-(P7) are all satisfied
(but (P8) is not).

We first analyze the width. At Sk, the width is at
most 1 + (cnp − 1) ≤ cnp by induction. At any other
subtree Si, the size is ni ≤ A = n/21/p and the width
is at most

max{1 +W (|Si|), 2W (|Si|)} ≤ 2 · c
(

n
21/p

)p
= cnp

as desired. As for the height, Sk contributes at most

2n1+pk rows and any other subtree Si contributes at the

most 2 · 2n1+pi rows. We need two further rows for R
(the bottom row was already counted). Since ni ≤ A =
n/21/p for i 6= k and

∑
i ni = n − 1, the height is at

most

2 + 2npnk +
∑

i 6=k
4
(

n
21/p

)p
ni ≤ 2np + 2np

d∑

i=1

ni = 2n1+p

as desired. �

4 Remarks

In this paper, we studied how to generalize the concept
of LR-drawings that was previously designed for binary
trees [2, 4, 8] to trees of higher arity. To this end, we
first generalized a lemma by Chan about paths for which
|α|p + |β|p ≤ (1− δ)np for constant p = 0.48, δ > 0 and
any left and right subtree α, β. Then we explained how
to use this path to construct generalized LR-drawings
of width O(n0.48) and subquadratic area, both with and
without the restriction on the drawing being straight-
line and/or upward. We conclude the paper by listing
some open problems:

• The most natural open problem is to close the gap
on the width of GLR-drawings. Frati et al. showed
that width Ω(n0.418) is sometimes required [8], and
Chan and Huang improved this to Ω(n0.428) [4].
These lower bounds were for binary trees; could
they perhaps be strengthened if we allow higher
arity? Using ternary trees, one can immediately re-
duce the size of the lower-bound tree Th of [4, 8], by
2h−1 (contract every second edge of path π) with-
out affecting the validity of the lower-bound proof.
Unfortunately, this improves the lower bound only
by a lower-order term.

• We showed that in a GLR-drawing where all addi-
tional conditions (P3)-(P8) are satisfied, the width
must be Ω(n). Is there an intermediate lower bound
that shows up when requiring other subsets of these
properties? We are especially curious about re-
moving condition (P5) (‘grouping of left/right sub-
trees’), which seems very artificial but is crucially
required in the proof of Lemma 5.

• Chan and Huang improved the width of LR-
drawings of binary trees [4]. The main idea is
that rather than drawing one chosen path π as a
straight-line, they add an ‘i-twist’ to the drawing
of path π, using 2i non-vertical edges for π while
the corresponding other subtrees at these edges use
vertical lines. With this, they can achieve an LR-
drawing of width O(n0.438) (and even smaller with
further improvements).

87

CCCG 2021, Halifax, Canada, August 10–12, 2021

It would be interesting to see whether this approach
could be generalized to trees of higher arity. We
cannot generalize the algorithm directly, because
the subtrees that use vertical lines are defined via a
size-property. In trees of higher arity these subtrees
may well have common parents on π, making it
impossible to use distinct vertical lines for them,
as is necessary in the construction.

• Our construction of ideal GLR-drawings achieves
subquadratic area, but barely. Can the area be
improved?

References

[1] T. Biedl. Ideal drawings of rooted trees with approxi-
mately optimal width. J. Graph Algorithms and Appl.,
21(4):631–648, 2017.

[2] T. M. Chan. A near-linear area bound for drawing bi-
nary trees. Algorithmica, 34(1):1–13, 2002.

[3] T. M. Chan. Tree drawings revisited. Discret. Comput.
Geom., 63(4):799–820, 2020.

[4] T. M. Chan and Z. Huang. Improved upper and lower
bounds for LR drawings of binary trees. In D. Auber
and P. Valtr, editors, GD 2020, volume 12590 of LNCS,
pages 71–84. Springer, 2020.

[5] G. Di Battista and F. Frati. Small area drawings of
outerplanar graphs. Algorithmica, 54(1):25–53, 2009.

[6] G. Di Battista and F. Frati. A survey on small-area
planar graph drawing, 2014. CoRR report 1410.1006.

[7] F. Frati. Straight-line orthogonal drawings of binary
and ternary trees. In GD 2007, volume 4875 of LNCS,
pages 76–87. Springer, 2007.

[8] F. Frati, M. Patrignani, and V. Roselli. LR-drawings of
ordered rooted binary trees and near-linear area draw-
ings of outerplanar graphs. J. Comput. Syst. Sci.,
107:28–53, 2020.

[9] A. Garg and A. Rusu. Area-efficient order-preserving
planar straight-line drawings of ordered trees. Int. J.
Comput. Geometry Appl., 13(6):487–505, 2003.

[10] A. Garg and A. Rusu. Area-efficient planar straight-line
drawings of outerplanar graphs. Discret. Appl. Math.,
155(9):1116–1140, 2007.

88

CCCG 2021, Halifax, Canada, August 10–12, 2021

Massively Winning Configurations in the Convex Grabbing Game
on the Plane

Martin Dvorak∗ Sara Nicholson†

Abstract

The convex grabbing game is a game where two players,
Alice and Bob, alternate taking extremal points from
the convex hull of a point set on the plane. Rational
weights are given to the points. The goal of each player
is to maximize the total weight over all points that they
obtain. We restrict the setting to the case of binary
weights. We show a construction of an arbitrarily large
odd-sized point set that allows Bob to obtain almost 3/4
of the total weight. This construction answers a ques-
tion asked by Matsumoto, Nakamigawa, and Sakuma
in [Graphs and Combinatorics, 36/1 (2020)]. We also
present an arbitrarily large even-sized point set where
Bob can obtain the entirety of the total weight. Finally,
we discuss conjectures about optimum moves in the
convex grabbing game for both players in general.

1 Introduction

The graph grabbing game, which was first presented by
Winkler [7], is a game where two players alternate re-
moving non-cut vertices from a vertex-weighted graph.
This game has been studied [1, 4, 6] and led to variants
including the convex grabbing game by Matsumoto,
Nakamigawa, and Sakuma [3], which we discuss here.

A cake C is determined by a set of points, which we
call cherries, that lie in general position in the Euclidean
plane. Each cherry c is given a weight w(c) ∈ Q. There
are two players in this game: Alice and Bob. They
alternate selecting cherries from the set of remaining
cherries C ⊆ C, with Alice going first. They can only
select extremal points of the convex hull of C, defined by
Ex(C) = {c ∈ C | c /∈ conv(C \ {c})}, and the selected
cherry is removed from the set C. The game is over
when all cherries are taken.

If |C| is even, we say that C is an even-sized cake.
Similarly, if |C| is odd, we say that C is an odd-sized
cake.

∗Department of Theoretical Computer Science and Mathe-
matical Logic, Faculty of Mathematics and Physics, Charles
University; and Institute of Science and Technology, Austria;
martin.dvorak@matfyz.cz
†Department of Applied Mathematics, Faculty of Mathematics

and Physics, Charles University; s.nicholson@mail.utoronto.ca
Supported by grant no. 21-32817S of the Czech Science Founda-
tion (GAČR).

We denote the sequence of moves by Alice as:

(a1, a2, . . . , ad |C|
2 e

)

We denote the sequence of moves by Bob as:

(b1, b2, . . . , bb |C|
2 c

)

This results in a gameplay

q = (a1, b1, a2, b2, . . . , a |C|
2
, b |C|

2
)

on an even-sized cake C, or

q = (a1, b1, a2, b2, . . . , ab |C|
2 c
, bb |C|

2 c
, ad |C|

2 e
)

on an odd-sized cake C. In the end, each player obtains
a total score equal to the sum of the weights of the
cherries they selected. In particular, we define the total
gain of Alice as:

A(q) =
∑

i∈{1,2,...,d |C|
2 e}

w(ai)

The objective of Alice is to maximize A(q). The ob-
jective of Bob is to minimize A(q). We also define the
complement:

B(q) =
∑

i∈{1,2,...,b |C|
2 c}

w(bi)

We observe that A(q) + B(q) is invariant of q; it is
constant for a given cake C. Alice wants to minimize
B(q) and, naturally, Bob wants to maximize B(q).
We will work with B(q) a lot because we will focus on
maximizing Bob’s results — which looks like a harder
task, at least at first glance.

Finally, we define the minimax result on the cake C,
denoted by M(C), as the total gain of Bob if both
players play optimally throughout the whole game.

M(C) = min
a1∈Ex(C)

(
max

b1∈Ex(
C\{a1})

(
min

a2∈Ex(
C\{a1,b1})

(
max

b2∈Ex(
C\{a1,b1,a2})

(

min
a3∈Ex(

C\{a1,b1,a2,b2})

(
. . .

(
B((a1, b1, a2, b2, a3, . . .))

)
. . .

)))))

89

33rd Canadian Conference on Computational Geometry, 2021

We focus on a restricted version of this game where
only {0, 1} weights are considered. Any cherry c ∈ C
where w(c) = 1 is called red ; and we define the set of
red cherries R(C) := {cr ∈ C | w(cr) = 1}. In a similar
manner, any cherry c ∈ C where w(c) = 0 is called green;
and we define their set G(C) := {cg ∈ C | w(cg) = 0}.
We thereby have R(C)∪G(C) = C and R(C)∩G(C) = ∅.

For any C ⊆ C, we define values r(C) := |R(C)| and
g(C) := |G(C)|. Note that that r(C) + g(C) = |C| and
that r(C) =

∑
c∈C w(c).

Matsumoto, Nakamigawa, and Sakuma [3] posed the
question of finding the maximum possible value for
M(C) − (r(C) −M(C)) on an odd-sized cake, that is:
How much can Bob win by? In Section 3, we present,
for any natural number z, a construction of an odd-sized
cake C such that r(C) = 4z + 2; and we provide a tactic
for Bob which guaranteesM(C) ≥ 3

4 r(C)− 1
2 . Therefore,

Bob can win by an arbitrarily large margin.
In Section 4, we show that there exists an even-sized

cake D where r(D) = y andM(D) = y for every y ∈ N;
that is, Bob can obtain all red cherries.

2 Order types

In this section, we provide a combinatorial point of view
on the convex grabbing game. The following definition
has been adapted from [5].

Definition 1 Given a tuple (p, q, r) of three distinct
cherries, we define their orientation ∇pqr as +1 if
the sequence (p, q, r) traverses the triplet {p, q, r} in a
counterclockwise direction, and as −1 if this direction
is clockwise.

Consider two cakes, P and Q, where |P | = |Q|. We
say that a bijection π : P → Q is order-preserving if
w(c) = w(π(c)) for each cherry c ∈ P and there exists a
sign σ ∈ {−1,+1} such that ∇π(p)π(q)π(r) = σ · ∇pqr
for all sequences (p, q, r) of three distinct cherries in P .

If such a bijection exists, we say that P and Q are
order-equivalent.

Proposition 2 If C and D are order-equivalent cakes,
then M(C) =M(D).

The proof is in the full version [2] of this paper.

3 Sun configuration

We present a family of odd-sized cakes which we call the
sun configuration, and we show that, from any cake C in
the family, Bob will obtain at least 3

4 r(C)− 1
2 red cherries

given that he follows a certain tactic.

Definition 3 We define a beam Y as four cherries in
the order [green, red, green, red] lying on an arc (see
Figure 1).

Figure 1: Beam (Y).

Definition 4 Let k > 2 be an odd integer. We define
the sun as a cake Sk with k beams and an additional
green cherry ζ in the centre (see Figure 2 for an example
S5) such that:

• The sun is rotationally symmetric with the k beams
evenly spaced around the centre ζ.

• Each beam is far enough from the centre such that,
with the removal of any proper subset Y of the
cherries on the beam, the outermost cherry on the
beam will always be in Ex(Sk \ Y).

• Consider any beam Yi (see Figure 3). A line drawn
through any two cherries of Yi does not cut through
any other beam and it keeps k−1

2 beams from Sk \Yi
on each side. Additionally, if we consider Yi ∪{ζ},
then they are all in convex position.

We have constructed a sun Sk where r(Sk) = 2k and
g(Sk) = 2k + 1.

Definition 5 In the convex grabbing game on a sun, we
say that a player follows the Careful greedy tactic if the
player chooses a move according to these instructions:

Is there an extremal red cherry?
YES −→ Is there an extremal red cherry on a beam
that also contains a red cherry that is not extremal?

YES −→ Take extremal red cherry from this beam.
NO −→ Is there a beam that contains a single
red cherry and this red cherry is extremal?

YES −→ Take this extremal red cherry.
NO −→ Take any extremal red cherry.

NO −→ Is there any beam with at least one green
cherry and no red cherries on it?

YES −→ Take a green cherry from this beam.
(since at least one cherry from each remaining
beam is extremal in any moment)
NO −→ FAIL!

Theorem 6 From the sun Sk, Bob will get at least
3k−1

2 = 3
4 r(Sk) − 1

2 red cherries by using the Careful
greedy tactic, no matter how Alice plays. As a result,
we obtain the desired property M(Sk) ≥ 3

4 r(Sk)− 1
2 .

We approach the proof as follows. We let Bob follow
the Careful greedy tactic in all his moves. Alice can do
anything.

We always describe the game state by the set of re-
maining cherries C ⊆ Sk and we create a lower bound
for how many red cherries Bob is guaranteed to ob-
tain from this moment until all cherries are taken. We

90

CCCG 2021, Halifax, Canada, August 10–12, 2021

Figure 2: Sun (S5).

ζ

Yi

Figure 3: Highlighting details of the sun.

91

33rd Canadian Conference on Computational Geometry, 2021

characterize the set C by the existence of a certain line
(see Definition 7) and by quantities r(C), s(C), and t(C)
(see Definition 12).

We start our proof with Lemma 13 in order to calcu-
late what will happen in the second phase of the game.
Lemma 14 then analyzes the first phase of the game
while using the result of Lemma 13 in order to obtain
the sum of Bob’s score over both phases. In the end,
we prove Theorem 6 as a straightforward corollary of
Lemma 14.

Definition 7 In a moment of a gameplay on the sun
Sk, denote C ⊆ Sk as the set of remaining cherries.
For all lines that pass through ζ, we define the set UC

as the set of all closed half-planes defined by these lines.
If C ⊆ U ∈ UC , then U is called a bounding half-plane
for C.

Lemma 8 If Bob has been following the Careful greedy
tactic from the beginning of the game on the sun Sk,
then, for C ⊆ Sk in a moment of gameplay when it
is Alice’s turn and a bounding half-plane does not yet
exist, we have:

1. ζ /∈ Ex(C)

2. Each beam Y is either fully remaining (that is
Y ⊆ C), or fully removed (that is Y ∩ C = ∅), or
exactly the two innermost cherries (one green, one
red) remain.

Proof.
Item (1): From the hyperplane separation theorem;

if ζ were an extremal point of C, there would be a
bounding half-plane going directly through ζ.

Item (2): We proceed by induction on the number
of taken cherries. Base case: Sk satisfies the properties
since each beam is fully remaining. Assume that this
holds up till some set C0 ⊆ Sk, and it is Alice’s turn.
Induction step: From C0 Alice can only take a green
cherry from some beam Y. The beam Y is either fully
remaining, or has exactly the two innermost cherries
remaining by the induction hypothesis. After Alice
takes the green cherry, a red cherry will be revealed on
beam y. This will be the only red cherry available, and
so by following the Careful greedy tactic, Bob will take
this cherry. Therefore beam Y will end up either fully
removed, or with the two innermost cherries remaining.
These two moves will give C1 ⊂ C0 where |C1| = |C0|−2
which either will maintain all properties or a bounding
half-plane will have emerged. �

Lemma 9 If Bob always follows the Careful greedy tac-
tic, he will never reach FAIL.

Proof. Before a bounding half-plane emerges, this is
clear from Lemma 8.

After a bounding half-plane emerges, leaving C ⊂ Sk,
there will always be a beam Y such that all remaining
cherries of Y are in Ex(C); therefore, if there are no
extremal red cherries, the beam Y will have at least one
extremal green cherry and no red cherries — Bob can
take a green cherry here. Therefore, Bob will never
reach the FAIL branch. �

Definition 10 A beam Y is semi-exposed in C if it has
|Y ∩ R(C)| = 2 and |Y ∩ R(C) ∩ Ex(C)| = 1.

Lemma 11 If Bob has been following the Careful
greedy tactic from the beginning of the game on the sun
Sk, then, when it is Alice’s turn, there will never be a
semi-exposed beam.

Proof. Assume to the contrary that a semi-exposed
beam exists after a move by Bob and that it is the first
time this happens. Lemma 8 shows it cannot happen
before a bounding half plane has emerged. Suppose now
we are at a point in the gameplay when a bounding
half-plane exists and there is a semi-exposed beam after
Bob’s move.

Removing a cherry can either (1) reveal a beam in
full, or (2) reveal no new cherries, or (3) reveal a single
cherry. Clearly, neither (1) nor (2) can produce a semi-
exposed beam.

In (3), a semi-exposed beam can be produced either
by taking the centre cherry ζ, or by taking a green cherry
from a beam which contains two red cherries (this beam
then becomes semi-exposed). Neither of these moves
can be performed by Bob because the Careful greedy
tactic allows taking a green cherry only if it is from a
beam and this beam does not contain any red cherries.
We are left only with the option that it was Alice who
generated a semi-exposed beam by (3).

Since taking a red cherry from a semi-exposed beam is
the top priority in Bob’s Careful greedy tactic, the only
possible reason for Bob leaving a semi-exposed beam is
if Alice leaves two semi-exposed beams after her turn.
Alice can produce a semi-exposed beam by (3); however,
(3) can only produce a single semi-exposed beam at a
time. Therefore, there was at least one semi-exposed
beam before Alice’s move, which is a contradiction with
this being the first time there is a semi-exposed beam
after Bob’s move. �

Definition 12 In any moment of a gameplay on the
sun Sk, denote C ⊆ Sk as the set of remaining cherries.

We define s(C) as the number of beams in C which
have a single remaining red cherry.

Furthermore, we define t(C) as the number of beams
in C which have at least one remaining red cherry.

92

CCCG 2021, Halifax, Canada, August 10–12, 2021

Lemma 13 Let C ⊆ Sk be a remaining subset of the
sun obtained by Bob following the Careful greedy tactic
such that |C| is odd and a bounding half-plane for C
exists. It is now Alice’s turn.

From the set C, Bob will obtain at least 1
2 (r(C)−s(C))

red cherries from now until the end of the game (using
the Careful greedy tactic).

Proof. This can be proved by induction on |C|.
If |C| ≤ 1, then r(C) = s(C), thus the statement

holds trivially (it says that Bob will get at least 0 red
cherries).

If |C| > 1, then we assume the statement holds for
|C ′| = |C| − 2. We proceed by case analysis.

• If Alice first takes a green cherry, then the lemma
holds no matter what Bob does.

– If Bob proceeds by taking a green cherry as
well, then we see that r(C ′) = r(C) and that
s(C ′) = s(C), thus it reduces exactly to the
induction hypothesis.

– If Bob proceeds by taking a red cherry, then
we observe that r(C ′) = r(C) − 1 and that
| s(C ′)− s(C)| ≤ 1, thus:

1

2
(r(C ′)− s(C ′)) ≥ 1

2
(r(C)− s(C))− 1

By the induction hypothesis, Bob will obtain
at least 1

2 (r(C)− s(C))− 1 red cherries in the
future. And, since Bob has just taken one red
cherry, Bob obtains at least 1

2 (r(C)−s(C)) red
cherries in total.

• If Alice first takes a red cherry, then we need to
consider the properties of the game state and Bob’s
strategy in order to show that the lemma holds.

– If Alice took the red cherry from a beam with
only this red cherry, then we observe that
r(C ′) = r(C) − 1 and that s(C ′) = s(C) − 1,
thus:

1

2
(r(C)− s(C)) =

1

2
(r(C ′)− s(C ′))

The rest follows by applying the induction
hypothesis in the same way as in the previous
cases.

– If, prior to Alice’s move, there were two red
cherries on the beam, then Bob’s Careful
greedy tactic leads to taking the other red
cherry from the same beam. By Lemma 11,
the second red cherry is guaranteed to be
extremal. This gives r(C ′) = r(C) − 2 and
s(C ′) = s(C), thus the induction hypothesis

guarantees that Bob will be able to obtain at
least

1

2
(r(C ′)− s(C ′)) =

1

2
(r(C)− s(C))− 1

future red cherries; and, since Bob has just
taken one red cherry, Bob obtains at least
1
2 (r(C)− s(C)) red cherries in total. �

Lemma 14 Let C ⊆ Sk be a remaining subset of the
sun obtained by Bob following the Careful greedy tactic
such that |C| is odd and a bounding half-plane for C
does not yet exist. It is now Alice’s turn.

There exists a half-plane U ∈ UC such that Bob will
obtain at least r(C) − t(U ∩ C) red cherries from now
until the end of the game by using the Careful greedy
tactic.

Proof. We proceed by induction on r(C). Note that
all extremal cherries are green, by Lemma 8, and each
of them lies on a beam that has a red cherry (in partic-
ular, the beam has the same number of green and red
cherries).

Bob’s Careful greedy tactic dictates to always take
the neighboring red cherry from the same beam as Alice
just took her cherry from. Finally, as our base case, we
utilize Lemma 13 once a bounding half-plane emerges.

Induction step: Consider U from the induction hy-
pothesis. Let C ′ be the set of cherries remaining from
C after Alice’s move and Bob’s move, |C ′| = |C| − 2.
The induction hypothesis says that Bob will get at least
r(C ′) − t(U ∩ C ′) cherries during the remainder of the
game. Since r(C) = r(C ′)+1 and t(U ∩C) ≥ t(U ∩C ′),
the difference between the lemma statement and the
number from the induction hypothesis is at most one.
However, Bob has just taken a red cherry, so the lemma
statement is satisfied.

Base case: Once a bounding half-plane emerges, Bob
is guaranteed to obtain at least 1

2 (r(C)−s(C)) more red
cherries by Lemma 13. We set U to be this bounding
half-plane, thus C = U ∩ C. We observe that

r(C) = 2 · t(C)− s(C)

or, in other words, that s(C) = 2 · t(U ∩ C) − r(C).
Using this equality, Lemma 13 can be rewritten as: Bob
is guaranteed to obtain at least

1

2
(r(C)− (2 · t(U ∩ C)− r(C)))

more red cherries. That is equal to r(C) − t(U ∩ C).
This is what we wanted to prove. �

Theorem 6 From the sun Sk, Bob will get at least
3k−1

2 = 3
4 r(Sk) − 1

2 red cherries by using the Careful
greedy tactic, no matter how Alice plays. As a result,
we obtain the desired property M(Sk) ≥ 3

4 r(Sk)− 1
2 .

(restated)

93

33rd Canadian Conference on Computational Geometry, 2021

Figure 4: Moon (L6).

Proof. Given the properties of the sun Sk, we see that
any half-plane U∈ USk has

t(U ∩ Sk) ≤ k + 1

2

and thus, by Lemma 14, Bob is guaranteed to obtain at
least

r(Sk)− t(U ∩ Sk) ≥ 2k − k + 1

2
=

3k − 1

2

red cherries using his Careful greedy tactic. �

4 Moon configuration

We present a family of even-sized cakes which we call
the moon configuration, on which Bob can easily obtain
all red cherries.

Definition 15 Let n ∈ N \ {0, 1}. We define the moon
Ln (see Figure 4 for an example L6) as follows.

Choose a centre point S and draw two circles;
α(S, 1), called outer; and β(S, 1−ε), called inner, where
0 < ε < 1− cos (90◦/n). Draw n lines through S such
that they are rotationally symmetric with a period of
180◦/n. Pick one line, called the main line. The main
line defines two half-planes. The “upper” half-plane is
discarded. The “other” half-plane will create the moon.

Place a green cherry at each intersection of any line
with the outer circle α. Then place a red cherry at each
intersection of any line except the main line with the
inner circle β.

We have constructed a cake Ln where r(Ln) = n− 1
and g(Ln) = n+ 1, while Ex(Ln) = G(Ln).

Lemma 16 The moon Ln has the following properties:

1. The removal of a green cherry will reveal a (single)
red cherry.

2. The set C ⊂ Ln, |C| = |Ln| − 2, obtained by the
removal of a green cherry followed by a removal of
a red cherry, will be order-equivalent to Ln−1.

Proof. From the definition. �
Definition 17 In the convex grabbing game on a moon,
we say that a player follows the Simple greedy tactic if
the player chooses a move according to this rule:

Is there any extremal red cherry?
YES −→ Take an extremal red cherry.
NO −→ Take any extremal cherry.

Theorem 18 From the moon Ln if Bob follows the
Simple greedy tactic he will obtain all red cherries. This
results in M(Ln) = r(Ln) = n− 1.

Proof. We proceed by induction on n.
In the case with n = 2, the moon will have four

cherries in total; three extremal green cherries and one
red cherry lying inside their triangle; therefore, Alice
can select any green cherry and Bob will take the only
red cherry by the Simple greedy tactic.

Assume that n > 2 and the theorem holds for Ln−1.
For Alice’s first move a1, only green cherries are avail-
able, and so she will take one of them. By Lemma 16,
this will reveal a single red cherry, hence Bob, by follow-
ing the Simple greedy tactic, will always take this red
cherry for his first move b1.

By Lemma 16 again, the remaining set of cherries
Ln \ {a1, b1} is order-equivalent to Ln−1. Therefore,
by the induction hypothesis, Bob will obtain all n − 2
red cherries from Ln \ {a1, b1}; and, since he already
took a red cherry in his first move, from Ln he obtains
a total of n− 2 + 1 = n− 1 red cherries. �

94

CCCG 2021, Halifax, Canada, August 10–12, 2021

5 Miscellaneous

In order to obtain configurations which are favourable
for Alice on even-sized and odd-sized cakes, a single red
cherry can be placed outside the convex hull for the sun
configuration and moon configuration respectively.

Adding the extra red cherry swaps the parity of our
constructions. We obtain the following cakes C and D
that are good for Alice.

Corollary 19 Theorem 6 implies that there exists an
even-sized cake C such thatM(C) ≤ 1

4 r(C)+ 1
4 . And, in

a similar manner, Theorem 18 implies that there exists
an odd-sized cake D with any desired r(D) ∈ N such that
M(D) = 0.

Furthermore, we would like to know what the optimal
gameplay looks like in general. We came up with the
following conjectures regarding the tactics which each
player could employ in order to select their next move.

Conjecture 1 Greedy-move conjecture.
If Ex(C)∩R(C) 6= ∅, there exists a move that takes a red
cherry from Ex(C)∩R(C) such that the move is optimal.

Note that the Careful greedy tactic (Definition 5) and
the Simple greedy tactic (Definition 17) are refinements
of what the Greedy-move conjecture says.

Conjecture 2 Strong greedy-move conjecture.
If Ex(C) ∩ R(C) 6= ∅, then every move that takes a red
cherry is optimal.

We will soon show that, even though we don’t know
whether the Greedy-move conjecture and the Strong
greedy-move conjecture hold, we can easily prove that
the former implies the latter (while the other implica-
tion holds trivially).

Conjecture 3 No-reveal-move conjecture.
If Ex(C)∩R(C) = ∅ and we have a set of non-revealing
moves N = {c ∈ Ex(C) | Ex(C\{c}) ∩ R(C) = ∅} that
is not empty, then there exists c ∈ N such that selecting
c is optimal.

We later found a counterexample that disproved the
No-reveal-move conjecture, which we will show soon.

Proposition 20 The Greedy-move conjecture implies
the Strong greedy-move conjecture.

Proof. Consider the following set of red cherries
Rext(C) = {c ∈ R(C) | c /∈ conv(G(C))}. We prove the
proposition by induction on |Rext(C)|. If |Rext(C)| = 1,
both conjectures are trivially equivalent.

Assume that the Greedy-move conjecture holds in
general and that the Strong greedy-move conjecture

holds for up to |Rext(C)| = n − 1 red cherries. We
want to prove that the Strong greedy-move conjecture
holds for up to |Rext(C)| = n red cherries. Seeking
contradiction, assume that Alice has two possible moves
taking a red cherry ci, cj ∈ Rext(C) ∩ Ex(C) that lead
to different outcomes B(q).

If Alice starts by taking ci, then by the induction
hypothesis, cj is among Bob’s optimal moves. If Alice
starts by taking cj , then by the induction hypothesis,
ci is among Bob’s optimal moves. Either way, this
leaves C ′ = C \ {ci, cj}. In the first case, Alice ends
up with w(ci) + r(C ′) −M(C ′) points. In the second
case, Alice ends up with w(cj) + r(C ′)−M(C ′) points.
Since they are both equal to 1 + r(C ′) − M(C ′), we
obtain a contradiction. �

Proposition 21 The No-reveal-move conjecture is
false.

Proof. We show a sketch of the proof through the con-
struction in Figure 5.

In this construction, the only non-revealing first move
is to select a1 = c2. If, in the gameplay q, Alice starts by
taking this green cherry c2, giving q = (c2, b1, . . . , b5),
then Bob can select c4, giving q = (c2, c4, a2, . . . , b5),
and they end up with A(q) = 1 because the remaining
part of the cake gives M(C \ {c2, c4}) = 3.

However, if Alice selects a1 = c1 for her first move,
she reveals two red cherries at the same time. Alice is
therefore able to take a red cherry in her second move,
after Bob moves. For Bob’s first two moves, in order

c1 c2

c3c4

Figure 5: Our counterexample to the No-reveal-move
conjecture, with lines added for visual aid.

95

33rd Canadian Conference on Computational Geometry, 2021

for Alice to not obtain a second red cherry on her third
move, he has to take one of the two red cherries which
Alice revealed in her first move, and c2; however, the
order of Bob selecting these does not matter.

If Alice selects a3 = c3, she once again reveals two red
cherries, and she is then guaranteed to be able to select
a second red cherry in her fourth move. Therefore, by
not selecting the non-revealing cherry in her first move,
Alice is able to get a result of A(q) = 2. �

6 Conclusion

We solved the open problem from [3] by providing a
construction that builds an odd-sized cake Sk such that
M(Sk)− (r(Sk)−M(Sk)) ≥ x for any x ∈ N. It could
be interesting to know whether the result can be made
even stronger. Now consider the value:

γ = lim sup
p→∞

(
max

odd-sized
cake C

{M(C)
r(C)

∣∣∣∣ r(C) = p

})

Our construction provides a lower bound γ ≥ 3
4 . On

the other hand, [3] shows that Alice can always obtain
at least one red cherry on any odd-sized cake. However,
this only gives the trivial upper bound γ ≤ 1. We pose
a new open question of determining the value γ.

Analysis of gameplays would be easier if the state
space of need-to-be-considered gameplays were limited
by knowing which moves are optimal (or which moves
cannot be optimal) in certain situations. We therefore
leave the reader with another open question: Does the
Greedy-move conjecture hold?

References

[1] Cibulka, J., Kynčl, J., Mészáros, V., Stolař, R., Valtr,
P.: Graph sharing games: Complexity and connectivity.
Theoret. Comput. Sci. 494, 49–62 (2013)

[2] Dvorak, M., Nicholson, S. (2021). Massively
Winning Configurations in the Convex Grabbing
Game on the Plane. arXiv:2106.11247 [Math].
http://arxiv.org/abs/2106.11247

[3] Matsumoto, N., Nakamigawa, T., Sakuma, T.: Convex
Grabbing Game of the Point Set on the Plane. Graphs
Combin. 36(1), 51–62 (2020)

[4] Micek, P., Walczak, B.: A graph-grabbing game. Com-
bin. Probab. Comput. 20, 623–629 (2011)

[5] Pilz, A., Welzl, E.: Order on Order Types. International
Symposium on Computational Geometry 34, 285–299
(2015)

[6] Seacrest, D.E., Seacrest, T.: Grabbing the gold. Dis-
crete Math. 312, 1804–1806 (2012)

[7] Winkler, P.M.: Mathematical puzzles: A Connoisseur’s
Collection. A K Peters, Natick, MA (2003)

96

CCCG 2021, Halifax, Canada, August 10–12, 2021

Yin-Yang Puzzles are NP-complete

Erik D. Demaine∗ Jayson Lynch† Mikhail Rudoy‡ Yushi Uno§

Abstract

We prove NP-completeness of Yin-Yang / Shiromaru-
Kuromaru pencil-and-paper puzzles. Viewed as a graph
partitioning problem, we prove NP-completeness of par-
titioning a rectangular grid graph into two induced trees
(normal Yin-Yang), or into two induced connected sub-
graphs (Yin-Yang without 2 × 2 rule), subject to some
vertices being pre-assigned to a specific tree/subgraph.

1 Introduction

The Yin-Yang puzzle is an over-25-year-old type of
pencil-and-paper logic puzzle, the genre that includes
Sudoku and many other puzzles made famous by e.g.
Japanese publisher Nikoli.1 Figure 1 shows a simple
example of a puzzle and its solution. In general, a Yin-
Yang puzzle consists of a rectangular m×n grid of unit
squares, called cells, where each cell either has a black
circle, has a white circle, or is empty. The goal of the
puzzle is to fill each empty cell with either a black circle
or a white circle to satisfy the following two constraints:

• Connectivity constraint : For each color (black
and white), the circles of that color form a single
connected group of cells, where connectivity is ac-
cording to four-way orthogonal adjacency.

• 2 × 2 constraint : No 2 × 2 square contains four
circles of the same color.

In this paper, we prove NP-completeness of deciding
whether a Yin-Yang puzzle has a solution, with or with-
out the 2× 2 constraint.

1.1 Graph Partitioning

We can view Yin-Yang puzzles as a type of graph parti-
tioning problem, by taking the dual graph with a vertex
for each unit-square cell and edges between orthogonally
adjacent vertices/cells. The result is a rectangular m×n
grid graph, with some vertices precolored black or white.
The goal is to complete a black/white coloring of the
vertices subject to dual versions of the constraints. The

∗Massachusetts Institute of Technology, USA, edemaine@mit.
edu

†University of Waterloo, Canada, jayson.lynch@uwaterloo.ca
‡LeapYear Technologies, mrudoy@gmail.com
§Osaka Prefecture University, uno@cs.osakafu-u.ac.jp
1However, Yin-Yang is not a Nikoli puzzle.

Figure 1: A simple Yin-Yang puzzle (left) and its unique
solution (right). Circles added in the solution have dot-
ted boundaries.

connectivity constraint above constrains each color class
to induce a connected subgraph, so with this constraint
alone, the problem is to partition the graph’s vertices
into two connected induced subgraphs. We thus also
prove NP-completeness of this graph partitioning prob-
lem:

Grid Graph Connected Partition Comple-
tion : Given an m× n grid graph G = (V,E) and
given a partition of V into A, B, and U , is there
a partition of V into A′ and B′ such that A ⊆ A′,
B ⊆ B′, and G[A′] and G[B′] are connected?

The 2× 2 constraint forbids induced 4-cycles in each
color class, which is the thin constraint of [7, 14]. Any
larger-than-4 induced cycle in a color class must enclose
a vertex of the opposite color, so by the connectivity
constraint, only one color class can have such a cycle
and it can have only one such cycle, which (if it exists)
must be exactly the boundary vertices of the m×n grid
graph. If we exclude the possibility of a single outer
cycle (e.g., by restricting to instances that precolor at
least one boundary vertex of each color), then the prob-
lem (with both constraints) is to partition the vertices of
a rectangular m × n grid graph into two induced (con-
nected) trees. We also prove NP-completeness of this
graph partitioning problem:

Grid Graph Tree Partition Completion :
Given an m× n grid graph G = (V,E) and given
a partition of V into A, B, and U , is there a par-
tition of V into A′ and B′ such that A ⊆ A′,
B ⊆ B′, and G[A′] and G[B′] are trees?

97

33rd Canadian Conference on Computational Geometry, 2021

1.2 History

The origin of Yin-Yang is not clear. An early example of
this puzzle is from 1994 in the (discontinued) Japanese
puzzle magazine Puzzler [11] (or its original form in
1993). This reference calls the puzzle by the domestic
Japanese name “白丸黒丸” (“Shiromaru-Kuromaru”,
which means “white circle / black circle”). It seems
that the puzzle or slight variations have been invented
independently many times under different names. Most
recently, it is often referred to as the “Yin-Yang” puzzle,
and we could find the puzzle introduced in some puzzle
books, magazines, and websites, e.g., [35].

The computational complexity of puzzles has seen
significant study, partly for the recreational element
but also because many puzzles have direct connec-
tion to important problems such as geometric pack-
ing/partitioning or path/tree drawing under con-
straints. Surveys have been written on the topic of
the computational complexity of games and puzzles
[12, 20, 29]. Many pencil-and-paper puzzles have been
shown to be NP-complete, including: Bag / Corral [17],
Country Road [24], Dosun-Fuwari [27], Fillomino [40],
Fillmat [39] Hashiwokakero [6], Heyawake [23], Hiroi-
mono / Goishi Hiroi [5], Hitori [20, Section 9.2], Ju-
osan [28] Kakuro / Cross Sum [41], Kurodoko [30],
Kurotto [28], Light Up / Akari [33], LITS [34], Masyu
/ Pearl [18], Nonogram / Paint By Numbers [38], Num-
berlink [31], Nurikabe [32, 22], Pencils [36], Shakashaka
[13, 2], Slitherlink [41, 40, 1], Spiral Galaxies / Tentai
Show [19], Sto-Stone [4], Sudoku [41, 40], Tatamibari
[3], Usowan [26], Yajilin [24], and Yosenabe [25].

Graph partitioning problems involve splitting the ver-
tices of a graph into subsets based on various crite-
ria. Common criteria include connectedness of the sub-
graphs, balancing the number or weight of vertices or
edges in the partitions, and minimizing or maximizing
the edge cut between partitions. Different objectives
have a variety of applications; see [10] for a survey on
the topic. Connected balanced partitions in grid graphs
has been of specific interest with several NP-hardness
results known, including 2-color weighted and only 3-
rows [8], 3-color unweighted [9], and k-color in solid
grid graphs [16]. On the positive side, Hettle et al. [21]
give polynomial-time approximation algorithms for par-
titioning grid and planar graphs, and apply these to
real-world police and fire-department districting prob-
lems. We use only two colors in a solid unweighted grid,
but introduce the new constraint of pre-assigning more
than one vertex to each partition. When exactly one
vertex of each color is already assigned, the problem is
often called a rooted partition problem.

2 Hardness Proof

All of the problems we consider are obviously in NP,
by using the partition/solution as a witness. We show
that solving n × n Yin-Yang puzzles is NP-hard with
or without the 2 × 2 constraint by reductions from the
following NP-hard problem [15]:

Planar 4-Regular Tree-Residue Vertex
Breaking (TRVB): Given a planar 4-regular
multigraph, is there a subset of vertices that,
after being “broken”, results in a single connected
tree? Breaking a vertex involves deleting that
vertex from the graph and adding a degree-1
vertex to each of its neighbors (thus modifying
the edges incident to the broken vertex to instead
be incident to a newly created degree-1 vertex):

Figure 2 shows an example of this problem.

Figure 2: A 5-vertex instance of Planar 4-Regular
TRVB (left) and a solution (right).

We will use the fact that planar maximum-degree-4
multigraphs can be drawn (with grid-routed edges) in
a square grid of area O(n2) in polynomial time, as in
Figure 2. We can use such an embedding for simple
graphs (e.g., [37]), and adapt it to multigraphs by sub-
dividing multiple edges and loops, applying the simple
embedding, and removing the subdivision vertices.

Before diving into the reductions, we develop a tool
that helps force local solutions to Yin-Yang puzzles:

Lemma 1 In a valid Yin-Yang puzzle solution (with or
without the 2×2 constraint), no 2×2 square can contain
diagonally opposite white and black circles.

Proof. Consider the black circles. These two circles
are not orthogonally adjacent, and thus must be con-
nected by a path of black circles. However, this path

98

CCCG 2021, Halifax, Canada, August 10–12, 2021

(a) Vertex gadget

(b) Broken solution (c) Unbroken solution

Figure 3: Vertex gadget without the 2×2 constraint and
its two possible local solutions. The arrows represent
the four outgoing edges.

will separate the pair of white circles which are also not
orthogonally adjacent and thus must be connected by
their own path of white circles. �

2.1 Connected Partition: Without 2× 2 Constraint

In this section, we prove NP-hardness of Grid Graph
Connected Partition Completion, or equivalently, Yin-
Yang puzzles without the 2× 2 constraint. We present
this proof first as it is simpler but uses the same ideas.

In this reduction, edges will be represented by orthog-
onal paths (wires) of black circles, and everything that
is not an edge or vertex gadget will be filled with white
circles.

Vertex Gadget. Figure 3a shows the vertex gadget. If
a solution fills the top empty cell (say) black or white,
then by repeated application of Lemma 1, all four empty
cells must be filled the same color. In the local solu-
tion of Figure 3b, the black-circle wires are disconnected
from each other; while in the local solution of Figure 3c,
the black-circle wires are all connected together. Thus
these two local solutions correspond to breaking and not
breaking a vertex of the TRVB instance.

Layout. We take an orthogonal grid drawing of the
given TRVB graph, and then scale the grid by a fac-
tor of 9. This scaling allows us to place the 9 × 9 tiled
versions of the vertex gadget and edge gadgets (corners
and straights) shown in Figure 4, which make it easy to
align black-circle wires in row 3 and column 6. All re-

(a) Vertex gadget

(b) One of six edge gadgets

Figure 4: 9 × 9 tiling versions of gadgets without the
2× 2 constraint.

maining cells are filled with white circles, leaving empty
only the four cells in each vertex gadget.

Theorem 2 It is NP-complete to decide whether there
is a solution to a Yin-Yang puzzle without the 2×2 con-
straint, or Grid Graph Connected Partition Completion,
on an n× n grid.

Proof. If the TRVB instance has a solution, we fill bro-
ken vertices with four white circles (as in Figure 3b)
and unbroken vertices with four black circles (as in Fig-
ure 3c). All edge gadgets touching an unbroken vertex
are connected, and thus the fact that the TRVB solu-
tion is connected ensures the black circles form a single
connected component. For a broken vertex, the added
white circles connect the white circles in the four faces
of the graph drawing. The TRVB solution being a tree
ensures that this yields a single white connected com-
ponent.

Conversely, consider any solution to the Yin-Yang
puzzle. As argued above, each vertex gadget must be

99

33rd Canadian Conference on Computational Geometry, 2021

Figure 5: Background filler satisfying the 2 × 2 con-
straint.

solved using one of the two valid local solutions from
Figure 3, and therefore we can translate this Yin-Yang
solution to an assignment of whether to break each ver-
tex in the TRVB instance. We claim that this assign-
ment is in fact a solution to the TRVB instance. The
region containing the black circles in the Yin-Yang so-
lution has the same shape (in particular, toplogy) as
the graph resulting from breaking the broken vertices
in the candidate solution to the TRVB instance. If the
resulting graph were disconnected, then the black circles
would also form a disconnected region, contradicting the
Yin-Yang connectivity constraint on black. If the result-
ing graph had a cycle, then the black circles would also
form a nontrivial cycle, which would separate the white
circles interior and exterior to that cycle, contradicting
the Yin-Yang connectivity constraint on white. There-
fore the resulting graph is connected and acyclic, so we
have a solution to the TRVB instance. �

2.2 Tree Partition: With 2 × 2 Constraint

In this section, we prove NP-hardness of Grid Graph
Tree Partition Completion as well as Yin-Yang puzzles
(with both constraints). We fully precolor the bound-
ary vertices to not form a cycle, so these problems be-
come equivalent. The reduction idea is the same as the
proof without the 2×2 constraint from Section 2.1, but
respecting this constraint requires a more complicated
filler, and because of this filler, a more complex vertex
gadget. To get a sense of the overall structure, refer
ahead to Figure 10 for a full example.

2.2.1 Background Filler

The background filler consists of alternating columns of
white and black circles, except for a full row of black
circles at the top and a full row of white circles at the
bottom (to ensure connectivity); see Figure 5. On top
of this filler gadget, we draw vertex and edge gadgets.

Figure 6: An edge route (left) and the corresponding
edge gadget (right).

2.2.2 Edge Gadget

We again represent edges as orthogonal paths (wires)
of black circles but now, wherever an edge travels hori-
zontally, we also add a row of white circles immediately
above the path, except where the edge turns upward; see
Figure 6. Because of the background filler, each horizon-
tal segment of an edge gadget will have black downward
tendrils (paths) from every other column, similar to the
downward black tendrils from the top row of the filler.
(Similarly, the white circles immediately above a hori-
zontal segment of an edge gadget will have white upward
tendrils from every other column, similar to the upward
white tendrils from the bottom row of the filler.) Edge
gadgets can travel vertically only on the black parity of
the background filler, so that these circles of the edge
gadget match the background filler.

2.2.3 Vertex Gadget

Figure 7 shows the vertex gadget. By the 2 × 2 con-
straint, the leftmost two empty cells must be filled with
circles of opposite color; refer to Figure 8. Once this
choice gets made, repeated application of Lemma 1
forces the coloring of the horizontal rows of empty
squares to be uniform and opposite from each other,
and then forces the rightmost two empty cells to match
the leftmost two empty cells. The top three empty cells
are then forced to be filled in with circles of the same
color as the bottom row, in order to prevent local isola-
tion of black or white circles.

Figure 8 shows the two possible resulting local so-
lutions. Figure 8a corresponds to breaking the TRVB
vertex, as it keeps the four incident edges disconnected
from each other; while Figure 8b corresponds to not
breaking the corresponding TRVB vertex, as it con-
nects together the four incident edges. Both solutions
also connect together the five white paths at the top
and the two outermost white paths on the bottom, and
the broken solution further connects these white paths
to the three middle white paths at the bottom. These
connections correspond to exactly one white region per
face around the vertex: one face for a broken vertex and

100

CCCG 2021, Halifax, Canada, August 10–12, 2021

Figure 7: Vertex gadget. The arrows represent the four
outgoing edges.

four faces for an unbroken vertex.

2.2.4 Reduction Layout

We take an orthogonal grid drawing of the given TRVB
graph, and then scale the grid by a factor of 16. This
scaling allows us to place the 16×16 tiled versions of the
vertex gadget and edge gadgets (corners and straights)
shown in Figure 9, which make it easy to align black-
circle wires in row 12 and column 11. Any absent 16×
16 squares get filled with alternating columns of black
and white. Then we add an extra row at the top and
bottom of the puzzle, filled with black and white circles
respectively, to complete the filler of Figure 5. Finally,
for one topmost horizontal segment of an edge gadget, in
a black-parity column, we change one of the cells above
the segment from white to black, thereby attaching the
edge gadget to a black tendril and thus the top row of
black circles; we call the changed cell the exceptional
cell .

Figure 10 shows a complete example of the reduction
applied to the instance from Figure 2, and Figure 11
shows the corresponding solution.

Theorem 3 It is NP-complete to decide whether there
is a solution to a Yin-Yang puzzle (with both con-
straints), or Grid Graph Tree Partition Completion, on
an n× n grid.

Proof. Because our reduction instance has black and
white circles on the boundary, the Yin-Yang puzzle with
2× 2 constraint is equivalent to Grid Graph Tree Parti-
tion Completion. Furthermore, if the black circles form
a connected and acyclic subset of cells, then so do the
white circles: if the white circles formed an induced cy-
cle of length > 4, then there would be black circles both
interior (because the cycle is induced) and exterior (on

(a) Broken vertex solution.

(b) Unbroken vertex solution.

Figure 8: The two local solutions to the vertex gadget
of Figure 7.

the boundary), a contradiction. Therefore, it suffices to
prove that the black circles are connected and acyclic if
and only if the chosen broken/unbroken solutions from
Figure 8 for each vertex gadget corresponds to a solu-
tion to the TRVB instance.

Define the important cells to consist of the following:

1. black edge wires, or more precisely, the shortest
paths among black circles connecting pairs of the
vertex gadgets’ ports (marked with arrows in Fig-
ure 7); and

2. the bottom row of initially empty cells in each ver-
tex gadget (instance of Figure 7), together with the
shortest paths of black circles within the gadget
connecting those cells to the ports (arrows).

The important cells directly represent the connectivity
of the TRVB instance, so the important black circles

101

33rd Canadian Conference on Computational Geometry, 2021

(a) Vertex gadget

(b) One of six edge gadgets

Figure 9: 16× 16 tiling versions of the vertex and edge
gadgets from Figures 7 and 6.

are connected and acyclic if and only if the Yin-Yang
solution corresponds to a TRVB solution.

Thus it suffices to show that the important black cir-
cles are connected and acyclic if and only if all of the
black circles are connected and acyclic. Unimportant
black circles are either part of a vertex gadget, part of
the top row, or part of a downward black tendril from
the top row or a horizontal segment of an edge gadget.

Figure 8 shows that unimportant black circles within a
vertex gadget are all attached to the downward black
tendrils above the gadget, with one acyclic connected
component per tendril, aside from a few black circles (in
the unbroken case) attached directly to important black
circles. For unimportant black circles in black tendrils,
we can trace the tendrils up to find their connection to
either important black circles or the top row. (Tendrils
are never connected to black circles at their bottom,
except to O(1) black circles within a vertex gadget.)
The black tendrils that drop from an important black
circle are all connected together if and only if the impor-
tant black circles are themselves connected. The black
tendrils that drop from the top row are all connected
together via the top row of unimportant black circles,
and the exceptional cell connects one of these tendrils to
the important black circles. Therefore the unimportant
black circles form trees attached to the important black
cells, so they do not affect connectivity or acyclicity. �

3 Open Problems

Our reduction from Planar 4-regular TRVB is parsimo-
nious (preserves the number of solutions). It is unknown
whether the Another Solution Problem or counting ver-
sions of TRVB are (NP- or #P-) hard, but such results
would carry over to Yin-Yang puzzles.

In our reductions, we fill almost the entire board with
circles. However, elegant puzzles tend to have only a few
pre-marked circles and so one may wonder whether this
problem remains hard with a much sparser clue set. It
seems likely small modifications to our reduction would
allow for reductions with only O(n) circles, but getting
o(n) would require fundamentally different techniques
and some sort of clever encoding of problems in the
relative spacing of the circles. On the extreme, it seems
reasonably likely this problem is FPT with respect to
the number of pre-assigned circles.

Both from a computational and puzzle design stand-
point, we could imagine generalizing the number of col-
ors of circles to more than two, or looking at other fam-
ilies of graphs. The 2 × 2 constraint can generalize to
forbidding all vertices around a face from being the same
color in an embedded graph. It seems very natural to
look at such puzzles on triangular and hexagonal grids
and in those cases the three-fold symmetry may aesthet-
ically adapt to three colors. Generalizing the number of
colors trivially remains NP-hard, as we can simply add a
row for each additional color at the top of our two color
reduction, ensuring those new colors will not be able to
be placed. We also believe similar proof techniques will
work for hexagonal and triangular grids.

102

CCCG 2021, Halifax, Canada, August 10–12, 2021

Figure 10: Full reduction from the 5-vertex instance of TRVB from Figure 2.

Acknowledgments

This research started at the 34th Bellairs Winter Work-
shop on Computational Geometry, co-organized by Erik
Demaine and Godfried Toussaint in 2019. We thank the
other workshop participants for fruitful discussions and
for providing an inspiring research atmosphere.

Research supported in part by NSERC and JSPS
KAKENHI Grant Numbers JP17K00017, JP21K11757

and JP20H05964.

Most figures of this paper were drawn using SVG
Tiler [https://github.com/edemaine/svgtiler]. Source
files for these figures are freely available [https://github.
com/edemaine/yin-yang-svgtiler].

103

33rd Canadian Conference on Computational Geometry, 2021

Figure 11: Solution to the puzzle in Figure 10 corresponding to the TRVB solution in Figure 2.

References

[1] Zachary Abel, Jeffrey Bosboom, Erik D. Demaine,
Linus Hamilton, Adam Hesterberg, Justin Kopin-
sky, Jayson Lynch, and Mikhail Rudoy. Who wit-
nesses The Witness? Finding witnesses in The Wit-
ness is hard and sometimes impossible. In Proceed-
ings of the 9th International Conference on Fun
with Algorithms (FUN 2018), pages 3:1–3:21, La

Maddalena, Italy, June 2018.

[2] Aviv Adler, Michael Biro, Erik Demaine, Mikhail
Rudoy, and Christiane Schmidt. Computational
complexity of numberless Shakashaka. In Proceed-
ings of the 27th Canadian Conference on Computa-
tional Geometry (CCCG 2015), Kingston, Canada,
August 2015.

[3] Aviv Adler, Jeffrey Bosboom, Erik D. Demaine,

104

CCCG 2021, Halifax, Canada, August 10–12, 2021

Martin L. Demaine, Quanquan C. Liu, and Jayson
Lynch. Tatamibari is NP-complete. In Proceedings
of the 10th International Conference on Fun with
Algorithms (FUN 2020), LIPIcs, 2020.

[4] Addison Allen and Aaron Williams. Sto-stone is
NP-complete. In Proceedings of the 30th Canadian
Conference on Computational Geometry (CCCG
2018), pages 28–34, 2018.

[5] Daniel Andersson. HIROIMONO is NP-complete.
In Proceedings of the 4th International Conference
on Fun with Algorithms (FUN 2007), volume 4475
of Lecture Notes in Computer Science, pages 30–39,
2007.

[6] Daniel Andersson. Hashiwokakero is NP-complete.
Information Processing Letters, 109(19):1145–
1146, 2009.

[7] Esther M. Arkin, Sándor P. Fekete, Kamrul Islam,
Henk Meijer, Joseph S. B. Mitchell, Yurai Núñez-
Rodŕıguez, Valentin Polishchuk, David Rappaport,
and Henry Xiao. Not being (super) thin or solid is
hard: A study of grid hamiltonicity. Computational
Geometry: Theory and Applications, 42(6–7):582–
605, 2009.

[8] Ronald Becker, Isabella Lari, Mario Lucertini, and
Bruno Simeone. Max-min partitioning of grid
graphs into connected components. Networks,
32(2):115–125, 1998.

[9] Cedric Berenger, Peter Niebert, and Kevin Per-
rot. Balanced connected partitioning of unweighted
grid graphs. In Proceedings of the 43rd Interna-
tional Symposium on Mathematical Foundations of
Computer Science (MFCS 2018), volume 117 of
LIPIcs, 2018.

[10] Aydın Buluç, Henning Meyerhenke, Ilya Safro, Pe-
ter Sanders, and Christian Schulz. Recent advances
in graph partitioning. In Selected Results and Sur-
veys on Algorithm Engineering, volume 9220 of
Lecture Notes in Computer Science, pages 117–158.
Springer, 2016.

[11] 世界文化社. しろまるくろまる. パズラー (Puz-
zler), 150, May 1994.

[12] Erik D. Demaine and Robert A. Hearn. Play-
ing games with algorithms: Algorithmic combi-
natorial game theory. In Games of No Chance
3, pages 3–56. Cambridge University Press, 2009.
arXiv:cc.CC/0106019.

[13] Erik D. Demaine, Yoshio Okamoto, Ryuhei Ue-
hara, and Yushi Uno. Computational complexity
and an integer programming model of Shakashaka.

IEICE Transactions on Fundamentals of Electron-
ics, Communications and Computer Sciences, E97-
A(6):1213–1219, 2014.

[14] Erik D. Demaine and Mikhail Rudoy. Hamil-
tonicity is hard in thin or polygonal grid
graphs, but easy in thin polygonal grid graphs.
arXiv:1706.10046, 2017. https://arXiv.org/abs/
1706.10046.

[15] Erik D. Demaine and Mikhail Rudoy. Tree-Residue
Vertex-Breaking: a new tool for proving hardness.
In Proceedings of the 16th Scandinavian Sympo-
sium and Workshops on Algorithm Theory (SWAT
2018), volume 101 of LIPIcs, pages 32:1–32:14,
2018.

[16] Andreas Emil Feldmann. Fast balanced partition-
ing is hard even on grids and trees. Theoretical
Computer Science, 485:61–68, 2013.

[17] Erich Friedman. Corral puzzles are NP-complete.
https://erich-friedman.github.io/papers/corral.
pdf, August 2002.

[18] Erich Friedman. Pearl puzzles are NP-complete.
https://erich-friedman.github.io/papers/pearl.
pdf, August 2002.

[19] Erich Friedman. Spiral Galaxies puzzles are
NP-complete. https://erich-friedman.github.io/
papers/spiral.pdf, March 2002.

[20] Robert A. Hearn and Erik D. Demaine. Games,
Puzzles, and Computation. A K Peters, July 2009.

[21] Cyrus Hettle, Shixiang Zhu, Swati Gupta,
and Yao Xie. Balanced districting on grid
graphs with provable compactness and contigu-
ity. arXiv:2102.05028, 2021. https://arXiv.org/
abs/2102.05028.

[22] Markus Holzer, Andreas Klein, and Martin Kutrib.
On the NP-completeness of the nurikabe pen-
cil puzzle and variants thereof. In Proceedings of
the 3rd International Conference on Fun with Al-
gorithms (FUN 2004), pages 77–89, Isola d’Elba,
Italy, May 2004.

[23] Markus Holzer and Oliver Ruepp. The troubles of
interior design—a complexity analysis of the game
Heyawake. In Proceedings of the 4th International
Conference on Fun with Algorithms (FUN 2007),
volume 4475 of Lecture Notes in Computer Science,
pages 198–212, 2007.

[24] Ayaka Ishibashi, Yuichi Sato, and Shigeki Iwata.
NP-completeness of two pencil puzzles: Yajilin and
Country Road. Utilitas Mathematica, 88:237–246,
2012.

105

33rd Canadian Conference on Computational Geometry, 2021

[25] Chuzo Iwamoto. Yosenabe is NP-complete. Journal
of Information Processing, 22(1):40–43, 2014.

[26] Chuzo Iwamoto and Masato Haruishi. Computa-
tional complexity of usowan puzzles. IEICE Trans-
actions on Fundamentals of Electronics, Communi-
cations and Computer Sciences, 101(9):1537–1540,
2018.

[27] Chuzo Iwamoto and Tatsuaki Ibusuki. Dosun-
fuwari is NP-complete. Journal of Information
Processing, 26:358–361, 2018.

[28] Chuzo Iwamoto and Tatsuaki Ibusuki. Polynomial-
time reductions from 3SAT to kurotto and juosan
puzzles. IEICE Transactions on Information and
Systems, 103(3):500–505, 2020.

[29] Graham Kendall, Andrew Parkes, and Kristian
Spoerer. A survey of NP-complete puzzles. ICGA
Journal, 31(1):13–34, 2008.

[30] Jonas Kölker. Kurodoko is NP-complete. Journal
of Information Processing, 20(3):694–706, 2012.

[31] Kouichi Kotsuma and Yasuhiko Takenaga. NP-
completeness and enumeration of Number Link
puzzle. IEICE Technical Report, 109(465):1–7,
March 2010.

[32] Brandon McPhail. The complexity of puzzles. Un-
dergraduate thesis, Reed College, Portland, Ore-
gon, 2003.

[33] Brandon McPhail. Light Up is NP-complete.
http://www.mountainvistasoft.com/docs/
lightup-is-np-complete.pdf, 2005.

[34] Brandon McPhail. Metapuzzles: Reducing SAT to
your favorite puzzle. CS Theory talk, December
2007.

[35] Gareth Moore. Paper, Pencil & You: Mindfulness:
Relaxing Brain-Training Puzzles for Stressed-Out
People. Greenfinch, 2020.

[36] Daniel Packer, Sophia White, and Aaron Williams.
A paper on Pencils: A pencil and paper puzzle:
Pencils is NP-complete, pencils. In Proceedings of
the 30th Canadian Conference on Computational
Geometry (CCCG 2018), page 35, 2018.

[37] Achilleas Papakostas and Ioannis G. Tollis. Algo-
rithms for area-efficient orthogonal drawings. Com-
putational Geometry: Theory and Applications,
9(1):83–110, 1998.

[38] Nobuhisa Ueda and Tadaaki Nagao. NP-
completeness results for NONOGRAM via parsi-
monious reductions. Technical Report TR96-0008,

Department of Computer Science, Tokyo Institute
of Technology, Tokyo, Japan, May 1996.

[39] Akihiro Uejima and Hiroaki Suzuki. Fillmat is NP-
complete and ASP-complete. Journal of Informa-
tion Processing, 23(3):310–316, 2015.

[40] Takayuki Yato. Complexity and completeness of
finding another solution and its application to puz-
zles. Master’s thesis, University of Tokyo, Tokyo,
Japan, January 2003.

[41] Takayuki Yato and Takahiro Seta. Complex-
ity and completeness of finding another solution
and its application to puzzles. IEICE Transac-
tions on Fundamentals of Electronics, Communi-
cations, and Computer Sciences, E86-A(5):1052–
1060, 2003. Also IPSJ SIG Notes 2002-AL-87-2,
2002.

106

CCCG 2021, Halifax, Canada, August 10–12, 2021

Constant Delay Lattice Train Schedules

Jean-Lou De Carufel∗‡ Darryl Hill† Anil Maheshwari†‡ Sasanka Roy§

Lúıs Fernando Schultz Xavier da Silveira†

Abstract

The following geometric vehicle scheduling problem has
been considered: given continuous curves f1, . . . , fn :
R→ R2, find non-negative delays t1, . . . , tn minimizing
max{t1, . . . , tn} such that, for every distinct i and j and
every time t, |fj(t − tj) − fi(t − ti)| > `, where ` is a
given safety distance.

We study a variant of this problem where we consider
trains (rods) of fixed length ` that move at constant
speed and sets of train lines (tracks), each of which con-
sisting of an axis-parallel line-segment with endpoints
in the integer lattice Zd and of a direction of movement
(towards∞ or −∞). We are interested in upper bounds
on the maximum delay we need to introduce on any line
to avoid collisions, but more specifically on universal up-
per bounds that apply no matter the set of train lines.

We show small universal constant upper bounds for
d = 2 and any given ` and also for d = 3 and ` = 1.
Through clique searching, we are also able to show that
several of these upper bounds are tight.

1 Introduction

Ajaykumar and Roy [1] considered the following prob-
lem: given a set S = {f1, . . . , fn} of curves, find a max-
imum subset S′ ⊆ S such that, for any two distinct
fi, fj ∈ S′, there is no time 0 6 t 6 1 when fi(t) = fj(t).
Though there are some approximation algorithms, it is
shown that most versions of these problems are NP-
hard. This is true even when the curves are same-
sized L-shapes and trajectories have the same constant
speed. During a talk by Sasanka Roy on this prob-
lem at Stony Brook University, Joseph S. B. Mitchell
and Esther M. Arkin posed the following variation:
given S = {f1, . . . , fn} where fi : R → R2 is a con-
tinuous function, we wish to assign delays ti > 0 so
that, for any two distinct fi, fj ∈ S, there is no time
t ∈ R when |fj(t− tj)−fi(t− ti)| 6 `; we also wish that
the maximum delay is minimized.

∗School of Computer Science and Electrical Engineering, Uni-
versity of Ottawa, Ottawa, Canada

†School of Computer Science, Carleton University, Ottawa,
Canada

‡Research supported in part by NSERC
§Indian Statistical Institute, Kolkata, India

Figure 1: Train lines on axis parallel tracks with stations
(here seen as tunnels) on the integer lattice.

Automated guided vehicles (AGVs) and automated
vehicle routing are currently some of the most prolific
fields in the domain of motor vehicle technology, enjoy-
ing a large body of research addressing a large number
of related algorithmic and optimization problems. The
field of automated guided vehicles has a long and rich
history and is closely related to our work. For an elab-
orate review, the reader is referred to a survey by Vis
[15], though [3] is a more recent one. A central topic
in this field is collision avoidance. Kim and Tanchoco
[5] propose an algorithm based on Dijkstra’s that facili-
tates conflict-free routing of AGVs. It runs in O(v4n2),
where v is the number of vehicles and n is the number
of nodes, i.e., path intersections. Arora et al. [14] used
techniques based on game theory to design a method-
ology for AGV traffic control. Yan et al. [16] studied
collision-free routing of AGVs on both unidirectional
and bidirectional paths using digraphs. For more infor-
mation on conflict-free routing of AGVs, the reader is
referred to [6, 9, 7]. For an elaborate survey on routing
and scheduling algorithms for AGVs, see [8]. Other re-
lated work in this area includes the study of One Way
Road Networks (OWRNs) by Ajaykumar et al. [4], its
motivation [12] and [10, 2, 13].

107

33rd Canadian Conference on Computational Geometry, 2021

1.1 New Results

In this paper, we study a simple vehicle scheduling prob-
lem in which, many times, we are guaranteed schedules
with at most a constant delay. We consider trains of
fixed length ` that move at constant speed and sets of
train lines (tracks), each of which consisting of an axis-
parallel line-segment with endpoints in the integer lat-
tice Zd and of a direction of movement (towards ∞ or
−∞). For an example see Figure 1. We are interested in
upper bounds on the maximum delay we need to intro-
duce on any line to avoid collisions, but more specifically
on universal upper bounds that apply no matter the set
of train lines.

We show small universal constant upper bounds for
d = 2 and any given ` (Theorem 9) and also for d = 3
and ` = 1 (Theorem 10). Through clique searching, we
are also able to show that several of these upper bounds
are tight (Section 4). The results are summarized in
Table 1.

2 Preliminaries

Definition 1 A (d-dimensional) train line consists of:

• A track, which is a line segment in Rd with distinct
endpoints distinguished between a departure point
and an arrival point;

• A train length, which is a positive real number; and

• A speed, which is also a positive real number.

Furthermore, a set of train lines with non-overlapping
(but possibly crossing) tracks is called a train network.

Definition 2 For a set of real numbers X and a real
number y, we denote {x+ y : x ∈ X} by X + y.

Definition 3 A (collision-free) schedule for a train
network is an assignment of a delay, which is a non-
negative real number, to each of its lines. It also must
result in no collisions between the trains. More pre-
cisely, for any two lines whose tracks cross, the open
intervals (0; `/v)+ t+δ/v and (0; `′/v′)+ t′+δ′/v′ must
not intersect, where:

• t and t′ are the respective delays assigned to the
lines;

• δ and δ′ are the respective distances between the
departure points of the lines and the crossing point;

• ` and `′ are the respective train lengths of the lines;
and

• v and v′ are the respective speeds of the lines.

The delay of the schedule is the maximum delay it as-
signs. An integer schedule is one that only assigns in-
teger delays.

An alternative way to understand schedules is to
imagine each line’s train starts “underground” with the
front at the departure point and moves towards the
arrival point at the line’s speed, where it moves “un-
derground” again (“underground” trains cannot collide
with other trains); see Figure 2. A delay assignment is
then a schedule if, and only if, the line segments that
correspond to the “above-ground” parts of these trains
never cross. For an example, see Figure 3.

Track

”Underground”part of train

”Above-ground” part of train

Figure 2: An illustration of the journey of a train.

1 2 3 0

2

1

0

3

(a) (b)

Figure 3: If unit speed trains of length 2 depart simulta-
neously from the circles in (a), there will be collisions at
the marked crossings. However, if delays are introduced
as in (b), no collisions will occur.

Definition 4 A d-dimensional train network is regular
if all its lines’ speeds are 1, all its train lengths are the
same and integer, all its tracks are axis-parallel and all
its departure and arrival points are in Zd.

Theorem 5 All regular train networks admit an inte-
ger schedule of minimum delay (among all schedules,
integer or otherwise).

Proof. It is enough to show that, for an arbitrary
schedule, assigning to each line a delay equal to the floor
of the original delay will not result in any collisions. In-
deed, take two lines whose tracks cross and define t, t′,
δ, δ′, v, v′, ` and `′ as in Definition 3. We thus have

108

CCCG 2021, Halifax, Canada, August 10–12, 2021

v = v′ = 1 and ` = `′ ∈ N\{0}. The original schedule
ensures that

(
(0; `) + t+ δ

)
∩
(
(0; `) + t′ + δ′

)
= {},

which is equivalent to

(0; `) ∩
(
(0; `) + t′ − t+ δ′ − δ

)
= {}.

Because t′−t and bt′c−btc differ by less than 1, bt′c−btc
is either bt′−tc or dt′−te. Therefore, since ` and δ′−δ are
integers, the open interval (0; `)+bt′c−btc+δ′−δ cannot
intersect (0; `), which implies our delay assignment is
collision-free. �

Definition 6 Consider a train line with an axis-
parallel track that departs from p ∈ Rd and arrives at
p+αei, where ei is the i-th vector of the canonical basis
of Rd (0 6 i < d) and α ∈ R\{0}. The axis of the line
is the number i. Furthermore, we say this line is posi-
tive if α > 0 and negative if α < 0, with its sign being 1
or −1, respectively.

Definition 7 For any modulus k ∈ N\{0}, we extend
the modulo k function to real numbers as follows: if x ∈
R, then xmod k = (bxcmod k) + x−bxc. Furthermore,
for a set X ⊆ R, we denote {xmod k : x ∈ X} by
X mod k.

3 Results

Theorem 8 Any regular d-dimensional train network
with trains of length ` and only positive lines has a
schedule with delay at most d`− 1.

Proof. Assign delay
(
`a+

∑d−1
i=0 pi

)
mod(d`) to lines

departing from p = (p0, . . . , pd−1) ∈ Zd with axis a ∈
{0, . . . , d− 1}. Consider then a crossing between a line
departing from p = (p0, . . . , pd−1) ∈ Zd with axis a and
another line departing from p′ = (p′0, . . . , p

′
d−1) ∈ Zd

with axis a′ 6= a. In the notation of Definition 3, we
have:

• t =
(
`a+

∑d−1
i=0 pi

)
mod(d`);

• t′ =
(
`a′ +

∑d−1
i=0 p

′
i

)
mod(d`);

• δ = p′a − pa; and

• δ′ = pa′ − p′a′ .

Thus, modulo d`,

t′ − t+ δ′ − δ

≡ `(a′ − a) +
d−1∑

i=0

(p′i − pi)− (p′a′ − pa′)− (p′a − pa)

≡ `(a′ − a) +
d−1∑

i = 0
i 6∈ {a, a′}

(p′i − pi)

≡ `(a′ − a)

since, for axes i 6∈ {a, a′}, we have pi = p′i from the
fact that the lines cross. However, there cannot be an
intersection between

(
(0; `) + t′ − t + δ′ − δ

)
mod(d`)

and (0; `) mod(d`) = (0; `) because a 6= a′. Therefore,
(0; `) ∩

(
(0; `) + t′ − t + δ′ − δ

)
= {} and there are no

collisions. �

Theorem 9 Any regular 2-dimensional train network
with trains of length ` has a schedule with delay at most
M − 1, where

M =





2, ` = 1
8, ` = 2
6`, ` > 3.

Proof. Assign delay

σ
(
x+ y + (1− a)

(
−2(ymod `)− `+ 1

)

+a
(
−2(xmod `) + 2`− 1

))
modM

to lines departing from (x, y) with axis a ∈ {0, 1} and
sign σ ∈ {−1, 1}. Consider then a horizontal line de-
parting from (x, y) with sign σ that crosses a vertical
line departing from (x′, y′) with sign σ′. In the notation
of Definition 3, we have:

• t = σ
(
x+ y − 2(ymod `)− `+ 1

)
;

• t′ = σ′
(
x′ + y′ − 2(x′mod `) + 2`− 1

)
;

• δ = σ(x′ − x); and

• δ′ = −σ′(y′ − y).

Note that M > 2` and so it is enough to show that

(t′ − t+ δ′ − δ) modM ∈ {`, . . . ,M − `}.
Indeed, then (0; `) modM = (0; `) does not intersect
((0; `) + t′ − t + δ′ − δ) modM , which implies (0; `) ∩
((0; `) + t′ − t + δ′ − δ) = {}, i.e., a lack of collisions.
We prove this by cases starting when σ = σ′ = 1, which
gives us, modulo M ,

t′ − t+ δ′ − δ
≡ x′ + y′ − 2(x′mod `) + 2`− 1− y′ + y − x− y

+ 2(ymod `) + `− 1− x′ + x

≡ 2(ymod `)− 2(x′mod `) + 3`− 2.

109

33rd Canadian Conference on Computational Geometry, 2021

Because (ymod `), (x′mod `) ∈ {0, . . . , ` − 1}, we have
that

2(ymod `)− 2(x′mod `) + 3`− 2 ∈{`, . . . , 5`− 4}
⊆{`, . . . ,M − `}.

In case σ = −1 and σ′ = 1, we have, modulo M ,

t′ − t+ δ′ − δ ≡ x′ + y′ − 2(x′mod `) + 2`− 1− y′ + y

+ x+ y − 2(ymod `)− `+ 1 + x′ − x
≡ 2

(
x′ − (x′mod `) + y − (ymod `)

)
+ `.

Because x′ − (x′mod `) and y − (ymod `) are multi-
ples of `, we must have that t′ − t + δ′ − δ is an odd
multiple of `. Moreover, since M is an even mul-
tiple of `, (t′ − t+ δ′ − δ) modM must indeed be in
{`, . . . ,M − `}.

To complete the remaining two cases, note that if σ
and σ′ were simultaneously multiplied by −1, so would
be t′−t+δ′−δ. However, {`, . . . ,M−`} is closed under
negation modulo M . �

Theorem 10 Any regular 3-dimensional train network
with trains of length 1 has a schedule with delay at most
5.

Proof. We delay each line by the only integer in
{0, . . . , 5} that is equivalent to σ(p0 + p1 + p2 +a) mod-
ulo 3 and equivalent to p0 + p1 + p2 + (σ+ 1)/2 modulo
2, where p = (p0, p1, p2) ∈ Z3 is its departure point,
a ∈ {0, 1, 2} is its axis and σ ∈ {−1, 1} is its sign (the
existence and uniqueness of this integer is assured by
the Chinese Remainder Theorem).

Consider then two crossing lines that:

• Depart respectively from p = (p0, p1, p2) ∈ Z3 and
p′ = (p′0, p

′
1, p
′
2) ∈ Z3;

• Have respective signs σ, σ′ ∈ {−1, 1}; and

• Have a ∈ {0, 1, 2} and a + 1 ∈ {0, 1, 2} as their
respective axes (axis arithmetic is done modulo 3).

Thus, in the notation of Definition 3, we have δ = σ(p′a−
pa) and δ′ = −σ′(p′a+1− pa+1). Modulo 2, we also have
t ≡ p0+p1+p2+(σ+1)/2 and t′ ≡ p′0+p′1+p′2+(σ′+1)/2.
Therefore, in case σ 6= σ′, also modulo 2,

t′ − t+ δ′ − δ ≡
2∑

i=0

(p′i − pi) + (σ′ + 1)/2− (σ + 1)/2

− σ′(p′a+1 − pa+1)− σ(p′a − pa)

≡
2∑

i=0

(p′i − pi)− (p′a+1 − pa+1)

− (p′a − pa) + (σ′ − σ)/2

≡ p′a+2 − pa+2 + (σ′ − σ)/2.

However, since the lines cross, pa+2 = p′a+2 and, since
σ, σ′ ∈ {−1, 1} and σ 6= σ′, it must be that (σ′−σ)/2 ≡
1 modulo 2, so (t′ − t+ δ′ − δ) mod 2 = 1. The collision
avoidance condition for these lines is (0; 1)∩

(
(0; 1)+t′−

t + δ′ − δ
)

= {} and must be true since (0; 1) mod 2 =

(0; 1) but
(
(0; 1) + t′ − t+ δ′ − δ

)
mod 2 = (1; 2).

On the other hand, if σ = σ′, then note that, modulo
3,

t ≡ σ(p0 + p1 + p2 + a)

and
t′ ≡ σ(p′0 + p′1 + p′2 + a+ 1).

Therefore, again modulo 3,

t′ − t+ δ′ − δ ≡ σ

(
2∑

i=0

(p′i − pi) + a+ 1− a
)

−σ(p′a − pa)− σ(p′a+1 − pa+1)

≡ σ(p′a+2 − pa+2 + 1)

≡ σ

as, once more, pa+2 = p′a+2. As before, (0; 1) mod 3 =
(0; 1) but

(
(0; 1) + t′ − t+ δ′ − δ

)
mod 3 = (0; 1) + (σmod 3),

which is either (1; 2) or (2; 3). No collisions are therefore
possible. �

4 Clique Searching and Lower Bounds

Whether a train network admits an integer schedule
with delay at most D ∈ N can be decided with a clique
search: create a graph G containing a vertex vL,t for
each line L and time t ∈ {0, . . . , D}; for every pair
of distinct lines L and L′ and for each pair of times
t, t′ ∈ {0, . . . , D} which would not result in a collision if
assigned as delays respectively to L and L′, put an edge
between vL,t and vL′,t′ . Note that if L and L′ do not
cross, then vL,tvL′,t′ is an edge for all t, t′ ∈ {0, . . . , D}.
Note also that an integer schedule with delay at most
D exists if, and only if, G has a clique with as many
vertices as there are lines. This is because two vertices
associated with the same line cannot be selected and we
encoded potential collisions in the edges between ver-
tices associated with different lines. So, essentially, the
clique is a delay assignment.

Due to Theorem 5, we can decide whether a regular
train network has a schedule with delay at most a given
number D ∈ R. We have implemented this algorithm
with the Cliquer clique solver [11] and recorded some
lower bounds for regular train networks in Table 1.

For greater exposition we will walk through a simple
example of determining the lower bounds for a train
network with only positive lines and a train length of 2.
Referring to Theorem 8 we see that a delay of 2`− 1 =

110

CCCG 2021, Halifax, Canada, August 10–12, 2021

d ` σ Delay Tight? Figure

2 ≤ 10 + 2`− 1 Theorem 8 4a
2 1 ± 1 Theorem 9 4a
2 2 ± 7 Theorem 9 4b
3 1 + 2 Theorem 8 4c

Table 1: A report on some useful regular train network
classes including: the networks’ dimension d, the length
` of their trains, whether their lines are all positive or of
unrestricted sign, a lower bound on the delay of sched-
ules for some networks in the class, our knowledge on
whether this is an upper bound on the delay required
to schedule all networks in the class and a reference to
a figure describing a network that, when input to our
algorithm, will produce the lower bound.{

.

. ...︸ ︷︷ ︸. . .
`

` (a)

(b)

(c)

Figure 4: Regular train networks (◦ denotes the depar-
ture point of a line).

4 − 1 = 3 is possible. Therefore we will test a train
network using the configuration in Figure 4a and a delay
of 2. If we construct a graph as outlined above and
cannot find a clique of size 4, then our configuration
does not admit a network with a delay of 2, and by

Theorem 8 and Theorem 5 our lower bound on the delay
must then be 3. Although not necessary to our lower
bound proof, for completeness we also show a graph
built using a delay of 3 and illustrate a clique of size
4, which represents an assignment of delays that would
result in no collisions.

We will express our train network in the following
format:1

<label> <t len> <axis><dir> <x> <y> <z>

where:
<label> is the line’s label;
<t len> is the line’s train length, a positive

integer;
<axis> is the axis the track is parallel to

(“x”, “y”, or “z”);
<dir> is the line’s direction of movement

(“-” or “+”);
<x> <y> <z> are the line’s departure point.

Our train network in the above format based on the
configuration of Figure 4a and illustrated in Figure 5,
is then:

A 2 x+ 0 1 0
B 2 x+ 0 2 0
C 2 y+ 1 0 0
D 2 y+ 2 0 0

We will refer to the above train network as Network
1. We create a vertex for each combination of line and
possible delay, then for each pair of vertices consisting of
distinct lines, we connect them with an edge if the delay
assignment does not result in a collision. See Figure
6. We may then search this graph for cliques of size
4, the number of train lines. To facilitate this search,
we built our graph using a Python script, found in the
full paper, and fed the output into the Cliquer clique
solver [11]. Figure 7 shows the graph resulting from
Network 1 with a maximum delay of 3, and the resulting
clique which gives a delay assignment that will not result
in any collisions.

5 Open Problems

The main problem that remains open is whether, for
values of ` > 2, every three-dimensional regular train
network with trains of length ` admits a schedule with
delay bounded by a constant. However, we are also
interested in extending the lower bounds in Table 1 to
more values of `.

1This input format is a slightly altered version of the input we
used to run our Python script, which built the graph in Cliquer
readable format, and for which we refer the reader to the full
paper.

111

33rd Canadian Conference on Computational Geometry, 2021

B

A

C D
(0,0)

Figure 5: Network 1.

A0

A1

A2

B0 B1

B2

C0

C1

C2

D0D1

D2

Figure 6: The resulting graph for Network 1 and a max-
imum delay of 2. The reader may verify there are no
cliques of size 4.

A0

A1

A3

B0 B1

B3

C1

C2

C3

D1D2

D3

A2

B2

C0

D0

Figure 7: The resulting graph for Network 1 and a max-
imum delay of 3. Note the clique of size 4 which gives
a delay assignment of A:3, B:0, C:1 and D:2.

Acknowledgements

We would like to thank Joseph S. B. Mitchell, Esther
M. Arkin, Sándor Fekete and members of the Compu-

tational Geometry group at Carleton University.

References

[1] Ajay, Jammigumpula and Jana, Satyabrata and Roy,
Sasanka Collision-free routing problem with restricted
L-path. Discrete Applied Mathematics, 2021

[2] Dasler, Philip and Mount, David M. On the complexity
of an unregulated traffic crossing. Algorithms and Data
Structures, pages 224–235, 2015.

[3] Hyla, P. and Szpytko, J. Automated guided vehicles:
the survey. Journal of KONES, 24, 2017.

[4] Ajaykumar, Jammigumpula and Das, Avinandan and
Saikia, Navaneeta and Karmakar, Arindam Prob-
lems on one way road networks. Proceedings of the
28th Canadian Conference on Computational Geome-
try, pages 303–308, 2016.

[5] Kim, Chang W. and Tanchoco, J. M. A. Conflict-free
shortest-time bidirectional AGV routeing. The Inter-
national Journal of Production Research, 29(12):2377–
2391, 1991.

[6] Koff, Gary A. Automatic guided vehicle systems: ap-
plications, controls and planning. Material flow, 4(1–
2):3–16, 1987.

[7] Zeng, Laiguang and Wang, Hsu-Pin (Ben) and Jin,
Song Conflict detection of automated guided vehicles:
a Petri net approach. The International Journal of Pro-
duction Research, 29(5):866–879, 1991.

[8] Qiu, Ling and Hsu, Wen-Jing and Huang, Shell-Ying
and Wang, Han Scheduling and routing algorithms for
AGVs: a survey. The International Journal of Produc-
tion Research, 40(3):745–760, 2002.

[9] Malmborg, Charles J. A model for the design of zone
control automated guided vehicle systems. The Inter-
national Journal of Production Research, 28(10):1741–
1758, 1990.

[10] Kakikura, Masayoshi and Takeno, Jun Ichi and
Mukaidono, Masao A tour optimization problem in a
road network with one-way paths. IEEJ Transactions
on Electronics, Information and Systems, 98(8):257–
264, 1978.

[11] Niskanen, Sampo and Österg̊ard, Patric R. J. Cli-
quer user’s guide, version 1.0. Communications Lab-
oratory, Helsinki University of Technology, Espoo, Fin-
land, Technical Report T48, 2003.

[12] Robbins, Herbert Ellis A theorem on graphs, with an
application to a problem of traffic control. The Ameri-
can Mathematical Monthly, 46(5):281–283, 1939.

[13] Scheffer, Christian Train scheduling hardness and
algorithms. The 13th International Conference and
Workshops on Algorithms and Computation (WAL-
COM 2020), 2020.

[14] Arora, Sudha and Raina, A. K. and Mittal, A. K. Col-
lision avoidance among AGVs at junctions. Intelligent
Vehicles Symposium, 2000.

112

CCCG 2021, Halifax, Canada, August 10–12, 2021

[15] Vis, Iris F. A. Survey of research in the design and
control of automated guided vehicle systems. European
Journal of Operational Research, 170(3):677–709, 2006.

[16] Yan, Xuejun and Zhang, Canrong and Qi, Mingyao
Multi-AGVs collision-avoidance and deadlock-control
for item-to-human automated warehouse. Industrial
Engineering, Management Science and Application
(ICIMSA), pages 1–5, 2017.

113

CCCG 2021, Halifax, Canada, August 10–12, 2021

Block Dude Puzzles are NP-Hard
(and the Rugs Really Tie the Reductions Together)

Austin Barr∗ Calvin Chung† Aaron Williams‡

Abstract

The computational complexity of agent-based box-
pushing puzzles on grids is well-studied. In particular,
the video game Sokoban was shown to be NP-hard, and
later PSPACE-complete, in the mid-1990s, and dozens
of variants have since been studied. In this paper, we
change the top-down perspective to a side perspective,
where the player and the boxes are subject to gravity,
and the player is able to climb on top of boxes or walls of
height one. We prove that determining whether a level
is solvable is NP-hard when the goal is to reach the exit,
or place the boxes on target locations. The former result
was previously shown to be true with “Dig Dug gravity”
(i.e. boxes are subject to gravity, but the player is not)
by Friedman. We also consider the decision problems
with pushable boxes being replaced by liftable blocks, or
with pushable and liftable blox, or with general crates.
In total, we establish NP-hardness for eight different
decision problems, all based around a single reduction.
The inspiration for this article was the classic TI 83/84
calculator game Block Dude, which requires reaching an
exit in the presence of liftable blocks.

1 Introduction

This section reviews video games that use box pushing,
and the complexity of related decision problems.

1.1 Box-Pushing

Sokoban (倉庫番) was created by Hiroyuki Imabayashi,
and released on cassette tape by Thinking Rabbit for
a variety of Japanese personal computers in 1982 [40].
In total, the company has released nearly 100 official
versions of the game [37], with the most recent entry
being Everyone’s Sokoban (みんなの倉庫番) for the
Nintendo Switch and PlayStation 4 (see Figure 1).

Despite the game’s long history, its basic rule set has
never changed1. The game is played on a grid with a
top-down perspective. Some of the cells are filled with

∗Williams College, abarr877@gmail.com
†Williams College, calvintchung@gmail.com
‡Williams College, aaron.williams@williams.edu
1There is an exception: The first releases include fake wall tiles

that the player must find and pass through to complete the level.

walls or boxes, and the player controls a character that
occupies a single cell. The player can move in the cardi-
nal directions, and has the power to push — not pull —
a single box into the next cell, so long as that cell is not
occupied by a wall or another box. In addition, some
of the blank cells are marked as targets, and they are
equinumerous with the boxes. The goal is to rearrange
the k boxes so that they occupy the k target cells.

Figure 1: Thinking Rabbit’s releases of Sokoban include
Sokoban (1982) for the NEC PC-8801 (left), and Every-
one’s Sokoban (2019) for the Nintendo Switch (right).

Spectrum Holobyte published the game under the
name Soko-Ban for American personal computers in
1988, which was the same year it brought Tetris to the
same platform. Today, Thinking Rabbit and the Tetris
Company still make modern versions of their respec-
tive games. However, the Tetris Company vigorously
defends its intellectual property against other falling-
block puzzles [36], whereas Thinking Rabbit does not.
As a result, the term “Sokoban” has become genericized;
it is synonymous with the genre of box-pushing puzzle
games, and it can be found in the title of games that
are not affiliated with Thinking Rabbit.

Sokoban is also a popular research topic. There are
over 100 publications with “Sokoban” or “倉庫番” in
the title [1], ranging from artificial intelligence solvers
[20, 21] and optimizers [26], to level generation [23, 34]
and evaluation [4], and human solutions [35]. Many
results have also been presented in less formal venues,
including websites discussing levels with the most moves
[13], and undergraduate theses on levels that require an
exponential number of moves to solve [28].

The Sokoban decision problem was shown to be NP-
hard by Fryers and Greene in Eureka magazine [14], and
independently by Dor and Zwick [10], and Uehara [38]2.

2The original Port Huron Statement [33, 41] does not contain
a proof of NP-hardness, nor does its compromised second draft.

114

33rd Canadian Conference on Computational Geometry, 2021

The exponential level constructions in [28] show that the
most obvious certificate — the sequence of moves — is
insufficient for establishing membership in NP. Thus,
it was natural to consider more difficult complexity
classes. Culberson proved that Sokoban3 is PSPACE-
complete by using it to simulate a bounded Turing Ma-
chine [5]. Using nondeterminstic constraint logic, Hearn
and Demaine showed that PSPACE-hardness holds even
for levels that contain no walls [18].

Countless variations of Sokoban exist as video games,
and many of these variations have been studied through
the lens of computational complexity. If the player is re-
quired to reach an exit, rather than place the boxes on
target locations, then the decision problem is known as
Push-1. If the player can push k boxes instead of a
single box, then the decision problem is Push-k. In
PushPush, the boxes slide until hitting the next box
or wall. More generally, there are 16 different decision
problems under the Push[Push]-1/k/*-[X] umbrella,
all of which are known to be NP-hard or PSPACE-
complete (see [8, 19]).

1.2 Side Perspective

In early video game history, it was common for ideas
to be implemented in both top-down and side perspec-
tives. For example, Ralph Baer’s Brown Box (1967)
and Atari’s Pong (1972) use a top-down perspective for
tennis, and were predated by William Higenbothem’s
Tennis for Two (1958), which uses a side-view on an os-
cilloscope. Similarly, the trap’em-up genre began with
the top-view in Heiankyo Alien (1979) by Tokyo’s The-
oretical Science Group, before moving to a side-view in
Space Panic (1980), and Lode Runner (1983).

(a) Tennis For Two (1958) (b) Pong (1972)

Figure 2: Tennis with top-down and side perspectives.

Despite Sokoban’s popularity, we are unaware of any
video game that is based solely on box-pushing from
a side perspective. Since games have inspired many of
the academic investigations into motion planning4, it is
understandable that there are no computational com-
plexity results for the corresponding decision problem.

3If Title is a video game, then Title refers to the following
decision problem: Can a given level of Title be completed? The
game is also suitably generalized (i.e. unbounded level size.)

4For a recent example with turnstiles, see Greenblatt et al [15].

1.3 Dig Dug Gravity

Among commercial games, the closest matches to box
pushing from a side perspective come from the dig ’em
up genre (see Figure 3). In these games, the player
can remove dirt, which may dislodge objects that then
fall downward. In particular, the apples in Mr. Do!
and the boulders in Boulder Dash can also be pushed
horizontally. Unlike Sokoban, this genre also features
action-oriented gameplay, with monsters and time limits
that distract from a pure puzzle-solving experience.

The dig ’em up genre also features peculiar physics:
The player and the enemies are not subject to gravity.
In other words, it is as if some game elements operate
according to a top-down perspective, while others ad-
here to a side-view. We refer to this physical model,
which is as curious as it is common, as Dig Dug gravity,
owing to the genre’s most popular game.

These games also differ from box pushing games in
their objectives. For example, the goal of Dig Dug is to
eliminate a number of enemies. On the other hand, in
Boulder Dash, the player must collect some number of
diamonds, and then reach an exit.

(a) The Pit (1982) (b) Dig Dug (1982)

(c) Mr. Do! (1982) (d) Boulder Dash (1984)

Figure 3: Dig ’em up games use Dig Dug gravity (i.e. the
player and enemies don’t fall), and dirt that can be cleared
by the player. The games include falling boulders (or ap-
ples), with (c) and (d) also supporting different types of
pushing. They also include enemies and/or time limits, and
objectives that differ from the Sokoban and Push problems.

Friedman introduced the Push-1-G decision prob-
lem, which adds Dig Dug gravity to Push-1. In other
words, it asks if a player can reach an exit when the level
consists of walls and pushable boxes, where the boxes

115

CCCG 2021, Halifax, Canada, August 10–12, 2021

are subject to gravity, but the player is not. He proved
that the problem is NP-hard, as is its generalization
Push-k-G for any k ≥ 1 [12]. Friedman’s gadgets can
be implemented directly in Boulder Dash5 and adding
diamonds to the exit proves that the game is NP-hard.

The NP-hardness of BoulderDash was also estab-
lished by Viglietta. More generally, Metatheorem 1 in
[39] proves that avatar-based games with (a) walls, (b)
single-use paths, and (c) location traversal, are NP-hard.
Single-use paths become blocked when they are tra-
versed, while (c) refers to forcing the avatar to visit cer-
tain locations (including collecting items from Forisek’s
[11]). Figure 4 shows a single-use path in Boulder Dash.

(a) Initial state. (b) Blocked state.

Figure 4: A single-use path in Boulder Dash [39]. Traversing
(a) in either direction causes the middle of the path to be-
come blocked, as seen in (b). Single-use paths and location
traversal (collecting items) establish NP-hardness [39].

Metatheorem 1 does not immediately apply to Dig
Dug or Mr. Do! since they do not have walls. We can
apply it to The Pit, but we need to careful with one
detail. In the arcade game, the player must collect at
least one of the gems; we allow the gem requirement to
be arbitrarily large in the decision problem ThePit.

Corollary 1 (Metathm 1 [39]) ThePit is NP-hard.

Proof. Boulders cannot be pushed in The Pit, so a
single-use path can be constructed with a single boulder.

Initial state. Blocked state.

The Pit also has walls, and location traversal can be
implemented in ThePit with gems. �

We also mention an investigation of pulling block
complexity by Ani et al. [3]. They prove that a wide va-
riety of decision problems are PSPACE-complete. One
exception is Pull?-1FG, which is shown to be NP-
hard. The problem asks if an exit can be reached using
Dig Dug physics and pullable objects. More specifically,
its name can be parsed as follows: Pull? indicates that
the player is not forced to pull blocks; 1 specifies that
the player can only pull one block at a time; F denotes
that walls are allowed; G states that Dig Dug gravity is
used rather than a top-down perspective.

5The gadgets avoid Boulder Dash’s non-trivial falling physics:
A boulder will suddenly fall to the side if it is on top of another
boulder, and the cells to the side of both boulders are empty.

(a) TI-83+. (b) The Puzz Pack includes Block Dude.

Figure 5: Block Dude was developed for Texas Instrument
calculators as part of the Puzzle Pack suite of games.

1.4 Outline

We consider the computational complexity of box push-
ing from a side perspective and with normal gravity (i.e.
the player and movable objects are subject to it) and the
standard goals from both Sokoban and Push.

We also consider block lifting. Lifting is the only
mechanism in Block Dude (1999), which is perhaps
the closest (non-commercial) video game analogue to
Sokoban from a side perspective; it was also the inspi-
ration for this article. (A type of top-down lifting was
considered in the Box Mover Problem [27].)

Section 2 defines our decision problems. In Section
5, we prove that the problems are NP-hard. This is
preceded by Sections 3–4, which define basic gadgets
and give a simplified ‘rug’ reduction. Final remarks
are in Section 6. Owing to the title of the game that
inspired this article, the reader should expect to find
Big Lebowski quotes and references along the way.

2 Block Dude and Related Decision Problems

In this section, we describe the history and gameplay of
Block Dude. Then we formulate a family of eight deci-
sion problems, one of which models the original game.

2.1 History of Block Dude

Block Dude is a TI-83/84 calculator game created by
Brandon Sterner in 19996. Detached Solutions included
it in PuzzPack [9] (see Figure 5), which has been down-
loaded over 100,000 times from ticalc.org [31]. The
game’s popularity has never waned in the calculator
community, winning the (fictitious) Calculator Gaming
Awards 2002–2018 [22]. The game features 11 levels,
and the speed-running world record is under 8 minutes
[25]. A solution to the first level is in Figure 6.

Like Sokoban, the basic Block Dude game has been
ported to a variety of systems by other developers, with

6Man, we’ve got some information, all right. Certain things
have come to light. Block Dude wasn’t the first Block Dude game!
Block-Man 1 was released commercially in 1994 (see Table 1).

116

33rd Canadian Conference on Computational Geometry, 2021

(a) The initial state of Level 1.

(b) Pick up a block.

(c) Drop the block to create a staircase.

(d) Climb the staircase.

(e) Fall down and pick up a block.

(f) Carry the block up the wall of height one.

(g) Drop the block to create another staircase.

(h) Climb the second staircase and reach the door.

Figure 6: Solving Level 1 in Block Dude.

a sampling shown in Table 1. Readers who wish to try
out the game are directed towards the browser-based
port by Andrew Zich [42]. Block Dude was also used
as a programming assignment in Harvard’s CS50 [17].
Sterner discussed Block Dude in a Reddit AMA [32].

2.2 Block Dude Gameplay

Block Dude’s objective is to move the avatar (i.e. the
Dude) through the grid to the exit door. The Dude
occupies one cell, as do the obstacles, which are immov-
able bricks, and movable blocks. The Dude moves left
or right, and can climb onto obstacles one cell above his
feet. They can also turn around in-place when there are
obstacles on their left and right. The game has normal
gravity, and the Dude safely falls from any height.

The Dude can only pick up a block that is directly in
front of him, and can only do this when two cells are
empty: the one above his head, and the one diagonally
in front and above his head. If the cell in front of his
feet is empty, then the Dude can drop a block into that
position. Otherwise, if the cell in front and above the
Dude is empty, then he can drop the block there. Any
block that is dropped is subject to gravity, and it will
continue falling until landing on a brick or block.

Year Title Developer Platform(s) Screenshot

1994 Block-Man 1
Soleau

Software
DOS

1995 Block-Man 2
Soleau

Software
DOS

1999 Block Dude
Brandon
Sterner

TI-83 / TI-84
Calculators

2004 BlockDude Klas Kroon
Chris Kotiesen

Adobe
Flash

2006
2010

Blockdude 1.3
Blockdude 1.4

Willems
Davy

GP2X
Dingoo A320

2008 Block Dude SG57 Sony PSP

2008 Block Dude
Emmanuel

Vincent
GNU/Linux

2009 Block Dude Andrew Zich
Pete Zich

Apple iPhone
JavaScript

2010
Block Dude

Evolved
Billy Connolly Apple iPhone

iPod Touch

2011 Block Dude X
Amelia

“Hinchy”
Hinchliffe

Mac OS
Windows

2017 BlockDude Brick Buddy
Hazardous Dude

Android
Steam

2018 Block Dude Mitch Kendall Nintendo
NES

2019 Box Dude Parker Phair iOS

2019 BlockDude
Dmitry

Krapivin
ZX Spectrum

48K

2021 BlockBot Mark Horan HTML5

Table 1: Selected games related to Block Dude.

The Dude can hold and carry one block at a time,
and he does so on top of his head. Thus, a height of
at least two is required for the Dude to carry a block
through a passageway. If the Dude attempts to carry a
block past a brick that is directly above his head, then
the brick will push the block off his head; the Dude will
move forward while the block will fall behind him.

Figure 7 illustrates several of the finer points men-
tioned above, where grey squares are bricks.

117

CCCG 2021, Halifax, Canada, August 10–12, 2021

(a) The Dude does not
move when picking up or
dropping a block.

(b) A block cannot pass
through a brick when it is
picked up or dropped.

(c) A block can be dropped
onto a brick (or block), but
not picked up from it.

(d) A carried block will fall
off of the Dude’s head when
passing under a brick.

Figure 7: Block Dude physics. Arrow directions indicate
valid moves between states. The Dude can also turn
around in tight spaces .

2.3 BlockDude Family

I’m the Dude. So that’s what you call me. You
know, that or, His Dudeness, or Duder, or El
Duderino if you’re not into the whole brevity thing

— Jeffrey Lebowski, The Big Lebowski

Rather than studying Block Dude in isolation, we
consider a family of decision problems. The problems
use the same perspective and movements as Block Dude.
Thus, the Dude can walk left or right, climb on top of a
single occupied cell that is immediately in front of them,
and fall down from any height.

A level is completed in one of two ways:

(A) The level is completed when the Dude reaches the
exit goal (denoted with v). This is the exit goal.

(B) The level is completed when the Dude moves the
k moveable objects onto the k target cells denoted
by *. This is the targets goal, and it models the
completion condition of Sokoban.

There are four types of moveable objects.

(1) A block can be picked up, but not pushed. These
are identical to the blocks in Block Dude.

(2) A box can be pushed, but not picked up. These are
similar to Sokoban boxes, but they fall like blocks.

(3) A blox can be picked up and pushed. Thus, a blox
behaves like a block and a box.

(4) A crate is a block, box, or blox. In other words, a
crate is the generic term for a moveable object.

We form our decision problems by combining the two
different goals with four types of moveable objects. We
name each problem using the type of moveable object
followed by Dude/Duderino for exit/targets goals.
For example, the original Block Dude game is type 1A,
meaning that it has an exit goal, and all of the movable

objects are blocks, and its full name is BlockDude.
The decision problem names are summarized in Table 2.

To avoid repetition, we will reuse our arguments and
figures as much as possible. For example, our levels will
contain both an exit and targets; the former is ignored
in instances of type B, and the latter are ignored in in-
stances of type A. For convenience, we also use different
colors for the various crates and locations. These colors
are purely cosmetic, and are used as hints to more easily
understand how to complete the targets goal.

2.4 Membership in PSPACE

We complete this section by noting that all of our deci-
sion problems can be solved in polynomial-space.

Theorem 2 The problems in Table 2 are in PSPACE.

Proof. Following the standard technique, we prove
that the decision problems are in NPSPACE. Consider
a CrateDude or CrateDuderino level on an r-by-c
level. The current state of a level can be encoded as an
r-by-c grid, where each entry is one of five possibilities:
blank, box, block, blox, or Dude. (The remainder of the
level — bricks, exit, target — is static.) Therefore, the
state of the level can be encoded in 3 · r · c bits, and
so the level can have at most 23·r·c states. Therefore, if
a level is solvable, then we can find a solution by non-
deterministically making at most 23·r·c moves. Storing
a move counter that ranges from 0 to 23·r·c− 1 requires
log2(23·r·c) = 3 ·r ·c bits, which is polynomial in the size
of the input. Therefore, the CrateDude and Crat-
eDuderino are in NPSPACE, and hence PSPACE by
Savitch’s Theorem [29] . This implies that the other six
problems are also in PSPACE. �

3 Basic Gadgets and Approach

In this section, we discuss the general approach used
by our reductions, and present our variable and clause
gadgets. Each literal instance (i.e. each copy of xi or
xi) is represented by one crate in Section 4, and by a
sequence of surplus crates in Section 5. We refer to these
crates as literal instance crates, or simply literal crates.

Our gadgets include elevated bricks that are one cell
below a ceiling brick. These guards restrict crates from
being pushed or carried out of the gadget.

3.1 Variable Gadgets

Our gadget for variable xi appears in Figure 8a, and it is
drawn to match i = 1 from (1). From the gadget’s start
position, the Dude can drop down to the left or right.
Left corresponds to setting xi to false, and the Dude
can reach every crate associated with a negative literal
xi. Likewise, right corresponds to setting xi to true,
and the Dude can reach every crate associated with a

118

33rd Canadian Conference on Computational Geometry, 2021

Boxes (Push-Only) Blocks (Lift-Only) Bloxes (Push and Lift) Crates (Push and/or Lift)
Exit Goal BoxDude BlockDude BloxDude CrateDude

Targets Goal BoxDuderino BlockDuderino BloxDuderino CrateDuderino

Table 2: The Block Dude family of decision problems. See Section 6.1 for a note on Dude vs Push notation.

positive literal xi. In the full reduction, the Dude can
“activate” each reachable crate by sending it downward
into a clause gadget. The Dude cannot build a staircase
back up to the start position of a variable gadget, so
they must eventually return to the center and drop down
to the start position of the xi+1 gadget.

Observation 1 In the xi variable gadget, the Dude can
reach the positive literal crates xi, or the negative literal
crates xi, but not both, before exiting. This corresponds
to setting xi = true, or xi = false, respectively.

Actually sending crates downward will be a challenge.
Section 4 uses a “cheat” to simplify the task, and Sec-
tion 5 provides the actual implementation.

3.2 Clause Gadgets

Our clause gadget appears in Figure 8b. The basic idea
is that the gadget is traversable if at least one of its
literal crates has been sent downward into it. The flag
illustrates where the next clause gadget begins.

Observation 2 In the clause gadget for (`1 ∨ `2 ∨ `3),
the Dude can reach the exit, if and only if, at least one
of the literal crates for `1, `2, `3 has been sent downward
into the gadget.

Nihilism versus Dudeism

Is a Boolean value always true or false? Careful
consideration of our reduction will reveal that
the Dude is not obliged to activate a reachable
crate within a variable gadget. This corresponds
to believing nothing about the crate’s literal in-
stance: It is neither true nor false. Without
loss of generality, we can assume that the Dude
avoids this type of nihilism during gameplay, but
in practice, the Dude is most certainly a lazy
man, and liable to go with the flow.

4 NP-Hardness with Rugs

That rug really tied the room together.

— Walter in The Big Lebowski

In this section, we provide a single reduction that
shows that all eight of our problems are NP-hard. How-
ever, there is a catch. We assume that the puzzles can

use additional an gameplay element: a rug. Rugs are
defined in Section 4.1, but in brief, they are similar to
a trapdoor in that they allow crates to pass through
without changing where the Dude can move.

Our reduction is from Monotone 3SAT, which is a
restriction of 3SAT to monotone clauses. A monotone
clause is a positive clause with three positive literals, or
a negative clause with three negative literals. In other
words, every clause has the form (xi ∨ xj ∨ xk) or (xi ∨
xj ∨xk). In particular, we illustrate the reduction using
the following instance with four clauses,

φ = (x3 ∨ x2 ∨ x1) ∧ (x5 ∨ x3 ∨ x1) ∧ (1)

(x1 ∨ x2 ∨ x5) ∧ (x2 ∨ x3 ∨ x4),

whose colors and indices are matched in Figure 10. The
source problem is NP-complete by Schaefer’s dichotomy
theorem [30], and the monotone property will allow us
to organize all of the clause gadgets along a single row.

4.1 Rugs

A rug can be placed in any otherwise empty cell of the
grid. Rugs are not strong enough to hold up a crate.
Therefore, any crate that is pushed on top of a rug, or
dropped onto a rug, will fall through it. Similarly, if a
crate falls onto a rug from above, then it will continue
falling through the rug. However, the Dude never falls
through a rug, even when he is carrying a crate. In
other words, the Dude is never let down by a rug7.

4.2 Literal Gadgets

In this reduction, we create a single crate for every in-
stance of a literal. Thus, if the Monontone 3SAT
instance has k clauses, then the corresponding level will
have 3k crates. As mentioned in Section 3.1, the Dude
needs to be able to send these crates down to the respec-
tive clause gadgets. Rugs allow us to implement these
literal gadgets very easily, as shown in Figure 9.

Observation 3 In the literal gadget, the Dude can send
the literal instance, xi or xi, down to its clause gadget.

4.3 Rug Reduction

We can now present a single reduction from Monotone
3SAT. The reduction is illustrated in Figure 10. In

7This is true even if the rug has been micturated upon.

119

CCCG 2021, Halifax, Canada, August 10–12, 2021

xi = true

x̅i xi xix̅i

xi = false

⚑

(a) Variable gadget for xi. The Dude can reach the negative xi literals
by walking left, or the positive xi literates by walking right, but not
both. Then they can return to the center and fall down to the flag.

*
*

*

ℓ3 ℓ2 ℓ1

⚑

(b) Clause gadget (`1 ∪ `2 ∪ `3). If at least one crate
has fallen to the floor, then the Dude can push or
drop it into the pit, and then walk to the flag.

Figure 8: A simplified view of our basic gadgets. In both cases, it is not possible to move a crate out of the gadget.

xi

(a)

xi

(b)

xi

(c)

xi

(d)

xi

(e) (f) (g)

Figure 9: Activating a positive literal crate by sending the crate downward through a rug. If the crate is a block, then all
steps (a)–(g) are used. Otherwise, if it is a box or blox, then it is pushed from (b) to (e), and steps (c) and (d) are omitted.

this image, and others, we allow some of the gadgets
to overlap, in order to save space. In particular, literal
instance gadgets in the same clause share the guards.

Theorem 3 In the rug reduction for Monotone
3SAT instance φ, the Dude can reach the flag, or place
the crates on the targets, if and only if, φ has a satis-
fying assignment. This is true regardless of the type of
crate that is used for each literal instance.

Proof. Suppose that φ is satisfiable and consider a spe-
cific satisfying assignment. By following this satisfying
assignment when navigating the variable gadgets, the
Dude is ensured that each clause gadget will have at
least one crate in it. Therefore, they can traverse the
clause gadgets and reach the exit. To accomplish the
targets goal, they continue up the target goal staircase
on the right, and then navigate the variable gadgets us-
ing the complement of the satisfying assignment.

For the other direction, suppose that φ is not satisfi-
able. When the Dude reaches the clause gadgets, there
will be at least one that does not have a crate in it.
Hence, the Dude cannot traverse all of the clause gad-
gets, and so they cannot accomplish either goal. �

5 NP-Hardness without Rugs

Now we establish the NP-hardness of the decision prob-
lems in their original form, without rugs. To do this,
we need to simulate the rugs. We do this with two new
gadgets, which are introduced in Section 5.1. Then we
show how to implement these two gadgets with boxes

in Section 5.2, and with blocks in Section 5.3. The for-
mer result also establishes hardness for crates, while the
latter construction also works for blox.

5.1 Drop-Down and Fall-Through Gadgets

Rugs are used in two different ways in the rug reduction.
The rugs that appear next to a crate allow for the initial
dropping down of a crate, while the remaining rugs allow
for crates to continue passing through them. We mirror
this with the following two types of gadgets.

1. Drop-down gadget. In this gadget, the Dude is able
to send one crate downward. The Dude can tra-
verse the gadget left-to-right then right-to-left (or
vice versa) and cannot go downward without get-
ting stuck.

2. Fall-through gadget. In this gadget, the Dude can
send one crate downward, so long as one crate has
previously been sent downward into it. The Dude
can traverse the gadget left-to-right then right-to-
left (or vice versa) and cannot go downward with-
out getting stuck.

As in the rug reduction, these gadgets allow crates,
which represent literal instances, to be sent downward.
However, in the rug reduction, an individual crate is
sent straight downward from the variable gadget to the
clause gadget. With these gadgets, the crate that is sent
down changes after each successive gadget. In other
words, these gadgets work together to send down a sur-
plus of one crate, rather than an individual crate. Fur-
thermore, the surplus crate that is sent down shifts two
columns horizontally after each fall-through gadget.

120

33rd Canadian Conference on Computational Geometry, 2021

*
*

*
*
*

*
*
*

*
*
*

* *
…
…
…

⋱

…

⋱
⋱
⋱

⋱
⋱
⋱

⋱
⋱
⋱

⋱
⋱
⋱

⋱
⋱

x̅1

x̅5

x̅1

x̅3

x4

{(x̅5 ∨ x̅3 ∨ x̅1) {(x1 ∨ x2 ∨ x5) {(x2 ∨ x3 ∨ x4) {(x̅3 ∨ x̅2 ∨ x̅1)

⋱

⋱
⋱
⋱
…

⋀ ⋀ ⋀

…

⚑

⋱
⋱

x̅3

x̅2

x1

x2

x5

x2

x3

[target goal staircase

Figure 10: The rug reduction for φ = (x3 ∨ x2 ∨ x1)∧(x5 ∨ x3 ∨ x1)∧(x1 ∨ x2 ∨ x5)∧(x2 ∨ x3 ∨ x4) in (1). To com-
plete the exit goal, the Dude drops into the five variable gadgets on the left, right, left, left, and left, respectively.
The resulting assignment x1 = x3 = x4 = x5 = False and x2 = True makes the clause gadgets traversable8. To
complete the targets goal, the Dude continues past the exit and walks up the target goal staircase. Then they drop
into the variable gadgets on the opposite sides — right, left, right, right, right — and fill the clause gadget targets.

To implement these gadgets we use empty vertical
stacks of cells called pits, which must be partially filled
in order for the Dude to traverse them. More specifi-
cally, a pit of depth d must be filled with d − 1 crates
before it can be traversed. We say that a gadget has a
surplus, if a crate has been dropped into its pit before
the Dude has entered the gadget. When the Dude en-
ters a gadget, he will be able to send a crate downward,
if and only if, the gadget has a surplus. In other words,
the Dude can move a surplus down to the next gadget.
The depth of each pit is chosen to prevent the Dude
from trying to take shortcuts in the level. More specifi-
cally, if the Dude drops down to the gadget below, then
the depth of the pit will ensure that he gets stuck.

As a final note, we mention that these gadgets require
more space than the corresponding gadgets in the rug
reduction. As a result, the reader should observe that
the layout in Figure 10 can be widened and lengthened
without affecting its functionality.

5.2 Box Gadgets

Figure 11 contains our implementation of the drop-down
gadget and fall-through gadget using boxes.

8A lazy Dude can drop left then right, and then go directly to
the clause gadgets since x1 = False and x2 = True satisfies (1).

Lemma 4 Figure 11 implements a drop-down gadget
and fall-through gadget using boxes.

Proof. For ease of reading, the explanation of how the
gadget works is given in the caption of Figure 11. �

The next corollary follows from Lemma 4 and The-
orem 3, and the fact that instances of BoxDude and
BoxDuderino are also instances of CrateDude and
CrateDuerino, respectively.

Corollary 5 BoxDude, BoxDuderino, Crate-
Dude, and CrateDuderino are NP-hard.

5.3 Block and Blox Gadgets

Figure 12 contains our implementation of the drop-down
gadget and fall-through gadget using blocks. Inspection
shows that it also suffices for blox.

Lemma 6 Figure 12 implements a drop-down gadget
and fall-through gadget using blocks or blox.

Proof. For ease of reading, the explanation of how the
gadget works is given in the caption of Figure 12. �

Theorem 3 and Lemma 6 provide the final corollary.

Corollary 7 BlockDude, BlockDuderino, Blox-
Dude and BloxDuderino are NP-hard.

121

CCCG 2021, Halifax, Canada, August 10–12, 2021

*

* * **

*

*
*

*
*
⋮ ⋮ ⋮

*

*
*

*
*
⋮ ⋮ ⋮

*

*

*
*

*
⋮ ⋮ ⋮

*
*

*
*
⋮ ⋮ ⋮

*
*

*
*
⋮ ⋮ ⋮

*
*

*
*
⋮ ⋮ ⋮

*
*
*

*
⋮ ⋮ ⋮

*
*

*
*
⋮ ⋮ ⋮

(a) Drop-down gadget with boxes. The Dude enters the gadget on the left (top-left) and pushes the top box once to the right
and once to the left, so that it falls downward into the pit of the gadget below. The Dude then exits on the right (top-right).
Re-entering (bottom-right), they use the hollow area to push the remaining box into the target positions (*), and then they
can exit on the left (bottom-left).

*
*
*
*

* *
*

*
*
*

*
*

*
*
*

*
*

*
*
⋮ ⋮ ⋮

*
*

*
*
⋮ ⋮ ⋮

*
*
*

*
*

*
*
*

*
⋮ ⋮ ⋮

*
*

*
*
⋮ ⋮ ⋮

*
*
*
*

* *
*

*
*
*

*
*

*
*
*

*
*

*
*
⋮ ⋮ ⋮

*
*

*
*
⋮ ⋮ ⋮

*
*
*

*
*

*
*
*

*
⋮ ⋮ ⋮

*
*

*
*
⋮ ⋮ ⋮

(b) Fall-through gadget with boxes. The Dude enters the gadget from the left, and to proceed to the right, they must push
boxes into the pit, starting with the rightmost of the four boxes. If a surplus box is in the pit when they enter the gadget (as
illustrated), then there will be an additional box that can be pushed down as a surplus box into the pit of the gadget below.
The Dude then exits the gadget (top-right). Reentering (bottom-right), the Dude proceeds to the exit on the left in the same
way as in the drop-down gadget.

Figure 11: Box gadgets. The drop-down (top) and fall-through (bottom) gadgets for BoxDude and BoxDuderino.
In both cases, the images illustrate the gadget for a positive literal instance, and all crates are boxes. The initial
states are shown in the top-left corner, and the remaining images illustrate how the Dude can traverse the gadget
left-to-right and send a surplus crate downward, then traverse it from right-to-left. The Dude cannot take a shortcut
in either gadget since the pits have depth four, and at most two boxes can be sent downward from the gadget above.
Note: To conserve space, the leftmost 7 columns are omitted from the rightmost four images in the fall-through.

122

33rd Canadian Conference on Computational Geometry, 2021

**

*

*
*

*
*

⋮ ⋮ ⋮

* *
*

*

*

*

⋮ ⋮ ⋮

* *
*

*

*

*

⋮ ⋮ ⋮

* *
*

*

*

*

⋮ ⋮ ⋮

*
*

*

*

*

⋮ ⋮ ⋮

* *
*

*

*
*

*
*

*
*

*
*

*
*

*
*

⋮ ⋮ ⋮

* *
*

*

*
*

*
*

⋮ ⋮ ⋮

* *
*

*

*
*

*
*

⋮ ⋮ ⋮

*

*

(a) Drop-down gadget with blocks. The Dude enters on the left (top-left) and picks-up and drops the top block twice, so
that it falls down into the pit of the gadget below. Then they exit on the right (top-right). Re-entering (bottom-right), they
pick-up and drop the three blocks to form a staircase on the target positions (*), and exit on the left (bottom-left).

*

*

*

*
*

*

*

*

⋮ ⋮ ⋮

* *
*

*
*

*

*

*

*
*

*

*

*

⋮ ⋮ ⋮

* *
*

*
*

*

*

*

*
*

*

*

*

⋮ ⋮ ⋮

* *
*

*
*

*

*

*

*
*

*

*

*

⋮ ⋮ ⋮

* *
*

*
*

*

*

*

⋮ ⋮ ⋮

* *
*

*
*

*

*

*

*
*

*

*

*

⋮ ⋮ ⋮

* *
*

*
*

*

*

*

*
*

*

*

*

⋮ ⋮ ⋮

* *
*

*
*

*

*

*

*
*

*

*

*

⋮ ⋮ ⋮

* *
*

*
*

*

*

*

*
*

(b) Fall-through gadget with blocks. The Dude enters on the left, and to proceed they must pick up and drop blocks into
the pit. If a surplus block is in the pit when they enter (as illustrated), then there will be an additional block that can be
picked-up and dropped as a surplus block into the gadget below. The Dude then exits the gadget (top-right). Re-entering
(bottom-right), they proceed to the exit on the left in the same way as in the drop-down gadget.

Figure 12: Block gadgets. The drop-down (top) and fall-through (bottom) gadgets for BlockDude and Block-
Duderino. In both cases, the images illustrate the gadget for a positive literal instance, and all crates are blocks.
The initial states are shown in the top-left corner, and the remaining images illustrate how the Dude can traverse the
gadget left-to-right and send a surplus crate downward, then traverse right-to-left. The Dude cannot take a shortcut
in either gadget since the pits have depth six, and at most four blocks can be sent down from the gadget above.

123

CCCG 2021, Halifax, Canada, August 10–12, 2021

6 Final Remarks

We have shown that 8 decision problems are NP-hard,
including one that models Block Dude. It remains open
which are in NP (and hence NP-complete), and which
are PSPACE-hard (and hence PSPACE-complete).

• CrateDude and CrateDuderino are the best
candidates for being PSPACE-complete. The re-
cent motion planning framework in Lynch’s PhD
thesis [24] (see also [7, 6]) could provide a path-
way to this result, although normal gravity seems
to make that route more challenging. A more mod-
est goal is to establish the existence of levels that
require exponentially many moves to solve. This
would show that the most natural certificate (i.e.
the sequence of moves) is insufficient for establish-
ing NP membership (e.g. see [16]).

• BoxDude and BoxDuderino seem to be the best
candidates for NP-completeness. This is because
boxes cannot move up, so their y-position is a non-
renewable resource, which is a hallmark of NP.

6.1 Nomenclature: Dude vs Push

A significant drawback to our exposition is that the
Dude-based decision problem names do not fit into the
standard Push-based nomenclature. One reason for this
departure was to allow multiple types of movable objects
(e.g. CrateDude includes boxes, blocks, and blox) at
once; this is not easily supported by Push notation.
However, we are pacifists, not conscientious objectors,
so community members should feel free to introduce ter-
minology like Lift-1NG for BlockDude, where 1NG
denotes lifting one block at a time with normal gravity.

6.2 Open Problems

Besides the obvious open problems listed earlier, future
research can consider other types of movable objects in
the presence of normal gravity from a side perspective.

• Objects that slide horizontally when pushed. This
would be a PushPush-style problem, but with
a different physical model. We mention that ice
blocks are used in the side-view game in the NES
game Fire ’n Ice (1993) with normal gravity.

• Objects that can be pulled. See Section 1.3 for a
discussion of Pull?-1FG with Dig Dug gravity.

• Objects that can be moved as if they were pocketed.
When the player picks up a box in Loader Larry
(1995), they carry it in the same cell as their avatar,
as if it were placed in their pocket (see Figure 13).

We also note that the Dude never needs to fall more
than three cells at a time in our reduction. Limiting

(a) Before pocketing the object. (b) After pocketing the object.

Figure 13: Pocket carrying from Larry Loader (1985).

the Dude’s ability to fall only from a height of one may
be an interesting problem to investigate, although that
would put the Dude in the running for “the weakest
video game character” worldwide, which would surely
rattle those Spelunker (1983) fans and their used game
bins [2] — ah, look at me. I’m ramblin’ again.

6.3 Acknowledgements

We thank the anonymous referees for their helpful (and
humorous) comments, which were used to significantly
improve the paper. Two referees requested more Big
Lebowski references; the authors were happy to abide.

References

[1] Google Scholar. scholar.google.com/scholar?q=sokoban,
2021.

[2] 1983parrothead. Famicom / NES Spelunker.
knowyourmeme.com/memes/fc-nes-spelunker, 2010.

[3] J. Ani, S. Asif, E. D. Demaine, Y. Diomidov, D. H. Hen-
drickson, J. Lynch, S. Scheffler, and A. Suhl. Pspace-
completeness of pulling blocks to reach a goal. J. Inf.
Process., 28:929–941, 2020.

[4] D. Ashlock and J. Schonfeld. Evolution for automatic
assessment of the difficulty of Sokoban boards. In
IEEE Congress on Evolutionary Computation, pages 1–
8, 2010.

[5] J. Culberson. Sokoban is PSPACE-complete. In Pro-
ceedings of the 1st International Conference on Fun
with Algorithm, pages 65–76, 1998.

[6] E. D. Demaine, I. Grosof, J. Lynch, and M. Rudoy.
Computational complexity of motion planning of a
robot through simple gadgets. In H. Ito, S. Leonardi,
L. Pagli, and G. Prencipe, editors, 9th International
Conference on Fun with Algorithms, FUN 2018, June
13-15, 2018, La Maddalena, Italy, volume 100 of
LIPIcs, pages 18:1–18:21. Schloss Dagstuhl - Leibniz-
Zentrum für Informatik, 2018.

[7] E. D. Demaine, D. H. Hendrickson, and J. Lynch. To-
ward a general complexity theory of motion planning:
Characterizing which gadgets make games hard. In
T. Vidick, editor, 11th Innovations in Theoretical Com-
puter Science Conference, ITCS 2020, January 12-14,
2020, Seattle, Washington, USA, volume 151 of LIPIcs,
pages 62:1–62:42. Schloss Dagstuhl - Leibniz-Zentrum
für Informatik, 2020.

124

33rd Canadian Conference on Computational Geometry, 2021

[8] E. D. Demaine and M. Hoffmann. Pushing blocks is
np-complete for noncrossing solution paths. In Proc.
13th Canad. Conf. Comput. Geom, pages 65–68, 2001.

[9] Detached Solutions. Puzzpack homepage.
www.detachedsolutions.com/puzzpack, 2001.

[10] D. Dor and U. Zwick. Sokoban and other motion plan-
ning problems. Computational Geometry, 13(4):215 –
228, 1999.

[11] M. Forĭsek. Computational complexity of two-
dimensional platform games. In FUN, 2010.

[12] E. Friedman. Pushing blocks in gravity is NP-hard.

[13] E. Friedman. Problem of the month (March 2000).
web.archive.org/web/20190218043712/www2.stetson.edu
/˜efriedma/mathmagic/0300.html, 2000.

[14] M. Fryers and M. T. Greene. Sokoban, 1995.

[15] A. Greenblatt, O. Hernandez, R. A. Hearn, Y. Hou,
H. Ito, M. J. Kang, A. Williams, and A. Winslo. Turn-
ing around and around: Motion planning through thick
and thin turnstiles. In CCCG, 2021.

[16] A. Greenblatt, J. Kopinsky, B. North, M. Tyrrell, and
A. Williams. Mazezam levels with exponentially long
solutions. In 20th Japan Conference on Discrete and
Computational Geometry, Graphs, and Games (JCD-
CGGG 2017), pages 109–110, 2017.

[17] Harvard CS50. Problem: Blockdude. docs.cs50.net/
2016/ap/problems/blockdude/blockdude.html, 2016.

[18] R. A. Hearn and E. D. Demaine. Pspace-completeness
of sliding-block puzzles and other problems through the
nondeterministic constraint logic model of computa-
tion. Theor. Comput. Sci., 343(1–2):72–96, Oct. 2005.

[19] M. Hoffmann. Push-* is NP-hard. In CCCG, 2000.

[20] A. Junghanns and J. Schaeffer. Sokoban: Improving
the search with relevance cuts. Journal of Theoretical
Computing Science, 252:151–175, 1999.

[21] A. Junghanns and J. Schaeffer. Sokoban: Enhanc-
ing general single-agent search methods using domain
knowledge. Artificial Intelligence, 129:219–251, 2001.

[22] J. Kaplowitz. ‘Block Dude’ sweeps calcu-
lator gaming awards sixteenth year straight.
thehardtimes.net/harddrive/block-dude-sweeps-calc
ulator-gaming-awards-sixteenth-year-straight, 2018.

[23] B. Kartal, N. Sohre, and S. J. Guy. Data driven sokoban
puzzle generation with Monte Carlo tree search. In Con-
ference on Artificial Intelligence and Interactive Digital
Entertainment (AIIDE), 2016.

[24] J. R. Lynch. A framework for proving the computational
intractability of motion planning problems. PhD thesis,
MIT, 9 2020. dspace.mit.edu/handle/1721.1/129205.

[25] NuclearHydrargyrum. Block Dude full
game: 7 minutes, 43.640 seconds [WR].
www.youtube.com/watch?v=-YHLzswiEks, 2020.

[26] A. G. Pereira, M. Ritt, and L. S. Buriol. Optimal
sokoban solving using pattern databases with specific
domain knowledge. Artificial Intelligence, 227:52 – 70,
2015.

[27] V. Polishchuk. The box mover problem. In CCCG,
2004.

[28] J. Potma. An exponential construction for Sokoban.
Bachelor’s thesis, 2018.

[29] W. J. Savitch. Relationships between nondeterministic
and deterministic tape complexities. Journal of Com-
puter and System Sciences, 4(2):177 – 192, 1970.

[30] T. J. Schaefer. The complexity of satisfiability prob-
lems. In Proceedings of the Tenth Annual ACM Sym-
posium on Theory of Computing, STOC ’78, page
216–226, New York, NY, USA, 1978. Association for
Computing Machinery.

[31] B. Sterner. Puzzpack v2.0. www.ticalc.org/archives/
files/fileinfo/102/10289.html.

[32] B. Sterner. I am Brandon Sterner, the creator of
Block Dude . . . from the PuzzPack for TI-83+. AMA.
www.reddit.com/r/IAmA/comments/13ozy1/i am
brandon sterner the creator of block dude, 2012.

[33] Students for a Democratic Society. Port Huron State-
ment. www2.iath.virginia.edu/sixties/HTML docs/
Resources/Primary/Manifestos/SDS Port Huron.html,
1962.

[34] M. O. Suleman, F. Syed, T. Syed, S. Arfeen, S. I.
Behlim, and B. Mirza. Generation of sokoban stages us-
ing recurrentneural networks. International Journal of
Advanced Computer Science and Applications, 8, 2017.

[35] J. Taylor, I. Parberry, and T. Parsons. Comparing
player attention on procedurally generated vs. hand
crafted Sokoban levels with an auditory stroop test. In
Foundations of Digital Games (FDG), 2015.

[36] The IT Law Wiki. Tetris Holding v. Xio Interactive.
itlaw.wikia.org/wiki/Tetris Holding v. Xio Interactive,
2012.

[37] Thinking Rabbit. History of Sokoban.
sokoban.jp/history.html, 2021.

[38] R. Uehara. 日の目を見なかった問題たち その2
[Problems that didn’t see the light of day Part 2].
www.jaist.ac.jp/ uehara/etc/la/99/index.html, 1999.

[39] G. Viglietta. Gaming is a hard job, but someone has to
do it! Theory of Computing Systems, 54:595–621, 2014.

[40] Wikipedia. (倉庫番) — Wikipedia, the free encyclope-
dia. ja.wikipedia.org/w/index.php?title=%E5%80%89
%E5%BA%AB%E7%95%AA&oldid=80549687, 2020.

[41] Wikipedia. Port Huron Statement. en.wikipedia.org/
wiki/Port Huron Statement, 2021.

[42] A. Zich. Block Dude. azich.org/blockdude.

125

CCCG 2021, Halifax, Canada, August 10–12, 2021

Flood Risk Analysis on Terrains

Pankaj K. Agarwal∗

Abstract

An important problem in terrain analysis is modeling how water flows across a terrain and creates floods by filling
up depressions. This talk discusses a number of flood-risk related problems: Given a terrain T, represented as
a triangulated xy-monotone surface, a rain distribution R, and a volume of rain V, determine which portions of
T are flooded and how water flows across T. Efficient algorithms are presented for flood-risk analysis under both
single-flow-direction (SFD) as well as multi-flow-directions (MFD) models – in the former, water at a point can flow
along one downward slope edge while in the latter, it can flow along multiple downward slope edges; the latter more
accurately represents flooding events, but it is computational more challenging. These algorithms are also extended
to handle uncertainty in terrain data, which must be incorporated into the terrain analysis.

About the Speaker

Prof. Agarwal earned his PhD in Computer Science from the Courant Institute of Mathematical Sciences at New York
University. He joined Duke University in 1989 where he is currently the RJR Nabisco Professor of Computer Science
and Mathematics. He served as the Chair of the Department of Computer Science 2004-10 and 2017-20. His research
interests include geometric computing, spatial databases, ecological modeling, geographic information systems, sensor
networks, computational molecular biology, and robotics. A Sloan Fellow, an ACM Fellow, and a National Young
Investigator, Dr. Agarwal has authored four books and more than four hundred research articles. He serves or has
served on the editorial boards of various journals and on the advisory boards of many institutes and centers.

∗Duke University

126

CCCG 2021, Halifax, Canada, August 10–12, 2021

Automatically Testing Containedness between Geometric Graph Classes
defined by Inclusion, Exclusion and Transfer Axioms

Hannes Frey ∗ Lucas Böltz †

Abstract

We study classes of geometric graphs which all corre-
spond to the following structural characteristic. For
each instance of a vertex set drawn from a universe of
possible vertices, each pair of vertices is either required
to be connected, forbidden to be connected or existence
or non-existence of an edge is undetermined. The condi-
tions which require or forbid edges are universally quan-
tified predicates defined over the vertex pair, and op-
tionally over existence or non-existence of another edge
originating at the vertex pair. We consider further two
operations for symmetrizing such graph classes by ei-
ther removing directed edges where the reverse edge is
missing or by adding the missing reverse edges. We de-
rive and prove correctness of a logical expression which
is a necessary and sufficient condition for containedness
relations between graph classes which are described this
way. We apply the proposed method on classes of geo-
metric graphs which are used as theoretical wireless net-
work graph models. The models are constructed from
three base class types and intersection combinations of
them, with some considered directly and some consid-
ered in the two symmetrized variants.

1 Introduction

In this paper we study for a specific type of axiomat-
ically described graphs how to prove containedness
between geometric graph classes automatically. The
method is illustrated with simple geometric graph mod-
els used in theoretical wireless network research. The
method in general is applicable to any geometric graph
class which can be described using a class of axioms
containing inclusion conditions, which enforce the exis-
tence of an edge between two vertices, exclusion condi-
tions, which prohibit the existence of an edge between
two vertices and transfer conditions, which enforce the
existence of edges between two vertices depending on ex-
istence of other edges originating from the two vertices
to be connected. The axioms are depending on proper-
ties of the two vertices (inclusion, exclusion) or the three
vertices (transfer) but not on the remaining vertices of
the vertex set. For any two vertices where neither an

∗University of Koblenz-Landau, frey@uni-koblenz.de
†University of Koblenz-Landau, boeltz@uni-koblenz.de

edge is enforced or prohibited by the inclusion, exclusion
or transfer conditions, we are free to choose to connect
them by an edge or not.

Furthermore, we consider a class of transformations
on graph classes, which we call simple. A simple trans-
formation maps a source graph on an image graph with
the same vertex set. The existence or nonexistence of
an edge between two vertices in the image graph de-
pends on the existence or nonexistence of the two possi-
ble edges between the two vertices in the source graph.
Such dependencies can be described using Boolean ex-
pressions with two variables. In this work we focus
on three of such simple transformations. The question
we are interested in is to check containedness between
graph classes defined this way: Given two graph classes
A, B which can be described using inclusion, exclusion
and transfer axioms, let C = γ1(A) and D = γ2(B) be
the classes obtained by applying simple graph trans-
formations γ1 and γ2. We want to check if class C is
contained in class D.

The studied problem is not trivial. On the one hand,
the predicates used for enforcing resp. prohibiting edges
can be themselves formulas in a complex theory (in
which properties or norms, costs or distances need to
be specified). On the other hand, in order to prove or
disprove that a class C is contained in a class D = γ2(B)
obtained from class B after applying a (simple) trans-
formation γ2 one would typically need to show that for
every graph H in class C there exists a graph G in class
B such that H = γ2(G), or to give an example of a
graph H in C such that for every graph G in B we have
H 6= γ2(G). A naive logical encoding of such properties
would require quantification over binary relations. In
order to avoid these problems, in this paper we show
how expressions (involving only the predicates for en-
forcing and prohibiting edges and for transfer) for test-
ing containedness between graph classes can be gener-
ated in a systematic way. For this, we prove a small
model theorem. Our results can be regarded as a form
of second-order quantifier elimination [4, 1].

The remainder of the paper is structured as follows.
In the next section we illustrate the concept of the con-
sidered graph classes and transformations with an ex-
ample referring to graph models used in theoretical wire-
less network research. In Section 3 we formally intro-
duce the terminology, in particular notions such as in-

127

33rd Canadian Conference on Computational Geometry, 2021

clusion, exclusion and transfer axioms and graph classes
defined with this type of axioms, as well as the notion
of simple transformations. In Section 4 we propose a
method of generating finite axiomatizations for a class
γ(C) which do not refer to the edges of graphs in C
and prove a small model theorem (i.e. we show that
searching for a counter example with at most four ver-
tices is sufficient for checking containedness relations for
the graph classes and transformations we study in this
paper). We use this for reducing subclass relationship
tests to checking the satisfiability of expressions (built
in a systematic way) which do not refer to the edges
of the graphs but only to the inclusion, exclusion and
transfer predicates used in the description of the classes.
Based on these results we demonstrate in Section 5 how
containedness relations can be proved for the 24 possi-
ble graph classes resulting from the examples discussed
in Section 2. We conclude this contribution in Section 6
and discuss future research directions on extending the
concept of logical graph class definitions and the con-
cept of logical described transformations.

2 Geometric graph models

We illustrate our theory with graph models applied in
theoretical wireless network research. Initial theoretical
studies modeled such networks as unit disk graphs UDG
where network vertices are connected iff their euclidean
distance is less or equal than 1 and vertices are not con-
nected by self-loops. The model was extended in several
directions. We consider the extensions quasi units disk
graphs [2, 5] and directed transmission graphs [3, 8, 7]1.

Quasi unit disk graphs QUDG(r) have a maximum
distance 1 and a minimum distance 0 < r ≤ 1. Two dis-
tinct vertices with euclidean distance less or equal r are
always connected. Two vertices with euclidean distance
greater than 1 are never connected. Any other vertex
pairs can be but need not be connected. To our knowl-
edge, quasi unit disk graphs have only been studied as
undirected graphs. We assume here as well undirected
graphs when we speak of quasi unit disk graphs.

With directed transmission graphs DTG(r) every ver-
tex v has an individual maximum communication dis-
tance r(v) ≤ r for some general r > 0. A directed edge
exists from v to w iff the distance between v and w is
less or equal r(v).

Directed transmission graphs can be made symmetric
by removing all directed edges where the reverse edge is
missing as described in [6, 3] or by adding the missing
reverse edges as it is additionally considered in [3]. We

1Note, we consider a maximum communication distance of 1.
This is no limitation to other work where a maximum communi-
cation distance r > 0 is used instead. Obviously, scaling vertex
positions with 1/r yields the same model with maximum commu-
nication distance 1.

denote these graphs by DTG(r)− and DTG(r)+, respec-
tively.

In the following we describe the defining properties
of the discussed graph models in terms of three base
graph classes and the two discussed basic graph trans-
formations, i.e. either removing directed edges where
the reverse edge is missing or adding the missing reverse
edges.

Definition 1 (The classes CRG, MinDG, MaxDG)
Let 0 < r ≤ 1. We consider a graph G = (V,E).
Let d(u, v) be any metric defined on the vertices
(e.g. Euclidean distance when vertices are located
in Euclidean space). Let E(u, v) be true if uv ∈ E
and false otherwise. Graph G is in the class of min
disk graphs MinDG(r), max disk graphs MaxDG(r),
or connected region graphs CRG iff it satisfies the
following corresponding conditions:

MinDG(r) ∀u, v ∈ V : u 6= v ∧ d(u, v) ≤ r ⇒ E(u, v)

MaxDG(r) ∀u, v ∈ V : d(u, v) > r ⇒ ¬E(u, v)

CRG ∀u, v, w ∈ V : E(u,w) ∧ u 6= v

∧ d(u, v) ≤ d(u,w)⇒ E(u, v)

Definition 2 (Symmetric super- and subgraph)
Given a graph G = (V,E) the graph transformations
G+ = (V,E+) and G− = (V,E−), denoted as symmet-
ric supergraph and symmetric subgraph, respectively,
are defined by:

E+ = {uv : uv ∈ E or vu ∈ E}
E− = {uv : uv ∈ E and vu ∈ E}

When applied on a whole graph class C we write C− and
C+ which means that the transformation is applied on
each graph contained in C.

Obviously, the graph class of unit disk graphs can be
built from the defined base classes as follows

UDG = MinDG(1) ∩MaxDG(1)

where intersection ∩ means that the graph is contained
in both classes, or stated alternatively, has to satisfy the
logical predicates of both classes.

Together with the two basic graph transformations,
the class of quasi unit disk graphs [2, 5] is given by

QUDG(r) = (MinDG(r) ∩MaxDG(1))−

= (MinDG(r) ∩MaxDG(1))+

The latter equality holds since an edge uv is optional iff
vu is optional, i.e. r < d(u, v) = d(v, u) ≤ 1. Obviously,
QUDG(1) is the special case of unit disk graphs UDG.

The class of directed transmission graphs [3, 8, 7] is
given by

DTG(r) = MaxDG(r) ∩ CRG

128

CCCG 2021, Halifax, Canada, August 10–12, 2021

This follows immediately by setting the individual max-
imum communication distance of vertex v to r(v) =
max{d(v, w) : vw ∈ E}.

The symmetric variant considered in [6] has no max-
imum communication distance and is obtained by re-
moving all directed edges where the reverse edge is miss-
ing. It is thus described by CRG−. The symmetric vari-
ants considered in [3] are DTG(r)− and DTG(r)+ in our
graph class notation.

3 Axiomatic description of graph classes

3.1 Inclusion, exclusion and transfer predicates

Generally speaking, in the motivating example we con-
sider graph classes C where each graph G = (V,E) con-
sists of vertices V of a vertex universe Ω and an edge
relation E which satisfies

∀u, v ∈ V : πiC(u, v)⇒ E(u, v) (1)

∀u, v ∈ V : πeC(u, v)⇒ ¬E(u, v) (2)

∀u, v, w ∈ V : E(u,w) ∧ πtC(u, v, w)⇒ E(u, v) (3)

∀u, v, w ∈ V : ¬E(u,w) ∧ πtC(u,w, v)⇒ ¬E(u, v) (4)

We term πiC(u, v), πeC(u, v) and πtC(u, v, w) inclusion,
exclusion, and transfer predicates, respectively. We will
refer to the conditions (1), (2) and (3) as inclusion, ex-
clusion and transfer axioms, accordingly (though con-
ditions (3) and (4) are equivalent, we list both here for
later reference).

We say that a graph G = (V,E) is in class C (and
write G ∈ C) if G satisfies the conditions (1), (2), and
(3). In this case we sometimes also writeG satisfies class
C. If the graph class C consists of all graphs satisfying
a set of axioms of the form (1), (2), and (3), we will say
that C is a graph class described by inclusion, exclusion
and transfer axioms. In this work we will study such
graph classes and transformations on them. We make
the following additional assumptions:

Assumption 1. We assume that the inclusion, ex-
clusion and transfer predicates are determined by the
properties of their arguments u, v, w ∈ V and are in-
dependent of any other vertices in V . We can ensure
this, for instance, by requiring that these predicates are
expressed as quantifier-free formulae over a background
theory.

The inclusion, exclusion and transfer predicates defining
the classes MinDG(r), MaxDG(r) and CRG in Section 2
can be expressed as quantifier-free formulas over a the-
ory in which we can talk about points and distances
between points:

πiC(u, v) := u 6= v ∧ d(u, v) ≤ r
πeC(u, v) := d(u, v) > r

πtC(u, v, w) := u 6= v ∧ d(u, v) ≤ d(u,w)

Assumption 2. We assume the transfer predicates
πtC(u, v, w) to be transitive, i.e.

πtC(u, v, w) ∧ πtC(u,w, x)⇒ πtC(u, v, x)

Obviously, the transfer predicate defining CRG in Sec-
tion 2 is transitive.

Assumption 3. We assume inclusion, exclusion and
transitive transfer predicates to be sound, which means
that they are not contradicting:

∀u, v ∈ V : πiC(u, v)⇒ ¬πeC(u, v)

∀u, v, w ∈ V : πiC(u,w) ∧ πtC(u, v, w)⇒ ¬πeC(u, v)

We term a graph class to be sound in this case.

It is easy to see, as long r1 ≤ r2 any conjunction of the
predicates MinDG(r1), MaxDG(r2) and CRG defined in
Section 2 satisfies the soundness condition.

3.2 Simple graph class transformations

The most general form of a graph transformation γ is a
mapping which transfers a given graph G into a graph
H. A graph transformation applied on a graph class C
results in graph class γ(C) which consists of all graphs
H for which there exists a graph G ∈ C with H = γ(G).

We say a graph transformation γ is vertex preserving
if γ(G) has the same vertex set as G, i.e. given G =
(V,E) the transformation is γ(G) = (V, F) for some F .
Obviously, a vertex preserving transformation γ on the
null graph (∅, ∅) yields the null graph.

We term a vertex preserving graph transformation
simple if there exists a Boolean function in two vari-
ables δ : B2 → B (where B is the two-element Boolean
algebra) such that for all graphs G = (V,E) the trans-
formation γ(G) = (V, F) satisfies

∀u, v ∈ V : F (u, v) = δ(E(u, v), E(v, u))

Symmetric super graph (·)+ and symmetric subgraph
(·)− are obviously simple transformations with boolean
functions ∨ and ∧, respectively. As there are 16 possible
Boolean functions of the form δ : B2 → B, in total
there exist 16 possible vertex preserving simple graph
transformations. In this work we consider three of them,
(·)+, (·)− and the identity (·)id (the identity defined as
δ(x, y) = x).

4 Proving graph class containedness relations

4.1 General properties

As stated by the following lemmas, it is easy to see
that graph classes described by inclusion, exclusion and
transfer axioms which satisfy Assumption 1, and graph
classes obtained by applying a simple transformation on

129

33rd Canadian Conference on Computational Geometry, 2021

such graph classes are closed under induced subgraphs2.
Moreover, given a sound graph class, for each finite ver-
tex set V we can find an edge configuration such that
the given graph class axioms are satisfied.

Lemma 1 Let C be a graph class described by inclusion,
exclusion and transfer predicates satisfying Assumption
1. It holds:

• The null graph (∅, ∅) satisfies C.

• Let G = (V,E) satisfy C. Every subgraph G′ in-
duced by V ′ ⊆ V satisfies C.

Proof. Obviously V = ∅ satisfies any universally quan-
tified condition and thus also conditions (1), (2) and
(3).

For the second statement, consider a graph G =
(V,E) which satisfies C. Conditions (1), (2) and (3)
are satisfied for V . Let V ′ ⊆ V . Consider one of the
conditions defining the class C, say condition (1):

∀u, v : πiC(u, v)⇒ E(u, v).

Let u, v ∈ V ′. Then u, v ∈ V . Assume that πiC(u, v) is
true (relative to the set of edges V ′). By Assumption 1,
the value of this predicate is independent of the other
vertices in the graph, so πiC(u, v) is true also when we
consider the whole set of vertices in G = (V,E). As
G satisfies condition (1), it follows that E(u, v) is true
(i.e. there is an edge from u to v in G). Since E′ =
E ∩ (V ′ × V ′), there is an edge from u to v also in G′.

The same line of argumentation can be used for con-
ditions (2) and (3). This shows that also the subgraph
G′ induced by V ′ satisfies C. �

Remark 1 The first part of Lemma 1 holds for every
graph class which consists of all graphs satisfying a set
of universally quantified axioms.

The second part of Lemma 1 is vacuously true if As-
sumption 3 does not hold, because in this case the graph
class contains only the empty graph which does not have
proper subgraphs.

If Assumption 1 is not satisfied, then the second part
of Lemma 1 does not necessarily hold. Consider for
instance the graph class C described by axioms of the
form (1), (2), and (3), where for all u, v, x:

πiC(u, v) = ∀w((w 6= u ∧ w 6= v)⇒ (E(u,w) ∧ E(w, v)))

πeC(u, v) = false, πtC(u, x, v) = false.

In this graph class, the graph G = ({a, b, c, d, e},
{(a, b), (b, e), (a, d), (d, e)}) satisfies the axioms (1), (2),
and (3), but the subgraph induced by V ′ = {a, b, d, e}
does not satisfy axiom (1).

2Given a graph G = (V,E), the graph G′ induced by V ′ ⊆ V
consists of vertex set V ′ and all edges from E connecting the
vertices in V ′.

Lemma 2 Let C be a graph class defined by inclusion,
exclusion and transfer predicates satisfying Assumption
1 and γ be a vertex preserving graph transformation. It
holds:

• The null graph (∅, ∅) satisfies γ(C).

• If γ is simple and if H = (V, F) satisfies γ(C),
then every subgraph H ′ induced by V ′ ⊆ V satisfies
γ(C).

Proof. The first statement follows immediately:
(∅, ∅) = γ((∅, ∅)) since γ is vertex preserving, and
γ((∅, ∅)) ∈ γ(C) since (∅, ∅) ∈ C with Lemma 1.

For the second statement, consider a graph H =
(V, F) which satisfies γ(C). With γ being vertex pre-
serving, there exists a graph G = (V,E) ∈ C such that
H = γ(G). Let V ′ ⊆ V , H ′ = (V ′, F ′) be the subgraph
of H and G′ = (V ′, E′) be the subgraph of G induced
by V ′, respectively.

Let δ be the boolean function of the simple transfor-
mation γ. For all u, v ∈ V ′ holds: uv is an edge of γ(G′)
iff

δ(E′(u, v), E′(v, u))⇔ δ(E(u, v), E(v, u))

⇔ F (u, v)⇔ F ′(u, v) (5)

This implies H ′ = γ(G′), and thus H ′ ∈ γ(C), since
G′ ∈ C with Lemma 1. �

Remark 2 The second part of Lemma 2 does not nec-
essarily hold if the transformation γ is not simple. Con-
sider for instance the transformation defined by

∀u, v
(
φ(u, v)→ F (u, v)

)
,

∀u, v
(
¬φ(u, v)→ ¬F (u, v)

)

where φ(u, v) := ∀w
(

(u 6= w ∧ v 6= w)→
(E(u,w) ∧ E(w, v))

)
.

Let C be a graph class defined by inclusion, exclu-
sion and transfer axioms containing the graph G =
({a, b, c, d}, {(a, b), (b, d)}) due to the fact that in this
specific graph πiC(a, b) = πiC(b, d) = true, πeC(x, y) = true
for all other pairs of vertices, and πtC(u, v, w) is false
everywhere. Then H = γ(G) = ({a, b, c, d}, ∅) ∈ γ(C).
However, the subgraph H ′ of H induced by V ′ = {a, b, d}
is not in γ(C): Assume there exists a graph G′ ∈ C
with H ′ = γ(G′). Since G′ ∈ C, due to the fact that
πiC(a, b) = πiC(b, d) = true, πeC(x, y) = true for all other
pairs of vertices, and πtC is false everywhere, the set of
edges of G′ must be E = {(a, b), (b, d)}. But then in this
case ∀w(a 6= w ∧ d 6= w → E(a,w) ∧ E(w, d)) holds, so
in γ(G′), an edge (a, d) should exist. However, this edge
is missing in H ′.

130

CCCG 2021, Halifax, Canada, August 10–12, 2021

Lemma 3 Let C be a graph class defined over sound
conditions (Assumption 3). For each finite set V ⊆ Ω
at least one graph G = (V,E) exists which satisfies C.

Proof. Consider any such set V . Set E(u, v) = true
if πiC(u, v) holds or if there exist a w ∈ V such that
πiC(u,w) ∧ πtC(u, v, w) holds. Otherwise set E(u, v) =
false. This configuration obviously satisfies (1) and (3),
and does not contradict (2) since the conditions are
sound. Thus, the such defined graph G = (V,E) satis-
fies C. �

Note that if C is a graph class defined using inclu-
sion, exclusion and transfer axioms and γ is a simple
vertex preserving transformation, it is not immediate
that γ(C) can also be described by inclusion, exclusion
and transfer axioms.

In Section 4.2 we show that when γ ∈
{(·)id, (·)−, (·)+} we can describe the properties of
the edge-relation F of graphs H = (V, F) in γ(C) using
axioms in which only F and the inclusion, exclusion and
transfer predicates πiC(u, v), πeC(u, v) and πtC(u, v, w) are
used.

4.2 Axiomatization for γ(C)

We next show the connection between edge configura-
tions F (u, v) for a graph being in a class transformed
by (·)id, (·)− or (·)+ and the inclusion, exclusion and
transfer predicates of that class.

In this subsection and the following ones, all proofs
are given for (·)id and (·)+ transformation. The proofs
for (·)− are omitted. They are basically symmetric to
the proofs for (·)+.

Lemma 4 Let B be a sound graph class described by
inclusion, exclusion and transitive transfer predicates
πiB(u, v), πeB(u, v), πtB(u, v, w), respectively. Let γ be any
of the vertex preserving, simple graph transformations
in {(·)id, (·)−, (·)+}. A graph H = (V, F) is in class
γ(B) iff for every u, v ∈ V the edge relation F (u, v)
satisfies the implications depicted in Table 1 for that
transformation.

Proof. The proof for (·)id is trivial. By definition, H ∈
γ(B) if and only if there exists a graph G ∈ B such that
H = γ(G) = G. But this is the case if and only ifH ∈ B.
Thus, in this case γ(B) = B, so γ(B) is described by the
same axioms as B.

For (·)+, two implication directions “⇒” and “⇐”
have to be shown.

⇒: With H = (V, F) ∈ B+ there exists a graph G =
(V,E) ∈ B with H = G+. We consider the cases F (u, v)
and ¬F (u, v) for each u, v ∈ V .

γ Edge inclusion and exclusion implications µ(γ)

H ∈ B F (u, v) ⇒ ¬πe
B(u, v) 3

¬F (u, v) ⇒ ¬πi
B(u, v) ∧ ∀w :

¬F (u,w) ∨ ¬πt
B(u, v, w)

H ∈ B− F (u, v) ⇒ F (v, u) ∧ ¬πe
B(u, v) ∧ ∀w :

¬πe
B(u,w) ∨ ¬πt

B(u,w, v) 4

¬F (u, v) ⇒ (¬πi
B(u, v) ∧ ∀x : ¬F (u, x)∧

¬πi
B(u, x) ∨ ¬πt

B(u, v, x))∨
(¬πi

B(v, u) ∧ ∀y : ¬F (v, y)∧
¬πi

B(v, y) ∨ ¬πt
B(v, u, y))

H ∈ B+ F (u, v) ⇒ (¬πe
B(u, v) ∧ ∀x : F (u, x)∧ 4

¬πe
B(u, x) ∨ ¬πt

B(u, x, v))∨
(¬πe

B(v, u) ∧ ∀y : F (v, y)∧
¬πe

B(v, y) ∨ ¬πt
B(v, y, u))

¬F (u, v) ⇒ ¬F (v, u) ∧ ¬πi
B(u, v) ∧ ∀w :

¬πi
B(u,w) ∨ ¬πt

B(u, v, w)

Table 1: The expressions implied by edge existence and
non-existence under the considered vertex preserving
simple graph class transformations. Quantification is
over all vertices V of the considered graph H = (V, F).
The maximum size of a minimum witness graph to find
a counter example is expressed by µ(γ).

Consider ¬F (u, v) first. Definition of G+ implies that
¬E(u, v) has to be satisfied. With graph class axiom (1)
this implies

¬πiB(u, v) (6)

Moreover, graph class axiom (3) implies that for all
w ∈ V the expression ¬E(u,w)∨¬πtB(u, v, w) has to be
satisfied. Since ¬E(u,w) implies ¬πiB(u,w) with graph
class axiom (1) we have that

∀w : ¬πiB(u,w) ∨ ¬πtB(u, v, w) (7)

has to be satisfied.
With (6) and (7) and as well the fact that the trans-

formation (·)+ is symmetric, i.e. ¬F (u, v) ⇔ ¬F (v, u),
we get the edge exclusion implication

¬F (u, v)⇒ ¬F (v, u) ∧ ¬πiB(u, v)

∧∀w : ¬πiB(u,w) ∨ ¬πtB(u, v, w)

as depicted for B+ in Table 1.
Consider F (u, v) next. Definition of G+ implies that

E(u, v) ∨ E(v, u) has to be satisfied. Consider first
that E(u, v) is satisfied. Graph class axiom (2) implies
¬πeB(u, v). Moreover, graph class axiom (4) implies that
for all x ∈ V the expression E(u, x)∨¬πtB(u, x, v) holds.
E(u, x) implies ¬πeB(u, x) with graph class axiom (2). In
addition, E(u, x) implies F (u, x) since ux ∈ G+ requires
only ux ∈ E or xu ∈ E. Thus, we have that

¬πeB(u, v) ∧ ∀x : F (u, x) ∧ ¬πeB(u, x) ∨ ¬πtB(u, x, v) (8)

has to be satisfied.

131

33rd Canadian Conference on Computational Geometry, 2021

The case that E(v, u) is satisfied is symmetric to the
case that E(u, v) is satisfied. With the same arguments
follows that

¬πeB(v, u) ∧ ∀y : F (v, y) ∧ ¬πeB(v, y) ∨ ¬πtB(v, y, u) (9)

has to be satisfied.
With (8) and (9) we get the edge inclusion implication

F (u, v)⇒
(¬πeB(u, v)∧∀x : F (u, x) ∧ ¬πeB(u, x) ∨ ¬πtB(u, x, v))∨
(¬πeB(v, u)∧∀y : F (v, y) ∧ ¬πeB(v, y) ∨ ¬πtB(v, y, u))

as depicted for B+ in Table 1.
⇐: Assume now that we have a graph H = (V, F)

such that the edge inclusion and exclusion implications
depicted for B+ in Table 1 are satisfied. We construct a
graph G = (V,E) such that G ∈ B and G+ = H, which
then implies H ∈ B+.

Construction of G = (V,E) is done in two steps, a
preprocessing and a postprocessing step. We begin with
a configuration, where all E(u, v) are set to true. First
we keep those E(u, v) to true resp. set those E(u, v) to
false which are enforced or forbidden due to the graph
class axioms of class B. We then set the remaining edges
E(u, v) which have not been determined in preprocess-
ing accordingly such that G still satisfies B and at the
same time satisfies G+ = H.

Preprocessing (forbidden edges): In order to satisfy
graph class axiom (2), for all u, v ∈ V which satisfy
πeB(u, v), we set E(u, v) to false; in this case, in order
to satisfy also axiom (3), we set E(u, y) to false for all
y ∈ V such that πtB(u, v, y) is satisfied.

Preprocessing (enforced edges): In order to satisfy
graph class axiom (1), for all u, v ∈ V which satisfy
πiB(u, v), we set E(u, v) to true; in this case, in order
to satisfy also axiom (3), we set E(u, x) to true for all
x ∈ V for which πtB(u, x, v) is satisfied. Soundness of
inclusion, exclusion and transfer predicates assures that
we do not set any E(u, v) and E(u, y) to true which we
have set to false before.

Postprocessing (omitted optional edges): After the
preprocessing we continue as follows. For ¬F (u, v) we
have by exclusion implication for B+ in Table 1 that

¬πiB(u, v) ∧ ∀w : ¬πiB(u,w) ∨ ¬πtB(u, v, w)

is satisfied. Assume E(u, v) was set to true in the pre-
processing. Since ¬πiB(u, v) holds, E(u, v) could only
be set to true due to a w such that πiB(u,w) and
πtB(u, v, w) holds. This, however, is not possible since
¬πiB(u,w) ∨ ¬πtB(u, v, w) holds for all w. Thus, E(u, v)
was not set to true in the preprocessing. It was either
already set to false, or if not, we can set it to false in
the postprocessing.

If we set E(u, v) to false in the postprocessing, we
have to assure that graph class axiom (3) remains valid.

We have to set E(u,w) to false for all w ∈ V which
satisfy πtB(u, v, w). Assume any such w was set to true
in the preprocessing. Since πtB(u, v, w) holds, the pre-
processing then would have set E(u, v) to true which
is a contradiction. Thus, all E(u,w) which satisfy
πtB(u, v, w) can be set to false, if they have not already
been set to false in the preprocessing.

Moreover, the exclusion implication also contains
¬F (u, v)⇒ ¬F (v, u). Thus, also

¬πiB(v, u) ∧ ∀w : ¬πiB(v, w) ∨ ¬πtB(v, u, w)

is satisfied. Analogously we have that E(v, u) can be
set to false if it was not already set to false in the pre-
processing step.

Thus, after postprocessing for each ¬F (u, v) in H we
can set E(u, v) and E(v, u) to false while satisfying the
graph class axioms for B. Since E(u, v) and E(v, u) are
false, the edge uv will not be present in G+.

Postprocessing (added optional edges): For F (u, v) we
have by inclusion implication for B+ in Table 1 that

(¬πeB(u, v) ∧ ∀x : F (u, x) ∧ ¬πeB(u, x) ∨ ¬πtB(u, x, v))∨
(¬πeB(v, u) ∧ ∀y : F (v, y) ∧ ¬πeB(v, y) ∨ ¬πtB(v, y, u))

is satisfied.
Assume first that ¬πeB(u, v)∧∀x : F (u, x)∧¬πeB(u, x)∨

¬πtB(u, x, v) holds. Assume E(u, v) was already set to
false before. This could not happen during the pre-
processing. In fact, πeB(u, v) is not satisfied, and for
all x ∈ V which satisfy πeB(u, x), the transfer predicate
πtB(u, x, v) is not satisfied.

Thus, E(u, v) must have been set to false in the
postprocessing step where optional edges were omit-
ted. Since F (u, v) holds, E(u, v) was not set to false
in that step in order to omit F (u, v). It could thus only
be set to false since another edge F (u,w) was omit-
ted. In this case E(u,w) is set to false. However, since
F (u,w)∨¬πtB(u,w, v) holds for all w, edge E(u, v) was
not set to false in this case either.

Thus, in none of the previous steps E(u, v) was set
to false and we can keep it true without violating the
graph class axioms. Since E(u, v) = true, edge uv will
be present in G+.

Assume next that ¬πeB(v, u)∧∀y : F (v, y)∧¬πeB(v, y)∨
¬πtB(v, y, u) holds. With the assumed ¬F (u, v) ⇒
¬F (v, u) we have F (v, u) = true since F (u, v) is as-
sumed. Thus, the situation is symmetric to the previous
case. It follows analogously that in none of the previous
steps E(v, u) was set to false and we can keep it true
without violating the graph class axioms. Again, since
E(v, u) = true, edge vu will be present in G+. �

4.3 Minimal counter examples

We are interested in solving the following problem: As-
sume that we have two graph classes, A and B, defined

132

CCCG 2021, Halifax, Canada, August 10–12, 2021

by inclusion, exclusion and transfer axioms, and two
transformations γ1 and γ2. We are interested in check-
ing whether γ1(A) ⊆ γ2(B).

In general, A 6⊆ γ(B) iff there exists a graph G =
(V,E) ∈ A which is not contained in γ(B). We term
such graph a witness graph. Moreover, we term G a
minimum witness graph if |V | ≤ |V ′| for all witness
graphs G′ = (V ′, E′). In general, a minimum witness
graph is not necessarily unique.

The size of a minimum witness graph depends on
the transformation γ and the transformed class B. As
summarized in the next theorem, for the simple vertex
preserving transformations (·)id, (·)−, and (·)+, with
Lemma 4 we get upper bounds on the number of ver-
tices of a minimum witness graph. We term this value
the maximum size of a minimum witness graph µ(γ).

Theorem 5 Let γ1 and γ2 be any of the vertex preserv-
ing simple graph transformations (·)id, (·)−, and (·)+.
Let A and B be graph classes defined by inclusion, exclu-
sion and transfer predicates which satisfy Assumption
1, 2 and 3. Let µ(γ2) as defined in Table 1 for trans-
formation γ2. γ1(A) 6⊆ γ2(B) iff there exists a graph
G = (V,E) with V ⊆ Ω and |V | ≤ µ(γ2) such that
G ∈ γ1(A) and G 6∈ γ2(B).

Proof. With γ1(A) 6⊆ B follows that there exists a
graph G = (V,E) with V ⊆ Ω such that G ∈ γ1(A)
and G 6∈ B. Consider such graph G = (V,E) which is
minimal in |V |. Assume |V | > 3.

Since G 6∈ B, Lemma 4 implies that there exist
u0, v0, x0 ∈ V such that the following expression is sat-
isfied

[F (u0, v0) ∧ πeB(u0, v0)] (10)

∨[¬F (u0, v0) ∧ (πiB(u0, v0) ∨ F (u0, x0) ∧ πtB(u0, v0, x0))]

Since |V | > 3 there exists a y0 ∈ V which differs
from u0, v0, and x0. Consider the subgraph G′ induced
by V \ {y0}. Edge u0v0 exists in G′ iff it exists in G.
Moreover, edge u0x0 exists in G′ iff it exists in G. Thus,
expression (10) also holds for G′ and thus G′ is not
contained in B.

However, with Lemma 2 the subgraph G′ induced by
V \ {y0} is a graph in γ1(A). Since G was assumed to
be minimal in |V |, graph G′ must be contained in B
(otherwise G would not be a minimum witness graph),
a contradiction.

With γ1(A) 6⊆ B+ follows that there exists a graph
G = (V,E) with V ⊆ Ω such that G ∈ γ1(A) and G 6∈
B+. Consider such graph G = (V,E) which is minimal
in |V |. Assume |V | > 4.

Since G 6∈ B+, Lemma 4 implies that there exist
u0, v0, x0, y0 ∈ V such that the following expression is

satisfied

[F (u0, v0) ∧ (πeB(u0, v0)

∨ (¬F (u0, x0) ∨ πeB(u0, x0)) ∧ πtB(u0, x0, v0))

∧ (πeB(v0, u0)

∨ (¬F (v0, y0) ∨ πeB(v0, y0)) ∧ πtB(v0, y0, u0))]

∨ [¬F (u0, v0) ∧ (F (v0, u0)

∨ πiB(u0, v0) ∨ πiB(u0, x0) ∧ πtB(u0, v0, x0))] (11)

Since |V | > 4 there exists a z0 ∈ V which differs from
u0, v0, x0 and y0. Consider the subgraph G′ induced
by V \ {z0}. Edge u0v0 exists in G′ iff it exists in G.
Moreover, edges u0x0 and v0y0 exist in G′ iff they exist
in G. Thus, expression (11) also holds for G′ and thus
G′ is not contained in B+.

However, with Lemma 2 the subgraph G′ induced by
V \ {z0} is a graph in γ1(A). Since G was assumed to
be minimal in |V |, graph G′ must be contained in B+

(otherwise G would not be a minimum witness graph),
a contradiction. �

4.4 Expressions for proving subclass relations

In this subsection we consider different combinations of
existing and non existing edges and provide formulas
for the transformations (·)id, (·)−, and (·)+ such that if
these formulas are true, then the considered combina-
tion of existing and non existing edges is not possible
for these transformations.

A combination of these formulas in negated and non-
negated form yields an expression for checking if one
graph class is contained in another one or not. If not,
the expression yields axioms for a counter example.

Theorem 6 Let γ1 and γ2 be two of the vertex preserv-
ing simple graph transformations (·)id, (·)−, and (·)+.
Let A and B be graph classes defined by inclusion, ex-
clusion and transfer predicates satisfying Assumptions
1, 2 and 3. Let ρkγ1(A)(·, ·) resp. ρkγ2(B)(·, ·) be the ex-
pressions listed in Table 2 for γ1 and γ2. Moreover, let
µ(γ2) be the maximum size of a minimum witness graph
as defined for γ2 in Table 1. It holds: γ1(A) 6⊆ γ2(B) iff
there exists a graph H = (V, F) with |V | ≤ µ(γ2) such
that

6∨

k=1

¬ρkγ1(A)(S
k, T k) ∧ ρkγ2(B)(S

k, T k) (12)

is satisfied, where Sk and T k are specific subsets Sk ⊆ F
and T k ⊆ V × V \ F as defined in Table 2 and V is the
vertex set of H for each ρkX(·, ·) expression.

Proof. Theorem 5 states that γ1(A) 6⊆ γ2(B) is satis-
fied iff there exists a counter example with size at most
µ(γ2).

133

33rd Canadian Conference on Computational Geometry, 2021

γ Edge inclusion and exclusion implications

(·)id ρ1B({uv}, {∅}) = πe
B(u, v)

ρ2B({∅}, {uv}) = πi
B(u, v)

ρ3B({uv}, {vu}) = ρ1B({uv}, {∅}) ∨ ρ2B({∅}, {vu})
ρ4B({uv}, {uw}) = ρ1B({uv}, {∅}) ∨ ρ2B({∅}, {uw}) ∨ πt

B(u,w, v) ∨ v = w

ρ5B({uv, vu}, {uw, vx}) = ρ4B({uv}, {uw}) ∨ ρ4B({vu}, {vx}) ∨ v = w ∨ u = x

ρ6B({uw, vx}, {uv, vu}) = ρ4B({uw}, {uv}) ∨ ρ4B({vx}, {vu}) ∨ v = w ∨ u = x

(·)+ ρ1
B+ ({uv}, {∅}) = πe

B(u, v) ∧ πe
B(v, u)

ρ2
B+ ({∅}, {uv}) = πi

B(u, v) ∨ πi
B(v, u)

ρ3
B+ ({uv}, {vu}) = true

ρ4
B+ ({uv}, {uw}) = ρ1

B+ ({uv}, {∅}) ∨ ρ2
B+ ({∅}, {uw}) ∨ (πt

B(u,w, v) ∧ πe
B(v, u)) ∨ v = w

ρ5
B+ ({uv, vu}, {uw, vx}) = ρ4

B+ ({uv}, {uw}) ∨ ρ4
B+ ({vu}, {vx}) ∨ (πt

B(u,w, v) ∧ πt
B(v, x, u)) ∨ v = w ∨ u = x

ρ6
B+ ({uw, vx}, {uv, vu}) = ρ4

B+ ({uw}, {uv}) ∨ ρ4
B+ ({vx}, {vu}) ∨ v = w ∨ u = x

(·)− ρ1
B− ({uv}, {∅}) = πe

B(u, v) ∨ πe
B(v, u)

ρ2
B− ({∅}, {uv}) = πi

B(u, v) ∧ πi
B(v, u)

ρ3
B− ({uv}, {vu}) = true

ρ4
B− ({uw}, {uv}) = ρ1

B− ({uw}, {∅}) ∨ ρ2
B− ({∅}, {uv}) ∨ (πt

B(u, v, w) ∧ πi
B(v, u)) ∨ v = w

ρ5
B− ({uv, vu}, {uw, vx}) = ρ4

B− ({uv}, {uw}) ∨ ρ4
B− ({vu}, {vx}) ∨ v = w ∨ u = x

ρ6
B− ({uw, vx}, {uv, vu}) = ρ4

B− ({uw}, {uv}) ∨ ρ4
B− ({vx}, {vu}) ∨ (πt

B(u, v, w) ∧ πt
B(v, u, x)) ∨ v = w ∨ u = x

Table 2: The expressions to be combined line by line as nonnegated form on the left side and negated form on the
right side to test for subclass relations.

u v

u v

u v

u v

u v

u v

u v

w 6= v

Figure 1: Illustration of the used notation. Solid blue
line: uv ∈ G, dashed blue line uv /∈ G, solid green
line: uv ∈ H, dashed green line uv /∈ H, solid red line:
πiB(u, v) holds, dashed red line πeB(u, v) holds, red link
from uw to uv: πtB(u, v, w) holds.

To obtain a graph H such that H ∈ γ1(A),
but H /∈ γ2(B), for the expressions listed in Ta-
ble 2, ρkγ1(A)(S

k, T k) has to be non-satisfiable, but

ρkγ2(B)(S
k, T k) has to be satisfiable. Hereby G = (V,E)

is the graph before considering the graph transforma-
tions and ρkX(Sk, T k) means that it is not possible to
include all edges in Sk, while excluding all edges in T k

Consequently, ¬ρkX(Sk, T k) means that is possible to in-
clude all edges in Sk, while excluding all edges in T k

In the following all possible counterexamples for the
transformations (·)id and (·)+ are considered.

The proof now follows a sequence of cases. We illus-
trate the cases in Fig. 2a and Fig. 2b. The color coding
used in those figures is defined in Fig. 1.

First the (·)id transformation is considered: here first
the case that an edge uv, where the case of a loop with
u = v is possible, can not be included is considered.

This situation occurs if the exclusion predicate πeB(u, v)
is true.

Therefore the corresponding expression in Table 2 is
given by ρ1B({uv}, {∅}) = πeB(u, v) , where T 1 = {∅}
means that no edge has to be explicitly excluded.

The case that an edge uv can not be excluded is sim-
ilar. Also here the case of a loop with u = v is possible.
An edge uv can not be included if the inclusion predi-
cate πiB(u, v) is true.

Therefore the corresponding expression in Table 2 is
given by ρ2B({∅}, {uv}) = πiB(u, v) , where S2 = {∅}
means that no edge has to be explicitly included.

For the (·)id transformation it remains the case that
it is not possible to include an edge uv, while excluding
an edge uw. Obviously it is not possible to include uv
while excluding uw, if it is not possible to include uv or
it is not possible to exclude uw. Furthermore it is not
possible to include the edge uv, while excluding uw, if
the transfer predicate πtB(u,w, v) is true, since the in-
clusion of the edge uv would lead to the inclusion of the
edge uw. Also if v = w excluding uv while including
uw is not possible, since in this case the edge uv has
to be included and excluded at the same time, which
is obviously not possible. Therefore the correspond-
ing expression in Table 2 is given by ρ4B({uv}, {uw}) =
ρ1B({uv}, {∅}) ∨ ρ2B({∅}, {uw}) ∨ πtB(u, v, w) ∨ v = w.

All further combinations of included and excluded
edges that are not possible for the (·)id transformation
lead back to a disjunction of the considered cases.

134

CCCG 2021, Halifax, Canada, August 10–12, 2021

u v

u v

w 6= v u v

x 6= u

u v

(a) ρ1B({uv}, {∅})

u v

u v

w 6= v u v

x 6= u

u v

(b) ρ2B({∅}, {uv})

Figure 2: Counterexamples for including and excluding
a single edge uv.

u

x 6= u

w 6= v

v

u w 6= v

v w 6= v

x 6= uv

u

v

w 6= v u

(a) ρ4B+({uv}, {uw}) and
ρ4B−({uw}, {uv})

x 6= u

u v

w 6= v w 6= v

x 6= u

u v

(b) ρ5B+({uv, vu}, {uw, vx}) and
ρ6B−({uw, vx}, {uv, vu}).

Figure 3: Counterexamples for including and excluding
more than one edge.

Now the(·)+ transformation is considered: an edge
uv can not be included in H if both of the edges uv
and vu can not be included in G. This situation occurs
if for both edges uv and vu the exclusion predicate is
satisfied (see Fig. 2a on the left for the edge uv and on
the right for the edge vu). Therefore, the correspond-
ing expression in Table 2 is given by ρ1B+({uv}, {∅}) =
πeB(u, v) ∧ πeB(v, u).

An edge uv can not be excluded in H if one of the
edges uv and vu can not be excluded in G. This sit-
uation occurs if for one of the edges uv or vu the in-
clusion predicate is satisfied (see Fig. 2b on the left for
the edge uv and on the right for the edge vu). There-
fore, the corresponding expression in Table 2 is given by
ρ2B+({∅}, {uv}) = πiB(u, v) ∨ πiB(v, u). This finishes the
proof for the case (·)id.

The transformation (·)+ yields a symmetric graph,
therefore including uv, while excluding vu is never pos-
sible and consequently ρ3B+({uv}, {vu}) is always true.

Now the case that it is not possible to include an
edge uv, while excluding an edge uw is considered. Ob-
viously it is not possible to include uv while excluding
uw, if it is not possible to include uv or it is not pos-
sible to exclude uw. Furthermore, it is not possible to
include the edge uv, while excluding uw, if the exclusion
predicate πeB(v, u) and the transfer predicate πtB(u,w) is
true, since the exclusion of the edge uv in G would lead
to the exclusion of the edge uv in H and the inclusion
of the edge uv in G would lead to the inclusion of the
edge uw in G and therefore also the edge uw has to be
included in H. Also if v = w, including uv while exclud-
ing uw is not possible, since in this case the edge uv has
to be included and excluded at the same time, which is
obviously not possible (see Fig. 3a on the left). There-
fore the corresponding expression in Table 2 is given by
ρ4B+({uv}, {uw}) = ρ1B+({uv}, {∅}) ∨ ρ2B+({∅}, {uw}) ∨
(πtB(u,w) ∧ πeB(v, u)) ∨ v = w.

The case remains that it is not possible to exclude the
edges uw and vx, while including the edge uv. Obvi-
ously this is not possible, if it is not possible to exclude
the edge uw, while including the edge uv or if it is not
possible to exclude the edge vx, while including the edge
uv. Furthermore, it is not possible to exclude the edges
uw and vx, while including the edge uv if both transfer
predicates πtB(u,w, v) and πtB(v, x, u) are true, since the
inclusion of the edge uv in G would lead to the inclusion
of the edge uw in G and therefore also the edge uw has
to be included in H and the inclusion of the edge vu in
G would lead to the inclusion of the edge vx in G and
therefore also the edge vx has to be included in H. So
both of the edges uv and vu have to be excluded in G,
but then uv has to be excluded in H. Also if v = w
or u = x including uv while excluding uw and vx is
not possible, since in this case the edge uv or the edge
vu has to be included and excluded at the same time,

135

33rd Canadian Conference on Computational Geometry, 2021

which is obviously not possible (see Fig. 3b on the left).
Therefore the corresponding expression in Table 2 is
given by ρ5B+({uv, vu}, {uw, vx}) = ρ4B+({uv}, {uw}) ∨
ρ4B+({vu}, {vx})∨(πtB(u,w, v)∧πtB(v, x, u))∨v = w∨u =
x.

All further combinations of included and excluded
edges that are not possible for the (·)+ transformation
lead back to a disjunction of the considered cases. �

The expression of Theorem 6 simplifies significantly
when testing A− 6⊆ A+ or A+ 6⊆ A− and if inclusion
and exclusion predicates are symmetric, as defined in
the following corollary.

Corollary 1 Let A be a graph class defined by inclu-
sion, exclusion and transfer axioms, satisfying Assump-
tions 1,2 and 3. Let inclusion predicate πiA(u, v) and ex-
clusion predicate πeA(u, v) be symmetric, i.e., πiA(u, v) =
πiA(v, u) and πeA(u, v) = πeA(v, u) for all u, v ∈ Ω.
Let furthermore πiA(u, v) ∧ πtA(u,w, v) ⇒ πiA(u,w) and
πeA(u, v)∧πtA(u, v, w)⇒ πeA(u,w) for all u, v, w ∈ Ω. We
have: A− 6⊆ A+ iff

¬πeA(v, w) ∧ ¬πiA(u, v) ∧ ¬πiA(w, x)∧
πtA(v, u, w) ∧ πtA(w, x, v) (13)

and A+ 6⊆ A− iff

¬πiA(v, w) ∧ ¬πeA(u, v) ∧ ¬πeA(w, x)∧
πtA(v, w, u) ∧ πtA(w, v, x) (14)

is satisfied for some u, v, w, x.

5 Example application

5.1 Manual application of the derived concept

We first illustrate the presented concept manually by
applying it to the graph classes discussed in Section 2.
We use the concept to show that the class (QUDG(r))−

is the same as class (QUDG(r))+ (as already discussed).
Moreover, we apply the concept to show that the classes
(DTG(r))− and (DTG(r))+ studied in the literature
are in fact classes with none being contained in the
other one. Inclusion predicate MinDG(r) and exclusion
predicate MaxDG(r) are obviously symmetric as long as
d(u, v) is symmetric (which we assume for this example).
The class QUDG(r) has inclusion and exclusion but no
transfer predicate, i.e., the transfer predicate is always
false. Thus, for testing (QUDG(r))− 6⊆ (QUDG(r))+

and (QUDG(r))+ 6⊆ (QUDG(r))− neither (13) nor (14)
of Corollary 1 are satisfied. Thus, both inclusions must
be satisfied and we have in fact equality of both graph
classes.

Now the relation between (DTG(r))+ and (DTG(r))−

is considered. Applying Corollary 1 together with

DTG(r) = MaxDG(r)∩CRG (i.e. we have only exclusion
and transfer predicate) we have to check satisfiability of

(¬d(v, w) > r) ∧ (v 6= u ∧ d(v, u) ≤ d(v, w))

∧ (w 6= x ∧ d(w, x) ≤ d(w, v))

for testing (DTG(r))− 6⊆ (DTG(r))+ and

(¬d(v, u) > r) ∧ (¬d(w, x) > r)

∧ (v 6= w ∧ d(v, w) ≤ d(v, u))

∧ (w 6= v ∧ d(w, v) ≤ d(w, x))

for testing (DTG(r))+ 6⊆ (DTG(r))−.
This yields the counterexample d(v, u), d(w, x) ≤

d(v, w) ≤ r, u 6= v, w 6= x, u 6= w and v 6= x which
proves (DTG(r))− 6⊆ (DTG(r))+. As well, this yields
the counterexample d(v, w) ≤ d(v, u), d(w, x) ≤ r,
v 6= w, u 6= w and v 6= x which proves (DTG(r))+ 6⊆
(DTG(r))−. Thus, neither (DTG(r))+ nor (DTG(r))− is
contained in the other class.

Now let’s drop the assumption of the examples in
Section 2 that d(u, v) is a metric. Assume that
d(u, v) = d(v, u) is not required. In this case the
inclusion and exclusion predicate are not necessar-
ily symmetric. Corollary 1 is not applicable. We
have to resort to Theorem 6. The relation be-
tween (QUDG(r))− and (QUDG(r))+ is now consid-
ered again. For testing the relation (QUDG(r))− 6⊆
(QUDG)+ the second conjunction of expression (12)
yields ¬ρ2A−({∅}, {uv}) ∧ ρ2A+({∅}, {uv}). Replacing
the formula with the predicates by using Table 2
yields

(
¬πiA(u, v) ∨ ¬πiA(v, u)

)
∧
(
πiA(u, v) ∨ πiA(v, u)

)
=(

¬πiA(u, v) ∧ πiA(v, u)
)
∨
(
πiA(u, v) ∧ ¬πiA(v, u)

)
.

This formula is satisfied if d(u, v) < r and d(v, u) ≥ r
or d(u, v) ≥ r and d(v, u) < r. Thus, we have found
a counter example that the relation (QUDG(r))− =
(QUDG(r))+ does not necessarily hold when d(u, v) is
not a metric.

5.2 Automatically derived graph class relations

The following Table 3 shows the automatically derived
relations between all example geometric graph classes
resulting from wireless networks which we defined in
Section 2. To avoid clutter in that table we depict the
graph classes without the fixed parameters r and 1.

The table is to be read from left to right as follows.
Class in row i is related to class in column j according
to table entry (i, j) by relation:

= the classes are the same

⊂ the class is contained in the other class but the
classes are not the same

⊃ the class contains the other class but the classes are
not the same

136

CCCG 2021, Halifax, Canada, August 10–12, 2021

× neither of the two classes is contained in the other3

The class name encoding in the table is as defined at
the beginning of the paper, summarized by the following
Hasse diagram.

All

MinDG(r) MaxDG(1) CRG

QUDG(r) BG(r) DTG(1)

MDTG(r)

Figure 4: The relations of the base graph classes.

Class All (not defined so far) means all of the pred-
icates (i.e. inclusion, exclusion, and transfer) are false.
With all preconditions being false, all graphs satisfy in-
clusion, exclusion, and transfer predicate. Thus, the
class just contains all graphs over the given vertex uni-
verse Ω.

Classes MinDG(r), MaxDG(1) and CRG are as already
defined based only on inclusion, exclusion and trans-
fer predicate, respectively. All remaining classes result
from the intersection of the classes which are predeces-
sors in the diagram (seen from top to bottom).

The class names BG(r) and MDTG(r) were not used
before. We define them here for the sake of completeness
of the tables. For graphs in class BG(r) (which we term
boost graphs) an arbitrary long link can be added to
a vertex, which boosts connectivity of that vertex. It
will be connected to all other vertices with the same
or less distance. The graphs in class MDTG(r) (which
we term minimum radius DTGs) are a DTG but also
with a minimum connectivity radius where vertices are
always connected.

Opposed to the ususal assumption that QUDG(r)
actually stands for a symmetric subgraph/supergraph
of MinDG(r) ∩ MaxDG(1) we denote it here just as
MinDG(r)∩MaxDG(1) to stay consistent with the nota-
tion used in the table. Class QUDG(r) as unusually used
in the literature can be found under QUDG−/QUDG+

in the table.

All relations in Table 3 were automatically deter-
mined within approximately 120 seconds running Math-
ematica 12.1 on an Intel Core i7-10610U CPU @ 1.80
GHz with 16 GBytes DDR3 RAM. The relations were
computed applying FindInstance on the derived ex-
pression (11) using the Euclidean metric.

In connection with the relations of the base classes

3By lemma 1 and 2 each of the studied graph classes contain at
least the null graph. Thus, none of the considered graph classes
are disjoint.

shown in the Hasse diagram in Fig.4, the following ob-
servations can be made for the derived table.

In the upper left of Table 3, the row for All is the row
for MDTG but read reversed from right to left instead
of left to right. The same applies for the row pairs
(MinDG,DTG), (MaxDG, BG) and (CRG, QUDG) (which
are not directly connected in the Hasse diagram).

Similar, in the middle and the lower right of Table 3
the same row pairs with one being the reversed variant
of the other can be seen for transformation (·)− and
(·)+, respectively.

Moreover, the transformations (·)− and (·)+ yield ob-
viously the same graph class when applied on All. The
same applies to QUDG, as already discussed. As well,
applied on MinDG and as well on MaxDG, transforma-
tions (·)− and (·)+ yield the same classes, respectively.

These base classes (All, MaxDG, MinDG and QUDG)
are as well exactly those classes whose symmetric vari-
ants due to (·)− and (·)+ are contained in the base class.
For the other classes neither subset relation nor super-
set relation is satisfied between base classes and their
symmetric variants.

Both transformations (·)− and (·)+ obviously preserve
the subset relation order of the base classes. Moreover,
neither (·)− nor (·)+ yield two base classes collapsing
into one single class.

Finally, Table 3 is trivially a symmetric matrix (how-
ever, with reversed relations ⊂ and ⊃) and its diagonals
are =.

6 Conclusion

In this paper we described how to prove or disprove
containedness relations of specific axiomatic described
geometric graph classes on a meta-level. We proved
correctness of general logical existentially quantified ex-
pressions over placeholders for inclusion, exclusion and
transitive transfer predicates. We illustrated the con-
cept with concrete predicates in the context of simple
theoretical wireless network models.

Though we focused on geometric classes in this work,
by its generality, the concept is also applicable to any
graph class which can be desribed by means of inclu-
sion, exclusion and transfer axioms and simple graph
transformations.

The decidability of the problem of testing contained-
ness for concrete inclusion, exclusion and transfer pred-
icates depends on the concrete theories we consider.
These are typically extensions of the theory of real num-
bers with norms, distances, cost functions or more gen-
eral function symbols. In ongoing work we are investi-
gating the decidability of such theories.

Though a logical representation of graphs is not new
in general, we believe with the axiomatic graph class
representation and the discussed simple transformations

137

33rd Canadian Conference on Computational Geometry, 2021

→ A
ll

M
in
D
G

M
a
xD

G

C
R
G

Q
U
D
G

B
G

D
T
G

M
D
T
G

A
ll
−

M
in
D
G
−

M
a
xD

G
−

C
R
G
−

Q
U
D
G
−

B
G
−

D
T
G
−

M
D
T
G
−

A
ll
+

M
in
D
G
+

M
a
xD

G
+

C
R
G
+

Q
U
D
G
+

B
G
+

D
T
G
+

M
D
T
G
+

All = ⊃
MinDG ⊂ = × × ⊃ ⊃ × ⊃ × ⊃ × × ⊃ ⊃ × ⊃ × ⊃ × × ⊃ ⊃ × ⊃
MaxDG ⊂ × = × ⊃ × ⊃ ⊃ × × ⊃ × ⊃ × ⊃ ⊃ × × ⊃ × ⊃ × ⊃ ⊃
CRG ⊂ × × = × ⊃ ⊃ ⊃ × × × × × × × × × × × × × × × ×
QUDG ⊂ ⊂ ⊂ × = × × ⊃ × × × × ⊃ × × ⊃ × × × × ⊃ × × ⊃
BG ⊂ ⊂ × ⊂ × = × ⊃ × × × × × × × × × × × × × × × ×
DTG ⊂ × ⊂ ⊂ × × = ⊃ × × × × × × × × × × × × × × × ×
MDTG ⊂ ⊂ ⊂ ⊂ ⊂ ⊂ ⊂ = × × × × × × × × × × × × × × × ×
All− ⊂ × × × × × × × = ⊃ ⊃ ⊃ ⊃ ⊃ ⊃ ⊃ = ⊃ ⊃ ⊃ ⊃ ⊃ ⊃ ⊃

MinDG− ⊂ ⊂ × × × × × × ⊂ = × × ⊃ ⊃ × ⊃ ⊂ = × × ⊃ ⊃ × ⊃
MaxDG− ⊂ × ⊂ × × × × × ⊂ × = × ⊃ × ⊃ ⊃ ⊂ × = × ⊃ × ⊃ ⊃
CRG− ⊂ × × × × × × × ⊂ × × = × ⊃ ⊃ ⊃ ⊂ × × × × × × ×
QUDG− ⊂ ⊂ ⊂ × ⊂ × × × ⊂ ⊂ ⊂ × = × × ⊃ ⊂ ⊂ ⊂ × = × × ⊃
BG− ⊂ ⊂ × × × × × × ⊂ ⊂ × ⊂ × = × ⊃ ⊂ ⊂ × × × × × ×
DTG− ⊂ × ⊂ × × × × × ⊂ × ⊂ ⊂ × × = ⊃ ⊂ × ⊂ × × × × ×
MDTG− ⊂ ⊂ ⊂ × ⊂ × × × ⊂ ⊂ ⊂ ⊂ ⊂ ⊂ ⊂ = ⊂ ⊂ ⊂ × ⊂ × × ×
All+ ⊂ × × × × × × × = ⊃ ⊃ ⊃ ⊃ ⊃ ⊃ ⊃ = ⊃ ⊃ ⊃ ⊃ ⊃ ⊃ ⊃

MinDG+ ⊂ ⊂ × × × × × × ⊂ = × × ⊃ ⊃ × ⊃ ⊂ = × × ⊃ ⊃ × ⊃
MaxDG+ ⊂ × ⊂ × × × × × ⊂ × = × ⊃ × ⊃ ⊃ ⊂ × = × ⊃ × ⊃ ⊃
CRG+ ⊂ × × × × × × × ⊂ × × × × × × × ⊂ × × = × ⊃ ⊃ ⊃
QUDG+ ⊂ ⊂ ⊂ × ⊂ × × × ⊂ ⊂ ⊂ × = × × ⊃ ⊂ ⊂ ⊂ × = × × ⊃
BG+ ⊂ ⊂ × × × × × × ⊂ ⊂ × × × × × × ⊂ ⊂ × ⊂ × = × ⊃
DTG+ ⊂ × ⊂ × × × × × ⊂ × ⊂ × × × × × ⊂ × ⊂ ⊂ × × = ⊃
MDTG+ ⊂ ⊂ ⊂ × ⊂ × × × ⊂ ⊂ ⊂ × ⊂ × × × ⊂ ⊂ ⊂ ⊂ ⊂ ⊂ ⊂ =

Table 3: Relations between all studied graph classes under transformation (·)id, (·)−, and (·)+.

described in this work, we discovered a promising graph
theoretical novel concept for containedness verification
which can be generalized in many further directions.

Future work includes extending the proofs on mini-
mal witness graphs and the logical expressions to other
simple graph transformations. Furthermore, the the-
ory could be extended beyond simple graph transforma-
tions. Moreover, one can drop the condition on transfer
predicates to be transitive or even further that the edges
involved don’t have to be originated at the two vertices
the transfer predicate is applied to.

Acknowledgements

We would like to thank for all discussions with Viorica
Sofronie-Stokkermans providing us with background in-
formation on the general theory of formal verification.

References

[1] L. Bachmair, H. Ganzinger, and U. Waldmann.
Refutational theorem proving for hierarchic first-
order theories. Appl. Algebra Eng. Commun. Com-
put., 5:193–212, 1994.

[2] L. Barrière, P. Fraigniaud, L. Narayanan, and
J. Opatrny. Robust position-based routing in wire-
less ad hoc networks with irregular transmission
ranges. Wireless Communications and Mobile Com-
puting, 3(2):141–153, Mar 2003.

[3] D. M. D. Blough, M. Leoncini, G. Resta, and
P. Santi. The k-neighbors approach to interference
bounded and symmetric topology control in ad hoc
networks. IEEE Transactions on Mobile Computing,
5(9):1267–1282, Sep 2006.

[4] D. M. Gabbay, R. A. Schmidt, and A. Szalas.
Second-Order Quantifier Elimination - Foundations,
Computational Aspects and Applications, volume 12
of Studies in logic: Mathematical logic and founda-
tions. College Publications, 2008.

[5] F. Kuhn, R. Wattenhofer, and A. Zollinger. Ad hoc
networks beyond unit disk graphs. Wireless Net-
works, 14(5):715–729, Oct 2008.

[6] K. Moaveninejad, W.-Z. Song, and X.-Y. Li. Robust
position-based routing for wireless ad hoc networks.
Ad Hoc Networks, 3(5):546–559, Sep 2005.

[7] D. Peleg and L. Roditty. Localized spanner con-
struction for ad hoc networks with variable trans-
mission range. ACM Transactions on Sensor Net-
works, 7(3):1–14, Oct 2010.

[8] P. von Rickenbach, R. Wattenhofer, and
A. Zollinger. Algorithmic models of interference in
wireless ad hoc and sensor networks. IEEE/ACM
Transactions on Networking, 17(1):172–185, Feb
2009.

138

CCCG 2021, Halifax, Canada, August 10–12, 2021

Algorithms for Covering Barrier Points by Mobile Sensors with Line
Constraint∗

Princy Jain† Haitao Wang‡

Abstract

We study the problem of covering barrier points by mo-
bile sensors. Each sensor is represented by a point in
the plane with the same covering range r so that any
point within distance r from the sensor can be covered
by the sensor. Given a set B of m points (called “bar-
rier points”) and a set S of n points (representing the
“sensors”) in the plane, the problem is to move the sen-
sors so that each barrier point is covered by at least
one sensor and the maximum movement of all sensors is
minimized. The problem is NP-hard. In this paper, we
consider two line-constrained variations of the problem
and present efficient algorithms that improve the previ-
ous work. In the first problem, all sensors are given on a
line ` and are required to move on ` only while the bar-
rier points can be anywhere in the plane. We propose an
O((n+m) log(n+m)) time algorithm for the problem.
We also consider the weighted case where each sensor
has a weight; we give an O((n + m) log2(n + m)) time
algorithm for this case. In the second problem, all bar-
rier points are on ` while all sensors are in the plane but
are required to move to ` to cover all barrier points. We
solve the weighted case in O(m logm+ n log2 n) time.

1 Introduction

Let B be a set of m points and D be a set of n disks
of the same radius r in the plane. We consider the
problem of moving the disks of D to cover all points of
B so that the maximum moving distance of all disks is
minimized. The problem is NP-hard.1 In this paper, we
consider two line-constrained variations of the problem
and present efficient algorithms for them.

Due to its potential applications in barrier coverage of
mobile sensors in wireless sensor networks [14, 15, 17],
we consider the problem from the barrier coverage point
of view. We call the points of B the barrier points. Let S

∗This research was supported in part by NSF under Grant
CCF-2005323. A full version can be found in the first author’s the-
sis, available at https://digitalcommons.usu.edu/etd/8130/.

†Department of Computer Science, Utah State University, Lo-
gan, UT 84322, USA, princy.jain@usu.edu

‡Department of Computer Science, Utah State University, Lo-
gan, UT 84322, USA, haitao.wang@usu.edu

1This can be proved by an easy reduction from the minimum
disk coverage problem [13]; e.g., see [19] for a reduction for a
similar problem.

be the set of centers of all disks of D, and points of S are
called sensors. All sensors have the same covering range
(or sensing range) r so that any point within distance
r from a sensor s can be covered by s (i.e., s covers all
points in the disk centered at s with radius r). Hence,
our problem becomes the following: move sensors of S
to cover all barrier points of B such that the maximum
moving distance of all sensors is minimized.

We study a line-constrained variation of the problem
where all sensors are given on a line ` and are required to
move on ` only while the barrier points can be anywhere
in the plane. We also consider its weighted case where
each sensor si has a weight wi > 0 and the moving cost
of si is defined to be its moving distance times wi.

To the best of our knowledge, we are not aware of
any previous work on this particular problem. If all
barrier points are all on `, which becomes a 1D prob-
lem (our original problem can be considered as a 1.5D
problem), the algorithm of Li and Wang [18] can solve
the unweighted case in O(m logm+n logm log n) time.
In this paper, we present an O((n+m) log(n+m)) time
for the unweighted case and an O((n+m) log2(n+m))
time algorithm for the weighted case. Hence, our algo-
rithm for the unweighted case, albeit solving the 1.5D
problem, improves the algorithm of [18] by roughly a
logarithmic factor.

We also consider another problem variation in which
all barrier points are on a line ` while sensors can be
anywhere in the plane. We want to move all sensors to
` to cover all barrier points so that the maximum mov-
ing cost of all sensors is minimized. Previously, Huang
et al. [14] studied the unweighted case and gave an
O(n(m+n log n) log(n+m)) time algorithm. Our tech-
niques solve the weighted case in O(m logm+ n log2 n)
time. This improves the algorithm of Huang et al. [14]
by almost a linear factor. Note that we do not have a
faster algorithm for the unweighted case. As all barrier
points are on ` and all sensors will finally move to `,
once a sensor s moves to `, the portion of the covering
disk of s that is relevant is an interval of `. For this
reason, we refer to this problem as the mobile inter-
val coverage problem; for differentiation, we refer to the
first problem above as the mobile disk coverage problem.
Note that if sensors have different ranges, even the 1D
problem (i.e., all sensors and barrier points are on `) is
NP-hard [14].

139

33rd Canadian Conference on Computational Geometry, 2021

1.1 Related work

Many variations of mobile sensor barrier coverage prob-
lem have been studied in the literature.

Czyzowicz et al. [6] studied the problem of covering
a barrier segment on a line ` by moving a set of n sen-
sors on ` (the sensors are initially given on `); they gave
an O(n2) time algorithm. Chen et al. [3] presented a
more efficient O(n log n) time algorithm. Chen et al. [3]
also studied the case where sensors may have different
covering ranges and proposed an O(n2 log n) time algo-
rithm. For the weighted case where the sensors have
weights as defined in our problems (but sensors have
the same range), Lee et al. [16] derived an algorithm of
O(n2 log n log log n) time.

Li and Shen [17] studied the same problem as our in-
terval coverage problem except that their barrier is not
a set of points but a single line segment on `. They
proposed an O(n3 log n) time algorithm. The algorithm
was later improved to O(n2 log n log log n) time by Li
and Wang [18]. Li and Wang [18] also studied a more
general problem setting where the barrier is a set of
disjoint line segments on ` (and the sensors are still in
the plane and are required to move to `); they gave an
O(n2 log n log log n + nm logm) time algorithm. Fur-
ther, for the 1D case where all sensors are initially on
`, the algorithm of Li and Wang [18] solves the problem
in O(m logm+n log n logm) time. These results are for
the case where sensors have the same range; if sensors
have different ranges, even the 1D problem is NP-hard
by a reduction from the Partition Problem as in [6].

The min-sum version of the line-constrained barrier
coverage was also studied in the literature where sensors
are given on ` and a barrier segment is also on `, and
the goal is to move sensors to cover the barrier segment
such that the total sum of the moving distances of all
sensors is minimized. If sensors have different ranges,
the problem is NP-hard [7]. Otherwise, Czyzowicz et
al. [7] solved the problem in O(n2) time. Later Andrews
and Wang [1] proposed a faster algorithm of O(n log n)
time.

A circular barrier coverage problem was also consid-
ered, where the barrier is a circle and sensors are ini-
tially located inside the circle and the goal is to move
all sensors to the circle to form a regular n-gon (to form
a coverage) so that the maximum moving distance of
all sensors is minimized. Bhattacharya [2] first gave an
algorithm of O(n3.5 log n) time. An improved algorithm
of O(n log3 n) time was later derived by Chen et al. [4].

There are also other variations of the barrier coverage
problem, e.g., see [8, 9, 20, 21].

1.2 Our approach

We first discuss the mobile disk coverage problem. Let
λ∗ denote the optimal moving cost, i.e., the maximum

moving cost of all sensors in an optimal solution. In
both the unweighted and weighted cases, we first con-
sider the decision problem: Given any value λ, deter-
mine whether λ ≥ λ∗.

For the unweighted case, a critical property is an
order-preserving property: There exists an optimal so-
lution in which the order of the sensors are consistent
with their order in the input. Due to the property, we
can solve the decision problem in linear time by a simple
greedy algorithm (after all barrier points and all sensors
are sorted). Next, we use the decision algorithm to com-
pute λ∗. To this end, we define 2m arrays of size n each
and we show that λ∗ must be an element of one of the
arrays. To search λ∗ in these arrays in an efficient way,
we form these arrays implicitly. A helpful observation
is that each of these arrays is sorted. Consequently, by
using our decision algorithm, we apply a sorted matrix
searching technique [10, 11, 12] (or a simpler implemen-
tation called binary search on sorted arrays in [5]) to
find λ∗ in these arrays in O((n+m) log(n+m)) time.

For the weighted case, unfortunately the order-
preserving property does not hold anymore. In fact, the
major difficulty is to find the correct order for sensors in
an optimal solution. This is also the case for solving the
decision problem. So we have to use a different approach
to solve the decision problem. The runtime of the algo-
rithm is O((n+m) log(n+m)). To compute the optimal
cost λ∗, we implicitly form 2n arrays of size m each such
that λ∗ is one of the array elements. To apply the sorted
matrix searching technique, we manage to find a way to
order the array elements implicitly so that the arrays
are still sorted. Then, with the decision algorithm, the
value λ∗ can be found in O((n+m) log2(n+m)) time.

For the mobile interval coverage problem, we solve
the weighted cases directly (without having a faster al-
gorithm for the unweighted case). As above, we also
solve the decision problem first, and then form sorted
arrays and apply the sorted array searching technique.
To solve the decision algorithm, we use an algorithm
similar to the weighted case of the above mobile disk
coverage problem, but with a simpler and slightly faster
implementation. The runtime of our decision algorithm
is O(m+n log n) after O((n+m) log(n+m)) time pre-
processing for sorting all sensors and barrier points. The
time of the overall algorithm (for computing the optimal
value λ∗) is O(m logm+ n log2 n).

Outline. The rest of the paper is organized as fol-
lows. We define notation in Section 2. In Section 3,
we present our algorithm for the unweighted case of the
mobile disk coverage problem, while the weighted case
is discussed in Section 4. The algorithm for the mobile
interval coverage is described in Section 5.

140

CCCG 2021, Halifax, Canada, August 10–12, 2021

2 Preliminaries

For each problem we consider, we use λ∗ to denote the
optimal moving cost. Given any λ, the decision problem
is to decide whether λ ≥ λ∗, i.e., whether it is possible
to move sensors to cover all barrier points so that the
moving cost of each sensor is at most λ. If λ ≥ λ∗, we
say that λ is a feasible value. We use feasibility test to
refer to the procedure for determining whether λ ≥ λ∗.
For differentiation, we refer to our original problem for
computing λ∗ as the optimization problem.

Without loss of generality, we assume that the line
` is the x-axis. Let S = {s1, s2, . . . , sn} be the set of
sensors (unless otherwise stated, the order is arbitrary).
For each si, we use (xi, yi) to denote its coordinate in
the input. For differentiation, for each barrier point
b ∈ B, we use (xb, yb) to denote its coordinate.

In each problem, we use a configuration to refer to
a specification on where each sensor si is located. For
example, in the input configuration, each sensor si is at
(xi, yi).

For each sensor s, we use D(s) to refer to its covering
disk, i.e., the disk of radius r centered at s. For any
disk D, we use ∂D to denote its boundary, which is a
circle. The left half-circle of ∂D refers to the portion of
∂D to the left of the vertical line through the center of
D; the right half-circle is defined similarly.

For the mobile disk coverage problem, for simplicity
of discussion, we assume that all barrier points above or
on ` since if a barrier point is below `, then we can use
its symmetric point about ` to replace it and that does
not affect the solution of the problem.

For any point p on `, for convenience, sometimes we
also use p to refer to its x-coordinate. For example, for
two points p and q on `, p ≤ q means that p is to the left
of q (including the case where p and q are coincident)
and p < q means that p is strictly to the left of q.

For each problem, for ease of exposition, we assume
that it is always possible to cover all barrier points by
moving sensors (i.e., the covering range r is big enough).
Our algorithm can actually determine whether the as-
sumption is true or not. This implies that in the mobile
disk coverage problem, for each barrier point b, yb ≤ r
must hold since otherwise no sensor on ` can cover b.
Also, for each problem we assume that λ∗ > 0, i.e., one
has to move at least one sensor in order to form a cover-
age for all barrier points. Note that whether λ∗ = 0 can
be easily determined in O(n + m) log(n + m) time for
each problem (which does not affect the time complexity
of the overall algorithm asymptotically).

For a barrier point b and the covering disk D(s) of a
sensor s, we say that D(s) is strictly to the left (resp.,
right) of b if D(s) does not cover b and the intersec-
tion between D(s) and the horizontal line through b is
strictly to the left (resp., right) of b.

3 The mobile disk coverage problem: the un-
weighted case

In this section, we consider the unweighted case of the
mobile disk coverage problem. In this problem, all sen-
sors of S are on the line ` while each barrier of B can
be anywhere in the plane.

We first present an algorithm to solve the decision
algorithm. Consider a value λ. If λ ≥ λ∗, we use a
feasible solution to refer to a configuration in which all
barrier points are covered and the moving cost of each
sensor is no more than λ. As all sensors have the same
range, it is not difficult to see that the order-preserving
property in the following observation holds.

Observation 1 (The order-preserving property) If
λ ≥ λ∗, then there exists a feasible solution in which
the order of sensors is the same as in the input.

Due to the order-preserving property, we can solve
the decision problem by a simple greedy algorithm in
linear time (after sensors and barrier points are sorted).

Lemma 1 After O(n log n+m logm) time preprocess-
ing, given any λ, whether λ ≥ λ∗ can be decided in
O(n+m) time.

Proof. In the preprocessing, we sort all sensors of S
from left to right on `; let S = {s1, s2, . . . , sn} be the
sorted list. We also sort all barrier points of B by their
x-coordinates from left to right; let B = {b1, b2, . . . , bm}
be the sorted list. Given any λ, in what follows we de-
scribe our O(n+m) time algorithm for deciding whether
λ ≥ λ∗, which is based on the greedy strategy.

We first move each sensor rightwards on ` by distance
λ and we use C0 to refer to the configuration, i.e., in
C0, the location of each si is xi + λ. Then, during
the algorithm, each sensor will not be allowed to move
rightwards anymore but can move leftwards by 2λ.

Starting from i = 1 and j = 1, we process sensors
si and barrier points bj incrementally. We first check
whether bj is covered by si. If yes, we increase j by one
(if j = m before the increase, then all barrier points are
covered and we have found a feasible solution; in this
case, we can stop the algorithm and report that λ is
a feasible value, i.e., λ ≥ λ∗). Otherwise, either bj is
to the right of the covering disk D(si) of si or bj is to
the left of D(si). In the former case, we increase i by
one and proceed as above (if i = n before the increase,
then we can stop the algorithm and report that λ is
not a feasible value, i.e., λ < λ∗). In the latter case,
we check whether it is possible to move si leftwards by
distance at most 2λ to cover bj . If not, then we can stop
the algorithm and report that λ is not a feasible value.
Otherwise, we move si leftwards until bj is covered (i.e.,
bj is on the left half-circle of ∂D(si)); we then increase
j by one and proceed as above (if j = m before the

141

33rd Canadian Conference on Computational Geometry, 2021

increase, then all barrier points are covered and thus we
can stop the algorithm and report that λ is a feasible
value). This finishes the description of the algorithm.

The correctness of the algorithm is based on the
order-preserving property. It is not difficult to see that
the running time of the algorithm is O(n+m). �

We next tackle the optimization problem for com-
puting λ∗, by making use of our decision algorithm in
Lemma 1 as a subroutine. For this, we have the follow-
ing lemma.

Lemma 2 λ∗ is equal to xi −
√
r2 − y2b − xb or xb −√

r2 − y2b − xi for a sensor si and a barrier point b.

Proof. Consider an optimal solution OPT , where λ∗

is the maximum moving distance of all sensors. Then,
λ∗ is equal to the moving distance of a sensor si. Let
x′i be the position of si in OPT . If x′i < xi, then si
has been moved leftwards. In this case, there must be
a barrier point b on the left half-circle of ∂D(si) since
otherwise we could move D(si) rightwards slightly so
that D(si) still covers the same set of barrier points as
before but the moving distance of si is strictly smaller
than λ∗, a contradiction to the definition of λ∗. Thus,
we have x′i =

√
r2 − y2b + xb. Hence, λ∗ = xi − x′i =

xi −
√
r2 − y2b − xb. If x′i > xi, then by similar analysis

as above, we can show that λ∗ = xb−
√
r2 − y2b−xi. �

We sort all sensors of S from left to right on `;
let S = {s1, s2, . . . , sn} be the sorted list. For each
barrier point b ∈ B, we define two arrays Ab[1 · · ·n]
and A′b[1 · · ·n] of size n each as follows: For each

i ∈ [1, n], define Ab[i] = xi −
√
r2 − y2b − xb and

A′b[i] = xb −
√
r2 − y2b − xi. According to Lemma 2,

λ∗ is an element in one of the 2m arrays Ab and A′b for
all b ∈ B. We next find λ∗ in these arrays. Computing
these arrays explicitly will take Ω(nm) time. Below, we
present a near linear time algorithm without computing
these arrays explicitly. Indeed, given an index i ∈ [1, n]
and a barrier point b ∈ B, we can obtain the values
Ab[i] and A′b[i] in constant time.

An easy observation is that elements of the array Ab
are sorted in ascending order and elements of A′b are
sorted in descending order. Therefore, we are search-
ing λ∗ in 2m sorted arrays of size n each. Note that
λ∗ is actually the smallest feasible value in these 2m
arrays. We can use the sorted matrix searching tech-
niques [10, 11, 12] (or a simpler implementation, called
binary search on sorted arrays, in [5]) to search sorted
arrays with the following lemma.

Lemma 3 [5, 10, 11, 12] Suppose we have a set of M
sorted arrays of size at most N each such that each ar-
ray element can be evaluated in O(1) time (i.e., given
the index of an array, the element of the array can be ob-
tained in O(1) time). Then, the smallest feasible value

in these arrays can be computed by O(log(N+M)) feasi-
bility tests and the total time of the algorithm excluding
the feasibility tests is O(M logN).

Applying Lemma 3 and using our decision algorithm
in Lemma 1, λ∗ can be found in O((n + m) log(n +
m)) time. We summarize our result in the following
theorem.

Theorem 4 Given a set of m barrier points in the
plane and a set of n sensors on a line `, the problem
of moving sensors on ` to cover all barrier points such
that the maximum moving cost of all sensors is mini-
mized can be solved in O((n+m) log(n+m)) time.

4 The mobile disk coverage problem: the weighted
case

In this section, we solve the weighted case of the mo-
bile disk coverage problem. Here also, we start with
the decision problem and later solve the optimization
problem by applying sorted array searching techniques
in Lemma 3. In the weighted case, each sensor si is
associated with a weight wi > 0.

4.1 The decision problem

Given any λ, the problem is to decide whether λ ≥ λ∗.
Although our algorithm is similar in spirit to those in
the previous work [3, 16, 18], our algorithm is for a more
general problem setting in that the barrier points are in
the plane while the barriers in all previous work [3, 16,
18] are on `. In the following, we first describe our
algorithm, and then prove its correctness; finally, we
will discuss how to efficiently implement the algorithm
in O((n+m) log(n+m)) time.

4.1.1 The algorithm description

For each sensor si, define xli = xi − λ/wi and xri =
xi + λ/wi, i.e., xli is the leftmost location on ` where si
can move to and xri is the rightmost location on ` where
si can move to with respect to λ. We call xli (resp., xri)
the leftmost (resp., rightmost) λ-reachable location.

For each barrier point b, we use c(b) to denote the cen-
ter of the circle of radius r whose center is at ` and whose
left half-circle contains b, i.e., c(b) = xb+

√
r2 − y2b . We

sort all barrier points b ∈ B in the order of the values
c(b). Alternatively, it is also the order of the barrier
points of B encountered by sweeping a left half-circle
centered at ` from left to right. Let B = {b1, b2, . . . , bm}
be the sorted list.

Initially, we move each sensor si to xri and thus si
will not be allowed to move rightwards anymore but can
move leftwards by 2λ/wi. Let C0 denote the resulting
configuration. If λ ≥ λ∗, our algorithm will find a subset
of sensors with their new locations such that all barrier

142

CCCG 2021, Halifax, Canada, August 10–12, 2021

points are covered and the maximum moving cost of
each sensor is at most λ (sensors not in the subset are
still in their positions of C0).

Consider the i-th iteration of the algorithm (initially,
i = 1). Let Ci−1 be the configuration right before the
iteration. Our algorithm maintains the following invari-
ants.

1. A subset of sensors Si−1 = {sg1 , . . . , sgi−1} has
been computed, where gj is the index of the sensor
sgj for each j ∈ [1, i− 1].

2. In Ci−1, each sensor sk of Si−1 is at a location,
denoted by x′k, which may not be equal to xrk, while
sensors of S \ Si−1 are still in their locations of C0

(i.e., each sensor of S \ Si−1 is at its rightmost λ-
reachable location).

3. An index hi−1 of a barrier point is maintained such
that in the configuration Ci−1, the barrier point
bhi−1

is not covered by any sensor of Si−1 while bk is
covered by a sensor in Si−1 for each k < hi−1 (note
that it is possible that bk for some k > hi−1 is also
covered by a sensor in Si−1, which cannot happen
in the problem settings of the previous work [3, 16,
18]; this case makes our problem more challenging
to solve).

4. Each sensor of Si−1 covers at least one barrier point
bj with j < hi−1 in Ci−1.

5. The locations of the sensors sg1 , sg2 , . . . , sgi−1
in

Ci−1 are sorted from left to right on `.

6. The barrier point bhi−1 is strictly to the right of the
covering disk D(sgi−1) of sgi−1 if Si−1 6= ∅.

Initially when i = 1, we have S0 = ∅ and we set
h0 = 1; thus, all algorithm invariants trivially hold. The
i-th iteration of the algorithm finds a sensor sgi from
S \Si−1 and move it to a new location x′gi ∈ [xlgi , x

r
gi] to

obtain a new configuration Ci with Si = Si−1 ∪ {sgi}.
The details of the i-th iteration of the algorithm are
described below.

Define Si1 to be the set of sensors that cover the bar-
rier point bhi−1 in the configuration Ci−1. According
to our algorithm invariants, bhi−1

is not covered by any
sensor in Si−1. Hence, Si1 ⊆ S \ Si−1.

If Si1 6= ∅, we pick an arbitrary sensor from Si1 as
sgi and set x′gi = xrgi (i.e., the sensor does not move
from its position in Ci−1); thus Ci = Ci−1. We set
hi = k+ 1, where k is the largest index in [hi−1, n] such
that barrier points bj for all j ∈ [hi−1, k] are covered
by sensors of Si. If hi = n+ 1, all barrier points bj for
all j ∈ [hi−1, n] are covered, and thus we can stop the
algorithm and report λ ≥ λ∗.

Lemma 5 All algorithm invariants hold.

sgi

bhi−1
bhi

`

Figure 1: Illustrating the Invariant (6) in the proof of Lemma 5:
the circle is the boundary of D(sgi).

bhi−1

`
sk

xrkxrl

Figure 2: Illustrating the definition of Si2: The solid circle
shows the position of sk in Ci−1, i.e., at xrk, and the dashed

circle shows its leftmost λ-reachable location, i.e., xlk.

Proof. We go through every invariant. Invariant (1)
trivially holds. Invariant (2) holds because Ci = Ci−1.
Invariant (3) follows immediately from how our algo-
rithm computes hi. Invariant (4) holds because sgi cov-
ers bhi−1

in Ci. For Invariant (5), it suffices to show that
sgi−1

is to the left of the sgi in Ci. Indeed, according
to Invariant (6) in Ci−1, bhi−1 is strictly to the right
of the covering disk D(sgi−1). Since bhi−1 is covered by
sgi in Ci, we obtain that sgi−1

must be to the left of
sgi in Ci. For Invariant (6), since the sensor sgi covers
bhi−1

but does not cover bhi
and hi−1 < hi, according

to the definition of the indices of the barrier points, we
can obtain that bhi must be strictly to the right of the
covering disk D(sgi) of sgi (e.g., see Fig. 1). This proves
Invariant (6). �

If Si1 = ∅, we define Si2 = {sk | xlk ≤ c(bhi−1) <
xrk, sk ∈ S \Si−1}, i.e., the set of sensors sk that do not
cover bhi−1

in Ci−1 but can be moved leftwards to cover
bhi−1

; e.g., see Fig. 2. Note that each sensor of Si2 is
currently at its rightmost λ-reachable location in Ci−1.

If Si2 6= ∅, then among all sensors of Si2, we choose
the leftmost one (with respect to their positions in Ci−1)
as sgi and add it to Si−1 to obtain Si. We move sgi left-
wards until bhi−1 is covered (i.e., it is on the left half-
circle of ∂Dgi); this obtains the configuration Ci. Next,
we set hi = k+1, where k is the largest index in [hi−1, n]
such that barrier points bj for all j ∈ [hi−1, k] are cov-
ered by sensors of Si. If hi = n + 1, then all barrier
points are covered and thus we can stop the algorithm
and report λ ≥ λ∗. Following the similar analysis as

143

33rd Canadian Conference on Computational Geometry, 2021

Lemma 5, we can show that all algorithm invariants
hold.

If Si2 = ∅, then we terminate the algorithm and re-
port that λ < λ∗.

In summary, if Si1 = Si2 = ∅, then the algorithm will
terminate and report λ < λ∗. Otherwise, a sensor sgi
is found from either Si1 (if it is not empty) or Si2 and
added to Si−1 to obtain Si. In either case, hi = k + 1,
where k is the largest index in [hi−1, n] such that barrier
points bj for all j ∈ [hi−1, k] are covered by sensors of
Si. If hi = n+ 1, then the algorithm will terminate and
report λ ≥ λ∗; otherwise, the algorithm will proceed
to the next iteration i + 1 and all algorithm invariants
hold. As there are m barrier points and a new barrier
point is covered in each iteration, the algorithm has at
most m iterations. On the other hand, as there are n
sensors and each iteration finds a new sensor to form
Si, the algorithm has at most n iterations. Hence, the
algorithm will stop in min{n,m} iterations.

The proof of the algorithm correctness is omitted but
can be found in the full paper.

4.1.2 The algorithm implementation

We now provide an efficient way to implement the algo-
rithm in O((n + m) log(n + m)) time. For differentia-
tion, we use “algorithm implemntation” to refer to the
algorithm we will discuss below and use “algorithm de-
scription” to refer to the algorithm we described before
in Section 4.1.1.

We sweep a point p on ` from left to right. The event
point set is E = {c(b) | b ∈ B} ∪ {xli, xri | si ∈ S}.
We sort all points of E from left to right on ` and put
them in a list, still denoted by E. Using the sorted
list E as a guide, we sweep p on ` from left to right.
When p encounters a point xlk for some sensor sk, we
insert sk to a balanced binary search tree T in which
the sensors sk are ordered by their values xrk. As will be
shown later, the tree T is used to maintain the set Si2.
When p encounters a point xrk, we remove sk from T and
store sk at a variable s∗ (if s∗ already stores a sensor, we
simply update s∗ to sk). Our algorithm implementation
maintains the following invariant: the sensor sk stored
in s∗ and all sensors of T are at their positions in C0.

Now consider the case where p encounters c(bj) for
some barrier point bj . We assume that j is equal to
hi−1 for some i as defined in the algorithm description.
The assumption is true initially when j = 1 and i = 1.
This means that we are at the beginning of the i-th
iteration in the algorithm description. We first need
to check whether Si1 = ∅. To this end, we have the
following Lemma 6. But before giving Lemma 6, we
prove the following observation, which will be used in
the proofs of Lemma 6 and other lemmas.

`
s′

b

s

Figure 3: Illustrating Observation 2.

Observation 2 Consider a barrier point b and two
sensors s and s′. Suppose the followings hold (e.g., see
Fig. 3): (1) s′ is to the right of s; (2) s covers b; (3) b
is to the right of the left half-circle of ∂D(s′). Then, s′

also covers b.

Proof. Assume to the contrary that s′ does not cover
b. Then, since b is to the right of the left half-circle
of ∂D(s′), b must be strictly to the right of the right
half-circle of ∂D(s′). Because s′ is to the right of s, b
must also be strictly to the right of the right half-circle
of ∂D(s). But this means that s does not cover b, a
contradiction. �

Lemma 6 If the sensor sk stored in s∗ covers bj when
sk is at xrk, then sk ∈ Si1; otherwise (including the case
where s∗ does not store any sensor) Si1 = ∅.

Proof. Suppose the sensor sk stored in s∗ covers bj
when sk is at xrk. To prove the lemma, it suffices to show
that if Si1 6= ∅, then sk must be Si1. In the following, we
assume that Si1 6= ∅. Our goal is to prove that sk is in
Si1. Since sk is stored in s∗, according to our algorithm
implementation invariant, sk is at xrk. Hence, to prove
sk ∈ Si1, by the definition of Si1, it is sufficient to show
that sk covers bj (when sk is at xrk).

Let sa be a sensor of Si1. If sa is sk, then it is vac-
uously true that sk ∈ Si1. In what follows, we assume
that sa is not sk. Because sa is in Si1, according to our
algorithm description, sa is at xra and has never been
moved during the algorithm, and further, sa covers bj .
Since the sweeping point p is at c(bj), which is the right-
most position on ` for the center of a circle of radius r to
cover bj , p must have passed xra. Therefore, according
to our algorithm implementation, sa had been stored in
s∗ before and later s∗ got updated to sk. This implies
that sk is to the right of sa (and both of them are at
their rightmost λ-reachable locations). Because p is now
at c(bj), p has already passed xrk. Therefore, bj is to the
right of left half-circle of ∂D(sk). Since bj is covered
by sa and sk is to the right of sa, by Observation 2, bj
must be covered by sk. �

By Lemma 6, if s∗ does not store any sensor or if
the sensor stored at s∗ does not cover bj , then Si1 = ∅.

144

CCCG 2021, Halifax, Canada, August 10–12, 2021

Otherwise, the sensor stored at s∗, denoted by sk, covers
bj and is in Si1. Depending on whether Si1 = ∅, there
are two cases to proceed.

The case Si1 6= ∅. We first consider the case Si1 6= ∅.
In this case, according to our algorithm description, we
can simply choose sk as sgi and add it to Si−1 to obtain
Si. Next, we need to determine hi, which is equal to
l + 1 with l as the largest index such that all barrier
points bj , bj+1, . . . , bl can be covered by sensors of Si.
To find l, we initialize l = j and then keep sweeping p
rightwards. If p encounters a point xlk or xrk, we process
the event in the same way as before. If p encounters
a point c(bj′), we know that j′ = l + 1. We need to
determine whether bj′ can be covered by sensors of Si.
For this, we have the following lemma.

Lemma 7 bj′ can be covered by sensors of Si if and
only if bj′ can be covered by sgi .

Proof. If bj′ is covered by sgi , then it is vacuously true
that bj′ is covered by sensors of Si because sgi is in Si.

Now assume that bj′ is covered by a sensor sga ∈
Si. We need to prove that sgi also covers bj′ . This is
obviously true if a = i. We now assume a 6= i, implying
that a < i. According our algorithm implementation,
bj′ is to the right of the left half-circle of ∂D(sk) and
sgi = sk. According to our algorithm invariants in the
algorithm description, sga is to the left of sgi . Since sga
covers bj′ , by Observation 2, sgi also covers bj′ . �

In light of Lemma 7, we check whether bj′ is covered
by sgi . If yes, we increment l by one and proceed as
above (if l = n, then all barrier points are covered and
we can stop the algorithm and report λ ≥ λ∗). Other-
wise, we set hi = j′; in this case, we have finished the
i-th iteration of the algorithm and we then proceed to
the (i+ 1)-th iteration.

The case Si1 = ∅. We now consider the case Si1 = ∅.
In this case, we need to know whether Si2 = ∅, and if
not, we need to find the leftmost sensor in Si2. For this,
we have the following lemma.

Lemma 8 The sensors stored in the current tree T are
exactly the sensors of Si2.

Proof. We prove the lemma by analyzing our algorithm
implementation. Recall that the sweeping point p is now
at c(bj) and j = hi−1.

• Let sa be a sensor of Si2. We show that sa is stored
in T . Indeed, since sa is in Si2, by the definition
of Si2, we have xla ≤ c(bj) < xra. According to our
algorithm implementation, when p encounters xla,
sa is inserted to T and will not be removed from
T until p counters xra. Since p is at c(bj) right now
and c(bj) < xra, sa is still in T .

• Let sa be a sensor stored in T . We show that sa
is in Si2. Indeed, since sa is in T , according to our
algorithm implementation, p has already passed xla
but not encountered xra yet. Since p is at c(bj) right
now, we obtain that xla ≤ c(bj) < xra. Further, ac-
cording to our algorithm implementation invariant,
sa has not been moved from its position in C0, i.e.,
sa is still at xra. Therefore, sa is in Si2.

This proves the lemma. �

In light of Lemma 8, we can use T to find the left-
most sensor of T in O(log n) time; let sk denote the
sensor. We choose sk as sgi and add it to Si−1 to ob-
tain Si. Then, we move sk leftwards to c(bj), i.e., setting
x′k = c(bj), and remove sk from T . We also remove both
events xlk and xrk from the list E because we do not need
to process these two events anymore.2 Next, we need to
determine hi. This can be done using the same method
as in the above case where Si1 6= ∅ (i.e., keep sweep-
ing p rightwards and making use of Lemma 7, which is
still applicable here). After hi is found, we finish the
i-th iteration of the algorithm and begin the (i + 1)-th
iteration.

This finishes the description of the algorithm imple-
mentation. The proof of the following lemma analyzes
the running time of the algorithm.

Lemma 9 Given any λ, whether λ ≥ λ∗ can be decided
in O((n+m) log(n+m)) time.

Proof. We analyze the running time of our implemen-
tation. In the beginning, computing the sorted list E
takes O((n+m) log(n+m)) time. There are O(n+m)
operations on E, each of which takes O(1) time. The
time we spent on the binary search tree T is bounded
by O(n log n) as there are n sensors and each sensor
can be inserted and removed from T at most once (also,
there are at most n operations of “finding the leftmost
sensor”). Therefore, the total time of the algorithm is
O((n+m) log(n+m)). More specifically, after the points
of E are sorted in O((n+m) log(n+m)) time, the rest
of the algorithm takes O(m+ n log n) time. �

4.2 The optimization problem

We now solve the optimization problem, i.e., computing
λ∗, by using the algorithm of Lemma 9 as a subroutine.
We begin with the following lemma.

Lemma 10 λ∗ is equal to (xi−
√
r2 − y2bj −xbj)/wi or

(xbj −
√
r2 − y2bj − xi)/wi for a sensor si and a barrier

point bj.
2To implement each remove operation in constant time, we can

store the list E by a doubly-linked list and associate each of the
values xla and xra for all sensors sa ∈ S with a pointer pointing to
its location in E.

145

33rd Canadian Conference on Computational Geometry, 2021

Proof. The proof is almost the same as that of
Lemma 2 except that we have to consider the weight
in the last step of the proof. We briefly discuss it be-
low.

Consider an optimal solution OPT , where λ∗ is the
maximum moving cost of all sensors. Then, λ∗ is equal
to the moving cost of some sensor si. Let x′i be the
x-coordinate of si in OPT . If x′i < xi, then si has
been moved leftwards and there must be a barrier point
bj on the left-circle of ∂D(si). Thus, we have x′i =√
r2 − y2bj + xbj . Hence, λ∗ = (xi − x′i)/wi = (xi −√
r2 − y2bj − xbj)/wi. If x′i > xi, by similar analysis, we

can show that λ∗ = (xbj −
√
r2 − y2bj − xi)/wi. �

For each sensor si, we will define two sorted arrays
Ai[1 · · ·m] and Bi[1 · · ·m] of size m each. Unlike the un-
weighted case where defining sorted arrays is relatively
straightforward, here the definitions are quite subtle.
We define the array Ai first, which consists of the val-

ues (xi −
√
r2 − y2bj − xbj)/wi for all j = 1, . . . ,m. For

each j ∈ [1,m], let aj =
√
r2 − y2bj + xbj . We sort the

values aj for all j = 1, . . . ,m in ascending order. For
each j ∈ [1,m], we let π(j) = k if ak ranks the j-th
place in the above sorted list. Hence, π(·) is a permuta-
tion of the indices 1, 2, . . . ,m; note that we can obtain
π(·) in O(m logm) time. For each j ∈ [1,m], we define
Ai[j] = (xi−aπ(j))/wi. In light of the definition of π(·),
Ai is a sorted array. Analogously, we can define a sorted

array Bi for the m values (xbj −
√
r2 − y2bj − xi)/wi,

j = 1, . . . ,m. Note that the permutation π(·) can be
used to define Ai for all i = 1, 2, . . . , n. Hence, in
O(n + m logm) time, we can implicitly form 2n sorted
arrays Ai and Bi for all i = 1, 2, . . . , n, such that given
any index j and any array Ai (resp., Bi), we can obtain
the array element Ai[j] (resp., Bi[j]) in O(1) time. Also,
Lemma 10 implies that λ∗ is the smallest feasible value
of all elements of these arrays. By applying Lemma 3
and using our decision algorithm in Lemma 9, we can
find λ∗ in O((n+m) log2(n+m)) time. We summarize
our result in the following theorem.

Theorem 11 Given a set of m barrier points in the
plane and a set of n weighted sensors on a line `, the
problem of moving sensors on ` to cover all barrier
points such that the maximum moving cost of all sensors
is minimized can be solved in O((n + m) log2(n + m))
time.

5 The mobile interval coverage problem

In this section, we consider the mobile interval coverage
problem, where the barrier points are on the x-axis `
while the sensors can be anywhere in the plane. The

problem is to move all sensors to ` to cover all barrier
points so that the minimum moving cost of all sensors
is minimized.

We first sort all barrier points from left to right on
` in O(m logm) time; let B = {b1, b2, . . . , bm} be the
sorted list. Recall that for each sensor si ∈ S, (xi, yi)
is its coordinate. In the weighted case, each sensor si
has a weight wi > 0. In the following, we only give
an algorithm for the weighted case because we do not
have a faster algorithm for the unweighted case. Our
goal is to compute the optimal moving cost λ∗. Note
that since we require that all sensors finally move to `,
it must hold that λ∗ ≥ max1≤i≤n wi · yi.

We again first consider the decision problem: Given
any λ, decide whether λ ≥ λ∗. We present an algo-
rithm of O(m+n log n) time (not including the time for
sorting the barrier points) for the problem. Later we
will solve the optimization problem (i.e., computing λ∗)
using Lemma 3 and the decision algorithm.

5.1 The decision problem

Consider a value λ. We assume that λ ≥ max1≤i≤n wi ·
yi since otherwise it is impossible to move all sensors
to ` (and thus we immediately report λ < λ∗). For
each sensor si, define xri = xi +

√
(λ/wi)2 − y2i and

xli = xi −
√

(λ/wi)2 − y2i . We call xri (resp., xli) the
rightmost (resp., leftmost) λ-reachable location of si.

At the outset, we move each sensor si to xri on `. Let
C0 denote the resulting configuration. The rest of the
algorithm is similar to the one in Section 4.1. In fact,
we can basically apply the same algorithm. But since
the problem setting here is simpler (because all barrier
points are now on `), below we describe the algorithm
in a simpler way (the running time is also slightly faster
if m is significantly larger than n).

Consider the i-th iteration of the algorithm (initially
i = 1). Let Ci−1 denote the configuration right before
the iteration. Our algorithm maintains the following
invariants:

1. A subset Si−1 = {sg(1), sg(2), . . . , sg(i−1)} of sensors
has been computed.

2. In Ci−1, each sensor sk of Si−1 is at a location,
denoted by x′k, which may not be equal to xrk, while
sensors of S \Si−1 are still in their locations of C0.

3. An index hi−1 of a barrier point is maintained such
that in the configuration Ci−1, the barrier point
bhi−1 is not covered by any sensor of Si−1 while bk
is covered by a sensor in Si−1 for each k < hi−1

4. Each sensor of Si−1 covers at least one barrier point
bj with j < hi−1 in Ci−1.

5. The locations of the sensors sg1 , sg2 , . . . , sgi−1 in
Ci−1 are sorted from left to right on `.

146

CCCG 2021, Halifax, Canada, August 10–12, 2021

6. The barrier point bhi−1
is strictly to the right of the

covering disk D(sgi−1
) of sgi−1

if Si−1 6= ∅.

Initially when i = 1, we have S0 = ∅ and set h0 = 1;
thus all algorithm invariants hold. The i-th iteration
of the algorithm finds a sensor sgi from S \ Si−1 and
move it to a new location x′gi ; we thus obtain a new
configuration Ci with Si = Si−1 ∪ {sgi}. We briefly
discuss algorithm below.

Define Si1 be the set of sensors that cover the bar-
rier point bhi−1 in Ci−1. Again, due to our algorithm
invariants, Si1 ⊆ S \ Si−1.

If Si1 6= ∅, we choose an arbitrary sensor in Si1 as
sgi and set x′gi = xrgi . Hence, Ci = Ci−1. Next, we set
hi = k + 1, where k is the largest index such that all
barrier points of [hi−1, k] are covered by Si (it is easy
to see that a barrier point bl with l ≥ hi−1 is covered
by Si if and only if bl is covered by sgi , i.e., Lemma 7 is
still applicable). If k = m, then we stop the algorithm
and report λ ≥ λ∗.

If Si1 = ∅, we define Si2 as the set of sensors of S\Si−1
that do not cover bhi−1 in Ci−1 but can be moved left-
wards to cover bhi−1 . If Si2 6= ∅, we choose the leftmost
sensor of Si2 as sgi and set x′gi = xb+ r to obtain a new
configuration Ci, where b = bhi−1

. Next, we set hi in
the same way as above. If Si2 = ∅, then we terminate
the algorithm and report λ < λ∗.

The algorithm will terminate in at most min{m,n} it-
erations. The correctness of the algorithm can be proved
in a similar way as before.

To implement the algorithm, we first sort the bar-
rier points in the preprocessing, which takes O(m logm)
time. Then, given any λ, we can implement the algo-
rithm in O(m+n log n) time using essentially the same
implementation as in Section 4.1. We briefly discuss it
below.

We first compute xri and xli for each sensor si ∈ S,
and sort all these 2n values in O(n log n) time. Then,
we compute the value c(b) for each barrier point b ∈ B.
Unlike in Section 4.1, here the value c(b) is fixed and
does not depend on λ, and the sorted list of c(b) of all
barrier points b ∈ B is consistent with the sorted list of
all barrier points b ∈ B. Since the sorted list of B is
already computed in the preprocessing, we can obtain
the sorted list of c(b) for all barrier points b ∈ B in
O(m) time. By merging it with the sorted list of xri
and xli for all sensors si ∈ S, we can obtain the sorted
list of the event set E = {c(b) | b ∈ B} ∪ {xli, xri | si ∈
S} in additional O(n + m) time. Using E, we run the
same sweeping algorithm as before. We still use a binary
search tree T to maintain the sensors of Si2 and use a
variable s∗ to store a sensor of Si1. When p encounters
xlk for a sensor sk, we insert sk to T . When p encounters
xrk, we remove sk from T and set s∗ to sk. When p
encounters a barrier point bj , we determine the sensor
sgi using the variable s∗ and the tree T in the same way

as before. As analyzed in the proof of Lemma 9, the
total time of the algorithm is O(m+ n log n).

Lemma 12 After O(m logm) time preprocessing,
given any λ, whether λ ≥ λ∗ can be decided in
O(m+ n log n) time.

5.2 The optimization problem

We now show how to compute λ∗. We first implicitly
form 2n sorted arrays as follows. For each sensor si, we
define two sorted arrays Ai[1 . . .m] and Bi[1 · · ·m] of
size m each: for each 1 ≤ j ≤ m, Ai[j] = (

√
x2i + y2i −

r − xbj)/wi and Bi[j] = (xbj − r −
√
x2i + y2i)/wi. One

can verify that λ∗ must be one of the elements of these
arrays (e.g., using analysis similar to Lemmas 2 and
10) and each array is sorted. Then, applying Lemma 3
with our decision algorithm in Lemma 12, λ∗ can be
computed in O(m logm+(m+n log n) log(n+m)) time,
which is bounded by O(m logm+ n log2 n).3

Theorem 13 Given a set of m barrier points on a line
` and a set of n weighted sensors in the plane, the prob-
lem of moving sensors to ` to cover all barrier points
such that the maximum moving cost of all sensors is
minimized can be solved in O(m logm+ n log2 n) time.

References

[1] A.M. Andrews and H. Wang. Minimizing the aggregate
movements for interval coverage. Algorithmica, 78:47–
85, 2017.

[2] B. Bhattacharya, B. Burmester, Y. Hu, E. Kranakis,
Q. Shi, and A. Wiese. Optimal movement of mobile
sensors for barrier coverage of a planar region. Theo-
retical Computer Science, 410(52):5515–5528, 2009.

[3] D.Z. Chen, Y. Gu, J. Li, and H. Wang. Algorithms on
minimizing the maximum sensor movement for barrier
coverage of a linear domain. Discrete and Computa-
tional Geometry, 50:374–408, 2013.

[4] D.Z. Chen, X. Tan, H. Wang, and G. Wu. Optimal
point movement for covering circular regions. Algorith-
mica, 72:379–399, 2015.

[5] D.Z. Chen, C. Wang, and H. Wang. Representing a
functional curve by curves with fewer peaks. Discrete
and Computational Geometry, 46(2):334–360, 2011.

[6] J. Czyzowicz, E. Kranakis, D. Krizanc, I. Lambadaris,
L. Narayanan, J. Opatrny, L. Stacho, J. Urrutia, and
M. Yazdani. On minimizing the maximum sensor move-
ment for barrier coverage of a line segment. In Pro-
ceedings of the 8th International Conference on Ad-Hoc,
Mobile and Wireless Networks, pages 194–212, 2009.

3To see this, first notice that m logm + (m + n logn) log(n +
m) = O(m logm + n logn log(n + m)). Further, if m ≥ n2,
then m logm + n logn log(n + m) = O(m logm); otherwise,
log(n + m) = Θ(logn) and thus m logm + n logn log(n + m) =
O(m logm+ n log2 n).

147

33rd Canadian Conference on Computational Geometry, 2021

[7] J. Czyzowicz, E. Kranakis, D. Krizanc, I. Lambadaris,
L. Narayanan, J. Opatrny, L. Stacho, J. Urrutia, and
M. Yazdani. On minimizing the sum of sensor move-
ments for barrier coverage of a line segment. In Pro-
ceedings of the 9th International Conference on Ad-Hoc,
Mobile and Wireless Networks, pages 29–42, 2010.

[8] S. Dobrev, S. Durocher, M. Eftekhari, K. Georgiou,
E. Kranakis, D. Krizanc, L. Narayanan, J. Opatrny,
S. Shende, and J. Urrutia. Complexity of barrier cov-
erage with relocatable sensors in the plane. Theoretical
Computer Science, 579:64–73, 2015.

[9] H. Fan, M. Li, X. Sun, P. Wan, and Y. Zhao. Bar-
rier coverage by sensors with adjustable ranges. ACM
Transactions on Sensor Networks, 11:14:1–14:20, 2014.

[10] G. Frederickson and D. Johnson. Generalized selection
and ranking: Sorted matrices. SIAM Journal on Com-
puting, 13(1):14–30, 1984.

[11] G.N. Frederickson. Optimal algorithms for tree parti-
tioning. In Proceedings of the 2nd Annual ACM-SIAM
Symposium of Discrete Algorithms (SODA), pages 168–
177, 1991.

[12] G.N. Frederickson. Parametric search and locating sup-
ply centers in trees. In Proceedings of the 2nd Inter-
national Workshop on Algorithms and Data Structures
(WADS), pages 299–319, 1991.

[13] D.S. Hochbaum andW. Maass. Approximation schemes
for covering and packing problems in image processing
and VLSI. Journal of the ACM, 32:130–136, 1985.

[14] P. Huang, W Zhu, and L. Guo. On the complexity
of and algorithms for min-max target coverage on a
line boundary. In Proceedings of the 15th International
Conference on Theory and Applications of Models of
Computation (TAMC), pages 313–324, 2019.

[15] S. Kumar, T.H. Lai, and A. Arora. Barrier cover-
age with wireless sensors. In Proceedings of the 11th
Annual International Conference on Mobile Computing
and Networking (MobiCom), pages 284–298, 2005.

[16] V.C.S Lee, H. Wang, and X. Zhang. Minimizing the
maximum moving cost of interval coverage. Interna-
tional Journal of Computational Geometry and Appli-
cations, 27:187–205, 2017.

[17] S. Li and H. Shen. Minimizing the maximum sensor
movement for barrier coverage in the plane. In Proceed-
ings of the 2015 IEEE Conference on Computer Com-
munications (INFOCOM), pages 244–252, 2015.

[18] S. Li and H. Wang. Algorithms for covering multi-
ple barriers. Theoretical Computer Science, 758:61–72,
2019.

[19] D. Liang, H. Shen, and L. Chen. Maximum target cov-
erage problem in mobile wireless sensor networks. Sen-
sors, 21:1–13, 2015. Article No. 184.

[20] M. Mehrandish, L. Narayanan, and J. Opatrny. Min-
imizing the number of sensors moved on line barriers.
In Proceedings of IEEE Wireless Communications and
Networking Conference (WCNC), pages 653–658, 2011.

[21] X. Zhang, H. Fan, V.C.S. Lee, M. Li, Y. Zhao, and
C. Liu. Minimizing the total cost of barrier coverage in a
linear domain. Journal of Combinatorial Optimization,
36:434–457, 2018.

148

CCCG 2021, Halifax, Canada, August 10–12, 2021

Approximability of (Simultaneous) Class Cover for Boxes

Jean Cardinal ∗ Justin Dallant † John Iacono ‡

Abstract

Bereg et al. (2012) introduced the Boxes Class Cover
problem, which has its roots in classification and clus-
tering applications: Given a set of n points in the plane,
each colored red or blue, find the smallest cardinality
set of axis-aligned boxes whose union covers the red
points without covering any blue point. In this paper we
give an alternative proof of APX-hardness for this prob-
lem, which also yields an explicit lower bound on its
approximability. Our proof also directly applies when
restricted to sets of points in general position and to the
case where so-called half-strips are considered instead of
boxes, which is a new result.

We also introduce a symmetric variant of this prob-
lem, which we call Simultaneous Boxes Class Cover and
can be stated as follows: Given a set S of n points in the
plane, each colored red or blue, find the smallest cardi-
nality set of axis-aligned boxes which together cover S
such that all boxes cover only points of the same color
and no box covering a red point intersects a box cov-
ering a blue point. We show that this problem is also
APX-hard and give a polynomial-time constant-factor
approximation algorithm.

1 Introduction

Many approaches to data mining, classification and
clustering tasks show a close proximity to computa-
tional geometry, often embedding data in some space
and reducing or formalizing the considered problem as
a geometric one. Some well-known approaches include
support vector machines, nearest neighbour classifiers or
k-means clustering. In this paper we study the compu-
tational hardness and approximability of two variants of
another geometric problem which has its roots in classi-
fication and clustering, known as the Class Cover prob-
lem. It can be stated as follows: given a set of n points,
each colored red or blue, find the smallest number of
balls centered at red points which cover all red points

∗Department of Computer Science, Université libre de Brux-
elles, jcardin@ulb.ac.be

†Department of Computer Science, Université libre de Brux-
elles, justin.dallant@ulb.be Supported by the French Commu-
nity of Belgium via the funding of a FRIA grant.

‡Department of Computer Science, Université libre de Brux-
elles, john@johniacono.com Supported by the Fonds de la
Recherche Scientifique-FNRS under Grant no MISU F 6001 1.

without covering any blue points (see Section 2 for the
exact definition of “cover” we use here). This problem
was introduced by Cannon and Cowen [4], motivated
by connections to the measure of separability between
two classes of points defined by Cowen and Priebe [6] as
well as applications to classification and data reduction.
In this paper they showed that the problem was NP-
hard but admitted a polynomial-time (1 + ln(n))-factor
approximation. In the Euclidean setting for constant
dimension they show that the problem even admits a
polynomial-time approximation scheme (PTAS). The
problem was studied by others in the context of appli-
cations to pattern recognition [7] and classifiers [12].

Here we study a variant introduced by Bereg et al. [2]
which can be formulated as follows:

Definition 1 (Boxes Class Cover (BCC)) Given a
set of n points in the plane, each colored red or blue, find
the smallest cardinality set of axis-aligned boxes which
together cover the red points without covering any blue
point.

The authors show that this variant is NP-hard and give a
polynomial-time algorithm which achieves aO(1+log c)-
approximation, where c is the size of an optimal cover.
They also study a few restricted cases, among those cov-
ering with squares or so-called half-strips, where they
show that they remain NP-hard but admit a O(1)-factor
approximation in polynomial time. The variant for
squares was later shown to admit a PTAS [1] while for
the general BCC problem it was shown by Shanjani [9]
that no PTAS can exist unless P = NP (in this paper
the author also notes that the original reduction used
by Bereg et al. in fact already shows this result).

Note that in all the variations mentioned above, there
is a clear asymmetry between the roles of the two color
classes, which is not always warranted in applications.
As a measure of separability of two classes this can also
lead to a phenomenon where the first class can be “sep-
arated” from the second using few boxes, while sepa-
rating the second from the first requires many boxes.
This motivates us to consider a symmetric version of
the problem, which we formulate as follows:

Definition 2 (Simultaneous BCC (SBCC))
Given a set S of n points in the plane, each colored red
or blue, find the smallest cardinality set of axis-aligned
boxes which together cover S such that all boxes cover
only points of the same color and no box covering a red

149

33rd Canadian Conference on Computational Geometry, 2021

point intersects the interior of a box covering a blue
point.

In Section 2 we go over some basic definitions and
lemmas. In Section 3 we give an alternative proof to
the fact that there is no PTAS for BCC unless P =
NP, by a reduction from Vertex Cover. While this is
already known, our proof is more direct than previous
ones and allows us to exhibit a specific lower bound
on the approximation factor. The proof also works for
half-strips and for the restriction where we consider only
point sets in general position, which are new results. In
Section 4 we show that for the SBCC problem there is
again no PTAS unless P = NP. Finally in Section 5 we
give a polynomial-time constant-factor approximation
algorithm for SBCC. In the way to doing so we show
that requiring all boxes to be independent in the SBCC
blows up the size of an optimal solution by at most a
factor of 9.

2 Some definitions and lemmas

We start by giving some definitions of the object we
will consider in this paper. Note that we sometimes use
the name of a problem (such as “BCC”) to denote the
corresponding structure we want to minimize (in case of
a BCC, this would be a set of axis-aligned boxes covering
the red points without covering any blue point).

Definition 3 A bichromatic set of points is a set of
points where some points are said to be red and the rest
are said to be blue.

We will use the notation S = R ∪ B to denote such a
set of points, where R is the set of red points, B is the
set of blue points, and R ∩B = ∅. In what follows and
in the rest of this paper, we will consider only closed
axis-aligned boxes with non-empty interiors and unless
otherwise specified, they are bounded.

We use the following slightly technical definition of a
rectilinear polygon, which will make some of the results
and proofs easier to phrase:

Definition 4 A rectilinear polygon P is a connected
set of points in the plane such that:

• the closure of P can be obtained as the union of a
finite number of axis-aligned boxes B,

• every pair of boxes in B is either disjoint or inter-
sects in more than one point,

• and all connected components of R2 \ P have non-
empty interior.

Note that from this definition a rectilinear polygon
is not necessarily closed (nor open). We extend the
usual definitions of vertices and edges of a polygon to

rectilinear polygons. Note that such a polygon may or
may not have holes (bounded connected components of
R2 \ P) which also contribute vertices and edges.

We add a few more basic definitions:

Definition 5 We call outer-hull of P , denoted as
oh(P), the union of all edges adjacent to the unbounded
connected component of R2 \ P . The outer-complexity
of P is the number of vertices in oh(P). A convex ver-
tex of P is a vertex such that the right angle formed by
the two edges adjacent to the vertex is directed towards
the interior of P . Otherwise we call the vertex reflex.

For a polygon P , we let |P | denote the number of ver-
tices in P . The same applies for a union of polygons or
the outer-hull of a (union of) polygon(s). In all other
cases we let |S| denote the cardinality of the set S (in
such cases S will always be finite).

Definition 6 Let S = R ∪ B be a bichromatic set of
points. We say that an axis-aligned box K covers a point
p if p is in the interior of K. We say that K is red (resp.
blue) if it covers only red (resp. blue) points of S. It is
monochromatic if it is either red or blue.

We say that a set Z of axis-aligned boxes is a BCC of
S if all red points in S are covered by some box in Z and
all boxes in Z are red. We say that Z is an SBCC S if
all points in S are covered by some box in Z, all boxes
in Z are monochromatic and no two boxes of different
color have their interiors intersecting.

We say that Z covers a rectilinear polygon P if P is
included in the union of all boxes in Z. We say that
this cover is exact (or that Z covers P exactly) if the
closure of P is equal to the union of all boxes in Z.

We finish this section with two lemmas which will
prove useful to us.

Lemma 7 Let P be a rectilinear polygon. Let c be the
number of convex vertices of P , r be the number of re-
flex vertices and h be the number of holes. Then we
have r = c + 4(h − 1). In particular, if P is obtained
as the union of k axis-aligned boxes, then it has outer-
complexity less than 8k, as each box contributes at most
4 convex vertices to the outer face.

Proof. It is well known (see for example Lemma 1 in
[11]) that for a rectilinear polygon with no holes we have
r = c−4. Now consider some hole H of P . If we view H
as a rectilinear polygon itself and denote cH and rH the
number of convex and reflex vertices of H respectively,
then we have rH = cH − 4 (as H has no hole). Because
a convex (resp. reflex) vertex for H is a reflex (resp.
convex) vertex for P , the hole H contributes rH + 4
reflex vertices and rH convex vertices to P . Because for
a rectilinear polygon with no holes we have r = c − 4
and every hole contributes 4 more reflex vertices than
convex vertices, it holds that in a a rectilinear polygon
with h holes we have r = c− 4 + 4h = c+ 4(h− 1). �

150

CCCG 2021, Halifax, Canada, August 10–12, 2021

Figure 1: The gadget corresponding to an edge e1 be-
tween vertices vi and vj . The vertex lanes are repre-
sented with short dashes and the edge lanes with long
ones. Here there are two edge lanes between consecutive
vertex lanes, thus representing a graph with two edges
(assuming all lanes appear on this figure).

Lemma 8 ([8]) Any rectilinear polygon with n vertices
and h holes can be covered exactly with at most n/2 +
h− 1 axis-aligned boxes.

3 An approximation-preserving reduction from Min-
imum Vertex Cover to Minimum Class Cover

Here we show how to reduce the (minimum) Vertex
Cover problem to BCC in a way that shows the fol-
lowing:

Theorem 9 If BCC can be approximated in polynomial
time within a constant factor of (1 + ε) for ε > 0 then
Vertex Cover can be approximated in polynomial time
within a constant factor of (1 + (d+ 1)ε) on graphs with
maximum degree bounded by d.

Using the fact that Vertex Cover is NP-hard to ap-
proximate within a constant factor of 1+1/52 on graphs
with maximum degree at most 4 [5] we also get the fol-
lowing:

Corollary 10 Approximating BCC within a constant
factor of 1 + 1/260 (≈ 1.0038) is NP-hard.

Note that as mentionned in the introduction, the
reduction used by Bereg et al. from Rectilinear Poly-
gon Cover (which itself admits a reduction from Ver-
tex Cover in bounded degree graphs) also proves APX-
hardness. However the reduction here is more di-
rect, which allows us to easily get the more precise
(1+(d+1)ε) relationship and an explicit lower bound on
the approximation factor. It also has the advantage that
it is easy to see that it works for points in general po-
sition also (by perturbing the points slightly), whereas
this is not immediately the case for the reduction from
Rectilinear Polygon Cover.

Proof. [of Theorem 9] Suppose we are given a sim-
ple undirected graph G with n vertices denoted as

v1, v2 . . . , vn and m edges denoted as e1, e2 . . . , em, of
maximum degree at most d.

Imagine creating n disjoint vertical slabs in the plane,
one for each vertex (in the order given by the vertex
indices). We call such a slab a vertex lane. Between
any two consecutive vertex lanes, we createm additional
disjoint vertical slabs (also disjoint from the previously
created vertex lanes), one for each edge. We call these
the edge lanes.

Now we describe a gadget which will encode an edge
of G as a set of points in the plane to cover. Consider an
edge e between vi and vj , i < j. We place a red point
on the vertex lane corresponding to vi and one with
larger y-coordinate on the vertex lane corresponding to
vj . We also add a red point on the unique edge lane
corresponding to e between the lanes of vi and vi+1,
with y-coordinate between those of the two previously
placed points. Next, we add a few blue points which
restrict the type of boxes which can be used to cover
these red points (see Figure 1). We create an instance
S of the BCC problem by placing the edge gadgets such
that their minimal bounding boxes are all disjoint.

Consider the minimum vertex cover of G. Denote
its size as optG. For every vertex in this cover we can
create a box covering the corresponding vertex lane en-
tirely. We thus obtain a set of optG boxes such that
in every gadget, either the left or right vertex lane is
covered (or both). In each gadget we need exactly one
additional box to fully cover the red points. Thus, we
obtain a solution to the BCC problem of size optG +m.
In particular, if we let optS denote the minimum size of
a BCC of S, we have optS ≤ optG +m.

Now consider a solution to the BCC problem using
b boxes. We assume without loss of generality that no
two boxes cover the exact same subset of red points.

Consider the gadget corresponding to some edge. No-
tice that a red box covering the middle red point cannot
cover any red point in any different gadget (as this point
is the only one in its edge lane). Moreover, a box cov-
ering the left or right point can only additionally cover
the middle point or other points on the same vertex lane
(but not both simultaneously).

If there is a box covering the middle point which cov-
ers neither the left nor right point, we can either delete
this box (if another box also covers the middle point) or
replace it with a box covering, say, both the middle and
left point. This does not make any other red point un-
covered. Consider this change done from now on. If the
middle red point is covered twice, then we can replace
the box which also covers, say, the right red point with
a box covering the whole vertex lane corresponding to
that right point without making any red point uncov-
ered. If any vertex lane is fully covered multiple times
after this process we can simply discard all but one of
the boxes covering it.

151

33rd Canadian Conference on Computational Geometry, 2021

Figure 2: Regardless if the left vertex lane, right vertex
lane or both are covered, there is always exactly one
additional box covering the remaining red points in an
edge-gadget.

After making these changes, we end up with a set
of at most b boxes such that for any of the m edge-
gadgets, either the lane corresponding to the left point
is fully covered or the lane corresponding to the right
point is fully covered (or both). In all cases, there is
one additional box covering the middle point (see Figure
2. Thus, if ` is the number of lanes covered, the total
number of boxes is ` + m ≤ b. We can create a vertex
cover of G of size ` ≤ b −m by choosing every vertex
such that the corresponding lane is fully covered.

Now say that we can approximate BCC in polynomial
time within a factor of (1+ε). We can run this algorithm
on S to obtain a class cover of size at most (1 + ε)optS .
By the process described above we can then obtain a
vertex cover of G of size at most

(1 + ε)optS −m ≤ (1 + ε)(optG +m)−m
= (1 + ε)optG + ε ·m.

Because G is of maximum degree at most d, every
vertex can cover at most d edges and we have optG ≥ m

d ,
i.e. m ≤ d · optG. Thus, the vertex cover we obtain is of
size at most

(1 + ε)optG + ε ·m ≤ (1 + ε)optG + ε · d · optG

= (1 + (d+ 1)ε)optG.

This concludes the proof. �

Note that this proof works exactly the same if we re-
place the axis-aligned boxes with axis-aligned half-strips
(axis-aligned boxes which are unbounded in one of the
four axis-aligned directions). By a simple perturbation
argument, it also yields the same results when restricted
to sets of points in general position (that is, where no
three points are collinear).

4 An approximation hardness proof for Simultane-
ous Boxes Class Cover

In this section we prove that SBCC is APX-hard. Here,
the proof strategy used in the previous section breaks
down because of the interactions between the boxes cov-
ering the red points and those covering the blue points.
Instead, we revert back to the proof strategy used by
Bereg et al. by a reduction from Rectilinear Polygon
Cover.

Definition 11 (Rectilinear Polygon Cover (RPC))
Given a closed rectilinear polygon P , find the smallest
cardinality set of axis-aligned boxes covering P exactly.

In our case we are covering the red and blue points si-
multaneously so we consider a slightly different problem,
where we want to cover P and its complement simulta-
neously.

152

CCCG 2021, Halifax, Canada, August 10–12, 2021

Figure 3: Reduction from SRPC to SBCC.

Definition 12 (Simultaneous RPC (SRPC))
Given a closed rectilinear polygon P and an axis-
aligned box K containing P in its interior, find the
smallest cardinality set R∪B of axis-aligned boxes such
that:

• the boxes in R cover P exactly,

• and the boxes in B cover K \ P exactly.

We start with the following:

Theorem 13 If SBCC can be approximated in polyno-
mial time within a constant factor of (1+ε), then SRPC
can also be approximated in polynomial time within a
constant factor of (1 + ε).

The reduction here is almost identical to the previously
mentionned one from RPC to BCC. We include it for
the sake of completeness.

Proof. We first show how to create a corresponding
SBCC instance from a SRPC instance in polynomial
time. Consider an axis aligned box K and a closed
rectilinear polygon P contained in its interior (this con-
stitutes our instance of the SRPC problem). Consider
the set L1 of all axis aligned lines which pass through a
vertex of P or K. Between any two consecutive vertical

(resp. horizontal) lines of L1 draw a vertical (resp. hor-
izontal) line. Call the set of newly drawn lines L2. The
SBCC instance we consider is the set S = R∪B of pair-
wise intersections between lines of L1 ∪ L2, colored red
if they are in P or on its boundary and blue otherwise.
See Figure 3 for an illustration.

For any solution to the SRPC problem on P , we can
slightly extend the boxes covering P and shrink those
covering the complement of P to obtain a solution of
the SBCC problem on S of the same cardinality (in
polynomial time).

Let us see how we can go in the reverse direction.
Consider some solution R ∪ B to the SBCC problem
on S. Start by expanding the boxes in the solution in
the four directions as much as possible without covering
a point of the opposite color. Now for each red box
KR, replace it with the smallest axis-aligned box K ′

R

containing KR ∩ P . For each blue box KB , replace it
the smallest axis-aligned box K ′

B containing KB \ P .
Notice that every point of S which does not lie on the
boundary of P is still covered. Now consider some cell c
of the grid L1 ∪ L2. By construction, one of the corner
points p of c is the intersection of two lines in L1. Any
box covering this corner has been expanded to cover
the whole cell (possibly excluding the edges of the cell
contained in edges of P with the). Thus P is covered by
red boxes and K\P is covered by blue boxes. It remains
to show that these covers are exact. Suppose some blue
box K ′

B intersects the interior of P . Because K ′
B covers

at least one blue point b, its interior intersects K \ P
and thus also an edge e of P . Because K ′

B covers no
red point, no vertex of P lies inside K ′

B and e must join
two opposite edges of K ′

B . Thus there is an axis aligned
line passing through b and intersecting e inside K ′

B . By
construction a red point lies on this intersection. This is
a contradiction as K ′

B covers no red point. We conclude
that K ′

B does not intersect the interior of P . The same
reasoning shows that no red box K ′

R intersects K \ P .
In short, the optimal solutions for the SRPC problem

on P and the SBCC problem on S have the same size,
and any solution to the latter can be transformed into
a solution to the former of the same size in polynomial
time. �

Ideally at this point we would like to show that, say,
the existence of a PTAS for SRPC implies the existence
of a PTAS for RPC. Then, because a PTAS for RPC
cannot exist unless P = NP, this would imply that the
same holds for SRPC and thus also for SBCC. Unfortu-
nately, the trivial reduction from RPC to SRPC is not
approximation-preserving. Intuitively, an approxima-
tion to SRPC can be good overall because the optimal
cover of the complement is large and well approximated
while the optimal cover of the polygon itself is small
and poorly approximated (thus yielding a poor solution
to the RPC instance). To get around this, we focus on

153

33rd Canadian Conference on Computational Geometry, 2021

polygons where the size of the optimal cover of the com-
plement is upper-bounded by a constant times the size
of the optimal cover of the polygon itself.

Definition 14 Let P be a closed rectilinear polygon and
let K be an-axis aligned box containing P in its interior.
We say that P has a d-small-complement if the cardi-
nality of the smallest exact box-cover of K \P is at most
d times the cardinality of the smallest exact box-cover of
P .

Note that the specific choice of K here does not im-
pact the definition.

Lemma 15 If SRPC can be approximated within a con-
stant factor of (1 + ε) in polynomial time, then RPC
on rectilinear polygons with d-small-complements can be
approximated within a constant factor of (1 + (d+ 1)ε)
in polynomial time.

Proof. Let P be a closed polygon with a d-small-
complement, and let K be an-axis aligned box contain-
ing P in its interior. Let opt (resp. optsim denote the
minimum cardinality of a RPC (resp. SRPC) on P . Let
opt denote the minimum exact box-cover of K \ P . We
have optsim = opt + opt and opt ≤ d · opt. Consider
some solution of size solsim ≤ (1+ε)optsim to the SRPC
on P . This solution solsim consists of a solution to the
RPC problem on P of size sol together with an exact
box-cover of K \ P of size sol. Finally we have

sol = solsim − sol

≤ (1 + ε)optsim − sol

≤ (1 + ε)opt + (1 + ε)opt− sol

≤ (1 + ε)opt + εopt

≤ (1 + ε)opt + εd · opt

≤ (1 + (d+ 1)ε)opt

�

We have the following criteria to identify polygons
with d-small-complements

Lemma 16 Let α ≥ 0 be a constant and let P be a
closed rectilinear polygon with c convex vertices and h ≤
α · c holes. Then P has a (4 + 8α)-small-complement.

Proof. Let K be an-axis aligned box containing P in
its interior. Let r be the number of reflex vertices of
P and n = r + c be the number of vertices of P . Let
s (resp. s) denote the cardinality of the smallest exact
box-cover of P (resp. K \ P). By Lemma 7, we have
r = c + 4(h − 1) ≤ c(1 + 4α) − 4. Because any box in
an exact cover can cover at most 4 convex vertices of P ,
we have s ≥ c/4. The set K \ P is a disjoint union of
rectilinear polygons with a total of n + 4 vertices, and

only one of these polygons has a hole (corresponding to
P). By Lemma 8, K \P can be exactly covered with at
most (n+ 4)/2 = (r+ c+ 4)/2 ≤ c

4 (4 + 8α) boxes. Thus
s ≤ c

4 (4 + 8α) ≤ s(4 + 8α) and the claim holds. �

If we chain all these implications together, we get the
following:

Theorem 17 If there is a PTAS for SBCC, then there
is a PTAS for RPC restricted to rectilinear polygons
where the number of holes is at most α times the number
of convex vertices, for any constant α ≥ 0.

Berman and DasGupta showed that there is no PTAS
for RPC unless P = NP [3], by reducing Vertex Cover
to RPC in an approximation-preserving way. One inter-
esting (and in our case, useful) thing to note is that the
instances of RPC produced by this reduction are rec-
tilinear polygons where every hole contributes at least
one convex vertex to the polygon. In particular these
instances have at least as many convex vertices as they
have holes. Thus, we can state Berman and DasGupta’s
result in a slightly more precise way as follows:

Theorem 18 ([3]) There is no PTAS for RPC unless
P = NP, even when restricted to rectilinear polygons
with no more holes than convex vertices.

This combined with the previous theorem now imme-
diately yields:

Theorem 19 There is no PTAS for SBCC unless P =
NP.

Note that the only place where we have needed to
exploit sets of points which are not in general position
is in the proof of Theorem 13.

5 A constant-factor approximation for Simultaneous
Boxes Class-Cover

Here we prove that SBCC can be approximated within
a constant factor in polynomial time. To do so, we
show that the minimum size of a SBCC of S is bounded
above and below by the minimum size of a SBCC of S
with interior-disjoint boxes. This latter problem can be
approximated within a constant factor using the results
from [10].

Theorem 20 The size of the minimum SBCC of S
with interior-disjoint boxes is at most 9 times larger
than the minimum SBCC of S.

Proof. Let (R,B) be an SBCC of S = R∪B of size k.
By shrinking the boxes in R (resp. B), we can assume
without loss of generality that every pair of boxes in R
(resp. B) either intersects at more than one point or is
disjoint, and that blue boxes are disjoint from red boxes.

154

CCCG 2021, Halifax, Canada, August 10–12, 2021

Figure 4: Illustration of the Fill procedure in the proof
of Theorem 20, first applied to the holes of the larger
red region then to the hole of the larger blue region.

The union of all boxes thus determines a partition Π
of the plane into red rectilinear polygons (red regions),
blue rectilinear polygons (blue regions) and uncovered
regions (which also have rectilinear boundaries). Call
a bounded uncovered region of Π a hole of Π (notice
the distinction between a hole of Π and a hole of some
region in Π). Call outer-complexity of Π the sum of
outer-complexities of all red and blue regions in Π.

Call Fill the process of taking a hole H of Π and
giving it the color of the polygon K that surrounds it.
Suppose without loss of generality that K is red. By ap-
plying the Fill procedure we have replaced the region
K of Π with a new red rectilinear polygon K ′ with the
same outer-hull as K. Notice that this increases neither
the number of red or blue regions in Π, and decreases the
number of holes by one. Moreover, it does not increase
the outer-complexity of Π, as any blue region or red re-
gion which is not adjacent to H is unaffected, while any
red region adjacent to H gets merged with K ′ and thus
does not contribute to the outer-complexity of Π any
longer. The red and blue regions of Π are still disjoint
and still correctly cover all points of S by construction.

Repeatedly apply Fill as long as there are holes in Π.
This procedure terminates as Π starts out with a finite
number of holes and every application of Fill decreases
the number of holes. Moreover, because Π no longer has

holes by the end of the procedure, every hole of every
region in Π must coincide with the outer-hull of some
other region. On the other hand, the outer-hull of any
region can coincide with at most one such hole. Recall
that k is the number of boxes we started with in the
original SBCC. Because Π starts out with at most k
colored regions and Fill never increases the number of
colored regions, Π still has at most k colored regions.

By Lemma 8, any colored region P of Π can be exactly
covered with a number of boxes which is at most

|P |/2 + |holes(P)| − 1

= |oh(P)|/2 +
∑

H∈holes(P)

(|H|/2 + 1) − 1.

Because every colored region in Π coincides with at
most one hole of another colored region, and every hole
in every colored region coincides with another colored
region (more precisely, its outer-hull) by summing over
all colored regions P we get a total number of boxes
smaller than

∑

P

|oh(P)|/2 +
∑

P

(|oh(P)|/2 + 1)

≤
∑

P

(|oh(P)|+ 1).

Because Π contains at most k colored regions, this is
at most c + k, where c is the outer-complexity of Π.
By Lemma 7 and because the applications of Fill did
not increase the outer-complexity of Π, we have c ≤ 8k.
Thus the claim holds. �

In [10], Mitchell showed the following:

Theorem 21 ([10]) Given a set S of n points and a
set of axis-aligned boxes R, we can, in polynomial time,
find a O(1)-approximation for the minimum cardinality
set of interior-disjoint axis-aligned sub-boxes of R which
cover all points in S.

Using this result, we get our main theorem in this
section:

Theorem 22 There is a polynomial-time algorithm to
approximate minimum simultaneous class cover within
a constant factor.

Proof. Consider some set of n red and blue points S.
Call opt the minimum size of a SBCC of S and optind
the minimum size of a SBCC of S with interior-disjoint
boxes.

Let R be the set of monochromatic boxes on S. We
shrink these boxes appropriately to consider only boxes
which have a point of S near every edge, so that the
number of boxes in R is polynomial in n (and R can
also be computed in O(poly(n)) time). Using Theorem

155

33rd Canadian Conference on Computational Geometry, 2021

21 with this set R, we can get a SBCC with interior-
disjoint boxes (which is also a SBCC by definition) of
size k ∈ O(optind) in O(poly(n)) time. By Theorem 9
we have optind ≤ 9 ·opt. Thus k ∈ O(opt) and the claim
holds. �

6 Conclusion

In this paper we have given an alternative proof of the
APX-hardness of the Boxes Class Cover problem which
yields a more precise statement on the lower bound for
a polynomial-time approximation factor (under the as-
sumption that P 6= NP), and works as well for the case
where half-strips are used instead of boxes. We have also
explored the related Simultaneous Boxes Class Cover
problem, giving proofs for a lower and upper bound
which match up to a constant factor. These exhibit
interesting connections with the Independent Sub-Box
Cover problem studied by Mitchell [10]. The problem
of finding a constant-factor approximation to the origi-
nal BCC problem remains open. Perhaps the methods
used here could help find better upper bounds for this
problem, or match the existing upper-bounds by more
elementary means (as current upper bounds rely on the
computation of weighted ε-nets).

References

[1] R. Aschner, M. J. Katz, G. Morgenstern, and Y. Yudit-
sky. Approximation schemes for covering and packing.
In S. K. Ghosh and T. Tokuyama, editors, WALCOM:
Algorithms and Computation, pages 89–100, Berlin,
Heidelberg, 2013. Springer Berlin Heidelberg.

[2] S. Bereg, S. Cabello, J. M. Dı́az-Báñez, P. Pérez-
Lantero, C. Seara, and I. Ventura. The class cover
problem with boxes. Comput. Geom., 45(7):294–304,
2012.

[3] P. Berman and B. DasGupta. Complexities of efficient
solutions of rectilinear polygon cover problems. Algo-
rithmica, 17(4):331–356, 1997.

[4] A. Cannon and L. Cowen. Approximation algorithms
for the class cover problem. Ann. Math. Artif. Intell.,
40(3-4):215–224, 2004.

[5] M. Chleb́ık and J. Chleb́ıková. Inapproximability re-
sults for bounded variants of optimization problems.
In A. Lingas and B. J. Nilsson, editors, Fundamen-
tals of Computation Theory, 14th International Sympo-
sium, FCT 2003, Malmö, Sweden, volume 2751 of Lec-
ture Notes in Computer Science, pages 27–38. Springer,
2003.

[6] L. J. Cowen and C. E. Priebe. Randomized nonlin-
ear projections uncover high-dimensional structure. Ad-
vances in Applied Mathematics, 19(3):319–331, 1997.

[7] J. G. DeVinney. The class cover problem and its appli-
cation in pattern recognition. PhD thesis, Johns Hop-
kins University, 2003.

[8] D. Eppstein. Graph-theoretic solutions to computa-
tional geometry problems. In C. Paul and M. Habib, ed-
itors, Graph-Theoretic Concepts in Computer Science,
35th International Workshop, WG 2009, Montpellier,
France, volume 5911, pages 1–16, 2009.

[9] S. Hajiaghaei Shanjani. Hardness of approximation for
red-blue covering. In Proceedings of the 32nd Canadian
Conference on Computational Geometry, CCCG 2020,
August 5-7, 2020, University of Saskatchewan, Saska-
toon, Saskatchewan, Canada, 2020.

[10] J. Mitchell. Approximation algorithms for geometric
separation problems. Technical report, Dept. of Applied
Math. and Statistics, State University of New York at
Stony Brook, 1993.

[11] J. O'Rourke. An alternate proof of the rectilinear art
gallery theorem. Journal of Geometry, 21(1):118–130,
1983.

[12] C. E. Priebe, D. J. Marchette, J. DeVinney, and D. A.
Socolinsky. Classification using class cover catch di-
graphs. J. Classif., 20(1):003–023, 2003.

156

CCCG 2021, Halifax, Canada, August 10–12, 2021

Efficiently Stabbing Convex Polygons and Variants of the
Hadwiger-Debrunner (p, q)-Theorem.∗

Justin Dallant † Patrick Schnider ‡

Abstract

Hadwiger and Debrunner showed that for families of
convex sets in Rd with the property that among any
p of them some q have a common point, the whole
family can be stabbed with p − q + 1 points if p ≥
q ≥ d + 1 and (d − 1)p < d(q − 1). This general-
izes a classical result by Helly. We show how such
a stabbing set can be computed for a family of con-
vex polygons in the plane with a total of n vertices in
O((p − q + 1)n4/3 log8 n(log log n)1/3 + np2) expected
time. For polyhedra in R3, we get an algorithm run-
ning in O((p− q+ 1)n5/2 log10 n(log log n)1/6 +np3) ex-
pected time. We also investigate other conditions on
convex polygons for which our algorithm can find a fixed
number of points stabbing them. Finally, we show that
analogous results of the Hadwiger and Debrunner (p, q)-
theorem hold in other settings, such as convex sets in
Rd × Zk or abstract convex geometries.

1 Introduction

A classical result in convex geometry by Helly [18] states
that if a family of convex sets in Rd is such that any
d + 1 sets have a common intersection, then all sets
do. In 1957, Hadwiger and Debrunner [15] considered
a generalization of this setting. Let F be a family of
sets in Rd and let p ≥ q ≥ d + 1 be integers. We say
that F has the (p, q)-property if |F| ≥ p and for every
choice of p sets in F there exist q among them which
have a common intersection. We further say that a set
of points S stabs F if every set in F contains at least
one point from S. Then the following holds.

∗A full version of the paper is available at
https://arxiv.org/abs/2002.06947. A preliminary version
was presented at EuroCG 2020, University of Würzburg.
†Department of Computer Science, Université libre de Brux-

elles, justin.dallant@ulb.be. This work was partially supported
by the French Community of Belgium via the funding of a FRIA
grant.
‡Department of Mathematical Sciences, University of Copen-

hagen, ps@math.ku.dk. Has received funding from the European
Research Council under the European Unions Seventh Framework
Programme ERC Grant agreement ERC StG 716424 - CASe. Part
of this work was done when the author was employed at ETH
Zürich.

Theorem 1 (Hadwiger and Debrunner [15]) Let
d ≥ 1 be an integer. Let p and q be integers such that
p ≥ q ≥ d + 1 and (d − 1)p < d(q − 1), and let F be a
finite family of convex sets in Rd. Suppose that F has
the (p, q)-property. Then there exist p− q + 1 points in
Rd stabbing F .

Note that the bound on the number of points needed
is tight. That is, for every p ≥ q ≥ d + 1 there exist
families of convex sets with the (p, q)-property where
at least p − q + 1 points are needed to stab the whole
family. This is easily seen by considering any family
of p − q + 1 disjoint convex sets where one of them is
taken with multiplicity q. It is also known that when-
ever q ≤ d, there exist families of convex sets with the
(p, q)-property where arbitrary large number of points
are needed. This can be seen by taking n hyperplanes in
general position in Rd (meaning that no two hyperplanes
are parallel and no d + 1 hyperplanes intersect at the
same point). Then any d hyperplanes intersect at some
point (in other words, they have the (d, d)-property) and
any single point stabs at most d hyperplanes. Thus, at
least bn/dc points are necessary to stab all hyperplanes.

Many related results have since been established.
Among the most famous is one from Alon and Kleitman
[3] who in 1992 proved that for any p ≥ q ≥ d+ 1, there
exists a finite upper bound on the maximum number of
points needed to stab a family of convex sets with the
(p, q)-property. However, all the known upper bounds
are probably far from being tight in the general case. As
an example, for (p, q, d) = (4, 3, 2), their proof yields an
upper bound of 4032 (while the best known lower bound
is 3). Since then, this number has been proven to lie be-
tween 3 and 13 (inclusive) [22]. A further improvement
to the upper bound from 13 to 9 by McGinnis has re-
cently appeared as a preprint [26]. Still, the only values
of p ≥ q ≥ d + 1 for which exact bounds are known
are those corresponding to Theorem 1. There is a lot of
work in this more general setting, both improving the
bounds (e.g. [21]) as well as adapting to generalizations
of convex sets (e.g. [20, 29]), and it is an interesting
open problem to study algorithmic questions connected
to these results.

Special cases where some further restrictions are im-
posed on the considered sets have also led to interesting
results. One much studied example is obtained by con-

157

33rd Canadian Conference on Computational Geometry, 2021

sidering only axis-aligned boxes in Rd. In this case, we
can already start by strengthening the result given by
Helly’s theorem, as for a family of axis-aligned boxes
in Rd, if all pairs intersect then the whole family in-
tersect. As is expected, this additional structure leads
to stronger (p, q) results. One early result by Hadwiger
and Debrunner [16] is the following (notice the weaker
conditions on p and q and the independence on d).

Theorem 2 ([16]) Let d ≥ 1 be an integer. Let p and
q be integers such that 2q − 2 ≥ p ≥ q ≥ 2 and let F
be a finite family of axis-aligned boxes in Rd. Suppose
that F has the (p, q)-property. Then there exist p−q+1
points in Rd stabbing F .

Another example is when all sets are translations ei-
ther with or without scaling of some convex setK. Here,
strong results exist only for some very simple cases such
as K being a d-dimensional cube or ball. For example
the maximum number of points needed to stab families
of discs in the plane with the (p, 2)-property lies be-
tween 4p − 4 and 7p − 10 inclusive [32]. These bounds
are tight for p = 2, that is in the case of pairwise inter-
secting discs (which was already shown by Stachó [31]
and Danzer [10]).

From an algorithmic point of view, little work seems
to have been done towards computing these stabbing
points. One instance which has recently received some
attention is the aforementioned case of pairwise inter-
secting discs in the plane. Har-Peled et al. [17] showed
how such a family can be stabbed with 5 points in linear
time (which is one more point than the theoretical opti-
mum). Shortly after another paper, yet to be formally
published, claimed to find a linear time algorithm for
stabbing such a family with only 4 points [6]. However,
the computation of small stabbing sets for families of
general convex polyhedra with the (p, q)-property seems
to not have been studied and will constitute one part of
this paper, in the setting of Theorem 1.

For a great overview of the studied questions and
known results around (p, q) problems, we refer the in-
terested reader to the 2003 survey by Eckhoff [12].

Before continuing, we would also like to mention that
Helly’s theorem has been generalized to many other set-
tings, as this will come in play in the second part of this
paper. In general, we say that a set system has Helly
number h if the following holds: if any h sets in the set
system have a common intersection, then the whole set
system does. Helly numbers have been shown to exist
for many set systems, such as convex sets in Rd × Zk
[4, 19] or abstract convex geometries [13, 23], which in-
clude subtrees of trees and ideals of posets. In many
cases, the proofs can be adapted to show a constant
stabbing number analogous to the result by Alon and
Kleitman. In this work, we show that under some weak
conditions, the existence of a Helly number implies a
tight Hadwiger-Debrunner type result.

Some details have been left out of this paper, and are
included in the full version [9].

2 Stabbing convex polytopes

2.1 A proof of the Hadwiger-Debrunner (p, q)-
theorem

We will first consider a proof of Theorem 1 which
will naturally lead to an algorithm for finding stabbing
points. In a book by Matoušek [25], the proof of this
theorem is left as an exercise, yet the hint suggests that
the intended solution is close to the proof below. The
main differences with other proofs for this theorem are
that it is more constructive and does not make use of
a separating hyperplane, which will make it easier to
adapt to other settings later on.

The proof makes use of a lemma which can also be
found in the same book. For a non-empty compact
set S, let lexmin(S) denote its lexicographical minimum
point. Then we have the following.

Lemma 3 ([25, Lemma 8.1.2]) Let F be a family of
at least d + 1 compact convex sets in Rd, such that
I :=

⋂F is non-empty. Let x := lexmin(I). Then,
there exists a subfamily H ⊂ F of size d such that
x = lexmin(

⋂H).

We now sketch the idea of the proof of the Hadwiger-
Debrunner theorem (see the full version of this paper
[9] for a complete proof).

Proof. [Proof idea of the Hadwiger-Debrunner theo-
rem] Call a pair of integers (p, q) admissible if p ≥ q ≥
d+1 and (d−1)p < d(q−1). Let (p, q) be an admissible
pair, and let F be a family of compact convex sets in Rd
with the (p, q)-property. Construct a point x∗(F) de-
fined as the lexicographically maximum point among all
lexicographically minimum points in the intersection of
d sets in F . We choose it as one of our stabbing points
and remove all sets stabbed by x∗(F). Using Lemma 3
it can be shown that the remaining sets either have the
(p − d, q − d + 1)-property, where (p − d, q − d + 1) is
admissible, or consist of p− q+ k sets, k < q− d, where
some k+1 have a common intersection. In the first case,
we can continue inductively, in the second case we can
trivially stab the remaining sets using p− q points. �

This proof naturally leads to an algorithm. In the fol-
lowing we will assume that the convex sets are convex
polytopes described as intersections of a total of n half-
spaces in general position. The dimension d is constant.
As testing if convex polytopes intersect can be done in
linear time in the number of defining halfspaces (using
linear programming in constant dimension), computing
x∗(F) can be done in O(nd) time by computing all d-
wise intersections (see the proof of Lemma 15). This

158

CCCG 2021, Halifax, Canada, August 10–12, 2021

needs to be computed at most p− q + 1 times. For the
case where there are only p − q + k sets, using Lemma
3 together with the fact that p − q + k < p − d we can
compute a point stabbing k+ 1 sets in O(npd) time (or
O(pd+1) if all polyhedra are of at most constant size).
We can then easily choose p− q− 1 points in O(n) time
to stab the remaining p− q−1 sets. Thus, in the plane,
we get a total runtime of O((p− q+ 1)n2 +np2). In the
next section, we will show how to get a subquadratic
runtime with respect to n.

Note also that for d ≤ 3 we can get the vertex repre-
sentation of our polytopes from the halfspace represen-
tation in O(n log n) time by computing the convex hulls
of the dual point sets. In what follows we will assume
that we have access to the vertices and edges of our
polygons as the O(n log n) overhead will be dominated
by the rest of our algorithms.

2.2 A more efficient algorithm for the planar case

In this whole section, the family F consists of compact
convex polygons with a total of n (distinct) vertices in
the plane. We further assume that F has the (p, q)-
property, for some admissible pair (p, q). For the sake
of simplicity, we will assume that the lines defining the
polygon edges are in general position, non-vertical and
that all points defined as the lexicographical minimum
in the intersection of a pair of sets have different x-
coordinates. With these assumption the lexicographical
minimum in a polygon (or intersection of polygons) is
the leftmost point.

We break down the computation of x∗(F) into two
parts. Consider two intersecting polygons P1 and P2.
The point x which is the leftmost of P1 ∩ P2 can be of
one of two types. Either (Case 1) x is the leftmost point
of P1 (resp. P2) and is contained in the interior of P2

(resp. P1) or (Case 2) x is the proper intersection of
an upper-hull edge eu of P1 (resp. P2) and a lower-hull
edge e` of P2 (resp. P1) with the following property:
the outward facing normal vectors of eu and e` form a
(counter-clockwise orientated) angle of less than 180 de-
grees. Reciprocally, an upper-hull and a lower-hull edge
which intersect with this property define the leftmost
point of an intersection of two polygons.

We define x∗1(F) to be the rightmost point among
all pairs of intersecting polygons in F corresponding to
the first case (or x∗1(F) = (−∞,∞) if there is no such
pair), and similarly for x∗2(F) and the second case. Then
x∗(F) is the rightmost point of {x∗1(F), x∗2(F)}.

We will use the following result, which can be ob-
tained by an adaptation of a proof by Matoušek [24,
Theorem 6.2] with the halfspace partition tree construc-
tion from Chan [8] (see the full version of this paper [9]).
This theorem essentially states that there are efficient
range-counting data structures for ranges defined as the
conjunction of half-spaces on different liftings of a point

set.

Theorem 4 Let S be a set of n objects, k a constant,
and φ1, φ2, . . . , φk mappings from S to Rd. Let φS map
k-tuples of halfspaces H1, H2, . . . ,Hk of Rd to the set

φS(H1, H2, . . . ,Hk) :=

{s ∈ S | φ1(s) ∈ H1, φ2(s) ∈ H2 . . . , φk(s) ∈ Hk}.

Suppose we have computed the point sets
φ1(S), . . . , φk(S) and let n ≤ m ≤ n/ logω(1) n. Then
we can preprocess the point sets in O(n logk n + m)
time such that |φS(H1, H2, . . . ,Hk)| can be computed in
O((n/m1/d)(log n)2(k+(k−d−1)/d)(log log n)1/d) expected
time for any k-tuple of halfspaces.

We can use this to prove the following.

Lemma 5 The point x∗1(F) can be computed in
O(n4/3 log4 n(log log n)1/3) expected time.

Proof. To compute x∗1(F), we can test for each polygon
if its leftmost point is contained in the interior of an-
other, and keep the rightmost point among those which
are. We triangulate all polygons, so that this reduces
to testing, for each of the O(n) leftmost points, if it
is in the interior of one of the O(n) triangles. In the
dual plane, this can be expressed as the composition of
three half-plane range queries. Using Theorem 4 with
d = 2, k = 3, and m = n4/3 log4 n(log log n)1/3, we
can thus preprocess the O(n) triangles in O(m) time
such that counting how many triangles contain a par-
ticular point can be done in O(n1/3 log4 n(log log n)1/3)
expected time. By querying all points we get the re-
sult. �

It remains to see how to compute x∗2(F) in sub-
quadratic time. For this we use a a simple but remark-
ably powerful technique discovered by Chan [7], which
reduces many optimization problems to the correspond-
ing decision problem, with no blow-up in expected run-
time.

Lemma 6 Let α < 1 and r be fixed constants. Let
f : P → Q be a function that maps inputs to values in a
totally ordered set (where elements can be compared in
constant time) with the following properties:

1. For any input P ∈ P of constant size, f(P) can be
computed in constant time.

2. For any input P ∈ P of size n, we can con-
struct inputs P1, . . . , Pr ∈ P each of size at
most dαne in time T (n), such that f(P) =
max{f(P1), . . . , f(Pr)}.

3. For any input P ∈ P of size n and any t ∈ Q, we
can decide f(P) ≤ t in time T (n).

159

33rd Canadian Conference on Computational Geometry, 2021

Then for any input P ∈ P, we can compute f(P) in
O(T (n)) expected time, assuming that T (n)/nε is mono-
tone increasing for some constant ε > 0.

We can apply this technique to the computation of x∗2.
Here, each P ∈ P is a set of edges which are oriented
depending on which side the polygon it bounds lies on,
Q is the plane with lexicographical order, and f(P) is
x∗2 (we abuse notation slightly by using x∗2 both for sets
of oriented edges and sets of polygons). We make the
following observations.

• For any constant-size set E of oriented edges, x∗2(E)
can be computed in constant time. This verifies
Property 1.

• For any family E of n oriented edges, we can parti-
tion it into 3 disjoint subfamilies S1, S2, S3 of size
between bn/3c and dn/3e each. Then, let E1 :=
S2 ∪S3, E2 := S1 ∪S3 and E3 := S1 ∪S2. Every set
Ei is of size |Ei| ≤ d2n/3e. Thus, x∗2(E) is the right-
most point among {x∗2(E1), x∗2(E2), x∗2(E3)}. These
families can be constructed in O(n) time. This ver-
ifies Property 2, assuming T (n) ≥ Ω(n) (which it
will be).

Thus, in order to apply Chan’s framework, it remains
to decide x∗2(E) ≤lex t quickly.

Lemma 7 For any point t in the plane and a set of
n oriented edges E, we can decide x∗2(E) ≤lex t in
O(n4/3 log8 n(log log n)1/3) expected time.

Proof. We can rephrase x∗2(E) ≤lex t as deciding
whether there exist two oriented edges in E which inter-
sect at an appropriate angle to the right of the vertical
line ` passing through t. Thus we start by discarding
all the (parts of) segments in E which lie to the left
of `. We then want to preprocess the O(n) segments
corresponding to upper-hull edges (i.e. those with an
outward facing normal pointing up) such that for any
lower-hull edge e` we can detect if there is an upper-hull
edge which intersects it at an appropriate angle quickly.
Finding the edges which intersect a query edge e` at
the appropriate angle can be expressed as the compo-
sition of 5 half-plane queries on different 2D liftings of
the upper-hull edges. We can again use Theorem 4 as
we did for x∗1, this time with k = 5, to query all lower-
hull edges in O(n4/3 log8 n(log log n)1/3) expected total
time. �

We can thus use Lemma 6 to compute x∗2(F) in the
same asymptotic expected time. Note that Hopcroft’s
problem reduces to computing x∗2(E) for a general set of
oriented edges E , and thus this runtime is likely close to
optimal (see the lower bound by Erickson [14] in a quite
general model of computation). Putting everything to-
gether we get the following.

Theorem 8 Let (p, q) be an admissible pair for d = 2
and let F be a family of compact convex polygons in the
plane with a total of n vertices and the (p, q)-property.
Then we can compute a set of at most p− q + 1 points
stabbing F in O((p−q+1)n4/3 log8 n(log log n)1/3+np2)
expected time.

If the case where every polygon has at most a constant
number of vertices, then there is a simpler way to use
Lemma 6 together with a Theorem by Agarwal et al.
[1, Theorem 2.7] to compute x∗(F) in O(n4/3 log2+ε n)
expected time, yielding a slightly faster algorithm for
our problem.

2.3 The 3D case

Here we deal with the analogous case for the 3D poly-
hedra. In this case the Helly number becomes 4, and
x∗(F) is defined in terms of triplets of convex polyhedra
with non-empty common intersection.

Theorem 9 Let (p, q) be an admissible pair for d = 3
and let F be a family of compact convex polyhedra in
R3 with a total of n vertices and the (p, q)-property. We
can compute a set of at most p−q+1 points stabbing F
in O((p− q+ 1)n5/2 log10 n(log log n)1/6 +np3) expected
time.

Proof. First, we compute the family F2 of all polyhe-
dra obtained as pair-wise intersections of polyhedra in
F . This can be done in O(n2) time using a linear-time
algorithm to compute each intersection (for example the
one by Chan [8]). Assuming the planes defining the
polyhedra are in general position and none of the edges
lie in a plane parallel to the yz-plane, the leftmost point
in the intersection of three polyhedra in F is either

1. the leftmost point of a polyhedron in F2 contained
in the interior of a polyhedron of F ,

2. the leftmost point of a polyhedron in F contained
in the interior of a polyhedron of F2,

3. the intersection of an edge of a polyhedron in F2

and the interior of a facet of a polyhedron in F
(note that not all such intersections define the left-
most point of the intersection of three polyhedra in
F).

The rightmost point corresponding to the first two cases
can be found in expected time O(n9/4 logO(1) n) by tri-
angulating all polyhedra and then using the same meth-
ods as for the 2D case. We now focus on the third case.
In what follows, we only deal with triangular facets, as
the general case reduces to this one by triangulating all
facets in O(n2) total time. We will preprocess the tri-
angles and then query each edge to count the number
of triangles which intersect it and define the leftmost

160

CCCG 2021, Halifax, Canada, August 10–12, 2021

point of a three-wise intersection of polyhedra. Testing
if a segment intersects a triangle in R3 can be done by
comparing the signs of three polynomial functions of de-
gree three on the coordinates of the points [30]. It can
be checked that each of these tests can be linearized
by liftings which map the triangles to points in 5 di-
mension. Agarwal et al. [1] further showed that when
given an edge e of a polyhedron and a facet f of an-
other polyhedron such that e and f intersect, testing
if e ∩ f is the leftmost point of the intersection of the
corresponding polyhedra can be expressed as testing if
the outward normal vector of f lies in a the intersection
of three halfspaces.

Using again Theorem 4, this time in dimension d = 5
and with k = 6, we can preprocess the O(n2) facets of
F2 inO(n5/2 log10 n(log log n)1/6) time such that we can
query any oriented edge in O(n3/2 log10 n(log log n)1/6)
expected time. By querying all O(n) edges in F we
can detect a leftmost point in the intersection of three
polyhedra in F corresponding to the third case exists
in O(n5/2 log10 n(log log n)1/6) total expected time. By
applying Lemma 6 as we did in the planar case, we thus
get the result. �

2.4 Other conditions

We investigate two further conditions that are sufficient
for a family of convex polygons to be stabbed by a fixed
number of points and for which our algorithm can also
be used.

The first condition we investigate considers holes in
the union of sets. Let F be a finite family of convex sets
in the plane and let A ⊂ R2 be the union of the sets in
F . A hole is a bounded connected component of R2 \A.

There is an equivalent formulation of Helly’s theo-
rem due to Breen, which in the plane can be stated as
follows: let F be a finite family of pairwise intersect-
ing convex sets in the plane with the property that the
union of any three of them has no hole, then F can be
stabbed by a single point [5, 27]. We prove the following
generalization of this result.

Theorem 10 Let F be a finite family of pairwise inter-
secting convex sets in the plane with the property that
the union of any k+3 of them has at most k holes, then
F can be stabbed by k + 1 points. Further, the k + 1
stabbing points can be chosen to lie on a single line.

Proof. Recall that x∗(F) denotes the lexicographically
maximum point among all lexicographically minimum
points in the intersection of two sets in F . Call F1

and F2 two sets in F such that the lexicographically
minimum point of their intersection is x∗(F). Consider
the vertical line v through x∗(F) and let F ′1 and F ′2 be
the parts of F1 and F2, respectively, that lie to the left
of v. Let now ` be a line through x∗(F) which separates

F ′1 and F ′2. Such a line exists as otherwise x∗(F) would
not be the lexicographical minimum in the intersection
of F ′1 and F ′2. Further note that any set in F that is not
stabbed by x∗(F) must intersect ` to the left of x∗(F):
there cannot be intersections exclusively to the right of
x∗(F) by its definition, and as any set intersects F1 and
F2, it follows from convexity that it must also intersect
`.

Let now R be the family of remaining sets, that is,
the sets not stabbed by x∗(F). We claim that among
any k + 1 of them, some two intersect along `. Indeed,
if there were k + 1 sets whose intersections with ` are
pairwise disjoint, the union of these sets with F1 and
F2 would have k + 1 holes, which is excluded by the
assumptions of the theorem. We can thus apply the
Hadwiger-Debrunner (p, q)-theorem on ` to stab R with
k points, so in total we have stabbed F with k + 1
collinear points. �

Note that opposed to the proof of the Hadwiger-
Debrunner (p, q)-theorem, we only compute x∗(F) once.
After this, we only need the 1D-variant, where stabbing
points of n intervals can easily be computed in time
O(n log n). We thus get the following:

Proposition 11 Let F be a family of compact con-
vex polygons in the plane with a total of n vertices
and with the property that the union of any k + 3
of them has at most k holes. We can compute a
set of at most k + 1 collinear points stabbing F in
O(n4/3 log8 n(log log n)1/3) expected time.

Another result due to Montejano and Soberón [28]
and which admits a similar proof in the plane, yields
the following:

Proposition 12 Let p, q, r be integers with p > q > 2
and r >

(
p
q

)
−
(
p−1
q−1
)
. Let F be a family of compact

convex polygons in the plane with a total of n vertices
and with the property that for any p of them at least
r of their q-tuples intersect. We can compute a set
of at most p − q + 1 collinear points stabbing F in
O(n4/3 log8 n(log log n)1/3) expected time.

3 Other Hadwiger-Debrunner type results

3.1 Ordered-Helly systems

By taking a close look at the proof for the Hadwiger-
Debrunner (p, q)-theorem, we can observe that we made
use of relatively few properties of compact convex sets.
These properties are (i) closure under intersection, (ii)
existence of a lexicographically minimum point, (iii)
Helly’s theorem as well as (iv) the fact that the set of
all points lexicographically smaller than some point y is
convex (this last property doesn’t appear explicitly but
is needed in the proof of Lemma 3). We define Ordered-
Helly systems as set systems with analogous properties.

161

33rd Canadian Conference on Computational Geometry, 2021

Definition 1 (Ordered-Helly system)
An Ordered-Helly system S is a tuple (B, C,D, h,�)
consisting of

• a set B, called the base-set;

• a family C of subsets of B, whose members are
called convex sets or S-convex sets;

• a family D ⊂ C whose members are called compact
sets or S-compact sets;

• a total order � on B;

• and an integer h ≥ 2, called the Helly-number of
S

with the following properties.

1. (Intersection closure)
D is closed under intersection, i.e. for all S1, S2 ∈
D we have S1 ∩ S2 ∈ D.

2. (Attainable minimum)
For all non-empty S ∈ D, there exists x ∈ S such
that for all y ∈ S, x � y. This x is necessarily
unique and we call x the �-min of S. We define
the �-max of a set similarly, if it exists.

3. (Convex order)
For all t ∈ B, we have {x ∈ B | x � t and x 6= t} ∈
C.

4. (Helly property)
If F ⊂ C is a finite subset of n ≥ h sets of C such
that every subfamily of h members of F has a non-
empty common intersection, then all members of F
have a non-empty common intersection.

As was stated earlier, this structure is enough to carry
out a similar proof as the one we saw for the Hadwiger-
Debrunner theorem. Call a pair (p, q) of integers h-
admissible if p ≥ q ≥ h and (h − 2)p < (h − 1)(q − 1).
Then we have the following.

Theorem 13 Let S = (B, C,D, h,�) be an Ordered-
Helly system. Let (p, q) be an h-admissible pair of inte-
gers. Let F be a finite family of non-empty sets of D.
Suppose that F has the (p, q)-property. Then there exist
p− q + 1 elements of B stabbing F .

Note that the existence of a Helly number alone is
not enough to show such a result. Alon et al. [2] give
an example of a set system with Helly number 2 but no
general (p, q)-theorem.

The proof of this theorem makes use of an analogue to
Lemma 3. Let us state and prove this analogous lemma.

Lemma 14 Let S = (B, C,D, h,�) be an Ordered-
Helly system. Let F ⊂ D be a family of n ≥ h sets
in D such that I :=

⋂F is non-empty. Let x be the �-
min of I (which exists by the properties of intersection
closure and attainable minimum). Then, there exists a
subfamily G ⊂ F of size h− 1 such that x is the �-min
of
⋂G.

Proof. Let F , I and x be as specified in the statement.
Let Sx denote {y ∈ B | y � x and y 6= x}, which is a S-
convex set by the property of convex order. It is disjoint
from I as � is a total order. By the Helly property,
there exists a subfamily of h members of F ∪{Sx} with
an empty common intersection. These members have
to include Sx, as all members of F have a non-empty
common intersection. Let G ⊂ F be the remaining h−1
sets and let xG be the �-min of I ′ :=

⋂G (which is
a non-empty S-compact set). We know that xG � x
because x ∈ I ′. If we now suppose xG 6= x this implies
that xG ∈ Sx and contradicts the fact that I ′ ∩ Sx = ∅.
Thus, xG = x. �

The proof of Theorem 13 is now analogous to
the proof of the Hadwiger-Debrunner (p, q)-theorem
sketched above. This once again leads to an algorithm
computing stabbing elements of a family of S-compact
sets with the (p, q)-property for an admissible pair (p, q),
given we have access to some oracles. We will write the
run-times in terms of the description complexity of a
set, which depends on the exact context. Thus, for a
S-compact set S, let #S denote this complexity (of
at least 1), and for a family F of S-compact sets, let
#F :=

∑
S∈F #S.

Consider an Ordered-Helly system S = (B, C,D, h,�)
(for a constant h) and suppose we have access to the
following oracles.

• For two elements b1, b2 ∈ B, we can test b1 � b2 in
constant time.

• For a family F ⊂ D of at most h − 1 S-compact
sets, we can test if the sets in F have a common
intersection and compute the �-min of that inter-
section if it is non-empty in O(#F) time.

• For a S-compact set S ∈ D and a point b ∈ B we
can test if b ∈ S in O(#S) time.

We could naturally consider other run-times for these
oracles. We only specify them in order to showcase an
example of run-time analysis which is tighter than if
we had worked with general run-times and swapped in
concrete functions afterwards (and matches the case of
convex polytopes in Rd for small d). Other run-times
might require other specialized forms of analysis.

Now, let F ⊂ D be a family of S-compact sets.
Among all points in B defined as the �-min of the in-
tersection of h− 1 sets in F , let b∗(F) be the �-max of
those.

162

CCCG 2021, Halifax, Canada, August 10–12, 2021

Let us state two lemmas which will be useful for our
algorithm.

Lemma 15 We can compute b∗(F) in O(#F · |F|h−2)
time.

Proof. We can compute b∗(F) by testing for intersec-
tion in every subfamily G of F of size h − 1 and com-
puting the �-min of that intersection if it is non-empty.

If we consider some fixed subfamily G, the computa-
tion for that subfamily will cost at most c ·#G for some
constant c which doesn’t depend on G. Charge this cost
to the sets S ∈ G by attributing a cost of c ·#S to a set
S.

Now, consider the cost charged to some fixed set S for
the whole computation. As S appears in no more than
|F|h−2 subfamilies of size h− 1, its total cost charge is
upper bounded by c ·#S · |F|h−2. Summing across all
sets S ∈ F , we get a total cost of O(#F · |F|h−2). �

Lemma 16 Suppose there exists some subfamily G ⊂ F
of size k+1 such that all sets in G have a common inter-
section, where k is a known parameter. We can compute
|F| − k points in B stabbing F in O(#F · |F|h−1) time.

Proof. If k+1 ≤ h−1, then we can test every subfamily
of size k+1 for common intersection and compute its �-
min for a total cost of O(#F·|F|k+1) ≤ O(#F·|F|h−1).

If k + 1 > h− 1, then we know from Lemma 14 that
the �-min of the intersection of all sets in G is also the
�-min of the intersection of some h−1 sets in F . Thus,
one can find a point stabbing at least k + 1 sets by
computing the �-min point for each subfamily of size
h− 1 (in O(#F|F|h−1) time) and counting the number
of sets intersected for each of the O(|F|h−1) computed
points (in O(#F|F|h−1) time as well).

As soon as we find a point b stabbing at least k + 1
sets, we return b along with the �-min of every set in
F which is not stabbed by b. �

With these algorithms, a similar proof to the Eu-
clidean case gives the following.

Theorem 17 Let F be a family of S-compact sets with
the (p, q)-property. Suppose we have access to the rele-
vant oracles described above. We can compute a set of
at most p− q + 1 elements stabbing F in time

O((p− q + 1)(#F)h−1 + (#F)ph−1).

With access to the right oracle, we could for example
apply Lemma 6 analogously to what we did for convex
polytopes in the Euclidean setting and get the corre-
sponding speedup.

3.2 Examples of Ordered-Helly systems

Until now, the only Ordered-Helly system we have seen
is the one corresponding to compact convex sets in Rd.
We will see that this structure does have some other
interesting representatives and is not restricted to this
single example (in which case the usefulness of intro-
ducing it would have been doubtful).

Let us start by stating and proving some Hadwiger-
Debrunner type results for sets which are defined as the
intersection of a compact convex set in Rd with a subset
S ∈ R. To do so define the S-Helly number as follows.

Definition 2 Let S be a subset of Rd. The S-Helly
number, denoted by h(S), is the smallest integer k > 0
such that the following holds:
Given a finite family F of convex sets in Rd, if in every
subfamily of F of size k all sets share a point in S, then
all sets in F share a point in S.
If no such k exists, then h(S) =∞.

One of the first results concerning S-Helly numbers
was discovered by Doignon [11], and is the case S = Zd.

Theorem 18 (Doignon) Let F be a family of n ≥ 2d

convex sets in Rd. If in every subfamily of F of size 2d

all sets share a point in Zd, then all sets in F share a
point in Zd.

In a paper by Hoffman [19] a mixed-integer version
of this theorem is stated, which generalizes both Helly’s
theorem and Doignon’s version. It was later rediscov-
ered and proved in detail by Averkov and Weismantel
[4].

Theorem 19 (Mixed-Integer Helly) Let F be a
family of n ≥ (d + 1)2k convex sets in Rd+k, where
d, k ≥ 0 and d + k ≥ 1. If in every subfamily of F of
size (d+ 1)2k all sets share a point in Rd×Zk, then all
sets in F share a point in Rd × Zk.

It is easy to see that we can get a corresponding
Ordered-Helly system, and thus Theorem 13 immedi-
ately gives the following.

Theorem 20 (Mixed-Integer HD) Let d, k ≥ 0 be
integers such that d + k ≥ 1. Let (p, q) be a (d + 1)2k-
admissible pair. Let F be a finite family of sets obtained
as the intersection of Rd×Zk with a compact convex set
in Rd+k. Suppose that F has the (p, q) property. Then
there exist p− q + 1 points in Rd × Zk stabbing F .

More generally, every upper bound on an S-
Helly number leads to the corresponding Hadwiger-
Debrunner version if S is closed in Rd. The correspond-
ing algorithmic results also follow, provided we have ac-
cess to the required oracles.

Let us now explore how the structure of Ordered-
Helly systems relates to the structure of abstract convex

163

33rd Canadian Conference on Computational Geometry, 2021

geometries as introduced by Edelman and Jamison [13].
Convex geometries are an abstraction capturing the ba-
sic combinatorial structure of classical convexity in a
similar manner to matroids capturing the basic com-
binatorial properties of linear independence. Convex
geometries appear in many contexts outside of convex
sets such as graph theory or order theory. We refer the
interested reader to the book of Edelman and Jamison
[13] or to Chapter III in the book of Korte et al. [23]
for an in-depth overview. We will only go over the basic
definitions and theorems needed for our purpose, which
can all be found in the two sources we just mentioned.

For the following definitions, it is useful to imagine
the operator τ as analogous to the convex hull operator
on a point set.

Definition 3 Consider some finite set E and a family
N of subsets of E. Let τ be the operator defined on
subsets of E as τ(A) =

⋂{X | A ⊂ X, X ∈ N}.
We say that (E,N) is a convex geometry if it has the
following properties:

1. ∅ ∈ N , E ∈ N .

2. X,Y ∈ N implies X ∩ Y ∈ N .

3. If y, z 6∈ τ(X) and z ∈ τ(X ∪ {y}) then y 6∈ τ(X ∪
{z}).

The sets in N are called convex.

Extreme points are defined in the same way as in the
Euclidean setting.

Definition 4 For a set A ⊂ E, we say that x ∈ A is
an extreme point of A if x 6∈ τ(A \ {x}). The set of
extreme points of A is denoted by ex(A).

A set X ⊂ E is called free if X = ex(X).

We will use the following concept.

Definition 5 A sequence x1, . . . , xk of points of E is
called a shelling sequence if for all 1 ≤ i ≤ k, xi is an
extreme point of E \ {x1, . . . , xi−1}.

A shelling sequence can be thought of as a way to
reach a convex set by starting with the whole set E
and stripping away points one after the other in such a
way that the set remains convex at each step. A useful
characterisation of convex sets for our purpose is the
following, where we describe a convex set via a shelling
process.

Proposition 21 ([13]) A set X ⊂ E is convex if and
only if there exists a shelling sequence x1, . . . , xk such
that X = E \ {x1, . . . , xk}.

The final ingredient we need is the following Helly-
type theorem for convex geometries.

Theorem 22 ([13]) Let h(N) denote the smallest in-
teger k such that the following holds:

For a family F of convex sets, if every subfamily of
size at most k has a non-empty intersection, then F has
a non-empty intersection.

Then h(N) is equal to the maximum size of a free
convex set.

Now we can state and prove a Hadwiger-Debrunner-
type theorem for convex geometries.

Theorem 23 Consider a convex geometry (E,N). Let
h be the size of a maximum free convex set and let (p, q)
be an h-admissible pair. Let F ⊂ N be a family of n ≥ p
non-empty convex sets. If F has the (p, q)-property then
there exist p− q + 1 elements of E stabbing F .

Proof. We know that ∅ is convex, thus there exists a
shelling sequence S = {x1, . . . , xk} such that ∅ = E \S,
i.e. S = E. Let for 1 ≤ i, j ≤ k, let us say that xi � xj
if and only if i ≥ j. Let 1 ≤ t ≤ k be an integer.
Because {x1, x2, . . . , xt−1} is a valid shelling sequence,
{x ∈ E | x ≤ xt} is a convex set. Thus, � has the
convex order property.

Let h be the maximum size of a free convex set. Then,
it is easy to verify that S = (E,N ,N , h,�) also has the
intersection closure and attainable minimum properties.
The Helly property (for Helly number h) is given by
Theorem 22.

Thus, S is an Ordered-Helly system and we get the
result from Theorem 13. �

We will now give a few illustrative examples of ab-
stract convex geometries and the resulting Hadwiger-
Debrunner type results we obtain for them. One such
convex geometry, arguably the most natural, is obtained
by taking convex hulls of subsets on a finite point set
in Rd. This is conceptually similar to the case of poly-
topes in Euclidean space which we have already dis-
cussed. The following two examples are perhaps not so
immediately related.

Subtrees of a tree

Proposition 24 ([13]) Let T be a tree on a set of ver-
tices V . Let N be the family of all sets of vertices cor-
responding to subtrees of T . Then (V,N) is a convex
geometry with Helly number h(N) = 2.

This means that if in a given family of subtrees of T
all pairs of subtrees intersect at some vertex, then all
subtrees share a vertex. Using Theorem 23 we thus get
the following.

Corollary 25 Let T be a tree and let F be a family of
subtrees of T (represented as sets of vertices). Let (p, q)
be a 2-admissible pair. Let F ⊂ N be a family of non-
empty subtrees of T with the (p, q)-property. Then F
can be stabbed with p− q + 1 vertices.

164

CCCG 2021, Halifax, Canada, August 10–12, 2021

Ideals of a partially ordered set For a poset (E,≤),
we say that a set S ⊂ E is an ideal of E if for all x ∈ S
and all y ∈ E, y ≤ w ⇒ y ∈ S. Let width(E) denote the
maximum size of an antichain in E. Then the following
holds.

Proposition 26 ([13]) Let (E,≤) be a finite poset.
Let F = {S ⊂ E | S is an ideal}. Then (E,F) is a
convex geometry with Helly number width(E).

Using Theorem 23 we can thus get the following re-
sult.

Corollary 27 Let (E,≤) be a finite poset. Let (p, q)
be a width(E)-admissible pair and let F be a family of
non-empty ideals of E with the (p, q)-property. Then F
can be stabbed by p− q + 1 elements of E.

4 Conclusion

We have shown how to stab convex polygons with a to-
tal of n vertices and the (p, q)-property (for admissible
(p, q)) in expected Õ(n4/3) time with respect to n. As
an intermediate step, we compute a certain quantity x∗2,
which is a Hopcroft-Hard problem, in Õ(n4/3) expected
time. While this is believed to be near optimal, find-
ing a non-trivial lower-bound for the original problem
remains open. For the 3D case, we have an algorithm
running in expected Õ(n5/2) time with respect to n.

We have also considered other conditions which allow
to conclude that a set of polygons can be stabbed with
a fixed number of points, and applied our algorithm to
those. One of these conditions is a new generalization
of Helly’s theorem in the plane in terms of holes in the
union of convex sets.

Finally, we have derived (p, q)-theorems along with
algorithms in other settings where Helly-type theorems
are known. An interesting question would be to try
deriving other related results in these settings, such as
colourful or fractional versions of (p, q)-theorems.

A natural next step in the Euclidean setting would be
to drop the restriction (d− 1)p < d(q− 1) and find effi-
cient algorithms for the Alon-Kleitman (p, q)-theorem.
Their proof of existence of stabbing sets of constant
size uses the fractional Helly theorem, whose proof is
similar to the above proof of the Hadwiger-Debrunner
(p, q)-theorem. It is thus conceivable that similar ideas
could be applied to this more general case.

References

[1] P. K. Agarwal, M. de Berg, S. Har-Peled, M. H. Over-
mars, M. Sharir, and J. Vahrenhold. Reporting inter-
secting pairs of convex polytopes in two and three di-
mensions. Computational Geometry, 23(2):195 – 207,
2002.

[2] N. Alon, G. Kalai, J. Matoušek, and R. Meshulam.
Transversal numbers for hypergraphs arising in geom-
etry. Advances in Applied Mathematics, 29(1):79–101,
2002.

[3] N. Alon and D. J. Kleitman. Piercing convex sets. Bul-
letin of the American Mathematical Society, 27(2):252–
257, Aug. 1992.

[4] G. Averkov and R. Weismantel. Transversal numbers
over subsets of linear spaces. Advances in Geometry,
12, 02 2012.

[5] M. Breen. Starshaped unions and nonempty intersec-
tions of convex sets in Rd. Proceedings of the American
Mathematical Society, 108(3):817–820, 1990.

[6] P. Carmi, M. J. Katz, and P. Morin. Stabbing Pairwise
Intersecting Disks by Four Points. arXiv e-prints, Dec.
2018.

[7] T. M. Chan. Geometric applications of a randomized
optimization technique. Discrete & Computational Ge-
ometry, 22(4):547–567, Dec. 1999.

[8] T. M. Chan. A simpler linear-time algorithm for in-
tersecting two convex polyhedra in three dimensions.
Discret. Comput. Geom., 56(4):860–865, 2016.

[9] J. Dallant and P. Schnider. Efficiently stabbing con-
vex polygons and variants of the Hadwiger-Debrunner
(p, q)-theorem. arXiv preprint arXiv:2002.06947, 2021.

[10] L. Danzer. Zur Lösung des Gallaischen Problems über
Kreisscheiben in der Euklidischen Ebene. Studia Sci.
Math. Hungar., 21(1–2):111–134, 1986.

[11] J.-P. Doignon. Convexity in cristallographical lattices.
Journal of Geometry, 3(1):71–85, Mar. 1973.

[12] J. Eckhoff. A survey of the Hadwiger-Debrunner (p,
q)-problem. In Discrete and Computational Geome-
try: The Goodman-Pollack Festschrift, pages 347–377.
Springer Berlin Heidelberg, Berlin, Heidelberg, 2003.

[13] P. H. Edelman and R. E. Jamison. The theory of convex
geometries. Geometriae Dedicata, 19(3), Dec. 1985.

[14] J. Erickson. New lower bounds for hopcroft’s problem.
Discret. Comput. Geom., 16(4):389–418, 1996.

[15] H. Hadwiger and H. Debrunner. Über eine Variante
zum Hellyschen Satz. Archiv der Mathematik, 8(4):309–
313, oct 1957.

[16] H. Hadwiger, H. E. Debrunner, and V. Klee. Combina-
torial Geometry in the Plane. New York (N.Y.) : Holt,
1964.

[17] S. Har-Peled, H. Kaplan, W. Mulzer, L. Roditty,
P. Seiferth, M. Sharir, and M. Willert. Stabbing Pair-
wise Intersecting Disks by Five Points. In 29th Inter-
national Symposium on Algorithms and Computation
(ISAAC), 2018.

[18] E. Helly. Über Mengen konvexer Körper mit gemein-
schaftlichen Punkten. Jahresbericht der Deutschen
Mathematiker-Vereinigung, 32:175–176, 1923.

[19] A. J. Hoffman. Binding constraints and Helly numbers.
Annals of the New York Academy of Sciences, 319:284
– 288, 12 2006.

165

33rd Canadian Conference on Computational Geometry, 2021

[20] A. F. Holmsen and D. Lee. Radon numbers and the
fractional helly theorem. Israel Journal of Mathematics,
241(1):433–447, 2021.

[21] C. Keller, S. Smorodinsky, and G. Tardos. Improved
bounds on the Hadwiger–Debrunner numbers. Israel
Journal of Mathematics, 225(2):925–945, 2018.

[22] D. Kleitman, A. Gyárfás, and G. Tóth. Convex sets in
the plane with three of every four meeting. Combina-
torica, 21:221–232, 04 2001.

[23] B. Korte, R. Schrader, and L. Lovász. Greedoids.
Springer Berlin Heidelberg, 1991.

[24] J. Matousek. Range searching with efficient hierarchi-
cal cuttings. In D. Avis, editor, Proceedings of the
Eighth Annual Symposium on Computational Geome-
try, Berlin, Germany, June 10-12, 1992, pages 276–
285. ACM, 1992.

[25] J. Matoušek. Lectures on Discrete Geometry, volume
212 of Graduate Texts in Mathematics. Springer New
York, New York, NY, 2002.

[26] D. McGinnis. A family of convex sets in the plane satis-
fying the (4, 3)-property can be pierced by nine points.
arXiv preprint arXiv:2010.13195, 2020.

[27] L. Montejano. A new topological Helly theorem and
some transversal results. Discrete & Computational Ge-
ometry, 52(2):390–398, 2014.

[28] L. Montejano and P. Soberón. Piercing numbers for
balanced and unbalanced families. Discrete & Compu-
tational Geometry, 45(2):358–364, 2011.

[29] S. Moran and A. Yehudayoff. On weak epsilon-nets and
the radon number. In 35th International Symposium
on Computational Geometry (SoCG 2019), volume 129,
page 51. Schloss Dagstuhl–Leibniz-Zentrum fuer Infor-
matik, 2019.

[30] R. J. Segura and F. R. Feito. An algorithm for deter-
mining intersection segment-polygon in 3d. Comput.
Graph., 22(5):587–592, 1998.

[31] L. Stachó. A solution of gallai’s problem on pinning
down circles. Matematikai Lapok, 32(1–3):19–47, 1984.

[32] G. Wegner. Über Helly-Gallaische Stichzahlprobleme.
3. Kolloquium über Diskrete Geometrie, pages 277–282,
1985.

166

CCCG 2021, Halifax, Canada, August 10–12, 2021

Rectangle Stabbing and Orthogonal Range Reporting Lower Bounds in
Moderate Dimensions

Peyman Afshani∗ Rasmus Killmann†

Abstract

We study the orthogonal range reporting and rectangle
stabbing problems in moderate dimensions, i.e., when
the dimension is c log(n) for some constant c. In or-
thogonal range reporting, the input is a set of n points
in d dimensions, and the goal is to store these n points
in a data structure such that given a query rectangle,
we can report all the input points contained in the rect-
angle. The rectangle stabbing problem is the “dual”
problem where the input is a set of rectangles, and the
query is a point.

Our main result is the following: assume using S(n)
space, we can solve either problem using Q(n) + O(t)
time in the pointer machine model of computation
where t is the output size. Then, we show that if
Q(n) = O(n1−γ), the space must be n1−γ+Ω(

√
cγ) where

c = d/ log n ≥ 1 and 0 ≤ γ ≤ 4
4+log c . Interestingly,

to obtain this lower bound using a non-constructive
method, we show the existence of particular types of
codes that generalize a specific aspect of error correc-
tion codes. Our result overcomes the shortcomings of
the previous lower bounds in the pointer machine model
for non-constant dimension [3, 4, 5, 12], as the previous
results could not be extended for d = Ω(

√
log n).

The only known lower bounds for rectangle stab-
bing, when the dimension is non-constant, are based
on conditional lower bounds upon the best-known re-
sults on CNF-SAT [20]. Therefore, our lower bound is
the first non-trivial unconditional lower bound for or-
thogonal range reporting and rectangle stabbing with
non-constant dimension.

1 Introduction

The focus of this paper is to study two fundamental
problems within the area of range searching. The first
problem is orthogonal range reporting which is the prob-
lem of storing a set of n points in Rd in a data struc-
ture, such that given a query hyper rectangle1 in d-
dimensions the t points contained in the hyper rectan-
gle can be reported efficiently. The second problem of

∗Aarhus University, peyman@cs.au.dk
†Aarhus University, killmann@cs.au.dk
1By hyper rectangle, we mean the Cartesian product of d in-

tervals.

rectangle stabbing is the “dual” in the sense that the
input set and the query is swapped.

Both problems are fundamental and have attracted
significant attention [7, 6]. Using standard reductions,
it is possible to reduce orthogonal range searching in d
dimensions to rectangle stabbing in 2d dimensions and
vice versa2. While in low dimensions, the constant fac-
tor increase in dimension is very impactful, the focus of
this paper is when the dimension is large, d = c log n, for
a parameter c, and thus, the two problems essentially
become equivalent.

We look into proving unconditional space and query
lower bounds for both problems, although in the some-
what restricted pointer machine model [18]. Along the
way, we find an interesting connection to error correc-
tion codes, which is a particular set of strings/codes
which can be utilized to communicate over an insecure
line of communication.

1.1 Previous results

There are plenty of known results for both problems
when the dimension is low, while when the dimension
grows beyond a constant, the problems are less charac-
terized.

Rectangle stabbing. In the one-dimensional case,
rectangle stabbing, also called interval stabbing, can be
solved using a diverse range of methods [14]. The opti-
mal solutions use linear space and have a query time of
O(log n+ t). In the two-dimensional case, Chazelle [11]
presented an optimal data structure using linear space
and O(log n + t) query time. Almost optimal results
have also been obtained for d = 3, after a long series
of papers [16, 10, 15, 4]. Using range trees, the two-
dimensional and three-dimensional results can be gen-
eralized to higher dimensions by paying a log(n) fac-
tor in both space and query time for each dimension
added. In the pointer machine model, it is also known
that using O(n logO(1) n) space, the query time must be
Ω(log n(log n/ log log n)d−2 + t) [4].

Orthogonal range reporting. For d = 1, a simple bi-
nary search tree answers range queries in O(log n + t)

2Both problems can be reduced to dominance reporting in 2d
dimensions.

167

33rd Canadian Conference on Computational Geometry, 2021

time, while using linear space. For d = 2, the prob-
lem can be solved with the same query time but using
O(n log n/ log log n) space [11], which is optimal in the
pointer machine model [12]. Much later, the optimal
result was obtained for three dimensions in the pointer
machine model [3]. Similar to the rectangle stabbing
problem, the results can be generalized to a higher di-
mension by paying a log n factor in both space and
query time for each dimension added. In the pointer ma-
chine model, it is also known that answering queries in
O(logO(1) n + t) time requires Ω(n(log n/ log log n)d−1)
space [12].

These approaches are unsuitable for the case where
d = c log(n), since the dependency on the dimension
penalizes this construction too much, often referred to
in the community as the “curse of dimensionality”. The
best known upper bound, devised by Chan [9], when the
dimension is c log(n), is a data structure which achieves
Q(n) = O(n1−1/c log(c)) expected query time and space
S(n) = n1+δ for any δ > 0.

Previous lower bounds. Currently, the available lower
bounds are conditional lower bounds, using the best
known results on CNF-SAT [20], which gives prepro-
cessing/query time lower bounds. Furthermore, obtain-
ing unconditional lower bounds in unrestricted compu-
tational models, like the RAM, is completely hopeless.
Fortunately, suppose we restrict the memory model of
the data structure to operate in the pointer machine
model. In that case, one can obtain reasonable lower
bounds that are tight for a wide range of problems. In
fact, for the orthogonal range reporting problem and the
rectangle stabbing problem, there are a number of lower
bounds available [3, 4, 12]. However, the dependency of
these lower bounds on the dimension is not very good,
and in fact, it is not explicitly mentioned by the lower
bounds. There is one very related instance where we are
aware of the explicit dependency on the dimension. Af-
shani and Driemel [5] study multilevel structures, mo-
tivated by answering Fréchet queries. However, by a
careful look at the details of the lower bounds, one can
see that the hidden constant is at least dΩ(d), mean-
ing the lower bounds becomes useless as d approaches
log n/ log log n. They study the Cartesian product of t
2D “simplex stabbing” problems, and they show that
for any data structure with S(n) space and Q(n) query
time we must have

S(n) = Ω((
n

Q(n)
)2)

(
log(n/Q(n))

log logn

)t−1

2O(2t)
and

S(n) = Ω

(
n

Q(n)

)2

Θ

(
log(n/Q(n))

t3+o(1) log log n

)t−1−o(t)
.

It has been shown that this problem can be modelled us-
ing the Cartesian product of t two-dimensional problems

and furthermore it contains a subproblem involving an
instance of the t-dimensional orthogonal range reporting
problem. However, as it can be seen in the lower bounds,
the dependency on t is such that the lower bounds be-
comes trivial as soon as t gets close to (log n)1/3.

1.2 Our results

Our main result states that any data structure oper-
ating in the pointer machine model, which solves the
rectangle stabbing problem (or the orthogonal range re-
porting problem), when the dimension is c log(n) for
c ≥ 1 and uses query time Q(n) = O(n1−γ), must use
n1−γ+Ω(

√
cγ) space, where 0 ≤ γ ≤ 4

4+log c . As far as we
know, this is the first non-conditional lower bound for
the two problems when the dimension is non-constant.

We obtain our results using an interesting extension
of error correction codes. We show that given a set of
binary strings S of size O((dr)r/4), where r is the number
of 1’s in the strings and d is the length of each string,
then for any h of these strings s1, . . . , sh ∈ S the string
s1 ∨ · · · ∨ sh has more than M 1’s, where “the error
parameter” M can be chosen to be min{

√
rd/e2, rh/8}.

In particular this gives a set of strings in which for any
h strings they are fairly different. Notice that for h = 2
this is precisely the property sought after when con-
structing error correction codes.

Our technical contribution. We believe our main
technical contribution is a simple non-constructive idea
for showing the existence of “difficult input instances”.
Previously, two main techniques were used to build “dif-
ficult input instances” for range searching lower bounds.
The first one is a deterministic and constructive ap-
proach that builds an explicit set of points, and it was
first employed by Chazelle [12] for the 2D orthogonal
range reporting problem. Since then it has been general-
ized to higher dimensions [2, 4]. Unfortunately, this ap-
proach suffers exponentially by the dimension, and thus
it cannot be applied in dimensions above log n/ log log n.
The second approach is a randomized approach that
uses the classical “alteration” technique (basically a
’sample and refine’ strategy) [8]. This was also used in
Chazelle’s original paper [12] and since then, it has been
the dominant strategy. Unfortunately, applying this
technique in a way that does not degrade exponentially
on the dimension is challenging. It leads to lengthy cal-
culations, making it difficult to know the optimal choices
of the parameters involved. Here instead, we introduce
a new and more straightforward non-constructive ap-
proach. We show that if the structures we are looking
for do not exist, we can upper bound a certain count,
and then we reach a contradiction by showing that the
upper bound is smaller than the count, meaning the
desired structure should exist.

168

CCCG 2021, Halifax, Canada, August 10–12, 2021

2 Technical preliminaries

In this section, we present some of the technicalities
and preliminaries needed to prove our lower bound. We
will explain the underlying model of computation, the
pointer machine model, and an existing lower bound
framework in this model. Finally, we will introduce the
notion of error correction codes.

2.1 Model of computation and framework

The Pointer Machine Model [18] is an underlying
model of computation which models data structures
that only navigate through pointers to access the un-
derlying memory locations, e.g., any tree-based data
structure. The model has proven to be efficient in prov-
ing lower bounds for data structure problems. Consider
an abstract “reporting” problem where the input is a
set U and each query q reports a (implicitly defined)
subset qU , of U . The underlying data structure is a
directed graph G, where each node has out-degree two
and represents exactly one memory cell; furthermore,
there is a special root node r(G). Each node can store
exactly one element from the universe U and edges be-
tween nodes represent pointers between memory cells.
Any additional information can be stored and accessed
for free by the data structure, and the data structure
has unlimited computational resources. Given a query
q, the data structure must start at the root node r(G)
and explore a connected subgraph G′ ⊆ G, such that
each element of the query qU is contained in at least
one node of the subgraph G′. The size of the subgraph
G′ gives a lower bound on the query time and the size
of the entire graph G gives a lower bound on the space
required to solve the reporting problem.

One of the first lower bound frameworks in the pointer
machine model was given by Bernard Chazelle [12, 13].
In this paper we will use a slightly different framework
developed by Afshani [1], which states the following.

Theorem 1 Assume we have a data structure for a ge-
ometric stabbing problem that uses at most S(n) space
and answers queries in Q(n) +O(k) time in which n is
the input size, and k is the output size. Assume for this
problem we can construct an input set, inside the unit
cube in Rd, of n ranges such that

1. Every point of the unit cube is contained in t ranges
in which t ≥ Q(n).

2. The volume of the intersection of every α ranges is
at most v, for α < t.

Then, S(n) = Ω(tv−1/2O(α)) = Ω(Q(n)v−1/2O(α)).

We will also utilize error correction codes from the field
of information theory to satisfy the second condition of
the framework. In fact, it turns out that what we need

is an extension of error correction codes with additional
properties.

2.2 Error detection and correction codes

Error-correcting codes are an old technique studied
within the field of information theory and were origi-
nally studied by Richard Hamming in 1947 [19]. Ham-
ming developed the famous Hamming code, which first
appeared in Claude Shannon’s A Mathematical Theory
of Communication[17]. The Hamming code is a fam-
ily of linear error-correcting codes that can be used for
both error detection and error correction. The underly-
ing problem of error detection and error correction are
the following.

Alice and Bob want to transmit a string s from a
fixed set of S binary strings. They communicate across
an insecure line, and hence a number of bits may be
flipped. In error detection Alice sends a string s ∈ S,
and Bob must determine whether the received string s′

is equal to the original string s sent by Alice. In error
correction, Alice sends a string s ∈ S, but now Bob must
recover the original string s from the received string s′.
Note that any error correction scheme can also be used
as an error detection scheme, but not the other way
around. In section 3.1 we look into error correction and
give, in our opinion, a natural and interesting extension
of the problem.

2.3 Bounding the binomial coefficient

Our lower bound is proven by using a counting argu-
ment. At times we need to bound the binomial coeffi-
cient to arrive at our desired result. The following sim-
ple Lemma is known, but for completeness, we present
a proof in the appendix.

Lemma 1 For positive integers n and k where 1 ≤ k ≤
n, it holds that

(n
k

)k
≤
(
n

k

)
≤
(en
k

)k
.

3 The lower bound construction

In this section, we present the details of our lower bound
construction. We start this section with a discussion
of error correction codes, and a subproblem related to
them. We start by defining what an interesting string
is, which is both used in the error correction section 3.1
and when concluding the lower bound in section 3.2.

Definition 1 A binary string is interesting if it has
length d and has exactly r 1’s, for some fixed param-
eters r and d.

The parameters r and d will be fixed in our final lower
bound.

169

33rd Canadian Conference on Computational Geometry, 2021

Theorem 2 Given r, d and h, such that r < d
4 , it holds

that for any N ≤ (dr)r/4/2, there exists a set S of N
interesting strings such that for any h strings s1, ..., sh ∈
S the string s1∨· · ·∨sh has more than M 1’s, where M

can be chosen to be min{
√
dr
e2 ,

rh
8 } and ∨ is the logical

OR operation.

The error parameter M can be thought of as a mea-
sure of how distinct the h strings can be, and therefore
it translates into how many flipped bits the construc-
tion can withstand and still recover. We will discuss
this below.

The above Theorem helps us prove our lower bound
on rectangle stabbing when the dimension is c log(n).
This paper’s main result is formulated in the following
Theorem and will be proven at the end of this section.

Theorem 3 Consider a pointer machine data structure
that solves the rectangle stabbing problem in c log(n) di-
mensions, for some parameters c ≥ 1 and 0 ≤ γ ≤

4
4+log c which achieves query time Q(n) = O(n1−γ), then

it must use n1−γ+Ω(
√
cγ) space.

And as we mentioned earlier since we are in non-
constant dimension this result also gives us a lower
bound for orthogonal range reporting.

Corollary 1 Consider a pointer machine data struc-
ture that solves the orthogonal range reporting problem
in c log(n) dimensions, for some parameters c ≥ 2 and
0 ≤ γ ≤ 4

4+log c which achieves query time Q(n) =

O(n1−γ), then it must use n1−γ+Ω(
√
cγ) space.

3.1 Codes with large spread

In this section, we consider a subproblem that we be-
lieve is an interesting generalization of error-correcting
codes. Error-correcting codes deal with two parties, Al-
ice and Bob, who have to communicate over an insecure
line, meaning that a number of bits may be flipped in
any message that they send to each other. Here, we
only consider binary messages. To reduce the impact of
errors, they agree to only communicate messages from
a fixed set S. If Alice sends a message s ∈ S we want
Bob to be able to retrieve the correct s from the string
s′ he received. This is typically expressed as every two
messages s1, s2 ∈ S having Hamming distance at least
2δ + 1, for some parameter δ. Now, if at most δ bits
change in the message that Alice sends to Bob, Bob can
correctly identify Alice’s message in S. Observe that if
both s1 and s2 have r 1s, then the fact that their Ham-
ming distance is at least 2δ+ 1 is equivalent to the fact
that s1∨s2 has at least r+2δ+1 1s. Thus, in Theorem
2, if we set h = 2, we get a set of error correcting codes,
i.e., a set of codes whose pairwise Hamming distance is
at least M − r.

The initial and immediate approach to prove Theo-
rem 2 would be to do random sampling: consider all
the strings with r 1s and pick a random sample of them
with probability p; then delete the strings that result in
some h strings to have few 1s in their logical OR, then
optimize for the value of p that gives the most strings.
Unfortunately, this natural approach seems difficult to
analyse, due to very complex binomial coefficients in-
volved. Instead, we come up with an alternative ap-
proach that we believe is simple but non-constructive.

Our non-constructive proof is a counting argument
which fortunately turns out to be easy to analyse. It in-
volves two different ways of counting the different num-
ber of ways to construct the set S. To gain a second way
of counting the ways to construct S we need to assume
the negated Statement of Theorem 2, if we obtain a con-
tradiction by assuming this negated Statement, then the
Theorem is proven. We start the proof by writing down
the negated Statement.

Statement 1 Given r, d and h, then for all sets of
N interesting strings there exists a subset s1, s2, . . . , sh
such that s1 ∨ s2 ∨ · · · ∨ sh contains less than M 1’s.

The idea is to reach a contradiction by a counting
argument. The total number of ways to pick N inter-

esting strings is
((dr)
N

)
. From Statement 1 we can bound

this count in a different way. Assuming Statement 1
every set S of N interesting strings has a subset of h
strings s1, ..., sh such that s1 ∨ · · · ∨ sh has less than M
1’s. We now describe choosing S in a different way. To
do that, first we choose the strings s1, ..., sh and then
the remaining strings of S. To choose s1, ..., sh, first we
choose the string s0 = s1 ∨ ... ∨ sh. Then we choose
s1, ..., sh as a “subset” of s0. To choose s0, we need
to pick M positions that contain 1s. The number of
ways to pick these M positions is

(
d
M

)
. The number of

ways to pick h interesting strings among these M posi-

tions is
((Mr)
h

)
. The ways to pick the remainder of the

N interesting strings after having picked these h strings

becomes
((dr)
N−h

)
. If we combine all of this, we get an ex-

pression that overcounts the number of ways to pick N
interesting strings, which means that we would expect
this count to be bigger than the exact count. Therefore
we would expect the following inequality to hold

((d
r

)

N

)
<

(
d

M

)((M
r

)

h

)((
d
r

)

N − h

)
.

Thus, if this inequality does not hold, then it follows
that Statement 1 is incorrect which in turn prove The-
orem 2.

3.1.1 Arriving at a contradiction

This section is dedicated to finalizing our proof of The-
orem 2. The way we do this, as mentioned above, is to

170

CCCG 2021, Halifax, Canada, August 10–12, 2021

00 · · · 00
M︷ ︸︸ ︷

100111 · · · 11 00 · · · 00

00 · · · 00
M︷ ︸︸ ︷

110010 · · · 10 00 · · · 00

00 · · · 00
M︷ ︸︸ ︷

010111 · · · 00 00 · · · 00

String 1

String 2

String h

Figure 1: h strings which have their r 1’s concentrated
around the same M positions.

arrive at a contradiction of Statement 1. To do that,
we will try to arrive at the opposite inequality, i.e., we
will try to satisfy the opposite inequality. The first step
is to utilize the following Lemma to restructure our ex-
pression; we refer to the appendix for the proof.

Lemma 2
(AB)

(A
B−C)

≥ (A2B)C , if B > 2 and A > 2B.

We can apply Lemma 2 to our expression by setting
A =

(
d
r

)
, B = N and C = h. This gives a new expression

we need to satisfy in order to arrive at our contradiction,

((
d
r

)

2N

)h
>

(
d

M

)((M
r

)

h

)
.

Now we need to apply Lemma 1. The idea is to cre-
ate a new Statement, where we increase the right side
and/or decrease the left side. If we can satisfy this new
inequality, our original inequality will also be satisfied.
We apply both the lower bound on the left side since we
want to decrease this expression and the upper bound
on the right side since we want to increase that expres-
sion.

((
d
r

)r

2N

)h
>

(
de

M

)M (e
(
eM
r

)r

h

)h
⇐

(
d

r

)r
>

(
de

M

)M
h

e

(
eM

r

)r
2N.

Where the implication follows from dividing by h in
the exponent and removing the h in the denominator
on the right side. We are going to proceed by splitting
this expression into three pieces. By ensuring that these
three inequalities are satisfied

1.
(
d
r

) r
4 ≥ 2N

2.
(
d
r

) r
2 > e

(
eM
r

)r

3.
(
d
r

) r
4 >

(
de
M

)M
h

we arrive at the desired contradiction. The first inequal-
ity directly gives us the upper bound on the size of N

namely that
(
d
r

)r/4
/2 ≥ N . For the second inequality,

we get an upper bound on the value of M

(
d

r

) r
2

> e

(
eM

r

)r
⇔
(
d

r

) 1
2

> e1/r

(
eM

r

)
⇔

√
dr

e1+1/r
> M ⇐

√
dr

e2
> M.

The third inequality gives us a bound on M and a rela-
tion between r and d:

(
d

r

) r
4

>

(
de

M

)M/h

⇔ rh

4
log

(
d

r

)
> M log

(
de

M

)

Note that we have M ≥ r and thus, we can increase
the RHS by replacing M with r,

rh

4
log

(
d

r

)
> M log

(
de

M

)
⇐

rh

4
log

(
d

r

)
> M log

(
de

r

)
⇐

rh

4
log

(
d

r

)
> M

(
log

(
d

r

)
+ 2

)
⇐ rh

8
> M.

Therefore, since we have two bounds on M we can

choose M to be min{
√
dr
e2 ,

rh
8 } as long as

(
d
r

)r/4
/2 > N

and r < d
4 . When the parameters satisfy these inequal-

ities we arrive at a contradiction of Statement 1, which
then proves Theorem 2.

3.2 Utilizing the framework

This section is dedicated to proving a lower bound on
rectangle stabbing when the dimension is c log(n) for
some constant c ≥ 1. The idea is to utilize the frame-
work by Afshani, Theorem 1 and use Theorem 2 from
the previous section to satisfy the second condition of
Afshani’s framework.

Assume we have a data structure that uses S(n) space
and has a query time of Q(n)+O(k). To use the frame-
work, we need to build a set of ranges. Each range will
be an axis-aligned rectangle in d dimensions. Note that
while the framework requires t ≥ Q(n), it is also suffi-
cient to create t ≥ Q(n)/2. To see this, let c0 be the con-
stant hidden in the O-notation in the query time, mean-
ing, we assume the query time is at most Q(n) + c0k.
Observe that as long as for the output size k we have
k ≥ Q(n)/2, then Q(n)+c0k ≤ Q(n)/2+(1+c0)k. And
thus, this only changes the constant factors involved in
the lower bound. Thus, in the rest of the proof, we as-
sume that we create t ≥ Q(n)/2 different shapes, and we
will use each shape to cover the unit cube in d = c log(n)
dimensions. For each shape, we tile the unit cube with
n

Q(n) copies. If we do that, this ensures that we have n

171

33rd Canadian Conference on Computational Geometry, 2021

rectangles in total. We build our shapes in the following
way: for each shape, we have r side lengths of length
1/2 and d − r side lengths of unit length. This implies

that each rectangle of any shape has volume Q(n)
n = 1

2r .

Observation 1 Our shapes satisfies the first condition
of Theorem 1.

Every point of the unit cube has been covered by at
least Q(n)/2 different shapes, and thus the answer to
any query point will have a size of at least Q(n)/2 and
as described above, this is sufficient to satisfy the first
condition.

Now we are only left with making sure that these
shapes can satisfy the second condition of the frame-
work, namely that the volume of the intersection of ev-
ery α shapes is at most v.

We say that a rectangle R is represented by a binary
string s of length d if the following holds: for every i,
1 ≤ i ≤ d, if s contains a 1 at position i, then R has
side-length 1

2 along dimension i but otherwise, R has
side-length 1.

Observation 2 Every rectangle represented by an in-
teresting string has volume 1

2r .

The next Observation reveals why we had to study this
particular type of error correction codes in section 3.1.

Observation 3 Let T be a set of interesting strings
given by Theorem 2, for some parameters r, h which
is to be decided later. Let R1, · · · , Rh be h rectangles
represented by h distinct strings s1, · · · , sh ∈ T , then
the volume of the intersection of R1, · · · , Rh is at most
2−M .

Proof. Simply observe that R1 ∩ · · · ∩ Rh will have a
side-length of at most 1/2 at dimension i if any of the
strings has a 1 at position i. The Lemma follows from
Theorem 2 i.e., that the logical OR of the strings has at
least M 1s. �

By the above observation, it thus follows that the goal
is to pick Q(n) interesting strings, such that for any α
strings in the set we have that s1∨...∨sα have more than
β 1’s. This will ensure that the corresponding shapes,
for any α shapes, the volume of their intersection will
be less than v = 1

2β
. We utilize Theorem 2, since we

have strings of length d with exactly r 1’s, h becomes α
and M becomes our β.

We know that d = c log(n). Let γ be such that
Q(n) = n1−γ . Observe that since Q(n)/n = (1/2)r,
we get that r = γ log(n). Now we are only left with
making sure that these parameters fit Theorem 2. To

do that, we must ensure that N = Q(n)/2:

Q(n)

2
≤
(
d

r

)r/4
/2 ⇔

n1−γ ≤
(
c

γ

)r/4
⇔

log(n)(1− γ) ≤ γ log(n)

4
log

(
c

γ

)
⇔

(1− γ)4 ≤ γ log

(
c

γ

)
⇔

(1− γ)4 ≤ γ log(c)− γ log(γ)⇐
(1− γ)4 ≤ γ log(c).

Where the last step follows since γ ≤ 1 and thus
−γ log(γ) is non-negative, and therefore, we can make
the RHS smaller by removing the −γ log(γ) term. Then
we just end up with (1 − γ)4 ≤ γ log(c) and so we get
that γ ≥ 4/(4 + log(c)). We also need that c ≥ 1;
otherwise, γ will not be between 0 and 1. Note that

γ ≥ 4/(4 + log(c)) implies that Q(n) ≤ n1− 4
4+log(c) .

Now we are left with finding the possible value of
M = β. Recall that by Theorem 2, we have β ≤
min{

√
dr
e2 ,

rh
8 } = min{

√
c log(n)γ log(n)

e2 , γ log(n)α
8 }. We

pick α to balance the two terms in the min function.

This yields α = Θ(
√

c
γ) and β = Θ(αr). We are now

ready to plug these values into our lower bound frame-
work.

Thus, if the query time is Q(n) ≤ n1− 4
4+log(c) then the

space becomes

S(n) = Ω

(
Q(n)2β

2O(α)

)
= n1−γ2Ω(αr)

= n1−γ2
Ω
(√

c
γ γ log(n)

)
= n1−γnΩ(

√
cγ)

= n1−γ+Ω(
√
cγ).

Which concludes our lower bound construction and
proves Theorem 3.

4 Conclusions

This paper considered the orthogonal range reporting
problem and the rectangle stabbing problem in moder-
ate dimensions. Both are classical problems in the field
of data structures and computational geometry. We
presented the first unconditional lower bound (in the
pointer machine model) that works when the dimen-
sion is beyond logarithmic. We believe our work leads
to two interesting problems. First, can we improve the
query lower bound? There are still some room for im-
provement since the best known algorithm have query
time Q(n) = n1− 1

c and space S(n) = n1+ε for some
ε < 1. We find improvements upon these bounds, ei-
ther improving the algorithm or improving upon the

172

CCCG 2021, Halifax, Canada, August 10–12, 2021

lower bound presented in this paper to be interesting
future work.

Second, can we obtain similar improvements in other
problems where we have instances of high-dimensional
orthogonal range reporting? Two important problems
are multi-level data structures, e.g., range trees and
range searching with respect to the Fréchet distance [5].

References

[1] P. Afshani. Improved pointer machine and I/O lower
bounds for simplex range reporting and related prob-
lems. In Symposium on Computational Geometry
(SoCG), pages 339–346, 2012.

[2] P. Afshani, L. Arge, and K. D. Larsen. Orthogonal
range reporting in three and higher dimensions. In Pro-
ceedings of Annual IEEE Symposium on Foundations of
Computer Science (FOCS), pages 149–158, 2009.

[3] P. Afshani, L. Arge, and K. D. Larsen. Orthogonal
range reporting: query lower bounds, optimal struc-
tures in 3-d, and higher-dimensional improvements. In
Symposium on Computational Geometry (SoCG), pages
240–246, 2010.

[4] P. Afshani, L. Arge, and K. G. Larsen. Higher-
dimensional orthogonal range reporting and rectangle
stabbing in the pointer machine model. In Symposium
on Computational Geometry (SoCG), pages 323–332,
2012.

[5] P. Afshani and A. Driemel. On the complexity of range
searching among curves. In Proceedings of the An-
nual ACM-SIAM Symposium on Discrete Algorithms
(SODA), pages 898–917, 2017.

[6] P. K. Agarwal. Range searching. In J. E. Goodman,
J. O’Rourke, and C. Toth, editors, Handbook of Discrete
and Computational Geometry. CRC Press, Inc., 2016.

[7] P. K. Agarwal and J. Erickson. Geometric range search-
ing and its relatives. In B. Chazelle, J. E. Goodman,
and R. Pollack, editors, Advances in Discrete and Com-
putational Geometry. AMS Press, 1999.

[8] N. Alon and J. H. Spencer. The Probabilistic Method.
Wiley Publishing, 4th edition, 2016.

[9] T. M. Chan. Orthogonal Range Searching in Moderate
Dimensions: k-d Trees and Range Trees Strike Back.
In B. Aronov and M. J. Katz, editors, 33rd Interna-
tional Symposium on Computational Geometry (SoCG
2017), volume 77 of Leibniz International Proceedings
in Informatics (LIPIcs), pages 27:1–27:15, Dagstuhl,
Germany, 2017. Schloss Dagstuhl–Leibniz-Zentrum fuer
Informatik.

[10] T. M. Chan, Y. Nekrich, S. Rahul, and K. Tsaka-
lidis. Orthogonal Point Location and Rectangle Stab-
bing Queries in 3-d. In 45th International Colloquium
on Automata, Languages, and Programming (ICALP
2018), volume 107, pages 31:1–31:14, 2018.

[11] B. Chazelle. Filtering search: A new approach to query-
answering. SIAM Journal of Computing, 15(3):703–724,
1986.

[12] B. Chazelle. Lower bounds for orthogonal range search-
ing: I. the reporting case. Journal of the ACM (JACM),
37(2):200–212, 1990.

[13] B. Chazelle and B. Rosenberg. Simplex range report-
ing on a pointer machine. Computational Geometry,
5(5):237 – 247, 1996.

[14] M. de Berg, O. Cheong, M. van Kreveld, and M. Over-
mars. Computational Geometry: Algorithms and Ap-
plications. Springer-Verlag, 3 edition, 2008.

[15] S. Rahul. Improved Bounds for Orthogonal Point En-
closure Query and Point Location in Orthogonal Subdi-
visions in R3, pages 200–211.

[16] S. Rahul. An (almost) optimal solution for orthogonal
point enclosure query in R3. Mathematics of Operations
Research, 45(1):369–383, 2020.

[17] C. E. Shannon. A mathematical theory of communi-
cation. The Bell System Technical Journal, 27(3):379–
423, July 1948.

[18] R. E. Tarjan. A class of algorithms which require non-
linear time to maintain disjoint sets. Journal of Com-
puter and System Sciences (JCSS), 18(2):110 – 127,
1979.

[19] T. M. Thompson. From Error-Correcting Codes
Through Sphere Packings to Simple Groups, volume 21.
Mathematical Association of America, 1 edition, 1983.

[20] R. Williams. A new algorithm for optimal 2-constraint
satisfaction and its implications. Theoretical Computer
Science, 348(2):357 – 365, 2005. International Col-
loquium on Automata, Languages and Programming
(ICALP).

173

33rd Canadian Conference on Computational Geometry, 2021

Appendix

Lemma 1 For positive integers n and k where 1 ≤ k ≤ n,
it holds that

(n
k

)k
≤
(
n

k

)
≤
(en

k

)k
.

Proof. We start by proving the lower bound. We first ob-
serve that for k = 1, the bound trivially holds

(n
k

)k
= n =

(
n

k

)
.

Hence look at the case where k > 1 and let 0 < i < k ≤ n.

k ≤ n⇔ i

n
≤ i

k
⇔ 1− i

k
≤ 1− i

n
⇔ k − i

k
≤ n− i

n
⇔ n− i

k − i
,

and from this we obtain

(n
k

)k
=

n

k
· · · · · n

k
≤ n

k
· · · · · n− k + 1

1
=

(
n

k

)
,

which gives us the desired lower bound. For the upper bound
we see that(

n

k

)
=

n!

(n− k)!k!
=

n · (n− 1) · · · · · (n− k + 1)

k!
≤ nk

k!
.

Since

ek =

∞∑

j=0

kj

j!

we can look at the term where j = k and get

ek ≥ kk

k!
⇔ 1

k!
≤
(e
k

)k
⇔ nk

k!
≤
(en

k

)k
,

which gives us the upper bound. �

Lemma 2
(AB)

(A
B−C)

≥ (A
2B

)C , if B > 2 and A > 2B.

Proof. The proofs goes through, using some simple calcu-
lations and bounds,

(
A
B

)
(

A
B−C

) =

A!
B!(A−B)!

A!
(B−C)!(A−B+C)!

=
(B − C)!(A−B + C)!

B!(A−B)!

=
(A−B + 1) . . . (A−B + C)

(B − C + 1) . . . B
.

and we are going to make this expression smaller by taking
the smallest term in the numerator and raising it to the
number of terms in the numerator, i.e. C and we take the
biggest term in the denominator and do the same, raise it
to the power C we get

(A−B + 1) . . . (A−B + C)

(B − C + 1) . . . B
>

(A−B + 1)C

BC

>

(
A

B
− 1

)C

and lastly since we assumed that A > 2B we conclude the
proof

(
A

B
− 1

)C

>

(
A

2B

)C

�

174

CCCG 2021, Halifax, Canada, August 10–12, 2021

Decomposing Polygons into Fat Components

Maike Buchin∗ Leonie Selbach†

Abstract

We study the problem of decomposing (i.e. covering
or partitioning) polygons into components that are α-
fat, which means that the aspect ratio of each subpoly-
gon is at most α. We consider decompositions without
Steiner points and decompose polygons by adding diag-
onals between their vertices. We present a polynomial-
time algorithm for simple polygons that finds the min-
imum α such that an α-fat partition exists. Further-
more, we show that finding an α-fat partition or cover-
ing with minimum cardinality is NP-hard for polygons
with holes.

1 Introduction

A decomposition of a polygon P is a set of subpolygons
whose union is exactly P . If the subpolygons are not
allowed to overlap, the set is a partition of P . Other-
wise, we call the set a covering. Here, we consider de-
compositions without Steiner points and polygons are
decomposed by adding diagonals between their vertices.
Polygon decomposition problems arise in many theoret-
ical and practical applications and can be categorized
with regard to the type of subpolygon that is used [5].
We study decompositions into fat components.

A polygon P is called α-fat if its aspect ratio (AR) is
at most α. There are different definitions for the aspect
ratio and in this paper we consider the following two
(see Fig. 1):

square-fatness: ARsquare = ratio between the side
length of the smallest axis-parallel square contain-
ing P and the side length of the largest axis-parallel
square contained in P [4].

disk-fatness: ARdisk = ratio between the diameter of
the smallest circle enclosing P (minimum circum-
scribed circle or MCC) and the diameter of the
largest circle enclosed in P (maximum inscribed
circle or MIC) [2].

A polygon P is called α-small if the side length of the
enclosing square or respectively the diameter of the en-
closing circle is at most α.

∗Department of Computer Science, Ruhr University Bochum,
maike.buchin@rub.de

†Department of Computer Science, Ruhr University Bochum,
leonie.selbach@rub.de

(a) square-fatness (b) disk-fatness

Figure 1: Comparison of fatness definitions. The parti-
tion is 1.5-fat in (a) and and 1.4-fat in (b).

Figure 2: Fat decomposition of one connected compo-
nent in a preprocessed tissue sample.

Our research is motivated by an application in protein
diagnostics. Namely, the processing of tissue samples
for molecular analysis using laser capture microdissec-
tion (LCM). The size and shape of the tissue fragments
are two of the main factors that affect the success of the
dissection. The fragmentation of tissue samples into fea-
sible regions can be modeled as a polygon decomposition
problem [6]. Preliminary results show that specifically
round shapes of a certain size are desirable (see Fig. 2).
As roundness can be measured by the fatness of a poly-
gon, fatness is a suitable shape criterion for this prac-
tical application. The goal is to obtain decompositions
such that the fatness is optimized.

Thus, we consider the min-fat partition problem and
other related fat decomposition problems. The min-fat
partition problem is finding the smallest α for which an
α-fat partition exists. The minimum α-fat partition (or
covering) problem is finding a partition (or covering)
with minimum cardinality such that every subpolygon
is α-fat. We have analog problems with α-smallness
instead of α-fatness. An overview of related results re-
garding these problems is presented in Table 1.

Worman showed that the minimum α-small parti-
tion problem as well as the covering problem are NP-
hard for polygons with holes if square-smallness is ap-

175

33rd Canadian Conference on Computational Geometry, 2021

Table 1: Overview of results for fat decomposition problems using different smallness and fatness definitions. Results
marked with * are presented in this paper.

Problems Simple polygons Polygons with holes
Minimum α-small partition O(n3m) (disk) [2] NP-hard (square [7] and disk*)
Minimum α-small covering ? NP-hard (square [7] and disk*)
Minimum α-fat partition O(n4m3) (disk) [1] NP-hard (square and disk)*
Minimum α-fat covering ? NP-hard (square and disk)*
Min-fat partition O(n3m5 log n) (disk)* ?

plied [7]. They claim that the same reduction holds for
disk-smallness, however, we show that this is only cor-
rect if some adjustments in the construction are made.
In all following results, disk-smallness and -fatness
was applied. Damian and Pemmaraju showed that
the minimum α-small partition problem is polynomial-
time solvable for simple polygons and that a faster 2-
approximation algorithm exists [2]. Additionally, the
authors presented an approximation algorithm for con-
vex polygons. Damian proved that the minimum α-fat
partition problem can be solved in polynomial time for
simple polygons and conjectured that this problem is
NP-hard for polygons with holes [1]. So far, the min-fat
partition problem was just stated as an open problem
by Damian [3]. This problem is of particular interest for
us, as the corresponding partition is the most suitable
for our practical application.

This paper includes two main results. In Section 2,
we consider the min-fat partition problem using disk-
fatness and present a polynomial-time algorithm for
simple polygons. In Section 3, we consider the mini-
mum α-fat partition and covering problem. We con-
firm the conjecture that these problems are NP-hard
for polygons with holes and present the two reductions
for square- and respectively disk-fatness. Additionally,
we present a disk-smallness construction for the NP-
hardness reduction of the minimum α-small partition
problem in Section 4.

2 Min-fat partition problem for simple polygons

Our goal is to find an optimal partition of a given poly-
gon such that the largest aspect ratio (AR) of any sub-
polygon is minimized. Here we consider the aspect ratio
with regard to disk-fatness. The value of the largest AR
in an optimal partition equals the desired α in the min-
fat partition problem. With our algorithm, we extend
the method of Damian [1] for this optimization problem.

Let P be a simple polygon with vertices labeled from 1
to n counterclockwise. A diagonal (i, j) is a line segment
that connects two vertices i and j and does not intersect
the outside of P . Let G(P) be the visibility graph of
P consisting of the n vertices of P and m diagonals.
We define S as the set consisting of all vertices and
edges of G(P). For each diagonal (i, j) with i < j,

let Pi,j be the subpolygon with vertices {i, i+ 1, . . . , j}
(see Fig. 3a). To solve the min-fat partition problem,
we use a dynamic programming approach. Namely, we
compute optimal partitions for each Pi,j belonging to a
diagonal (i, j) with increasing value of j − i.

Let Zi,j be an optimal partition of Pi,j . Let Q be the
polygon in Zi,j adjacent to (i, j). Note that the vertices
of Q represent a path q from i to j in the visibility
graph and we have Zi,j =

⋃
(k,l)∈q Zk,l∪Q (see Fig. 3b).

Thus, we can find an optimal partition by computing the
optimal path q. For this we define edge weights w(i, j)
as the value of an optimal partition Zi,j of Pi,j :

w(i, j) = max
P ′∈Zi,j

AR(P ′) = max{ max
(k,l)∈q

w(k, l), AR(Q)}

for AR(Q) = d(MCC)/d(MIC) being the ratio between
the diameters d(·) of the minimum circumscribed circle
MCC and maximum inscribed circle MIC of Q. If j is
equal to i+ 1, the partition Zi,i+1 is empty and we set
w(i, i + 1) = 0. Otherwise, w(i, j) equals the value of
the largest AR in an optimal min-fat partition of Pi,j .

However, the computation of w(i, j) presents the fol-
lowing problem: Finding the path q and its correct edges
requires knowledge about the resulting polygon Q and
its aspect ratio, which is not available beforehand. To
solve this, we consider different reduced visibility graphs
that ensure that the aspect ratio of each possible poly-
gon is below a certain value. We compute optimal paths
on these graphs and then choose the best one. For this,
we consider all pairs of circles (C, I) such that the fol-
lowing properties (A) hold:

• (i, j) lies completely inside of C and outside of I,

• I is tangent to 3 elements in S,

• and C either touches 3 vertices of P or its diameter
connects 2 vertices.

Note that for any subpolygon the pair (MCC,MIC) ful-
fills these properties. For each (C, I), we denote by

G
(C,I)
i,j be the subgraph of G(P) consisting of edges that

lie outside of I and inside of Pi,j and C (see Fig. 3c).
Using these graphs, we are able to compute the

weights w(i, j) by using dynamic programming with in-
creasing values of j − i. For each pair of circles (C, I)

176

CCCG 2021, Halifax, Canada, August 10–12, 2021

i
i+ 1 j

(a) Subpolygon Pi,j .

i
i+ 1 j

q

Q

(b) Polygon Q in an optimal partition.

i
i+ 1 j

CI

(c) reduced visibility Graph G
(C,I)
i,j .

Figure 3: In (a): Subpolygon Pi,j induced by the edge (i, j). In (b): Polygon Q (blue) in an optimal partition of Pi,j

induced by a path q (fat edges) in the visibility graph. In (c): Reduced visibility graph G
(C,I)
i,j (fat edges) for a pair

of circles (C, I).

that fulfill (A), we compute a corresponding weight
W (C, I) and use those values to determine an interme-
diate edge weight w′(i, j) as follows:

W (C, I) = min
q∈G(C,I)

i,j

max{ max
(k,l)∈q

w′(i, j), d(C)/d(I)}

w′(i, j) = min
(C,I) fulfilling (A)

W (C, I)

The weights of all edges except for (i, j) have already

been computed. We search in G
(C,I)
i,j for the path q

such that the value max{max(k,l)∈q w′(k, l), d(C)/d(I)}
is minimized. We denote this optimal value as W (C, I).
Over all possible combinations of circles, we search for
the pair (C, I) with minimum W (C, I) and set w′(i, j) =
W (C, I). If no pair of circles exist, we set the weight
w′(i, j) = 0. We can show by induction that w′(i, j)
is actually equal to the largest aspect ratio in the cor-
responding partition and that this partition is indeed
optimal and hence w′(i, j) = w(i, j).

Lemma 1 For an edge (i, j) in the visibility graph
G(P) with j 6= i+ 1, let w′(i, j) be the computed weight
and Zi,j the corresponding partition. Then, w′(i, j) =
maxP ′∈Zi,j

AR(P ′).

Proof. Let (C ′, I ′) be the pair for circles, q′ the corre-

sponding path in G
(C′,I′)
i,j and (k′, l′) the edge in q′ such

that

w′(i, j) = W (C ′, I ′) = max{ max
(k,l)∈q′

w′(k, l), d(C ′)/d(I ′)}

= max{w′(k′, l′), d(C ′)/d(I ′)}. (1)

The computation induces a partition Zi,j in which
we denote the polygon adjacent to (i, j) by Q′.
By induction over j − i, we show that w′(i, j) =
maxP ′∈Zi,j

AR(P ′).
For j − i = 2, consider an edge (i, j) = (i, i + 2) in the
visibility graph. There is only one possible pair (C ′, I ′),

which is equal to (MCC,MIC) of Pi,j . Thus, there is
only one possible path q′ = {(i, i + 1), (i + 1, i + 2)} ∈
G

(C′,I′)
i,j . This path induces the partition Zi,j = {Pi,j}.

Therefore, we have Q′ = Pi,j and d(C ′)/d(I ′) =
AR(Q′). Since w′(i, i + 1) = w′(i + 1, i + 2) = 0, we
have

w′(i, j) =
d(C ′)
d(I ′)

= AR(Q′) = max
P ′∈Zi,j

AR(P ′).

Our induction hypothesis is that w′(i, j) =
maxP ′∈Zi,j AR(P ′) for all (i, j) such that j − i ≤ s.
Now, we consider an edge (i, j) such that j − i = s+ 1.
Using the induction hypothesis (IH), we have the
following:

max
P ′∈Zi,j

AR(P ′) = max
(k,l)∈q

{ max
P ′∈Zk,l

AR(P ′), AR(Q)}

=
(IH)

max{w′(k′, l′), AR(Q)}

Since d(C ′)/d(I ′) ≥ AR(Q′), the inequality w′(i, j) ≥
maxP ′∈Zi,j

AR(P ′) holds. For the opposite inequality
we consider the two possible cases for Equation 1:

Case 1: w′(k′, l′) ≥ d(C ′)/d(I ′) (≥ AR(Q′)).
Obviously, we have w′(i, j) = w′(k′, l′) =
maxP ′∈Zi,j

AR(P ′).

Case 2: w′(k′, l′) < d(C ′)/d(I ′).
Then, the weight w′(i, j) is equal to d(C ′)/d(I ′).

a) d(C ′)/d(I ′) = AR(Q′).
We have w′(i, j) = AR(Q′) =
maxP ′∈Zi,j AR(P ′).

b) d(C ′)/d(I ′) > AR(Q′).
Let (C ′′, I ′′) be pair of circles such that C ′′

is the MCC and I ′′ the MIC of Q′. During
our computation, we consider (C ′′, I ′′) and

find the same path q′ in G
(C′′,I′′)
i,j . Thus,

177

33rd Canadian Conference on Computational Geometry, 2021

W (C ′′, I ′′) ≤ max{w′(k′, l′), d(C ′′)/d(I ′′)} =
max{w′(k′, l′), AR(Q′)}. Since both
w′(k′, l′) < d(C ′)/d(I ′) and AR(Q′) <
d(C ′)/d(I ′), it follows that W (C ′′, I ′′) <
W (C ′, I ′) = w′(i, j). This contradicts our
assumption that w′(i, j) is minimal.

With this, we showed that w(i, j) = maxP ′∈Zi,j
AR(P ′)

holds. �

Lemma 2 The computed partition Zi,j is an optimal
partition of Pi,j, meaning that the largest aspect ratio of
any subpolygon is minimized.

Proof. We show this by induction over j − i. For
j − i = 1, we consider an edge (i, j) = (i, i + 1). Thus,
Zi,j is the empty set. Our induction hypothesis is that
the computed partition Zi,j is an optimal partition of
Pi,j for all (i, j) such that j − i ≤ s. Now, we consider
an edge (i, j) such that j − i = s + 1. Let Z∗i,j be an
optimal partition of Pi,j . Hence, maxP ′∈Z∗i,j AR(P ′) is
minimal over all partitions. Let Q∗ be the polygon in
Z∗i,j adjacent to (i, j) and let q∗ be the path induced by

Q∗. The path q∗ is contained in G
(C∗,I∗)
i,j for (C∗, I∗) =

(MCC,MIC) of Q∗. Thus, q∗ is a candidate for the
min-max path computed by our algorithm and we have
W (C∗, I∗) = max{max(k,l)∈q∗ w′(k, l), AR(Q∗)}. Let
Zi,j =

⋃
(k,l)∈q′ Zk,l ∪ Q be the partition computed by

our algorithm and (C ′, I ′) the corresponding circles. We
have:

W (C ′, I ′) ≤W (C∗, I∗)

⇒ max{ max
(k,l)∈q′

w′(k, l), d(C ′)/d(I ′)}

≤ max{ max
(k,l)∈q∗

w′(k, l), AR(Q∗)}

⇒
Lemma 1

max
P ′∈Zi,j

AR(P ′) ≤ max
P ′∈Z∗i,j

AR(P ′).

Since the maximal aspect ratio in Zi,j is not larger that
the maximal aspect ration in the optimal partition, it
follows that the computed partition is optimal. �

Theorem 3 For a simple polygon P , the min-fat par-
tition problem using disk-fatness can be solved in time
O(n3m5 log n) with n being the number of vertices of P
and m being the number of edges in the visibility graph
G(P).

Proof. First, we have to compute the visibility graph
of P which takes O(n + m) time. For every edge (i, j)
in the visibility graph, we determine an optimal parti-
tion Zi,j by computing the optimal weight w(i, j). For
each (i, j), we consider pairs of circles (C, I). There are
O(n3) circles C and O(m3) circles I to consider. Com-

puting the optimal path in G
(C,I)
i,j can be done by an

adjusted version of Dijkstra’s Algorithm and therefore
takes O(m log n) time. Thus, the overall runtime of the
algorithm is O(n3m5 log n). �

3 Minimum α-fat decomposition problems for non-
simple polygons

This section deals with the minimum α-fat decompo-
sition problems on polygons with holes. We consider
the corresponding α-fat partition (resp. covering) de-
cision problem. That is, deciding whether there exists
an α-fat partition (resp. covering) with a given num-
ber of components. We show NP-hardness with a re-
duction from planar 3,4-SAT. For a boolean formula
φ, let G(φ) = (V,E) be the graph with V = U ∪ C
and E = {(u, c) |u ∈ U, c ∈ C, u or ū is a literal in c},
where U are the literals and C the clauses. Planar 3,4-
SAT is the problem of deciding if φ is satisfiable under
the following three restrictions: In conjunctive normal
form, φ has exactly 3 literals per clause, each literal
appears in at most 4 clauses, and the graph G(φ) is
planar. We construct a polygon representing the graph
G(φ) that has an α-fat partition of size k if and only if φ
is satisfiable. The value of α is fixed and k is determined
during this construction.

The related result for α-smallness was proven by Wor-
man [7]. In their construction only (orthogonal) sub-
polygons below a certain height and width are feasi-
ble, as only the side length of the enclosing square is
bounded. However, with α-fatness it is the aspect ra-
tio that is bounded. This ratio might differ consider-
ably even for polygons that have the same smallness
factor α. This makes the construction more challenging
when using fatness rather than smallness. Addition-
ally, the fatness and smallness factors are affected by
the definition (square or disk) that is applied. Hence,
it is no surprise that the polygon construction for the
NP-hardness proof differ also based on these respective
definitions. Figure 4 exemplifies for small polygons on
a grid the differences that can occur when considering
smallness and fatness for both definitions.

(a) 3-small, 1-fat (b) 3-small, 3-fat (c) 3-small, 3-fat

(d) 3
√

2-small (≈
4.24),

√
2-fat (≈

1.41)

(e) 3
√

2-small

(≈ 4.24), 3
√
2

4−
√
8
-

fat (≈ 3.61)

(f)
√

10-small (≈
3.61),

√
5-fat (≈

2.24)

Figure 4: Comparison of smallness and fatness factors
for the square (top) and disk (bottom) definition. The
denoted values are sharp bounds.

178

CCCG 2021, Halifax, Canada, August 10–12, 2021

3.1 Reduction for square-fatness

The goal is to construct a polygon that has an α-fat
partition of a certain size k if and only if a boolean for-
mula φ is satisfiable. In the following construction where
square-fatness is applied, we set α = 1.2. All polygon
components are orthogonal and at most 5 units wide,
thus the side length of the enclosing squares cannot ex-
ceed 6. The construction consists of three different poly-
gon components: variable, wire and clause polygons.

The variable polygon is shown in Figure 5. It has
four terminals at which wires can be connected. This
polygon can be minimally partitioned into 8 α-fat sub-
polygons in two ways. These partitions represent the
True and False assignment, which is carried to the cor-
responding clauses.

Each wire consists of a set of individual wire polygons
that are connected with each other (as depicted in Fig-
ure 6) to carry the variable assignment to the clause
polygon. The wires can be attached at the terminals
in two possible orientations (see Fig. 7) depending on
whether the variable appears in the clause negated or
unnegated. If the wire is connected in the unnegated
orientation and the variable is set to True, the gray
polygon in Figure 7a can cover the top part of the wire
as well, but this is not the case if the variable is set
to False. The reverse is true if the wire is connected
in the negated orientation. If a wire is partitioned in
this way (unnegated position and True assignment or
negated position and False assignment), we say that it
carries True.

1 2

34

Figure 5: The variable polygon with four terminals indi-
cated by the bold numbers 1, 2, 3, 4 and its minimal 1.2-
fat partitions representing the True (blue) and False

(orange) assignment.

(a) (b)

Figure 6: A single wire polygon (a) with its two parti-
tions that represent the True (blue) or False (orange)
assignment. Two wire polygons (b) are connected and
the respective truth assignment is transmitted.

0.9

(a) True assignment of variable.

0.9

(b) False assignment of variable.

Figure 7: Attaching a wire to the variable in unnegated
orientation (on bottom right terminal) or in negated ori-
entation (on bottom left terminal). The latter switches
the True/False value.

179

33rd Canadian Conference on Computational Geometry, 2021

1

23

0.5

0.50.5

Figure 8: The clause polygon with three terminals in-
dicated by the bold numbers 1, 2, 3.

(a) True, True, True (b) True, False, False

(c) False, True, True (d) False, False, False

Figure 9: Partition of the clause polygon depending on
different assignments that are transmitted by the wires
(True blue edges, False orange edges).

The variable assignment is carried to the clause poly-
gon (see Fig. 8). For each of the three variables con-
tained in the clause, this polygon has one terminal,
where the wires will be attached. Depending on the
values these wires carry, a different number of polygons
is needed to partition the clause polygon into 1.2-fat
components. If some wire carries True (see Fig. 9a to
9c), the tip of the connected terminal (gray) is already

Figure 10: Placement of 5 variable and 3 clause poly-
gons on a planar orthogonal grid drawing.

covered and center part of the clause polygon (dark
blue) can be covered as well. If more than one wire
carries True either one of the corresponding polygons
(light blue) can be used to cover the center. In either
case, the partition requires exactly four polygons. If all
wires carry False (see Fig. 9d), the part of center of the
clause polygon depicted in magenta cannot be covered
by any of the bigger polygons (in light orange). Thus,
an additional fifth polygon is needed to cover this area.
As a 1.2-fat polygon is required, only the 1x1 square
can be chosen.

The whole polygon representing G(φ) is constructed
based on a planar orthogonal grid drawing of G(φ).
That is a planar embedding of the graph such that every
vertex is located at an integer grid point, the edges are
non-overlapping, and every edge is a chain of orthogo-
nal lines that bend at integer grid points. A schematic
example for the placement of variable and clause poly-
gons on the vertices of the drawing can be seen in Fig-
ure 10. To construct the edges, the wires have to be
bend, shifted or offset. This is achieved by the con-
structions presented in Figure 11. The drawing of G(φ)
is scaled to accommodate the size of the variable and
clause polygons as well as the needed adjustments of
the wire polygons.

As we consider the decision problem, the number k of
allowed subpolygons is fixed. We have k = 8v + 4c+ w
where v is the number of variables, c the number of
clauses and w the number of wire polygons needed in
the construction. Bending, shifting and offsetting a wire
counts as 3, 2, and respectively 5 wire polygons. Note
that we can find a minimum 1.2-fat covering with the
same number of components as the minimum partition
and that the constructed polygon is orthogonal. This
means that the following theorem remains true for the
corresponding covering problem and also for orthogonal
polygons with holes.

180

CCCG 2021, Halifax, Canada, August 10–12, 2021

(a)

(b)

(c)

Figure 11: Bending (a), shifting (b) and offsetting (c) a
wire that carries True (blue edges) or False (orange
edges).

Theorem 4 The α-fat partition decision problem is
NP-complete for polygons with holes if square-fatness
is applied.

Proof. Given a set of k α-fat polygons, we can verify
in polynomial time if this is a partition of our polygon
P . Hence, the problem is in NP.

Let φ be an instance of planar 3,4-SAT and P be
the polygon representing G(φ) constructed as described
in Section 3. We show that P has a minimum 1.2-fat
partition of a certain size k if and only if φ is satisfiable.

Assume that φ can be satisfied with a truth assign-
ment T . Then, the polygon can be minimally parti-
tioned into k = 8v + w + 4c components. The values v
and c are the numbers of variables and clauses respec-
tively. The value w corresponds to the number of wire
polygons needed to construct G(φ) with P . For each of
the v variables, we partition the variable polygon into 8
components according to T . The wires are partitioned
into w subpolygons. Depending on the assignment of
the variables the tip of the terminal (the part where the
wire and clause polygon overlap) might be uncovered.
Since the assignment T satisfies φ, we know that for
each clause there is at least one wire carrying True such
that the tip of the terminal is already covered and the
clause polygon can be partitioned into 4 components.

Assume that P has a minimum 1.2-fat partition Z of
size k = 8v+w+4c as above. There are two ways how to
minimally partition a variable polygon into 1.2-fat poly-
gons, which both require 8 components. To partition a
sequence of l wire polygons, l subpolygons are needed.
If the tip of the wire at the variable terminal is already
covered, the wire carries True and the tip at the clause
terminal will be covered as well. If we use w polygons to
partition the wires, 4c polygons remain for the partition
of the clauses. Since each of the c clause polygons can

only be partitioned into 4 components if the tip of one
of the terminals is already covered by another polygon –
which is only the case if the corresponding wire carries
True – we know that each clause is satisfied. Hence, φ
is satisfied. �

3.2 Reduction for disk-fatness

The construction presented in Section 3.1 does not work
if disk-fatness is applied. For all previously feasible
(with ARsquare ≤ 1.2 = 6/5) subpolygons to remain
feasible, we would have to set αdisk = 6/5

√
2. How-

ever, there exist other subpolygons in the construction
with ARdisk ≤ 6/5

√
2 but ARsquare > 6/5 – specifi-

cally at the wire bends and inside the clause polygon.
These would then become feasible and cause an incon-
sistent transmission of True/False values. We adjust
the construction such that the aspect ratio ARdisk of all
subpolygons that are supposed to be feasible is at most
α =
√

61/5 ≈ 1.56.

For variable polygons and their attachment to the
wires nothing changes. Wires can be shifted in the
same way, but bending and offsetting has to be ad-
justed. We have to remove the 1x1-square bulge at
the corners because the corner polygon in the orange
partition in Figures 11a and 11c would no longer be
feasible. The adjusted wires and their feasible parti-
tions are shown in Figure 12 and the respective corner
polygons are depicted in Figure 13. The two polygons
in Figure 13a and 13b have the correct aspect ratio of
ARdisk =

√
61/5. The other polygon shown in 13c has a

MCC of diameter 6
√

2 and MIC of diameter 2(9−
√

40).
Therefore, the aspect ratio is larger than

√
61/5 = α,

which means that it is not feasible in our construction.
Note that this polygon, however, would be feasible re-
garding square-fatness with α = 1.2.

Furthermore, we have to adjust the clause polygon.
This is done by changing the placement of four bound-
ary vertices, which are marked with a x in Figure 14.
Figure 15 exemplifies the idea behind this construc-
tion. Figure 15a shows the previous construction for

(a) (b)

Figure 12: Bending (a) and offsetting (b) a wire that
carries True (blue edges) or False (orange edges) in
the disk-fatness construction.

181

33rd Canadian Conference on Computational Geometry, 2021

(a) Transmitting False. (b) Transmitting True.

(c) Not feasible.

Figure 13: Three possible corner polygons in a wire
polygon that is bend (or offset in gray) with their cor-
responding MCC and MIC. Only the polygons in (a)
and (b) are α-fat with the given α =

√
61/5 and hence

feasible.

1

23

4.5

0.40.5

Figure 14: The clause polygon for disk-fatness. The
marked vertices are moved in comparison to the con-
struction for square-fatness.

square-fatness. The illustrated polygon was not fea-
sible regarding square-fatness, because its aspect ra-
tio is ARsquare = 6.5/5 - but it is feasible regarding
disk-fatness with the given α. As depicted this poly-
gon would be able to cover the entire center of the
clause polygon despite coming from a wire carrying
False. With the adjusted placement of the bound-
ary vertices, we can ensure that the center can only be
covered by a subpolygon coming from a wire carrying
True. Let PF and PT be the two polygons depicted in

(a) (b) (c)

Figure 15:
√

61/5-fat subpolygons in the different clause
polygons. The white vertices contained in the subpoly-
gons. The clause polygon for square-fatness (a) contains
a subpolygon that is not supposed to be feasible. With
the adjusted construction for disk-fatness the correct
subpolygons are feasible (b and c).

(a) True, True, True (b) True, False, False

(c) False, True, True (d) False, False, False

Figure 16: Partition of the clause polygon for disk-
fatness depending on different assignments that are
transmitted by the wires (True blue edges, False or-
ange edges).

Figure 15b and 15c respectively. The polygon PF has
ARdisk =

√
61/5 = α and PT has ARdisk < α. The

position of the four vertices marked in Fig. 14 was ad-
justed in such a way that the lower two are contained in
the MCC of PT but not in the MCC of PF . As the as-
pect ratio of PF is exactly α, no larger polygon (coming
from terminal 1) can be chosen to cover the area be-

182

CCCG 2021, Halifax, Canada, August 10–12, 2021

tween these vertices and thereby the center area of the
clause polygon. Thus, the center can only be covered if
another wire carries True or an additional fifth polygon
is included in the partition (see Fig. 16).

Note that the construction resulting from these ad-
justments would not work for square-fatness. Again
other subpolygons that interfere with the correct trans-
mission of True and False values would become feasi-
ble. For example, the corner polygon in Fig. 13c would
be feasible with the previous α for square-fatness. Us-
ing the adjusted construction, we can reduce from pla-
nar 3,4-SAT and thus prove the NP-completeness in the
same way as before. As argued earlier, this result re-
mains true for the covering problem and additionally for
orthogonal polygons with holes.

Theorem 5 The α-fat partition decision problem is
NP-complete for polygons with holes if disk-fatness is
applied.

4 Minimum α-small decomposition problem with
disk-fatness

Worman showed that the minimum α-small decompo-
sition problems are NP-complete if the definition of
square-smallness is used [7]. In their construction, they
used αsquare = 3 and all feasible subpolygons can be
enclosed with a 3x3 square. They claim that their con-
struction holds for disk-smallness as well if αdisk =

√
18,

which is the diameter of the MCC of the 3x3 square.
However, this is incorrect. Their feasible wire poly-
gons are 1x3 rectangles, but the wires can also be par-
titioned in 1x4 rectangles. The latter were not feasible
for αsquare, but they would become feasible with αdisk

because the diameter of their MCC is only
√

17. Ad-
ditionally, there are subpolygons inside the clause poly-
gon, which have an MCC of diameter

√
17 but are not

supposed to be feasible. For their result to be true, a
different αdisk has to be chosen and additionally the
construction has to be adjusted such that the correct
polygons stay feasible with the new α.

We choose αdisk =
√

13. The variable polygon stays
the same, as αdisk is exactly the diameter of the MCC
of the subpolygons that supposed to be feasible. The
basic wire polygon can also stay the same, but bending
and offsetting a wire has to be adjusted (see Fig. 17).
Similar to the adjustments in Section 3, this is done
by removing the bulges at the corner polygons. Note
that all feasible subpolygons now fit inside a 2x3 rect-
angle and therefore fulfill αdisk. Additionally, we have
to adjust the clause polygon. It can be constructed
as a slimmed down version of the clause polygon pre-
sented in Section 3 (see Fig. 18). The center square
that can only be covered by another polygon coming
from the terminals if at least one of the connected wires
carries True. Note that this adjusted construction does

(a) Bending a wire for
square-smallness.

(b) Bending a wire bend for
disk-smallness.

(c) Offsetting a wire for
square-smallness.

(d) Offsetting a wire for
disk-smallness.

Figure 17: Comparison of wire construction for square-
smallness (left) and disk-smallness (right). Bending
(top) and offsetting (bottom) a wire that carries True

(blue edges) or False (orange edges).

3 2

1

(a) The clause polygon for
square-smallness.

3 2

1

(b) The clause polygon for
disk-smallness.

(c) True, False, False for
square-smallness.

(d) True, False, False for
disk-smallness.

Figure 18: Comparison of clause construction for
square-smallness (left) and disk-smallness (right). Bot-
tom: Partition of clause polygon for one truth assign-
ment transmitted by wires.

not work for square-smallness anymore. Using the pre-
sented construction, we can prove that the problem is
NP-complete with an analog reduction from planar 3,4-
SAT. Again, the same result holds for the covering prob-
lem and also for orthogonal polygons with holes.

Theorem 6 The α-small partition decision problem is
NP-complete for polygons with holes if disk-smallness is
applied.

183

33rd Canadian Conference on Computational Geometry, 2021

5 Conclusion

We answered some of the open problems on decompo-
sitions of polygons into fat components. For the min-
fat partition problem on simple polygons, we presented
a polynomial-time algorithm that applies disk-fatness.
This algorithm takes O(n3m5 log n) for n being the
number of vertices and m the number of edges in the vis-
ibility graph. This runtime is likely to be inefficient for
practical application. Thus, our future work contains
finding a faster (approximation) algorithm.

Furthermore, we considered the α-fat partition and
covering problems on polygons with holes. We proved
that both problems are NP-hard for square- as well
as disk-fatness. Additionally, we included the disk-
smallness construction for the NP-hardness proof of the
α-small partition and covering problem.

For polygons with holes, the min-fat partition prob-
lem remains open. It is also unclear if the minimum
α-fat or min-fat covering problems are solvable for sim-
ple polygons. Moreover, there are no results for any
related small or fat decomposition problems that allow
Steiner points yet.

References

[1] M. Damian. Exact and approximation algorithms for
computing optimal fat decompositions. Computational
Geometry, 28(1):19–27, 2004.

[2] M. Damian and S. V. Pemmaraju. Computing opti-
mal diameter-bounded polygon partitions. Algorithmica,
40(1):1–14, 2004.

[3] E. Demaine and J. O’Rourke. Open problems from
CCCG 2002. In Proceedings of the 15th Canadian
Conference on Computational Geometry, pages 178–181,
2003.

[4] M. J. Katz. 3-d vertical ray shooting and 2-d point enclo-
sure, range searching, and arc shooting amidst convex fat
objects. Computational Geometry, 8(6):299–316, 1997.

[5] J. M. Keil. Polygon decomposition. Handbook of compu-
tational geometry, 2:491–518, 2000.

[6] L. Selbach, T. Kowalski, K. Gerwert, M. Buchin,
and A. Mosig. Shape Decomposition Algorithms for
Laser Capture Microdissection. In 20th International
Workshop on Algorithms in Bioinformatics, volume
172 of Leibniz International Proceedings in Informatics
(LIPIcs), pages 13:1–13:17, 2020.

[7] C. Worman. Decomposing polygons into diameter
bounded components. In Proceedings of the 15th Cana-
dian Conference on Computational Geometry, pages
103–106, 2003.

184

CCCG 2021, Halifax, Canada, August 10–12, 2021

Convex Bichromatic Quadrangulation of Point Sets
with Minimum Color Flips∗

Allan Sapucaia† Andre A. Cire‡ Pedro J. de Rezende§ Cid C. de Souza¶

Abstract

In this paper, we investigate an NP-hard optimization
variant of the well-known convex quadrangulation prob-
lem. Given a point set P and a bicoloring C, we wish
to find an alternative bicoloring C ′ that is (a) closest
to C with respect to their symmetric difference, and
(b) such that P admits a bichromatic convex quadran-
gulation under the new coloring C ′, i.e., a partition of
the convex hull of P into convex quadrangles where the
endpoints of each edge have distinct colors in C ′. Thus,
the resulting problem combines, and provides solution
insights to, two decision problems from the literature:
whether P has a convex quadrangulation, and whether
P admits a bichromatic convex quadrangulation under
the original coloring C.

Due to our optimization perspective, we present two
mathematical programming approaches to address the
problem. The first is an extension of the standard inte-
ger linear model for the quadrangulation problem, and
the second is a novel set-partition formulation that enu-
merates colored convex quadrangles. We also derive new
heuristics that exploit the models’ linear programming
relaxations, drawing connections to existing matching
approaches used for quadrangulation problems in the
literature. We present an empirical study assessing the
effectiveness of the models for both exact and heuristic
approaches, along with comparisons between the heuris-
tics. The benchmark used to evaluate the performance
of the models and heuristics is also made publicly avail-
able.

1 Introduction

A quadrangulation of a set P ⊂ R2 with n points is
a partition of its convex hull, denoted by CH(P), into

∗This work was supported in part by grants from: Brazilian
National Council for Scientific and Technological Development
(CNPq) #313329/2020-6, #309627/2017-6, #306454/2018-1;
São Paulo Research Foundation (Fapesp) #2018
/26434-0, #2018/14883-5, #2014/12236-1.

†Institute of Computing, University of Campinas, Campinas,
Brazil allansapucaia@gmail.com

‡Department of Management, University of Toronto Scarbor-
ough, andre.cire@utoronto.ca

§Institute of Computing, University of Campinas, Campinas,
Brazil rezende@ic.unicamp.br

¶Institute of Computing, University of Campinas, Campinas,
Brazil cid@ic.unicamp.br

interior disjoint quadrangles whose vertices belong to
P and are empty, which means that no points of P lie
in their interior. We say that P is quadrangulable if it
admits a quadrangulation. A necessary condition for a
point set P to be quadrangulable is that CH(P) has an
even number of vertices [3].

One of the most studied problems in computational
geometry, both in theory and in practice, is the Trian-
gulation Problem, i.e., how to partition the convex hull
of a point set into interior disjoint triangles. The study
of quadrangulations follows naturally because it allows
for the decomposition to use half as many partitions.

A quadrangulation is said to be convex if its quadran-
gles are convex. The Convex Quadrangulation of Point
Sets Problem (cqps) decides whether a point set admits
a convex quadrangulation, which is a required property
in many practical applications [13]. The question of
its complexity, however, is still open. As there are no
known polynomial algorithms for this problem, applica-
tions often relax the quadrangulation requirement and
strive for including as many quadrangles as possible, ei-
ther allowing some triangles [1, 9] or employing Steiner
points to achieve a quadrangulation [6, 10]. An exact
algorithm for an optimization version of the problem
was proposed in [5], with complexity O(n3h+1), where
h is the number nested convex hulls of P .

A coloring of a point set P is a partition of its points
into disjoint subsets. Each of these subsets is referred
to as a color. A bicoloration C = (R,B) of a point set
P is a coloring of P into exactly two colors R and B.
We say that a point p ∈ P is colored red, with respect
to (w.r.t.) C = (R,B) if p ∈ R. Similarly, if p ∈ B, p is
said to be colored blue. A point set P together with a
bicoloration C = (R,B) defines a bichromatic point set,
denoted P |C.

Given a bichromatic point set P |C, a quadrangle with
vertices in P is said to be bichromatic if all its edges
have endpoints of different colors. A quadrangulation
of a point set P is said to be bichromatic w.r.t. a
bicoloration C if all its quadrangles are bichromatic.
In the Convex Quadrangulation of Bichromatic Point
Sets Problem (cqbps), we decide whether a bichromatic
point set admits a bichromatic quadrangulation. This
problem was proposed in [8], where it was proved to be
NP-hard.

All colorings are to be understood as bicolorations

185

33rd Canadian Conference on Computational Geometry, 2021

henceforth. A flip of a point p ∈ P w.r.t. a coloring C
corresponds to changing its color. The flip distance be-
tween two colorings C and C ′ is the number of flips nec-
essary to make them equal and is denoted by F (C,C ′).
The flip distance between C = (R,B) and C ′ = (R′, B′)
is given by F (C,C ′) = R∆R′ = B∆B′ = F (C ′, C),
where ∆ denotes the symmetric difference. Two color-
ings of P are opposite if their flip distance is n = |P |.
It is easy to see that a quadrangulation of a point set P
induces two opposite colorings of P .
Problem Statement. In the Convex Bichromatic
Quadrangulation of Point Sets with Minimum Color
Flips Problem (cqbpsmf), given a point set P and a
coloring C, we want to find a coloring C ′ of P , if it
exists, with minimum flip distance from C such that
P admits a bichromatic convex quadrangulation with
respect to C ′.

Unlike the previously introduced quadrangulation
problems, the cqbpsmf is an optimization problem and
can have three possible answers. Either P does not ad-
mit any convex quadrangulation and the sought after
coloring C ′ of P does not exist; or P admits a bichro-
matic convex quadrangulation w.r.t. C, i.e., C ′ = C; or
C ′ exists and F (C,C ′) > 0, meaning that P admits con-
vex quadrangulations but no bichromatic convex quad-
rangulation w.r.t. C. It follows that the cqbpsmf is
also NP-hard from the hardness proof of the cqbps [8].

Our Contributions. In this paper, we introduce a
new optimization NP-hard variant of the quadrangula-
tion problem and present two Integer Linear Program
models to solve it. We also propose several heuristics
that build upon such exact models. These heuristics are
compared with the matching approach for other quad-
rangulation problems from the literature. A comprehen-
sive empirical study assessing the models for both exact
and heuristic approaches is reported, as well as compar-
isons between the heuristics. To allow for future com-
parisons to our results, the complete benchmark used
to appraise the performance of the algorithms is made
publicly available.

The work is organized as follows. Section 2 presents
an Integer Linear Programming (ILP) model for the
cqbpsmf, while Section 3 introduces a set-partition
based formulation. Section 4 studies heuristics based on
the previously introduced models. An empirical study
of the exact and heuristic methods is shown in Section 5,
and Section 6 presents our conclusions.

2 Integer Linear Programming Model

In this section, we introduce a formulation (model) for
the the cqbpsmf. This is done by starting from a stan-
dard set-partition formulation for the quadrangulation
problem and adding constraints and variables to assign
colors and count flips. We begin by defining important

ILP concepts and notations.

A linear relaxation of an ILP model is obtained by
dropping the integrality requirement of its variables. In
the case of binary variables, instead of assuming values
in the set {0,1}, relaxed variables assume values in the
interval [0,1]. In this text, we will refer to the linear
relaxation simply as relaxation.

Relaxations are a major component of the most popu-
lar algorithm for solving ILP models, known as Branch-
and-Bound. In a Branch-and-Bound algorithm, the set
of solutions of a model is searched in a rooted tree-like
form. At each node, a linear relaxation is solved obtain-
ing an optimal solution x∗. If the relaxation has a worse
objective function value than the best known integral
solution or is infeasible, nothing is done. If there are
any variables assuming a fractional value, one of them,
say x∗i , is selected for branching leading to two sub-
problems, one with the additional constraints xi ≤ bx∗i c
and the other with additional constraints xi ≥ dx∗i e.
Starting from a root node consisting of the relaxation
of the original model with no additional constraints, the
algorithm proceeds until there are no nodes left for pro-
cessing. Additional heuristics are run at each node with
the goal of finding improved integral solutions, which
results in fewer nodes having to be explored.

A set-partition constraint is of the form
∑

x∈X x = 1,
where X is a set of binary variables. A set-partition
formulation is a formulation comprised exclusively of
set-partition constraints.

Modern ILP solvers are equipped with different
heuristics, preprocessing techniques, and methods to de-
rive additional constraints that reduce solving times of
many formulations, such as the ones investigated here.

Given a set P of n points, let L(P) denote the set
of Θ(n2) line segments jk, where j and k are distinct
points in P . The complete (geometric) graph induced
by P is G(P) = (P,E(P)), where E(P) = {{j, k} :
jk ∈ L(P)}. We refer to a segment jk ∈ L(P) and
the corresponding edge {j, k} ∈ E(P) interchangeably.
An edge {j, k} ∈ E(P) is said to be bichromatic with
respect to a coloring C = (R,B) of P if its endpoints
have different colors, i.e., 1 = |{j, k}∩R| = |{j, k}∩B|.

Let A(P) denote the set of bounded faces of the pla-
nar arrangement induced by L(P), and Q(P) denote
the set of O(n4) empty convex quadrangles with end-
points in P . We say that a quadrangle q ∈ Q covers a
face f ∈ A(P), denoted by f ⊂ q, if the interior of f is
contained in the interior of q.

We associate a binary variable ri to each point i ∈ P ,
such that point i is assigned the color red if, and only
if, ri = 1. To each edge e ∈ E(P), we associate a binary
variable xe so that e is an edge of the quadrangulation
if, and only if, xe = 1. Finally, to each quadrangle
q ∈ Q(P), we associate a binary variable uq that takes
value 1 if, and only if, q is part of the quadrangulation.

186

CCCG 2021, Halifax, Canada, August 10–12, 2021

This allows us to express our Model (1) as follows.

min
∑

i∈B
ri +

∑

i∈R
(1− ri) (1a)

s.t. xij + ri + rj ≤ 2 ∀{i, j}∈E(P) (1b)

xij ≤ ri + rj ∀{i, j} ∈ E(P) (1c)
∑

q∈Q(P):f⊆q

uq = 1 ∀f ∈ A(P) (1d)

∑

q∈Q(P):{i,j}∈q
uq = 2xij ∀{i, j}∈E(P)\CH(P) (1e)

∑

q∈Q(P):{i,j}∈q
uq = xij ∀{i, j} ∈ CH(P) (1f)

ri ∈ {0, 1} ∀i ∈ P (1g)

uq ∈ {0, 1} ∀q ∈ Q(P) (1h)

xij ∈ {0, 1} ∀{i, j} ∈ E(P) (1i)

Constraints (1b) and (1c) ensure that an edge can
only be selected if its endpoints have different colors.
Constraints (1d) enforce the partitioning of CH(P) into
empty convex quadrangles. Finally, Constraints (1e)
and (1f) links edges and quadrangles.

In [11], we showed that for problems where the convex
hull of a point set P has to be partitioned into polygons
with endpoints in P , only O(n2) faces of A(P) need
to be considered (as in Constraints (1d)). This will be
discussed in detail in the next section.

Constraints (1d), together with quadrangle variables,
define a standard set-partition formulation, with a
known strong linear relaxation [7]. A similar formu-
lation was used to solve the Minimum Convex partition
Problem [11]. Formulations for the cqps and cqbps
can be trivially obtained from them.

On the other hand, Constraints (1b) and (1c), to-
gether with the edge and color variables, correspond to
a formulation for the classical MaxCut problem with
positive weights [4]. In the MaxCut problem, the goal
is to find a bi-partition of the graph (in our case each
part corresponds to a color) such that the total weight
of the edges between both parts is maximized. This
formulation only works for positive weights, as we are
allowed to not select an edge even if its endpoints are
in different parts. Notably, this MaxCut formulation
is known for its weak linear relaxation. We will show
in Section 5 that the linear relaxation of Model (1) be-
haves poorly as the size of instances grows, resulting in
the total solving times increasing very quickly.

3 Pure Set-Partition Formulation

In the previous section, we presented a model for the
cqbpsmf and discussed that it is not a strong one due to
a subset of its constraints that define a weak formulation
for the MaxCut problem.

In this section, we introduce a new model that con-
sists entirely of set-partition constraints, which are
known to lead to a strong linear relaxation. To this end,

Figure 1: Illustration of the arrangement induced by
L(P) for the set P of points indicated by the larger
disks. The smaller disks show vertices of the arrange-
ment that are crossings of line segments. Faces of the
arrangement that are not i-wedges are colored red.

we introduce colored quadrangles and explore properties
of the set partition constraints (1d).

First, notice that each quadrangle in Q(P) can be
colored in only two ways such that its edges are bichro-
matic. Let us denote the set of all colored empty convex
quadrangles of P by Qc(P).

As proved in [11], to reach a partition of CH(P), we
are only required to use Constraints (1d) for faces of
A(P) with at least one vertex in P . The faces with
i ∈ P as one of their vertices are called i-wedges and
we say that i is an anchor of these i-wedges. Note that
faces may have multiple anchors. We denote the set
of anchors of an i-wedge f by ANC(f). Finally, let us
denote by W the set of i-wedges for all i ∈ P .

Given an i-wedge f ∈ W and an anchor i ∈ ANC(f),
we can split the colored quadrangles that cover f into
two sets based on the color assigned to i in their col-
oration. We denote by Rf

i and Bf
i the sets of colored

quadrangles that cover f where point i is colored red
and blue, respectively. Figure 1 illustrate an arrange-
ment and its i-wedges.

We write Constraints (1d) for the i-wedges inW con-
sidering the set of colored convex quadrangles as

∑

q∈QC :f⊂q
uq = 1,∀f ∈ W.

The summation on the left-hand side can be split
based on the color assignments to the anchors of f , lead-
ing to

∑

q∈Rf
i

uq +
∑

q∈Bf
i

uq = 1,∀f ∈ W,∀i ∈ ANC(f)

However, in any integral solution, there is only one
colored polygon covering each face f and, for all anchors
i ∈ ANC(f), it must be from Rf

i when ri = 1, and from

Bf
i , otherwise. This allows us to split these constraints,

leading to the following model.

187

33rd Canadian Conference on Computational Geometry, 2021

min
∑

i∈B
ri +

∑

i∈R
(1− ri) (2a)

s.t.
∑

q∈Rf
i

uq = ri, ∀f ∈ W, ∀i ∈ ANC(f) (2b)

∑

q∈Bf
i

uq = 1− ri, ∀f ∈ W, ∀i ∈ ANC(f) (2c)

ri ∈ {0, 1} ∀i ∈ P (2d)

uq ∈ {0, 1} ∀q ∈ Q(P) (2e)

For better visualization of the model as a pure set-
partition formulation and to better interpret its con-
straints, an equivalent model can be obtained by adding
binary variables bi for all i ∈ P such that bi = 1 − ri,
allowing us to rewrite the model as follows.

min
∑

i∈B
ri +

∑

i∈R
bi (3a)

s.t. ri + bi = 1 ∀i ∈ P (3b)
∑

q∈Rf
i

uq + bi = 1, ∀f ∈W, ∀i ∈ ANC(f) (3c)

∑

q∈Bf
i

uq + ri = 1, ∀f ∈W, ∀i ∈ ANC(f) (3d)

ri ∈ {0, 1} ∀i ∈ P (3e)

bi ∈ {0, 1} ∀i ∈ P (3f)

uq ∈ {0, 1} ∀q ∈ Q(P) (3g)

Constraints (3c) ensure that either point i is assigned
the color blue or there is exactly one colored quadrangle
covering the i-wedge f where i is colored red. A similar
interpretation can be given to (3d) by exchanging the
colors. Constraints (3b) where added to ensure that a
single color is assigned to each point.

This model performs significantly better in practice
than the one introduced in the previous section, as we
will show in Section 5.

4 Linear Relaxation Based Heuristics

In this section, we propose a heuristic framework for the
cqbpsmf, based on the strength of the Model (2).

Our heuristics work in three steps. First, we solve the
relaxation of Model (2), obtaining a solution u∗. Based
on u∗, a set of colored quadrangles Sc ⊂ Qc is con-
structed. Finally, we solve Model (2) restricted to the
colored quadrangles in Sc. Notice that if the relaxation
is infeasible, so is the restricted problem.

This is motivated by the global view that an linear
programming relaxation provides, as opposed to merely
local properties provided by, for instance, projected De-
launay Tetrahedralizations [13]. Thus, even when frac-
tional, the values assigned to variables are still within

the constraints of the model, and might give a good
guidance for heuristic decisions.

An advantage of relaxation-based heuristics is the
possibility of integrating them with a Branch-and-
Bound algorithm. This is possible since a solution to
the linear relaxation is always available. In particular,
modern solvers are capable of finding good set-partition
solutions using their own internal heuristics. However,
if new constraints and variables are added with the goal
of strengthening the model, the solver might face dif-
ficulties in finding good solutions. With this in mind,
even if the relaxation takes a considerable amount time
to be solved, having a fast relaxation-based algorithm
can significantly speedup the solution to an ILP model.

The choice of colored quadrangles in Sc plays an im-
portant role for the success of the heuristic. In par-
ticular, a poor choice of quadrangles might lead to an
infeasible model. Conversely, if too many quadrangles
are included, the problem may become as hard as the
unrestricted version. We propose three different ways
to construct Sc: one is based on quadrangles, one relies
on edges and another is grounded on triangulations.

4.1 Quadrangulation-based

A trivial way to construct Sc, given a solution u∗ to its
relaxation, is to include all quadrangles whose variables
have positive value in the relaxation, i.e., Sc = {q :
u∗q > 0}. However, this choice fails to lead to feasible
solutions for many instances.

This approach works best when there are ways to en-
sure feasibility by adding a specific set of variables to
the ILP model, or when good procedures to repair fea-
sibility are known.

4.2 Edge-based

As an attempt to increase the number of feasible so-
lutions found, one might expand the quadrangles se-
lected. In our case, we can explore a neighborhood of
the polygons whose values are positive in the relaxation.
One way to achieve this is to project the values of poly-
gon variables onto edges, similarly to how it is done in
Model (1).

For Model (2), the projected value of an edge e can
be obtained, based on Constraint (1f) and (1e), as∑

ut:e∈t
uq

2 . This encourages us to include all poly-
gons whose edges have positive projected values, i.e.,
Sc = {q :

∑
ut:e∈t uq > 0,∀e ∈ q}. Indeed, this ap-

proach results in a higher number of feasible solutions
being found. However, the growth in the number of
quadrangles substantially increases solving times, lead-
ing to a heuristic that does not scale well with the size
of the set of points.

188

CCCG 2021, Halifax, Canada, August 10–12, 2021

4.3 Triangulation-based

Lastly, we propose a third approach based on triangula-
tions that tries to combine the benefits of the previous
heuristics. This insight comes from the fact that most of
the heuristics for the cqps are based on triangulations.

We begin with a greedy triangulation based on the
value of the relaxation projected onto the edges and find
quadrangles supported by those edges. Actually, when
starting from a triangulation, the ILP model is not even
necessary for solving the resulting restricted model, as
it becomes equivalent to finding a matching of adjacent
triangles, a standard approach used in the literature for
quadrangulation problems [3, 9].

Let xe =
∑

ut:e∈t u
∗
q denote the projected value of

edge e ∈ E(P). A greedy triangulation can be con-
structed by sorting the edges of E(P) by their projected
values in descending order and attempting to add them,
in that order, to an initially empty partial triangulation.
An edge is successfully added if it does not cross any
previously inserted edge, otherwise, it is rejected. The
result is a greedy triangulation.

An edge of a triangulation admits an edge-flip if the
two triangles adjacent to it can be merged to form a
convex quadrangle – one of whose diagonals is the given
edge. Its edge-flip is the other diagonal of this convex
quadrangle.

If T denotes the set of all edges of a given (say, greedy)
triangulation T and F denotes the set of edge-flips of
T , we can identify the set of the aforementioned quad-
rangles as Sc = {q : e ∈ T ∪ F,∀e ∈ q}.

4.4 Matchings and Edge-Flips

In the literature on the cqps, to the best of our knowl-
edge, there are no prior attempts at edge-flips. Most of
the work based on triangle matching is either focused
on specific triangulations, such as Delaunay and Ser-
pentine [2], or includes randomized components. The
larger angles on a Delaunay triangulation lead to more
pairs of triangles that can be matched. The Serpentine
quadrangulation, in turn, admits a perfect match if con-
vexity is not required, provided that the convex hull of
the point set has an even number of points.

We recall that a matching takes place on a subgraph
H = (∆, D) of the dual graph of a triangulation T ,
where each vertex in ∆ corresponds to a triangle, and
the edges1 in D are those that connect pairs of vertices
that represent two triangles that share a side thereby
forming a convex quadrangle. A partial quadrangula-
tion can be constructed by finding a matching M on
the graph H. However, this approach usually leaves
unmatched vertices of ∆, i.e., triangles of T .

1The term edge is used in this text to refer to line segments be-
tween points, in a geometric context, and as arcs between vertices,
in the context of a graph.

Geometrically speaking, to exchange an edge e of T
for its edge-flip e⊥ can be seen as an operation that lo-
cally modifies T creating a new triangulation T ′. Let
H ′ be the subgraph of the dual graph of T ′ constructed
in a fashion analogous to the description of the pre-
vious paragraph. On H ′, most of the matching M is
preserved. However, by searching for augmenting paths
for M on H ′, we may still be able to further reduce the
number of unmatched triangles. This can be thought of
as a local search procedure.

In this context, solving an ILP restricted to the quad-
rangles obtained from both the edges of a triangulation
and their edge-flips is an attempt at globally navigating
a neighborhood (by edge-flips) of a given triangulation.

As we show in the next section, the resulting ILP can
easily be solved by modern solvers and this approach
can straightforwardly be adapted for the cqps.

5 Experiments

In this section, we compare the solving time and
strength of the relaxation of our two exact models. We
also show how our heuristics behave in practice.

To do this, we generated a benchmark comprised of
two sets of instances, ranging in size from 40 to 120
points, in steps of 10. We were able to determine quite
fast which point sets were not quadrangulable and col-
lected them in the first set of instances. More on this,
below. The feasible ones were gathered in the second
set, since these are, obviously, the challenging instances.
In both cases, 20 point sets of each size are generated by
sampling points uniformly on the [0, 1] × [0, 1] square.
Next, each point set is assigned three random colorings,
also chosen uniformly. This results in 60 instances per
size in each set of instances. All these instances and
their respective solutions are available at [12].

All experiments were run on a computer featuring an
Intel Xeon Silver 4114 at 2.2Ghz CPU with 10 cores, and
32GB of RAM, running Ubuntu 16.04. Models and al-
gorithms were implemented in C++ v.11 and compiled
with gcc 5.5. Geometric algorithms and data structures
were implemented using CGAL 5.2 [14], and Gmpq for
exact number representation. The ILP models and re-
laxations were coded using CPLEX 12.10 with the de-
fault parameters. A time limit of 30 minutes was set for
each CPLEX run.

Throughout this section, data will be presented
mostly as standard boxplots2. Averages will be ex-
pressed in the form avg± std, where avg is the aver-
age and std is the standard deviation. All data used to
generate the plots are accessible at [12].

In the first experiment, we compared Model (1),
which we call Natural Model, and Model (2), referred
to as Set-partition Model.

2See: https://en.wikipedia.org/wiki/Box plot.

189

33rd Canadian Conference on Computational Geometry, 2021

Firstly, deciding that a point set with at most 120
points does not admit a quadrangulation was accom-
plished within 20 seconds using either model since the
solver was able to prove infeasibility during preprocess-
ing. This turned out to be an efficient way to separate
our two sets of instances. As this is quite swift com-
pared to optimizing (color) flips in a feasible solution,
the remaining of this section will be restricted to the set
of feasible instances.

To shed light on the ILP models being solved and on
the intricacies our benchmark, Table 1 shows the av-
erage number of empty convex quadrangles, number of
i-wedges and faces in the arrangement. For the sake
of simplifying the implementation, i-wedges were con-
sidered with multiplicities (for each anchor), leading to
exactly n(n− 1) i-wedges, which CPLEX can easily re-
move as duplicated rows. We confirmed that restricting
our model to the i-wedges reduced the number of con-
straints drastically.

We say that the optimal value of a relaxation is tight
if its ceiling (in the case of a minimization problem)
is equal to the optimal integral value. Table 2 shows
how many instances each model was capable to solve
per size within our specified time limit. No number
is shown when at least 30% of the instances failed to
be solved. The last two rows show for how many in-
stances the relaxation produced a tight bound. Fig-
ures 2 and 3 show, for the instances that were solved,
the total solving time, grouped by instance size for the
Natural and Set-partition models, respectively. We
can see that the Set-partition model was much faster.
While the Natural model began to founder for in-
stances of just 70 points, the Set-partition model
only failed to solve instances of 110 or more points. As
discussed in Section 3, this difference in performance
is mostly attributed to the stronger relaxation of the
Set-partition Model.

40 50 60 70 80
size

0
200
400
600
800

1000
1200
1400
1600
1800

to
ta

l t
im

e(
s)

Figure 2: Solving time per instance size for the Natu-
ral Model.

If we denote the value of an optimal solution for an
instance by OPT and the value of an optimal solution

40 50 60 70 80 90 100 110 120
size

0
200
400
600
800

1000
1200
1400
1600
1800

to
ta

l t
im

e(
s)

Figure 3: Solving time per instance size for the Set-
partition Model.

of the linear relaxation of a given model for the same in-
stance by RLX, the relative duality gap can be defined
as OPT−RLX

RLX . The relative gap for the Natural and
Set-partition models in shown in Figures 4 and 5, re-
spectively. As can be seen, while the relative duality
gap of the Set-partition model shows very little vari-
ation as the size of instances increases, staying within
0.2, the relative duality gap of the Natural model sur-
passes 0.4 for much smaller instances. The number of
tight relaxations shown in Table 2 corroborates with the
observation that the Set-partition model provides a
much stronger relaxation.

40 50 60 70 80
size

0.0

0.1

0.2

0.3

0.4

0.5

re
la

tiv
e

ga
p

Figure 4: Relative duality gap per instance size for the
Natural Model.

The quality of the relaxation is a key element when
solving ILP models. Poor relaxations result in a larger
number of nodes being explored in the search tree and
more difficulty in finding good integral solutions.

The support of a solution of a linear program is the
set of variables assigned positive values. Next, we dis-
cuss the support of the optimal solutions for both the
Natural and the Set-partition model.

Tables 3 and 4 show the average distribution of (pro-
jected) edge values in the optimal solutions found for
the Natural and the Set-partition models, as well

190

CCCG 2021, Halifax, Canada, August 10–12, 2021

Table 1: Analysis of the instances in the quadrangulable benchmark, averaged for each instance size, where ‘# quads’
indicate the number of empty convex quadrangles, ‘# i-wedges’ the number of i-wedges and ‘# faces’ the number of
faces of the arrangement.

40 50 60 70 80 90 100 110 120
quads 3455± 323 5659± 474 8671± 731 12329± 1023 16790± 980 21546± 640 27493± 1303 33675± 1127 41359± 1284

i-wedges 1560 2450 3540 4830 6320 8010 9900 11990 14280
faces 64381± 1809 161467± 5184 338360± 11217 636033± 13104 1097777± 25193 1760375± 41057 2717477± 48764 4006901± 58169 5726520± 86319

Table 2: Number of solved instances and of tight relaxations for the Natural and Set-partition Model per size.
40 50 60 70 80 90 100 110 120

solved Natural 60 60 60 57 39 - - - -
solved Set-partition 60 60 60 60 60 60 60 51 32

tight Natural 32 14 9 9 3 - - - -
tight Set-partition 54 58 47 52 44 41 35 24 26

40 50 60 70 80 90 100 110 120
size

0.0

0.1

0.2

0.3

0.4

0.5

re
la

tiv
e

ga
p

Figure 5: Relative duality gap per instance size for the
Set-partition Model.

as the size of the corresponding support. For the pur-
pose of deriving good heuristics, solutions of the re-
laxation must have a large number of variables with
high values (in the [0, 1] range), as they are more likely
to appear in an integral solution. In this case, while
most of the edge variables of the Natural model have
value less than 0.1, the projected edge value of the Set-
partition model presented a much better distribution
and are much more informative. As a consequence, we
confine the analysis of our heuristic to the relaxation of
the Set-partition model.

Even though the quality of the relaxation of the Set-
partition model is significantly higher, it suffers from
one of the major drawback of set-partition models: slow
convergence. This is exacerbated as the model grows
with instance size.

Total solving time for the relaxation of the Set-
partition Model is shown in Figure 6. Comparing the
solving time of the relaxation with the median solving
time of the exact model, we can see that solving the
linear relaxation is a significant bottleneck.

Lastly, we show how the proposed heuristics perform
on the benchmark. As small instances were too easy to
solve, the experiments with the heuristics are limited to

40 50 60 70 80 90 100 110 120
size

0
200
400
600
800

1000
1200
1400
1600
1800

to
ta

l t
im

e(
s)

Figure 6: Solving time per instance size for the relax-
ation of the Set-partition Model. Green stars indi-
cate the median solving time for the exact model.

instances with at least 70 points.

We denote our quadrangle-based heuristic quad, our
edge-based heuristic edge and our heuristic based on
the greedy triangulation greedytri. We also include the
Delaunay triangulation as an alternative to the greedy
triangulation, denoted by Delaunay, for a baseline com-
parison. For each heuristic that relies on triangulations,
we append the suffix -flips to indicate an alternative
when edge-flips were added.

Table 5 shows the average number of quadrangles se-
lected by each heuristic. As can be seen, all heuristics
use only a small fraction of the total number of quadran-
gles. Notably, for small instances, where the relaxation
performed well, the edge-based heuristic starts with a
small number of quadrangles, but it rapidly increases.
As expected, the Delaunay triangulation admits a larger
number of empty convex quadrangles when compared to
the greedy triangulation.

Table 6 shows how many feasible solutions each
heuristic found. The quad heuristic only found solutions
where the relaxation itself had already produced an in-
tegral one. Both triangulation-based heuristics had a
hard time finding quadrangulations without edge-flips.

191

33rd Canadian Conference on Computational Geometry, 2021

Table 3: Description of the support of optimal linear relaxations found by the Natural Model as a function of
instance size. The first ten lines indicate the percentage of edge values within the given interval. The last two lines
show the number of edge variables in the support and the total number of edges.

40 50 60 70 80
% in (0.0,0.1] 30± 12 40± 13 46± 12 57± 6 60± 6
% in (0.1,0.2] 16± 8 17± 7 17± 6 16± 5 16± 5
% in (0.2,0.3] 10± 5 10± 5 9± 3 7± 3 7± 2
% in (0.3,0.4] 7± 4 6± 3 6± 2 5± 2 4± 1
% in (0.4,0.5] 5± 4 4± 2 4± 3 3± 1 3± 1
% in (0.5,0.6] 3± 2 3± 2 3± 1 2± 1 2± 1
% in (0.6,0.7] 3± 2 3± 1 2± 1 2± 1 2± 1
% in (0.7,0.8] 2± 2 2± 2 2± 1 2± 1 1± 1
% in (0.8,0.9] 2± 2 2± 2 2± 1 2± 1 1± 1
% in (0.9,1.0] 21± 27 13± 19 9± 13 5± 3 4± 2
Support size 215± 55 342± 74 482± 96 699± 78 913± 107

edges 780 1225 1770 2415 3160

Table 4: Description of the support of optimal linear relaxations found by the Set-partition Model as a function
of instance size. The first ten lines indicate the percentage of projected edge values within the given interval. The
last two lines show the number of projected edges variables in the support and the total number of edges.

40 50 60 70 80 90 100 110 120
% in (0.0,0.1] 1± 3 3± 7 4± 9 8± 12 14± 15 14± 15 23± 17 27± 16 32± 15
% in (0.1,0.2] 3± 8 7± 12 7± 10 9± 12 10± 9 13± 12 16± 9 15± 9 17± 7
% in (0.2,0.3] 4± 10 7± 12 6± 10 5± 7 9± 9 9± 9 9± 6 11± 7 11± 5
% in (0.3,0.4] 4± 10 7± 12 9± 15 7± 10 9± 12 8± 10 7± 6 10± 9 7± 3
% in (0.4,0.5] 17± 24 8± 14 13± 19 11± 15 11± 14 9± 12 10± 11 9± 11 7± 9
% in (0.5,0.6] 1± 4 2± 4 2± 4 3± 4 3± 4 3± 3 4± 3 4± 2 3± 2
% in (0.6,0.7] 2± 6 4± 8 4± 7 3± 6 4± 6 4± 5 4± 3 4± 4 4± 2
% in (0.7,0.8] 2± 4 3± 6 2± 3 2± 3 2± 3 3± 4 3± 3 3± 2 4± 3
% in (0.8,0.9] 0± 1 1± 1 1± 2 2± 3 1± 2 2± 3 3± 3 3± 2 3± 2
% in (0.9,1.0] 67± 35 57± 37 52± 37 49± 36 36± 34 35± 35 22± 22 16± 18 13± 11
Support size 96± 31 142± 54 185± 74 234± 101 330± 138 380± 161 513± 182 628± 197 757± 218

edges 780 1225 1770 2415 3160 4005 4950 5995 7140

Table 5: Number of quadrangles in each heuristic, and the number of quadrangles in an unrestricted model per
instance size.

70 80 90 100 110 120
Delaunay 137± 4 158± 5 182± 5 202± 6 227± 7 247± 6
Delaunay-flips 538± 19 628± 16 719± 15 815± 23 919± 21 1000± 23
quad 163± 106 252± 148 293± 173 423± 203 499± 208 637± 243
greedytri 113± 10 135± 12 154± 14 177± 13 197± 12 217± 12
greedytri-flips 376± 40 448± 48 519± 52 601± 52 676± 50 743± 53
edges 293± 288 502± 419 597± 514 951± 647 1122± 687 1565± 889
unrestricted 12329± 1023 16790± 980 21546± 640 27493± 1303 33675± 1127 41359± 1284

The greedytri heuristic was the only one competitive
with the edge-based one.

The solving time for each heuristic is shown in Ta-
ble 7. We can see that the time just to solve the re-
laxation is more than 200 times larger than the specific
solving time of each of the heuristics.

One way to take advantage of this discrepancy in solv-
ing times is to add randomization to the heuristics. For

instance, one might consider adding perturbations to
the weights before running the greedy triangulation.
Another approach is to run the heuristic before the
relaxation is solved optimally. With the exception of
the edge-based one, all other heuristics performed fast
enough to be executed multiple times during the solu-
tion of the relaxation of a node in a Branch-and-Bound
algorithm. Alternative methods to solve the linear re-

192

CCCG 2021, Halifax, Canada, August 10–12, 2021

Table 6: Number of feasible solutions found by each heuristic (out of 60).
70 80 90 100 110 120

Delaunay 0 0 0 0 0 0
Delaunay-flips 3 3 0 0 2 0
quad 17 10 10 1 2 1
greedytri 19 10 11 1 2 0
greedytri-flips 51 44 51 48 42 37
edges 52 55 52 53 46 48

Table 7: Solving time (in seconds) for each heuristic by instance size. For the ones based on the relaxation, (+)
indicates that the average time spend solving the relaxation is shown separately.

70 80 90 100 110 120
Delaunay 0.07± 0.00 0.09± 0.00 0.10± 0.00 0.12± 0.00 0.14± 0.01 0.16± 0.01
Delaunay-flips 0.11± 0.04 0.13± 0.04 0.15± 0.01 0.18± 0.01 0.22± 0.04 0.25± 0.01
quad (+) 0.08± 0.04 0.13± 0.05 0.15± 0.06 0.22± 0.08 0.27± 0.09 0.37± 0.14
greedytri (+) 0.08± 0.01 0.09± 0.01 0.10± 0.01 0.12± 0.01 0.14± 0.01 0.17± 0.01
greedytri-flips (+) 0.17± 0.04 0.20± 0.05 0.25± 0.05 0.31± 0.08 0.35± 0.10 0.39± 0.11
edges (+) 0.25± 0.35 0.51± 0.61 0.63± 0.78 1.31± 1.62 1.46± 1.52 3.12± 3.80
(+) relax time 24.02± 2.36 57.35± 5.61 105.90± 9.53 197.42± 24.73 363.48± 140.25 610.19± 128.95

Table 8: Relative primal gap for each heuristic per instance size. Heuristics that did not find solutions when the
relaxation was not integral are indicated by *.

70 80 90 100 110 120
Delaunay - - - - - -
Delaunay-flips 0.74± 0.17 0.57± 0.10 - - - -
quad * * * * * *
greedytri * * 0.03± 0.11 * * -
greedytri-flips 0.12± 0.15 0.21± 0.23 0.22± 0.24 0.26± 0.17 0.33± 0.21 0.30± 0.20
edges 0.02± 0.06 0.02± 0.04 0.01± 0.03 0.02± 0.07 0.03± 0.07 0.01± 0.02

laxation approximately are also worth of consideration.
Let HEU be the number of (color) flips in a solution

computed by a heuristic for a given instance and recall
that OPT denotes the optimal number of flips for that
instance. The relative primal gap is given by HEU−OPT

OPT ,
similarly to the relative duality gap.

Table 8 shows the relative primal gap for all the
heuristics. Even though the heuristic based on the
greedy triangulation with edge-flips proved competitive,
yielding non-trivial solutions for all instances, it is clear
that the edge-based one was superior in finding solutions
of the highest quality.

6 Concluding Remarks

In this paper, we introduced and studied a new opti-
mization variant of the quadrangulation problem. This
study focused on providing exact ILP models and
heuristics derived from their linear relaxations. Both
approaches provide insight into two quadrangulation de-
cision problems from the literature.

We proposed two ILP models to solve this novel prob-
lem: one that arises naturally from a model for the

more general convex partitioning problem and another
that is obtained from formulating the problem as a set-
partition problem.

While the natural model failed to solve instances with
70 points within 30 minutes of computing time, the set-
partition model was successful in solving all instances of
up to 100 points. This is due to a much stronger linear
relaxation obtained from the set-partition formulation.

We also proposed several heuristics based on the lin-
ear relaxation of the set-partition model. These heuris-
tics use a solution to the linear relaxation of the set-
partition model as a guide to select only a subset of
all quadrangles and, subsequently, solve much smaller
instances of the set-partition model restricted to them.

Among these heuristics, our edge-based one shows su-
perior performance in finding many good quality feasi-
ble solutions. On average, it solved most of the bench-
mark instances and arrived at solutions at most 3%
worse than the optimal. Therefore, it is an excellent
candidate to be included in a Branch-and-Bound algo-
rithm, to be run at the end of the computation in each
node.

The heuristic that is based on the greedy triangu-

193

33rd Canadian Conference on Computational Geometry, 2021

lation with edge-flips found a large number of feasible
solutions for all sizes, and was notably faster than the
edge-based one. As a result, it might be useful for suc-
cessive executions, say, within a randomization scheme.

Overall, the quality of the relaxation-based heuris-
tic was also quite good. Finding faster ways of solving
or even approximating the linear relaxation is clearly a
good venue for future research related to heuristics.

Another topic of investigation that can benefit both
the heuristics and the exact algorithm is to look for pre-
processing routines capable of fixing variables a priori,
leading to a reduced model size.

References

[1] A. Biniaz, A. Maheshwari, and M. H. M. Smid. Com-
patible 4-holes in point sets. In S. Durocher and S. Ka-
mali, editors, Proceedings of the 30th Canadian Confer-
ence on Computational Geometry, CCCG, August 8-10,
2018, University of Manitoba, Winnipeg, Canada, pages
346–352, 2018.

[2] P. Bose, S. Ramaswami, G. T. Toussaint, and A. Turki.
Experimental results on quadrangulations of sets of
fixed points. Computer Aided Geometric Design,
19(7):533–552, 2002.

[3] P. Bose and G. T. Toussaint. No quadrangulation is
extremely odd. In J. Staples, P. Eades, N. Katoh, and
A. Moffat, editors, Proceedings of the 6th International
Symposium on Algorithms and Computation, ISAAC,
Cairns, Australia, December 4-6, 1995, volume 1004 of
LNCS, pages 372–381. Springer, 1995.

[4] W. F. de la Vega and C. Kenyon-Mathieu. Linear
programming relaxations of Maxcut. In N. Bansal,
K. Pruhs, and C. Stein, editors, Proceedings of the
18th Annual ACM-SIAM Symposium on Discrete Algo-
rithms, SODA, New Orleans, USA, January 7-9, 2007,
pages 53–61. SIAM, 2007.

[5] T. Fevens, H. Meijer, and D. Rappaport. Minimum
convex partition of a constrained point set. Discrete
Applied Mathematics, 109(1):95–107, 2001.

[6] V. M. Heredia and J. Urrutia. On convex quadrangula-
tions of point sets on the plane. In J. A. et al., editor,
Discrete Geometry, Combinatorics and Graph Theory,
7th China-Japan Conference, Tianjin, China, Nov 18-
20, 2005, volume 4381 of LNCS, pages 38–46. Springer,
2005.

[7] K. L. Hoffman and M. Padberg. Solving airline crew
scheduling problems by branch-and-cut. Management
Science, 39(6):657–682, June 1993.

[8] A. Pilz and C. Seara. Convex quadrangulations of
bichromatic point sets. International Journal on Com-
putational Geometry and Applications, 29(4):289–299,
2019.

[9] S. Ramaswami, P. A. Ramos, and G. T. Toussaint. Con-
verting triangulations to quadrangulations. Computa-
tional Geometry, 9(4):257–276, 1998.

[10] S. Ramaswami, M. Siqueira, T. A. Sundaram, J. H. Gal-
lier, and J. C. Gee. Constrained quadrilateral meshes of
bounded size. International Journal on Computational
Geometry and Applications, 15(1):55–98, 2005.

[11] A. Sapucaia, P. J. de Rezende, and C. C. de Souza.
Solving the minimum convex partition of point sets
with integer programming. Computational Geometry,
99:101794, 2021.

[12] A. Sapucaia, C. C. de Souza, and P. J. de Rezende. Con-
vex bichromatic quadrangulation of point sets: Bench-
mark instances. www.ic.unicamp.br/∼cid/Problem-
instances/BichromaticPartition, 2021.

[13] T. Schiffer, F. Aurenhammer, and M. Demuth. Com-
puting convex quadrangulations. Discrete and Applied
Mathematics, 160(4-5):648–656, 2012.

[14] The CGAL Project. CGAL User and Reference Man-
ual. CGAL Editorial Board, 5.2 edition, 2020.

194

CCCG 2021, Halifax, Canada, August 10–12, 2021

An Improved Kernel for the Flip Distance Problem on Simple Convex
Polygons

Miguel Bosch Calvo Steven Kelk∗

Abstract

The complexity of computing the flip distance between
two triangulations of a simple convex polygon is un-
known. Here we approach the problem from a parame-
terized complexity perspective and improve upon the 2k
kernel of Lucas [10]. Specifically, we describe a kernel of
size 4k

3 and then show how it can be improved to (1+ε)k
for every constant ε > 0. By ensuring that the kernel
consists of a single instance our result yields a kernel
of the same magnitude (up to additive terms) for the
almost equivalent rotation distance problem on rooted,
ordered binary trees. The earlier work of Lucas left the
kernel as a disjoint set of instances, potentially allow-
ing very minor differences in the definition of the size of
instances to accumulate, causing a constant-factor dis-
tortion in the kernel size when switching between flip
distance and rotation distance formulations. Our ap-
proach avoids this sensitivity.

1 Introduction

Triangulating a set of points on a plane is a common
operation in computational geometry. The operation
of flipping a diagonal is defined as removing one edge
of a triangulation, creating a convex quadrangle, and
then adding to the triangulation the opposing diagonal
of that quadrangle, as seen in Figure 1.

Figure 1: Flipping a diagonal of a triangulation of a
simple convex polygon.

The flip distance between two triangulations of the
same set of points on a plane is the minimum number of
flips needed to transform one triangulation into another.
Computing flip distance is NP-hard, even for the case

∗Both authors are at the Department of Data Science
and Engineering, Maastricht University, The Netherlands.
Email: miguel.bosch@student.maastrichtuniversity.nl,

steven.kelk@maastrichtuniversity.nl

of simple polygons [1]. In this article we will be working
in a more restricted setup by considering only triangu-
lations of simple convex polygons. The complexity of
the problem is unknown. Indeed, there is a well known
correspondence - essentially, an equivalence - between
this problem and the computation of rotation distance
between two rooted, ordered binary trees. It has been
an open question for several decades whether rotation
distance is polynomial-time solveable. Some of the re-
sults in this area have been obtained using the rotation
distance formulation, but most of the work has been
undertaken in the flip distance formulation.

Here we adopt a parameterized complexity perspec-
tive; in particular, a kernelization perspective [6].
Cleary et al. [3] proved that the problem is fixed pa-
rameter tractable, by providing a 5k kernel, where the
parameter k is the flip distance. Lucas [10] employed
different reduction strategies to obtain a kernel of size
2k. In this article we will show how to improve upon
the kernelization result of Lucas. We describe a 4k

3 ker-
nel and then extend the approach to yield a (1 + ε)k
kernel for every constant ε > 0; the running time grows
sharply in 1/ε but remains polynomial for fixed ε. Our
article extends the decomposition-based approach of Lu-
cas in two ways. We strengthen the bound on the size
of the kernel, and potentially lower the flip distance,
by solving small decomposed instances to optimality.
Secondly, we show how to “reverse” the decomposition
strategy adopted by Lucas, thus merging the separate
instances into a single reduced instance at the end. This
merging step ensures that the size of the kernel remains
(up to additive terms) unchanged whether we view the
problem from the flip distance or rotation distance per-
spective. As we note in the Discussion section, this is
not as straightforward for Lucas’ kernel result: there a
subtle constant-factor distortion occurs when switching
from one formulation to the other.

2 Preliminaries

We are working here with simple convex polygons. Such
a polygon can be viewed without loss of generality as a
simple cycle on n edges and n vertices. A triangulation
of a simple convex polygon on n edges contains exactly
n−3 diagonals. Hence a triangulation of a simple convex
polygon can be represented as a list of n− 3 edges and

195

33rd Canadian Conference on Computational Geometry, 2021

two triangulations are considered equal if the n−3 edges
(i.e. the diagonals) are identical. Thus, there is a finite
number of triangulations of simple convex polygons of a
given size. Precisely, the number of triangulations of a
simple convex polygon of size n is given by the (n−2)th
Catalan number Cn = 1

n+1

(
2n
n

)
.

We define Pn as the set containing all triangulations
of simple convex polygons of size n. Thus |Pn| = Cn−2.
We say that (P, P ′) ∈ Pn if both P and P ′ are triangu-
lations of simple convex polygons of size n.

Henceforth, for the sake of brevity, we will refer to tri-
angulations of simple convex polygons as triangulations
or simply polygons.

Given (P, P ′) ∈ Pn, we call a shortest path from P to
P ′ to the sequence of polygons P = P0, P1, P2, . . . , Pm =
P ′ such that we can transform Pi into Pi+1 by just flip-
ping one diagonal and m is the minimum among all pos-
sible sequences. Given a pair of polygons (P, P ′) ∈ Pn,
the flip distance d(P, P ′) between P and P ′ is the length
of a shortest path from P to P ′.

One of the earliest results in this area is the upper
bound on flip distance proved by Culik et al. [4]. Pre-
cisely, the flip distance between two polygons (P, P ′) ∈
Pn is at most 2n − 6 for all (P, P ′) ∈ Pn. Later,
Sleator et al. [12] improved the bound to 2n − 10 for
all (P, P ′) ∈ Pn, n > 12, and by making use of hyper-
bolic geometry proved that the bound is tight.

Also, since every flip of a diagonal only affects one
diagonal, the flip distance between (P, P ′) is at least
the number of non-common diagonals of (P, P ′) [10].

There is another result from Sleator et al. [12] that
is of importance to us. It implies that common diago-
nals belong to every polygon of every shortest path, and
therefore that they should not be flipped at any point:
Given (P, P ′) ∈ Pn, if there is a common diagonal be-
tween P and P ′, then every shortest path from P to P ′

does not flip that diagonal.

We now present a formal definition of the Parame-
terized Flip Distance problem, which is the problem
we will be addressing in this article:

Parameterized Flip Distance
Input: A pair of polygons (P, P ′) ∈ Pn and a param-
eter k ∈ N.
Question: Is the flip distance between P and P ′ at
most k?

As is standard in the study of kernelization, we will
apply polynomial-time reduction rules to yield instances
whose size is bounded by a function purely of k. We
omit a formal definition of kernelization, referring to
standard texts such as [6] for more details. We empha-
size that the size of an instance, n, refers to the number
of outer edges in the polygons.

The kernel we propose uses some of the ideas pre-
sented by Lucas at [10] combined with new reduction

P P ′

P1
P2

P3

P4

P ′1
P ′2

P ′3

P ′4

Figure 2: An example of splitting a polygon pair (P, P ′)
along its common diagonals into m disjoint pairs. Here
the instances (P, P ′) have size 12, so (P, P ′) ∈ P12, and
they have 3 common diagonals, so they are divided into
m = 4 disjoint pairs (P1, P

′
1), (P2, P

′
2), (P3, P

′
3), (P4, P

′
4).

rules to tighten the bound on the kernel, plus a new
merging step. Lucas’ idea is based on dividing the orig-
inal pair of polygons along their common diagonals by
using the results by Sleator et al. [12]. An example of
such division is shown in Figure 2.

We will first present the operations that allows us to
obtain a 4k

3 kernel and then we will extend those ideas
to derive the (1 + ε)k kernel.

3 Results

3.1 4k
3 kernel

Lucas [10], using the results of Sleator et al. [12], showed
that given two polygons (P, P ′) ∈ Pn with m− 1 com-
mon diagonals, we can create m disjoint pairs of poly-
gons (Pi, P

′
i), i ∈ [1,m] by dividing the original poly-

gons along their common diagonals, so each common
diagonal becomes an outer edge of one of the instances
(Pi, P

′
i) and each pair does not have any common diag-

onal. Thus we derive the following lemma:

Lemma 1 The flip distance of (P, P ′) ∈ Pn is equal
to the sum of the distances between all m pairs (Pi, P

′
i)

resulting from the division of (P, P ′) along its m − 1
common diagonals, i.e. d(P, P ′) =

∑m
i=1 d(Pi, P

′
i).

It is useful to apply the division along common diag-
onals into m pairs to the parameterized version of the
problem, given by (P, P ′) ∈ Pn, k ∈ N.

Given a set of m pairs of polygons (Pi, P
′
i) ∈ Pni ,

let di be the number of diagonals of instance i, so that
di = ni − 3.

The upper bound of the problem of roughly 2n can be
applied to every pair, and the pairs do not have any com-
mon diagonal, so we can deduce di ≤ d(Pi, P

′
i) ≤ 2di.

196

CCCG 2021, Halifax, Canada, August 10–12, 2021

Since d(P, P ′) =
∑
d(Pi, P

′
i) we can output a triv-

ial YES answer if
∑
di ≤ k/2, and a trivial NO if∑

di > k, so for all non-trivial instances we have
k/2 <

∑m
i=1 di ≤ k.

Now we present a trivial observation and a lemma
that will be useful to prove our final result.

Observation 1 A pair of quadrilaterals with no com-
mon diagonals have distance 1. Similarly, a pair of pen-
tagons with no common diagonals have distance 2.

Lemma 2 Given a set of m pairs of polygons (Pi, P
′
i) ∈

Pni
, we can build a pair of polygons (P, P ′) ∈ Pn with

n =
∑m
i=1 di +m+ 2, and d(P, P ′) =

∑m
i=1 d(Pi, P

′
i).

Proof. Given two pairs of polygons (P1, P
′
1), (P2, P

′
2)

with sets of outer edges {e11, e12, . . . , e1n1
} and

{e21, e22, . . . , e2n2
} we can create a pair of polygons

with edges:

{e11, e12, . . . , e1n1−1, e
2
1, e

2
2, . . . , e

2
n2−1}

We add to that polygon all diagonals present in both
(P1, P

′
1) and (P2, P

′
2), plus a diagonal δs in place of e1n1

and e2n2
. It is clear that we can add those diagonals and

they will be non-crossing. We can see an example of
this operation in Figure 3.

This way we have a new pair of polygons (P, P ′) in
which the edges {e11, e12, . . . , e1n1−1, δs} induce the poly-
gons (P1, P

′
1) and {e21, e22, . . . , e2n2−1, δs} the polygons

(P2, P
′
2). Since δs is a common diagonal and thus is

never flipped in a shortest path, d(P, P ′) = d(P1, P
′
1) +

d(P2, P
′
2). The size of (P, P ′) is n1+n2−2 = d1+d2+4,

and it has d1 + d2 + 1 diagonals, of which at least one
of them is common. Repeated applications of this op-
eration complete the proof. �

Theorem 3 There is a kernel of size 4k
3 +O(1) for the

Parameterized Flip Distance problem. Specifically,
given a pair of polygons (P, P ′) ∈ Pn and a parameter k
we can output in polynomial time another pair of poly-
gons (P ∗, P ∗′) of size at most 4k

3 + 2, and a parameter
k′ ≤ k such that:

d(P, P ′) ≤ k ⇐⇒ d(P ∗, P ∗′) ≤ k′

Proof. Given (P, P ′) ∈ Pn, and a parameter k, the
following algorithm outputs a kernel of the problem of
size at most 4k

3 + 2.

1. Divide (P, P ′) along their common diagonals to ob-
tain m pairs of polygons (Pi, P

′
i) and discard all

pairs that have only three edges, because their dis-
tance is 0. Now we have m′ pairs, with m′ ≤ m, so
we re-number the pairs to have (Pi, P

′
i), i ∈ [1,m′].

P1

e11

e12

e13

e14 e15

e16

e17

e18

P2

e21

e22

e23 e24

e25

e26

P

e11
e12

e13

e14

e15
e16 e17

e21

e22

e23

e24
e25

δs

Figure 3: Given two pairs of polygons (P1, P
′
1) and

(P2, P
′
2) we can generate a new pair (P, P ′) that has

distance equal to the sum of the distances of the orig-
inal pair. In this example (P1, P

′
1) has 8 outer edges

{e11, e12, e13, e14, e15, e16, e17, e18} and (P2, P
′
2) has 6 outer

edges {e21, e22, e23, e24, e25, e26}, resulting in a pair (P, P ′)
with 12 edges {e11, e12, e13, e14, e15, e16, e17, e21, e22, e23, e24, e25}
(in this figure only one of the polygons of the pair is
shown since we operate identically with the other).

2. Making use of Observation 1, discard all pairs with
four edges and reduce the parameter k by one per
each pair removed that way. Proceed the same way
with pairs of five edges reducing the parameter by
two instead and renumber the pairs as we did in
the previous step. We get a new parameter k′ ≤ k.

3. If
∑
di > k′ output NO. If

∑
di ≤ k′/2 output

YES.

4. Use Lemma 2 to create a new polygon (P ∗, P ∗′)
from all the remaining pairs. The new instance is
defined by (P ∗, P ∗′) and k′.

Since we have removed all pairs with di < 3, each pair
has at least 3 diagonals, none of them common, so m
is at most k′/3, or otherwise

∑
di > k′, and we could

have output a trivial NO answer. Also, we have that
k′/2 <

∑m
i=1 di ≤ k′, and by making use of Lemma 2

to obtain the pair of polygons (P ∗, P ∗′), they will be of
size

∑m
i=1 di +m+ 2 ≤ k′ + k′/3 + 2 ≤ 4k/3 + 2.

Also, from Lemma 1, Lemma 2 and Observation 1 it
is clear that d(P, P ′) ≤ k if and only if d(P ∗, P ∗′) ≤ k′,
and Lucas [9] showed that the first step can be done
in O(n2) time, while the last step can be done in time
O(n), completing the proof. �

197

33rd Canadian Conference on Computational Geometry, 2021

3.2 (1 + ε)-kernel

In this section we will show a procedure that allows us
to obtain a kernel of size (1 + ε)k+O(1) in time that is
polynomial in n when ε > 0 is constant. The procedure
is based on the algorithm of the previous section and on
the trivial exponential-time algorithm that allows us to
solve an instance of size n in time O(n2n) by trying all
possible diagonal flips recursively.

Theorem 4 Given a pair of polygons (P, P ′) ∈ Pn and
a parameter k, we can output another pair of polygons
(P ∗, P ∗′) of size at most (1 + ε)k + 2 and a parameter
k′ ≤ k such that:

d(P, P ′) ≤ k ⇐⇒ d(P ∗, P ∗′) ≤ k′

In time O(n2 + f(ε)n), where f(ε) is a function that
only depends on ε.

Proof. Given two polygons (P, P ′) ∈ Pn, a parame-
ter k ∈ N and some ε > 0, apply steps 1 and 2 of the
algorithm described in Theorem 3. Then solve all in-
stances of size less than 1/ε+ 3, i.e. instances that have
fewer than 1/ε diagonals, using the trivial exponential-
time algorithm. We can do this in time O((1/ε)2/ε · n),
(because there can be at most n−2 instances after split-
ting common diagonals) and discard all pairs solved this
way, reducing the parameter k by the sum of the flip dis-
tances of the pairs solved this way. Finally, apply steps
3 and 4 of the algorithm.

Now each remaining pair before step 3 will have at
least 1/ε diagonals, so m must be at most εk′, by
a similar reasoning as in Theorem 3. Then we have
that the polygons (P ∗, P ∗′) will have size at most∑m
i=1 di +m+ 2 ≤ k′ + εk′ + 2 ≤ (1 + ε)k + 2.
Since the steps common with the 4k

3 kernelization
algorithm can be done in time O(n2), and the addi-
tional time spent on solving small instances is at most
O((1/ε)2/ε · n), the total time required to produce the
kernel is O(n2 + (1/ε)2/ε · n) = O(n2 + f(ε)n), as we
wanted to prove. �

We note that by using the recent FPT algorithm of [5]
instead of the trivial exponential-time algorithm, we can
solve an instance of size less than 1/ε in time O(321/ε ·
poly(1/ε)) instead of O((1/ε)2/ε), which is a significant
improvement.

As mentioned earlier there is a near equivalence be-
tween the flip distance problem on simple convex poly-
gons, and the rotation distance problem on two ordered,
rooted binary trees. The definition of the rotation dis-
tance problem is rather technical so we omit details.
In any case, it is well-known that an instance of rota-
tion distance of size n (where the size here denotes the
number of non-leaf nodes in one of the input trees) can
be easily mapped to an instance of flip distance of size

n + 2, such that the distance is preserved. The map-
ping goes both ways [12]. Hence, the kernel obtained in
Theorem 4 (and that of Theorem 3) also goes through
for rotation distance, up to additive terms.

Corollary 5 For each ε > 0 there is a kernel of size
(1 + ε)k for the rotation distance problem.

4 Discussion

Our kernel makes use of the fact that two polygons
of size n with no common diagonals have n − 3 non-
common diagonals, which is a lower bound on the flip
distance. Hence, for such “fully reduced” instances the
ratio of the instance size to the flip distance is at most
n
n−3 which is 1 + o(1). In this sense, our (1 + ε)k kernel
feels like a natural result for this problem. It would be
interesting to explore alternative, less inflated param-
eterizations of the problem. For example, if we let d
denote the number of non-common diagonals in an in-
stance, we could ask: is the flip distance ≤ d + k? It
could also be interesting to study the possibility of re-
duction rules that reduce the number of non-common
diagonals in an instance, since so far all work under-
taken has been done by reducing the common diagonals.
We also note that there has been quite sophisticated
parameterized complexity work undertaken on the flip
distance problem in recent years, although most of it
has been done on more general versions of it: in trian-
gulations of point sets on the plane [5, 8]. We wonder
whether those results can be strengthened in our more
restricted setting i.e. the simple convex polygon case.

We note in passing that our improved kernel does not
lead to an improvement of the polynomial-time approx-
imation algorithm by Cleary et al. [2]. That article uses
a similar technique to Lucas, but the limiting factor
there is the algorithmic upper bound, which is an algo-
rithm that takes in the worse case two flips to fix each
non-common diagonal.

Finally, we return to rotation distance. As stated in
Corollary 5, we obtain (up to an additive difference of 2)
the same kernel result for rotation distance. For us, the
additive term is insignificant, but for Lucas [10] it can
be of importance. Lucas uses the correspondence with
rotation distance to derive the 2k kernel. The bound
there is based on the observation that, after splitting at
common diagonals and deleting distance-0 subinstances,
and letting d be the total number of non-common diag-
onals, there can be at most d subinstances of pairs of
polygons, each with a corresponding pair of trees, and
each such subinstance (i.e. pair of trees) has at least one
non-root interior node. The worst case is when there
are d subinstances, each with exactly one non-root in-
terior node. (In the rotation distance problem non-root
interior nodes correspond to diagonals in the flip dis-
tance problem.) In the rotation distance literature the

198

CCCG 2021, Halifax, Canada, August 10–12, 2021

size of an instance is usually taken to be the number of
interior nodes, including the root ([4, 9, 11, 12] among
others). This yields a bound of 2d ≤ 2k. However, when
translated to flip distance, the worst case corresponds
to d subinstances, each of which has exactly one non-
common diagonal (and no common diagonals). Such
subinstances are squares, and in the vast majority of
the literature the size of the polygons is regarded as
the number of outer edges [5, 7, 8, 12]. Taking that
metric, Lucas’ kernel would yield 4d ≤ 4k for flip dis-
tance, not 2k, so the kernel distorts when using the
usual sizes of the problems. In a nutshell: Lucas left
the kernel as a set of subinstances, but this can cause
small additive terms to accumulate when switching be-
tween frameworks. Our kernel avoids such problems by
merging the subinstances into a single instance at the
end; this is the significance of the merging step.

5 Acknowledgements

We thank Steve Chaplick for useful discussions.

References

[1] O. Aichholzer, W. Mulzer, and A. Pilz. Flip dis-
tance between triangulations of a simple polygon is
NP-Complete. Discrete and Computational Geometry,
54:368–389, 09 2015.

[2] S. Cleary and K. John. A Linear-Time Approximation
Algorithm for Rotation Distance. Journal of Graph Al-
gorithms and Applications, 14, 03 2009.

[3] S. Cleary and K. St. John. Rotation distance is fixed-
parameter tractable. Information Processing Letters,
109(16):918–922, 07 2009.

[4] K. Culik and D. Wood. A note on some tree similarity
measures. Information Processing Letters, 15(1):39–42,
1982.

[5] Q. Feng, S. Li, X. Meng, and J. Wang. An improved
FPT algorithm for the flip distance problem. Informa-
tion and Computation, page 104708, 2021.

[6] F. Fomin, D. Lokshtanov, S. Saurabh, and M. Zehavi.
Kernelization: Theory of Parameterized Preprocessing.
Cambridge University Press, 2019.

[7] F. Hurtado and M. Noy. Graph of triangulations of a
convex polygon and tree of triangulations. Computa-
tional Geometry, 13(3):179–188, 1999.

[8] I. Kanj and G. Xia. Flip distance is in FPT time
O(n + k · ck). Proceedings of STACS 2015; Leibniz In-
ternational Proceedings in Informatics, LIPIcs, 30:500–
512, 02 2015.

[9] J. M. Lucas. Untangling Binary Trees via Rotations.
The Computer Journal, 47(2):259–269, 01 2004.

[10] J. M. Lucas. An improved kernel size for rotation dis-
tance in binary trees. Information Processing Letters,
110(12):481–484, 2010.

[11] J. Pallo. An efficient upper bound of the rotation dis-
tance of binary trees. Information Processing Letters,
73(3):87–92, 2000.

[12] D. Sleator, R. Tarjan, and W. Thurston. Rotation dis-
tance, triangulations, and hyperbolic geometry. Journal
of the American Mathematical Society, 1(3):647–681,
July 1988.

199

CCCG 2021, Halifax, Canada, August 10–12, 2021

Minimum-Link Shortest Paths for Polygons amidst Rectilinear Obstacles∗

Mincheol Kim† Hee-Kap Ahn‡

Abstract

Consider two axis-aligned rectilinear simple polygons in
the domain consisting of axis-aligned rectilinear obsta-
cles in the plane such that the bounding boxes, one for
each obstacle and one for each polygon, are disjoint.
We present an algorithm that computes a minimum-
link rectilinear shortest path (a rectilinear shortest path
with the minimum number of line segments) connecting
the two polygons in O((N + n) log(N + n)) time using
O(N + n) space, where n is the number of vertices in
the domain and N is the total number of vertices of the
two polygons.

1 Introduction

The problem of finding paths connecting two objects
amidst obstacles has been studied extensively in the
past. It varies on the underlying metric (Euclidean, rec-
tilinear, etc.), types of obstacles (simple polygons, rec-
tilinear polygons, rectangles, etc.), and objective func-
tions (minimum length, minimum number of links, or
their combinations). See the survey in Chapter 31
of Handbook of Discrete and Computational Geome-
try [18] on various approaches to this problem and re-
sults.

For two points p and q contained in the plane, possi-
bly with rectilinear polygonal obstacles (i.e., a rectilin-
ear domain), a rectilinear shortest path from p to q is a
rectilinear path from p to q with minimum total length
that avoids the obstacles. In the rest of the paper, we
say a shortest path to refer to a rectilinear shortest path
unless stated otherwise. A rectilinear path consists of
horizontal and vertical segments, each of which is called
link. Among all shortest paths from p to q, we are inter-
ested in a minimum-link shortest path from p to q, that
is, a shortest path with the minimum number of links

∗This research was partly supported by the Institute of In-
formation & communications Technology Planning & Evalua-
tion(IITP) grant funded by the Korea government(MSIT) (No.
2017-0-00905, Software Star Lab (Optimal Data Structure and
Algorithmic Applications in Dynamic Geometric Environment))
and (No. 2019-0-01906, Artificial Intelligence Graduate School
Program(POSTECH)).

†Department of Computer Science and Engineering, Po-
hang University of Science and Technology, Pohang, Korea.
rucatia@postech.ac.kr

‡Graduate School of Artificial Intelligence, Department of
Computer Science and Engineering, Pohang University of Science
and Technology, Pohang, Korea. heekap@postech.ac.kr

(or one with the minimum number of bends). There has
been a fair amount of work on finding minimum-link
shortest paths connecting two points amidst rectilinear
obstacles in the plane [1, 10, 19, 20, 22].

These definitions are naturally extended to two more
general objects contained in the domain. A shortest
path connecting the objects is one with minimum path
length among all shortest paths from a point of one
object to a point of the other object. A minimum-link
shortest path connecting the objects is a minimum-link
path among all shortest paths.

In this paper, we consider the problem of finding
minimum-link shortest paths connecting two objects in
a rectilinear domain, which generalizes the case of con-
necting two points, in some modest environment. The
rectilinear polygonal obstacles are considered as open
sets. Two axis-aligned rectilinear polygons are said to
be box-disjoint if the axis-aligned bounding boxes, one
for each rectilinear polygon, are disjoint in their interi-
ors. A set of axis-aligned rectilinear polygons is box-
disjoint if the polygons of the set are pairwise box-
disjoint. The rectilinear domain induced by a set of
box-disjoint rectilinear polygons in the plane is called
a box-disjoint rectilinear domain. We require the input
objects and the obstacles in the domain to be also pair-
wise box-disjoint, unless stated otherwise.

Problem definition. Given two axis-aligned rectilinear
simple polygons S and T in a rectilinear domain in the
plane such that S,T, and the obstacles in the domain are
pairwise box-disjoint, find a minimum-link rectilinear
shortest path from S to T.

Related work. Computing shortest paths or
minimum-link paths in a polygonal domain has
been studied extensively. When obstacles are all rect-
angles, Rezende et al. [6] presented an algorithm with
O(n log n) time and O(n) space to compute a shortest
path connecting two points amidst n rectangles. For a
rectilinear domain with n vertices, Mitchell [12] gave
an algorithm with O(n log n) time and O(n) space
to compute a shortest path connecting two points
using a method based on the continuous Dijkstra
paradigm [11]. Later, Chen and Wang [2] improved the
time complexity to O(n + h log h) for a triangulated
polygonal domain with h holes.

Computing a minimum-link path, not necessarily

200

33rd Canadian Conference on Computational Geometry, 2021

shortest, in a polygonal domain has also been stud-
ied well. For a minimum-link rectilinear path connect-
ing two points in a rectilinear domain with n vertices,
Imai and Asano [8] gave an algorithm with O(n log n)
time and space. Then a few algorithms improved the
space complexity to O(n) without increasing the run-
ning time [4, 13, 16]. Very recently, Mitchell et al. [14]
gave an algorithm with O(n + h log h) time and O(n)
space for triangulated rectilinear domains with h holes.

Yang et al. [20] considered the problem of finding a
rectilinear path connecting two points amidst rectilin-
ear obstacles under a few optimization criteria, such as
a minimum-link shortest path, a shortest minimum-link
path, and a least-cost path (a combination of link cost
and length cost). By constructing a path-preserving
graph, they gave a unified approach to compute such
paths in O(ne+n log n) time, where n is the total num-
ber of polygon edges and e is the number of polygon
edges connecting two convex vertices. The space com-
plexity is O(ne) due to the path-preserving graph of
size O(ne). Since e is O(n), the running time becomes
O(n2) in the worst case, even for convex rectilinear poly-
gons (obstacles). A few years later, they gave two al-
gorithms on the problem [22], improving their previous
result, one with O(n log2 n) time and O(n log n) space

and the other with O(n log3/2 n) time and O(n log3/2 n)
space using a combination of a graph-based approach
and the continuous Dijkstra approach. It is claimed
in [10] that a minimum-link shortest path can be com-
puted in Θ(n log n) time and O(n) space when obstacles
are rectangles by the algorithm in another paper [21] by
the same authors, but the paper [21] is not available.

Later, Chen et al. [1] gave an algorithm improving
the previous results for finding a minimum-link shortest
path connecting two points in O(n log3/2 n) time and
O(n log n) space using an implicit representation of a
reduced visibility graph, instead of computing the whole
graph explicitly. Very recently, Wang [19] pointed out
a flaw in the algorithm in [1] and claimed that to make
it work, each vertex of the graph must store a constant
number of nonlocal optimum paths together with local
optimum paths. Wang gave an algorithm with O(n +

h log3/2 h) time and O(n+h log h) space using a reduced
path-preserving graph from the corridor structure [14]
and the histogram partitions [17], where h is the number
of holes (obstacles) in the rectilinear domain.

However, we are not aware of any result on computing
the minimum-link shortest path connecting two objects
other than points.

Our results. We consider the minimum-link shortest
path problem for two axis-aligned rectilinear polygons S
and T in a box-disjoint rectilinear domain. This general-
izes the two-point shortest path problem to two-polygon
shortest path problem. The theorem below summarizes

s2 t3S T

t1

t2

t4

s1

s3

π∗

π′
π

Figure 1: The box-disjoint rectilinear domain with S, T.
Light gray rectilinear polygons are obstacles. There are six
pairs of points, (s1, t1), (s1, t2), (s2, t3), (s2, t4), (s3, t3), and
(s3, t4), that determine the length of a shortest path from S
to T. The path π from s1 to t1 (or t2) is a minimum-link
shortest path from S to T with eight links among all shortest
paths without intersecting the interiors of bounding boxes of
obstacles. However, the blue path π′ from s1 to t2 has seven
links and the red path π∗ from s2 to t3 has five links, which
is optimal.

our results.

Theorem 1 Let S and T be two axis-aligned rectilinear
simple polygons with N vertices in a rectilinear domain
with n vertices in the plane such that S,T, and the ob-
stacles in the domain are pairwise box-disjoint. We can
compute a minimum-link shortest path from S to T in
O((N + n) log(N + n)) time using O(N + n) space.

Sketch of our results. The main difficulty lies in com-
puting a shortest path from S to T. The length of a
shortest path from S to T is determined by a pair of
points, one lying on the boundary of S and one lying
on the boundary of T. Such a point is a vertex of S
or T, or the point on the boundary of S or T where a
horizontal or vertical ray emanating from a vertex in
the domain hits first. Since the domain has O(N + n)
vertices, there are O(N + n) such points on the bound-
aries of S and T, and O((N + n)2) pairs of points, one
from S and the other from T, to consider in order to
determine the length of a shortest path. Thus, if we use
a naive approach that computes a minimum-link short-
est path for each point pair, it may take Ω((N + n)2)
time. Theorem 1 shows that our algorithm computes
a minimum-link shortest path from S to T efficiently.
Also, a minimum-link shortest path may intersect the
bounding box of an obstacle, although S, T, and obsta-
cles are pairwise box-disjoint. See Figure 1.

We first consider a simpler problem for an axis-aligned
line segment S and a point t contained in the domain
consisting of axis-aligned rectangular obstacles. We par-
tition the domain into at most eight regions using eight

201

CCCG 2021, Halifax, Canada, August 10–12, 2021

xy-monotone paths from S. We observe that every
shortest path from S to a point in a region is either
x-, y-, or xy-monotone [6]. Moreover, we define a set
of O(n) baselines for each region, and show that there
is a minimum-link shortest path from S to t consist-
ing of segments contained in the baselines. Based on
these observations, our algorithm applies a plane sweep
technique with a sweep line moving from S to t and
computes the minimum numbers of links from S to the
intersections of the baselines and the sweep line effi-
ciently. After the sweep line reaches t, our algorithm
reports a minimum-link shortest path that can be ob-
tained from a reverse traversal from t using the number
of links stored in baselines. During the sweep, our algo-
rithm maintains a data structure storing baselines (and
their minimum numbers of links) and updates the struc-
ture for the segments (events) on the boundary of the
region.

It takes, however, O(n2) time using O(n) space. To
reduce the time complexity without increasing the space
complexity, our algorithm maintains another data struc-
ture, a balanced binary search tree, each node of which
corresponds to a set of consecutive baselines. This tree
behaves like a segment tree [5]. Instead of updating the
minimum numbers of links of O(n) baselines at each
event of the plane sweep algorithm, we update O(log n)
nodes of the tree that together correspond to the base-
lines. This improves the time for handling each sweep-
line event from O(n) to O(log n), and thus improving
the total time complexity to O(n log n).

Then we extend our algorithm to handle a line seg-
ment T (not a point t) and box-disjoint rectilinear ob-
stacles (not necessarily rectangles). We observe that
every shortest path contained in a region from S to any
point of T is either x-, y-, or xy-monotone, so our algo-
rithm partitions the domain into at most eight regions
again. Then T intersects at most five regions. Our al-
gorithm computes a minimum-link shortest path from
S to T ′ for the portion T ′ of T contained in each re-
gion, and then returns the minimum-link shortest path
among the paths.

When S or T intersects some bounding boxes of ob-
stacles, we consider each portion of S or T contained
in a bounding box independently. The portion not con-
tained in any bounding box can be handled as we do for
segments disjoint from the boxes. For the portion con-
tained in a bounding box B(P) for a rectilinear polygon
P , every minimum-link shortest path from S to T is the
concatenation of a subpath contained in B(P) and the
subpath not contained in B(P) such that both subpaths
are minimum-link shortest paths sharing one point on
the boundary of B(P). Thus, our algorithm finds a sub-
path contained in B(P) and a subpath not contained in
B(P) that together form a minimum-link shortest path
from S to T . We observe that there is a minimum-

link shortest path from S to T through certain points
on the boundary of B(P). By computing these points
and their distances and minimum number of links to S
and T , our algorithm computes a minimum-link short-
est path from S to T in O(n log n) time for S or T
intersecting the bounding boxes. Since an axis-aligned
line segment intersects at most two bounding boxes, the
overall running time remains to be O(n log n) time using
O(n) space.

Finally, we consider that the input objects are recti-
linear simple polygons S and T with N vertices. Recall
that there are O((N + n)2) pairs of points that deter-
mine the length of a shortest path from S to T. To
handle them efficiently, we add O(N) additional base-
lines and O(N) events induced by S and T during the
plane sweep algorithm. Then the number of events be-
comes O(N+n) and the time to handle each event takes
O(log(N + n)), so we obtain Theorem 1.

Missing proofs and details can be found in the full
version [9].

2 Preliminaries

Let R be a set of n disjoint axis-aligned rectangles in
R2. Each rectangle R ∈ R is considered as an open set
and plays as an obstacle in computing a minimum-link
shortest path in the plane. We let D := R2−∪R∈RR and
call it the rectangular domain induced by R in the plane.
For two points p and q in D, d(p, q) denotes the L1

distance (or the Manhattan distance) from p to q in D,
that is, the length of a shortest path from p to q avoiding
the obstacles. A path is x-monotone if the intersection
of the path with any line perpendicular to the x-axis
is connected. Likewise, a path is y-monotone if the
intersection of the path with any line perpendicular to
the y-axis is connected. If a path is x-monotone and
y-monotone, the path is xy-monotone.

For two objects S and T in D, d(S,T) =
minp∈S,q∈T d(p, q). A shortest path from S to T is a
path in D from a point p ∈ S to a point q ∈ T of length
d(S,T). A minimum-link shortest path from S to T is a
path that has the minimum number of links among all
shortest paths from S to T in D, and we use λ(S,T) to
denote the number of links of a minimum-link shortest
path from S to T. We call a pair (p, q) of points with
p ∈ S and q ∈ T such that d(S,T) = d(p, q) a closest
pair of points of S and T. We say p is a closest point
of S from T, and q is a closest point of T from S. Note
that there can be more than one closest pair of points
of S and T.

We make an assumption that the rectangles are in
general position, that is, no two rectangles in R have
corners, one corner from each rectangle, with the same
x- or y-coordinate. A horizontal line segment H can be
represented by the two x-coordinates x1(H) and x2(H)

202

33rd Canadian Conference on Computational Geometry, 2021

S

s

s′

D1
x

D1
xy

D1
y

D2
xy

D2
x

D3
xy

D2
y

D4
xy

πru(s)

πur(s)
πul(s)

πlu(s)

πld(s
′) πdl(s

′)
πdr(s

′)

πrd(s
′)

Figure 2: Eight disjoint regions of D by eight xy-monotone
paths from s or s′. Gray rectangles are obstacles.

of its endpoints (x1(H) < x2(H)) and the y-coordinate
y(H) of them. Likewise, a vertical line segment V can be
represented by the two y-coordinates y1(V) and y2(V)
of its endpoints (y1(V) < y2(V)) and the x-coordinate
x(V) of them.

2.1 Eight disjoint regions of a rectangular domain

Given a rectangular domain D and a vertical segment
S, we partition D into at most eight disjoint regions
by using eight xy-monotone paths from the endpoints
of S in a way similar to the one by Choi and Yap [3].
Consider a horizontal ray from a point p = p1 on S go-
ing rightwards. The ray stops when it hits a rectangle
R ∈ R at a point p′1. Let p2 be the top-left corner of R.
We repeat this process by taking a horizontal ray from
p2 going rightwards until it hits a rectangle, and so on.
The last horizontal ray goes to infinity. Then we ob-
tain an xy-monotone path πru(p) = (p = p1p

′
1p2p

′
2 . . .).

In other words, πru(p) is an xy-monotone path from p
that alternates going rightwards (until hitting a rect-
angle) and going upwards (to the top-left corner of the
rectangle).

By choosing two directions, one going either right-
wards or leftwards horizontally, and one going ei-
ther upwards or downwards vertically, and order-
ing the chosen directions, we define eight rectilin-
ear xy-monotone paths with directions: rightwards-
upwards (ru), upwards-rightwards (ur), upwards-
leftwards (ul), leftwards-upwards (lu), leftwards-
downwards (ld), downwards-leftwards (dl), downwards-
rightwards (dr), and rightwards-downwards (rd). We
use πα(p) to denote them, where α is one in
{ru, ur, ul, lu, ld, dl, dr, rd}. Also, we use πα(p, q) to de-
note the subpath of πα(p) from p to q ∈ πα(p).

Figure 2 illustrates these eight xy-monotone paths,
four upward paths from the upper endpoint s of S and
four downward paths from the lower endpoint s′ of S.
Observe that for a point p ∈ D, the eight paths πα(p)

do not cross each other. Thus, by the eight paths, D
is partitioned into eight regions. See Figure 2. We de-
note by D1

xy (and D2
xy, D3

xy, D4
xy) the region bounded

by πru(s) and πur(s) (and by πul(s) and πlu(s), by πld(s
′)

and πdl(s
′), by πdr(s

′) and πrd(s
′)). We denote by D1

x

(and D2
x) the region bounded by πru(s) and πrd(s

′) (and
by πlu(s) and πld(s

′)), and denote by D1
y (and D2

y) the
region bounded by πur(s) and πul(s) (and by πdl(s

′) and
πdr(s

′)).

Lemma 2 For a point t ∈ ∪1≤i≤4Dixy, every short-
est path from S to t is xy-monotone. For a point
t ∈ ∪1≤i≤2Dix, every shortest path from S to t is x-
monotone. For a point t ∈ ∪1≤i≤2Diy, every shortest
path from S to t is y-monotone.

From now on we simply use Dxy, Dx and Dy to denote
D1
xy, D1

x and D1
y, respectively, and assume that t lies in

a region D′ of the regions. The case that t lies in other
regions can be handled analogously. For each horizontal
side of the rectangles incident to D′, we call the horizon-
tal line containing the side a horizontal baseline of D′.
Similarly, for each vertical side of the rectangles inci-
dent to D′, we call the vertical line containing the side a
vertical baseline of D′. The two vertical lines through S
and t, and the three horizontal lines through s, s′ and t
are also regarded as vertical and horizontal baselines of
D′, respectively. We say a minimum-link shortest path
π is aligned to the baselines if every segment of π is
contained in a baseline of the corresponding region. By
using Lemma 3, we find a minimum-link shortest path
aligned to the baselines of each region.

Lemma 3 There is a minimum-link shortest path from
S to t that is aligned to the baselines of D′.

3 t lies in Dxy

We consider the case that t lies in Dxy. By Lemma 2,
every shortest path from S to t is xy-monotone and con-
nects the upper endpoint s of S and t. Let c be the point
with the maximum x-coordinate and the maximum y-
coordinate among the points in πur(s)∩ πld(t). Observe
that c is defined uniquely as πur(s)∩ πld(t) is connected
and xy-monotone by the definition. Likewise, let c′ be
the point with the maximum x-coordinate and the max-
imum y-coordinate among the points in πru(s) ∩ πdl(t).
Then we use Dxy(s, t) to denote the region of Dxy en-
closed by the closed curve composed of πur(s, c), πld(t, c),
πru(s, c

′), and πdl(t, c
′). We denote by ∂xy(s, t) the rec-

tilinear chain of the outer boundary of Dxy(s, t) from s
to t in clockwise order, and denote by ∂xy(t, s) the recti-
linear chain of the outer boundary of Dxy(s, t) from t to
s in clockwise order. See Figure 3(a) for an illustration.
By Lemma 2, every shortest path from s to t is con-
tained in Dxy(s, t), and therefore every minimum-link
shortest path from s to t is also contained in Dxy(s, t).

203

CCCG 2021, Halifax, Canada, August 10–12, 2021

s

t

c

c′
Dxy(s, t)

s

t

(a) (b)

πru(s)
πur(s)

πld(t) πdl(t)

R1

R2

H1

Hm

Dxy(s, t)

V1

V3

V4

Vz

H2

Figure 3: (a) Dxy(s, t) is the region of Dxy enclosed by the
closed curve composed of πur(s, c), πld(t, c), πru(s, c

′), and
πdl(t, c

′). R1 and R2 are the holes of Dxy(s, t). (b) Horizontal
baselines H1, H2, . . . , Hm of Dxy(s, t) and vertical segments
(red) V1, V2, . . . , Vz on the boundary of Dxy(s, t).

We focus on the baselines of Dxy that are de-
fined by s, t, and the rectangles incident to Dxy(s, t),
which we call the baselines of Dxy(s, t). Figure 3(b)
shows the horizontal baselines of Dxy(s, t). Note that
a baseline may cross rectangles incident to Dxy(s, t).
Let H1, H2, . . . ,Hm be the m horizontal baselines of
Dxy(s, t) such that y(H1) < y(H2) < . . . < y(Hm).
Note that s is on H1 and t is on Hm.

3.1 Computing the minimum number of links

Consider a minimum-link shortest path aligned to the
baselines of Dxy(s, t). For the rightmost vertical seg-
ment V of Dxy(s, t), we have y2(V) = y(t) and y1(V) =
y(Hm′) for some horizontal baseline Hm′ with m′ < m.
We can compute a minimum-link shortest path once we
have a minimum-link shortest path from s to the in-
tersection point ci of V and Hi for each i = m′,m′ +
1, . . . ,m, since t is the endpoint of V .

We compute λ(s, t) by applying the plane sweep al-
gorithm, and then report a minimum-link shortest path
aligned to the baselines of Dxy(s, t) that can be obtained
from a reverse traversal from t using λ(s, t).

Imagine a vertical line L sweeping Dxy(s, t) right-
wards. Our plane sweep algorithm maintains a data
structure storing horizontal baselines and their mini-
mum numbers of links among shortest paths from s
to intersections of baselines and L such that the line
segments incident to the intersections of those shortest
paths are horizontal. The algorithm updates their sta-
tus and minimum numbers of links when L encounters
the vertical segments (vertical baselines) on the bound-
ary of Dxy(s, t).

We define the status for each horizontal baseline as
follows. For the intersection point ci = Hi ∩ L for each
i = 1, . . . ,m, if ci ∈ Dxy(s, t), then Hi is active. Other-
wise, Hi is inactive. Observe that a baseline may switch
its status between active and inactive, depending on the
position of L, and these switches occur only when L en-

(a) (b) (c)

(d) (e) (f)

s s

t

t

Figure 4: Six types of events of the plane sweep algorithm.
(a) originate event. (b) terminate event. (c) attach event. (d)
detach event. (e) split event. (f) merge event.

counters a vertical segment on the boundary of Dxy(s, t).
During the sweep, we maintain the active baselines of
Dxy(s, t) in a set of ranges with respect to their indices
in a range tree Tran. A range [a, b] contained in Tran rep-
resents a set of active baselines Ha, Ha+1, . . . ,Hb, con-
secutive in their indices from a to b. Every range [a, b]
in Tran is maximal in the sense that Ha−1 and Hb+1 are
inactive or not defined in Dxy(s, t). We use M(i) to
denote the minimum number of links among all short-
est paths from s to ci whose segment incident to ci is
horizontal.

We maintain M(i)’s for horizontal baselines during
the plane sweep as follows. There are vertical line seg-
ments V1, V2, . . . , Vz on the boundary of Dxy(s, t), satis-
fying x(V1) < x(V2) < . . . < x(Vz). Note that the lower
endpoint of V1 is s and the upper endpoint of Vz is t.
We consider each vertical segment Vj (1 ≤ j ≤ z) of
Dxy(s, t) as an event, denoted by Ej , because we com-
pute a minimum-link shortest path aligned to the base-
lines of Dxy(s, t), so M(i) changes only when L encoun-
ters a vertical segment. For each Ej , we use α(j) and
β(j) (with α(j) < β(j)) to denote the indices such that
y1(Vj) = y(Hα(j)) and y2(Vj) = y(Hβ(j)), respectively.
Ej belongs to one of the following six types depending
on the boundary part of Dxy(s, t) that Vj lies on. See
Figure 4 for an illustration of each type.

• E1 belongs to type originate and Ez belongs to type
terminate.

• Ej for each j = 2, . . . , z − 1 belongs to type attach
if Vj lies on ∂xy(s, t), and to type detach if Vj lies
on ∂xy(t, s).

• Ej belongs to type split if Vj is the left side of a hole
of Dxy(s, t), and to type merge if Vj is the right side
of a hole.

204

33rd Canadian Conference on Computational Geometry, 2021

The events are sorted by their x-coordinates. During
the sweep, L encounters Ej when x(L) = x(Vj). Ini-
tially, the tree Tran contains no range, and M(i) is set
to ∞ for all horizontal baselines Hi. When L encoun-
ters E1, which is the originate event with α(1) = 1,
we update M(α(1)) := 1 and M(k) := 2 for each
k ∈ [α(1) + 1, β(1)], and insert the range [α(1), β(1)]
into Tran.

If Ej is an attach event, the inactive baselines Hi

for i from α(j) + 1 to β(j) become active. Observe
that there always exists a range [a′, α(j)] in Tran with
a′ < α(j). Thus, we remove [a′, α(j)] from Tran and
insert [a′, β(j)] into Tran. Then we update M(i) :=
mink∈[a′,α(j)]{M(k) + 2} for each i ∈ [α(j) + 1, β(j)].

If Ej is a detach event, the active baselines Hi for
i from α(j) to β(j) − 1 become inactive. Observe
that there always exists a range [α(j), b′] in Tran with
β(j) < b′. Thus, we remove [α(j), b′] from Tran, and
insert [β(j), b′] into Tran. Then we update M(i) :=
min{M(i),mink∈[α(j),β(j)−1](M(k) + 2)} for each i ∈
[β(j), b′].

If Ej is a split event, the active baselines lying in
between Hα(j) and Hβ(j) become inactive. If there
is such a baseline, there always exists a range [a′, b′]
in Tran with a′ < α(j) and β(j) < b′. In this
case, we remove [a′, b′] from Tran, insert [a′, α(j)] and
[β(j), b′] into Tran, and update for each i ∈ [β(j), b′]
M(i) := min{M(i),mink∈[a′,β(j)−1]{M(k)+2}} for each
i ∈ [β(j), b′].

If Ej is a merge event, the inactive baselines lying in
between Hα(j) and Hβ(j) become active. If there is such
a baseline, there always exist two ranges [a′, α(j)] and
[β(j), b′] in Tran with a′ < α(j) and β(j) < b′. In this
case, we remove [a′, α(j)] and [β(j), b′] from Tran, insert
[a′, b′] into Tran, and update

M(i) :=





mink∈[a′,α(j)]M(k) + 2

for i ∈ [α(j) + 1, β(j)− 1],

min{M(i),mink∈[a′,α(j)]M(k) + 2}
for i ∈ [β(j), b′].

(1)

Our algorithm eventually finds λ(s, t) when L
encounters the terminate event Ez with β(z) =
m. Then Tran has exactly one range [α(z), β(z)],
and we remove it from Tran. We take λ(s, t) =
min{M(m),mink∈[α(z),β(z)−1]M(k) + 1}.

3.2 Computing a minimum-link shortest path

We compute a minimum-link shortest path from s to
t aligned to the baselines of Dxy(s, t) using λ(s, t). To
do this, we add a horizontal line segment at each event,
which we call a canonical segment. Then we report a
minimum-link shortest path using these canonical seg-
ments.

M(i) := 4

M(8) = 3

M(9) = 6 M(9) := 4

H

Ej′

Ej

M(4) = 3

M(3) = 2

Vj

Figure 5: A merge event Ej . M(3) = mink∈[a′,α(j)]M(k),
which was updated from Ej′ . The baselines Hi for i =
5, . . . , 7 become active, and M(i) is updated to 4 by M(3)
(Equation 1). M(9) is also updated by M(3) (Equation 1).
H is the canonical segment for Ej .

For instance, consider a merge event Ej . Recall that
Tran has two disjoint ranges [a′, α(j)] and [β(j), b′] with
a′ < α(j) and β(j) < b′. We update M(i) using
Equation 1. Let k∗ ∈ [a′, α(j)] be the smallest in-
dex such that M(k∗) equals mink∈[a′,α(j)]M(k). As-
sume that M(k∗) was updated lately to the current
value at an event Ej′ before L encounters Ej . Obvi-
ously, x(Vj′) < x(Vj). We add a horizontal line seg-
ment H, which we call a canonical segment for Ej with
x1(H) = x(Vj′), x2(H) = x(Vj) and y(H) = y(Hk∗).
See Figure 5.

We add one canonical segment for the merge event
Ej . Likewise, we add one canonical segment per event
of other types, except for the originate event. Since the
x-coordinates of the events are distinct by the general
position assumption, the right endpoints of the canon-
ical segments we add are also distinct. Once the plane
sweep algorithm is done, by following lemma, we can
report a shortest path that has λ(s, t) links.

Lemma 4 There is a minimum-link shortest path from
s to t whose horizontal line segments are all canonical
segments.

Dxy(s, t) can be obtained by ray shooting queries,
each taking O(log n) time, using the data structure
of Giora and Kaplan [7] with O(n log n) preprocessing
time. Let h be the number of holes in Dxy(s, t), and
o be the complexity of the outer boundary of Dxy(s, t).
We can construct Dxy(s, t) in O((o+h) log n) time using
O(o+ h) space.

Let z denote the number of events occurring during
the sweep. At each of the z events, we remove and
insert some ranges. Because the ranges in Tran are dis-
joint by the definition of Tran, we can insert and re-

205

CCCG 2021, Halifax, Canada, August 10–12, 2021

move a range in O(logm) time by using a simple bal-
anced binary search tree for Tran. We also set or up-
date some M(i)’s at each event. For each event, if we
know mink∈[a1,b1]M(k) for a range [a1, b1], we can up-
date M(i) for i ∈ [a2, b2] (with b1 < a2) in time linear
to the number of consecutive baselines from Ha2 to Hb2 ,
and the number of M(i)’s is O(m). Therefore, it takes
O(m) time to handle an event. We use O(m) space to
maintain Tran and M(i)’s. In total, we use O(o+h+m)
space to compute λ(s, t). We can report a minimum-link
shortest path using O(z) canonical segments. Thus, our
algorithm takes O((n+ o+h) log n+mz) = O(n2) time
and O(o+ h+m+ z) = O(n) space.

Reducing the time complexity. To reduce the time
complexity of our algorithm to O(logm) for handling
each event while keeping the space complexity to O(n)
space, we build another balanced binary search tree Tseg,
a variant of a segment tree in [5]. The idea is to use Tseg
together with Tran to maintain O(logm) nodes corre-
sponding O(m) M(i)’s efficiently, instead of updating
M(i)’s for each event immediately. For each event, we
have the range of indices of baselines inserted into (or
removed from) Tran. Using the range, we find O(logm)
nodes in O(logm) time and update information for each
node in constant time. The details can be found in the
full version [9].

Lemma 5 For a point t in Dxy, we can compute a
minimum-link shortest path from S to t in O(n log n)
time using O(n) space.

4 t lies in Dx or Dy

In this section, we assume that t lies in Dx. Then every
shortest path from S to t is x-monotone by Lemma 2. In
case that t lies in Dy, every shortest path is y-monotone
and we can handle the case in a similar way. Unlike the
case of t ∈ Dxy, there can be a shortest path from S to
t not contained in Dx. See Figure 6(a). However, we
can compute a minimum-link shortest path from S to t
using the algorithm in Section 3 as a subprocedure.

Let π denote a minimum-link shortest path from S to
t aligned to the baselines, and let s∗ and t be the two
endpoints of π with s∗ ∈ S. By definition, (s∗, t) is a
closest pair of S and t. Since π is x-monotone, it is a con-
catenation of xy-monotone paths such that every two
consecutive xy-monotone subpaths of π change their
directions between monotone increasing and monotone
decreasing on a horizontal segment, which we call a
winder, of π.

Lemma 6 Every winder of a shortest path from S to t
contains one entire horizontal side of a rectangle in R
incident to Dx.

δ1

δ2

δ3

S

δ4 t = δ0

Dx

t

S

(a) (b)

t
S

(c)

Figure 6: (a) A minimum-link shortest path from S to t.
It is not contained in Dx. (b) Every shortest path from S
to t passes through δi for i = 0, . . . , 4 and is contained in⋃
i=0,...,3 Dxy(δi, δi+1). (c) Shortest paths from S to t such

that the closest pair of S and t is not unique.

Consider the horizontal sides of rectangles contained
in the winders of a minimum-link shortest path π. Let
g be the number of winders of π, and let δi be the mid-
point of the horizontal side contained in the ith winder
in order along π from t to s∗. We call such a mid-
point a divider of π. For convenience, we let t = δ0
and s∗ = δg+1. Then the subpath from δi to δi+1 for
0 ≤ i ≤ g of π is xy-monotone by the definition of the
winders of π.

By Lemma 6, every winder of a minimum-link short-
est path from S to t contains a horizontal side of a
rectangle incident to Dx. Therefore, in the following we
compute the dividers of a minimum-link shortest path
among the midpoints of the top and bottom sides of each
rectangle incident to Dx, and compute the xy-monotone
paths connecting the dividers, in order, which together
form a minimum-link shortest path.

We compute d(S, t) by a plane sweep algorithm and
find the dividers δ1, . . . , δg of a minimum-link shortest
path π as follows. For a rectangle R ∈ R incident to Dx,
let δ(R) and δ′(R) denote the midpoints of the top and
bottom sides of R, respectively. Then δ(R) and δ′(R)
are candidates of the dividers of π. We consider each
midpoint as an event during the sweep.

While sweeping Dx with a vertical line L moving
rightwards, L encounters δ(R) and δ′(R) of a rectan-
gle R at the same time. Consider two horizontal rays,
one from δ(R) and one from δ′(R), going leftwards.
We show how to handle the ray γ from δ(R). The
ray from δ′(R) can be handled similarly. Let pγ be
the point of the vertical segment on the boundary of

206

33rd Canadian Conference on Computational Geometry, 2021

Dx which γ hits first. If pγ ∈ S, the shortest path
from S to δ(R) is simply pγδ(R). If pγ lies in πru(s)
(or πrd(s

′)), every shortest path from S to δ(R) is xy-
monotone. For these two cases, we store at δ(R) the
distance d(S, δ(R)) and the closest point (one of pγ ,
s, or s′) of S from δ(R). Consider the case that pγ
is in the right side of a rectangle R′ ∈ R incident to
Dx. We already have d(S, δ(R′)) stored at δ(R′) and
d(S, δ′(R′)) stored at δ′(R′) during the plane sweep.
Observe that every shortest path from δ(R) to δ(R′)
or to δ′(R′) is xy-monotone, and the closest point so

of S from δ(R) is the closest point of S from δ(R′)
or from δ′(R′). Since d(so, δ(R)) = min{d(S, δ(R′)) +
d(δ(R′), δ(R)), d(S, δ′(R′)) + d(δ′(R′), δ(R))} by defini-
tion, we can compute so and d(so, δ(R)) in constant
time.

When L encounters t, we again consider a horizontal
ray γ from t going leftwards and the point pγ of the ver-
tical segment on the boundary of Dx which γ hits first.
If pγ ∈ S, the minimum-link shortest path is simply pγt
and we are done. For pγ lying on a side of a rectan-
gle R ∈ R incident to Dx, if d(t, δ(R)) + d(S, δ(R)) <
d(t, δ′(R)) + d(S, δ′(R)) (or the other way around with-
out equality), we conclude there is no shortest path from
S to t passing through δ′(R) (or through δ(R)). Assume
that π passes through δ(R). By the general position
assumption, y(δ(R)) > y(t). Let R′ be the rectangle
incident to Dx that the horizontal ray from δ(R) go-
ing leftwards hits first. If d(S, δ(R′)) + d(δ(R′), δ(R)) >
d(S, δ′(R′)) + d(δ′(R′), δ(R)) or there is no such rect-
angle R′, δ(R) is a divider of π. Moreover, δ(R) is
the first divider δ1 of π from t, and thus every short-
est path from δ1 = δ(R) to t is xy-monotone. There-
fore, we construct Dxy(δ(R), t) and apply the algo-
rithm in Section 3. Then we apply this procedure from
δ(R), recursively, and compute every xy-monotone sub-
path of π using canonical segments by Lemma 4, and
glue them into one to form π. See Figure 6(b). Fi-
nally we obtain g + 1 xy-monotone paths with dividers
δ0 = t, δ1, . . . , δg+1 = s∗ ∈ S.

During the plane sweep, we find in O(log n) time the
first rectangle hit by the horizontal ray γ emanating
from a midpoint of a rectangle going leftwards using
the data structure supporting ray shooting queries by
Giora and Kaplan [7]. Thus, it takes O(n log n) time
for ray shootings from midpoints in total. It takes
O(Ki) time to find a divider δi, where Ki is the num-
ber of the recursion depth of the algorithm to compute
δi from δi−1. As shown in Section 3, computing an
xy-monotone minimum-link shortest path from δi to
δi−1 takes O(Di logDi) time with O(Di) space after
O(n log n)-time preprocessing, where Di is the number
of the baselines defined by the rectangles incident to
Dxy(δi, δi−1). Observe that Σ1≤i≤g+1Ki = O(n), and
Σ1≤i≤g+1Di = O(n) because the regions Dxy(δi, δi−1)’s

are disjoint in their interiors. Thus, the total time com-
plexity is O(n log n) and the total space complexity is
O(n).

Handling degenerate cases. There can be two short-
est paths from S to t, one passing through δ(R) and one
passing through δ′(R) for a rectangle R. In this case, we
have d(t, δ(R)) + d(S, δ(R)) = d(t, δ′(R)) + d(S, δ′(R)),
which can be found in handling the midpoints of R dur-
ing the plane sweep. Observe that this equality may
occur multiple times in finding dividers of a minimum-
link shortest path. Thus we need to devise an efficient
way of maintaining all sequences of dividers, each of
which may define a shortest path. See Figure 6(c). we
show how to maintain these sequences of dividers and
to find a minimum-link shortest path without increas-
ing the time and space complexities in Lemma 7. The
details can be found in the full version [9].

Lemma 7 For a point t in Dx ∪ Dy, we can compute
a minimum-link shortest path from S to t in O(n log n)
time using O(n) space.

5 Extending to a line segment T

Consider the case that the target is not just a point but
an axis-aligned line segment T . We explain how the
algorithm presented in previous sections works for T .
Assume that T is a vertical line segment and x(S) <
x(T). We partition the domain D into eight regions
using the eight monotone paths πα’s from S defined
in Section 2.1. Then T intersects at most five regions
D1
x, D1

xy, D4
xy, D1

y, and D2
y. For the portion T ′ of T

contained in each region, we compute a minimum-link
shortest path from S to T ′.

For the portion of T contained in a region of
D1
xy,D

4
xy,D

1
y and D2

y, the closest point of S from T ′ is
an endpoint of S and the closest point in T ′ from S
is an endpoint of T ′ by Lemma 2. Thus we just apply
the algorithms in Sections 3 and 4 for the corresponding
endpoints of S and T ′.

Consider the case that T ′ ⊂ D1
x. A minimum-link

shortest path from S to T ′ connects S and an endpoint
of T ′ or the intersection point t′ of T ′ with a horizontal
baseline of Dx. We can compute the distance from S
to two endpoints of T ′ using the algorithm in Section 4.
There are O(n) intersection points on T ′ with horizon-
tal baselines of Dx. During the plane sweep, we have
d(S, δ(R)) and d(S, δ′(R)) for each hole R of Dx such
that the horizontal baselines defined by R intersects T ′.
Thus, we can compute the distance from S to each in-
tersection point t′ on T ′ after the plane sweep. Then
we obtain all the closest pairs of S and T ′.

If there is only one closest pair, or the closest point
of T ′ from S is the same for all closest pairs, we can
compute a minimum-link shortest path from S to T ′

207

CCCG 2021, Halifax, Canada, August 10–12, 2021

as we do in Section 4. Otherwise, we can compute a
minimum-link shortest path from S to T ′ using technical
lemmas in the full version [9].

We can compute the portions T ′ of T contained in
each of the five regions in O(log n) time using binary
search along each path πα and computing an intersec-
tion of T and πα. For T ′ ⊂ D1

x, we can find the closest
pairs in O(n log n) time if we use the ray shooting struc-
ture of Giora and Kaplan [7]. For each T ′ we use our
algorithm in Sections 3 and 4 with O(n log n) time and
O(n) space, and eventually find a minimum-link short-
est path from S to T by choosing minλ(S, T ′) for all
T ′.

Lemma 8 Given two axis-aligned line segments S and
T in a rectangular domain with n disjoint rectangular
obstacles in the plane, we can compute a minimum-link
shortest path from S to T in O(n log n) time using O(n)
space.

6 Extending to box-disjoint rectilinear polygons

We show how to extend our algorithm in previous sec-
tions so that it handles box-disjoint rectilinear polygons.
Let RP be a set of box-disjoint rectilinear polygons, and
let B(P) denote the bounding box of a polygon P ∈ RP .
We use C := R2−∪P∈RP

P to denote a box-disjoint rec-
tilinear domain induced by RP in the plane. A set Q
is rectilinear convex if and only if any line parallel to
the x- or y-axis intersects Q in at most one connected
component. The rectilinear convex hull of P , denoted
by CH(P), is the common intersection of all rectilinear
convex sets containing P .

We assume that both S and T are disjoint from the
rectangles B(P) for P ∈ RP . Then no shortest path
intersects the interior of CH(P) for P ∈ RP . If there is
a shortest path π intersecting the interior of CH(P) for
a rectilinear polygon P ∈ RP , π can be shortened by
replacing each connected portion of π contained in the
interior with the boundary curve of CH(P) between the
endpoints of the portion, a contradiction. Thus, we re-
place each polygon P with CH(P) and find a minimum-
link shortest path from S to T avoiding CH(P)’s. We
assume that each polygon P ∈ RP is rectilinear convex
in this subsection. If there is a shortest path π from S to
T intersecting B(P) for P ∈ RP , the subpath π ∩B(P)
can be replaced with a subpath along the boundary of
B(P) without increasing the length. This implies that
there is a shortest path from S to T avoiding B(P) for
all P ∈ RP . From Lemma 2, every shortest path from
S to T avoiding B(P) for all P ∈ RP is either x-, y-, or
xy-monotone. The two subpaths have same length and
endpoints, so they have the same monotonicity: One is
X-monotone if and only if the other is X-monotone, for
X ∈ {x, y, xy}. Therefore, every shortest path from S
to T contained in C is either x-, y-, or xy-monotone.

Here we partition the domain into eight disjoint re-
gions using eight xy-monotone paths as follows. We
define the eight xy-monotone paths from S in a way
slightly different to the one in Section 2.1. Consider the
horizontal ray emanating from s = p1 going rightwards.
Let P ∈ RP be the polygon such that B(P) is the first
rectangle hit by the ray among the rectangles, at point
b on its left side. If the upper endpoint q of the leftmost
vertical side of P lies above b, we set p′1 to b and continue
with the vertical ray from p′1 to q, and continue along
the boundary chain of P from q to the left endpoint p2
of the topmost side of P in clockwise order. Otherwise,
the horizontal ray continues going rightwards until it
hits P at a point b′. Then we set p′1 to b′ and continue
along the boundary chain of P from p′1 to the left end-
point p2 of the topmost side of P in clockwise order. We
repeat this process by taking the horizontal ray from p2
going rightwards. Then we obtain an xy-monotone path
πru(p) = (p = p1, p

′
1, p2, p

′
2, . . .), by following the bound-

ary chain of P from p′i to pi+1 in clockwise order. Thus,
πru(p) is an xy-monotone path from p that alternates
going horizontally rightwards and going vertically up-
wards. We define eight xy-monotone paths πα(p) as in
Section 2.1. Using these eight xy-monotone paths, we
construct at most eight disjoint regions.

Using those regions, we compute a minimum-link
shortest path from S to the portion of T contained in
each region. Let T ′ be the portion of T contained in
Dxy. The closest pair (s, t) of S and T ′ consists of their
endpoints. We compute Dxy(s, t) using the method in
Section 3. Observe that every shortest path from S to
T ′ is contained in Dxy(s, t). With O(n) baselines defined
by the sides of B(P) and the boundary segments of P
incident to Dxy for all P ∈ RP , we can show that there
is a minimum-link shortest path from S to T ′ which
is aligned to the baselines using an argument similar
to the proof of Lemma 3. Hence, we can compute a
minimum-link shortest path from S to T ′ in the same
time and space as in Lemma 5. Similarly, we can com-
pute a minimum-link shortest path from S to T ′ for the
portions T ′ of T contained in other regions. When T ′

is contained in Dx, a minimum-link shortest path may
have some winders, each of which contains the topmost
or the bottommost side of P for a rectilinear polygon
P ∈ RP . This can be shown by an argument similar to
the proof of Lemma 6. Thus we can compute d(S, T ′)
using the same plane sweep algorithm on Dx, and find
the dividers which are midpoints of the topmost or the
bottommost side of P as we do in Section 4 in the same
time and space stated in Lemma 7.

S or T intersects bounding boxes. When S or T in-
tersects some bounding boxes of obstacles, we consider
each portion of S or T contained in a bounding box inde-
pendently. The portion not contained in any bounding

208

33rd Canadian Conference on Computational Geometry, 2021

box can be handled as we do for segments disjoint from
the boxes. For the portion contained in a bounding box
B(P) for a rectilinear polygon P , every minimum-link
shortest path from S to T is the concatenation of a
subpath contained in B(P) and the subpath not con-
tained in B(P) such that both subpaths are minimum-
link shortest paths sharing one point on the bound-
ary of B(P). Using that property, we can compute a
minimum-link shortest path from S to T . The overall
running time remains to be O(n log n) time using O(n)
space. See the full version [9] for details.

Lemma 9 For two axis-aligned line segments S and T
in C such that both S and T are disjoint from B(P) for
all P ∈ RP , we can compute a minimum-link shortest
path from S to T in C in O(n log n) time using O(n)
space.

7 Extending to two polygons S and T

Now we consider two rectilinear polygons S and T with
N vertices in C. We can compute a minimum-link short-
est path from S to T using our algorithms in previ-
ous sections. Since S, T, and obstacles are pairwise
box-disjoint, the distance d(S,T) between S and T can
be represented as d(S,T) = mins∈B(S),t∈B(T){d(s, t) +
mins′∈S d(s, s′) + mint′∈T d(t, t′)}. If we construct the
L1 Voronoi diagram of N boundary segments of S (or
T) [15] in O(N logN) time using O(N) space, we can
maintain and report mins′∈S d(s, s′) and mint′∈T d(t, t′)
for any s ∈ B(S) and t ∈ B(T) in O(logN) query time.
From this observation, together with Lemma 2, we have
the following lemma.

Lemma 10 If there is an x-monotone shortest path
from S to T, then every shortest path from S to T is
x- or xy-monotone. If there is a y-monotone shortest
path from S to T, then every shortest path from S to T
is y- or xy-monotone.

From Lemma 10, we can partition the box-disjoint
rectilinear domain into eight disjoint regions using eight
xy-monotone paths from B(S) as done in Section 6.
See Figure 7(a). There are O(N) vertical and hori-
zontal baselines defined by the boundary segments of
S and T, and Lemma 3 also holds. Thus, we compute a
minimum-link shortest path aligned to the baselines of
each region in which the portion of T is contained.

Let T′ be the portion of T contained in Dxy. Since
S and T′ are rectilinear polygons, there can be more
than one closest pair of points for S and T′. More-
over, the points appearing in the closest pairs are on
line segments with slopes ±1. See Figure 7(b). If we
compute Dxy(s, t) for every closest pair (s, t) of S and
T′, the time and space complexities may increase. In-
stead, we modify the plane sweep algorithm in Sec-
tion 3 slightly. There can be more than one originate

πru(a)

πrd(c)

πur(a)πul(b)

S

T

ab

c

T

S

(a) (b)

s

t

Figure 7: (a) Eight regions of C by eight xy-monotone paths
from four corners of B(S) with box-disjoint obstacles. T
intersects at most five regions. (b) There are nine closest
pairs of S and T. Among all paths connecting closest pairs,
the minimum-link shortest path from s to t is the optimal.

and terminate events during the plane sweep because
there can be more than one closest pair of S and T′.
Also, there are no attach and detach events since we do
not compute Dxy(s, t). For each event Ej in Section 3,
however, we use α(j), β(j) and Tran to maintain active
baselines. Since we have all points in closest pairs of S
and T, we set two horizontal baselines with the small-
est and largest y-coordinate from those points, respec-
tively. The horizontal baselines between the two base-
lines are used for inserting the range, which represents
active baselines, into Tran of each event. Since there are
O(N +n) baselines between the two baselines, the time
to handle an event takes O(log(N+n)) time. Also, there
are additional O(N) originate and terminate events with
O(n) the other events, so we can compute a minimum-
link shortest path from S to T′ in O((N+n) log(N+n))
time using O(N + n) space.

Let T′ be the portion of T contained in Dx. Every
shortest path from S to T′ is x-monotone, so we can
compute the closest pairs of S and T′ as the sweep line
encounters each vertical line segments of T′ using the
plane sweep algorithm in Section 4. Then we can com-
pute dividers in the same way without modifying the
algorithm in Section 4. Lemmas related to dividers in
Section 4 still hold, so we can compute a minimum-link
shortest path connecting dividers similarly. As above,
we can compute a minimum-link shortest path from S
to a divider (or from a divider to T′). This implies we
obtain a minimum-link shortest path from S to T′. We
omit the details.

Therefore, we have Theorem 1.

8 Conclusion

We present an algorithm to compute a minimum-link
shortest path connecting two rectilinear polygons in the
box-disjoint rectilinear domain efficiently. Our algo-
rithm computes a minimum-link shortest path from a
point to the line segment using plane sweep, based on

209

CCCG 2021, Halifax, Canada, August 10–12, 2021

the monotonicity of the optimal path. Then we can ex-
tend objects to rectilinear polygons and apply a slightly
modified algorithm.

Still there are quite a few problems to study. One
typical problem is to compute a minimum-link short-
est path connecting two objects in a general rectilinear
domain such that the obstacles in the domain are not
necessarily box-disjoint. There is a previous work in a
general rectilinear domain, but there seem some gaps to
the optimal time and space complexities.

References

[1] D. Chen, O. Daescu, and K. Klenk. On geo-
metric path query problems. International Jour-
nal of Computational Geometry & Applications,
11(6):617–645, 2001.

[2] D. Chen and H. Wang. L1 shortest path queries
among polygonal obstacles in the plane. In 30th
International Symposium on Theoretical Aspects
of Computer Science. Schloss Dagstuhl-Leibniz-
Zentrum fuer Informatik, 2013.

[3] J. Choi and C. Yap. Monotonicity of rectilin-
ear geodesics in d-space. In Proceedings of the
Annual Symposium on Computational Geometry,
pages 339–348, 1996.

[4] G. Das and G. Narasimhan. Geometric searching
and link distance. In Workshop on Algorithms and
Data Structures, pages 261–272. Springer, 1991.

[5] M. De Berg, O. Cheong, M. Van Kreveld, and
M. Overmars. Computational Geometry: Algo-
rithms and Applications. Springer-Verlag TELOS,
Santa Clara, CA, USA, 3rd edition, 2008.

[6] P. De Rezende, D.-T. Lee, and Y.-F. Wu. Recti-
linear shortest paths in the presence of rectangu-
lar barriers. Discrete & Computational Geometry,
4:41–53, 1989.

[7] Y. Giora and H. Kaplan. Optimal dynamic verti-
cal ray shooting in rectilinear planar subdivisions.
ACM Transactions on Algorithms, 5(3):28:1–51,
2009.

[8] H. Imai and T. Asano. Efficient algorithms for ge-
ometric graph search problems. SIAM Journal on
Computing, 15(2):478–494, 1986.

[9] M. Kim and H.-K. Ahn. Minimum-link short-
est paths for polygons amidst rectilinear obstacles.
arXiv preprint arXiv:2106.14185, 2021.

[10] D.-T. Lee, C.-D. Yang, and C. Wong. Rectilinear
paths among rectilinear obstacles. Discrete Applied
Mathematics, 70(3):185–215, 1996.

[11] J. Mitchell. An optimal algorithm for shortest rec-
tilinear paths among obstacles in the plane. In Ab-
stracts of the 1st Canadian Conference on Compu-
tational Geometry, volume 22, 1989.

[12] J. Mitchell. L1 shortest paths among polygonal
obstacles in the plane. Algorithmica, 8(1–6):55–88,
1992.

[13] J. Mitchell, V. Polishchuk, and M. Sysikaski.
Minimum-link paths revisited. Computational Ge-
ometry, 47(6):651–667, 2014.

[14] J. Mitchell, V. Polishchuk, M. Sysikaski, and
H. Wang. An optimal algorithm for minimum-
link rectilinear paths in triangulated rectilinear do-
mains. Algorithmica, 81(1):289–316, 2019.

[15] E. Papadopoulou and D. Lee. The L∞ Voronoi
diagram of segments and VLSI applications. In-
ternational Journal of Computational Geometry &
Applications, 11(05):503–528, 2001.

[16] M. Sato, J. Sakanaka, and T. Ohtsuki. A fast line-
search method based on a tile plane. In IEEE In-
ternational Symposium on Circuits and Systems,
volume 5, pages 588–591, 1987.

[17] S. Schuierer. An optimal data structure for short-
est rectilinear path queries in a simple rectilinear
polygon. International Journal of Computational
Geometry & Applications, 6(02):205–225, 1996.

[18] C. Toth, J. O’Rourke, and J. Goodman. Hand-
book of discrete and computational geometry. CRC
press, 3rd edition, 2017.

[19] H. Wang. Bicriteria rectilinear shortest paths
among rectilinear obstacles in the plane. Discrete
& Computational Geometry, 62:525–582, 2019.

[20] C.-D. Yang, D.-T. Lee, and C. Wong. On bends
and lengths of rectilinear paths: a graph-theoretic
approach. International Journal of Computational
Geometry & Applications, 2(01):61–74, 1992.

[21] C.-D. Yang, D.-T. Lee, and C. Wong. On
minimum-bend shortest recilinear path among
weighted rectangles. In Tech. Report 92-AC-122.
Dept. of EECS, Northwestern Univ, 1992.

[22] C.-D. Yang, D.-T. Lee, and C. Wong. Rectilinear
path problems among rectilinear obstacles revis-
ited. SIAM Journal on Computing, 24(3):457–472,
1995.

210

CCCG 2021, Halifax, Canada, August 10–12, 2021

An Optimal Algorithm for L1 Shortest Paths in Unit-Disk Graphs∗

Haitao Wang† Yiming Zhao‡

Abstract

A unit-disk graph G(P) of a set P of points in the plane
is a graph with P as its vertex set such that two points
of P are connected by an edge if the distance between
the two points is at most 1 and the weight of the edge
is equal to the distance of the two points. Given P
and a source point s ∈ P , we consider the problem
of finding shortest paths in G(P) from s to all other
vertices of G(P). In the L2 case where the distance
is measured by the L2 metric, the problem has been
extensively studied and the current best algorithm runs
in O(n log2 n) time, with n = |P |. In this paper, we
study the L1 case in which the distance is measured
under the L1 metric (and each disk becomes a diamond);
we present an O(n log n) time algorithm, which matches
the Ω(n log n)-time lower bound.

1 Introduction

Let P be a set of n points in the plane. The unit-disk
graph G(P) of P is a graph with P as its vertex set
such that two points of P are connected by an edge
if the distance between the two points is at most 1.
Alternatively, G(P) is the intersection graph of the set
of disks centered at the points of P with radii equal to
1/2. Each edge of G(P) has a weight that is equal to
the distance of the two incident vertices of the edge.

In this paper, we consider the single-source shortest
path (SSSP) problem on G(P), i.e., given P and a source
point s ∈ P , compute shortest paths in G(P) from s to
all other points of P . In particular, we consider the L1

case of the problem in which the distance is measured
under the L1 metric (and each disk becomes a diamond).

The L2 case of the problem where the distance is mea-
sured under the L2 metric has been extensively stud-
ied [3, 5, 8, 9, 15, 16]. The current best algorithm, which
was given by Wang and Xue [16], runs in O(n log2 n)
time. The L1 case, however, has not been particularly
studied before. To solve the L1 problem, we follow the
algorithmic framework of Wang and Xue [16] but give a

∗This research was supported in part by NSF under Grant
CCF-2005323.

†Department of Computer Science, Utah State University, Lo-
gan, UT 84322, USA. haitao.wang@usu.edu

‡Corresponding author. Department of Computer Sci-
ence, Utah State University, Logan, UT 84322, USA.
yiming.zhao@usu.edu

faster implementation. The runtime of Wang and Xue’s
algorithm [16] is dominated by a bottleneck subprob-
lem. Due to some special properties of the L1 metric, we
derive a more efficient algorithm for the bottleneck sub-
problem in L1 case, which leads to an overall O(n log n)-
time algorithm for the shortest path problem.

More specifically, the bottleneck subproblem is
the offline insertion-only additively-weighted nearest-
neighbor problem, where we are given an offline se-
quence of k insertions and queries such that an insertion
inserts a weighted point to a point set U (which is ∅ ini-
tially) and a query asks for the additively-weighted near-
est neighbor in U of a query point. The goal is to an-
swer all queries. Wang and Xue [16] solved the problem
in O(k log2 k) time by using the standard logarithmic
method [1,2]. This leads to the overall O(n log2 n) time
for their shortest path algorithm [16]; reducing the time
for the subproblem to O(k log k) would solve the short-
est path problem in O(n log n) time. The difficulty in
doing so is that there does not exist a semi-dynamic (for
insertions only) weighted Voronoi diagram data struc-
ture that can perform each insertion in O(log k) amor-
tized time (in order to answer queries, an efficient dy-
namic point location data structure is also needed). For
solving our L1 shortest path problem, we first observe
that in the bottleneck subproblem U and V are sepa-
rated by an axis-parallel line `, where V is the set of
all query points. Without loss of generality, we assume
that ` is horizontal and U is below `. Based on the prop-
erties of the L1 metric, a critical observation we find is
that the portion of the weighted L1 Voronoi diagram of
U above ` only consists of a set of vertical lines. Then,
we can easily maintain these vertical lines by a balanced
binary search tree so that each query can be answered in
O(log k) time. Further, the special structure also allows
us to update the portion of the Voronoi diagram above `
in O(log k) amortized time for each insertion. As such,
the bottleneck subproblem can be solved in O(k log k)
time in the L1 case, which leads to an overall O(n log n)
time algorithm for the shortest path problem. Note that
the space of our shortest path algorithm is O(n).

Cabello and Jejčič [3] observed that by a simple reduc-
tion from the max-gap problem, deciding whether the
unit-disk graph G(P) is connected requires Ω(n log n)
time even if all points of P are on a line. This implies
that Ω(n log n) is a lower bound for solving the shortest
path problem in unit-disk graphs for both the L1 and L2

cases (because both cases are the same when all points

211

33rd Canadian Conference on Computational Geometry, 2021

of P are on a line). As such, our algorithm for the L1

case is optimal.

1.1 Related work

Before Wang and Xue’s work [16], the shortest path
problem in the L2 case had been studied by many oth-
ers. Roditty and Segal [15] gave the first sub-quadratic
algorithm of O(n4/3+ε) time for any constant ε > 0.
Cabello and Jejčič [3] later proposed an improved al-
gorithm of O(n1+ε) time. Following the framework of
Cabello and Jejčič [3] but with a more efficient data
structure for the bichromatic closest pair problem, Ka-
plan et al. [9] gave a randomized algorithm that solves

the problem in O(n log12+o(1) n) expected time. Ap-
proximation algorithms for the problem have also been
developed, e.g., see [5, 8, 16]

The shortest path problem we consider is actually on
a weighted unit-disk graph. In the unweighted case, the
weight of each edge of the graph is 1. The unweighted
problem is much easier. The L2 unweighted problem
can be solved in O(n log n) time [3, 5]. In particular, if
all input points of P are presorted by their x- and y-
coordinates, the algorithm of Chan and Skrepetos [4]
runs in O(n) time.

As an important class of geometric intersection
graphs, unit-disk graphs have been widely studied due
to many of their applications, e.g., in wireless sensor net-
works [13,14]. In addition to the shortest path problem,
many other problems on unit-disk graphs have also been
considered in the literature, such as the clique prob-
lem [6], the independent set problem [12], all pairs of
shortest paths [4, 5, 8], the diameter problem [4, 5, 8],
etc. Comparing to general graphs, these problems in
unit-disk graphs can be solved more efficiently by ex-
ploiting their underlying geometric structures.

Outline. In the following, we describe the main algo-
rithm in Section 2 while the bottleneck subproblem is
tackled in Section 3.

2 The main algorithm

In this section, we describe the main algorithm for the
shortest path problem. Our algorithm follows Wang and
Xue’s algorithmic framework [16]. In the following, we
will adapt their algorithm to the L1 case. We will also
borrow some of their notation.

For any two points p and q in the plane, we use d(p, q)
to denote their L1 distance. For any point p, we use⊙

p to denote the unit disk centered at p, which is a
diamond in the L1 metric. Let s be the source point
of P . Throughout the paper, we will use the points of
P and the vertices of the unit-disk graph G(P) inter-
changeably.

p

Figure 1: The side length of each square cell in the grid
Γ is 1

2 . For the black point p, the red cell that contains
it is �p, and the square area bounded by blue segments
which contains 5 × 5 cells is the patch �p. For any
point in �p, its neighboring points in G(P) must lie in
the grey region.

The algorithm follows the basic idea of Dijkstra’s
shortest path algorithm with the help of a grid. At
the outset, we implicitly build a grid Γ of square cells of
side length 1/2. For simplicity of discussion, we assume
that each vertex of G(P) lies in the interior of a single
cell of Γ. A patch of Γ is a square area consisting of 5×5
cells of Γ. For any point p in the plane, let �p denote
the cell of Γ that contains p and �p denote the patch
whose central cell is �p (e.g., see Fig. 1). Since the side
length of each cell of Γ is 1/2, if two vertices of G(P)
are in a single cell of Γ, they must be connected by an
edge in G(P). On the other hand, if two points p and
q are connected by an edge in G(P), then q must be in
a cell of �p. Unlike Dijkstra’s shortest path algorithm,
which selects one single vertex in each iteration to com-
pute shortest-path information, our algorithm tries to
compute shortest-path information for all vertices in a
cell of Γ and then pass shortest-path information to the
vertices in the neighboring cells.

For a subset Q ⊆ P and a cell � (resp., a patch �)
of Γ, define Q� = Q ∩� (resp., Q� = Q ∩�).

To implicitly compute the grid Γ, we actually perform
the following preprocessing. We compute P� for all cells
� of Γ that contain at least one point of P . We also
associate pointers to each point p ∈ P such that from
p we can access �p and �p. The preprocessing can be
done in O(n log n) time and O(n) space [16].

The algorithm will compute a table dist[·] for all ver-
tices of G(P), where dist[p] is the length of a shortest
path between s and a point p ∈ P . Note that we should
also maintain the corresponding path-predecessor infor-
mation to form a shortest path tree; this can be done

212

CCCG 2021, Halifax, Canada, August 10–12, 2021

by standard techniques [16], so we omit the discussions.
One important subroutine that will be extensively

used in the algorithm is Update(U, V). For two sub-
sets U, V ⊆ P , Update(U, V) is to update the shortest-
path information of vertices in the set V by using the
shortest-path information of vertices in U . More specif-
ically, for each v ∈ V , let qv = arg minu∈U∩⊙v

{dist[u]+
d(u, v)}. The purpose of Update(U, V) is to find qv for
all v ∈ V and update dist[v] = min{dist[v], dist[qv] +
d(qv, v)}.

With Update(U, V), the algorithm works as follows
(refer to Algorithm 1 for the pseudocode). Initially,
for each vertex p ∈ P , dist[p] is set to ∞, except that
dist[s] = 0. Initialize Q = P . In the main loop, as long
as Q 6= ∅, in each iteration we find a vertex q ∈ Q who
has a minimum dist[q]. Subsequently there are two sub-
routines Update(Q�q

, Q�q
) and Update(Q�q

, Q�q
).

Finally, vertices in Q�q
are removed from Q, because

dist[p] for all p ∈ Q�q
have been correctly computed.

Refer to [16] for the correctness proof, which is applica-
ble to the L1 case.

Algorithm 1: The SSSP Algorithm [16]

1 Function SSSP(P , s):
2 for each p ∈ P do
3 dist[p] =∞
4 end
5 dist[s] = 0
6 Q = P
7 while Q 6= ∅ do
8 q = arg minp∈Q{dist[p]}
9 Update(Q�q

, Q�q
) // first update

10 Update(Q�q
, Q�q

) // second update

11 Q = Q \Q�q

12 end
13 return dist[·]
14 end

Implementing the algorithm efficiently hinges on the
two Update procedures.

The first update. For the first update Up-
date(Q�q

, Q�q
), the key is to find a point

qv ∈ Q�q
∩ ⊙v that minimizes dist[qv] + d(qv, v)

for each point v ∈ Q�q
. If we assign each point in Q�q

a weight equal to its dist-value, then qv is essentially the
additively-weighted nearest neighbor of v in Q�q

∩⊙v.
To find qv efficiently, a crucial observation found by
Wang and Xue [16] (see Lemma 2.5 in [16], whose proof
is applicable to the L1 case) is that any point p ∈ Q�q

that minimizes dist[p] + d(p, v) must be in
⊙

v, i.e.,
the nearest neighbor of v in Q�q

is also the nearest
neighbor of v in Q�q

∩⊙v. Due to this observation,
we can find qv for all v ∈ Q�q

as follows. First, we

build an L1 additively-weighted Voronoi diagram on
vertices in Q�q

and then using the diagram to find the
nearest neighbor for each v ∈ Q�q

. Constructing the
diagram can be done in O(|Q�q

| log |Q�q
|) time and

O(|Q�q
|) space (e.g., by using the abstract Voronoi

diagram algorithm [11]), and all queries together take
O(|Q�q

| log |Q�q
|) time (e.g., build a point location

data structure on the diagram in O(|Q�q
|) time [7, 10]

and then perform point location queries for points of
Q�q

, which take O(log |Q�q
|) time each).

The second update. Implementing the second update
Update(Q�q

, Q�q
) is not that easy anymore because

the above crucial observation does not hold. Since
Q�q

has O(1) cells of Γ, it suffices to perform Up-
date(Q�q

, Q�) for all cells � ∈ �q.
If � is �q, then Q�q

= Q�. Since the distance be-
tween any two points in �q is at most 1, we can use the
following algorithm to implement Update(Q�q

, Q�).
We first build an L1 weighted Voronoi diagram on
points of Q�q

in O(|Q�q
| log |Q�q

|) time and O(|Q�q
|)

space [11], and then use it to find the weighted nearest
neighbor qv for each point v ∈ Q�q

. Clearly, the total
time is O(|Q�q

| log |Q�q
|).

If � is not �q, then a critical property is that �
and �q are separated by an axis-parallel line `. To
perform Update(Q�q

, Q�), Wang and Xue [16] pro-
posed the following approach (see Algorithm 2 for the
pseudocode). Let U = Q�q

and V = Q�. We
first sort vertices in U = {u1, u2, ..., u|U |} by their
dist-values such that dist[u1] ≤ dist[u2] ≤ ... ≤
dist[u|U |]. Then we partition V into subsets Vi =
{v ∈ V | v ∈ ⊙ui

, v /∈ ⊙uj
for all j < i}, for all

i = 1, 2, . . . , |U |. For each 1 ≤ i ≤ |U |, for each ver-
tex v ∈ Vi, we find qv = arg minp∈Ui

{dist[p] + d(p, v)},
where Ui = {ui, ui+1, . . . , u|U |}, and update dist[v] =
min{dist[v], dist[qv] + d(qv, v)}. This step is imple-
mented by a for loop (Lines 6–13) in Algorithm 2.
By the definition of Vi, we have U ∩ ⊙v ⊆ Ui for
all v ∈ Vi. Also, Wang and Xue [16] proved that qv
found as above must be in

⊙
v (see Lemma 2.6 in [16],

whose proof is applicable to the L1 case). As such,
qv = arg minp∈U∩⊙v

{dist[p] + d(p, v)}. This proves the
correctness of the algorithm.

We now analyze the runtime of the above algorithm.
Sorting the vertices of U takes O(|U | log |U |) time. To
compute the subsets Vi, 1 ≤ i ≤ |U |, Wang and Xue [16]
gave an algorithm of O(k log k) time (and O(k) space)
for the L2 case (see Section 2.2.1 [16]) by making use of
the property that U and V are separated by `, where
k = |U |+|V |. For the L1 case, we can use the same algo-
rithm; in fact, the algorithm becomes easier as a disk in
the L1 case is a diamond. We omit the details and con-
clude that the subsets Vi, 1 ≤ i ≤ |U |, can be computed
in O(k log k) time in the L1 case. Next, the for loop

213

33rd Canadian Conference on Computational Geometry, 2021

Algorithm 2: Update(U, V) [16]

1 Function Update(U , V):
2 Sort(U = {u1, u2, ..., u|U |}) // dist[u1] ≤

... ≤ dist[u|U |]
3 for i = 1, 2, ..., |U | do
4 Vi = {v ∈ V | v ∈⊙ui

, v /∈⊙
uj

for all j < i}
5 end
6 U ′ = ∅
7 for i = |U |, |U | − 1, ..., 1 do
8 U ′ = U ′ ∪ {ui}
9 for each v ∈ Vi do

10 qv = arg minu∈U ′{dist[u] + d(u, v)}
11 dist[v] =

min{dist[v], dist[qv] + d(qv, v)}
12 end

13 end

14 end

(Lines 6–13) is for the bottleneck subproblem mentioned
in Section 1, i.e., the offline insertion-only additively-
weighted nearest-neighbor problem. Indeed, if we as-
sign each vertex in U a weight equal to its dist-value,
then qv is essentially the additively-weighted nearest
neighbor of v in U ′, where U ′ = Ui in the i-th itera-
tion of the for loop. The set U ′ is dynamically changed
with point insertions. Using the standard logarithmic
method [1,2], Wang and Xue [16] solves the problem in
O(k log2 k) time. By exploring the properties of the L1

metric, we give an O(k log k) time (and O(k) space) al-
gorithm in Section 3. As such, Update(Q�q

, Q�) can
be performed in O(k log k) time and O(k) space, with
k = |Q�q

|+ |Q�|.
In summary, since Q�q

has O(1) cells, the sec-
ond update Update(Q�q

, Q�q
) can be implemented in

O(|Q�q
| log |Q�q

|) time as Q�q
⊆ Q�q

. This leads to
the following theorem.

Theorem 1 Given a set P of n points in the L1 plane
and a source point s ∈ P , the shortest paths from s to
all vertices in the unit-disk graph G(P) can be computed
in O(n log n) time and O(n) space.

Proof. As discussed before, constructing the grid Γ
implicitly can be done in O(n log n) time and O(n)
space [16]. We have shown that both Update proce-
dures can be implemented in O(|Q�q

| log |Q�q
|) time

and O(|Q�q
|) space. As such, each iteration of

the while loop of Algorithm 1 can be implemented
in O(|Q�q

| log |Q�q
|) time and O(|Q�q

|) space. As∑
q∈Q |Q�q

| ≤ 25n, the total time of the algorithm
is O(n log n). Note that the overall time of Line 8
and Line 11 of Algorithm 1 can be easily bounded by

<latexit sha1_base64="ADfmFTOd5eHhzCKJs+DIuzX9P+4=">AAAB63icbVBNS8NAEJ34WetX1aOXxSJ4KkkR9Vj04rGC/YA2lM120i7d3YTdjVBC/4IXD4p49Q9589+YtDlo64OBx3szzMwLYsGNdd1vZ219Y3Nru7RT3t3bPzisHB23TZRohi0WiUh3A2pQcIUty63AbqyRykBgJ5jc5X7nCbXhkXq00xh9SUeKh5xRm0t9FGJQqbo1dw6ySryCVKFAc1D56g8jlkhUlglqTM9zY+unVFvOBM7K/cRgTNmEjrCXUUUlGj+d3zoj55kyJGGks1KWzNXfEymVxkxlkHVKasdm2cvF/7xeYsMbP+UqTiwqtlgUJoLYiOSPkyHXyKyYZoQyzbNbCRtTTZnN4ilnIXjLL6+Sdr3mXdXqD5fVxm0RRwlO4QwuwINraMA9NKEFDMbwDK/w5kjnxXl3Phata04xcwJ/4Hz+AA+wjkI=</latexit>

`

Figure 2: Illustrating VD(U ′), where U ′ has six blue
points (with the same weight). VDh(U ′) consists of two
vertical half-lines.

O(n log n) by using a balanced binary search tree. The
total space of the algorithm is O(n). �

3 The bottleneck subproblem

In this section, we present an O(k log k) time and O(k)
space algorithm to solve the bottleneck subproblem on
U and V , with k = |U | + |V |. Recall U and V are
separated by an axis-parallel line `. Without loss of
generality, we assume that ` is horizontal such that U
is below ` and V is above `. Our goal is to find qv ∈ U ′
for all v ∈ Vi (i.e., Line 10 in Algorithm 2), for a subset
U ′ ⊆ U .

In the following, we first discuss some observations
about the geometric structure of the problem and then
describe the algorithm.

3.1 Observations

Let VD(U ′) denote the weighted Voronoi diagram of U ′.
To find qv, it suffices to locate the cell of VD(U ′) that
contains v. Let h denote the upper half-plane bounded
by `. As v is above `, it suffices to maintain the por-
tion of VD(U ′) above `, denoted by VDh(U ′). In what
follows, we first show that VDh(U ′) has a very simple
structure: it only consists of a set of vertical half-lines
with endpoints on ` and going upwards to the infinity
(e.g., see Fig. 2). Then, we will show that VDh(U ′) can
be updated in O(log k) amortized time for each insertion
(i.e., inserting a point into U ′).

We say a vertical half-line is grounded on ` if it goes
upwards to the infinity and has its endpoint on `. For
any point or a vertical line segment p in the plane, we
use x(p) to denote its x-coordinate. For each point u ∈
U , we define its weight w(u) = dist[u].

Properties of bisectors of two weighted points. Con-
sider two weighted points a and b in the plane with
nonnegative weights w(a) and w(b), respectively. The
bisector B(a, b) of a and b is the locus of points with

214

CCCG 2021, Halifax, Canada, August 10–12, 2021

equal (additively-)weighted distance to a and b, i.e.,
B(a, b) = {p ∈ R2 | w(a) + d(a, p) = w(b) + d(b, p)}
(e.g., see Fig. 3). Note that in the degenerate case it
is possible that an entire quadrant of the plane is in
B(a, b) (e.g., see Fig. 3b), in which case we only con-
sider the vertical boundary of the quadrant to be in
B(a, b). Hence, B(a, b) in general consists of three parts:
two axis-parallel half-lines with a segment in the mid-
dle. Suppose both a and b are below the line ` and
x(a) ≤ x(b). Define Bh(a, b) = B(a, b) ∩ h. Then ei-
ther Bh(a, b) = ∅ or Bh(a, b) ∩ h is a vertical half-line
grounded on `; in the latter case x(a) ≤ x(Bh(a, b)) ≤
x(b). Note that if x(a) = x(b), then B(a, b) is a hori-
zontal line between a and b and thus Bh(a, b) = ∅.

Geometric structure of VDh(U ′). Since all points of
U are below `, according to the discussion above, for
any two points ui and uj of U , Bh(ui, uj) is either ∅ or
a vertical half-line grounded on ` (and the vertical half-
line is between ui and uj). These properties guarantee
that VDh(U ′) consists of a set of O(|U ′|) vertical half-
lines grounded on ` (e.g., see Fig. 2), and between each
pair of adjacent half-lines is the portion of the Voronoi
cell of a vertex u ∈ U ′. As such, we can use a balanced
binary search tree T (U ′) to store the x-coordinates of
the vertical half-lines of VDh(U ′). Given a query point
v ∈ V , we can use T (U ′) to find the cell of VDh(U ′) con-
taining v and thus obtain qv in O(log |U ′|) time, which
is O(log k) as |U ′| ≤ |U | ≤ k. In the following, we will
discuss how to update VDh(U ′) after a point of U is in-
serted to U ′. We first prove some properties about the
geometric structure of VDh(U ′).

For each point u ∈ U ′, let R(u) denote the Voronoi
cell of u in VD(U ′) and let Rh(u) = R(u)∩h. The above
shows that if Rh(u) is not empty, then it is bounded
by two vertical half-lines from the left and right; let lu
and ru denote these two half-lines, respectively. We call
lu the left bounding half-line and ru the right bounding
half-line of Rh(u). Note that if Rh(u) is the leftmost
(resp., rightmost) cell of VDh(U ′), then we let lu (resp.,
ru) refer to the vertical half-line grounded on ` with
x-coordinate −∞ (resp., +∞).

We say that a point u ∈ U ′ is relevant if Rh(u) 6= ∅
and irrelevant otherwise. The following lemma proves
several properties about the geometric structure of
VDh(U ′), which will be useful for processing insertions.

Lemma 2 Suppose u1, u2, . . . , ut is the list of relevant
vertices of U ′ whose Voronoi cells intersect h in the or-
der from left to right. Then, the followings hold.

1. x(u1) < x(u2) < · · · < x(ut).

2. For each 1 ≤ i < t, rui is lui+1 .

3. For each 1 ≤ i ≤ t, x(lui) ≤ x(ui) ≤ x(rui).

b

a

B(a, b)

(a)

b

a

B(a, b)

(b)

b

a

B(a, b)

(c)

Figure 3: Possible cases for the bisector B(a, b) of two
weighted points a and b.

4. For each 1 ≤ i ≤ t, pi is in Rh(ui), where pi is the
vertical projection of ui on `.

Proof. Consider a point ui for any i > 1. By the defi-
nition of the list u1, u2, . . . , ut, lui belongs to the bisec-
tor B(ui−1, ui) of ui−1 and ui, i.e., lui = Bh(ui−1, ui).
According to the properties of bisectors, x(ui−1) ≤
x(lui) ≤ x(ui). Note that x(ui−1) = x(ui) is not possi-
ble since otherwise Bh(ui−1, ui) would be ∅ (contradict-
ing with lui = Bh(ui−1, ui)). As such, x(ui−1) < x(ui)
holds. This proves the first lemma statement.

According to our definition of the list u1, u2, . . . , ut,
the left bounding half-line of Rh(ui+1) must be the right
bounding half-line of Rh(ui). Hence, the second lemma

215

33rd Canadian Conference on Computational Geometry, 2021

ui
ui−1 ui+1

`

Rh(u
i, U ′)

Bh(u
i−1, ui) Bh(u

i, ui+1)

p∗

u∗

Bh(u
i, u∗) Bh(u

∗, ui+1)

Figure 4: Illustrating VDh(U ′), and VDh(U ′′) after u∗

is inserted. The two dash dotted blue segments are
new half-lines in VDh(U ′′) while Bh(ui, ui+1) does not
appear in VDh(U ′′). Rh(ui, U ′) is the grey area and
Rh(u∗, U ′′) is the region between the two dash dotted
blue segments. Note that Bh(ui−1, ui) is lui = rui−1

and Bh(ui, ui+1) is rui = lui+1 .

statement holds.

The above shows that x(lui) ≤ x(ui) for i > 1. If
i = 1, x(lui) ≤ x(ui−1) also holds, for x(lui) = −∞.
This proves that x(lui) ≤ x(ui) for any 1 ≤ i ≤ t. By a
symmetric analysis, we can show that x(ui) ≤ x(rui) for
any 1 ≤ i ≤ t. This proves the third lemma statement.

The fourth lemma statement is an immediate conse-
quence of the third lemma statement. �

3.2 Processing insertions

We are now in a position to describe our algorithm for
processing insertions.

Consider inserting a point u∗ ∈ U \ U ′ into U ′. As
u∗ ∈ U , u∗ is below `. Let U ′′ = U ′ ∪ {u∗}. Our
goal is to construct VDh(U ′′) by modifying VDh(U ′),
or more precisely, obtain the tree T (U ′′) by modify-
ing T (U ′). For differentiation, for each vertex u ∈ U ′′,
we use R(u, U ′′) to denote the Voronoi cell of u in
VD(U ′′) and use R(u, U ′) to denote the Voronoi cell of
u in VD(U ′). We define Rh(u, U ′′) and Rh(u, U ′) sim-
ilarly. Let u1, u2, . . . , ut be the list of relevant vertices
of U ′ whose Voronoi cells intersect h ordered from left
to right.

We first compute the vertical projection of u∗ on `
and let p∗ denote the projection point (e.g., see Fig. 4).
Then, using the tree T (U ′), we find the cell Rh(ui, U ′)
of VDh(U ′) that contains p∗, for some relevant point
ui ∈ U ′. For ease of discussion, we assume 1 < i < t
and other cases can be handled similarly. The following
lemma is obtained based on Lemma 2.

Lemma 3 Rh(u∗, U ′′) 6= ∅ if and only if d(p∗, ui) +
w(ui) ≥ d(p∗, u∗) + w(u∗), and if Rh(u∗, U ′′) 6= ∅, then
p∗ ∈ Rh(u∗, U ′′).

Proof. If Rh(u∗, U ′′) 6= ∅, then by Lemma 2, p∗ must
be in Rh(u∗, U ′′) and this implies d(p∗, ui) + w(ui) ≥
d(p∗, u∗)+w(u∗) must hold. On the other hand, suppose
d(p∗, ui) + w(ui) ≥ d(p∗, u∗) + w(u∗). Then, since p∗ ∈
Rh(ui, U ′), d(p∗, ui) + w(ui) ≤ d(p∗, u) + w(u) holds
for any vertex u ∈ U ′. Therefore, d(p∗, u) + w(u) ≥
d(p∗, u∗) + w(u∗) holds for any u ∈ U ′′. This implies
that u∗ is the nearest neighbor of p∗ in U ′′. As such, the
point p∗ must be in Rh(u∗, U ′′) and Rh(u∗, U ′′) cannot
be empty. �

With Lemma 3, our insertion algorithm proceeds
as follows. We check whether d(p∗, ui) + w(ui) ≥
d(p∗, u∗) + w(u∗). If not, then Rh(u∗, U ′′) = ∅ by
Lemma 3 and thus VDh(U ′′) = VDh(U ′); hence,
T (U ′′) = T (U ′) and we are done with processing the
insertion of u∗. In the following, we assume that
d(p∗, ui) + w(ui) ≥ d(p∗, u∗) + w(u∗). By Lemma 3,
Rh(u∗, U ′′) 6= ∅ and thus VDh(U ′′) 6= VDh(U ′). Below
we discuss how to modify VDh(U ′) to obtain VDh(U ′′).

For each vertex u ∈ U ′, we still use lu and ru to
denote the left and right bounding vertical half-lines of
Rh(u, U ′), respectively.

Since p∗ ∈ Rh(ui, U ′), we have x(u∗) = x(p∗) ∈
[x(lui), x(rui)]. By Lemma 2, x(ui−1) ≤ x(rui−1) =
x(lui) and x(rui) = x(lui+1) ≤ x(ui+1). Therefore,
x(p∗) ∈ [x(ui−1), x(ui+1)]. Also by Lemma 2, x(ui−1) <
x(ui) < x(ui+1). Without loss of generality, we assume
that x(ui) ≤ x(p∗) < x(ui+1). We first discuss how to
obtain the portion of VDh(U ′′) to the left of p∗. To
this end, we consider the points ui, ui−1, . . . , u1 in this
order.

First, for ui, we compute the bisector B(ui, u∗) of ui

and u∗. Depending on whether Bh(ui, u∗) = B(ui, u∗)∩
h is ∅, there are two cases.

• If Bh(ui, u∗) 6= ∅, then Bh(ui, u∗) is a vertical
half-line grounded on `. Since x(ui) ≤ x(u∗),
according to the properties of bisectors, x(ui) ≤
x(Bh(ui, u∗)) ≤ x(u∗). As x(lui) ≤ x(ui) and
x(u∗) ≤ x(rui), Bh(ui, u∗) must be in the Voronoi
cell Rh(ui, U ′) between lui and p∗ (e.g., see Fig. 4).
Hence, Bh(ui, u∗) must be the right bounding half-
line of the cell Rh(ui, U ′′) in VDh(U ′′) as well as
the left bounding half-line of the cell Rh(u∗, U ′′).
We update the tree T (U ′) accordingly (i.e., insert
Bh(ui, u∗) to T (U ′)) and then halt the algorithm
(i.e., the construction of VDh(U ′′) on the left of p∗

is finished).

• If Bh(ui, u∗) = ∅, then by our definition of bisectors
(including our way for handling the degenerating
case), since d(p∗, ui) + w(ui) ≥ d(p∗, u∗) + w(u∗),
d(p, ui) + w(ui) ≥ d(p, u∗) + w(u∗) holds for any
point p ∈ h. This implies that ui is dominated
by u∗ with respect to the points of h, and thus

216

CCCG 2021, Halifax, Canada, August 10–12, 2021

ui becomes irrelevant in VDh(U ′′). As such, we
remove lui from T (U ′). Note that lui is rui−1 by
Lemma 3.

Next, we consider ui−1 in a way similar to
the above for ui. If Bh(ui−1, u∗) 6= ∅, then
Bh(ui−1, u∗) becomes the right bounding half-line
of the cell Rh(ui−1, U ′′) in VDh(U ′′) as well as the
left bounding half-line of Rh(u∗, U ′′). We insert
Bh(ui−1, u∗) into T (U ′) and halt the algorithm. If
Bh(ui−1, u∗) = ∅, then since p∗ ∈ Rh(u∗, U ′′) by
Lemma 3, d(p∗, ui−1)+w(ui−1) ≥ d(p∗, u∗)+w(u∗).
Further, by our definition of bisectors (includ-
ing our way for handling the degenerating case),
d(p, ui−1)+w(ui−1) ≥ d(p, u∗)+w(u∗) holds for any
point p ∈ h. Therefore, as above, ui−1 becomes ir-
relevant in VDh(U ′′). Accordingly, we remove lui−1

from T (U ′). We then proceed to considering ui−2

in the same way as above.

The above describes the algorithm for constructing
VDh(U ′′) to the left of p∗. The algorithm for con-
structing VDh(U ′′) to the right of p∗ is similar. One
slight difference is that the algorithm starts with con-
sidering ui+1 instead of ui by first removing rui from
T (U ′). Then, we compute the bisector B(u∗, ui+1).
If Bh(u∗, ui+1) 6= ∅, then Bh(u∗, ui+1) becomes the
right bounding half-line of Rh(u∗, U ′′) as well as the
left bounding half-line of Rh(ui+1, U ′′). We insert
Bh(u∗, ui+1) into T (U ′) and halt the algorithm. If
Bh(u∗, ui+1) = ∅, then ui+1 becomes irrelevant and we
proceed to considering ui+2 in the same way.

The above describes the algorithm for constructing
VDh(U ′′) from VDh(U ′). The resulting tree T (U ′) is
T (U ′′). The following lemma summarizes the time com-
plexity of the insertion algorithm described above and
proves the correctness of the algorithm.

Lemma 4 After a point u∗ ∈ U is inserted into U ′,
VDh(U ′′) can be computed from VDh(U ′) in O((δ +
1) log k) time, where U ′′ = U ′∪{u∗} and δ is the number
of relevant vertices of VDh(U ′) that become irrelevant in
VDh(U ′′).

Proof. The runtime of the insertion algorithm is ob-
vious from our algorithm description. In the following,
we prove the correctness of the algorithm.

If d(p∗, ui) + w(ui) < d(p∗, u∗) + w(u∗), then
VDh(U ′′) = VDh(U ′) by Lemma 3 and thus our algo-
rithm is correct in this case. In the following, we assume
that d(p∗, ui)+w(ui) ≥ d(p∗, u∗)+w(u∗) and prove that
the diagram VDh(U ′′) constructed by our algorithm is
correct.

Let p be any point in h and let u be the point of
U ′′ such that p is in the cell of u after our insertion
algorithm for u∗ is finished, i.e., p ∈ Rh(u, U ′′). To
prove the correctness of our algorithm, it suffices to show

u′′uj = u u∗

`

Rh(u, U
′′)

· · · · · · · · ·

Bh(u
′′, u∗)

Rh(u
∗, U ′′)

p
Rh(u

′′, U ′′)

Figure 5: Illustrating the proof of Lemma 4 for the case
where u is not adjacent to u∗ in L.

that d(p, u) + w(u) ≤ d(p, u′) + w(u′) holds for every
point u′ ∈ U ′′. Depending on whether u = u∗, there
are two cases. Let uj be the point of U ′ such that p ∈
Rh(uj , U ′).

• We first consider the case u = u∗. As p ∈
Rh(uj , U ′), d(p, uj)+w(uj) ≤ d(p, u′)+w(u′) holds
for any u′ ∈ U ′. As p is in the cell of u∗ after the
insertion algorithm finishes, according to our al-
gorithm, d(p, u∗) + w(u∗) ≤ d(p, uj) + w(uj) must
hold. Since u = u∗, we obtain that d(p, u)+w(u) =
d(p, u∗)+w(u∗) ≤ d(p, uj)+w(uj) ≤ d(p, u′)+w(u′)
holds for any u′ ∈ U ′′.

• We then consider the case u 6= u∗. In this case,
according to our algorithm, u must be uj and
u and u∗ define different cells in VDh(U ′′), i.e.,
Rh(u, U ′′) 6= Rh(u∗, U ′′). Without loss of gener-
ality, we assume that Rh(u, U ′′) is to the left of
Rh(u∗, U ′′). Depending on whether u is adjacent
to u∗ in the relevant point list L after the insertion
algorithm (L is defined in the same way as Lemma 2
with respect to VDh(U ′′)), there are two subcases.

If u is adjacent to u∗ in L, then since p is in the
cell of u after the insertion algorithm, it holds that
d(p, u)+w(u) ≤ d(p, u∗)+w(u∗). Since u = uj and
d(p, uj)+w(uj) ≤ d(p, u′)+w(u′) holds for any u′ ∈
U ′, we obtain that d(p, u)+w(u) ≤ d(p, u′)+w(u′)
holds for any u′ ∈ U ′′.
If u is not adjacent to u∗ in L, then let u′′ be the
left neighboring relevant point of u∗ in L (e.g., see
Fig 5). Since Rh(u, U ′′) is to the left of Rh(u∗, U ′′)
and p ∈ Rh(u, U ′′), p must be to the left of
Bh(u′′, u∗), which is the right bounding half-line
of Rh(u′′, U ′′). As u′′ is the left neighboring rel-
evant point of u∗ in L, according to our insertion
algorithm, d(p′, u′′) +w(u′′) ≤ d(p′, u∗) +w(u∗) for
any point p′ ∈ h to the left of Bh(u′′, u∗). Be-
cause p is in h to the left of Bh(u′′, u∗), d(p, u′′) +
w(u′′) ≤ d(p, u∗) + w(u∗) holds. As d(p, uj) +
w(uj) ≤ d(p, u′) + w(u′) for any u′ ∈ U ′, we have
d(p, uj)+w(uj) ≤ d(p, u′′)+w(u′′). We thus derive
d(p, uj) + w(uj) ≤ d(p, u∗) + w(u∗). Since u = uj ,

217

33rd Canadian Conference on Computational Geometry, 2021

we obtain that d(p, u) +w(u) ≤ d(p, u′) +w(u′) for
any u′ ∈ U ′′.

In summary, d(p, u) + w(u) ≤ d(p, u′) + w(u′) holds
for every point u′ ∈ U ′′. This proves the correctness of
our algorithm. �

Note that once a relevant point becomes irrelevant
after an insertion, it will never become relevant again
for any insertions in future. Therefore, the total sum
of δ in Lemma 4 for processing all insertions of U is
at most k. As such, by Lemma 4, the total time for
processing all insertions is O(k log k).

Recall that all query operations can be performed in
overall O(k log k) time by using the tree T (U ′). Note
that the space of our algorithm is bounded by O(k).
Therefore, we finally obtain the following result.

Lemma 5 The bottleneck subproblem on U and V can
be solved in O(k log k) time and O(k) space, where k =
|U |+ |V |.

References

[1] J.L. Bentley. Decomposable searching problems. Infor-
mation Processing Letters, 8:244–251, 1979.

[2] M. de Berg, K. Buchin, B.M.P. Jansen, and G. Woegin-
ger. Fine-grained complexity analysis of two classic TSP
variants. ACM Transactions on Algorithms, 17(1):5:1–
5:29, 2021.

[3] S. Cabello and M. Jejčič. Shortest paths in intersection
graphs of unit disks. Computational Geometry: Theory
and Applications, 48(4):360–367, 2015.

[4] T.M. Chan and D. Skrepetos. All-pairs shortest paths
in unit-disk graphs in slightly subquadratic time. In
Proceedings of the 27th International Symposium on Al-
gorithms and Computation (ISAAC), pages 24:1–24:13,
2016.

[5] T.M. Chan and D. Skrepetos. Approximate shortest
paths and distance oracles in weighted unit-disk graphs.
In Proceedings of the 34th International Symposium
on Computational Geometry (SoCG), pages 24:1–24:13,
2018.

[6] B.N. Clark, C.J. Colbourn, and D.S. Johnson. Unit disk
graphs. Discrete mathematics, 86(1-3):165–177, 1990.

[7] H. Edelsbrunner, L. Guibas, and J. Stolfi. Optimal
point location in a monotone subdivision. SIAM Jour-
nal on Computing, 15(2):317–340, 1986.

[8] J. Gao and L. Zhang. Well-separated pair decomposi-
tion for the unit-disk graph metric and its applications.
SIAM Journal on Computing, 35(1):151–169, 2005.

[9] H. Kaplan, W. Mulzer, L. Roditty, P. Seiferth, and
M. Sharir. Dynamic planar Voronoi diagrams for gen-
eral distance functions and their algorithmic appli-
cations. In Proceedings of the 28th Annual ACM-
SIAM Symposium on Discrete Algorithms (SODA),
pages 2495–2504, 2017.

[10] D. Kirkpatrick. Optimal search in planar subdivisions.
SIAM Journal on Computing, 12(1):28–35, 1983.

[11] R. Klein. Concrete and abstract Voronoi diagrams.
volume 400 of Lecture Notes in Computer Science,
Springer-Verlag, 1989.

[12] T. Matsui. Approximation algorithms for maximum
independent set problems and fractional coloring prob-
lems on unit disk graphs. In Japanese Conference on
Discrete and Computational Geometry, pages 194–200,
1998.

[13] C.E. Perkins and P. Bhagwat. Highly dynamic
destination-sequenced distance-vector routing (DSDV)
for mobile computers. In Proceedings of the Confer-
ence on Communications Architectures, Protocols and
Applications (SIGCOMM), pages 234–244, 1994.

[14] C.E. Perkins and E.M. Royer. Ad-hoc on-demand dis-
tance vector routing. In Proceedings of the 2nd IEEE
Workshop on Mobile Computing Systems and Applica-
tions (WMCSA), pages 90–100, 1999.

[15] L. Roditty and M. Segal. On bounded leg shortest paths
problems. Algorithmica, 59(4):583–600, 2011.

[16] H. Wang and J. Xue. Near-optimal algorithms for short-
est paths in weighted unit-disk graphs. Discrete and
Computational Geometry, 64:1141–1166, 2020.

218

CCCG 2021, Halifax, Canada, August 10–12, 2021

Total Domination in Geometric Unit Disk Graphs

Sangram K. Jena∗ Gautam K. Das†

Abstract

Let G = (V,E) be an undirected graph. We call Dt ⊆ V
a total dominating set (TDS) of G if each vertex v ∈ V
has a dominator in Dt other than itself. Here we con-
sider the TDS problem in geometric unit disk graphs,
where the objective is to find a minimum cardinality
total dominating set for an input graph. We prove that
the problem of deciding whether a geometric unit disk
graph (UDG) G has a TDS of cardinality at most k
(here k is a positive integer) is NP-complete. Next, we
propose an almost linear time 8-factor approximation al-
gorithm in geometric UDGs for the TDS problem. It is
an improvement over the best-known 10-factor approxi-
mation algorithm with the same running time available
in the literature [M. V. Marathe, H. Breu, H. B. Hunt
III, S. S. Ravi and D. J. Rosenkrantz, Simple heuristics
for unit disk graphs, Networks, 25(2):59–68, 1995]. We
also show that the TDS problem admits a polynomial-
time approximation scheme in geometric UDGs.

keywords: Total dominating set, approximation al-
gorithm, PTAS, unit disk graph

1 Introduction

Let us consider a simple undirected graph G = (V,E).
The open neighborhood (resp. closed neighborhood) of
a vertex v ∈ V is the set NG(v) = {u ∈ V : uv ∈ E}
(resp. NG[v] = NG(v) ∪ {v}). A dominating set (DS)
of G is a subset D ⊆ V such that for each vertex v ∈ V ,
|D ∩ NG[v]| ≥ 1. A total dominating set (TDS) is a
subset Dt ⊆ V of G such that for each vertex v ∈ V ,
|Dt ∩NG(v)| ≥ 1. Therefore, a vertex v ∈ D (dominat-
ing set) dominates all its neighbors and itself whereas a
vertex v ∈ Dt (total dominating set) dominates all its
neighbors other than itself. The objective of TDS (resp.
DS) problem is to find a minimum size subset Dt ⊆ V
(resp. D ⊆ V) such that Dt (resp. D) dominates all
the vertices in V .

The intersection graph of equal-radii disks with
known position in the plane is called a geometric unit
disk graph (UDG). Let P = {p1, p2, . . . , pn} be a set of n
points in R2. Let di = {p ∈ R2|d(pi, p) ≤ 1

2} be a disk of
radius 1

2 with centered at pi for 1 ≤ i ≤ n, where d(., .)

∗Department of Mathematics, Indian Institute of Technology
Guwahati, sangram@iitg.ac.in
†Department of Mathematics, Indian Institute of Technology

Guwahati, gkd@iitg.ac.in

denotes Euclidean distance between two points in R2.
Let S = {d1, d2, . . . , dn} be the set of n equal-radii cir-
cular disks. We define the geometric UDG G = (V,E)
corresponding to the point set P as follows: each vertex
vi ∈ V corresponds to the point pi ∈ P , and vivj ∈ E
if and only if the disks di and dj intersect i.e., the Eu-
clidean distance between pi and pj is at most one unit.

One of the applications of the problem is identifying
the location of monitoring devices, such as surveillance
cameras or fire alarms, to safeguard a system that can
be modeled by total domination in graphs. The problem
of placing monitoring devices in a system, where each
monitoring device can be placed in such a way that every
site in the system (including the monitors themselves) is
adjacent to one of the monitoring devices. In this case,
placing the monitoring devices in each solution point of
the total domination of the system solves the problem.

1.1 Related Work

In 1980, Cockayne et al. [6] introduced the total domi-
nation problem and proved that for any connected graph
G of n(≥ 3) vertices the cardinality of minimum total
dominating set, denoted by λt, is less than or equal to
2
3n i.e., λt ≤ 2

3n. Brigham et al. [2] proved that the to-
tal domination number is exactly 2

3n for the connected
graph G of order n(≥ 3), where G is either C3 (cycle
graph of 3 vertices), C6 or 2-corona of some connected
graph. Sun [21] proved the bound to λt ≤

⌊
4
7 (n+ 1)

⌋
,

for connected graphs having order n with minimum
degree at least 2. Chvátal and McDiarmid [5] and
Tuza [23] independently proved a theorem concerning
transversals in hypergraphs, which gives a bound on to-
tal domination number. The bound is λt ≤ n

2 for the
graphs with order n and minimum degree at least 3. For
the graphs with minimum degree at least 4, Thomassé
and Yeo [22] proposed a result for hypergraphs, which
bounds the total domination number by λt ≤ 3

7n. In [8],
DeLaViņa et al. proved that the total domination num-
ber of any connected graph is equal to the total domina-
tion number of a spanning tree of the same graph. An-
other interesting aspect of trees concerning total domi-
nation is that it is possible to characterize some vertices
that are in every minimum total dominating set or not
in any total dominating set [7]. Furthermore, Haynes
and Henning established three equivalent conditions for
a tree to have a unique minimum total dominating set
[10]. Chellali and Haynes [4] proved λt ≥ n+2−`

2 for a

219

33rd Canadian Conference on Computational Geometry, 2021

nontrivial tree of n vertices with ` leaves. Dorfling et al.
[9] bound the total domination number of planar graphs
having different diameters and radius. Pfaff et al. [20]
showed that computing λt for general graphs is NP-
complete. In the same paper, they also showed that cal-
culating λt for bipartite graphs remains NP-complete.
However, a linear-time algorithm exists for computing
λt in tree graph [19]. The total domination number in
the case of star graphs, complete graphs, binary star
graphs, and complete bipartite graphs is 2 [1]. In the
same article, they have observed that for cycles and
paths, the total dominating set can be found in polyno-
mial time. They have also established a set of relations
between (i) λt and the maximum degree, and (ii) λt and
the cut vertices of the graph. See [1, 11, 12, 13, 14] for
a detailed survey on the TDS problem.

Dominating set and its many variants such as
weighted dominating set, connected dominating set, etc.
have been extensively studied in the literature due to
their wide range of applications in wireless networks. A
wireless network can be modeled as a unit disk graph.
Though the (variant) domination problems are still NP-
hard for unit disk graphs, unlike in general graphs the
problems admit constant approximation algorithms and
approximation schemes [25, 26, 29, 30, 31, 24, 27, 28].

1.2 Our Contribution

In this paper, we consider the total dominating set prob-
lem in geometric UDGs. In Section 2, we prove that the
decision version of the TDS problem is NP-complete in
geometric UDGs. We propose an almost linear time 8-
factor approximation algorithm for the same problem
in Section 3. We also show that the problem admits a
PTAS in Section 4. Finally, we conclude the paper in
Section 5.

2 NP-Completeness

In this section, we prove that the TDS problem in UDGs
belongs to the class NP-complete. In [18], Lichtenstein
proved that the planar vertex cover problem is NP-hard
by showing a polynomial-time reduction from the pla-
nar 3SAT problem to the planar vertex cover problem.
In the reduction from an arbitrary instance of the pla-
nar 3SAT problem to an instance of planar vertex cover
problem, the degree of the graph is at most 3. There-
fore the planar vertex cover problem is NP-hard for the
graphs with the degree at most 3. We prove the NP-
hardness result of the TDS problem in UDGs by show-
ing a polynomial-time reduction from the vertex cover
problem in planar graphs of degree at most 3 to it. Now,
we define the decision version of the TDS problem in
UDGs and vertex cover problem in planar graphs of de-
gree at most 3 as follows:

The TDS problem in UDGs (Tds-Udg)

Given a unit disk graph G and an integer k(> 0), does
there exist a TDS of size at most k?

The VC problem in planar graphs (Vc-Pla)

Given a planar graph G with degree at most 3 and an
integer k(> 0), does G has a VC of size at most k?

Lemma 1 ([32]) Let G = (V,E) be a planar graph
with maximum degree 3. The graph G can be embed-
ded in linear time on a planar grid of size 4 × 4 us-
ing O(|V |2) area such that the coordinate of each vertex
v ∈ V is (4i, 4j) for some integers i, j and each edge
e ∈ E is a finite sequence of consecutive axis-parallel
line segments of length 4 units along the grid lines.

Lemma 2 For a given Vc-Pla instance G = (V,E)
with at least one edge, an instance G′ = (V ′, E′) of
Tds-Udg can be constructed in polynomial-time.

Proof. Let V = {v1, v2, . . . , vn} and E =
{e1, e2, . . . , em}. The construction of G′ from the
graph G is described in four steps as follows.

Step 1: (Embedding) We first embed G into a pla-
nar grid of size 4n × 4n using Lemma 1. On the
embedding, each of the vertex vi ∈ V becomes grid
point pi and each edge ej ∈ E become a finite se-
quence of connected axis-parallel line segment(s)
of length four units along the grid lines. Assume
that ` is the total number of line segments used in
the embedding. We call the point pi correspond-
ing to the vertex vi ∈ V (i = 1, 2, . . . , n) in the
embedding as vertex points (see Figure 1(a) and
1(b)). Let N be the set of vertex points. There-
fore, N = {pi | vi ∈ V } and |N | = |V |(= n).

Step 2: (Extra points) In this step, we add some ex-
tra points on each of the ` line segments (obtained
in embedding step) so that unit disks centered on
these points and grid points (see embedding step)
form a unit disk graph as follows: (a) for each edge
pipj with only one line segment i.e., length of the
edge is 4 units, we add five points at distance 0.98,
1.49, 2, 2.51, 3.02 units from pi (see edge p4p6 in
Figure 1(c)), and (b) for each edge pipj with more
than one segment i.e., length of the edge is greater
than 4 units, (i) add a point on each of the grid
point on the edge other than the vertex point and
name it as grid point (see square points in Fig-
ure 1(c)), and (ii) we add four points on each of
the line segments connected with pi and pj at dis-
tances 1, 1.75, 2.5, 3.25 units from pi and pj , and
for other line segments we add three points at dis-
tance 1 units from each other excluding the grid

220

CCCG 2021, Halifax, Canada, August 10–12, 2021

v1

v2 v5

v3 v4

v6

(a)

p1

p5

p4
p6

p3

p2

(b)

p1

p5

p4p6

p3

p2

(c)

Figure 1: (a) A planar graph G with maximum degree
3, (b) its embedding on a 4×4 grid, and (c) construction
of a UDG from the embedding.

points (see the edge p3p4 in Figure 1(c)). Let A be
the set of all points added in this step. Therefore,
|A| = 4` + m (here ` is the total number of line
segments in the embedding and m is the number of
edges in G).

Step 3: (Support point) Add a new line segment of
length 1.4 units at each of the vertex points pi with-
out coinciding with the line segments that had al-
ready been drawn in the embedding. Observe that
the addition of such a line segment is possible with-
out losing the planarity as the maximum degree of
G is 3. We add three points xi, yi, zi on each of
these line segments at distances 0.3, 1.1, and 1.4
units from the corresponding vertex point pi. Let
S be the set of all points added in this step. There-
fore, |S| = 3n (here n is the number of vertices in
G).

Step 4: (Construction of UDG) We construct a
UDG G′ = (V ′, E′), where V ′ = N ∪ A ∪ S and
E′ = {u′v′ : u′, v′ ∈ V ′ and the Euclidean distance
between u′ and v′ is at most 1 unit} (see Figure
1(c)).

From Lemma 1, ` = O(n2). Therefore both |V ′| and
|E′| are bounded by O(n2). Hence, G′ can be con-
structed in polynomial-time. �

Theorem 3 Tds-Udg belongs to the class NP-
complete.

Proof. Let T ⊆ V be an arbitrary subset of vertices
and k(> 0) be an integer. Observe that, we can verify
whether T is a total dominating set such that |T | ≤ k
or not in polynomial-time. Therefore, Tds-Udg ∈ NP.

To prove NP-hardness of Tds-Udg, we will use poly-
nomial time reduction of Vc-Pla to it. We construct
an instance G′ = (V ′, E′) of Tds-Udg from an arbi-
trary instance G = (V,E) of Vc-Pla in polynomial
time using the steps mentioned in Lemma 2. Next, we
prove the following claim to complete the proof of NP-
hardness of Tds-Udg.

Claim: G has a vertex cover C with |C| ≤ k if and
only if G′ has a total dominating set T with |T | ≤ k +
2`+ 2n.
Necessity: Let C ⊆ V be a vertex cover of G such that
|C| ≤ k. Let N ′ = {pi ∈ N | vi ∈ C}, i.e., N ′ is the set
of vertices (or vertex points) in G′ that correspond to
the vertices in C. From each segment, we choose 2 ver-
tices (extra points) from A and corresponding to each
vertex point, we choose 2 points (support points) from
S, in the embedding. The set of chosen vertices, say
A′(⊆ A), S′(⊆ S), together with N ′ will form a TDS
of the desired cardinality in G′. We now discuss the
process of obtaining the set A′. Initially A′ = ∅. As C
is a vertex cover, every edge in G has at least one of its

221

33rd Canadian Conference on Computational Geometry, 2021

v1

v2 v5

v3 v4

v6

(a)

p1

p5

p4p6

p3

p2

(b)

Figure 2: (a) A vertex cover {v1, v3, v4} in G, and (b)
the construction of A′ in G′ (the tie between v3 and v4
is broken by choosing v3)

end vertices in C. Let vivj be an edge in G and vi ∈ C
(choose any of them arbitrarily if both vi and vj are in
C). Note that the edge vivj is represented as a sequence
of line segments in the embedding. Start traversing the
segments (of vivj) from pi, where pi corresponds to vi,
and add two consecutive vertices by leaving two con-
secutive vertices in between starting from pi to A′ in
the traversal (see p4p5 in Figure 2(b)). The red bold
vertices are part of A′ while traversing from p4).

Apply the above process to each edge in G. Observe
that the cardinality of A′ is 2` as we have chosen 2
vertices from each segment in the embedding. Next, we

choose 2n points from S in S′ = {xi, yi : pi ∈ N}. Let
T = N ′ ∪ A′ ∪ S′. Now, we argue that T is a total
dominating set in G′.

For each point pi ∈ N , pi is dominated by xi, xi
is dominated by yi, yi is dominated by xi and zi is
dominated by yi. So, the sets N and S satisfies total
domination condition. Now it is remaining to prove that
the set A satisfies total domination condition. Observe
the way we have chosen points from A in T , with a
gap of two consecutive points, two consecutive points
are chosen in T . For each point pi ∈ T , pi dominates
NG(pi) ∈ A and the selected points of A in T can total
dominate all the remaining points of A (see the edge
p1p2 in Figure 2(b)).

Therefore, T is a TDS in G′ and |T | = |N ′| + |A′| +
|S′| ≤ k + 2`+ 2n.

Sufficiency: Let T ⊆ V ′ be a TDS of size at most
k+ 2`+ 2n. We prove that G has a vertex cover of size
at most k with the help of the following claims.

(i) Out of three support points associated with each
pi ∈ N , at least two points belongs to T , i.e., |S ∩
T | ≥ 2n.

(ii) Every segment in the embedding must contribute at
least two points to T and hence |A∩T | ≥ 2`, where
` is the total number of segments in the embedding.

(iii) If pi and pj correspond to end vertices of an edge
vivj in G, and if both pi, pj are not in T , then
there must be at least 2`′+1 vertices in T from the
segment(s) representing the edge vivj , where `′ is
the number of segments representing the edge vivj
in the embedding.

Claim (i) directly follows from the definition of total
dominating set. Observe that we added points xi, yi, zi
such that pi is adjacent to xi, xi is adjacent to yi, and
yi is adjacent to zi in G′, i.e., {pixi, xiyi, yizi} ⊆ E′

for each i. Hence, yi must be in T as yi is the only
vertex which can dominate zi and either xi or zi must
be in T to dominate yi. Therefore, any total dominating
set of G′ must contain two support points in T out of
three support points associated with pi, 1 ≤ i ≤ n, i.e.,
|S ∩ T | ≥ 2n.

Claim (ii) follows from the fact that only consecutive
points are adjacent (in G′) on any segment in the em-
bedding. Let η be a segment in the embedding having
vertices qi, qi+1, qi+2, and qi+3. On contrary, assume
that η has only one of its vertices in T . Note that only
qi can not be in T . If qi present in T , then qi+2 is not
dominated by any point, which is a contradiction to the
fact that T is a TDS. If qi+1 is the only point in T
then qi+1 is not dominated by any point. If qi+2 will be
chosen as the only point from η in T then qi+2 is not
dominated by any other point and finally if qi+3 will be

222

CCCG 2021, Halifax, Canada, August 10–12, 2021

chosen then qi+1 is not dominated by any other point.
In all cases, we arrived at a contradiction.

Claim (iii) follows from the definition of the total
dominating set that any point chosen in the solution
set dominates all its neighbors other than itself. Here
any point selected from a segment in T has exactly
two neighbors other than itself. So, it can dominate
at most 2 points. There are `′ segments between two
node points pi and pj having 4`′ + 1 number of points
and both pi and pj are not in T . So, the minimum num-
ber of points required in T to ensure total domination

is
⌈
4`′+1

2

⌉
= 2`′ + 1.

Now, we will show that, by removing and/or replacing
some vertices in T , a set of at most k points from N can
be chosen such that the corresponding vertices form a
vertex cover in G. The vertices in S account for 2n
vertices in T (due to Claim (i)). Let T = T \ S and
C = {vi ∈ V | pi ∈ T ∩ N}. If any edge vivj in G has
none of its end vertices in C, then we do the following:
consider the sequence of segments representing the edge
vivj in the embedding. Since both pi and pj are not in
T , there must exist a segment having three vertices in
T (due to Claim (iii)). Consider the segment having its
three vertices in T . Delete any one of the vertices on the
segment and introduce pi (or pj). Update C and repeat
the process till every edge has at least one of its end
vertices in C. Due to Claim (ii), C is a vertex cover in
G with |C| ≤ k. Therefore, Tds-Udg ∈ NP-hard. As
Tds-Udg ∈ NP and Tds-Udg ∈ NP-hard, Tds-Udg
∈ NP-complete. �

3 Approximation Algorithm

In this section, we propose an 8-factor approximation al-
gorithm for the TDS problem in UDGs. The worst-case
time complexity of our proposed algorithm is O(n log k),
where k is the size of the output of our algorithm. Note
that, if there exists an r-factor approximation algorithm
for the dominating set problem then a 2r-factor approx-
imation algorithm for the total dominating set problem
can be obtained by adding one neighbor for each vertex
in the dominating set. A 10-factor approximation algo-
rithm is available in the literature for the TDS problem
in UDGs [26]. In this section, we improved the approx-
imation factor of the TDS problem in UDGs to 8. The
running time of the 8-factor approximation algorithm is
O(n log k).

Lemma 4 [26] Let C be a unit disk centered at a point
p. If S is a set of independent1 unit disks such that
every unit disk in S contains the point p then |S| ≤ 5.

Lemma 5 Let C ′ and C ′′ be two unit disks centered at
points p and q respectively, such that d(p, q) = 1. If S

1Two disks are independent if the distance between their cen-
ters is greater than one.

1 2 c1

c2

c34

5 p q
3

C ′ C ′′

4π/32π/3

c4

< π/3

(a)

1 2 6

7

84

5 p q3

C ′ C ′′

(b)

Figure 3: Illustration of Lemma 5.

is a set of independent unit disks containing the point p
and/or q, then |S| ≤ 8.

Proof. Let Sp, Sq ⊆ S be the sets of independent unit
disks containing the point p and q respectively. This
implies S = Sp ∪ Sq. Note that, the cardinality of S
will increase if the distance between p and q increases.
Therefore, without loss of generality, we assume that
the points p and q are one unit distance apart, i.e., the
point q lies on the boundary of the unit disk C ′ centered
at p (see Figure 3 for reference). Now, we consider the
following two cases:

Case (i): |Sp| ≤ 3. From Lemma 4, we observed
that |Sq| ≤ 5. Hence, |Sp ∪ Sq| ≤ 8.

Case (ii): |Sp| > 3. It is known that |Sp| ≤ 5 (see
Lemma 4). So |Sp| is either 4 or 5.

(a) Assume that |Sp| = 5. Now it is remaining to prove
that, there does not exist more than 3 independent
unit disks in the set (say S′q) ⊆ Sq, which contains
the point q but does not contain the point p, i.e.,
|S′q| = |Sq|−|Sp∩Sq| ≤ 3. For the sake of argument
assume that |S′q| = 4, that means, there exist 4
unit disks centered at ci, 1 ≤ i ≤ 4 in S′q, which
contains the point q. Let us denote the ray−→qci by ri,

223

33rd Canadian Conference on Computational Geometry, 2021

(1 ≤ i ≤ 4). Since there are 4 rays coming out from
q and the disks centered at ci, (i = 1, 2, 3, 4) does
not contains p, there exist one pair of rays ri and
rj such that the angle between them is at most π/3
(see Figure 3(a)), which leads to a contradiction
that the disks centered at ci, (i = 1, 2, 3, 4) are
independent. Thus, |S′q| ≤ 3, which implies |Sp ∪
Sq| ≤ 8 (see Figure 3(b)).

(b) Assume that |Sp| = 4. Now it is sufficient to prove
that |S′q| < 5, to prove |Sp∪Sq| ≤ 8. For the sake of
argument assume that |S′q| = 5, that means, there
exist 5 independent unit disks in the set S′q, which
contains the point q but does not contain the point
p. Following a similar argument as in case (a), it
leads to a contradiction. Thus, |S′q| < 5, which
implies |Sp ∪ Sq| ≤ 8.

In either of the cases, we proved that |Sp ∪ Sq| ≤ 8.
Therefore, |S| ≤ 8. �

Let P denote the set of n points (center of the disks)
given in the plane R2. We use ∆(S) to denote the set
of unit disks centered at the points in S ⊆ P . A domi-
nating set in unit disk graphs (Ds-Udg) D ⊆ P of the
set of disks ∆(P) is said to be an independent Ds-Udg
if for each pair p, q ∈ D, p 6∈ NG(q).

The procedure of generating a Tds-Udg for a given
points set P in R2 is described in Algorithm 1.

Algorithm 1 Total dominating set in P

Require: A set of disks ∆(P)
Ensure: A total dominating set T of ∆(P)
1: D ← ∅, and T ← ∅
2: while (P 6= ∅) do
3: choose an arbitrary point p ∈ P
4: D ← D ∪ {p}; P ← P \NG[p]
5: end while
6: for every p ∈ D do
7: if NG(p) ∩ T = ∅ then
8: let q ∈ NG(p)
9: T = T ∪ {q}

10: end if
11: end for
12: T = T ∪D
13: return T

Lemma 6 T returned by Algorithm 1 is a Tds-Udg
for the set of unit disks ∆(P).

Proof. Before finding a Tds-Udg T , Algorithm 1 find
an independent Ds-Udg D (see while loop in line num-
ber 2 of the algorithm), which ensures domination for
the set of unit disks ∆(P) and total domination for the
points P \D. Next, to obtain total domination in D, for
each point p ∈ D the algorithm ensures the existence of

a point q ∈ NG(p) in T (see for loop in line number 6 of
the algorithm). Therefore the selected points in T along
with D ensures total domination for the set of unit disks
∆(P). �

Lemma 7 |T | ≤ 8|OPT |, where OPT is a Tds-Udg
for the unit disks ∆(P) of minimum size.

Proof. Consider an arbitrary point p ∈ OPT . As OPT
is a TDS of minimum size there must exist a point
q ∈ OPT such that p ∈ NG(q) and the point q ensures
the domination for the point p. Now consider both the
unit disks centered at p and q. From Lemma 5, it is
proved that there exist at most 8 unit disks in an inde-
pendent Ds-UdgD of ∆(P) that can contain the points
p and/or q.

Now the cardinality of T follows from the fact that for
every pair p, q ∈ OPT such that p ∈ NG(q), there may
exist at most 8 unit disks in an independent Ds-Udg
D of ∆(P) that can contain the points p and/or q. Our
algorithm chooses at most one neighbor for each point
in D in to the solution set T , to make T as a Tds-Udg
(see line numbers 6-12 of Algorithm 1). So for 8 points
in D at most 16 points may be chosen in T with respect
to two points p, q ∈ OPT . which leads at most 16 points
are chosen by Algorithm 1 against 2 points (namely, p
and q) chosen in the optimal solution of the TDS, i.e.,
|T | ≤ 16

2 |OPT |. Therefore, |T | ≤ 8|OPT |. �

Lemma 8 The worst-case time required to generate a
Tds-Udg for the set of disks ∆(P) by Algorithm 1 is
O(n log k), where k is the size of the output.

Proof. We now describe the time complexity of Algo-
rithm 1 for computing a Tds-Udg T of ∆(P) as follows.
Let us assume that R is an axis parallel rectangular re-
gion containing the points in P . We partition R into
grid cells of size 1 × 1. A point pi = (xi, yi) ∈ P lies
in the grid cell indexed by [bxic, byic] for i = 1, 2, . . . , n.
Each grid cell is attached with a list of points in P
that belong to that cell. We construct an indepen-
dent dominating set D for UDG corresponding to ∆(P).
While considering a point pi ∈ P , we inspect all mem-
bers of D which are attached to all 9 cells [α, β], where
bxic − 1 ≤ α ≤ bxic+ 1 and byic − 1 ≤ β ≤ byic+ 1. If
there does not exist any unit disk d in D that contains
the point pi, we add pi in D. Observe that, at the end
of considering all the points in P , D will be an inde-
pendent Ds-Udg for the set of disks in ∆(P). Initially,
take T = ∅. Now, for each point p ∈ D, if there does not
exist any point q in T such that q ∈ NG(p), then add
q in T , and the existence of q is guaranteed, otherwise
finding TDS for this given instance is impossible as the
point p is an isolated point. Finally, update T = T ∪D.
After ensuring the existence of a point q ∈ NG(p) for
each point p ∈ D, observe that T is a Tds-Udg for the

224

CCCG 2021, Halifax, Canada, August 10–12, 2021

set of disks in ∆(P). Note that, (i) a grid cell may con-
tain at most 6 points in T , and (ii) the number of grid
cells to be inspected while processing a point pi ∈ P
is at most 9. We use a height-balanced binary tree to
store the indices of the grid cells containing a non-zero
number of points in T . Thus, the time complexity for
processing a point p ∈ P is O(log k), where k = |T | and
|P | = n. �

Theorem 9 Algorithm 1 is an 8-factor approximation
algorithm for the Tds-Udg problem. The running time
of the algorithm is O(n log k), where n is the input size
and k is the output size.

Proof. Follows from Lemma 6, Lemma 7, and Lemma
8. �

4 Approximation Scheme

In this section, we propose a polynomial-time approxi-
mation scheme (PTAS) for the TDS problem in geomet-
ric UDGs. We use the shifting strategy [15] technique
to propose a PTAS. Let P be a point set (centers of the
disks) given in a rectangular region R along with a fixed
integer k ≥ 1.

We use a two-level nested shifting strategy to propose
a PTAS for the said problem. The first level of shifting
strategy is applied in the vertical direction on R. There
are k iterations in the first level and the i-th iteration
(1 ≤ i ≤ k) partition the region R into many vertical
strips, where the first strip is of width 2i, and remaining
strips other than the last strip are of width 2k. The
width of the last strip may be less than 2k. Without loss
of generality, assume that each point lying on the left
boundary of a strip belongs to its left adjacent strip (i.e.,
every strip is left open and right closed). Now consider
all the non-empty vertical strip V, and apply the second
level of shifting strategy in the horizontal direction. In
the second level of shifting strategy, the j-th iteration
(1 ≤ j ≤ k) partition each non-empty vertical strip V
into square/rectangular cells of size 2j × ` for the first
cell and 2k × ` for all other cells, where ` defines the
width of the strip V (` = 2i for the first strip and ` = 2k
for all other strips except for the last strip).

We consider each non-empty 2k× 2k square (concep-
tually extending the smaller cells into 2k × 2k square)
and find the optimal solution of each square. The union
of the optimal solution of each 2k×2k square gives a fea-
sible solution of each strip V. Finally, we take the union
of the solution of each non-empty vertical strip to get
a feasible solution of the problem in a single iteration,
i.e., (i, j)-th iteration. In the same process, we get the
feasible solutions of all the iterations in the first level.
We report the solution T , having minimum cardinality
among all the solutions generated in each iteration as
the solution of the Tds-Udg problem.

Now, we discuss the procedure of getting an optimal
solution from each 2k × 2k square. We first partition
the cell of size 2k × 2k into (

⌈
2
√

2k
⌉
)2 sub-cells. The

size of each sub-cell is 1√
2
× 1√

2
. Observe that, choosing

any two points inside a sub-cell of size 1√
2
× 1√

2
ensures

total domination for all unit disks centered in that sub-
cell. Hence, the maximum number of points required
to ensure total domination in a square of size 2k × 2k
is 2(

⌈
2
√

2k
⌉
)2. Therefore, we have to check all possi-

ble combinations of points up to 2(
⌈
2
√

2k
⌉
)2 to get an

optimal solution in a cell χ of size 2k × 2k. Note that,
along with the points inside a cell χ, the points within
1 unit apart from χ also play a crucial role to get an op-
timum solution of χ. Let nχ be the number of points in
P whose corresponding disks have a portion in the cell
χ (nχ includes the points inside χ along with the points
within 1 unit apart from χ). Then, we have to choose at

most O(n
2(d2√2ke)2
χ) combinations of points for getting

the optimum solution for the Tds-Udg problem in a
cell χ of size 2k × 2k. Since the points in P centered
in a cell are disjoint from that of the other cells, and a
point in P can participate in computing the optimum
solution of at most 9 cells, we have the following result.

Lemma 10 The total time required for the (i, j)-th it-

eration of the algorithm is O(n2(d2
√
2ke)2).

Proof. The feasible solution of the (i, j)-th iteration
is the union of the optimum solutions of all the cells
constructed in that iteration. Finally, the algorithm
returns the minimum among the k2 feasible solutions
corresponding to k2 iterations. �

Theorem 11 Given a set P of n points (center of the
unit disks) in R and an integer k ≥ 1, a total dominat-
ing set of size at most (1+ 1

k)2×|OPT | can be computed

in O(k2n2(d2
√
2ke)2) time, where OPT is the optimum

solution.

Proof. Using the shifting strategy analysis given by
Hochbaum and Maass [15], we analyze the approx-
imation factor of our algorithm. Let OPT be an
optimum solution for the Tds-Udg problem for the
point set P , and OPT ′ ⊆ OPT be such points cho-
sen in OPT , which totally dominate some points out-
side the boundary of all the cells in an (i, j)-th it-
eration. Let T be a solution obtained by our algo-
rithm in an iteration. Then, |T | ≤ |OPT | + |OPT ′|.
For all the iterations of (i, j) (1 ≤ i, j ≤ k), we

have
k∑
i=1

k∑
j=1

|T | ≤ k2|OPT | +
k∑
i=1

k∑
j=1

|OPT ′|. Since

any point from a cell χ chosen in OPT can dominate
points from no more than one horizontal strip (or ver-
tical strip), and at most k times each horizontal (or
vertical) boundary appears throughout the algorithm,

225

33rd Canadian Conference on Computational Geometry, 2021

we have
k∑
i=1

k∑
j=1

|OPT ′| ≤ k|OPT | + k|OPT |. Thus,

k∑
i=1

k∑
j=1

|T | ≤ k2|OPT | + 2k|OPT | = (k2 + 2k)|OPT |.

Therefore, min
k∑
i=1

k∑
j=1

|T | ≤ (1 + 1
k)2 × |OPT |. The

time complexity result follows from Lemma 10. �

5 Conclusion

In this article, we have considered the minimum total
dominating set (TDS) problem in geometric unit disk
graphs. We showed that the TDS problem belongs to
the class NP-complete. We proposed an almost linear
time 8-factor approximation algorithm, which is an im-
provement over the best-known 10-factor approximation
algorithm with the same running time available in the
literature [26]. We also proved that the TDS problem
in geometric UDGs admits a PTAS.

References

[1] D. Amos and E. DeLaVina. On Total Domination in
Graphs. Senior Project, University of Houston Down-
town, 2012.

[2] R. C. Brigham, J. R. Carrington, and R. P. Vitray.
Connected Graphs with Maximum Total Domination
Number. Journal of Combinatorial Mathematics and
Combinatorial Computing, 34:81–96, 2000.

[3] Paz Carmi, Gautam K. Das, Ramesh K. Jallu, Subhas
C. Nandy, Prajwal R. Prasad, and Yael Stein. Mini-
mum Dominating Set Problem for Unit Disks Revisited.
International Journal of Computational Geometry and
Applications, 25(3):227, 2015.

[4] M. Chellali and T. W. Haynes. A Note on the To-
tal Domination Number of a Tree. Journal of Com-
binatorial Mathematics and Combinatorial Computing,
58:189, 2006.

[5] V. Chvátal and C. McDiarmid. Small Transversals in
Hypergraphs. Combinatorica, 12(1):19–26, 1992.

[6] E. J. Cockayne, R. Dawes, and S. T. Hedetniemi. Total
Domination in Graphs. Networks, 10(3):211–219, 1980.

[7] E. J. Cockayne, M. A. Henning, and C. M. Mynhardt.
Vertices Contained in all or in no Minimum Total Dom-
inating Set of a Tree. Discrete mathematics, 260(1-
3):37–44, 2003.

[8] E. DeLaViņa, Q. Liu, R. Pepper, B. Waller, and D. B.
West. Some Conjectures of Graffiti. pc on Total Domi-
nation. 2007.

[9] M. Dorfling, W. Goddard, and M. A. Henning. Domi-
nation in Planar Graphs with Small Diameter ii. 2006.

[10] T. Haynes and M. Henning. Trees with Unique Mini-
mum Total Dominating Sets. Discussiones Mathemat-
icae Graph Theory, 22(2):233–246, 2002.

[11] T. W. Haynes, S. Hedetniemi, and P. Slater. Funda-
mentals of Domination in Graphs. CRC press, 1998.

[12] T. W. Haynes, S. T. Hedetniemi, and P. J. Slater. Dom-
ination in Graphs (Advanced Topics) Marcel Dekker
Publications. New York, 1998.

[13] M. A. Henning. A Survey of Selected Recent Results
on Total Domination in Graphs. Discrete Mathematics,
309(1):32–63, 2009.

[14] M. A. Henning and A. Yeo. Total Domination in
Graphs. Springer, 2013.

[15] D. S. Hochbaum and W. Maass. Approximation
Schemes for Covering and Packing Problems in Image
Processing and VLSI. Journal of the ACM (JACM),
32(1):130–136, 1985.

[16] J. Hopcroft and R. Tarjan. Efficient Planarity Testing.
Journal of the ACM (JACM), 21(4):549–568, 1974.

[17] A. Itai, C. H. Papadimitriou, and J. L. Szwarcfiter.
Hamilton Paths in Grid Graphs. SIAM Journal on
Computing, 11(4):676–686, 1982.

[18] D. Lichtenstein. Planar Formulae and Their Uses.
SIAM Journal on Computing, 11(2):329–343, 1982.

[19] R. Laskar, J. Pfaff, S. Hedetniemi, and S. Hedetniemi.
On the Algorithmic Complexity of Total Domination.
SIAM Journal on Algebraic Discrete Methods, 5(3):420–
425, 1984.

[20] J. Pfaff, R. Laskar, and S. Hedetniemi. Np-
completeness of Total and Connected Domination and
Irredundance for bipartite graphs. In Tech. Rept. 428.
Clemson University Clemson, SC, 1983.

[21] L. Sun. An Upper Bound for the Total Domination
Number. J. Beijing Inst. Tech, 4(2):111–114, 1995.

[22] S. Thomassé and A. Yeo. Total Domination of Graphs
and Small Transversals of Hypergraphs. Combinatorica,
27(4):473–487, 2007.

[23] Z. Tuza. Covering all Cliques of a Graph. Discrete
Mathematics, 86(1-3):117–126, 1990.

[24] T. Nieberg and J. Hurink. A PTAS for the minimum
dominating set problem in unit disk graphs. Interna-
tional Workshop on Approximation and Online Algo-
rithms, 296–306, 2005.

[25] B. N. Clark, C. J. Colbourn and D. S. Johnson. Unit
disk graphs. Discrete mathematics, 86(1-3):165–177,
1990.

[26] M. V. Marathe, H. Breu, H. B. Hunt III, S. S. Ravi
and D. J. Rosenkrantz. Simple heuristics for unit disk
graphs. Networks, 25(2):59–68, 1995.

[27] C. Ambühl, T. Erlebach, M. Mihalák and M.
Nunkesser. Constant-factor approximation for
minimum-weight (connected) dominating sets in unit
disk graphs. In Approximation, Randomization,
and Combinatorial Optimization. Algorithms and
Techniques, 3–14, 2006.

[28] T. Erlebach and M. Mihalák. A (4 + ε)-approximation
for the minimum-weight dominating set problem in unit
disk graphs. In International Workshop on Approxima-
tion and Online Algorithms, 135–146, 2009.

226

CCCG 2021, Halifax, Canada, August 10–12, 2021

[29] H. B. Hunt III, M. V. Marathe, V. Radhakrishnan,
S. S. Ravi, D. J. Rosenkrantz, and R. E. Stearns.
NC-Approximation schemes for NP- and PSPACE-hard
problems for geometric graphs. Journal of Algorithms,
26(2):238–274, 1998.

[30] H. Breu, and D. G. Kirkpatrick. Unit disk graph recog-
nition is NP-hard. Computational Geometry, 9(1-2):3–
24, 1998.

[31] T. Erlebach, K. Jansen, and E. Seidel. Polynomial-time
approximation schemes for geometric graphs. In SODA,
1: 671–679, 2001.

[32] L. G. Valiant. Universality Considerations in VLSI Cir-
cuits. IEEE Transactions on Computers, 100(2):135–
140, 1981.

227

CCCG 2021, Halifax, Canada, August 10–12, 2021

Simple Linear Time Algorithms For Piercing Pairwise Intersecting Disks∗

Ahmad Biniaz† Prosenjit Bose‡ Yunkai Wang‡

Abstract

A set D of disks in the plane is said to be pierced by a
point set P if each disk in D contains a point of P . Any
set of pairwise intersecting unit disks can be pierced by
3 points (H. Hadwiger and H. Debrunner, Ausgewählte
Einzelprobleme der kombinatorischen Geometrie in der
Ebene, Enseignement Math, 1955) and Danzer estab-
lished that any set of pairwise intersecting arbitrary
disks can be pierced by 4 points (L. Danzer, Zur Lösung
des Gallaischen Problems über Kreisscheiben in der Eu-
klidischen Ebene, Studia Scientiarum Mathematicarum
Hungarica, 1986). Existing linear-time algorithms for
finding a set of 4 or 5 points that pierce pairwise inter-
secting disks of arbitrary radius use the LP-type prob-
lem as a subroutine. We present simple linear-time al-
gorithms for finding 3 points for piercing pairwise in-
tersecting unit disks, and 5 points for piercing pairwise
intersecting disks of arbitrary radius. Our algorithms
use simple geometric transformations and avoid heavy
machinery. We also show that 3 points are sometimes
necessary for piercing pairwise intersecting unit disks.

1 Introduction

Let D be a set of pairwise intersecting disks in the plane.
Helly’s theorem states that if every set of 3 disks in
D has a non-empty intersection, then all disks in D
can be pierced by 1 point, in other words, ∩D is non-
empty [7, 8]. Finding a piercing point set is more dif-
ficult if the disks in D only intersect pairwise and D
contains groups of 3 disks that have no common in-
tersection. Danzer [3] and Stachó [11] independently
showed that such a set D can be pierced by at most 4
points. Danzer’s proof is based on his first unpublished
proof in 1956, while Stachó’s proof uses similar ideas
that were used in his previous construction of 5 pierc-
ing points in 1965 [10]. Even though Danzer proved that
4 points are sufficient, the proof is not constructive [3].
Stachó’s construction is simpler, but it is still not sim-
ple enough to be turned into an easy subquadratic al-
gorithm [10, 11]. Har-Peled et al. [6] presented the first
deterministic linear-time algorithm for finding 5 pierc-

∗Research supported in part by NSERC.
†School of Computer Science, University of Windsor, Windsor,

Canada. ahmad.biniaz@gmail.com
‡School of Computer Science, Carleton University, Ottawa,

Canada. jit@scs.carleton.ca, yunkai@scs.carleton.ca

ing points of a set D by formulating the piercing prob-
lem as an LP-type problem. An LP-type problem is
an abstract generalization of a low-dimensional linear
program. Chazelle and Matoušek showed that LP-type
problems can be solved in deterministic linear time if we
have a constant-time violation test and the range space
has bounded VC-dimension [2]. More recently, Carmi
et al. [1] presented a linear time algorithm for finding
4 piercing points. Their algorithm requires the compu-
tation of the smallest disk that intersects every disk in
D, which they formulated as an LP-type problem [2, 9].
They pose as an open problem to find the piercing set
without using linear programming.

As for lower bounds on this problem, Grünbaum [4]
provides a set of 21 pairwise intersecting disks that can-
not be pierced by 3 points. Later, Danzer [3] reduced
the number of disks to 10. This is close to optimal since
every set of 8 pairwise intersecting disks can be pierced
by 3 points [10]. However, Danzer’s construction is dif-
ficult to verify since the positions of the disks cannot
be visualized easily. Har-Peled et al. [6] gave a simpler
construction with 13 disks.

Hadwiger and Debrunner [5] showed that if all the
disks in D have the same radius, then 3 points are suffi-
cient to pierce D. Their algorithm computes the small-
est regular hexagon enclosing the centers of all disks
in D. It is not clear how one can simply find such a
hexagon in linear time.

1.1 Our Contributions

We present a deterministic linear time algorithm for
finding 3 points that pierce a set of pairwise intersect-
ing unit disks (disks of radii one), and a deterministic
linear time algorithm for finding 5 points that pierce a
set of pairwise intersecting arbitrary disks (disks of ar-
bitrary radii). Our algorithms employ simple geometric
transformations, and do not require solving any LP-type
problem. We also present a set of 9 pairwise intersect-
ing unit disks that cannot be pierced by 2 points. This
shows that 3 points are sometimes necessary and always
sufficient to pierce pairwise intersecting unit disks.

We denote the Euclidean distance between points a
and b by |ab|.

228

33rd Canadian Conference on Computational Geometry, 2021

2 Piercing Pairwise Intersecting Unit Disks

In this section, we first present our deterministic linear-
time algorithm for piercing pairwise intersecting unit
disks by 3 points. Then we introduce a set of 9 pair-
wise intersecting unit disks that cannot be pierced by 2
points.

2.1 Algorithm For Computing Three Piercing Points

Let D be a set of pairwise intersecting unit disks, each
disk Di is centered at ci = (xi, yi).

Theorem 1 Let D be a set of pairwise intersecting unit
disks. In O(|D|) time, we can compute 3 points that
pierce D.

D
′

2

D2

D1

D0

D
′

0

Figure 1: Configuration of Theorem 1.

Proof. Let D1 be an arbitrary disk in D. We reduce its
radius while keeping c1 fixed until D1 becomes tangent
to another disk D2 ∈ D. This can be completed in
O(|D|) time by computing the distance from c1 to all
other disks in D. Notice that the disks in D are still
pairwise intersecting and any set of points that pierces
the new set of disks also pierces the original set of disks.
Let r1 be the radius of D1. After this transformation,
r1 ≤ 1, and D1 is tangent to D2. By a translation and
rotation, we move c1 to the origin and c2 to a point that
lies on the positive y-axis with coordinate (0, r1 + 1).
Let D0 be a unit disk (not necessarily in D) with center
c0 = (0, r1 − 1). Since r1 ≤ 1, D1 ⊆ D0. Any disk that
intersects D1 also intersects D0. Let D′

0 and D′
2 be two

disks with radius 2 and centers c0 and c2, respectively.
See Figure 1. If a unit disk Di intersects D0 and D2,
then |c0ci| ≤ 2, |c2ci| ≤ 2 and ci ∈ D′

0 ∩D′
2.

Let D3 be the disk in D with the maximum x-
coordinate. Since D3 belongs to D, it must intersect

x = x3 − 2 x = x3

β

Figure 2: Area that we need to cover.

D1 and D2, we note that 0 ≤ x3 ≤
√

3. x3 ≥ 0 since
x3 ≥ x1 = 0. The boundaries of D′

0 and D′
2 intersect at

the point (
√

3, r1), so c3 must either fall on or the left of
the line x =

√
3. We conclude that x3 ≤

√
3. The disk

D3 can be found in O(|D|) time. For every disk Di ∈ D,
|cic3| ≤ 2 since Di and D3 intersect. We have that
|xix3| ≤ 2 since both Di and D3 are unit disks. There-
fore, in addition to being in D′

0 ∩D′
2, the x-coordinate

of all the centers lie in the interval [x3 − 2, x3]. Let β
represent the region where all the centers of disks in D
must lie as illustrated in red in Fig 2. We say an area is
covered by a point set P if every point in the area has
distance at most 1 to at least 1 point in P . Therefore,
if we can find 3 points that cover β, then those three
points pierce every disk in D. As noted above, we have
that 0 ≤ x3 ≤

√
3. We consider two cases, namely when

1 ≤ x3 ≤
√

3 and 0 ≤ x3 < 1.

l1

A

B

M

C

D

P1

C1

Figure 3: Location of P1.

Case 1: 1 ≤ x3 ≤
√

3. Let A (resp. B) be the
rightmost point of β on the boundary of D′

0 (resp. D′
2).

The first point P1 is chosen be a point that falls in β

229

CCCG 2021, Halifax, Canada, August 10–12, 2021

and has distance 1 to both A and B. Let C1 be a circle
of radius 1 centered at P1; See Figure 3.

Let l1 be the vertical line x = x3 − 1
2 . First we prove

that P1 always lies to the left of l1. Let the midpoint
of line segment AB be M . |AB| decreases as x3 in-
creases and it is maximized when x3 = 1. When x = 1,

|AB| = 2
√

3− 2 <
√

3. So |AB| <
√

3 and |AM | <
√
3
2 .

Since 4P1AM is a right triangle and |AP1| = 1, by
the Pythagorean theorem, |P1M | > 1

2 . Therefore, P1

always lies to the left of l1. Let the intersection point
of circle C1 and D′

0 different from A be labelled C, and
the intersection point of circle C1 and D′

2 different from
B be labelled D. P1 lies on the bisector of the line seg-
ment AB, so P1 lies on the line y = r1, therefore, C1 is
tangent to both lines y = r1 + 1 and y = r1 − 1. Since
the circle C1 is tangent to these two lines, both C and
D lie to the left of P1. See Figure 3. Since the radius of
C1 is 1, the radius of D′

0 is 2, and C lies to the left of
l1, we have that the clockwise arc from C to A on the
boundary of D′

0 and the clockwise arc from B to D on
the boundary of D′

2 are both contained in C1. There-
fore, the center of any unit disk of D that lies on or to
the right of l1 is contained in the disk C1. We now show
how to compute points P2 and P3 to pierce all the disks
that do not contain P1, namely the disks in D whose
centers are in β but outside disk C1. The coordinates
of A, B, P1, P2, and P3 are given in Appendix A.

E

F

G

H

Figure 4: Remaining area to be covered.

Consider the rectangle formed by the following 4
points: E = (x3 − 1

2 , r1 + 1), F = (x3 − 1
2 , r1 − 1), G =

(x3−2, r1 +1), H = (x3−2, r1−1). See Figure 4. Since
D′

0 is tangent to the line y = r1 + 1 at (0, r + 1), and
D′

2 is tangent to the line y = r1 − 1 at (0, r − 1), the
area β ∩ {x < x3 − 1

2} as shown in Fig 4 is contained
completely within the rectangle EFHG. If the points
P2 and P3 cover this rectangle, then we are done. Let
N be the midpoint of line segment EF and let O be the
midpoint of line segment GH. See Figure 5. We choose
P2 to be the center of the rectangle ENOG. |EN | = 1

and |NO| = 3
2 , by Pythagorean theorem, P2’s distance

to all four vertices of the rectangle is
√
13
4 . Therefore, if

a unit disk’s center falls in the rectangle ENOG, then
the disk is pierced by P2. Symmetrically pick P3 to be
the center of the rectangle NFHO. Then any unit disk
in D whose center falls to the left of l2 is pierced by one
of P2 and P3.

E

F

G

H

NO

P2

P3

Figure 5: Location of P2 and P3.

Case 2: 0 ≤ x3 < 1. Let q be the maximum of x3 and
2−
√

3. By the definition, we know that q ≥ 2−
√

3. We
also know that the rightmost point on the lens formed
by D′

0 and D′
2 is (−

√
3, 0), so the line x = x3− 2 lies to

the left of the point when x3− 2 < −
√

3. Therefore, we
can safely say that the x-coordinate of all the centers lie
in the interval [−

√
3,−
√

3+2] when x3 < 2−
√

3. Since q
is the maximum of x3 and 2−

√
3, the x-coordinate of all

the centers lie in the interval [q− 2, q] when 0 ≤ x3 < 1.
q ≥ 2 −

√
3, so q − 2 ≥ −

√
3. q < 1, so q − 2 < −1.

Therefore, we have that −
√

3 ≤ q−2 < −1. If we reflect
all the disks in D about the y-axis, then all the centers
lie in the interval [−q, |q − 2|]. Let q′ = |q − 2|, and we
compute the piercing points using x = q′ and x = q′−2
as in Case 1. Then the three computed points pierce D.

�

2.2 A Lower Bound

We now present a set of 9 pairwise intersecting unit
disks that cannot be pierced by 2 points. See Figure 6
for an illustration of these disks in a nutshell; details are
given in Theorem 2.

Theorem 2 There exists a set of 9 pairwise intersect-
ing unit disks that cannot be pierced by 2 points.

Proof. Follow Figure 7. We begin the construc-
tion by placing 3 unit disks D1, D2, D3 centered at
(0, 0), (2, 0), (1,

√
3) respectively. These points are the

230

33rd Canadian Conference on Computational Geometry, 2021

Figure 6: Nine unit disks that cannot be pierced by 2
points.

D1 D2

D3

C1 C2

C3

c1

c′1

c′′1 c′2

c′′2
c2

c′3
c3

c′′3

p1

Figure 7: Illustration of the construction of a set of 9
pairwise intersecting unit disks that cannot be pierced
by 2 points.

vertices of an equilateral triangle with side length 2.
Notice that these disks are pairwise tangent. We de-
note the center of Di by ci. Let Ci be the circle of
radius 2 centered at ci. The intersection of C1, C2, and
C3 is a reuleaux triangle, which is illustrated in red in
Figure 7. The center of any unit disk, that intersects
Di, lies in Ci. Therefore the center of any unit disk,
that intersects the three disks D1, D2, and D3, lies in
the reuleaux triangle. We then introduce 6 more unit
disks as follows where ε = 0.01:

• D′
1 with center c′1 = (2−

√
4− ε2, ε) on C2.

• D′′
1 with center c′′1 = (ε,

√
3−
√

4− (ε− 1)2) on C3.

• D′
2 with center c′2 = (2− ε,

√
3−

√
4− (ε− 1)2) on

C3.

• D′′
2 with center c′′2 = (

√
4− ε2, ε) on C1.

• D′
3 with center c′3 = (1 + ε,

√
4− (1 + ε)2) on C1.

• D′′
3 with center c′′3 = (1− ε,

√
4− (1 + ε)2) on C2.

We show that D = {D1, D
′
1, D

′′
1 , D2, D

′
2, D

′′
2 , D3, D

′
3,

D′′
3} is a desired set. Given the above coordinates of the

centers of the disks in D, one can simply verify that the
distance between any two centers is at most 2 and thus
the disks are pairwise intersecting.

Now we show that D cannot be pierced by two points.
For the sake of contradiction, suppose that {p1, p2}
pierces all disks in D. Then one of these points pierces
at least two of the disks D1, D2 and D3. Due to sym-
metry assume that p1 pierces D1 and D2 (as in Fig-
ure 7), and thus p1 = (1, 0) since |c1c2| = 2. By our
construction, p1 does not pierces D′

1, D′′
2 , D3, D′

3 and
D′′

3 . Thus, these disks are pierced by p2, and in partic-
ular p2 ∈ D′

1 ∩ D′′
2 ∩ D3. The circumscribed circle of

the triangle c′1c
′′
2c3 has radius 1.15, which implies that

the intersection of D′
1, D′′

2 , and D3 is empty, which is a
contradiction. This finishes our proof. �

3 Piercing Pairwise Intersecting Arbitrary Disks

We now consider a set D of pairwise intersecting disks
of arbitrary sizes. Each disk Di ∈ D is described by
its center ci and its radius ri. Let D1 be the smallest
disk in D. We shrink D1 while fixing its center at c1
until D1 becomes tangent to another disk, say D2. This
can be done in linear time by computing the distance
of c1 to all ci’s and subtract the distances by the radius
of the disks. In this new setting, disks in D are still
pairwise intersecting and any set of points that pierces
the new set of disks also pierces the original set of disks.
After scaling, rotation and translation, assume that D1

has radius 1 and is centered at the origin and D2 is
centered on the positive y-axis; these transformations
can be performed in linear time.

D2

D1

t1t2

Figure 8: Configuration of Lemma 3.

231

CCCG 2021, Halifax, Canada, August 10–12, 2021

Before showing our algorithm for finding the pierc-
ing set, we first present 2 geometric lemmas that will
be proved later. See Figure 8 for the configuration out-
lined in the statement of Lemma 3 and Figure 9 for
the configuration of Lemma 4. In the lemmas, we let

P1 = (0, 0), P2 = (
√

3, 0), P3 = (
√
3
2 ,

3
2), P4 = (−

√
3
2 ,

3
2),

P5 = (−
√

3, 0) and let P = {P1, P2, P3, P4, P5}. Points

{P2, P3, P4, P5, (−
√
3
2 ,− 3

2), (
√
3
2 ,− 3

2)} are the vertices of

a regular hexagon with sides of length
√

3 centered at
the origin. Specifically points P2 to P5 are the top 4
vertices of the regular hexagon; see Figure 10.

D2

D1 t1t2

D3

Figure 9: Configuration of Lemma 4.

Lemma 3 If the radius of D1 is 1 and the radius of D2

is at most 5 + 2
√

6, then P pierces D.

Lemma 4 If the radius of D1 is 1, the radius of D2 is
larger than 5 + 2

√
6 and there exists at least one disk in

D that misses all the points in P , then we can find in
constant time a different set of 5 points that pierces D.

These two lemmas are sufficient for proving the exis-
tence of 5 piercing points for arbitrary disks.

3.1 Algorithm

1. Find the smallest disk D1 ∈ D

2. Reduce the radius of D1 until D1 is tangent to a
disk in D, say D2

3. By scaling, rotation and translation of D, let the
center of D1 be the origin and the radius of D1 be
1. Let D2 be centered on the y-axis above D1

4. If r2 ≤ 5 + 2
√

6, then P pierces D

5. If r2 > 5+2
√

6 and there exist at least one disk in D
that misses all the 5 points in P , then by Lemma 4,
we find another set of 5 points that pierces D in
constant time.

Theorem 5 Given a set of pairwise intersecting arbi-
trary disks in the plane, in deterministic linear time, we
can find 5 points that pierce the set.

D2

D1

t2

t1

P1 P2

P3P4

P5

Figure 10: The first candidate set of 5 points.

Proof. Let D be a set of pairwise intersecting arbitrary
disks. If we apply algorithm as depicted in Section 3.1
on D, it will return 5 points. If r2 ≤ 5 + 2

√
6, by

Lemma 3, P pierces D. If r2 > 5+2
√

6 and there exists
at least one disk in D that is not pierced by any of the
5 points in P , then by Lemma 4 we can find 5 points
that pierce D.

The correctness of the algorithm comes from
Lemma 3 and Lemma 4, which we prove in Section 3.2
and Section 3.3, respectively. Step 1 of the algorithm
clearly takes linear time. Step 2 can also be completed
in linear time by computing the distance from c1 to all
other centers in D. Step 3 takes linear time. The points
P1 to P5 can be obtained in constant time after the
transformation. Then checking whether these 5 points
are sufficient takes linear time. If these 5 points are not
sufficient, then by Step 5, we can compute a new set of
5 points that pierce D in constant time. �

We now present a definition that will be used in Sec-
tion 3.2 and Section 3.3.

Definition 1 (Between) Let A and B be two inter-
secting disks, and let p and q be two points in the plane.
Let the center of A (resp. B) be a (resp. b). We say
that A intersects B between p and q if the following
two conditions hold:

• Line segment ab intersects line segment pq.

• Both p and q lie outside A.

3.2 Proof for Lemma 3

Proof. Recall points P1 to P5 where P1 = (0, 0), P2 =

(
√

3, 0), P3 = (
√
3
2 ,

3
2), P4 = (−

√
3
2 ,

3
2), P5 = (−

√
3, 0);

see Figure 10. We now argue that these 5 points pierce
D when r2 ≤ 5 + 2

√
6. Let t1 be the line with a positive

slope that is tangent to D1 and passing through P2.

The equation of t1 is t1 =
√
2
2 x−

√
6
2 . Let t2 be the line

with a negative slope that is tangent to D1 and passing

232

33rd Canadian Conference on Computational Geometry, 2021

a

b
c

p
q

A

B

C

Figure 11: {A,B,C} are three pairwise intersecting
disks. A intersects B between p and q. C intersects
B, but not between p and q since pq and bc do not cross.

through P5. The equation of t2 is t2 = −
√
2
2 x −

√
6
2 .

SinceD2 is centered on the positive y-axis, D2 is tangent
to both t1 and t2 when r2 = 5 + 2

√
6. Therefore, when

r2 ≤ 5 + 2
√

6, D2 falls above t1 and t2.

We first prove that any disk whose center falls in the
first or the second quadrant is pierced by P . Let Di ∈ D
be a disk with center ci and radius ri where ci falls
in the first or the second quadrant. Since D1 is the
smallest disk in D, we have that ri ≥ 1. Since points
P2, P3, P4, P5 are the vertices of a regular hexagon, there
must exist a j ∈ {2, 3, 4, 5} such that ∠PjP1ci ≤ π

6 . Let
θ = ∠PjP1ci. By the law of cosines,

|ciPj |2 = |ciP1|2 + |P1Pj |2 − 2|ciP1||P1Pj | cos(θ) (1)

|P1Pj | =
√

3 since these points all have distance
√

3 to
the origin. |ciP1| ≤ ri + 1 since Di and D1 intersect.
We have that cos(θ) ≥ cos(π6) since θ ≤ π

6 . Therefore,
−2|ciP1||P1Pj | cos(θ) ≤ −2|ciP1||P1Pj | cos(π6). By re-
placing terms in equation 1, we get

|ciPj |2 ≤ |ciP1|2 + (
√

3)2 − 2
√

3|ciP1| cos(
π

6
)

≤ |ciP1|2 + 3− 3|ciP1|
≤ (|ciP1| − 1)2 − |ciP1|+ 2

(2)

When |ciP1| ≥ 2, (|ciP1| − 1)2 − |ciP1|+ 2 ≤ r2i + 2−
|ciP1| ≤ r2i . Therefore, |ciPj | ≤ ri and Di contains Pj .
If |ciP1| ≤ 1, ci falls in D1. Then Di is pierced by P1

since ri ≥ 1.

Now let us consider the case when 1 < |ciP1| < 2. Let
f(x) be the parabola x2 − 3x + 3. The vertex of f(x)
is (3

2 ,
3
4). Therefore, when 1 < x ≤ 3

2 , 3
4 ≤ f(x) < 1.

Similarly, when 3
2 ≤ x < 2, 3

4 ≤ f(x) < 1. Combining
these results together, we have that f(x) < 1 when 1 <
x < 2. Let |ciP1| = x, then we have that |ciPj |2 ≤
f(x) < 1. Therefore, |ciPj | < 1 and Pj pierces Di since
ri ≥ 1.

We now show that any disk in D whose center falls in
the third or fourth quadrant is pierced by at least one
of {P1, P2, P5}. If all disks are pierced by at least one
of these points, then we are done. So we assume that
there exists at least one disk, say D3, that is not pierced
by any of these three points. Since D2 lies completely
above t1 and t2, D3 must intersect D2 between P1 and
P2 or between P1 and P5. D3’s radius is at least 1
since otherwise it contradicts the assumption that D1

is the smallest disk in D. Then D3 does not cross the
y = 1 line. D2 lies completely above the y = 1 line, so
D3 does not intersect D2 and we have a contradiction.
Therefore, any disk in D whose center falls in the third
or fourth quadrant is pierced by one of {P1, P2, P5}. �

3.3 Proof for Lemma 4

Proof. Recall the lines t1, t2, and the point set P from
the proof of Lemma 3. Since r2 > 5 + 2

√
6, D2 inter-

sects both t1 and t2. We assumed that there exists at
least one disk, say D3 ∈ D that is not pierced by P . D3

intersects both D1 and D2. The center c3 of D3 can-
not lie in the first or second quadrant since otherwise it
must contain one point of P as was shown Section 3.2.
Up to symmetry we may assume that the center c3 lies
in the fourth quadrant, and thus it intersects D2 to the
right side of the y-axis. This setting is depicted in Fig-
ure 12(a).

Since the interior of D1 lies completely below the line
y = 1 and the interior of D2 lies completely above this
line, any disk in D \ {D1, D2} must cross this line in
order to intersect both D1 and D2. Since D3 misses P ,
then D3 must lie completely below the polygonal line

` :

{
y = 0, x ≤

√
3

t1, x >
√

3

as shown in Figure 12(a). If D3 crosses ` when x ≤
√

3,
then either D3 contains one of {P1, P2, P5} or it does
not intersect with D2. If D3 crosses ` when x >

√
3,

then either D3 contains P2 or it does not intersect with
D1. Therefore, any disk in D whose center falls above `
must cross ` in order to intersect with D3.

We are going to construct a point set P ′ =
{P6, P7, P8, P9, P10} that pierces D. Set P6 = (0,−3).
In the rest of the proof we describe how to obtain P7,
P8, P9, and P10; the coordinates of these points are
given in Appendix B. Let C1 (resp. C2) be the circle
passing through P6 that is tangent to disk D1 and line
y = 1 in the left side (resp. right side) of the y-axis, as
in Figure 12(b). Let C3 be the circle that is centered
above y = 1 and that is tangent to the disk D1, the line
t1 and to the x-axis. The disks C1 and C3 intersect at
two points, where we pick the intersection point that is
closer to the origin as the point P7; see Figure 12(c).

233

CCCG 2021, Halifax, Canada, August 10–12, 2021

D2

t1
D1

y = 1

y = 0
D3

C1 C2

P6

ℓ

(a) Boundaries that disks in D must cross. (b) Location of P6.

C3

C2C1

P6

P7

ℓ

t1

C4

C5

P7 P8

P6

ℓ

(c) Location of P7. (d) Location of P8.

C2
C6

P9
P8P7

P6

ℓ

C7

P10

P9P8P7

P6

C3

ℓ

(e) Location of P9. (f) Location of P10.

Figure 12: Illustration of the proof for Lemma 4.

Now let C4 be a circle of radius 1 that passes though
P7 and that is tangent to the x-axis, and let C5 be a
circle of radius 1 that passes through P7 and that is
tangent to the the line y = 1. The point P8 is the
intersection point between C4 and C5 that is different
from P7. See Figure 12(d) for an illustration.

To obtain P9, let C6 be a circle of radius 1 that passes
through P8 and that is tangent to the line y = 1. The
intersection point of C2 and C6 that falls in the first
quadrant is P9, as depicted in Figure 12(e). To obtain
P10, we draw a circle C7 of radius 1 through P9 and
tangent to D1. The point P10 is the intersection point of
C3 and C7 that is closer to the origin, as in Figure 12(f).

Now that all five points in P ′ have been introduced,
we are going to show that these five points pierce all
disks D. Consider the convex quadrilateral formed by

P6, P7, P9, and P10, as in Figure 13. These four points
pierce any disk of D whose center lies outside the quadri-
lateral, because any such disk must intersect D1.

• C3 is tangent to ` and D1, and both P7 and P10

lie on C3. If a disk D4 in D intersects D1 between
P7 and P10, D4 cannot cross `. Since D3 lies com-
pletely below `, D4 does not intersect D3 and it
violates the pairwise intersecting property of D.

• Both P6 and P7 lie on C1, and C1 is tangent to the
y = 1 line. If a disk D4 intersects D1 between P6

and P7, then D4 does not intersect D2 and again
contradicts our assumption that the disks in D are
pairwise intersecting. Using a similar argument, we
can also prove that there cannot exist a disk in D
that intersects D1 between P6 and P9.

234

33rd Canadian Conference on Computational Geometry, 2021

• Any disk that intersects with D1 between P9 and
P10 must contain one of these two points. Other-
wise, its radius is smaller than 1, contradicting the
fact that D1 is the smallest disk.

P10

P9

P6

P7

P8

ℓ

Figure 13: The points P6, P7, P9, P10 form a quadrilat-
eral that contains D1.

Now we show how the disks of D centered inside the
quadrilateral are pierced by points in P ′. We divide the
quadrilateral into four triangles, as in Figure 13.

• P7 and P8 both lie on C5 and the radius of C5 is 1.
Therefore, any disk whose center lies in 4P6P7P8

must contain one of P7 or P8 in order to intersect
with D2, otherwise its radius is smaller than 1.

• Similarly, P7 and P8 both lie on C4 and the radius
of C4 is also 1. Therefore, any disk whose center
lies in 4P7P8P10 must contain one of P7 and P8 in
order to intersect with D3.

• Any disk whose center lies in 4P8P9P10 must con-
tain one of these three vertices because the diame-
ter of this triangle is at most 2.

• Any disk whose center falls in 4P6P8P9 must con-
tain one of P8 and P9 in order to intersect D2, oth-
erwise its radius is smaller than 1 since C6 has ra-
dius 1 and both P8 and P9 lie on C6.

Given D1, D2, t1, and t2, the point set P ′ can be
found in constant time. �

4 Conclusion

In this paper, we gave two simple linear time algorithms
for finding 3 piercing points and 5 piercing points for
pairwise intersecting unit disks and pairwise intersect-
ing arbitrary disks, respectively. However, it is still not
known whether we can find an algorithm for finding a
piercing point set of size 4 for any set of pairwise in-
tersecting arbitrary disks without solving an LP-type
problem. For the lower bound, the remaining open ques-
tion is whether any set of 9 pairwise intersecting disks

can be pierced by 3 points or not, as it is known that
any set of 8 pairwise intersecting disks can be pierced
by 3 points [10]. Another interesting open question is
whether we can find an efficient algorithm that decides
the optimal number of piercing points for any set of
pairwise intersecting arbitrary disks.

References

[1] P. Carmi, M. J. Katz, and P. Morin. Stabbing
pairwise intersecting disks by four points. CoRR,
abs/1812.06907, 2018.

[2] B. Chazelle and J. Matoušek. On linear-time determin-
istic algorithms for optimization problems in fixed di-
mension. Journal of Algorithms, 21(3):579 – 597, 1996.

[3] L. Danzer. Zur Lösung des Gallaischen Problems über
Kreisscheiben in der Euklidischen Ebene. Studia Scien-
tiarum Mathematicarum Hungarica, 21(1-2):111–134,
1986.

[4] B. Grünbaum. On intersections of similar sets. Portu-
gal. Math., 18:155–164, 1959.

[5] H. Hadwiger and H. Debrunner. Ausgewählte Einzel-
probleme der kombinatorischen Geometrie in der
Ebene. Enseignement Math. (2), 1:56–89, 1955.

[6] S. Har-Peled, H. Kaplan, W. Mulzer, L. Roditty,
P. Seiferth, M. Sharir, and M. Willert. Stabbing pair-
wise intersecting disks by five points. Discret. Math.,
344(7):112403, 2021.

[7] E. Helly. Über Mengen konvexer Körper mit gemein-
schaftlichen Punkten. Jahresbericht der Deutschen
Mathematiker-Vereinigung, 32:175–176, 1923.

[8] E. Helly. Über Systeme von abgeschlossenen Men-
gen mit gemeinschaftlichen Punkten. Monatshefte für
Mathematik, 37(1):281–302, 1930.

[9] J. Matousek, M. Sharir, and E. Welzl. A subexpo-
nential bound for linear programming. Algorithmica,
16(4/5):498–516, 1996.

[10] L. Stachó. Über ein Problem für Kreisscheibenfamilien.
Acta Scientiarum Mathematicarum (Szeged), 26:273–
282, 1965.

[11] L. Stachó. A solution of Gallai’s problem on pinning
down circles. Mat. Lapok, 32(1-3):19–47, 1981/84.

235

CCCG 2021, Halifax, Canada, August 10–12, 2021

A Coordinates of points in Theorem 1

Here are the coordinates of points in the proof of Theorem 1:

A =

(
x3,
√

4− x2
3 + r1 − 1

)

B =

(
x3,−

√
4− x2

3 + r1 + 1

)

P1 =

(
x3 −

√
2
√

4− x2
3 + x2

3 − 4, r1

)

P2 =

(
x3 − 5

4
, r1 +

1

2

)

P3 =

(
x3 − 5

4
, r1 − 1

2

)

B Coordinates of points in Lemma 4

For each point Pi, let xi be its x-coordinate and yi be its
y-coordinate, and for each circle Ci, let (x′

i, y
′
i) be its center

and r′i be its radius. Here are the coordinates of points Pi

and equations of circles Ci:

P6 = (0,−3)

C1 : (x + 4)2 + (y + 3)2 = 16

C2 : (x− 4)2 + (y + 3)2 = 16

C3 : (x− x′
3)2 + (y − y′

3)2 = (r′3)2

x′
3 = −

√
1 + 2r′3, y

′
3 = r′3

r′3 =
16− 4

√
6 +

√
(16− 4

√
6)2 − 16(

√
6− 2)2

2(
√

6− 2)2

P7 =

(
(−2r′3 − 6)y7 + (x′

3)2 − 9

2x′
3 + 8

,
−b7 +

√
b27 − 4a7c7

2a7

)

a7 = (−2r′3 − 6)2 + (2x′
3 + 8)2

b7 = 2(−2r′3−6)
(
(x′

3)2 − 9
)
+8(2x′

3+8)(−2r′3−6)+6(2x′
3+8)2

c7 =
(
(x′

3)2 − 9
)2

+ 8(2x′
3 + 8)

(
(x′

3)2 − 9
)

+ 9
(
2x′

3 + 8
)2

C4 :

(
x−

√
2y7 − y2

7 − x7

)2

+ (y − 1)2 = 1

C5 :

(
x−

√
1− y2

7 − x7

)2

+ y2 = 1

P8 =

(
2y8 + q1

q2
,
−b8 −

√
b28 − 4a8c8

2a8

)

q1 =

(√
1− y2

7 + x7

)2

−
(
−
√

2y7 − y2
7 − x7

)2

− 1

q2 = 2

(√
1− y2

7 + x7

)
− 2

(√
2y7 − y2

7 + x7

)

a8 = 4 + q22

b8 = 4q1 − 4q2

(√
1− y2

7 + x7

)

c8 = q21 +q22

(√
1− y2

7 + x7

)2

−2q1q2

(√
1− y2

7 + x7

)
−q22

C6 :

(
x−

√
1− y2

8 − x8

)2

+ y2 = 1

P9 =

(
−b9 +

√
b29 − 4a9c9

2a9
,
q3x9 + q4

6

)

q3 = 8− 2

(√
1− y2

8 + x8

)

q4 =

(√
1− y2

8 + x8

)2

− 10

a9 = 36 + q23

b9 = 2q3q4 + 36q3 − 288

c9 = q24 + 36q4 + 324

C7 is centered at
(
√

4− (y′
7)2,
−b10 +

√
b210 − 4a10c10

2a10

)

a10 = 4x2
9 + 4y2

9

b10 = −4y9(x2
9 + y2

9 + 3)

c10 =
(
x2
9 + y2

9 + 3
)2 − 16x2

9

P10 =

(
x′
7 −

√
1− (y10 − y′

7)2,
−b11 −

√
b211 − 4a11c11

2a11

)

q5 = (x′
7)2 + (y′

7)2− (x′
3)2− (y′

3)2 + (r′3)2−1− (2x′
7−2x′

3)x′
7

a11 = (2y′
3 − 2y′

7)2 + (2x′
7 − 2x′

3)2

b11 = 2q5(2y′
3 − 2y′

7)− 2y′
7(2x′

7 − 2x′
3)2

c11 = q25 +
(
(y′

7)2 − 1
) (

2x′
7 − 2x′

3

)2

236

CCCG 2021, Halifax, Canada, August 10–12, 2021

Extensions of the Maximum Bichromatic Separating Rectangle Problem

Bogdan Armaselu *

Abstract

In this paper, we study two extensions of the maximum
bichromatic separating rectangle (MBSR) problem in-
troduced in [2, 4]. One of the extensions, introduced in
[3], is called MBSR with outliers or MBSR-O, and is a
more general version of the MBSR problem in which the
optimal rectangle is allowed to contain up to k outliers,
where k is given as part of the input. For MBSR-O,
we improve the previous known running time bounds of
O(k7m logm+ n) to O(k3m+m logm+ n). The other
extension is called MBSR among circles or MBSR-C
and asks for the largest axis-aligned rectangle separat-
ing red points from blue unit circles. For MBSR-C, we
provide an algorithm that runs in O(m2 + n) time.

1 Introduction

In this paper, we consider two extensions of the Maxi-
mum Bichromatic Separating Rectangle (MBSR) prob-
lem.

The MBSR problem, introduced in [2] (see also [4]),
is stated as follows. Given a set of red points R and a
set of blue points B in the plane, with |R| = n, |B| = m,
compute the axis-aligned rectangle S having the follow-
ing properties:

(1) S contains all points in R,

(2) S contains the fewest points in B among all rect-
angles satisfying (1),

(3) S has the largest area of all rectangles satisfying
(1) and (2).

We call such rectangle a maximum bichromatic sep-
arating rectangle (MBSR) or simply largest separating
rectangle.

Let Smin be the smallest axis-aligned rectangle en-
closing R and discard the blue points inside Smin, as
they cannot be avoided.

The first extension of MBSR, called MBSR with out-
liers (MBSR-O) or simply outliers version, was intro-
duced in [3], and asks for the largest axis-aligned rect-
angle containing all red points and up to k blue points
outside Smin, where k is given as part of the input. That
is, MBSR with outliers is a relaxation of condition (2)
of the original MBSR problem.

*Work started as a student of Department of Computer Sci-
ence, University of Texas at Dallas, barmaselub@gmail.com

In this paper, we introduce another extension of
MBSR, called MBSR among circles (MBSR-C) or sim-
ply circles version, where blue points are replaced by
blue unit circles, and the goal is to find the largest rect-
angle containing all red points and no point of any blue
circle outside Smin. Here we may also discard blue cir-
cles intersecting Smin from consideration, as they can-
not be avoided.

For both extensions, we assume that all points are in
general position and that an optimal bounded solution
exists, that is, there are no unbounded solutions.

The circles version is motivated by problems involving
”imprecise” data, such as tumor extraction with large or
imprecise cells as red or blue points, or machine learning
applications with probabilistic, rather than determinis-
tic training data.

The outliers version can have applications in various
domains. For instance, in VLSI or circuit design, the
goal is to place a hardware component (e.g., cooler) on
a board with minor fabrication defects (blue points),
where up to k defects are acceptable to be covered by
the component. Here the red points may denote ”hot
spots” that must be covered or isolated from the rest of
the board.

Other applications of MBSR extensions can be in ma-
chine learning, data science, or spatial databases.

1.1 Related Work

Geometric separability of point sets, which deals with
finding a geometric locus that separates two or more
point sets whilst achieving a specific optimum criterion,
is an important topic in computational geometry. Var-
ious approaches deal with finding a specifc type of sep-
arator (e.g., hyperplane) when the points are guaran-
teed to be separable. However, this is not always the
case, and there is related work on weak separability,
i.e., either allowing a fixed number of misclassifications
or minimizing them.

Bitner and Daescu et. al [6] study the problem of
finding the smallest circle that separates red and blue
points (i.e., contains all red points and the fewest blue
points). They provide two algorithms. The first of
them runs in O(mn logm + n log n) time and the sec-

ond runs in O(m1.5 logO(1) n + n log n) time. Both al-
gorithms enumerate all optimal solutions. Later, Ar-
maselu and Daescu [5] addressed the dynamic ver-
sion of the problem, in which blue points may be

237

33rd Canadian Conference on Computational Geometry, 2021

inserted or removed dynamically, and provided three
data structures. The first one supports insertion and
deletion queries in O(n logm) time, and can be up-
dated in O((m + n) logm) time. The other two
are insertion-specific (resp., deletion-specific) and al-
low poly-logarithmic query time, at the expense of
O(mn log(mn)) update time.

The problem of computing an MBSR was considered
by Armaselu and Daescu. For the case when the target
rectangle has to be axis-aligned, the algorithm runs in
O(m logm + n) time [2, 4]. When the target rectangle
is allowed to be arbitrarily oriented, an O(m3 +n log n)
time algorithm is given, and they also provide an al-
gorithm to find the largest separating box in 3D in
O(m2(m+ n)) time [2].

Separability of imprecise points, where points are ass-
coiated with an imprecision region, has also been con-
sidered. Note that, for the problem addressed in this
paper, the blue circles can be thought of as imprecision
regions. When the imprecision regions are axis-aligned
rectangles, de Berg et. al [11] come up with algorithms
to find certain separators (with probability 1) and pos-
sible separators. For certain separators, their algorithm
runs in linear time, while for possible separators, the
running time is O(n log n).

Armaselu, Daescu, Fan, and Raichel considered ex-
tensions of the MBSR problem. Specifically, they give
an approach to find a largest rectangle separating red
points from blue axis aligned rectangles in O(m logm+
n) time, as well as an approach for the largest rectangle
separaing red points from blue points with k outliers in
O(k7m logm+ n) time [3].

A very popular related problem is the one of comput-
ing the largest empty (axis-aligned) rectangle problem.
Given a set of planar points P , the goal is to compute
the largest P -empty (axis-aligned) rectangle that has a
point p ∈ P on each of its sides. For the axis-aligned
version, the best currently known bound for computing
one optimal solution is O(n log2 n) time by Aggarwal
et. al [1]. Mukhopadhyay et. al [8] solve the version
where the rectangle can be arbitrarily oriented. They
provide an O(n3) time algorithm that lists all optimal
solutions. Chaudhuri et. al [7] prove that there can be
Ω(n3) optimal solutions in the worst case.

Nandy et. al considered the problem of finding the
maximal empty axis-aligned rectangle among a given
set of rectangles isothetic to a given bounding rectangle
[9]. They show how to solve the problem in O(n log n+
R) time, where R is the number of rectangles. Later,
they solved the version where obstacles have arbitrary
orientation using an algorithm that takes O(n log2 n)
[10].

1.2 Our Results

We first improve the result in [3] for the outlier version.
Specifically, we first give a slight improvement that runs
in O(k7m + m logm + n) time for k outliers, and then
a further improvement to O(k3m+ km logm+ n) time

(which works when k > (logm)
1
4). We also solve the

circles version and provide an algorithm that runs in
O(m2 + n) time.

The rest of the paper is structured as follows. In
Section 2, we describe our improvements to MBSR-O,
then in Section 3 we describe our algorithm for MBSR-
C. Finally, in Section 4 we draw the conclusions and list
the future directions.

2 Finding the Largest Separating Rectangle with k
Outliers

Given an integer k ≥ 0, the goal is to find the largest
axis-aligned rectangle enclosing R that contains at most
k blue points in B. We call this the maximum bichro-
matic separating rectangle with k outliers (MBSR-O).

The approach in [3] is, in a nutshell, as follows. First,
compute the smallest R-enclosing rectangle Smin in
O(n) time. The lines defining Smin partiton the plane
into 8 regions outside Smin. Namely, the four ”side”
regions E,N,W, S and the four corner regions (quad-
rants) NE,NW,SW,SE. For each region q, denote by
Bq the set of blue points inside q.

Definition 1 [3] A point p ∈ BNE dominates another
point q ∈ BNE, if x(p) > x(q) and y(p) > y(q).

Definition 2 [3] For each Bq and for any t such that
0 ≤ t ≤ k, the t-th level staircase of Bq is the rectilinear
polygon formed by the blue points in Bq that dominate
exactly t blue points in Bq.

Note that an optimal solution contains t points from
Bq if and only if it is sbounded by the t-th level staircase
of Bq. See figure 1 for an illustration of a staircase.

Figure 1: The 2nd level staircase of BNE

238

CCCG 2021, Halifax, Canada, August 10–12, 2021

For each partition of the number k into 8 smaller in-
tegers (each corresponding to a region) k = kE +kNE +
· · ·+ kSE , do the following.

1. consider the kq + 1-th closest to Smin blue point
from each side region q. These points support a rectan-
gle Smax which has to contain the target rectangle.

2. compute the kq-level staircase STkq (q) of each
quadrant q in O(m logm) time.

3. Solve a ”staircase” problem, i.e., find the largest
rectangle containing Smin, included in Smax and being
supported by points of the staircases. This is done in
O(m) time.

There are O(k7) such partitions of k, so the running
time of O(k7m logm+ n) follows.

2.1 A Slight Improvement on the Running Time

To reduce the running time, we first prove the following
lemma.

Lemma 1 The t-level staircases STt(q) can be com-
puted in O(m logm + mk) time for all t ≤ k and for
all quadrants q.

Figure 2: STt is updated while sweeping vertical line l
over point pi+1. Since qsi , . . . , q

t
i are higher than pi+1,

the Y coordinate of STt is changed to that of rti , the
projection of qt−1i on l. Similarly, the Y coordinates
of STt−1, . . . , STs are changed to those of rt−1i , . . . , rsi ,
respectively

Proof. We show how to compute STt(NE) for all t ≤ k
with a sweep line algorithm, as for other quadrants the
approach is similar. For simplicity, denote STt(NE) as
STt, that is, without specifying the quadrant. Sort and
label the points in BNE by increasing x-coordinate, and
denote the resulting sequence as p1, . . . , pm. Sweep a
vertical line l from x0 = max{x|(x, y) ∈ Smin} to x1 =

∞. For any given position of l, let Pl = {p1, . . . , pi} be
the set of blue points to the left of l. We maintain a
balanced binary search tree T over Pl, indexed by the
y-coordinates of its elements. The intersection of STt
with l is a single point qti , which is the highest point on
l that lies above at most t points of Pl. That is, qti is the
(t+ 1)-th smallest indexed entry in T , which we record.
As we move l from left to right, qti can only change when
l intersects a point pi ∈ BNE . When we cross the point
pi+1 (called event point), we insert it into T and, for
each t ≤ k, we have two cases.

1. If pi+1 is higher than qti , then STt does not change
height.

2. If pi+1 is lower than qti , q
t−1
i , . . . , qsi , for some 0 ≤

s ≤ t, then qti is set to qt−1i (which is done in O(1) time),
and STt moves to the height of this entry. This update
is repeated by setting qt−1i to qt−2i and so on downto
qs+1
i . Finally, qsi is set to pi+1.
If STt changes when sweeping over pi+1, we also

record a point rti whose x-coordinate is that of pi+1 and
whose y-coordinate is that of the updated qti . Let Q be
the set of all such points qti , r

t
i recorded during this pro-

cess for all t ≤ k, i = 1, . . . ,m. It is not hard to argue
that ∪t≤kSTt ⊆ Q. Moreover, |Q| ≤ m holds, as a point
is added to Q only when the sweep line crosses a point
of BNE . Finally, note that we encountered O(m) event
points pi. For each of them, we spend O(logm) time
to insert them into T and O(k) time for qti , r

t
i pointer

updates. Thus, the running time bound follows. �

Figure 2 illustrates the proof of Lemma 1.
Rather than computing the STt’s for each partition

of k, we compute them all in O(m logm + mk) time
before considering such partitions. Then, for each of the
O(k7) partitions, we need only solve a staircase problem
in O(m) time. This gives us the following result.

Theorem 2 Given two sets R,B, with |R| = n, |B| =
m, the largest rectangle enclosing R and containing at
most k points in B can be found in O(k7m+m logm+n)
time.

2.2 A Closer Look at the Number of Candidate Par-
titions of k

In the previous section, we reduced the running time
by a factor of logm. However, it seems hard to further
improve this bound given the high number of partitions
of k. In this subsection, we show how to reduce the
running time by reducing the number of candidate par-
titions of k.

To do that, we first compute all the t-level staircases
STt, 0 ≤ t ≤ k as described in the previous section.
We then consider the blue points in 4 pairs of adja-
cent regions, e.g., N and NE. That is, we suppose
the total number of outliers coming from BN ∪ BNE ,

239

33rd Canadian Conference on Computational Geometry, 2021

denoted kNNE = kN + kNE , is fixed. Similarly, we su-
pose kESE = kE + kSE , kSSW = kS + kSW , kWNW =
kW + kNW are fixed. Let ST (Q) = ∪kt=1STt(Q), for
any quadrant Q. From now on, we focus on the N and
NE regions and, for simplicity, we denote ST (NE) as
simply ST and STt(NE) as simply STt.

We notice that, even though any points of any t-th
level staircase, t ≤ kNE , may be a corner for a candi-
date rectangle, most of these rectangles can be discarded
as they are guaranteed to be smaller than the optimal
rectangle.

For every pair P = (P1, P2) of regions and every in-
teger t : 0 ≤ t ≤ k, denote by SPt the set of pairs
(p, q) ∈ (BP1 ∪ BP2)2 that may define an optimal so-
lution, with p as top support and q with right sup-
port, among all rectangles containing t blue points from
BP1
∪BP2

. From now on, whenever understood, we are
going to remove the superscript and simply write St,
e.g., SkNNE

instead of SNNEkNNE
. For every t, we store St

as an array.

Figure 3: BN ∪BNNE is swept with a horizontal line lH
sliding upwards from the lowest blue point. At each blue
point p encountered, the set SkNNE

is updated. Black
dots denote staircase points that are not blue points.

We extend the above definition to points p, q ∈ Bq for
other quadrants q, by flipping inequalities accordingly.

The goal is to compute SkNNE
. Suppose we have al-

ready computed all St : t < kNNE . Sweep BN ∪ BNE
with a horizontal line lH going upwards, starting at the
kNNE + 1-th lowest blue point in BN ∪BNE , as shown
in Figure 3. For every blue point p encountered as top
support, let below(p) be the highest point in BN below
p, and above(p) be the lowest point in BN above p. For
every p ∈ BNE , let rb(p) be the leftmost point in BNE
to the right of p and below p. Let tN be the blue point
count below p from BN . Also let t be the number of
points dominated by p from BN ∪BNE .

First, assume p ∈ BNE and let tNE = t − tN be

the number of points dominated by p from BNE , i.e.,
p ∈ STtNE

. When sweeping the next blue point, say q,
we do the following.

Case 1. If q is to the right of p, then q is below
above(p) but dominates p, the points domiated by p,
and the points in T (p, q) = {s ∈ BNE ∩ STtNE

|x(p) <
x(s) < x(q)} (Figure 4). If t + tpq = kNNE , then we
add (q, rb(q)) to St+tpq , where tpq = 1 + |T (p, q)|.

Figure 4: Case 1. p ∈ BNE , q to the right of p. The
purple empty dots denote T (p, q).

Case 2. If q ∈ BNE and q is to the left of p, then q
is below above(p) but dominates the points dominated
by p, except the ones in U(q, p) = {s ∈ BNE |x(q) <
x(s) < x(p), y(s) < y(p)}. For each s ∈ U(q, p), if
t − i(s) = kNNE , then we add (q, s) to St−i(s), where
i(s) is the index of s in U(q, p) in decreasing order of X
coordinates. Finally, if t = kNNE , then we add (q, p) to
St.

Case 3. If q ∈ BN then, for each s ∈ U(p) = {s ∈
BNE |x(s) < x(p), y(s) < y(p)} such that t − i(s) =
kNNE , we add (q, s) to St−i(s), where i(s) is the index of
s in U(p) in decreasing order of X coordinates. Finally,
if t = kNNE , then we add (q, p) to St.

Now assume p ∈ BN and let tNE be the largest t′

such that all points in any STt′ are below p. Let b(p) be
the leftmost point of STtNE

below p. When sweeping
the next blue point, say q, we do the following.

Case 4. If q is to the right of b(p) then, if t = kNNE−
1, we add (q, rb(q)) to St+1. For each s ∈ U(q) such that
t− i(s) = kNNE , we also add (q, s) to St−i(s).

Case 5. If q ∈ BNE and q is to the left of b(p),
then, if t = kNNE − 1, we add (q, s) to St+1 for every
(p, s) ∈ St.

Case 6. If q ∈ BN , then, if t = kNNE − 1, we add
(q, s) to St+1 for every (p, s) ∈ St.

The following lemma puts an upper bound on the
storage required by SkNNE

.

240

CCCG 2021, Halifax, Canada, August 10–12, 2021

Lemma 3 |SkNNE
| = O(m).

Proof. In case 1, we only one pair to SkNNE
. In case 2,

even though we consider |U(q, p)| points, we only add
the pair (q, s) such that t − i(s) = kNNE . Similarly, in
cases 3 and 4 we only add the pair (q, s) : t − i(s) =
kNNE , even though we consider |U(p)| (resp., |U(q)|)
points. In case 5, we add at most |STtNE

| pairs if t =
kNNE − 1. However, note that for the subsequent point
q′ swept, we would have a larger numbert′ of blue points
in BN ∪ BNE dominated by q′. Thus, we only add at
most |STtNE

| = O(m) pairs once. Similarly, in case 6
we only add O(m) pairs once. �

This lemma bounds the running time of the afore-
mentioned sweeping approach.

Lemma 4 For any t : 0 ≤ t ≤ k, the horizontal line
sweeping desccribed above takes O(m logm) time.

Proof. We store the blue points in BN ∪ BNE in two
balanced binrary search trees X,Y , indexed by X (resp.,
Y) coordinates. Thus, for each blue point p swept, we
require O(logm) time. We require an extra O(logm)
time to compute above(p), below(p), and rb(p). In case
1, note that we can compute tpq by finding the position
of q in the X-sorted order of STkNE

, and thus the num-
ber of blue points s : x(p) < x(s) < x(q), in O(logm)
time, since STkNE

is maintained as a binary search tree.
Thus, we only require an extra O(logm) time to handle
case 1. In cases 2 and 4, note that we only need to add
(q, s) to SkNNE

if i(s) = t− kNNE , so we query for s in
X using O(logm) time. Similarly, in case 3 we only add
(q, p) to SkNNE

if i(s) = t− kNNE , so we query X for s
in O(logm) time. Now in cases 5 and 6 we spend O(m)
time to traverse St, since we store St as an array for
any t, but they only occur once, so this gives us O(m)
total time. In every case, since St is an array, adding a
pair to St takes O(1) time. Since we sweep O(m) blue
points, the result follows. �

Corollary. We compute St in O(km logm) time for
all t : 0 ≤ t ≤ k. This holds for any quadrant.

We reduce the number of candidate partitions of
k from O(k7) to O(k3) as follows. By writing k =
kNNE+kESE+kSSW +kWNW , we can deduce kNNE =
k − kWNW − kESE − kSSW for every combination of
kWNW , kESE , kSSW . Therefore, there are O(k3) such
combinations.

Initially, we compute SQt for every quadrant Q
and 0 ≤ t ≤ k. Then, for each combination
(k1, k2, k3), k1, k2, k3 = 0, . . . k, k1 + k2 + k3 ≤ k, we
set k4 = k−k1−k2−k3 and solve the staircase problem
in [2] with the pairs SWNW

t1 ∪SESEt2 ∪SSSWt3 ∪SNNEk4
as

pairs of supports. Each staircase problem takes O(m)
time to solve, so we require O(k3m) time for all can-
didate partitions of k. Putting this together with the
result in Lemma 1, we get the following result.

We obtain the following result.

Theorem 5 Given two sets R,B, with |R| = n, |B| =
m, the largest rectangle enclosing R and containing at
most k points in B can be found in O(k3m+km logm+
n) time.

3 Finding the Largest Axis Aligned Rectangle En-
closing R and avoiding Unit Circles

In this version, called the circles version (MBSR-C),
B consists of unit circles that do not intersect Smin,
and the goal is to find the largest axis-aligned rectangle
enclosing R that avoids all circles.

Figure 5: If the maximum rectangle separating R and
B′ were bounded by point p ∈ C, it would intersect C

Note that the reduction in [3] for finding the largest
separating rectangle among rectangles does not work.
To see why this is the case, let CNW , CSW , CSE , CNE
be circles in the regions BNW , BSW , BSE , BNE . If one
picks any point p on the quadrant of CNW that is the
closest to Smin, and adds it to B′ (and does the same
for CSW , CSE , CNE), then, if the maximum rectangle
separating R and B′ is top-bounded or right-bounded
by p, it intersects CNW (as shown in Figure 5).

A candidate separating rectangle (CSR) is a rectangle
that encloses R and cannot be extended in any direction
without intersecting some circle. Notice that a CSR
may touch a circle either at an edge or at a corner. If it
is bounded at an edge, then that edge is fixed in terms
of X or Y coordinate and the arc it touches at each
endpoint of the edge is uniquely determined (Figure 6).
On the other hand, if it is bounded at a corner, then
the corner can be slided along the appropriate arc of the
circle (Figure 7). Each position of the corner determines
the X or Y coordinates of its two adjacent edges, and
thus the arcs pinning the two adjacent corners, if any.

We say that an edge e of a CSR is pinned by a circle
C, if C touches the interior of e.

241

33rd Canadian Conference on Computational Geometry, 2021

Figure 6: A circle bounding the rectangle at an edge
fixes that edge in terms of X or Y coordinate

A horizontal (resp., vertical) edge e is said to be fixed
by two circles C1, C2 in terms of Y (resp., X) coordinate,
if:

(1) the ends of e are on C1 and C2, respectively, and
(2) changing its Y (resp., X) coordinate would result

in either e intersecting C1 or C2 or failing to touch both
C1 and C2.

Figure 7: A circle bounding the rectangle at a corner
allows the corner to slide along the arc. Each position
of the corner determines its two adjacent edges

3.1 A description of all cases in which a CSR can
be found

Based on the number of edges of a CSR pinning by
circles, we consider the following cases.

Case 1. Three edges pinned by circles (Figures 8). In
this case, we extend the the fourth edge outward from
Smin until it touches a circle. Thus, the CSR is uniquely
determined.

Case 2. Two edges are pinned by two circles C1, C2.
Here we distinguish the following subcases.

Case 2.1. Two adjacent edges are pinned by C1, C2.
Note that their common corner q is fixed. We extend

Figure 8: Case 1

Figure 9: Case 2.1

242

CCCG 2021, Halifax, Canada, August 10–12, 2021

one of the edges by moving its other end p away from q,
until it touches a circle C3, and then extend the third
edge until it touches a circle C4 at a point r (Figure 9).
The resulting CSR is unique.

Case 2.2. Two adjacent edges are pinned by C1, C2.
We extend one of the edges by moving its other end p
away from q, until the orthogonal line through p touches
a circle C3 at a point r. While moving p, the point r
can slide along one or more circles in the same quadrant,
giving an infinite number of CSRs.

Case 2.3. Two opposite edges are pinned by C1, C2.
We slide the other two edges outward from Smin until
each of them touches some circle. This gives us a unique
CSR.

Case 3. One edge e is pinned by a circle C1. We
have the following subcases.

Figure 10: Case 3.1

Case 3.1. When e is extended in both directions, it
touches two circles C2, C3 (Figure 10). We then slide
the fourth edge outward from Smin until it touches a
circle C4 and we have a unique CSR.

Case 3.2. When e is extended in both directions,
the orthogonal line through one of the ends p touches a
circle C2 at point q. While moving p, q can slide along
one or more circles in the same quadrant, yielding an
infinite number of CSRs. After establishing the position
of q, we slide the fourth edge away from Smin until it
touches a circle C3.

Case 4. No edge is pinned by any circle. In this
case, all corners can slide along circles until one of the
edges becomes pinned by some circle, giving an infinite
number of CSRs. Suppose the position of a corner p
along a circle C1 ∈ BNE is known. We consider the
following subcases.

Case 4.1. While extending the CSR in the two di-
rections away from p, the CSR touches a circle in BSE
or BNW at some point q before touching any circle in
BSW (Figure 11). The other two corners are deter-
mined by sliding the edge opposite to pq outwards until
it touches a circle at some point r. In this case, the CSR

Figure 11: Case 4.1

is uniquely defined.
Case 4.2. While extending the CSR in the two di-

rections away from p, the first circle that CSR touches,
at a point q, is located in BSW . This gives us an infinite
number of CSRs.

3.2 Dominating envelopes

Definition 3 For each quadrant Bi, the dominating
envelope of Bi is a curve C with the following proper-
ties:

1) C lies inside Bi;
2) for any point p ∈ C, the rectangle cornered at p

and the closest corner of Smin from p is empty;
3) extending C away from Smin violates property (2).

Figure 12: In each region, the circles define a dominat-
ing envelope C, which is a sequence of arcs and hori-
zontal or vertical segments. Two consectutive arcs or
segments define a breakpoint on C.

Note that C is a sequence of circle arcs, horizontal,

243

33rd Canadian Conference on Computational Geometry, 2021

and vertical segments, plus a horizontal and a vertical
infinite ray (see Figure 12). Its use will be revealed later
on.

The dominating envelope changes direction at break-
points, which can be between two consecutive arcs, seg-
ments, or infinite ray. Every two consecutive break-
points define a range of motion for a CSR corner.

A breakpoint p is said to be a corner breakpoint, if a
CSR cornred at p cannot be extended away from Smin
in all directions without crossing some circle, even if its
other corners are not located on any envelope.

To compute the dominating envelope C of BNE , we do
the following. First, sort the circles by X coordinate of
their centers. Let p be the current breakpoint (initially,
the first breakpoint is the left endpoint l of the left-most
circle, with a vertical infinite ray upwards from l). For
each two adjacent circles C1(c1, 1), C2(c2, 1), depending
on the relative positions of c1, c2, we do the following.

Figure 13: Each pair of adjacent circles gives a different
case.

Case A. c2 ∈ C1. In this case, we add the lower inter-
section between C1 and C2 as a new corner breakpoint
q, along with the arc pq of C1.

Case B. y(c1)−1 ≤ y(c2) ≤ y(c1) and x(c2) > x(c1)+
1. We add a breakpoint q at the bottom of C1, the arc pq
of C1, a corner breakpoint r at the intersection between
the horizontal through q and C2, and the line segment
qr.

Case C. x(c1) + 1 ≤ x(c2) ≤ x(c1) + 1 and y(c2) <
y(c1) − 1. We add a breakpoint r at the left endpoint
of C2, a corner breakpoint q at the intersection between
the vertical through r and C1, the line segment qr, and
the arc pq of C1.

Case D. x(c2) > x(c1) + 1 and y(c2) < y(c1) − 1.
We add the breakpoints q at the bottom of C1, r at the
left end of C2, the corner breakpoint s at the intersec-
tion between the horizontal through q and the vertical
through r, the arc pq of C1, and the segments qs and
sr. Figure 13 illustrates this process.

Note that deciding the case a circle belongs to can be
done in O(1) time per circle.

3.3 Finding an optimal solution in each case

To find an optimal solution in each case, we do the fol-
lowing.

First, slide the edges of Smin outward until each of
them touches a circle. If this is not possible, then the
solution is unbounded, so we will assume that each edge
will eventually hit a circle. Denote the resulting rect-
angle by Smax and discard the portions outside Smax
from the dominating envelopes of all quadrants. The
endpoints of the resulting envelopes are also counted as
breakpoints.

For each case described in Section 3.1, we give a dif-
ferent algorithm to compute the largest separating rect-
angle. Before considering any case, we sort the blue
circles by the X coordinate and then (to break ties) by
the Y coordinate of their centers.

Case 1.

We consider all corner breakpoints that are defined
by pairs of adjacent circles in Case D, and add them to
a set B′. We also consider all arcs pq of circles that are
part of pairs in Case D (p to the west of q), the vertical
line lp through p and the horizontal line lq through q,
and add lp∩ lq to B′. We then find the largest rectangle
S∗ enclosing R and containing the fewest points in B′

using the algorithm in [4] in O(m + n) time. It is easy
to check that S∗ is an optimal solution for Case 1, since
any circle containing points in B′ intersects a circle in
B. Thus, Case 1 can be done in O(m+ n) time.

Case 2.

Assume wlog that two circles pin the north and the
west edges of a CSR. The cases where the two circles
define a different pair of adjacent edges of a CSR can
be handled in a similar fashion.

If we are in Case 2.1, we consider all corner break-
points q defined by pairs of adjacent circles in Case D,
as well as intersection between the south horizontal tan-
gent tH to the eastmost circle in BNE and the east verti-
cal tangent tV to the northmost circle in BNW south of
tH . For every such point, the north and west edges are
fixed, and we either find the south edge by extending the
west edge southwards until it hits a blue circle, or the
east edge by extending the north edge eastwards until it
hits a blue circle. In both approaches, the fourth edge
is uniquely determined. For each circle in C ∈ BNE , we
store pointers to the northmost circle in BNW south of
C and to the eastmost circle in BSE west of C, as well
as similar pointers for the other quadrants and direc-
tions, Thus, once the first two edges are fixed, we can
find the third and fouth edges in O(1) time. Since there
are O(m) circles in Case 2.1 and they all can be found
in O(m) time, Case 2.1 can be solved in O(m) time.

244

CCCG 2021, Halifax, Canada, August 10–12, 2021

For Case 2.2, we consider all points q as in Case
2.1. Having selected such point q defined by two cir-
cles C1 ∈ BNE ∪BNW and C2 ∈ BNW ∪BSW , we con-
sider the dominating envelope of BSE starting from the
east tangent to C1 or the east edge of Smin, whichever
is eastmost, and ending at the south tangent to C2 or
the south edge of Smin, whichever is southmost. This
gives us a range of motion for the SE corner r of the
CSR spanning O(m) circle arcs. For each such arc, we
find the optimal CSR in O(1) time as we shall prove in
the next section. Since there are O(m) choices of q, we
therefore handle Case 2.2 in O(m2) time.

As for Case 2.3, note that the pairs of circles defining
the NW and the SE corners, respectively, must belong
to a dominating envelope. We scan the dominating en-
velope of BNW for pairs of circles C1, C2 in Cases B
and C and, for each such pair, we scan the dominating
envelope of BSE for pairs of circles in Cases B and C,
starting from the east tangent to C1 or the east edge of
Smin, whichever is eastmost, and ending at the south
tangent to C2 or the south edge of Smin, whichever is
southmost. Once these pairs are established, the CSR is
determined. Since scanning each dominating envelope
takes O(m) time, we handle Case 2.3 in O(m2) time.

Case 3.

Assume wlog that a circle C pins the east edge of the
CSR. The cases where the circle define a different edge
of the CSR can be handled in a similar fashion.

For Case 3.1, we scan the dominating envelope of
BNE (similarly, BSE) for pairs of circles (C1, C) in cases
C and D, (C is the rightmost circle of the pair). For
every such pair of circles in BNE , we consider all cir-
cles C2 ∈ BSE that are intersected by the west vertical
tangent to C. It is possible that some of these circles
were already considered for a previous pair of circles
in BNE , so we may have to consider O(m2) triplets of
circles (C,C1, C2). We also traverse the circles in BE
in increasing X order of their centers. Denote by C
the current circle. We consider the sequences of circles
CNE ∈ BNE and C2 ∈ BSE that are intersected by the
west tangent to C. Since these sequences may include
circles already considered for a previous circle in BE ,
we may need to spend O(m2) to find all such triplets
(C,C1, C2) for which there exists a vertical line inter-
secting both C1, C2. Once a triplet is established, the
west, north, and south egdes are established, and the
west edge can be determined in O(1) time by extending
the north or the south edge until it hits a circle. Thus,
Case 3.1 requires O(m2) time.

For Case 3.2, we scan the dominating envelope of BSE
(similarly, BNE) for pairs of circles (C1, C) in cases C
and D (C is the rightmost circle of the pair). We also
traverse the circles C ∈ BE in increasing X order, and
consider the sequences of circles C1 ∈ BSE that are
intersected by the west tangent to C. For each pair

(C1, C), the east and south edges of the CSR are de-
fined. This provides a range of eligible circles from the
dominating envelope of BNW such that the SW and
NE corners of the CSR are not supported by any cir-
cle, and the NW corner slides along some circle arc.
There are O(m) (C1, C) pairs and each of them gives
O(m) circles from BNW . Hence, Case 3.2 takes O(m2)
time.

Case 4.
Consider all arcs defined by pairs of adjacent circles

in one of the cases A, B, C, or D. Consider all arcs
defined by pairs of adjacent circles. Each such arc a
establishes the range of motion for the appropriate
corner p of a CSR, say [pstart, pend] in X order. Suppose
a belongs to a circle in BNE , which establishes the
range of motion of the NE corner p of the CSR. This
gives us a range of sliding motion for the north and
the east edges of the CSR, which are supported by two
rays rW , rS shooting from p to the west and south,
respectively. Since only the SW corner q may also
slide along a circle, the west edge can be neither to the
west of the first intersection W (p) between rW and a
circle, nor to the west of the easternmost point in BW
of a circle. Similarly, the south edge can be neither
be to the south of the first intersection S(p) between
rS and a circle, nor to the south of the northernmost
point in BS of a circle. This gives a range of motion
for q, which may span multiple arcs of circle with
X coordinates within the range arcs(pstart, pend)
= [min(X(W (S(pend))), X(S(W (pend)))),
max(X(W (S(pstart))), X(S(W (pstart))))]. In fact,
there are O(m) arcs in the worst case, yielding O(m2)
pairs of arcs for all possible pairs (p, q). By computing
the pointers west(p), south(p), east(p), and north(p)
for every p, from the dominating envelope, we can
find each pair of arcs in O(1) time, as we take them
in X order. That is, we consider all arcs [pstart, pend]
defined by pairs of adjacent circles in X order and, for
each such arc, we compute the points W (S(pstart)),
S(W (pstart)), W (S(pend)), and S(W (pend)), and then
consider the arcs in BSW with X coordinates within
arcs(pstart, pend).

In the next subsection, we also show how to handle
each pair of arcs in Case 4 in O(1) time, in order to find
the optimal solution in O(m2) time.

3.4 Finding the CSR once the arcs pinning its cor-
ners are selected

We show how to find a maximum separating rectangle
once the arcs pinning the corners are selected.

For each quadrant Q, let θQ ∈ [αQ, βQ] be angular
position of the corner within the arc belonging to Q, say
C(c, 1). Let f(θNE , θNW , θSW , θSE) denote the area of
the CSR with the corners defined in terms of thetaQ
as above. Our goal is to find the maximum of f over

245

33rd Canadian Conference on Computational Geometry, 2021

Figure 14: The function fNE(θNE) denoting the area of
the CSR cornered on circle C(c, 1)

the feasible set of arguments, along with its arguments.
First, assume θSE , θNW , θSW are fixed, with the left and
bottom supports denoted as l, b (Figure 14). We refer to
f(θNE , θNW , θSW , θSE) as simply fNE(θ) (that is, refer
to θNE as simply θ).

We have the following lemma.

Lemma 6 fNE has at most 3 maxima.

We have

fNE(θ) = (w − sin θ) · (h− cos θ), (1)

where w = x(c)−x(l) and h = y(c)− y(b). For simplic-
ity, assume that all circles are fully contained in some
quadrant, so w, h > 1. Also,

f ′NE(θ) = w sin θ − h cos θ + sin2 θ − cos2θ. (2)

Letting x = tan θ, we get

f ′NE(x) =
wx− h√

1 + x2
+
x2 − 1

1 + x2
, (3)

so sf ′NE(x) = 0 ⇐⇒ (wx − h)
√

1 + x2 = 1 − x2 ⇐⇒
(wx−h)2(1+x2) = (1−x2)2 ⇐⇒ (w2−1)x4−2whx3+
(w2 + h2 + 2)x2 − 2whx+ h2 − 1 = 0 ⇐⇒
(w2− 1)x2(x2− 1)− 2whx(x2− 1) + (h2− 1)(x2− 1) =
0 ⇐⇒
((w2 − 1)x2 − 2whx+ h2 − 1)(x2 − 1) = 0, which solves
to

x1 = 1, (4)

x2,3 =
wh+−

√
2(w2 + h2)− 1

w2 − 1
(5)

(we ignore negative roots since x ≥ 0). Since x = tan θ,
it follows that θ1 = π

4 , θ2,3 = arctanx2,3 are extrema for
fNE . This means there are at most three maxima for
fNE .

By a similar argument, there are at most three max-
ima for fNW , fSW , fSE . Note that the position of two
opposite corners of a CSR, say NE and SW , determine
the position of the other two corners. This gives us at
most M = 9 maxima for f , as there are only two vari-
ables. We compute the O(1) maxima of f and choose
the one that gives the largest CSR.

Thus, we have proved the following result.

Theorem 7 Given a set of red points R with |R| = n,
and a set of blue unit circles B with |B| = m, the largest
rectangle enclosing R and avoiding all circles in B can
be found in O(m2 + n) time.

Acknowledgement

The author would like to thank Drs. Benjamin Raichel,
Chenglin Fan, and Ovidiu Daescu for the useful discus-
sions.

4 Conclusions and Future Work

We consider the outlier version of the largest axis-
aligned separating rectangle (MBSR-O), for which we
give an O(k3m+m logm+ n) time algorithm. We also
study the problem of finding the largest axis-aligned
separating rectangle among unit circles (MBSR-C) and
give an O(m2 + n) time algorithm.

We leave for future consideration finding the largest,
as well as the smallest enclosing circle avoiding all blue
circles. A ”combined” version such as MBSR-C with
outliers, i.e., finding the largest rectangle enclosing all
red points while containing at most k circles, would also
be of interest. Finally, it would be interesting to either
further improve the time bounds for the MBSR-O and
MBSR-C, prove lower bounds, or come up with approx-
imation algorithms.

References

[1] A. Agarwal and S. Suri, Fast algorithms for computing
the largest empty rectangle, SoCG’1987: 278-290

[2] B. Armaselu and O. Daescu, Maximum Area Rectangle
Separating Red and Blue Points, CCCG’2016: 244-251

[3] B. Armaselu and O. Daescu, C. Fan, and B. Raichel,
Largest Red Blue Separating Rectangles Revisited,
FWCG’2016

[4] B. Armaselu and O. Daescu, Maximum Area Rectan-
gle Separating Red and Blue Points, arXiv:1706.03268
(2017)

[5] B. Armaselu and O. Daescu, Dynamic Minimum
Bichromatic Separating Circle, Theoretical Computer
Science 774: 133-142 (2019), Available online 30 Nov.
2016, http://dx.doi.org/10.1016/j.tcs.2016.11.036

246

CCCG 2021, Halifax, Canada, August 10–12, 2021

[6] S. Bitner, Y. Cheung and O. Daescu, Minimum Sep-
arating Circle for Bichromatic Points in the Plane,
ISVD’2010: 50-55

[7] J. Chaudhuri, S. C. Nandy and S. Das, Largest empty
rectangle among a point set, Journal of Algorithms
46(1): 54-78 (2003)

[8] A. Mukhopadhyay and S.V. Rao, Computing a Largest
Empty Arbitrary Oriented Rectangle. Theory and Im-
plementation, International Journal of Computational
Geometry and Applications 13(3): 257-271 (2003)

[9] S. C Nandy, B. B Bhattacharya, and S. Ray, Efficient
algorithms for identifying all maximal isothetic empty
rectangles in VLSI layout design, FSTTCS’1990: 255-
269

[10] S. C Nandy, B. B Bhattacharya, and A. Sinha, Lo-
cation of the largest empty rectangle among arbitrary
obstacles, FSTTCS’1994: 159-170

[11] F. Sheikhi, A. Mohades, M. de Berg, and A. D.
Mehrabi, Separability of imprecise points, Computa-
tional Geometry 61: 24-37 (2017)

247

CCCG 2021, Halifax, Canada, August 10–12, 2021

Twisted Topological Tangles or: the Knot Theory of Knitting

Elisabetta Matsumoto*

Abstract

Imagine a 1D curve, then use it to fill a 2D manifold that covers an arbitrary 3D object—this computationally
intensive materials challenge has been realized in the ancient technology known as knitting. This process for making
functional 2D materials from 1D portable cloth dates back to prehistory, with the oldest known examples dating
from the 11th century CE. Knitted textiles are ubiquitous, because they are easy and cheap to create, lightweight,
portable, flexible, and stretchy. As with many functional materials, the key to knitting’s extraordinary properties
lies in its microstructure.

At the 1D level, knits are composed of an interlocking series of slip knots. At the most basic level, there is only
one manipulation that creates a knitted stitch—pulling a loop of yarn through another loop. However, there exist
hundreds of books with thousands of patterns of stitches with seemingly unbounded complexity.

The topology of knitted stitches has a profound impact on the geometry and elasticity of the resulting fabric. This
puts a new spin on additive manufacturing—not only can stitch pattern control the local and global geometry of a
textile, but the creation process encodes mechanical properties within the material itself. Unlike standard additive
manufacturing techniques, the innate properties of the yarn and the stitch microstructure has a direct effect on the
global geometric and mechanical outcome of knitted fabrics.

About the Speaker

Elisabetta Matsumoto is an assistant professor in the School of Physics at Georgia Institute of Technology. Her
physics research centers around the relationship between geometry and material properties in soft systems, including
liquid crystals, 3D printing and textiles. Her lab studies knitted textiles from the point of view of knot theory and
as an additive manufacturing technique. She is also interested in using sewing, 3D printing and virtual reality in
mathematical art and education.

*School of Physics, Georgia Institute of Technology

248

CCCG 2021, Halifax, Canada, August 10–12, 2021

Axis-Aligned Square Contact Representations

Andrew Nathenson∗

Abstract

We introduce a new class G of bipartite plane graphs
and prove that each graph in G admits a proper square
contact representation. A contact between two squares
is proper if they intersect in a line segment of positive
length. The class G is the family of quadrangulations
obtained from the 4-cycle C4 by successively inserting a
single vertex or a 4-cycle of vertices into a face.

For every graph G ∈ G, we construct a proper square
contact representation. The key parameter of the re-
cursive construction is the aspect ratio of the rectangle
bounded by the four outer squares. We show that this
aspect ratio may continuously vary in an interval IG.
The interval IG cannot be replaced by a fixed aspect ra-
tio, however, as we show, the feasible interval IG may be
an arbitrarily small neighborhood of any positive real.

1 Introduction

Geometric representations of graphs have many appli-
cations and yield intriguing problems [9]. Koebe’s cel-
ebrated circle packing theorem [8], for example, states
that every planar graph is a contact graph of interior-
disjoint disks in the plane. Schramm [10] proved that
this theorem holds even if we replace the disks with ho-
mothets of an arbitrary smooth strictly convex body in
the plane. The result extends to non-smooth convex
bodies in a weaker form (where a homothet may de-
generate to a point, and three or more homothets may
have a common point of intersection), and every planar
graph is only a subgraph of such a contact graph.

In this paper, we consider strong contact represen-
tations with interior-disjoint convex bodies where no
three convex bodies have a point in common. It is an
open problem to classify graphs that admit a strong
contact representation with homothets of a triangle or a
square [1, 2]. It is known that every partial 3-tree [1] and
every 4-connected planar graph admits a strong contact
representation with homothetic triangles, see [5, 6]; but
there are 3-connected planar graphs which do not admit
such a representation. We note here that every planar
graph admits a strong contact representation with (non-
homothetic) triangles [3]; see also [6].

∗California State University Northridge
andrew.nathenson.540@my.csun.edu

Research on this paper was partially supported by the NSF
award DMS-1800734.

Strong contact representations with homothetic
squares have been considered only recently. Da Lozzo
et al. [2] proved that every K3,1,1,-free partial 2-tree ad-
mits a proper contact representation with homothetic
squares, where a contact between two squares is proper
if they intersect in a line segment of positive length (in
particular, proper contacts yield a strong contact repre-
sentation). Eppstein [4] indicated that another family
of graphs, defined recursively, can also be represented
as a proper contact graph of squares. We remark that
Klawitter et al. [7] proved that every triangle-free planar
graph is the proper contact graph of (non-homothetic)
axis-aligned rectangles.

u

v1 v2

v3v4

(a)

u1 u2

u3u4

v1 v2

v3v4

(b)

Figure 1: The two operations used to obtain a graph in
G and their square contact representations.

Contribution. Let G be a family of plane bipartite
graphs defined recursively as follows. (i) G contains the
4-cycle C4. (ii) If G ∈ G and f = (v1, v2, v3, v4) is a
bounded 4-face of G, then G also contains the graphs
Ga and Gb obtained by the following two operations:
(a) insert a vertex u into f and connect it to v1 and v3;
(b) insert four vertices u1, . . . , u4 into f , add the cycle
(u1, u2, u3, u4) and the edges uivi for i = 1, . . . , 4; see
Fig. 1.

Every maximal 2-degenerate bipartite plane graph

249

33rd Canadian Conference on Computational Geometry, 2021

can be constructed by operation (a); and the 1-skeleton
of every polycube whose dual graph is a tree [4] can be
constructed by operation (b). However, the two oper-
ations jointly produce a larger class G, which belongs
to the class of 3-degenerate bipartite plane graphs. In
a square contact representation (SCR) of a graph in G,
every vertex vi corresponds to an axis-aligned square
s(vi), and every bounded face to an axis-aligned rect-
angle g(fi), which is also called the gap corresponding
to fi. We present our main result:

Theorem 1 Every graph in G admits a proper square
contact representation.

We prove Theorem 1 by induction in Section 3. For
the induction hypothesis we establish a stronger version
of the theorem in which one specifies intervals for the as-
pect ratios (defined as height/width) of every gap in the
representation, then recursively creates the SCR around
those gaps.

Theorem 2 Let G ∈ G be a graph with n vertices and
n−3 bounded faces f1, . . . , fn−3. For all α1, . . . , αn−3 >
0 and for all ε > 0, the graph G admits a proper square
contact representation such that the aspect ratio of the
gap corresponding to fi is α′i, with |αi − α′i| < ε, for all
i = 1, . . . , n− 3.

1 1

11

1

Figure 2: If all the gaps have aspect ratio 1, then scaling
any of the squares to changing the point contacts into
proper contacts would change the aspect ratios of the
outer gaps.

Figure 2 shows an example where the aspect ratios of
the gaps cannot be specified exactly in a proper contact
representation.

However, it turns out that G includes graphs that
must be bounded by a rectangle whose aspect ratio is
arbitrarily close to any given value, if they are inserted
into a face of another graph in G.

Theorem 3 For every r, δ > 0, there exists a bipartite
plane graph G ∈ G with a 4-cycle as its outer face such
that in every SCR of G, the aspect ratio of the central
gap between the four squares corresponding to that 4-
cycle is confined to the interval (r − δ, r + δ).

Relation to rectangle tilings. Theorem 2 implies a
tiling of a bounding box, where the tiles are squares
(of aspect ratio 1) and rectangular gaps whose aspect
ratios are prescribed up to an ε error term. Note that
the contact graph of this tiling, including squares and
gaps, and four additional vertices for the four sides of
the outer frame, is a triangulation. Schramm [11] (see
also [9, Chap. 6]) showed that for every inner triangula-
tion G of a 4-cycle without separating triangles there ex-
ists a rectangle contact representation of G in which the
rectangles have prescribed aspect ratios. However, some
of the contacts between rectangles might be point con-
tacts, and the interior of some of the separating 4-cycles
may degenerate to a point. In the recursive construc-
tion of G, step (ii) creates five separating 4-cycles in the
triangulation of the tiling, one for each gap (see Fig. 3).
In particular, if all five gaps degenerate to a point, then
Schramm’s result becomes trivial, but would not imply
Theorem 2. The class of graphs defined in this paper is
perhaps the first interesting case for which Schramm’s
approach is infeasible, as it cannot guarantee that the
rectangles on the interior of the separating 4-cycles do
not degenerate.

Figure 3: Left: a rectangular tiling with 9 tiles. Right:
the corresponding triangulation, where the outer 4-cycle
corresponds to the four edges of the outer frame.

Outlook. An obvious open problem is whether every
triangle-free plane graph admits a proper square con-
tact representation. Motivated by Schramm’s results,
one can also ask whether Theorem 1 generalizes to the
setting where each vertex of the graph is associated with
an axis-aligned rectangle of given aspect ratio.

Terminology. Let G = (V,E) be an edge-maximal
plane bipartite graph. In a square contact represen-
tation, every vertex vi corresponds to an axis-aligned
square s(vi), and every bounded face to an axis-aligned
rectangle g(fi), which is also called the gap correspond-
ing to fi. The aspect ratio of an axis-aligned rectangle
r is height(r)/width(r). The side length of a square s is
denoted by len(s). Scaling up a square from a corner by
(or to) x means to increase the width and height of the

250

CCCG 2021, Halifax, Canada, August 10–12, 2021

square by x (or to x) in such a way that the position of
the specified corner remains fixed.

2 Maintaining a Square Contact Representation

In this section, we show how to maintain a square con-
tact representation of a graph in G under operations (a)
and (b). Specifically, we show that one can insert one or
four new squares corresponding to these operations in
a rectangular gap of suitable size. The following Lem-
mas are used in the proof of Theorem 2 to recursively
construct a SCR for any given graph in G.

Lemma 1 For every α, β > 0, there exists an axis-
aligned rectangle that can be subdivided by two horizon-
tal (resp., vertical) lines into three rectangles of aspect
ratios α, 1, and β, respectively.

Proof. Let R be a rectangle of aspect ratio α+ β + 1,
with width x and height (α + β + 1)x. Two horizontal
lines at distance αx and βx from the top and bottom
side of R, resp., subdivide R into rectangles of aspect
ratios α, 1, and β, as required; see Fig. 4. �

x

αx

x

βx

Figure 4: Constructing an outer rectangle given two
inner rectangle aspect ratios.

To establish Theorem 1, we need a stronger version
of Lemma 1 that allows the aspect ratios to vary within
a small threshold.

Lemma 2 For every α, β, ε > 0, there exists a δ > 0
such that any rectangle of aspect ratio γ with |γ − (α+
β + 1)| < δ can be subdivided by two horizontal lines
into rectangles of aspect ratios α′, 1, and β′ such that
|α′ − α| < ε and |β′ − β| < ε.

Proof. Let δ = min{α, β, 1, ε}. Let R be a rectangle of
aspect ratio γ, where |γ − (α+ β + 1)| < δ, with width
x and height γx. Two horizontal lines at distance αx
and (1 + α)x from the top side of R subdivide R into
rectangles of aspect ratios α, 1, and β′ = γ−α−1. Note
that β′ > 0 and |β′−β| = |γ− (α+β+ 1)| < δ ≤ ε. �

Lemma 3 For every α1, . . . , α5 > 0, there exists an
axis-aligned rectangle R that can be subdivided into
four squares and five rectangular gaps of aspect ratios
α1, . . . , α5 such that (refer to Figs. 1b and 6)

• the four squares are each in contact with a side of
R, and their contact graph is a 4-cycle (but the con-
tacts along the 4-cycle are not necessarily proper);

• the first four gaps are each incident to the top-left,
bottom-left, bottom-right, and top-right corner of
R, respectively, and the fifth gap lies in the interior
of R.

The proof of Lemma 3 requires some preparation, and
is presented later in this section. For convenience, we
will rename α1, . . . , α5 respectively based on the posi-
tions of the gaps to which they correspond as αc (cen-
ter), αt` (top-left), αtr (top-right), αbr (bottom-right),
αb` (bottom-left). Also, name the squares incident to
the top, bottom, right, and left side of R as st, sb, sr,
and s`, respectively.

We will prove Lemma 3 by starting with an initial
configuration (Fig. 5), where the aspect ratio of the cen-
ter gap is already αc, and there are improper contacts
between adjacent squares of the cycle. Then we incre-
mentally modify the configuration, while the center gap
remains fixed, until all remaining gaps have the target
aspect ratios αt`, αtr, αbr, and αb`. We denote the cur-
rent aspect ratios of these gaps by gt`, gtr, gbr, and gb`
in the same fashion as αt` , . . . ,αb`. We next define the
initial configuration and four additional special config-
urations that play a role in intermediate steps of the
incremental construction.

Initial configuration. To create the initial configura-
tion, we start by drawing the interior gap and placing
st, . . ., s` incident to it, with each of their side lengths
equal to the side of the interior gap to which they are in-
cident (see Fig. 5). Note that the aspect ratios of every
outer gap is α−1c in this configuration.

αc sr

st

sb

s`

gtrgtl

gbl gbr

Figure 5: The initial configuration, with squares and
gap aspect ratios labeled.

Pinwheel configuration. A clockwise pinwheel config-
uration is defined as follows (see Fig. 6a):

• the bottom-right corner of st lies on the left side of
sr,

251

33rd Canadian Conference on Computational Geometry, 2021

• the bottom-left corner of sr lies on the top side of
sb,

• the top-left corner of sb lies on the right side of s`,

• the top-right corner of s` lies on the bottom side of
st.

A counterclockwise pinwheel can be obtained by a re-
flection.

st

sr

sb

s`

(a) Clockwise Pinwheel

st

sr

sb

s`

(b) Vertical Stacked

st
sr

sb

s`

(c) Downward Arrow

st

sr

sb

s`

(d) Clockwise Near-Pinwheel with
reversed contact between sr and st

Figure 6: Examples of four special configurations.

Stacked configuration. We define a vertical stacked
configuration as follows (see Fig. 6b):

• the top-right corner of sb lies on the left side of sr,

• the top-left corner of sb lies on the right side of s`,

• the bottom-right corner of st lies on the left side of
sr,

• the bottom-left corner of st lies on the right side of
s`.

A horizontal stacked configuration can be obtained by
a 90◦ rotation.

Arrow configuration. We define a downward arrow
configuration as follows (see Fig. 6c):

• the top-right corner of sb lies on the bottom side of
sr,

• the top-left corner of sb lies on the bottom side of
s`,

• the bottom-right corner of st lies on the left side of
sr,

• the bottom-left corner of st lies on the right side of
s`.

Upward, leftward, and rightward arrow configurations
can be obtained by rotation. We also define the direc-
tional square of the arrow configuration to be the one
furthest in the direction after which the configuration is
named (e.g., sb for a downward arrow configuration).

Near-pinwheel configuration. We define a clockwise
near-pinwheel configuration as a configuration which
would be a clockwise pinwheel configuration if one of
the contacts between squares was changed from vertical
to horizontal, or vice-versa (see Fig. 6d). This contact is
called the reversed contact of the near-pinwheel configu-
ration. A counterclockwise near-pinwheel configuration
can be obtained by reflection.

Lemmas 4–8 below concern transformations of these
special configurations, and are used in the proof of
Lemma 3.

Lemma 4 Assume that the top-left corner of sr is on
the right side of st and the bottom-left corner of sr is
on the right side of sb, and let αtr >gtr be given. There
exists a d > 0 such that if we slide sr upward by d
and scale it up by a factor of d/gbr from its bottom-left
corner, then no aspect ratio other than gtr changes, and
after the transformation we have αtr = gtr, or αtr >gtr
and sr and sb have a point contact. Similar statements
hold after reflections and rotations of the configuration.

Proof. Let the bottom-right gap have height h1 and
width w prior to the transformation. Assume that we
slide sr upward by some amount d > 0 and scale it up by
a factor of d/gbr from its bottom-left corner. After the
transformation, it has height h1 + d and width w+ dw

h1
.

As
h1
w

=
h1 + d

w + dw
h1

,

252

CCCG 2021, Halifax, Canada, August 10–12, 2021

the aspect ratio of the bottom-right gap has not
changed. Let the height of top-right gap be h2 prior
to the transformation, and note that its width is also w.
After the transformation, it has height h− d and width
w + d

gbr
. Thus, its height monotonically decreases in d,

and its width monotonically increases in d, so gtr mono-
tonically decreases in d. We can choose d = min(d1, d2),
where d1 ≥ 0 is the value which would reduce the con-
tact between sr and sb to a single point after the trans-
formation, and d2 ≥ 0 is the value which would achieve
αtr = gtr. �

Lemma 5 A clockwise (counterclockwise) pinwheel
configuration can be transformed such that gbr or gt`
(gtr or gb`) increases to, or such that gtr or gb` (gbr
or gt`) decreases to any amount γ > 0, while all other
aspect ratios remain the same.

Proof. Assume w.l.o.g. that we are given a clockwise
pinwheel configuration, and we wish to increase the as-
pect ratio gbr to γ >gbr. If we scale up sb from its top-
left corner by some amount d1, then gb` will increase.
To account for this change, though, we can scale up s`
as well so that gb` remains constant. Let h be the height
of the central gap. Then,

gbl =
len(sb)− len(s`) + h

len(s`)
.

After increasing the length of sb by d1, we must then
increase the length of s` by some amount d2 such that

len(sb)− len(s`) + h

len(s`)
=

(len(sb) + d1)− (len(s`) + d2) + h

len(s`) + d2

so that gb` does not change. Solving this equation for
d2 yields

d2 = d1
len(s`)

len(sb) + h
.

Because s` is not in contact with the bottom of R,
len(s`) < len(sb) + h. Thus, d2 < d1.

Let w be the width of the central gap. Then,

gtl =
len(st)

len(s`)− len(st) + w
.

After increasing the length of s` by d2, to maintain gt`,
we must increase the length of st by some amount d3
such that

len(st)

len(s`)− len(st) + w
=

len(st) + d3
(len(s`) + d2)− (len(st) + d3) + w

.

Solving for d3 gives

d3 = d2
len(st)

len(s`) + w
.

Because st is not in contact with the left side of R,
len(st) < len(s`) + w. Thus, d3 < d2.

After increasing the length of st by d3, we must in-
crease the length of sr by some amount d4 to maintain
gtr. Similarly to the argument above, we obtain d4 < d3,
and thus, d4 < d1.

So, this series of transformations, preserving gtr, gt`,
gb`, and the central gap, increases the length of sb by d1,
which is more than the amount it increases the length
of sr, d4. Specifically,

d4 =
d1len(s`)len(st)len(sr)

(len(sb) + h)(len(s`) + w)(len(st) + h)
< d1.

Before the transformations, the top boundary of sb over-
lapped the bottom boundary of sr by some amount x.
After the transformations, it overlaps by x+d1, because
sb has been scaled up from its top-left corner.

The width of the bottom-right gap equals len(sr) mi-
nus the length of the common boundary between sr and
sb. Because the length of that common boundary in-
creases by d1, but len(sr) increases only by d4 < d1,
the width decreases. Consequently, the width of the
bottom-right gap decreases and its height increases lin-
early in d1. Overall, gbr monotonically increases in d1.
We have constructed a series of transformations that
can increase gbr to any γ > gbr with a suitable d1. �

Lemma 6 A vertical (resp., horizontal) stacked config-
uration with a point contact between two of the squares
can be transformed such that the aspect ratio of the outer
gap between those squares increases (resp., decreases) to
any amount γ > 0 while all other aspect ratios remain
the same.

Proof. Assume w.l.o.g. that we are given a vertical
stacked configuration in which sr and sb have a point
contact, and we wish to increase the aspect ratio gbr to
γ >gbr.

If there is not a point contact between s` and st, then
the following transformation can be applied. Scale up
sb from its top-left corner to increase gbr. To account
for the resulting change in gb`, scale up s` and trans-
late it downward while maintaining gt`, as described in
Lemma 4. This transformation will either increase gbr
to γ, or it will result in a point contact between s` and
st.

If there is a point contact between s` and st, then the
squares are arranged in a pinwheel configuration, and
by Lemma 5 we can increase gbr to γ while maintaining
all other aspect ratios. �

Lemma 7 An upward or downward (resp., rightward
or leftward) arrow configuration, with a point contact
between the directional square and one of its neighbors,
can be transformed such that the aspect ratio of the outer
gap between those squares increases (resp., decreases) to

253

33rd Canadian Conference on Computational Geometry, 2021

any amount γ > 0 while all other aspect ratios remain
the same.

Proof. Assume w.l.o.g. that we are given a downward
arrow configuration in which sr and sb have a point
contact, and we wish to increase the aspect ratio gbr to
γ.

If sb and s` do not have a point contact, translate sb
to the right while scaling it up in order to maintain gb`
(as described in Lemma 4) while increasing gbr until gbr
= γ, or until there is a point contact between sb and s`.

If sb and s` have a point contact, then scale up sb from
its top-left corner to increase gbr. To account for the cor-
responding change in gb`, translate s` downward while
scaling it up to maintain gt` (as described in Lemma 4)
until gbr = γ, or until there is a point contact between
s` and st.

If s` and st have a point contact, then the squares are
arranged in a pinwheel configuration, and by Lemma 5
we can increase gbr to γ while maintaining all other
aspect ratios. �

Lemma 8 A near-pinwheel configuration can be trans-
formed such that the aspect ratio of the outer gap in
the direction of the near-pinwheel (clockwise or coun-
terclockwise) from the reversed contact increases to any
amount γ > 0 if its left side is the side of a square,
or decreases to any amount γ > 0 if its top side is the
side of a square, while all other aspect ratios remain the
same.

Proof. Assume w.l.o.g. that we are given a clockwise
near-pinwheel with a reversed top-right contact (as in
Figure 6d), and we wish to increase the aspect ratio gbr
to γ.

Perform the following transformation until st and sr
have a point-contact or until gbr has been increased to
γ. Scale up sb from its top-left corner by some amount.
To account for the corresponding change in gb`, scale up
s` from its top-right corner. To account for the corre-
sponding change in gt`, scale up st and translate it to
the left while maintaining gtr as described in Lemma 4.

If gbr does not reach its target value once st and sr
have a point contact, then the configuration is a pin-
wheel, and by Lemma 5 we can increase gbr to γ. �

We now have everything needed to prove Lemma 3.

Proof. [Proof of Lemma 3] Let αc, αt`, αtr, αbr,
and αb` be given. Start with the initial configuration
(cf. Fig. 5). If the target aspect ratios of all four outer
gaps are α−1c , then R can be drawn now with aspect ra-
tio αc. Otherwise, one or more of the outer gaps must
have their aspect ratios changed, either by increasing or
decreasing them.

Rotate and reflect the initial configuration if neces-
sary such that at least one gap needs to be made wider

(i.e., α < g), and the ratio g/α is maximal for the top-
right gap. In order to change gtr to αtr, we can scale
up sr from its bottom-left corner until gtr = αtr. This
scaling will not affect gt` or gb`, but it will decrease gbr.
After the scaling, the bottom-right gap will either have
the target aspect ratio already, need to be wider yet, or
need to be narrower. From now on, we will not mention
the case where a gap has reached its target aspect ratio
already, because it just means that the next step can be
skipped.

If the bottom-right gap needs to be wider yet, then by
Lemma 4 we can scale up sr and translate it downward
until gbr = αbr without changing gtr. As g/α is assumed
to be maximal for the top-right gap, if this transforma-
tion results in a point contact between sr and st, it also
achieves gbr = αbr (because otherwise, gbr > gtr = αtr).

If the bottom-right gap needs to be narrower, then
we can scale up sb from its top-left corner until gbr =
αbr. This will increase gb`.

Now, we can assume that gtr = αtr and gbr = αbr.
We distinguish between four cases:

1. sb has not been scaled, and either αb` ≤ α−1c or αt`
≤ α−1c .

2. sb has been scaled up from its top-left corner, αb`
≤ αt`, and αb` ≤ α−1c .

3. sb has been scaled up from its top-left corner, αt`
≤ αb`, and αt` ≤ α−1c .

4. αt` > α−1c and αb` > α−1c .

Case 1: sb has not been scaled, and either αb` ≤ α−1c
or αt` ≤ α−1c . Reflect the configuration, if necessary,
such that αb` ≤ αt`. Scale up s` from its top-right
corner until gb` = αb` (making the top-left gap wider).
Then, if gt` needs to decrease further, by Lemma 4 we
can scale up and translate s` until gt` = αt` to achieve
all target aspect ratios (once again, this transformation
guarantees gt` = αt` even if it results in a point contact,
because we assume αb` ≤ αt`). Otherwise, the top-
left gap needs to be narrower. Since the configuration
is a horizontal stacked configuration, and by Lemma 6
we can apply a series of transformations to achieve all
target aspect ratios.

Case 2: sb has been scaled up from its top-left cor-
ner, αb` ≤ αt`, and αb` ≤ α−1c . Scale up s` from its
top-right corner until gb` = αb`. This transformation
decreases gt`. Then, if gt` needs to decrease further, by
Lemma 4 we can scale up and translate s` until gt` =
αt` to achieve all target aspect ratios (once again guar-
anteed because αb` ≤ αt`). Otherwise the top-left gap
needs to be narrower. Since the squares are arranged in
a pinwheel configuration, Lemma 5 completes the proof.

Case 3: sb has been scaled up from its top-left cor-
ner, αt` ≤ αb`, and αt` ≤ α−1c . Scale up s` from its

254

CCCG 2021, Halifax, Canada, August 10–12, 2021

bottom-right corner until gt` = αt`. This transforma-
tion decreases gb`. Then, if gb` needs to decrease fur-
ther, by Lemma 4 we can scale up s` and translate it
downward, maintaining all other aspect ratios, until gb`
= αb` or s` and st have a point contact. If s` and
st have a point contact, then the squares are arranged
in a pinwheel configuration, and Lemma 5 completes
the proof. Otherwise, gb` needs to increase. Since the
squares form a downward arrow configuration in this
case, with a point contact between sb and s`, Lemma 7
completes the proof.

Case 4: αt` > α−1c and αb` > α−1c . We distinguish
between two subcases.

Case 4.1: If the top-right corner of sb lies on the
bottom side of sr, then by Lemma 4, we can translate sb
to the left while scaling it up until gb` = αb` or sb and sr
have a point-contact, while maintaining all other aspect
ratios. If gb` = αb`, then the configuration is a near-
pinwheel and Lemma 8 completes the proof. Otherwise,
if sb and sr have a point-contact, then the conditions of
Case 4.2 below are satisfied and we proceed as follows.

Case 4.2: If the top-right corner of sb lies on the
left side of sr, then scale up st from its bottom-right
corner until gt` = αt` and scale up sb from its top-right
corner until gb` = αb`. Now, gtr and gbr (which were
previously at their target values) both need to decrease.
Reflect the configuration, if necessary, so that the width
of the bottom-right gap needs to be increased by a larger
amount than the top-right gap. Scale up sr from its
bottom-left corner until gtr = αtr. Then, because the
width of the bottom-right gap needed to be increased
by a larger amount of the two, it still needs to be wider.
The configuration is a rightward arrow, so by Lemma 7,
we can decrease gbr arbitrarily while maintaining the
other aspect ratios. �

The following lemma, Lemma 9, shows that all im-
proper contacts can be replaced by proper contacts at
the expense of allowing the five aspect ratios to vary
within a given threshold. Using exact values of the as-
pect ratios, Lemma 3 can only guarantee single-point
contacts. However, it is easy to extend Lemma 3 to
Lemma 9 by changing any improper contacts among
adjacent squares in the 4-cycle into proper contacts.

Lemma 9 For every α1, . . . , α5 > 0 and ε > 0, there
exists a λ > 0 and a δ > 0 such that every axis-aligned
rectangle R of aspect ratio λ′, |λ − λ′| < δ, can be sub-
divided into four squares and five gaps of aspect ratios
α′i, with |α′i − αi| < ε, for i = 1, . . . , 5 such that

• the four squares are each in contact with a side of
R, and their contact graph is a 4-cycle, and all con-
tacts are proper;

• the first four gaps are each incident to the top-left,
bottom-left, bottom-right, and top-right corner of

R, respectively, and the fifth gap lies in the interior
of R.

Proof. Let αc, αt`, αtr, αbr, αb`, and ε > 0 be given.
By Lemma 3, there is a rectangle R with some aspect
ratio λ that can be subdivided into five gaps and four
squares sb, st, s`, and sr whose contact graph is a cycle.

Case 1. Assume first that all four contacts in the
cycle are proper. Then Lemma 9 holds with the same
λ. In each case, there exists a square that can be scaled
up or down while maintaining proper contacts in the
cycle. When scaling a single square, the aspect ratio
of the bounding box R and some of the gaps change
continuously. By continuity, there exists a δ > 0 such
that if the aspect ratios of the bounding box is λ′ with
|λ′ − λ| < δ, then all five gaps are at most ε from their
target values.

Case 2. Next assume that one or more contacts in
the cycle are improper, i.e., two squares intersect in a
common corner. For each improper contact, we can
successively scale up one of the two squares to establish
a proper contact. We scale up each square by a suffi-
ciently small amount such that the aspect ratios of the
five gaps change by less than ε/2. Let λ′ be the aspect
ratio of the new bounding box. We can show, similarly
to Case 1, that Lemma 9 holds with λ = λ′ and some
δ > 0 by continuity. �

3 Proof of Theorem 2

Finally, we have all the tools needed to prove Theorem 2.
We restate it for convenience:

Theorem 2 Let G ∈ G be a graph with n vertices and
n−3 bounded faces f1, . . . , fn−3. For all α1, . . . , αn−3 >
0 and for all ε > 0, the graph G admits a proper square
contact representation such that the aspect ratio of the
gap corresponding to fi is α′i, with |αi − α′i| < ε, for all
i = 1, . . . , n− 3.

Proof. We proceed by induction on n, the number of
vertices of G.

Basis step. Assume that G = C4 is a 4-cycle with
a single bounded face f1. It is clear that for any α1 >
0, C4 has a proper square contact representation as a
pinwheel configuration in which the gap corresponding
to f1 has aspect ratio α1.

Induction step. Let G ∈ G be a graph with n ≥ 5
vertices, and assume that the claim holds for all graphs
in G with fewer than n vertices. Then G was constructed
from a graph G0 ∈ G with operation (a) or (b) that in-
serts one or four vertices into a 4-face f0 = (v1, . . . , v4).
We may assume w.l.o.g. that v1 and v3 correspond to
squares that lie on the vertical sides of the gap corre-
sponding to f0 in any square contact representation. We
distinguish between two cases.

255

33rd Canadian Conference on Computational Geometry, 2021

Case (a). Assume that G was obtained from G0

by inserting a vertex u into f0 and connecting it to v1
and v3. This operation subdivides f0 into f1 and f2;
and all other faces are present in both G and G0. Let
α0 = α1+α2+1. By Lemma 2, there exists a δ > 0 such
that any rectangle of aspect ratio α′0 with |α′0−α0| < δ
can be subdivided by two horizontal lines into rectangles
of aspect ratios α′1, 1, and α′2 such that |α′1 − α1| <
ε and |α′2 − α2| < ε. The induction hypothesis with
ε0 = min{ε, δ} implies that G0 admits a proper square
contact representation such that the gap corresponding
to f0 has aspect ratio α′0, where |α′0−α0| < ε0 ≤ δ, and
all other gaps are at most ε0 ≤ ε off from their target
aspect ratios. Lemma 2 now yields a subdivision of the
gap corresponding to f0 into a square in proper contact
with the squares corresponding to v1 and v3, and two
gaps of aspect ratios α′1 and α′2 with |α′1 − α1| < ε and
|α′2 − α2| < ε.

Case (b). Assume that G was obtained from G0 by
inserting a 4-cycle (u1, u2, u3, u4) into f0 and adding the
edges uivi for i = 1, . . . , 4. This operation subdivides
f0 into five faces f1, . . . , f5 of G; and all other faces are
present in both G and G0.

By Lemma 9, there exists an α0 > 0 and a δ > 0 such
that any rectangle of aspect ratio α′0 with |α′0−α0| < δ
can be subdivided into four squares and five gaps corre-
sponding to f1, . . . , f5, of aspect ratios α′1, . . . , α

′
5, re-

spectively, such that |α′i − αi| < ε for i = 1, . . . , 5.
The induction hypothesis with ε0 = min{ε, δ} implies
that G0 admits a proper square contact representation
such that the gap corresponding to f0 has aspect ra-
tio α′0, where |α′0 − α0| < ε0 ≤ δ, and all other gaps
are at most ε0 ≤ ε off from their target aspect ratios.
Lemma 9 now yields a subdivision of the gap corre-
sponding to f0 into four squares, each in contact with
a unique one of v1, . . . , v4 and cyclically in contact with
one another, and five gaps of aspect ratios α1, . . . , α5

with |α′i − αi| < ε for i = 1, . . . , 5. �

4 Proof of Theorem 3

Lemma 10 For every integer n > 2, K2,n ∈ G; and
in any SCR of K2,n, if the squares corresponding to the
partite set of size two have side lengths `1 and `2, then

the distance between these squares is less than min(`1,`2)
n−2 .

Proof. Let s1 and s2 be the squares of side lengths
`1 and `2, respectively, in some SCR of K2,n. W.l.o.g.,
we may assume that `1 ≥ `2 and that s1 is below s2.
There exists a rectangle between s1 and s2 whose top
side is the side of s2 and whose height is the distance
between s1 and s2. It is clear that at most two of the
n squares corresponding to the other partite set can be
anything but fully contained in this rectangle (see Fig-
ure 7). Thus, the other n − 2 squares must be inside
this rectangle, and each must have the same side length

because they contact the top and bottom of this rect-
angle. Furthermore, the sum of their side lengths is
less than `2, because the squares don’t overlap. Thus,
each of these squares has height less than `2

n−2 , and the

distance between s1 and s2 is less than `2
n−2 . �

s1

s2

Figure 7: At most two squares are outside of the rect-
angle between s1 and s2.

Theorem 3 For every r, δ > 0, there exists a bipartite
plane graph G ∈ G with a 4-cycle as its outer face such
that in every SCR of G, the aspect ratio of the central
gap between the four squares corresponding to that 4-
cycle is confined to the interval (r − δ, r + δ).

Proof. Let r, δ > 0 be given. By applying a 90◦ rota-
tion, if necessary, we may assume that r ∈ [1,∞).

To construct G, we first construct its SCR. We start
with the 4-cycle, and successively insert squares into a
remaining gap (defined below). After i iterations, we
obtain a graph Gi. We also maintain an interval Ii
such that r ∈ Ii and in every SCR of Gi, the aspect
ratio of the central gap must be in Ii. Initially, we set
I0 = (0,∞). We show that Ii+1 ⊂ Ii and |Ii| < 2−i for
all i ∈ N. Consequently, Ii ⊂ (r−δ, r+δ) when 2−i < δ,
and we can return G = Gi.

In each iteration, we repeatedly insert a square into
a gap in the SCR contacting either the top and bottom
of the gap, or the left and right. Clearly, the contact
graph corresponding to the resulting SCR will be a 2-
degenerate plane bipartite graph. Whenever we insert
a square into a gap, we will also assume that it contacts
one additional side of the gap; however, instead of an
actual contact, we can only guarantee that in any SCR,
they are sufficiently close to that side (cf. Lemma 10):
If the square contacts the left and right, then it must
be very close to the bottom; if it contacts the top and
bottom, then it must be very close to the left. Specif-
ically, if m is the total number of squares used in the
rest of the construction, and ` is the side length of the

256

CCCG 2021, Halifax, Canada, August 10–12, 2021

largest square used in the construction, we can insert
d 2m`δ + 2e squares in between each square and the side
it is supposed to be close to. This will ensure that each
square is at most δ

2m apart from the side it is supposed
to be close to, and thus that the aspect ratio differs from
what the aspect ratio would be if these contacts actually
existed by less than δ

2 . We can carry out the rest of the
proof under the assumption that these squares in fact
contact that side, and that the interval for the target
aspect ratio is (r − δ

2 , r + δ
2).

Because of these assumed additional contacts, there
is always only one remaining gap in the course of the
recursive construction. We will call this the remaining
gap.

Let the aspect ratio of the central gap (of the outer
4-cycle) be constrained to the interval Ii. When we in-
sert a square into the remaining gap, either the lower
or upper bound on this aspect ratio will become con-
strained to some c ∈ Ii. Specifically, after inserting a
square which contacts the left and right (and the bot-
tom, as an additional contact) of the remaining gap,
the lower bound increases to c and the upper bound
is unchanged. This follows because the inserted square
must be at least the width of the remaining gap, so the
remaining gap’s aspect ratio must be at least 1. How-
ever, it does not impose any constraint on the maximum
height of the remaining gap, since the top of the square
does not contact the top of the gap. Similarly, after
inserting a square which contacts the top and bottom
(and left) of the remaining gap, the height of the gap
is limited to the height of the square, so the remaining
gap’s aspect ratio must be at most 1, while the width of
the gap is no further constrained. As we will show later,
the central gap’s aspect ratio varies monotonically in the
aspect ratio of the remaining gap. Thus, we know that
some c must exist because inserting a square which con-
tacts the top and bottom and inserting a square which
contacts the left and right will each change a different
one of the bounds of the aspect ratio of the remaining
gap, and hence the central gap, to the same value.

So, one can always insert a sequence of squares con-
tacting either the top and bottom or the left and right
of the remaining gap, and it will either increase the
lower bound or decrease the upper bound of the inter-
val Ii, while containing the target aspect ratio r. In the
remainder of the proof, we choose a specific sequence
of insertions and show that both the upper and lower
bounds converge to r.

Phases. Each iteration of the construction will consist
of inserting squares into the remaining gap, g, in two
phases. In each phase, we will either insert some num-
ber of squares which contact the left and right edges of
the gap (a vertical phase) or some number of squares
with contact the top and bottom (a horizontal phase).

The number of squares inserted is the size of that phase.
Because the squares in each phase contact the same two
sides of the gap, each phase will either increase the lower
bound or decrease the upper bound of the interval Ii.
W.l.o.g., let the next phase to insert be horizontal, set-
ting some upper bound on the aspect ratio of g. Then,
by Lemma 10, we can insert a sufficiently large phase
to reduce the distance between the last square in this
horizontal phase and the side of g to an arbitrarily small
value, bringing the lower bound of the aspect ratio of
g arbitrarily close to the upper bound. Because the
central gap’s aspect ratio varies monotonically in the as-
pect ratio of g, for any vertical (resp., horizontal) phase,
there exists a k for which inserting a phase of size k+ 1
would bring the lower (resp., upper) bound of Ii above
(resp., below) r.

We will use the following process to construct a SCR
whose central gap’s aspect ratio is constrained to (r −
δ, r + δ), assuming r ≥ 1. Let the interval which is the
bounds of the central gap’s aspect ratio be Ii = (ai, bi).
Starting with the four outer squares, while |Ii| ≥ δ

2 :

1. Insert a vertical phase whose size is the largest pos-
sible such that ai ≤ r.

2. Insert a horizontal phase whose size is the largest
possible such that bi ≥ r.

Let n be the total number of iterations.

Convergence. It is clear from the construction that
r ∈ Ii+1 ⊂ Ii for all i ∈ N. It remains to show that
|Ii| ≤ 2−i. To prove the convergence, we will construct
the same SCR from the inside-out. We start with an ar-
rangement which is just the remaining gap, a rectangle,
and add phases of squares alternatively contacting the
left and bottom of this arrangement, as shown in Fig-
ure 8. After adding phases in this way, the four outer
squares can be added so that this construction ends with
the same SCR as we constructed with the above process.

Let the width of the configuration after adding i verti-
cal phases be 1, and the height h (and thus, the aspect
ratio), be in some interval Ji = (c, d). In particular,
note that J0 = (0,∞) and Jn = In. We will then add a
horizontal phase of size k, then a vertical phase of size `.
Note that each square in the horizontal phase has side
length h, and each square in the vertical phase has side
length kh+1. Thus, the aspect ratio of the arrangement
after inserting these phases is now

(kh+ 1)`+ h

kh+ 1
.

This expression shows that |Ji| < ∞ for all i ≥ 1.
By adding an extra iteration with k0, `0 = 1 we can
also guarantee that J0 < 1. We can transform this
expression as follows:

257

33rd Canadian Conference on Computational Geometry, 2021

. . .

. . .

sks1

t1

Figure 8: Starting with the remaining gap, we add a
horizontal phase of squares (labeled s1, . . . , sk in this
figure), then a vertical phase (t1, . . .), and will continue
with alternating phases.

(kh+ 1)`+ h

kh+ 1
=

(k`+ 1)h+ `

kh+ 1
=
k`+ 1

k
−

1
k

kh+ 1
.

This shows that the aspect ratio of the central gap
varies monotonically in the aspect ratio of the remaining
gap (as noted earlier).

As k`+1
k is a positive constant, it does not affect the

length of the interval Ji+1. Thus, we can say now that

|Ji+1| <
1

k

∣∣∣∣
1

kd+ 1
− 1

kc+ 1

∣∣∣∣

<
|c− d|

(kc+ 1)(kd+ 1)
.

We know that d is at least 1, because r ≥ 1, and k is
at least 1 as well. Thus, the denominator is at least 2,
and since |Ji| = d− c,

|Ji+1| <
|Ji|
2
.

Combined with |J0| < 1, this implies |In| = |Jn| <
2−n, and so |In| < δ if 2−n < δ, or equivalently, n >
log δ−1. �

Acknowledgements

The author would like to thank Stefan Felsner for bring-
ing to his attention the connection to Schramm’s square
tiling result. Additionally, he would like to thank Csaba
Toth for all of his help and support in presenting these
results.

References

[1] Melanie Badent, Carla Binucci, Emilio Di Gia-
como, Walter Didimo, Stefan Felsner, Francesco
Giordano, Jan Kratochv́ıl, Pietro Palladino, Maur-
izio Patrignani, and Francesco Trotta. Homothetic
triangle contact representations of planar graphs.
In Proc. 19th Canadian Conference on Computa-
tional Geometry (CCCG), pages 233–236, Ottawa,
ON, Canada, 2007. Carleton University. URL:
http://cccg.ca/proceedings/2007/09b4.pdf.

[2] Giordano Da Lozzo, William E. Devanny, David
Eppstein, and Timothy Johnson. Square-contact
representations of partial 2-trees and triconnected
simply-nested graphs. In Proc. 28th Symposium on
Algorithms and Computation (ISAAC), volume 92
of LIPIcs, pages 24:1–24:14. Schloss Dagstuhl,
2017. doi:10.4230/LIPIcs.ISAAC.2017.24.

[3] Hubert de Fraysseix, Patrice Ossona de Mendez,
and Pierre Rosenstiehl. On triangle contact graphs.
Comb. Probab. Comput., 3:233–246, 1994. doi:

10.1017/S0963548300001139.

[4] David Eppstein. Square contact graphs, 2017.
URL: https://11011110.github.io/blog/2017/10/
03/square-contact-graphs.html.

[5] Stefan Felsner and Mathew C. Francis. Contact
representations of planar graphs with cubes. In
Proc. 27th Symposium on Computational Geometry
(SoCG), pages 315–320. ACM Press, 2011. doi:

10.1145/1998196.1998250.

[6] Daniel Gonçalves, Benjamin Lévêque, and Alexan-
dre Pinlou. Triangle contact representations and
duality. Discret. Comput. Geom., 48(1):239–254,
2012. doi:10.1007/s00454-012-9400-1.

[7] Jonathan Klawitter, Martin Nöllenburg, and
Torsten Ueckerdt. Combinatorial properties
of triangle-free rectangle arrangements and the
squarability problem. In Proc. 23rd Symposium on
Graph Drawing and Network Visualization (GD),
volume 9411 of LNCS, pages 231–244. Springer,
2015. doi:10.1007/978-3-319-27261-0_20.

[8] Paul Koebe. Kontaktprobleme der Konformen Ab-
bildung. Ber. Sächs. Akad. Wiss. Leipzig, Math.-
Phys. Kl., 88:141–164, 1936.

[9] László Lovász. Graphs and Geometry, volume 65
of Colloquium Publications. AMS, Providence, RI,
2019.

[10] Oded Schramm. Existence and uniqueness of pack-
ings with specified combinatorics. Israel Journal
of Mathematics, 73:321–341, 1991. doi:10.1007/

BF02773845.

258

CCCG 2021, Halifax, Canada, August 10–12, 2021

[11] Oded Schramm. Square tilings with prescribed
combinatorics. Israel Journal of Mathematics,
84:97–118, 1993. doi:10.1007/BF02761693.

259

CCCG 2021, Halifax, Canada, August 10–12, 2021

Folding Polyiamonds into Octahedra

Eva Bolle∗ Linda Kleist∗

Abstract

We study polyiamonds (polygons arising from the tri-
angular grid) that fold into the smallest yet unstudied
platonic solid – the octahedron. Our results are threefold.
Firstly, we characterize foldable polyiamonds containing
a hole of positive area, namely each but one polyiamond
is foldable. Secondly, we show that a convex polyiamond
folds into the octahedron if and only if it contains one
of five polyiamonds. Finally, we present a sharp size
bound: While there exist unfoldable polyiamonds of size
14, every polyiamond of size at least 15 folds into the
octahedron.

1 Introduction

Algorithmic origami is a comparatively young branch of
computer science that studies the algorithmic aspects
of folding various materials. The construction of three-
dimensional objects from two-dimensional raw materials
is of particular interest and has applications in robotics
in general [10, 12], and also in the construction of objects
in space [9].

While foldings of polycubes and tetrahedra have al-
ready been studied, we take the next step and focus on
the question of whether a given polyiamond folds into
the octahedron, e.g., does the polyiamond in Figure 1
fold into the octahedron?

(a) A polyiamond P . (b) The octahedron O.

Figure 1: Does the polyiamond P fold into the octahe-
dron O?

Terminology. By the octahedron O, we refer to the
regular octahedron composed of eight equilateral (unit)
triangles; for an illustration consider Figure 1(b). Note
that four triangles meet in each of the six corners of
the octahedron. Because all faces of the octahedron

∗Technische Universität Braunschweig, Germany
{eva.bolle,l.kleist}@tu-bs.de

are triangles, our pieces of paper are polygons arising
from the triangular grid. A polyiamond of size n is
a connected polygon in the plane formed by joining n
triangles from the triangular grid by identifying some of
their common sides; for an example consider Figure 1(a).
To avoid confusion with the corners of the octahedron,
we refer to the vertices of the triangles forming P as
the vertices of P ; note that these vertices may also lie
inside P .

We view P as a set which includes the n open triangles
and a subset of the shared unit-length boundary edges;
the existence of such an edge models the fact that the
triangles are glued along this side. Because we only want
robust connections between triangles via their sides, we
do not specify the existence or non-existence of vertices
which do not influence the foldability. However, for the
upcoming definitions of slits and holes, we assume that
the vertices do not belong to the polyiamond. If a shared
edge does not belong to P , we call it a slit edge. We
also allow the polyiamonds to have holes; a hole of a
polyiamond is a bounded connected component of its
complement, which is different from a single vertex. We
call a hole a slit if it has area zero and consists of one
or more slit edges. We consider two polyiamonds to
be the same if they are congruent, i.e., if they can be
transformed into one another by a set of translations,
rotations and reflections. Moreover, a polyiamond is
convex if it forms a convex set in the plane (after adding
a finite set of points corresponding to vertices).

Folding model. We consider foldings in the grid folding
model, where folds along the grid lines are allowed such
that in the final state every triangle covers a face of
the octahedron, i.e., we forbid folding material strictly
outside or inside the octahedron. Consequently, in the
final state the folding angles are ±β := arccos(1/3) or
±180◦. Moreover, a folding of a polyiamond P into
the octahedron O induces a triangle-face-map, i.e., a
mapping of the triangles of P to the faces of O. We say
P folds into O (or P is foldable), if P can be transformed
by folds along the grid lines into a folded state such that
the induced triangle-face-map is surjective, i.e., each
face of O is covered by at least one triangle. In order
to study non-foldable polyiamonds, we also consider
partial foldings, i.e., foldings where potentially not all
faces of O are covered. Note that partial foldings induce
triangle-face-maps that are not necessarily surjective.

260

33rd Canadian Conference on Computational Geometry, 2021

1.1 Related work

Past research has particularly focused on folding poly-
ominoes into polycubes. Allowing for folds along the
box-pleat grid (consisting of square grid lines and al-
ternating diagonals), Benbernou et al. (with differing
co-authors) show that every polycube Q of size n can
be folded from a sufficiently large square polyomino [6]
or from a 2n × 1 strip-like polyomino [5]. Moreover,
common unfoldings of polycubes have been investigated
in the grid model. The (square) grid model allows folds
along the grid lines of a polyomino with fold angles of
±90◦ and ±180◦, and allows material only on the faces of
the polyhedron. Benbernou et al. show that there exist
polyominoes that fold into all polycubes with bounded
surface area [5] and Aloupis et al. study common un-
foldings of various classes of polycubes [4]. Moreover,
there exist polyominoes that fold into several different
boxes [1, 11, 13, 14, 15].

Decision questions for folding (unit) cubes are studied
by Aichholzer et al. [2, 3]. The half-grid model allows
folds of all degrees along the grid lines, the diagonals, as
well as along the horizontal and vertical halving lines of
the squares. In this model, every polyomino of size at
least 10 folds into the cube [3]. The remaining polyomi-
noes of smaller size are explored by Czajkowski et al. [8].
In the grid model, Aichholzer et al. [3] characterized the
foldable tree-shaped polyominoes that fit within a 3× n
strip. Investigating polyominoes with holes, Aichholzer
et al. [2] show that all but five basic holes (a single unit
square, a slit of length 1, a straight slit of length 2, a
corner slit of length 2 and a U-shaped slit of length 3)
guarantee that the polyomino folds in the grid model
into the cube.

In the context of polyiamonds, Aichholzer et al. [3]
present a nice and simple characterization of polyia-
monds that fold into the smallest platonic solid: Even
when restricting to folds along the grid lines, a polyia-
mond folds into the tetrahedron if and only if it contains
one of the two tetrahedral nets.

Results and organization. Our main results are as fol-
lows:

• In Section 2, we identify some sufficient and neces-
sary conditions for foldability and take a closer look
at polyiamonds with slits and holes.

• Among our findings in Section 3, we characterize
foldable polyiamonds containing a hole of positive
area: each but one polyiamond is foldable.

• In Section 4, we characterize the convex foldable
polyiamonds: A convex polyiamond folds into O if
and only if it contains one of five polyiamonds.

• Lastly, in Section 5, we show that every polyiamond
of size ≥ 15 is foldable. An non-foldable polyiamond
of size 14 proves that this bound is best possible.

2 Some Tools

In this section, we present tools for proving or disproving
the foldability of a polyiamond into an octahedron.

2.1 Foldability

A polyiamond P contains a polyiamond P ′ if P ′ can be
translated, rotated, and reflected such that all triangles
and triangle sides of P ′ also belong to P . Restricting our
attention to the triangles, a polyiamond P 4-contains
a polyiamond P ′ if all triangles of P ′ belong to P . For
example, the polyiamond in Figure 7(b) does not contain
but 4-contains the polyiamond in Figure 7(a). As we
will see in Observation 1, neither containment nor 4-
containment of a foldable polyiamond is a sufficient
folding criterion. Nevertheless, we are able to show two
sufficient criteria based on 4-containment of foldable
polyiamonds. By zig-zag-folding as indicated in Figure 2,
every polyiamond can be reduced to a contained convex
polyiamond.

Lemma 1 A polyiamond P is foldable if it 4-contains
a convex foldable polyiamond C.

Proof. Firstly, we reduce P to C: For every boundary
side s of C, we fold the triangles of P outside C in a
zig-zag-manner. To this end, we fold along the grid lines
parallel to s with +180◦ and −180◦ folds alternatingly,
as illustrated in Figure 2. As a result, the supporting
line of s bounds the folded polyiamond. Because C is
convex and contained in P , P can be transformed to
C with the above procedure. Secondly, we use the fact
that C folds into O. �

Figure 2: Folding strategy to reduce a polyiamond to a
convex subpolyiamond by zig-zag-folding the outside.

A net of a polyhedron is formed by cutting along
certain edges and unfolding the resulting connected set
to lie flat. There exist two interesting facts for nets of
3-dimensional regular convex polyhedra [7]: Firstly, each
net is uniquely determined by a spanning tree of the
1-skeleton of the polyhedron, i.e., the cut edges form a
spanning tree of the vertex-edge graph. Secondly, dual
polyhedra (e.g., the cube and the octahedron) have the
same number of nets. Consequently, there exist eleven
octahedron nets. They are depicted in Figure 3.

We show that 4-containing a net is a sufficient folding
criterion for a polyiamond.

261

CCCG 2021, Halifax, Canada, August 10–12, 2021

N2N1

Figure 3: The eleven nets of the octahedron split into two groups N1 and N2.

Lemma 2 A polyiamond is foldable if it 4-contains an
octahedron net.

Proof. We partition the set of nets into two groups
N1 and N2 as illustrated in Figure 3. Note that within
each group, the vertex-corner-maps (can be shifted such
that they) are consistent on common triangles. For
i = 1, 2, we consider the smallest convex polyiamond Si

containing the nets of Ni as depicted in Figure 4. The
coloring of the vertices gives a mapping to the corners
of O (where antipodal corners of O have the same shape
but different colors as in Figure 3) and thus describes a
folding of Si into O.

f1

f4

f8

f2
f3 f5

f6

f8 f8

f1 f1

f7

(a) S1

f4f2
f3 f5

f8
f7

f6
f1

f1 f1f1

f6

(b) S2

Figure 4: Illustration for the proof of Lemma 2.

By Lemma 1, all polyiamonds that contain a convex
polyiamond can be reduced to the convex polyiamond.
By construction, not all triangles of Si are present in each
net of Ni. However, each net has at least eight triangles
with pairwise different labels. The non-existence of a
triangle harms the foldability only if it is essential to
cover a face. �

2.2 Non-foldability

As indicated in Figure 5, the triangular grid graph allows
for a proper 3-coloring. Because every (connected) inner
triangulation has at most one 3-coloring (up to exchange
of the colors), every polyiamond has a unique 3-coloring

which is induced by the triangular grid. If there exists a
slit edge along a grid line, the polyiamond graph may
have several vertices corresponding to one grid vertex,
see also Figure 7(b). Note that each corner of O has a
unique non-adjacent corner which we call its antipodal.

Figure 5: A 3-coloring of the triangular grid.

In order to study the non-foldability, we also consider
partial foldings. In particular, when relaxing the condi-
tion that all faces are covered, we say a polyiamond is
partially folded into the octahedron.

Lemma 3 Let P be a polyiamond with a 3-coloring
of its vertices. In every (partial) folding of P to the
octahedron O, the vertices of each color class are mapped
to (one corner or a pair of) antipodal corners of O.

Proof. Consider two neighboring triangles of P and
note that their two private vertices have the same color.
If their common side is folded by ±β, these two vertices
are mapped to antipodal corners of O; otherwise the
edge is folded by ±180◦ and the two vertices are mapped
to the same corner of O. The fact that P is connected
implies that every color class is mapped to a different
set of antipodal corners. �

Let C6 and C10 denote the polyiamonds depicted in
Figures 6(a) and 6(c), respectively. The following lemma
is a crucial tool to disprove foldability.

262

33rd Canadian Conference on Computational Geometry, 2021

f1

f1
f2

f3
f2

f3

(a) A triangle-face-
map of C6 cover-
ing 3 faces of O.

f1

f1
f1

f3
f2

f4

(b) A triangle-face-
map of C6 covering
4 faces of O.

v

v2

v1

(c) Any triangle-face-
map of C10 covers at
most 6 faces of O.

Figure 6: Illustration of Lemma 4 and its proof.

Lemma 4 Let P be a polyiamond (partially) folded into
the octahedron O.

(i) Every C6 4-contained in P covers at most 4 dif-
ferent faces of O.

(ii) If a C6 in P covers exactly 3 or 4 faces, then
the induced triangle-face-mapping is unique (up to
symmetry) and as depicted in Figures 6(a) and 6(b),
respectively.

(iii) Every C10 contained in P covers at most 6 different
faces of O.

Proof. Let v denote the central vertex of C6. In the
folded state, v is mapped to a corner c of the octahedron
which is (like every corner) incident to 4 faces.

(i) Because every triangle of C6 is incident to vertex v,
these triangles cover a subset of the 4 faces incident
to c.

(ii) We consider a 3-coloring as indicated in Figure 6(a).
If all circle or all square vertices map to a same
corner, then C6 covers at most two faces of O,
namely the ones incident to the cross and circle
vertex. Hence, if P covers 3 or 4 faces, then exactly
two vertices of each class map to the same corner
and the third vertex of each class maps to its an-
tipodal, we call this vertex lonely. We distinguish
whether the two lonely vertices are a) adjacent or
b) opposite in C6, see Figures 6(a) and 6(b). It
follows that the number of covered faces is 3 and
4, respectively.

(iii) We consider a 3-coloring of C10 as illustrated in
Figure 6(c) and use the fact that each color class
is mapped to antipodal corners by Lemma 3. We
denote the three cross vertices by v, v1, v2 as il-
lustrated in Figure 6(c); similarly, we denote the
corner of O to which v is mapped by c. If at most
one vi (which are both incident to only two trian-
gles) is mapped to the antipodal corner c of c, then
at most 2 faces incident to c can be covered. If
both v1 and v2 are mapped to c, then the 4 incident
triangles of c share a common edge. Consequently,
they may cover at most 2 incident faces. In other
words, in both cases at least 2 faces (incident to c)
remain uncovered.

This completes the proof. �

3 On Slits and Holes

In this section, we consider polyiamonds with slits and
holes. First of all, we remark that removing individual
edges from a foldable polyiamond does not destroy its
foldability as long as connectivity is maintained. This
allows us to focus on polyiamonds without slit edges, i.e.,
sealing slit edges may only increase the level of difficulty
to prove foldability. On the other hand, we note that
slits may in fact enable foldability.

Observation 1 Let P be a polyiamond (4-)containing
a foldable polyiamond P ′. Then, the polyiamond P may
not be foldable.

As we show in Theorem 6, the polyiamond P depicted
in Figure 7(a) does not fold into O, while the polyia-
mond P ′ with additional slit edges in Figure 7(b) can be
transformed into a polyiamond containing a net. Hence,
P ′ is foldable by Lemma 2.

(a) By Theorem 6,
this polyiamond does
not fold into O.

(b) With additional slit edges, the polyia-
mond folds into O.

Figure 7: Illustration for Observation 1.

We now characterize foldable polyiamonds with holes
of positive area. Let O denote the polyiamond illustrated
in Figure 8.

Figure 8: Polyiamond O

Theorem 5 Let P be a polyiamond containing a hole h
of positive area. Then P folds into O if and only if it is
not the polyiamond O.

Proof. The non-foldability of O is analogous to the
proof that the polyiamond depicted in Figure 7(a) is
non-foldable, see Claim 4 below.

For the reverse direction, we focus on a largest hole h
with positive area and distinguish two cases:

If h contains two neighboring triangles, then we re-
duce P to the polyiamond Pc depicted in Figure 9(c) as
follows: we choose two neighboring triangles of h which
form a (potentially smaller) hole h′ in the form of a
parallelogram. Then, we fold all triangles that do not

263

CCCG 2021, Halifax, Canada, August 10–12, 2021

touch h′ with a vertex or edge by zig-zag-folding the
outside as in Figure 2. This results in the polyiamond Pc

because h and thus h′ are enclosed by a cycle of triangles
of P . Moreover, it is easy to check that Pc is foldable,
e.g., when inducing the triangle-face-map depicted in
Figure 9(c).

f1
f1

f2

f3
f4 f5

f6

f6

f5

f7f7
f7

f8

(a) Polyiamond Pa

f1
f1

f2

f3
f4 f5

f6

f6

f5

f7f7
f7 f8

f8

(b) Polyiamond Pb

f1
f1

f2

f3
f4

f6

f6

f5

f7f7
f7

f8

f8
f8

(c) Polyiamond Pc

Figure 9: llustration for the proof of Theorem 5.

It remains to consider the case that h contains a
triangle and P is not O. If P can be reduced (by zig-zag-
folding) to the polyiamond Pa depicted in Figure 9(a),
then P folds into O. Otherwise, we use zig-zag-folds to
obtain a subpolyiamond P ′ of Pb depicted in Figure 9(b).
Because P is different from O and cannot be reduced to
Pa, this ensures that P ′ has at least one triangle with
label f8. Because Pb folds into O, so does P . �

4 Characterization for Convex Polyiamonds

In this section, we characterize convex foldable polyia-
monds. Let C denote the set of five convex polyiamonds
depicted in Figure 10.

f1

f1

f1
f2

f3
f4 f5

f6

f6

f5

f7f7
f7

f8

f2

f1

f3
f4

f4
f4 f5

f5

f5

f6 f7f8

f1
f1

f2
f3

f8
f7

f6
f6

f5
f4

Figure 10: Illustration for Theorem 6; the set C of fold-
able polyiamonds and their foldings.

Theorem 6 A convex polyiamond P folds into O if and
only if it contains one of the five polyiamonds in C.

Proof. First, we show that a convex polyiamond P folds
into O if it (4-)contains a polyiamond in C. Note that
each polyiamond in C is convex. Hence, by Lemma 1, it
suffices to present folding strategies for the polyiamonds
in C, see Figure 10. While two polyiamonds contain
a octahedral net, we present explicit strategies for the
remaining three.

Second, we show that every convex polyiamond that
folds into O contains a polyiamond from C. To do so, we
construct all convex C-free polyiamonds, i.e., all convex
polyiamonds that contain none of the five polyiamonds
in C. The construction is as follows, for an illustration
consider Figure 12: We start with the unique polyiamond
of size 1. Then, we consider all possibilities to enlarge
every constructed polyiamond by one triangle and extend
it to the smallest convex polyiamond containing it, i.e.,
we add just enough triangles such that the resulting
polyiamond is convex again. We stop when we encounter
a polyiamond from C or a polyiamond containing one of
them.

By their convexity and Lemma 1, it suffices to show
the non-foldability of the inclusion-wise maximal C-free
polyiamonds. The construction shows that the set C of
inclusion-wise maximal C-free polyiamonds consists of
the four polyiamonds C1 := o, C2 := w, C3 := s, and
C4 := p, i.e., each C-free polyiamond is contained in
some polyiamond in C. It remains to show that all of
these do not fold into O.

Claim 1 The polyiamond C1 does not fold into O.

The polyiamond C1 contains a C6, see Figure 11(a). By
Lemma 4(i), the contained C6 covers at most 4 faces of
the octahedron O. Hence, in every partial folding of C1

into O, C1 covers at most 7 faces of O. Consequently,
it does not fold into O.

Claim 2 The polyiamond C2 does not fold into O.

For the purpose of a contradiction, we assume that C2

does fold into O. We consider a 3-coloring as illustrated

(a) A C6 in C1. (b) A 3-coloring of C2.

Figure 11: Illustration for the proof that C1 and C2 do
not fold into O.

264

33rd Canadian Conference on Computational Geometry, 2021

d

e

f

d

y

x

A B
z

c
a

b

b b

c
c

c
c

b

z
w

B

z

A

r
u

vx

x

x

x
s

y

y

w

x

w

x

q

t

i

k

j

ig

m i

n

m

n

j

o

nn

p
nn

n n

p

p

k

q

s

qm

d
g

g

h

h

f

h
h

h h

h

h

e

h

hh

r

h
l

j

j

k

k

n

l

n

n

n

p

v

u u

u

v

v

u u

u

o

t

r
n

s

v

u

Figure 12: Construction of all C-free polyiamonds; the inclusion-wise maximal C-free polyiamonds o, p, s, and w are
highlighted in red.

265

CCCG 2021, Halifax, Canada, August 10–12, 2021

in Figure 11(b) and use the fact that each color class
is mapped to a pair of antipodal pairs by Lemma 3.
Note that there exist only three circle vertices, each of
which is adjacent to three faces of C2. Hence, one (of
the two antipodal) corner of O is covered by only one
circle vertex implying that not all of its incident faces
are covered.

Claim 3 The polyiamond C3 does not fold into O.

The polyiamond C3 can be viewed as copies of C6 and
C10 overlapping in two triangles, see Figure 13(a). For
the purpose of a contradiction, we consider a 3-coloring of
C3 as illustrated in Figure 13(b). Note that there are four
square vertices in total; we denote them by v1, v2, v3, v4.
Moreover, the three leftmost square vertices cannot all
map to the same corner c; otherwise the left C6 maps
to at most 2 faces and C3 covers at most 2 + 6− 1 = 7
faces. We distinguish two cases.

v1
v3

v2
v4

(a) C3 consists of a C6 and a
C10 overlapping in 2 triangles.

f1

f1

f1,2 f1,3

f1,3f1,2

(b) Case: v2 and v3 are
mapped to same corner.

f1,2

f2 f1
f2 f3

(c) Case: v2 and v3 are
mapped to antipodal corners.

Figure 13: Illustration for the non-foldability of C3.

If v2 and v3 are mapped to c (and v1 to the antipodal
corner c), then all of their 6 incident triangles contain one
of two neighboring edges of c; for an illustration consider
Figure 13(b). Hence, they cover at most three faces
incident to c. Moreover, v4 must map to c; otherwise the
two triangles incident to v1 are the only ones mapping
to any of the four faces incident to c. Consequently, all
remaining triangles map to a face incident to c̄ and thus,
they are not able to cover the remaining face incident
to c. A contradiction.

It remains to consider the case that v2 and v3 are
mapped to two antipodal corners c and c, respectively.
We may assume without loss of generality that v1 is
mapped to the corner c as illustrated in Figure 13(c).
Then v4 is mapped to the antipodal c; otherwise not
all faces of c are covered. Consequently, all triangles
incident to c are incident to v1 and v2. However, four (of
the five) triangles incident to v1 and v2 share one edge
of O. Hence the five triangles of v1 and v2 cover at most
3 faces incident to c. A contradiction to the foldability
of C3.

Claim 4 The polyiamond C4 does not fold into O.

The polyiamond C4 consists of a C10 and a C6 over-
lapping in three triangles as illustrated in Figure 14(a).
If their intersection is mapped to three different faces
of O, then by Lemma 4(i) and (iii), C4 covers at most
4 + 6− 3 = 7 faces of O. Consequently, in every folding
of C4 into O, the triangles in the considered intersection
map to at most 2 distinct faces. In the following, we
focus on the four central triangles of C4. By the above
observation and the rotational symmetry of C4, the tri-
angles of each ‘line’ are mapped to at most 2 distinct
faces. We distinguish two cases.

(a) C4 consists of a C6 and a
C10 overlapping in 3 triangles.

f1
f1f1

f1

f1,2f1,2

f1,4f1,3

f1,3f1,4

(b) Case: the four central tri-
angles map to the same face.

f2f3,2f1,2

f2
f2f1

f ′
6f5

f2f4
f3

f6 f7

(c) Case: the four central
triangles map to two faces.

Figure 14: Illustration for the non-foldability of C4.

If all four triangles map to the same face, denoted by
f1, then consider Figure 14(b). By their common edge
incident to f1, each of the two triangles with label f1,i
Figure 14(b), i ∈ {2, 3, 4}, cover at most one face dif-
ferent from f1. Consequently, at most 7 faces can be
covered in total and this case does not yield a folding of
C4 into O.

If the four central triangles map to 2 different faces,
then by Lemma 3, the map is as illustrated in Fig-
ure 14(c). By Lemma 4(i) and (iii), the copy of C6

covers at most 4 faces and the copy of C10 covers at
most 6 faces. Subtracting the double count of the inter-
section, the triangles of C4 cover at most 4 + 6− 2 = 8
faces. Hence, by Lemma 4(ii), the top copy of C6 covers
exactly 4 faces and is consistent with the triangle-face-
map of Figure 6(b). Note that the two triangles with
label fi,2, i ∈ {1, 3}, in Figure 14(c) contain the com-
mon edge of fi and f2 and thus they may not cover new
faces of O. It follows that the remaining four triangles
cover distinct and new faces of O. However, this implies
that two triangles f6 and f ′6 are mapped to the same
face. A contradiction. Hence, C4 does not fold into the
octahedron. �

266

33rd Canadian Conference on Computational Geometry, 2021

5 A Sharp Size Bound

As shown in Claim 3, the polyiamond C3 is not fold-
able, i.e. there exist polyiamonds of size 14 that do
not fold into O. In this section, we show the following
complementing theorem.

Theorem 7 Every polyiamond P of size ≥ 15 folds
into O.

To present an idea of the proof, we give some useful
sufficient conditions and a simple upper bound. Let P
be a polyiamond and ` some grid line. The `-width of P
denotes the size of the polyiamond obtained by folding
all edges parallel to ` in a zig-zag-manner as indicated
in Figure 2. The width of P is the maximum of the
three different `-widths. Because the convex polyiamond
P− := z, depicted in Figure 12, folds into O, we obtain
the following.

(a) (b)

30

(c)

34

(d)

38

(e)

40

(f)

40

(g)

36

(h)

38

(i)

40

(j)

42

(k)

Figure 15: Illustration for the proof of Corollary 9. Con-
struction of the maximal polyiamonds of width ≤ 9;
their sizes are indicated by numbers.

Lemma 8 Every polyiamond P of width at least 10 folds
into O.

Proof. Because P has width 10, it can be folded into the
polyiamond P− by zig-zag-folds. Then, by Theorem 6,
P− can be folded into O. �

Moreover, we determine an upper bound on the size
of polyiamonds of width ≤ 9. In particular, they have
size ≤ 42 which yields a nice and simple upper bound.

Corollary 9 Every polyiamond of size > 42 folds
into O.

Proof. Let P be a polyiamond that does not fold into O.
Then, by Lemma 8, P has width ≤ 9. Consequently, P
is contained in the intersection of three strips of width 9
with different rotation. As illustrated in Figures 15(a)
and 15(b), two of these infinite strips may intersect in two
distinct ways. The intersection with a third strip results
in nine polyiamonds (six of which are pairwise different),
see Figure 15. The largest of these polyiamonds has
size 42 and is depicted in Figure 15(k). Because P
is contained in one of them, P has size at most 42.
Consequently, any larger polyiamond is foldable. �

To show the sharp bound, we need to work a little
harder. In particular, the proof is computer-aided.

Proof sketch of the sharp upper bound. Theorem 7
is based on a strong sufficient criterion. Let PX , PU , PZ ,
and PL denote the polyiamonds depicted in Figures 16(a)
to 16(d), respectively. In a first step, we show that
polyiamonds that are large enough and do contain one
of the four polyiamonds fold into O.

(a) PX (b) PU (c) PZ (d) PL

Figure 16: Illustration of the four polyiamonds used in
Proposition 10.

Proposition 10 Every polyiamond P that 4-contains
PX , PU , PZ , or PL and has size ≥ 15 folds into O.

We call a polyiamond P-free if it does not 4-contain
any of the polyiamonds P−, PX , PU , PZ , or PL. By
Theorem 6 and Proposition 10, it remains to show that
no P-free polyiamond of size ≥ 15 exists. To do so,
we construct all P-free polyiamonds bottom-up with
computer assistance and observe that indeed no such
polyiamond exists.

In the following, we present the remaining details. We
start with four lemmas proving Proposition 10.

267

CCCG 2021, Halifax, Canada, August 10–12, 2021

Lemma 11 Every polyiamond P that 4-contains PX

and has size ≥ 15 folds into O.

Proof. We consider the C10-frame containing PX as
illustrated in Figure 17(a) and call each connected group
of rose triangles a flap of PX . We consider the following
cases:

If triangles exist in two distinct flaps, then there exists
a triangle-face-map such that some triangles are mapped
to (the two missing faces) f7 and f8, see Figure 17(a) (or
its mirror image). First, we fold away all (but at most
2) triangles that are not contained in the two flaps. The
two corner triangles between two flaps may remain. Its
foldability is implied by the fact that the polyiamond in
Figure 17(a) folds into O.

f3

f1
f2

f5f4

f6

f7 f7

f8

f8

f8

f7

f7
f8

f7

f8
f8f7

f7

(a) two flaps

f7

f3

f1
f2

f5

f8

f8

f4

f6

(b) top or bottom flap

f8

f3

f1
f2

f5f4

f6

f7
f7

(c) left or right flap

Figure 17: Illustration of the proof of Lemma 11.

It remains to consider the case that P without C10

is attached via only one flap. Because P has size at
least 15 and each flap has size at most 4, there exists a
triangle outside the flap. Figures 17(b) and 17(c) shows
that this guarantees foldability in all cases. �

Lemma 12 Every polyiamond P that 4-contains PU

and has size ≥ 15 folds into O.

Proof. We may assume that P does not 4-contain C10

(which 4-contains PX); otherwise Lemma 11 implies the
claim. Consequently, P has 6 triangles outside the C10-
frame containing P , see Figure 18(a). We distinguish
two cases: a) there exists a triangle in some flap with a
neighboring triangle outside the flap or b) all triangles
of P lie within the flaps.

In case a), the map in Figure 18(a) can be reflected
(horizontally) such that there exist triangles with labels
f7 and f8. The label f7,8 indicates that it can be adjusted
as wished. Moreover, P folds into O by some strategy

f1
f5

f6

f2
f3

f4

f6

f7 f7

f8

f8

f7,8

f8
f8

f8

f7,8

f7

f8
f8

f7
f8

f8

f7
f8,7

f7

f7

f8,7

(a)

f1
f5

f5

f2
f3

f4

f5
f7

f7f8

f6,8 f7
f7

f6

(b)

Figure 18: Illustration of the proof of Lemma 12.

presented in Figure 18(a) (after reducing to a crucial
convex subpolyiamond).

In case b), unless all triangles lie within the left and
right flap, the map in Figure 18(a) can be reflected such
that there exist faces with labels f7 and f8. Moreover, P
folds into O by the strategy presented in Figure 18(a).

If all triangles lie within the left and right flap, we
consider the strategy indicated in Figure 18(b). By
symmetry, we may assume that the left flap contains
at least 3 triangles. Hence, there exist faces with label
f6 and f8; moreover, a triangle with label f7 exists in
the right flap. As the polyiamond in Figure 18(b) folds
into O, P does as well. This completes the proof. �

Lemma 13 Every polyiamond P that 4-contains PZ

and has size ≥ 15 folds into O.

Proof. We may assume that P does not 4-contain PX

nor PU ; otherwise Lemmas 11 and 12 imply the claim.
Consequently, P has seven triangles outside the C10-
frame depicted in Figure 19(a).

Similar as above, we consider the case that there exists
a flap with a neighboring triangle outside the flap. Then,
the map in Figure 19(a) induces triangles with labels
f7 and f8. Moreover, the depicted polyiamonds folds
into O and 4-contains P . The same argument can be
applied for the case that there exist triangles in flaps
with different labels.

It remains to consider the case that all triangles are
contained in neighboring flaps with the same labels. By
the rotational symmetry, we may assume that all trian-
gles are contained in the top and right flap as illustrated
in Figure 19(b); moreover, we know that all of these
triangles are present because at least 7 triangles exist
outside the C10-frame. The illustrated polyiamond folds
into O and 4-contains P . Thus P folds into O. �

268

33rd Canadian Conference on Computational Geometry, 2021

f8

f7
f4

f5

f8f8

f7f7f8 f7,8

f2
f1 f3

f6

f8

f8

f8 f7,8

f7
f7

f7

f8

f8

f7

f7 f8
f8

f7

f8f8

f7

f7

(a)

f7

f4
f5

f6f8
f2

f1 f3
f5

f7

f7
f7

f6

(b)

Figure 19: Illustration for the proof of Lemma 13.

Lemma 14 Every polyiamond P that 4-contains PL

and has size ≥ 15 folds into O.

Proof. Observe that every triangle outside the dashed
frame in Figure 20 yields a triangle with the missing
label f8. Hence, we may assume that P is contained in
the frame. Moreover, we may assume that P does not
contain PU nor PZ ; otherwise Lemmas 12 and 13 imply
the claim. Consequently, at least 3 triangles are missing
within the frame as indicated, where crosses on an edge
indicate that at most one of the incident triangles exist.

f3
f4

f8

f8f8f8 f8

f7
f5

f6f8

f8

f1
f2 f8

f8

f8

f8

t

f8

t′

f8

Figure 20: Illustration for the proof of Lemma 14.

We distinguish two cases: If P contains the triangle t,
then it contains the polyiamond depicted in Figure 21(a).
Because the frame contains only 14 triangles, there ex-
ists a triangle f outside the frame. Together with the
depicted map (or its mirror image), f ensures a triangle
with label f8.

If P does not contain the triangle t, then its left neigh-
boring triangle t′ does not belong to P because P is
contained in the dashed frame, see Figure 21(b). The
frame-polyiamond depicted in Figure 21(b) has four tri-
angles with label f5, one with f6 and two with joker label
f5,6 (indicating that these can be adjusted as wished).
Because P does not 4-contain PZ nor PU , at most 3 of

f8

f1
f2

f3
f4

f5
f6

f7

f8f8

f8f8f8

f8

(a)

f3
f4

f7
f4

f8
f1

f2

f5

f6

f5f5
f5

f5,6

f5,6

(b)

Figure 21: Illustration for the proof of Lemma 14.

the remaining triangles without labels exist. It follows
that for any choice of 8 triangle, triangles with different
labels exist. Moreover, the depicted polyiamonds folds
into O. �

Together, Lemmas 11 to 14 imply Proposition 10. We
are now ready to prove the sharp upper bound, namely
Theorem 7.

Theorem 7 Every polyiamond P of size ≥ 15 folds
into O.

Proof. We call a polyiamond P-free if it does not 4-
contain any of the polyiamonds P−, PX , PU , PZ , or PL.
By Theorem 6 and Proposition 10, it remains to show
that no P-free polyiamond of size ≥ 15 exists. To do
so, we construct all P-free polyiamonds bottom-up and
show that indeed there exists no such polyiamond. The
construction is similar to the one in the proof of Theo-
rem 6: We start with the polyiamond of size 1. Then,
we enlarge every P-free polyiamond of size k by indi-
vidual triangles and check if the resulting polyiamonds
remain P-free. In this way, we obtain a list of P-free
polyiamonds of size k+ 1. Table 1 presents the numbers
p(n) of P-free polyiamonds with size n; these numbers
have been generated by computer-search.

Table 1: The number p(n) of P-free polyiamonds of
size n.

n 2 3 4 5 6 7 8
p(n) 1 1 3 4 10 16 22

n 9 10 11 12 13 14 15
p(n) 22 16 9 3 1 0 0

The code is available at https://github.com/

dasnessie/folding-polyiamonds/. �

269

CCCG 2021, Halifax, Canada, August 10–12, 2021

References

[1] Z. Abel, E. Demaine, M. Demaine, H. Matsui, G. Rote,
and R. Uehara. Common developments of several dif-
ferent orthogonal boxes. In Canadian Conference on
Computational Geometry (CCCG ’11), 2011.

[2] O. Aichholzer, H. Akitaya, K. Cheung, E. Demaine,
M. Demaine, S. P. Fekete, L. Kleist, I. Kostitsyna,
M. Löffler, Z. Masárová, and K. Mundilova. Folding
polyominoes with holes into a cube. Computational
Geometry (CGTA), 93:101700, 2020.

[3] O. Aichholzer, M. Biro, E. D. Demaine, M. L. Demaine,
D. Eppstein, S. P. Fekete, A. Hesterberg, I. Kostitsyna,
and C. Schmidt. Folding polyominoes into (poly)cubes.
International Journal of Computational Geometry &
Applications (IJGCA), 28:197–226, 2018.

[4] G. Aloupis, P. K. Bose, S. Collette, E. D. Demaine, M. L.
Demaine, K. Doüıeb, V. Dujmović, J. Iacono, S. Langer-
man, and P. Morin. Common unfoldings of polyominoes
and polycubes. In Computational Geometry, Graphs
and Applications (CGGA ’10), pages 44–54. Springer,
2010.

[5] N. M. Benbernou, E. D. Demaine, M. L. Demaine, and
A. Lubiw. Universal hinge patterns for folding strips
efficiently into any grid polyhedron. Computational
Geometry, page 101633, 2020.

[6] N. M. Benbernou, E. D. Demaine, M. L. Demaine, and
A. Ovadya. Universal hinge patterns for folding orthog-
onal shapes. Origami5: Proceedings of the 5th Interna-
tional Conference on Origami in Science, Mathematics
and Education (OSME ’11), pages 405–419, 2011.

[7] F. Buekenhout and M. Parker. The number of nets of
the regular convex polytopes in dimension ≤ 4. Discrete
Mathematics, 186(1):69 – 94, 1998.

[8] K. Czajkowski, E. D. Demaine, M. L. Demaine, K. Ep-
pling, R. Kraft, K. Mundilova, and L. Smith. Folding
small polyominoes into a unit cube. In Canadian Con-
ference on Computational Geometry (CCCG ’20), 2020.

[9] E. Hawkes, B. An, N. M. Benbernou, H. Tanaka, S. Kim,
E. D. Demaine, D. Rus, and R. J. Wood. Programmable
matter by folding. Proceedings of the National Academy
of Sciences, 107(28):12441–12445, 2010.

[10] K. Kuribayashi, K. Tsuchiya, Z. You, D. Tomus,
M. Umemoto, T. Ito, and M. Sasaki. Self-deployable
origami stent grafts as a biomedical application of ni-
rich tini shape memory alloy foil. Materials Science and
Engineering: A, 419:131–137, 03 2006.

[11] J. Mitani and R. Uehara. Polygons folding to plural
incongruent orthogonal boxes. In Canadian Conference
on Computational Geometry (CCCG ’08), pages 39–42,
2008.

[12] A. Qattawi, M. Abdelhamid, A. Mayyas, and M. Omar.
Design analysis for origami-based folded sheet metal
parts. SAE International Journal of Materials and Man-
ufacturing, 7(2):488–498, 2014.

[13] T. Shirakawa and R. Uehara. Common developments
of three incongruent orthogonal boxes. International

Journal of Computational Geometry & Applications
(IJGCA), 23(01):65–71, 2013.

[14] R. Uehara. A survey and recent results about common
developments of two or more boxes. In Origami6: Pro-
ceedings of the 6th International Meeting on Origami
in Science, Mathematics and Education (OSME ’14),
volume 1, pages 77–84, 2014.

[15] D. Xu, T. Horiyama, T. Shirakawa, and R. Uehara.
Common developments of three incongruent boxes of
area 30. Computational Geometry (CGTA), 64:1–12,
2017.

270

CCCG 2021, Halifax, Canada, August 10–12, 2021

Folding Points to a Point and Lines to a Line

Hugo A. Akitaya∗ Brad Ballinger† Erik D. Demaine‡ Thomas C. Hull§ Christiane Schmidt¶

Abstract

We introduce basic, but heretofore generally unex-
plored, problems in computational origami that are sim-
ilar in style to classic problems from discrete and com-
putational geometry.

We consider the problems of folding each corner of a
polygon P to a point p and folding each edge of a poly-
gon P onto a line segment ` that connects two boundary
points of P and compute the number of edges of the
polygon containing p or ` limited by crease lines and
boundary edges.

1 Introduction

Many classic problems from discrete and computational
geometry that concern simple statements about points
and lines in the plane, such as, “Given n points in the
plane, how do we determine their convex hull?” or “Into
how many regions do n lines in general position divide
the plane?” Similarly basic questions can be asked about
origami, but none seem to have been fully explored in
the literature. In this paper we investigate two such
questions in computational origami. Both involve start-
ing with a convex-polygon piece of paper P .

1. Fold and unfold each corner of P , in turn, to a
chosen point p ∈ P so that p will be contained in
a polygon Qp whose interior is uncreased and sides
are either the crease lines or the boundary edges of
P ; see Figure 1(a). How many sides can Qp have?

2. Let a, b ∈ ∂P (the boundary of P), and let `′ be
the line that contains the line segment ` = ab. Fold
each side of P onto `′, and let Q` be the polygon
limited by the crease lines that contains `; see Fig-
ure 1(b). How many sides can Q` have?

In these problems the point p and line `may be chosen
to lie on the boundary of P . Our aim is to find straight-
forward methods for calculating |Qp| and |Q`| so as to

∗Department of Computer Science, University of Mas-
sachusetts Lowell, hugo akitaya@uml.edu

†Humbolt State University, bradley.ballinger@humboldt.edu
‡Computer Science and Artificial Intelligence Laboratory,

Massachusetts Institute of Technology, edemaine@mit.edu
§Department of Mathematics, Western New England Univer-

sity, thull@wne.edu
¶Communications and Transport Systems, ITN, Linköping

University, christiane.schmidt@liu.se

a

b

a

b

Qℓ

P

p
p1

p2

p3

p4

p5

P

p1

p2

p3

p4

p5

P

p1

p2

p3

p4

p5

P

p
p1

p2

p3

p4

p5

Qp

ℓ ℓ

Problem 1

Problem 2

Figure 1: Illustrations of Problems 1 and 2.

create visualizations for which choices of p and ` will
give us different answers.

Problem 1 was first investigated by Kazuo Haga
[6, 7, 8], but only in the case where P is a square. We
will see that the full version of Problem 1, including the
case where P is the whole plane, is a natural applica-
tion of Voronoi diagrams and Delaunay triangulations.
Problem 2 is solved using event circles of the straight
skeleton of P .

2 Folding Points to a Point

To first simplify Problem 1, let S = {p1, . . . , pn} be the
vertices of the polygon P and let us, for now, ignore
the sides of P , focusing on only folding an arbitrarily-
chosen point p to the points in S; call this Problem 1a.
We introduce notation for Voronoi diagrams (see [2, 4]).
Given a, b ∈ R2, define the halfplane determined by a
and b that contains a to be

h(a, b) = {x ∈ R2 | ||x− a|| ≤ ||x− b||},

where ||.|| denotes Euclidean norm. The Voronoi region
Vor(p,A) containing point p relative to a finite point set
A is defined as

Vor(p,A) = {x ∈ R2 | ||x−p|| ≤ ||x−a|| for all a ∈ A}.

A standard result (see [4, Theorem 4.1]) is that
Vor(p,A) is equal to the intersection of halfplanes de-
termined by p and the points in A:

271

33rd Canadian Conference on Computational Geometry, 2021

Theorem 1

Vor(p,A) =
⋂

a∈A
h(p, a).

The Voronoi diagram for a finite point set S =
{p1, . . . , pn} is then the collection of Voronoi regions
Vor(pi, S \ {pi}) for i = 1, . . . , n.

Theorem 2 Let Qp be the polygon containing p limited
by the crease lines made from folding p to each point in
S. Then Qp = Vor(p, S).

Proof. This follows almost immediately from the fact
that when we fold a point pi ∈ S to the point p, the
crease line L that is made is the perpendicular bisec-
tor of the segment joining pi and p. But L is also the
boundary of the halfplane h(p, pi), and Qp will be con-
tained in all such halfplanes. Furthermore, any point
that is contained in all the halfplanes h(p, pi) will, by
definition, also be in Qp. This proves the result. �

This connection between origami and Vonoroi dia-
grams is known to origami artists. In fact, one of the
easiest ways to construct a Voronoi diagram is to draw
the point set S on a piece of paper and carefully fold
pairs of points in S together, creasing the various half-
plane boundaries. See [11] for more details.

We let conv(S) denote the convex hull of the set S.
The definition of Voronoi region implies that Vor(p, S)
will be unbounded if p is not in the interior of conv(S).
Thus Theorem 2 implies the following:

Corollary 3 If p 6∈ int(conv(S)), then Qp is un-
bounded.

Now let Del(S) denote the Delaunay triangulation of
a finite point set S. For details on Del(S), see [2, 4]; we
remind the reader of three key properties of Del(S):

1. The interior of the circumcircle of any triangle in
Del(S) contains no points of S.

2. If there exists a circle containing two points p1, p2 ∈
S whose interior contains no points of S, then p1p2
is an edge of Del(S).

3. Del(S) is the planar dual graph of the Voronoi dia-
gram graph of S (i.e., the dual of the planar graph
obtained by the boundaries of the Voronoi regions
and ignoring the outside region of this graph).

Property 3 gives us a solution to Problem 1a. Let
|Qp| denote the number of sides of the polygon Qp.

Theorem 4 Given a finite point set S ⊂ R2 and a
point p, a solution to Problem 1a is |Qp| = deg(p), the
degree (i.e., valency) of p in Del(S ∪ {p}).

p1

p

p

p2

p3

p4

Qp

Qp

Vor(p, S)

p1

p2

p3

p4

Vor(p, S)

Del(S ∪ {p}) Del(S ∪ {p})

(a) (b)

Figure 2: The region Qp for a point set S = {p1, . . . , p4}
where (a) p ∈ conv(S) and (b) p 6∈ conv(S). Black lines
are the creases made when folding p to points in S.
Circles are the circumcircles of the triangles in Del(S).
Green lines are supporting hyperplanes of conv(S).

See Figure 2 for illustrations of this Theorem.

A more complete solution to Problem 1a would be to
partition the plane into regions of constant |Qp|. Since
computing Del(S ∪ {p}) for many choices of p is cum-
bersome, we seek a more computationally direct way of
solving Problem 1a. For example, an algorithm that re-
lies only on Del(S) instead of Del(S ∪ {p}) would be
preferable. We achieve this via a sequence of Lem-
mas which, while tailored to our specific problem, fol-
low from basic facts about Delaunay triangulations and
Voronoi diagrams (see [2, 4]).

For x ∈ R2, let us define TS(x) as the set of triangles
in Del(S) whose circumcircles contain x in their interior.

Lemma 5 If pi ∈ S is in the interior of conv(S), the
edge ppi is in Del(S ∪{p}) if and only if TS(p) contains
a triangle that has pi as a corner.

Proof. First assume that ppi is in Del(S ∪ {p}). The
edge must be part of at least one triangle pipjp. Then,
by property 1, there is an interior-empty circle contain-
ing p, pi and pj . Ignoring p for the moment, grow this
circle maintaining pipj as a chord and so that p remains
inside this circle until the circle contains another point
in S; this must happen because pipj is not in the bound-
ary of conv(S). The obtained circle then contains three
points in S and its interior contains only p, by construc-
tion. The triangle defined by the points on this circle is
in TS(p).

Now assume that a triangle T ∈ TS(p) has pi as a
corner. By property 1, there is a circle C containing pi
whose interior contain only p and no other point. We
shrink C along its diameter that contains pi, anchored
at pi until we obtain a circle C ′ containing p. By con-
struction, the interior of C ′ is empty. By property 2,
ppi is an edge in Del(S ∪ {p}). �

Lemma 6 Let TS(p) = {T1, . . . , Tk} and G be the graph
whose vertex set is TS(p), and with an edge TiTj if Ti
and Tj share a side. So long as p 6∈ S, then G is a tree.

272

CCCG 2021, Halifax, Canada, August 10–12, 2021

Proof. We first claim that a triangle T in Del(S ∪{p})
that does not have p as a corner is also in Del(S). By
property 1, the interior of the circumcircle of T is empty
and deleting p does not change that. Hence, T is also
in Del(S) as claimed.

If we delete p from Del(S∪{p}) (and all edges adjacent
to p) we either get a single polygonal star-shaped hole or
a pocket polygon (a cavity on the boundary of conv(S)).
Since p 6∈ S, in order to obtain Del(S) we can simply
triangulate the hole or pocket by the above claim. By
Lemma 5, the new triangles are exactly TS(p). The
dual graph of a triangulation of a simple polygon is a
tree. �

Lemma 7 If p ∈ conv(S) and p 6∈ S, then |Qp| =
|TS(p)|+ 2.

Proof. Let TS(p) = {T1, . . . , Tk}. One of these tri-
angles, say Ta, contains p because p ∈ conv(S). By
Theorem 4, |Qp| = deg(p) in Del(S ∪ {p}), which
equals the number of distinct vertices among the tri-
angles T1, . . . , Tk, by Lemma 5. By Lemma 6, the edge-
adjacency graph of TS(p) is a tree, which we can root
at Ta. If we first count the three vertices in Ta, then we
traverse the tree and for each additional triangle that we
discover in the traversal we add only one vertex to our
count. This gives us k + 2 distinct vertices among the
triangles in TS(p), and so deg(p) = k+2, as claimed. �

Note that Lemma 7 allows p to be on the boundary
of conv(S) (but not in S), in which case Qp will be
unbounded. In fact, for some areas nearby but outside
conv(S), Lemma 7 will still apply. But to handle any
choice of p ∈ R2, we need to consider certain supporting
halfplanes of conv(S).

The boundary of conv(S) is a polygon; denote its
vertices by q1, . . . , qm. Let H(qi, qi+1) denote the sup-
porting halfplane of conv(S) that contains the segment
qiqi+1 on its boundary, and assume that the indices are
cyclic so that this notation includes H(qm, q1).

Let H(p) denote the number of halfplanes H(qi, qi+1)
that do not contain the point p.

Lemma 8 If p 6∈ conv(S) or p ∈ S then |Qp| = H(p) +
|TS(p)|+ 1.

Proof. Suppose p is far enough away from conv(S) so
that none of the circumcircles of the triangles in Del(S)
contain it. If H(qi, qi+1) does not contain p, then p will
be able to “see” both qi and qi+1. That is, a straight
line segment from p to either qi or qi+1 will not intersect
conv(S). Thus, in Del(S ∪ {p}), p will be adjacent to
qi and qi+1. For all supporting halfplanes that do not
contain p, their corresponding vertices qi will form a
path on the boundary of conv(S), and we have that
deg(p) = H(p) + 1.

p1

p2

p3

p4 43 3

3′

3′

3′

3′

3′

3′3′

3′
2′

2′

2′

2′

4′

4′

4′

4′

Figure 3: The plane partitioned into regions of constant
|Qp| for a point set S = {p1, . . . , p4} in Problem 1a.
Numbers marked with a prime symbol indicate regions
where p gives an unbounded set Qp.

If p is also in a circumcircle of a triangle T in Del(S)
(an example of this is shown in Figure 2(b)), then by
Lemma 5, p will be connected with new edges to every
corner of T . Similar to the proof of Lemma 7, we can
use Lemma 6 to show that there are |TS(p)| + 2 such
edges. However, two of these edges are double counted
because two endpoints are on the boundary of conv(S).
Thus the “+2” in Lemma 7 is not needed, and we arrive
at |Qp| = H(p) + |TS(p)|+ 1.

If p ∈ S then p is contained in all of the support-
ing halfplanes of conv(S). In fact, the situation is like
that of Lemma 7 and its proof, except that Qp will
be unbounded and have one less side than the cases
of Lemma 7 since we cannot fold p to itself. Thus
|Qp| = |TS(p)|+ 1 and we are done. �

When p ∈ conv(S), we have that H(p) = 0, so we
can combine Lemmas 7 and 8 if we add an indicator
function I(p) which equals 1 if p ∈ (conv(S) \ S) and 0
otherwise.

Theorem 9 Using the notation of Problem 1a, we have

|Qp| = H(p) + |TS(p)|+ I(p) + 1.

Figure 3 illustrates how Theorem 9 can be used to
partition the plane into regions of constant |Qp|.

Remark on general position: Notice that no require-
ment has been made for the points in S to be in general
position (no three points on a line). This is because no
such requirement is necessary, but some care must be
taken. If three points p1, p2, p3 ∈ S lie on a line, then
those points cannot make a triangle in Del(S), and nei-
ther can they make a circumcircle. However, if these
three collinear points lie on the boundary of conv(S),

273

33rd Canadian Conference on Computational Geometry, 2021

p

(a) (b)
2 sides p

3 sides

pentagon

hexagon

region

region

quadrilateral

Figure 4: (a) Folding two corners to p with p outside,
then inside, the side’s midpoint circle. (b) The full so-
lution to Problem 1 on a square.

say in order p1, p2, then p3, then they will form two sup-
porting halfplanes, one for the segment p1p2 and one for
p2p3. This will affect the count of H(p); if p is not in the
halfplane H(p1, p2) then it will also not be in H(p2, p3),
and so the side of conv(S) made by p1, p2, and p3 will
“count twice” in H(p) if p is on the other side of it.

Remark on computation time: The Voronoi diagram
can be computed in O(n log n) time [5] and, thus, we can
compute Qp in the same asymptotic time. Note that
Qp may have Ω(n) sides and that the boundary of Qp

encodes the sorted cyclic order of the points adjacent to
p in Del(S ∪{p}). Then, this is the best possible bound
in the decision tree computation model. By Theorem 9,
the partition of the plane into regions of constant |Qp|
is given by an arrangement of circles and lines. Note
that such arrangement can be of size Θ(n2). Since each
pair of these curves can only intersect at most twice, a
sweep line algorithm can compute the arrangement in
O(n2 log n) time. Then, with O(n2 log n) preprocessing
time, given a query point p, Problem 1a can be solved
in O(log n) time using a point-location data structure
such as Kirkpatrick’s [10].

3 Folding Corners of a Polygon to a Point

We return to Problem 1, folding the corners of a polygon
P to a point p, so that the sides of Qp may now be crease
lines or edges of P .

As Haga discusses in his solution of the case where
P is a square [6], the key is to see how close p needs
to be to a boundary side of the paper in order to make
that boundary add a side to Qp. Imagine a semicircle
C drawn on the paper whose center is the midpoint of
a boundary side of P and with diameter equal to the
length of that side. Then the endpoints of C equal two
corners of P . If p is inside C, then when these two
corners are folded to p their creases will not intersect
at a point inside P , making the boundary edge between
them add a side to Qp. But if p lies on C or outside of C,
then the two crease lines will intersect on P ’s boundary
or inside it, respectively, implying that the boundary
side in question will not contribute a side to Qp. See
Figure 4(a) for an illustration of this in the case where
P is a square.

p

p1 p2

p3

p4p5

p6

Vor(S ∪ {p})

Del(S)

Qp

Figure 5: A generalized Problem 1 example on an irreg-
ular hexagon-shaped piece of paper S = {p1, . . . , p6}. p
is located in four circumcircles of Del(S) and one mid-
point circle, giving us |Qp| = 7.

Thus, Haga’s original solution is to draw four semicir-
cles on our square, each centered at a different midpoint
of the sides and with diameter equal to that side. We
may then determine |Qp| by counting how many of the
semicircle interiors contain p. If p is in the interior of
only one semicircle, then only one boundary edge will
contribute a side to Qp, giving us |Qp| = 5. If p is in two
semicircle interiors, then two boundary sides will con-
tribute, giving |Qp| = 6. As can be seen in Figure 4(b),
p can be in at most two of these semicircle interiors, so
this solves the problem and gives us a partition of the
square into regions of constant |Qp|.

What Haga’s original problem solution hides is the
influence of Voronoi diagrams and Delaunay triangula-
tions, because in the case where our paper is a square,
the circumcircles of Del(S) are equal and merely circum-
scribe the square. Thus, in our full Problem 1 statement
we can combine our result from Problem 1a to obtain a
full solution.

Let M(p) denote the number of midpoint circles (cir-
cles centered at a midpoint of the polygon-shaped pa-
per’s edge and with diameter equal to that edge length)
that contain p in their interior.

Theorem 10 Given a convex polygon of paper P and
a point p ∈ P , we have |Qp| = M(p) + |TS(p)|+ 2.

An illustration of this solution to Problem 1 is shown
in Figure 5.

4 Folding Lines to a Line

To recap Problem 2, we take two points a, b on the
boundary of a convex polygon P , let `′ be the line con-
taining the segment ` = ab, and then fold and unfold

274

CCCG 2021, Halifax, Canada, August 10–12, 2021

P

S(P) ℓ

a

b

a

b

a

b

C1

C2

C3

(a) (b)

(c)

Qℓ

S1

S2

P1
P2

Figure 6: Analyzing Problem 2. (a) The polygon P ,
line `, and the straight skeleton/medial axis S(P). (b)
The skeletons S1, S2 and the polygon Q` containing `.
(c) The event circles C1, C2, and C3 of S(P); here two
of them intersect `.

each side of P onto `′ in turn. We wish to describe the
number of sides of the polygon Q` that contains ` and
is limited by the crease lines we made. Let V (P) and
E(P) denote the vertex and edge sets of P .

While Problem 1 was determined by the Voronoi di-
agram of V (P), Problem 2 is governed by the straight
skeleton (or medial axis, as these are equivalent on con-
vex polygons) of E(P). Towards that end, we will es-
tablish some notation, based on that of [1]. Let S(P)
denote the straight skeleton/medial axis of P , which
we may think of the set of points x inside (or on the
boundary) of P such that x is equidistant between at
least two points of ∂P . Since P is convex, S(P) will
be a straight-line graph drawn on P that will include
segments bisecting the angles of P (see Figure 6(a)).

The non-leaf vertices of S(P) are called event points
and the circles centered at these points that are tangent
to their nearest sides of P are called the event circles
of S(P). Label these event circles C1, . . . , Ck and let
C` be the subset of these circles that intersect ` (see
Figure 6(c)).

Since ` splits P into two polygons, P1 and P2, we may
find their straight skeletons as well; call them S1 and S2

respectively (see Figure 6(b)). One of each pair will be
degenerate if a and b are on the same edge of P .

We define b(e, `) to be the angle bisector between the
line containing the edge e ∈ E(P) and `′ (or, if these
lines are parallel, let b(e, `) be the line that is equidis-
tant between these lines). Let h(`, e) and h(e, `) be the
halfplane induced by b(e, `) that contains ` and e, re-
spectively.

Lemma 11 V (Q`) \ {a, b} ⊂ S(P).

Proof. We create the sides of Q` by folding a side e ∈
E(P) to `, making a crease that is a segment along the

b(e1, e2)

b(ℓ, e2)

b(ℓ, e1)

a

e1

e2bv

Qℓ

Ci ci

ℓ

(a)

a

e1

e2bv

Qℓ

Ci ci

ℓ

(b)

ℓa

e1

e2bv

Qℓ

Ci ci(c)

Figure 7: For Theorem 14’s proof. (a) For ` close enough
to a vertex v ∈ V (P), Q` will be a quadrilateral. (b) If `
is tangent to the event circle Ci closest to v, Q` remains
a quadrilateral, but critically. (c) When ` intersects the
interior of Ci, a side is added to Q`.

bisector b(e, `). Thus the sides of Q` will lie along the
edges of the skeletons S1 and S2, and the vertices of Q`

(aside from a and b) will be event points of S1 and S2,
which must lie on S(P). �

Lemma 12 Let C`(q) be the circle centered at q that is
tangent to `. Then q ∈ int(Q`) if and only if e∩C`(q) =
∅ for all e ∈ E(P).

Proof. Let q ∈ int(Q`) and consider any edge e ∈
E(P). Then q ∈ h(`, e) and, hence, e ∩ C`(q) = ∅.

Consider q 6∈ int(Q`). Then there exists an edge e ∈
E(P) with q ∈ h(e, `), whereby e ∩ C`(q) 6= ∅. �

Lemma 13 Let C be an event circle of S(P) that does
not intersect `. Then the center of C will not be a vertex
of Q`.

Proof. Clearly the center of such a circle C cannot be a
or b. Any other vertex of Q` lies on S(P) by Lemma 11
as well as on either S1 or S2. Thus if C were centered
at a point in V (Q`) \ {a, b} then C would be tangent to
`, which we forbid in this Lemma. �

As our solution to Problem 2, we claim that the num-
ber of sides of Q` will equal the number of event circles
that intersect ` plus four, unless one or more of {a, b}
are also vertices of P , in which case those points must
be subtracted.

Theorem 14 |V (Q`)| = |C`| + 4 − |{x ∈ {a, b} : x ∈
V (P)}|.

Proof. We let ` sweep over P , starting at a vertex
v ∈ V (P) that is adjacent to sides e1, e2 ∈ E(P). The
bisector b(e1, e2) at v will lie along the edge vci of the

275

33rd Canadian Conference on Computational Geometry, 2021

a

S2

Ciℓ

ve1

e2

α
r

d

ci

a

S2

Ci
ℓ

ve1

e2

α
r

d

ci

S2

ℓ

e1

e2

a = v

Qℓ Qℓ Qℓ

Figure 8: Showing, for the proof of Theorem 14, how if
an endpoint a of ` equals a vertex v of P , then Q` will
lose a side.

straight skeleton S(P) at v, where ci is the center of
an event circle Ci that is tangent to the sides e1 and e2.
Now, if ` is drawn close enough to v so that ` lies outside
or tangent to Ci, then Q` will be a quadrilateral. This
is because if ` is outside of Ci then the bisectors b(`, e1)
and b(`, e2) will intersect on S(P) between v and ci, and
if ` is tangent to Ci this intersection will occur at ci, as
we have ci 6∈ Q` by Lemma 12. See Figures 7(a) and
(b).

If, however, we sweep ` so that it intersects the in-
terior of Ci, then the bisectors b(`, e1) and b(`, e2) will
intersect along b(e1, e2) beyond the point ci, meaning
that they will cross other segments of S(P) before such
an intersection. By Lemma 11, in order for the vertices
of Q` to remain on S(P) we must have that a side was
added to Q`, as demonstrated in Figure 7(c).

We then sweep `, continuously moving a and b clock-
wise and counterclockwise, respectively, from v along
∂P . When ` intersects the interior of an event circle
Ci in S(P), thus adding a circle to C`, an additional
side will be added to Q`. All event circles that do not
intersect ` will not contribute sides to Q` by Lemma 13.

If a ∈ V (P) one event circle of either S1 or S2 will
disappear at this vertex: Let a be close to a vertex v ∈
V (P), say with d(a, v) = d, see Figure 8. We consider
the circle Ci tangent to ` and the two edges incident to
v, e1 and e2. When we move a towards v, the angle α
between the two radii from the center of Ci to e1 and
e2 is constant (since ci will move closer to v along the
bisector b(e1, e2) segment of S(P) as a approaches v).
Hence, the ratio between d and the radius r of Ci is
constant. Consequently, d approaches zero when r goes
to zero, and Ci disappears at the limit. The same holds
true for b ∈ V (P). �

Remark on computation time: The medial axis of a
simple polygon P with n vertices can be computed in
O(n) time [3] and, thus, we can compute Q` in the same
asymptotic time by computing the medial axis of the
two convex polygons obtained by splitting P with `.
Note that the complexity of Q` is Ω(n) in the worst
case and thus this time bound is optimal.

5 Bounds and Visualization for Problem 2

When we follow the computation from Theorem 14 to
determine the number of sides/edges of our polygon Q`,
we need to compute the event circles of the straight
skeleton intersecting the line segment `. In this section,
we do not aim for an exact computation of |V (Q`)|,
instead giving simple bounds.

The line segment ` is determined by two points, a, b,
on P ’s boundary. The maximum number of vertices of
Q` depends on the location of a and b—we distinguish
whether both, one of, or none of a and b are vertices
of P :

Lemma 15 With n = |V (P)|, we have:

1. If a, b ∈ ∂P \ V (P), then |V (Q`)| ≤ n+ 2.

2. If a ∈ V (P), b ∈ ∂P \ V , then |V (Q`)| ≤ n+ 1.

3. If a, b ∈ V (P), then |V (Q`)| ≤ n.

Proof. For the number of event circles C1, . . . , Ck in P
(or vertices of S(P)), we have |{C1, . . . , Ck}| = n−2 (see
Aichholzer and Aurenhammer [1]). In C`, we consider
only the subset of these event circles that intersect `,
hence, |C`| ≤ |{C1, . . . , Ck}| = n−2. With |{x ∈ {a, b} :
x ∈ V (P)}| = 0 for a, b ∈ ∂P \ V (P), |{x ∈ {a, b} :
x ∈ V (P)}| = 1 for a ∈ V (P), b ∈ ∂P \ V (P), and
|{x ∈ {a, b} : x ∈ V (P)}| = 2 for a, b ∈ V (P), the claim
follows directly from Theorem 14. �

(a)

(b)

Figure 9: Example for the visualization of the exact value
of |V (Q`)| for a square: (a) parameterization and (b) con-
figuration space.

Visualization. To visualize upper bounds, lower
bounds, or the exact value of |V (Q`)|, we parameter-
ize ∂P starting from and ending at an arbitrary vertex

276

CCCG 2021, Halifax, Canada, August 10–12, 2021

v0

v2

v3

v4

v5

v1

`

(a)

(b) (c)

Figure 10: An example of Problem 2 visualization. (a) A 6-gon with a possible line segment ` (in red) with a, b ∈ ∂P \ V .
(b) Upper bounds from Lemma 15, (c) lower bounds. The red cross in (b) and (c) represents the line segment ` from (a).

v ∈ V (P) = {v0, . . . , vn−1} (w.l.o.g., we choose v = v0).
We consider a unit square, with the location of a on the
x-axis and the location of b on the y-axis. We color all
points of the triangle above the line segment (0, 0), (1, 1)
according to the valid upper bound, lower bound, or the
value of |V (Q`)|. For an example with exact values of
|V (Q`)| when P is a square see Figure 9, for an exam-
ple of upper and lower bounds when P is a 6-gon see
Figure 10.

6 Conclusion

The problems presented here are fairly abstract and
seem divorced from computational origami problems
that have been previously studied. Connections may
exist, however. For example, the straight skeleton is
useful in algorithms for origami design [12], and so the
line ` in Problem 2 could be interpreted as separating
our polygon P of paper into two regions, each of which
could then be folded into different origami bases via
their straight skeletons. Q` would then represent the
polygon of paper that, when folded along `, links the
two bases together. Knowing |Q`| in advance might
help the origami designer plan how to sink the flaps of
paper adjoining Q`, a step that is often useful when
turning an algorithmicly-designed origami base into a
representational model.

At first glance, one might think that Problems 1 and 2
would be duals to each other in the projective geometry
sense, since the first concerns folding points to points
and the second lines to lines. However, this is incorrect,
mainly because the operation of folding a point p1 to
another point p2, which makes a crease line that is the
perpendicular bisector of p1p2, is not dual to the opera-
tion of folding a line l1 to l2, which forms the bisector of

l1 and l2. This is why our solutions to these two prob-
lems, while similar in flavor, are not reducible from one
another.

We hope that this work will inspire others to consider
similar folding problems in computational origami. In-
deed, the list of basic origami operations (see [9, Chap-
ter 1]) would be a good place to start to investigate
what other simple folding problems are possible. Also,
the work of Kazuo Haga, which is characterized by play-
ful investigations of simple folds (what he calls origam-
ics) led directly to our investigations in the present pa-
per. Haga’s work, in particular [7], certainly contains
avenues for further study.

Acknowledgments

This work was conducted at the 2018 and 2019 Bellairs
Workshops on Computational Geometry, co-organized
by Erik Demaine and Godfried Toussaint. We thank
the other participants of the workshop for helpful discus-
sions, especially Klara Mundilova and Tomohiro Tachi.
H. A. A. was partially supported by NSF grants CCF-
1422311, CCF-1423615. T. C. H. was partially sup-
ported by NSF grant DMS-1906202 and C. S. was par-
tially supported by Jubileumsanslaget fr̊an Knut och Al-
ice Wallenbergs Stiftelse and Vinnova grant 2018-04101.

References

[1] O. Aichholzer and F. Aurenhammer, Straight Skeletons
for General Polygonal Figures in the Plane, Proc. 2nd
Ann. Int’l. Computing and Combinatorics Conf. CO-
COON’96, Lecture Notes in Computer Science, volume
1090, pages 117-126, Hong Kong, 1996. Springer Verlag.

277

33rd Canadian Conference on Computational Geometry, 2021

[2] F. Aurenhammer, R. Klein, and D. Lee, Voronoi Di-
agrams and Delaunay Triangulations, World Scientific,
Singapore, 2013.

[3] F. Chin, J. Snoeyink, and C. A. Wang, Finding the
medial axis of a simple polygon in linear time, Discrete
& Computational Geometry, 1999, 21(3), 405–20.

[4] S. Devadoss and J. O’Rourke, Discrete and Computa-
tional Geometry, Princeton University Press, Prince-
ton, NJ, 2011.

[5] S. Fortune, A sweepline algorithm for Voronoi dia-
grams, Algorithmica, 1987, 2(1), 153–174.

[6] K. Haga, Proposal of a term origamics for plastic
origami–workless scientific origami, in Second Inter-
national Meeting of Origami Science and Scientific
Origami Abstracts, Seian University of Art and Design,
Otsu, Japan, 1994, 29–30.

[7] K. Haga, Origamics: Mathematical Explorations
Through Paper Folding, World Scientific Publishing
Co., River Edge, NJ, 2008.

[8] T. Hull, Project Origami: Activities for Exploring
Mathematics, 2nd ed., CRC Press/A K Peters, Boca
Raton, FL, 2012.

[9] T. Hull, Origametry: Mathematical Methods in Paper
Folding, Cambridge University Press, Cambridge, UK,
2020.

[10] D. Kirkpatrick, Optimal search in planar subdivisions,
SIAM Journal on Computing, 1983, 12(1), 28–35.

[11] R. Kraft, Orthoginal Voronoi molecules, in Lang et al.
ed., Origami7: The Proceedings from the 7th Interna-
tional Meeting on Origami in Science, Mathematics,
and Education, Tarquin, St. Albans, UK, 2018, 607–
621.

[12] R. J. Lang, A computational algorithm for origami de-
sign, in Proceedings of the Twelfth Annual Symposium
on Computational Geometry, ACM, 1996, 98–105.

278

CCCG 2021, Halifax, Canada, August 10–12, 2021

Cut Locus Realizations on Convex Polyhedra

Joseph O’Rourke∗ Costin Vı̂lcu†

Abstract

We prove that every positively-weighted tree T can be
realized as the cut locus C(x) of a point x on a convex
polyhedron P , with T weights matching C(x) lengths.
If T has n leaves, P has (in general) n + 1 vertices.
We show there are in fact a continuum of polyhedra
P each realizing T for some x ∈ P . Three main tools
in the proof are properties of the star unfolding of P ,
Alexandrov’s gluing theorem, and a cut-locus partition
lemma. The construction of P from T is surprisingly
simple.

1 Introduction

There is a long tradition of reversing, in some sense, the
construction of a graph G from a geometric set. The
geometric set may be a point set, a polygon, or a poly-
hedron, and the graph G could be the Voronoi Diagram,
the straight skeleton, or the cut locus, respectively. Re-
versing would start with, say, the straight skeleton, and
reconstruct a polygon with that skeleton. One might
even view Steinitz’s classic theorem (e.g., [17]) as start-
ing with a planar 3-connected graph and “reconstruct-
ing” it as the 1-skeleton of a convex polyhedron. Here
we start with a positively-weighted tree T and construct
polyhedra P on which T is realized as the cut locus for
a point x ∈ P . (The cut locus is defined in Section 2.1
below.)

The literature has primarily examined three models
for the graph G, often specialized (as here) to trees T :

(1) Unweighted tree: The combinatorial structure of T ,
without further information.

(2) Length tree: T with positive edge weights repre-
senting Euclidean lengths, and with given circu-
lar order of the edges incident to each node of T .
Called “ribbon trees” in [6], and “ordered trees”
in [5].

(3) Geometric tree: Given by a planar drawing, i.e.,
coordinates of nodes, determining lengths and an-
gles.

Our main result is this:

∗Smith College, jorourke@smith.edu.
†Simion Stoilow Institute of Mathematics of the Romanian

Academy, Costin.Vilcu@imar.ro.

Theorem 1 Given a length tree T of n leaves, we can
construct a continuum of star-unfoldings of convex poly-
hedra P of n + 1 vertices, each of which, when folded,
realizes T as the cut locus C(x) for a point x ∈ P . Each
star-unfolding can be constructed in O(n) time.

Thus, every length tree is isometric to a cut locus on a
convex polyhedron.

1.1 Related Results

The computer science literature is extensive, and we cite
just a few results:

• Every unweighted tree can be realized as the
Voronoi diagram of a set of points in convex po-
sition [12].

• Every length tree can be realized as the furthest-
point Voronoi diagram of a set of points [5].

• Every unweighted tree can be realized as the
straight skeleton of a convex polygon, and condi-
tions for length-tree realization are known [6] [2]
[5].

In all cases, the reconstruction algorithms are efficient:
either O(n) or O(n log n) for trees of n nodes. Although
all these results can be viewed as variations on realizing
Voronoi diagrams, and a cut locus is a subgraph of a
Voronoi diagram, it appears that prior work does not
imply our results.

Our inspiration derives from two results in the geom-
etry literature:

• Every length graph can be realized as a cut locus
on a Riemannian surface [10]. The result is non-
constructive.

• Every unweighted tree can be realized as a cut locus
on a doubly covered convex polygon, and length
trees can be realized on such polygons when several
technical conditions are satisfied [9].

2 Background Tools

In this section we describe the tools needed to prove our
main theorem, drawing heavily on our [13].

279

33rd Canadian Conference on Computational Geometry, 2021

2.1 Cut Locus

The cut locus C(x) of a point x on (the surface of) a
convex polyhedron P is the closure of the set of points
to which there are more than one shortest path from
x. This concept goes back to Poincaré [14], and has
been studied algorithmically since [15] (under the name
“ridge tree”). Some basic properties and terminology:

• C(x) is a tree whose leaves are vertices of P , and
all vertices of P are in C(x).

• Points interior to C(x) of tree-degree 3 or more we
will call ramification points.

• The edges of C(x) are geodesic segments on P ,
geodesic shortest paths between their endpoints
[1].

2.2 Star Unfolding

The star unfolding SP (x) of P with respect to x is
formed by cutting a shortest path from x to every vertex
of P [4] [1]. This unfolds P to a simple non-overlapping
planar polygon S = SP (x) of 2n vertices: n images xi of
x, and n images of the vertices vi of P . The connection
between the cut locus and the star unfolding is that the
image of C(x) in S is the restriction to S of the Voronoi
diagram of the images of x [4]. See Fig. 1.

2.3 Alexandrov’s Gluing Theorem

We rely on Alexandrov’s celebrated “Gluing” Theo-
rem [3, p.100], which we will abbreviate as Theo-
rem AGT.

Theorem AGT If the boundaries of planar polygons
are glued together (by identifying portions of the same
length) such that

(1) The perimeters of all polygons are matched (no
gaps, no overlaps).

(2) The resulting surface is a topological sphere.

(3) At most 2π surface angle is glued at any point.

Then the result is isometric to a convex polyhedron P ,
possibly degenerated to a doubly-covered convex polygon.
Moreover, P is unique up to rigid motion and reflection.

A doubly-covered polygon is a flat, two-sided, zero-
volume polyhedron, sometimes called a dihedron or bi-
hedron. The proof of Alexandrov’s theorem is noncon-
structive, and there remains no effective procedure for
constructing the polyhedron guaranteed to exist by this
theorem. See [11].

1

1

2

2

3

3

65

8 7

4

4

Tx

K

F

L R

(a)

1 2

3

6

5

8

74

B T

K

L R

(b)

F

Figure 1: (a) Cut segments to the 8 vertices of a cube
from a point x on the top face. (No cut is interior to the
bottom face.) T, F, R, K, L, B = Top, Front, Right,
Back, Left, Bottom. (b) The star-unfolding from x.
The cut locus C(x) (red) is the Voronoi diagram of the 8
images of x (green). Two pairs of fundamental triangles
are shaded.

280

CCCG 2021, Halifax, Canada, August 10–12, 2021

2.4 Fundamental Triangles

The following lemma is one key to our proof. See
Fig. 1(b).

Lemma 2 (Fundamental Triangles [7]) For any
point x ∈ P , P can be partitioned into flat triangles
whose bases are edges of C(x), and whose lateral
edges are geodesic segments from x to the ramification
points or leaves of C(x). Moreover, those triangles are
isometric to plane triangles, congruent by pairs.

The overall form of our proof of Theorem 1 is to cre-
ate a star unfolding S by pasting together xi-apexed
fundamental triangles straddling each edge of T , and
then applying Alexandrov’s theorem to conclude that
the folding of S yields a convex polyhedron P that re-
alizes C(x).

2.5 Cut Locus Partition

The last tool we need is a generalization of lemmas in [7].
On a polyhedron P , connect a point x to a point y ∈
C(x) by two geodesic segments γ, γ′. This partitions P
into two “half-surface” digons H1 and H2, each bound
by γ ∪γ′. If we now zip each digon separately closed by
joining γ and γ′, AGT leads to two convex polyhedra
P1 and P2. The lemma says that the cut locus on P is
the “join” of the cut loci on Pi. See Fig. 2.

Lemma 3 (Cut Locus Partition) Under the above
circumstances, the cut locus C(x, P) of x on P is the
join of the cut loci on Pi: C(x, P) = C(x, P1) ty
C(x, P2), where ty joins the two cut loci at y. And
starting instead from P1 and P2, the natural converse
holds as well.

Proof. Induction and Lemma 2 shows that the cut
locus of x on Pi is indeed the truncation of C(x, P).
Therefore, C(x, P) = C(x, P1) ty C(x, P2).

Assume we start now from P1 and P2, having vertices
x1, y1 ∈ P1 and x2, y2 ∈ P2 such that

• ρP1(x1, y1) = ρP2(x2, y2), where ρPi() is the
geodesic distance between the indicated points on
Pi.

• θx1 + θx2 ≤ 2π, where θx is the total surface angle
incident to x, and

• θy1
+ θy2

≤ 2π.

Then we can cut open Pi along a geodesic segment γi
from xi to yi and join the the two halves by AGT, such
that x1, x2 have a common image x, and y1, y2 have a
common image y.

Now all geodesic segments starting at x into Hi re-
main in Hi, because geodesic segments do not branch.
Therefore, H1 has no influence on C(x, P2) and H2 has
no influence on C(x, P1). �

Figure 2: Geodesic segments γ and γ′ (purple) connect
x=x1=x2 to y=y1=y2. P1 folds to a tetrahedron, and
P2 to an 8-vertex polyhedron, with x and y vertices in
each. P1 and P2 are cut open along geodesic segments
from xi to yi and glued together to form P . Based on
the cube unfolding in Fig. 1(b).

3 Star-Tree

We start with T a star-tree: one central node u of
degree-m with edges to nodes u1, u2, . . . , um.

A cone in the plane is the unbounded region between
two rays from its apex. Set λ > L to be longer than L,
the length of the longest edge of T .

We realize T within a cone of apex angle α, with
0 < α ≤ 2π.1 See Fig. 3. Identify points x1 and xm+1

on the cone boundary, with |uxi| = λ. Inside the cone,
place x images x2, . . . , xm, with each |uxi| = λ. Finally
place ui so that uui bisects ∠(xi, u, xi+1), i = 1, . . . ,m.
Chose ui so that |uui| matches T ’s given edge weights.
Finally, connect

(u, x1, u2, x2, . . . , xm, um, xm+1)

into a simple polygon.2

Before we proceed with the proof, we emphasize that
there are several free choices in this construction, illus-
trated in Fig. 4:

• The angle α at the root is arbitrary.

• The angular distribution of the uxi segments is ar-
bitrary.

1Note that we allow α > π; α = 2π represents the whole plane.
2If α = 2π, x1 = xm+1 and u is interior to the polygon.

281

33rd Canadian Conference on Computational Geometry, 2021

u=y

x4

x3

3

2

1

x2

x1
u1

u3

u2

γλ

γʹ

Figure 3: α = 120◦, m = 3, T edge lengths (2, 3, 1)
(red), λ = 4. In the induction proof of Lemma 4, P̄ (T1)
(yellow) is joined to P̄ (T2) (blue).

• λ > L needs to be “sufficiently large” in a sense we
will quantify, but otherwise is arbitrary.

In general we will distribute xi equi-angularly. Choosing
α = 2π results in a polyhedron of n + 1 vertices; for
α < 2π, u is an additional vertex.

(a)
(b)

(c)

Figure 4: Star-T with edge lengths (3, 1, 4, 2, 1). (a) α =
270◦, equiangular xi, λ = 6. (b) α = 180◦, random xi,
λ = 5. (c) α = 360◦, equiangular xi, λ = 6.

We call the described star-T construction a triangle
packing.

Lemma 4 A triangle packing of star-T , for sufficiently
large λ, is the star-unfolding of a polyhedron P with
respect to a point x such that T = C(x).

Proof. The proof is by induction on the number m of
edges of T , which is the degree of the root node u. If
T is a single edge e = uu1, then folding the twin tri-
angles by creasing e and joining x1 and x2, the two
images of x, leads to a doubly covered triangle with x
at the corner opposite e. (See the pair of yellow trian-
gles in Fig. 3.) Clearly e = C(x) is the restriction of the
Voronoi diagram of x1 and x2, the bisector of x1 and
x2. Concerning λ, we need that the angle θx incident
to x is at most 2π (because x is a point on a convex
surface). In this base case, θ1 + θ2 ≤ 2π is immediate,
so λ is sufficiently large.

Now let m > 1, and partition T into T1 ∪u T2 with
root degrees m1 and m2 respectively, where ∪u indicates
joining the trees at the root u. We will use P̄ (T) for the
planar triangle packing for T , and P (T) for the folded
polyhedron.

We first address λ. In order to apply AGT, we
need that θx, the sum of the angles at the tips of the
triangles—the images of x—is at most 2π.

Let λ be the larger of λ1 and λ2 for P̄ (T1) and P̄ (T2)
respectively, and stretch the smaller λi so that they both
share the same λ. Form P̄ (T) by joining the two now-
compatible triangle packings. Fixing α and the sector
angles, it is clear that the angle at each triangle tip
decreases monotonically as λ increases. So increase λ as
needed so that θx ≤ 2π. Somewhat abusing notation,
call these possibly enlarged packings P̄ (T1), P̄ (T2) and
P̄ (T).

Now we aim to show that P̄ (T) is the star-unfolding
of a polyhedron with T = C(x). Certainly P̄ (T) folds to
a polyhedron P , because (a) by construction the edges
incident to u1, . . . , uk match in length, and (b) we have
ensured that θx ≤ 2π. So Alexandrov’s AGT theorem
applies. Now identify γ and γ′ on P from x to y =
u separating the surface into pieces corresponding to
P̄ (T1) and P̄ (T2), which fold to P1 and P2 respectively.
(Refer again to Fig. 3.) By the induction hypothesis,
T1 = C(x, P1) and T2 = C(x, P2). Applying Lemma 3,
we have C(x, P) = C(x, P1) ty C(x, P2), where the two
cut loci are joined at y = u. And so indeed T1 ∪u T2 =
T = C(x). �

In Section 4.1 we will calculate the needed λ explicitly.

4 General Length-Trees T

We now generalize the above to arbitrary length-trees
T , using the example in Fig. 5 as illustration.

Given T , select any node u to serve as the root. Fix
any α, and choose λ to exceed the length L of the longest
path from u to a leaf in T . Now create a triangle packing
for T as follows.

First create a triangle packing for u and its immediate
children u1, . . . , um, just as previously described. With
λ > L, the external angle at ui is strictly less than

282

CCCG 2021, Halifax, Canada, August 10–12, 2021

2
2

½

1

2

1

1

1

1
1

1

11

u x1

x2

x3

x4

x5

x7

x8x6

u1
u3

u2

Figure 5: Realization of a length-tree T of height 3,
using α = 2π and λ = L = 5. This polygon folds to a
polyhedron of 9 vertices: the 8 leaves of T , and x.

π, i.e., it forms a “V -shape” there. Call this a cup,
ci = (xi, ui, xi+1) with αi external angle at ui. Let
ui have children ui1, ui2, . . . , uil. So ui, (ui1, . . . , uil) is
a star-tree. Fill in the cup ci by inserting a triangle
packing for this sub-star-tree, with apex at ui, angle αi,
and λ-length |uixi|, the distance from ui to the tips of
the cup.

After filling the ci cups for all the ui at level-2 of T , re-
peat the process with level-3 of T , and so on. Through-
out the construction, the locations for xi remain fixed
after their initial placement. And with sufficiently large
λ, all the cups form V -shapes.

Note that the triangles incident to an internal node
ui of T (neither the root nor a leaf) leave no gaps: they
cover the 2π surrounding ui.

Lemma 5 A triangle packing for any T , as just de-
scribed, for sufficiently large λ, is the star-unfolding
of a polyhedron P with respect to a point x such that
T = C(x).

Proof. The proof is by induction, and parallels the
proof of Lemma 4 closely. Consequently, we only sketch
the proof.

The base of the induction is a star-graph, settled by
Lemma 4. Let T be an arbitrary length-tree, and parti-
tion T into two smaller trees T1 and T2 sharing the root
u, so T = T1 ∪u T2. Select an α for T and αi for Ti,
i = 1, 2, so that α = α1 + α2.

By the induction hypothesis, Ti can be realized in
cups of angle αi. Moreover, P̄ (Ti) folds to Pi and Ti =
C(x, Pi). Stretch λi as needed to allow P̄ (T1) to share
λ with P̄ (T2) at u, and stretch again so that θx ≤ 2π.

Form P̄ (T) by adjoining P̄ (T1) and P̄ (T2) at u, with
cup apex α. Fold P̄ (T) to P by AGT. Apply Lemma 3 to
conclude C(x, P) = C(x, P1) ty C(x, P2), where y = u.
And so T1 ∪u T2 = T = C(x). �

Note that all ramification points of C(x) are flat on P ,
with 2π incident surface angle. If θx is strictly less than
2π, then the source x is a vertex on P . If at the root,
α < 2π, then in addition u is a vertex on P . So P has
n, n+ 1, or n+ 2 vertices.

Lemmas 4 and 5, together with Lemma 6 (below)
prove Theorem 1. The construction of the triangle pack-
ing can be achieved in O(n) time: we are given the cyclic
ordering of the edges incident to each node, so sorting is
not necessary, and the level-by-level packing construc-
tion is proportional to the the number of edges.

4.1 Total angle at x

We derive here a sufficient condition on the value of the
parameter λ for the root cup to guarantee that θx ≤ 2π.

Lemma 6 If T has m edges, and L is the longest path
from the root in T , then θx ≤ 2π when

λ ≥ L
[
1 + cot

(π
m

)]
.

u

θi

Δi
ui

φi

li x

di di

Δʹi

(a) u

λ
½αi

ui

d

D

L
(b)

Figure 6: (a) θi ≤ φi. (b) Increasing λ increases d. L is
the length of the longest path in T , D the target bound
for λ ≥ L+D.

Proof. First we establish notation, illustrated in
Fig. 6(a). As before, u is the root of T , and let ui
be a leaf of T , with edge uui shared by twin triangles,
one of which is 4i. Let `i = |uui| and di the distance
from the tip of 4i to ui, and θi the angle at that tip,
an image of x. Because the fundamental triangles come
in pairs, and there are m edges, we have that the total
angle at x satisfies θx = 2

∑
θi.

Consider now a right triangle 4′i having the same
base as 4i and height di, and denote by φi its angle

opposite to the base uui. Then φi = arctan

(
`i
di

)
and

θi ≤ φi; see again Fig. 6.

283

33rd Canadian Conference on Computational Geometry, 2021

Because arctan is an increasing function, we can ob-
tain an upper bound by replacing `i with the longest
edge length `, and replacing di by the shortest of the
xuj diagonals, call it d: ` = maxi `i, d = mini di. So

φi ≤ arctan

(
`

d

)
, and therefore

θx = 2
∑

θi ≤ 2
∑

φi ≤ 2m arctan

(
`

d

)
.

The expression 2m arctan

(
`

d

)
decreases as d increases.

For it to evaluate to at most 2π, calculation shows the
following must hold:

d ≥ ` cot
(π
m

)
.

The longest path L from root to leaf is at least as long
as the longest edge, L ≥ `, so this bound will more than
suffice:

d ≥ L cot
(π
m

)
= D .

Now we show that if λ is long enough, then d ≥ D.
Consider Fig. 6(b), where L is the longest path from u
to a leaf ui. Let the external angle at ui be αi. By
definition, there is some index j such that d = dj . The
triangle inequality directly implies λ ≤ `j + dj ≤ L+ d.

With L and αi fixed, increasing λ increases d. If
we substitute the needed lower bound D for d in the
expression (see Fig. 6(b)), then λ ≥ L+D forces d ≥ D.
Explicitly,

λ ≥ L
[
1 + cot

(π
m

)]

suffices to guarantee that θx ≤ 2π. �

The bound—approximately L(1 + m/π)—is far from
tight. For example, in Fig. 5, m = 13 and L = 5 leads
to λ ≥ 26, but λ = 5 (illustrated) leads to θx ≈ 167◦,
and so easily suffices.

5 Remarks

One further example is shown in Fig. 7. It is the star
unfolding of a polyhedron of 49 vertices, whose resem-
blance to a fractal suggests there might at a deeper con-
nection. We will only mention that fractals play a role
in the folding to specific convex polyhedra in [16], and
fractal cut loci on k-differentiable Riemannian and Fins-
lerian spheres are shown in [8] to exist for any k ≥ 2.

A natural question is whether geometric trees—
drawings embedded in the plane, and so providing an-
gles between adjacent edges—can be realized as cut loci
on convex polyhedra. Certainly not all geometric trees
are realizable, for there are constraints on the angles:
around a ramification point, no angle can exceed π, and

Figure 7: Regular degree-3 tree, random edge lengths,
α = 2π, n = 48, θx ≈ 317◦.

the angles must sum to ≤ 2π. And the sum of the cur-
vatures at the ui and at x must be 4π to satisfy the
Gauss-Bonnet theorem.

We leave it as an open problem to determine whether
or not a given geometric tree is realizable as a cut locus
on a convex polyhedron.

Acknowledgements. We benefitted from the sugges-
tions of four anonymous reviewers. The second author’s
research was partially supported by UEFISCDI, project
no. PN-III-P4-ID-PCE-2020-0794.

References

[1] P. K. Agarwal, B. Aronov, J. O’Rourke, and C. A.
Schevon. Star unfolding of a polytope with appli-
cations. SIAM J. Comput., 26:1689–1713, 1997.

[2] O. Aichholzer, T. Biedl, T. Hackl, M. Held, S. Hu-
ber, P. Palfrader, and B. Vogtenhuber. Represent-
ing directed trees as straight skeletons. In Internat.
Symp. Graph Drawing, pages 335–347. Springer,
2015.

[3] A. D. Alexandrov. Convex Polyhedra. Springer-
Verlag, Berlin, 2005. Monographs in Math-
ematics. Translation of the 1950 Russian edi-
tion by N. S. Dairbekov, S. S. Kutateladze, and
A. B. Sossinsky.

284

CCCG 2021, Halifax, Canada, August 10–12, 2021

[4] B. Aronov and J. O’Rourke. Nonoverlap of the
star unfolding. Discrete Comput. Geom., 8:219–
250, 1992.

[5] T. C. Biedl, C. Grimm, L. Palios, J. R. Shewchuk,
and S. Verdonschot. Realizing farthest-point
Voronoi diagrams. In Proc. 28th Canad. Conf.
Comput. Geom., 2016.

[6] H. Cheng, S. L. Devadoss, B. Li, and A. Risteski.
Skeletal configurations of ribbon trees. Discrete
Applied Math., 170:46–54, 2014.

[7] J.-i. Itoh, C. Nara, and C. Vı̂lcu. Continuous flat-
tening of convex polyhedra. In Computational Ge-
ometry, volume 7579, pages 85–97. Springer LNCS,
2012.

[8] J.-i. Itoh and S. V. Sabau. Riemannian and Fins-
lerian spheres with fractal cut loci. Differential
Geom. Applications, 49:43–64, 2016.

[9] J.-i. Itoh and C. Vı̂lcu. Farthest points and cut loci
on some degenerate convex surfaces. J. Geometry,
80(1-2):106–120, 2004.

[10] J.-i. Itoh and C. Vı̂lcu. Every graph is a cut locus.
J. Math. Society Japan, 67(3):1227–1238, 2015.

[11] D. Kane, G. N. Price, and E. D. Demaine. A pseu-
dopolynomial algorithm for Alexandrov’s theorem.
In Workshop Algorithms Data Struct., pages 435–
446. Springer, 2009.

[12] G. Liotta and H. Meijer. Voronoi drawings of trees.
Computational Geometry, 24(3):147–178, 2003.

[13] J. O’Rourke and C. Vı̂lcu. Tailoring for every
body: Reshaping convex polyhedra. https://

arxiv.org/abs/2008.01759, Aug. 2020.

[14] H. Poincaré. Sur les lignes géodésiques des sur-
faces convexes. Trans. Amer. Math. Soc., 6:237–
274, 1905.

[15] M. Sharir and A. Schorr. On shortest paths in
polyhedral spaces. SIAM J. Computing, 15(1):193–
215, 1986.

[16] R. Uehara. Common nets of (regular) polyhedra.
In Introduction to Computational Origami, pages
59–76. Springer, 2020.

[17] G. M. Ziegler. Lectures on Polytopes, volume 152.
Springer Science & Business Media, 2012.

285

CCCG 2021, Halifax, Canada, August 10–12, 2021

Unfolding a New Class of Orthographs of Arbitrary Genus

Mirela Damian∗ Robin Flatland†

Abstract

We show that every 3-separated orthograph (in which
no two boxes of degree 3 of higher are adjacent, and
no grid edge is entirely surrounded by boxes) of degree
at most 3 can be unfolded with a 7 × 7 refinement of
the grid faces. This result extends the class of well-
separated orthographs known to have an unfolding by
allowing boxes of degree 2 to be adjacent to each other
and to higher degree boxes.

1 Introduction

An unfolding of a polydedron is obtained by cutting its
surface and flattening it out into the plane as a sin-
gle, non-overlapping piece known as a net. In an edge
unfolding, cuts are only allowed along the polyhedron’s
edges, whereas in a general unfolding, cuts are allowed
anywhere, including across the interior of faces. It is
known that every convex polyhedron has a general un-
folding [9, Sec. 24.1.1], but whether they have an edge
unfolding or not is a long standing open question [9,
Ch. 22]. Conversely, it is known that not all non-convex
polyhedra have an edge unfolding [1], but whether they
have a general unfolding or not is an open question.

Little progress has been made on algorithms for find-
ing general unfoldings of non-convex polyhedra, with
the notable exception of orthogonal polyhedra. An or-
thogonal polyhedron is a polyhedron with each face per-
pendicular to one of the three coordinate axes. Al-
though not all orthogonal polyhedra have edge un-
foldings [2], there are algorithms that produce a gen-
eral unfolding for any orthogonal polyhedron of genus
zero [8, 4, 3] and up to genus two [5]. These unfoldings
make cuts across faces, but the cuts are limited to a de-
fined set of added edges. Specifically, the polyhedron’s
faces are first subdivided into rectangular grid faces
by adding edges at the intersection between the poly-
hedron’s surface and axis-perpendicular planes passing
through each vertex. Then each rectangular face is fur-
ther refined by subdividing it into an (a× b) orthogonal
grid of edges, for some positive integers a, b ≥ 1. A pro-
gression of results has reduced the amount of refinement
needed from (O(2n)×O(2n)) [8], to (O(n2)×O(n2)) [4],

∗Department of Computer Science, Villanova University, Vil-
lanova, PA, mirela.damian@villanova.edu

†Department of Computer Science, Siena College, Loudonville,
NY, flatland@siena.edu

to (O(n)×O(n)) [3, 5]. For several specialized orthogo-
nal shape classes, it has been shown that only a constant
amount of refinement is needed. For example, there ex-
ist algorithms for unfolding orthostacks using a (1× 2)
refinement [2], Manhattan Towers using a (4 × 5) re-
finement [7], and low-degree orthotrees using a (4 × 4)
refinement [6].

Unfolding orthogonal polyhedra of genus greater than
2 has proved challenging. In [11], it was shown that
extrusions of orthogonal polygons with any number of
square holes admit unfoldings. Chang and Yen [3] gen-
eralized this to extrusions of orthogonal polygons with
arbitrarily shaped (orthogonal) holes. A less restric-
tive subclass of orthogonal polyhedra of arbitrary genus
shown to be unfoldable is the class of well-separated or-
thographs [10]. An orthograph O is a polyhedron com-
posed of rectangular boxes glued together along con-
gruent faces, whose surface is a 2-manifold. The degree
of a box is the number of boxes glued to it. A box is
said to be a bend if its degree is at least 2 and it has
two boxes glued to it along perpendicular faces (note
that, by this definition, all boxes of degree 3 or more
are bends; for bends of degree 2, see boxes C1 . . . C9

from Figure 1). An orthograph is well-separated if no
two bends are adjacent. In [10], Chang et al. showed
that every well-separated orthograph has a (2 × 1) un-
folding.

The work presented here takes a first step towards
loosening the well-separated requirement from [10].
Specifically, we say that an orthograph is 3-separated
if no two boxes of degree 3 or higher are adjacent, and
no grid edge is completely surrounded by boxes (i.e,
there is no cycle of length 4). The class of 3-separated
orthographs subsumes the class of well-separated or-
thographs by allowing bends of degree two to be ad-
jacent to each other and to higher degree boxes. We
show that all 3-separated orthographs of degree at most
3 can be unfolded using a (7× 7) refinement. Although
this class of polyhedra may seem restrictive, ideas used
in this paper show promise of extending to orthographs
of arbitrary degree. Our unfolding algorithm is an adap-
tation of the Euler path algorithm from [10].

2 Terminology

An orthograph O is a polyhedron composed of rectan-
gular boxes glued together along congruent faces, whose
surface is a 2-manifold. A face on the surface of O is

286

33rd Canadian Conference on Computational Geometry, 2021

called open; a face shared by two boxes of O is closed.
The dual graph G = (V,E) of O has a vertex for each
box in O and an edge for each pair of boxes glued to-
gether inO, whose endpoints are the corresponding dual
vertices. (Throughout this paper, we will use the terms
box and vertex interchangeably.) An orthograph is 3-
separated if no two boxes of degree 3 or higher are adja-
cent, and no grid edge is entirely surrounded by cubes
(i.e, its dual graph does not contain a cycle of length
4). For an example of a 3-separated orthograph and its
dual graph, see Figure 1(a,b).

A box of degree one in G is a leaf ; a box of degree 2
is a connector ; any other box is a junction. A connec-
tor C is of type-1 if its two neighbors are attached to
opposite (parallel) faces of C; otherwise, C is of type-
2. Figure 1a shows an example of an orthograph with
five degree-3 junctions J1 . . . J5, nine type-1 connectors
A1 . . . A9, nine type-2 connectors C1 . . . C9, and three
leaves D1 . . . D3.

A type-2 connector is in standard position if its two
neighbors are attached to its front and right faces (from
a viewpoint at z = ∞). For example, the type-2 connec-
tor C1 from Figure 1a is in standard position. If no two
neighbors of a degree-3 junction J are attached to op-
posite faces of J , then J is called orthogonal ; otherwise,
J is called T -shaped. The orthograph from Figure 1a
contains two orthogonal junctions J2 and J3 and three
T -shaped junctions J1, J4 and J5.

An orthograph composed of cubes is called a polycube
graph. For simplicity, we describe our unfolding algo-
rithm on polycube graphs composed of cubes that are 7
units long (so a 7 × 7 refinement produces unit square
grid faces), then show how it extends to orthographs.
So throughout the rest of the paper, O refers to a 3-
separated polycube graph composed of cubes of side
length 7, unless otherwise specified.

3 Ports and Links

Similar to the approach in [10], we select certain edges
to serve as ports and link them together to guide the
unfolding. For each closed face f of box A in O, we
assign two edges of f to be ports. Ports on different
closed faces of A are paired together by a set of links.
A link between ports p and q is denoted by p ∼ q. If
p = q (i.e, p and q refer to the same edge shared by
two of A’s closed faces), then the link p ∼ q is called
null ; otherwise, the link p ∼ q is called non-null. For
example, the link u ∼ u from Figure 3a that pairs port
u on J ’s left face with port u on J ’s bottom face is a
null link, whereas the link a ∼ x that pairs port a on
J ’s left face with port x on J ’s back face is a non-null
link.

In the rest of this section, we show how to select two
ports for each closed face of A. Although similar to

the construction used in [10], our selection of ports is
slightly different due to the restriction that they satisfy
the following property.

Property 1 No port (edge) is shared by the two neigh-
bors of a type-2 connector.

Property 1 will facilitate unfolding a type-2 connector,
as discussed later (Section 6.2).

3.1 Assigning Ports to Connectors

Let C be a (type-1 or type-2) connector. If a closed face
f of C is shared with a junction J , then the two ports
on f are selected according to the junction rules applied
to J (as discussed later in Section 3.2). Otherwise, f
is shared with a leaf or another connector A. In this
case we select the ports a, b on f to be any two edges of
f adjacent to open faces of A and C (see Figure 2 for
some examples). Since neither A nor C is a junction,
such edges always exist.

In the case of connectors, pairing ports with links will
be done later, during the unfolding procedure.

3.2 Assigning Ports and Links to Junctions

Next we describe a method for assigning ports to junc-
tions and pairing them with links. In this paper we
handle junctions of degree 3 only.

Let J be a junction of degree 3. Note that each of J ’s
neighbors is a connector (by the 3-separation condition),
and at least one of J ’s neighbors shares an edge with
each of the other two neighbors of J . Let B be such a
neighbor of J . We start by selecting the first two ports
of J to be the two edges u, v shared by B with the
other two neighbors of J (see Figure 3.) The shared
edges u, v are associated with one closed face f of J ,
and contribute one port to each of the other two closed
faces of J . For any other closed face f ′ ∕= f shared by
J with a neighbor C, we select the second port to be an
edge of f ′ adjacent to open faces of J and C (see the
ports labeled a, x in Figure 3). Since C is a connector,
such an edge always exist. Note that all ports associated
with J satisfy Property 1. In other words, if one of J ’s
neighbors is a type-2 connector sharing one of J ’s ports,
then the shared port satisfies Property 1.

We pair the ports u ∼ u and v ∼ v by null links
(marked in a dashed line in Figure 3), and a ∼ x by a
non-null link (marked in a thick solid line in Figure 3).

4 Rings, Gates and Wings

For each box A ∈ O and each closed face f of A, we
introduce the following definitions. The ring r ∈ A
associated with f is the set of all points on the surface
of A (not necessarily on the surface of O) within unit
distance from f . (Note that rings are associated with

287

CCCG 2021, Halifax, Canada, August 10–12, 2021

(a) (b) (c)

J2

A2

C8 C9

C1

C2

J3 D2

A3

A4

C3A5J4

A6

C4

A7

A8C5

D1J1

A1

J5

C6

C7

A9

D3

C1 J1 D1

A1

J2 C2

A8

A7

C4J5

C5C6

C7

A9

C8 C9

A2

J3 D2

A3

A4

C3J4

A6

A5D3

C1 D1

A1

C2

A8

A7

C4

C5C6

C7

A9

C8 C9

A2

D2

A3

A4

C3

A6

A5D3

Figure 1: (a) Orthograph O with degree-3 junctions J1 . . . J5 (labels attached to top faces), type-1 connectors
A1 . . . A9, type-2 connectors C1 . . . C9, and leaves D1 . . . D3. (b) Dual graph of O (c) Modified dual graph, with
connector (junction) edges marked with thin (thick) lines.

A

(a) (b)

C

b

a

x

y
f

C

b

y

x

f

A

a

Figure 2: Associating ports (a, b, x, y) with a type-2
connector C. Links a ∼ x and b ∼ y (arbitrarily picked
here) are marked with thick lines.

v

J

(a) (b)

u

va

x

B

f

C

C 0

J

x

fB

C 0

a
u

C

Figure 3: Associating ports and links with a degree-3
junction J (a) orthogonal (b) T -shaped.

closed faces only.) A face of r (which we refer to as a
ring face) is a maximal set of ring points that lie on a
face of A. Note that each ring face is 7 units long and
1 unit wide (since each face of O is 7 units long and 7
units wide). We view each ring face g ∈ r as the union
of three pieces: the middle 1 × 1 piece of g, which we
refer to as a gate, and two 3 × 1 strips of g attached
to either side of the gate, which we refer to as wings.

Thus, each ring includes four gates (one per face) and
eight wings (two per face). Refer to Figure 4.

A gate unattached to a port is called free; otherwise,
the gate is locked. Note that each wing w is incident to
two faces of A (one containing w, and one including just
a short edge of w). If both faces of A incident to a wing
are open, we say that the wing is free; otherwise, the
wing is locked. We say that a gate (wing) of A extends
(or is an extension of) the box B sharing the closed face
f with A.

w8

w7

w6

w5

g4

g3

A
g1

g2

w1

w3

w4

w2

B

f

Figure 4: Rings, gates and wings: A’s ring associated
with its closed face f is marked with stripes; g1, g2, g3
and g4 are gates; w1 through w8 are wings; wings w1,
w2, w3 and w8 are free, and the rest are locked; all gates
and rings are extensions of B.

Property 2 A wing/gate extends a unique box, and
any two free wings are interior-disjoint.

5 Modified Dual Graph

Similar to the approach presented in [10], we seek an
unfolding path in a multigraph that is a modified version
of the dual graph G of O. The requirement for the

288

33rd Canadian Conference on Computational Geometry, 2021

multigraph, which may not be met by the original dual
graph G, is that it must admit an Euler cycle that yields
a valid unfolding. We modify the dual graphG to satisfy
this requirement as follows:

1. For each edge (B,C), such that neither B nor C
is a junction, replace the edge (B,C) by parallel
edges {(B,C), (B,C)}. We call these edges con-
nector edges.

2. For each degree-3 junction J with neighbors A, B
and C, replace the edges {(J,A), (J,B), (J,C)}
with {(A,B), (A,C), (B,C)}, then remove J from
G. We call these new edges in G junction edges
associated with J . Note that there is a one-to-one
correspondence between these junction edges and
the links associated with J .

Note that the first rule above differs from the one
from [10] for the case when at least one of B and C is a
type-2 connector, to accommodate the case of adjacent
type-2 connectors. Figure 1b shows the dual graph cor-
responding to the orthograph from Figure 1a, and Fig-
ure 1c shows the modified dual graph.

These modification rules, along with the 3-separateness
condition, yield the following property.

Property 3 Each leaf (non-leaf) vertex of the modified
dual graph G has degree 2 (4) and is incident to an even
number of junction edges.

Definition 4 A cycle ξ in G is an Euler unfolding cy-
cle if it satisfies the following properties:

(E1) ξ passes through all edges of G (so it’s an Euler
cycle).

(E2) If (A,B,C) is a subpath in ξ and (A,B), (B,C) are
both junction edges, then either (i) B is a leaf, or
(ii) (A,B) and (B,C) are associated with different
junctions; in other words, (A,B,C) is not a cycle
in G.

(E3) If (A,B,A) is a subpath in ξ, then B is a leaf.

Referring to the modified dual graph G from Figure 1a,
(E2) of Definition 4 allows (A2, D2, A3) to be a subpath
of ξ (since D2 is a leaf), however ξ may not contain the
subpath (A1, C1, D1), for instance. The reason for this
restriction is that junction edges in G associated with
the same junction correspond to disjoint links (that do
not share ports) and the unfolding path can only transi-
tion from one link to another by means of a shared port.
For a specific example, refer to Figure 3b: the junction
edge (B,C) is associated with the null link u ∼ u, and
the junction edge (C,C ′) is associated with the non-null
link a ∼ c; if (B,C,C ′) were part of unfolding path, then

the unfolding would have to somehow transition from u
to a, which may not be possible; this is precisely what
we are trying to avoid.

Lemma 5 The multigraph G contains an Euler unfold-
ing cycle.

Proof. First note that all the vertices of G are of even
degree, therefore G contains an Euler cycle ξ. Suppose
that (A,B,C) is a subpath of ξ, and (A,B) and (B,C)
are both junction edges. If B is a leaf, or (A,B) and
(B,C) are associated with different junctions, then ξ
satisfies condition (E2) of Definition 4. Otherwise, the
degree of B is 4, and (A,B) and (B,C) are both associ-
ated with a junction J . Since ξ is an Euler cycle, ξ must
pass through B again along different edges (X,B) and
(B, Y). By Property 3, these are both either connector
edges or junction edges associated with a different junc-
tion J ′ ∕= J . Let ξ = (A,B,C) ⊕ ξ1 ⊕ (X,B, Y) ⊕ ξ2,
where ξ1 and ξ2 are subpaths of ξ, with ξ2 ending
at A (to close the cycle). Here ⊕ denotes concate-
nation. In this case we rearrange the cycle into ξ′ =
(A,B,X)⊕←−

ξ1 ⊕ (C,B, Y)⊕ ξ2, where
←−
ξ1 is ξ1 traversed

in reverse. Note that ξ′ avoids traversing edges of the
same junction consecutively. Using this approach (ap-
plied as many times as necessary) we construct an Euler
cycle that satisfies condition (E2) of Definition 4.

A similar rearrangement can be used to ensure that
ξ avoids traversing parallel connector edges (A,B) and
(B,A) consecutively, unless B is a leaf, so condition
(E3) of Definition 4 is also met. □

6 Nets Realizing Links

The discussion in this section is based on the assumption
that ports associated with each box A ∈ O have been
paired up with links. The pairing rules for the case when
A is a junction are described in Section 3.2. If A is a leaf
or a connector, the pairing will be implicitly done by the
unfolding path, as described later in Section 7. We will
later see that the unfolding procedure simply follows a
series of links a1 ∼ a2 ∼ a3 ∼ . . . a1 and realizes them
by nets that extend horizontally without overlap. For
every link ai ∼ ai+1 associated with a box A, we refer
to ai (ai+1) as the entry(exit) port for A. Note that
the same port ai may serve as an entry port for a box
A and an exit port for a different box B, if ai is shared
by A and B.

For any box A ∈ O, LA and RA are the left and
right faces of A (orthogonal to the x-axis); FA and KA

are the front and back faces of A (orthogonal to the z-
axis); and TA and BA are the top and bottom faces of
A (orthogonal to the y-axis).

Definition 6 (Proper Net) Let p ∼ q be a link asso-
ciated with a box A. We say that a net N realizing the
link p ∼ q is proper if the following conditions hold:

289

CCCG 2021, Halifax, Canada, August 10–12, 2021

(P1) N includes the locked gates on p and q and lies
between vertical lines passing through them.

(P2) Free wings/gates of A can be removed from N with-
out disconnecting N .

6.1 Unfolding a Leaf

Theorem 7 Let p ∼ q be a link associated with a leaf
A. Then the surface of A can be unfolded into a proper
net N that realizes the link p ∼ q and covers the surface
of A.

Proof. Let a be the entry port for A, and assume with-
out loss of generality that a is the top front edge of A.
Possible exit ports for A are labeled x, y and z in Fig-
ure 5a. Mapped onto the surface of A is an unfolding
multipath Υ that spans these entry and exit ports of A.

The unfolding net N realizing the link p ∼ q is shown
in Figure 5b. It can be easily verified that N covers the
surface of A and satisfies property (P1) of Definition 6.
Also note that the free wings of A (dark-shaded in Fig-
ure 5b) can be removed from N without disconnecting
N , and similarly for A’s free gates (so any gate other
than p and q). Thus property (P2) of Definition 6 is
also satisfied, so N is a proper net. □

BA

A

x

y

(a)

a

(b)

TA KA

a

z

y

x

RA

LA

z

Figure 5: Leaf A with a front neighbor. (a) Unfold-
ing multipath that spans entry port a and exit ports
{x, y, z}. (b) Unfolding net N that realizes the link
a ∼ q, for any q ∈ {x, y, z}; the dark-shaded pieces are
the free wings.

6.2 Unfolding Connectors

The proof of the following theorem spans sections Sec-
tions 6.2.1 and 6.2.2.

Theorem 8 Let p ∼ q and p′ ∼ q′ be a pair of links
associated with a connector C, with p ∕= p′ and q ∕= q′.
Then the surface of C can be unfolded into two proper
nets N and N ′, such that N realizes the link p ∼ q
and N ′ realizes the link p′ ∼ q′, and N ∪N ′ covers the
surface of C.

6.2.1 Unfolding a Type-1 Connector

We first prove the result of Theorem 8 for the case when
C is a type-1 connector. Assume without loss of gen-
erality that C has front and back neighbors, and p is
the front top edge of C (if this is not the case, we can
always reorient C to meet this restriction). We further
assume without loss of generality that p′ ∈ {b, c}, where
b is the front right edge of C, and c is the front bottom
edge of C; the case when p′ is the front left edge of C
is symmetric to the case p′ = b. Refer to Figure 6. Let
x, y, z and t be the exit ports of C in clockwise order,
starting with the back top edge x of C. Mapped onto
the surface of C in Figure 6a is an unfolding multipath
that maps the entry port p = a to these exit ports; for
clarity purposes, we do not overlay this multipath with
unfolding paths from p′ to the exit ports. We consider

TA

(a)

(b)

xa

yRA

zBA

b

t
LA

TA

(c)

a

RA

zBA

b

t
LA

yRA

x
TA

t
LA

z
BA

c

cx
TA

t

z

C
a

b

x

y

c

y
RA

N N0

N

N 0

Figure 6: Type-1 connector C with front and back
neighbors. (a) Unfolding multipath that spans entry
port a and exit ports {x, y, z, t}; to keep it clear, paths
from entry ports b, c to exit ports are not shown here.
(b) Unfolding nets N and N ′ that realize the links
p ∼ q and p′ ∼ q′ respectively, with p = a, q ∈ {x, t},
p′ ∈ {b, c} and q′ ∈ {x, y, z, t}; the dash-outlined piece
of LA (TA) gets attached to N if q = t (q = x), oth-
erwise it gets attached to N ′; the dark-shaded pieces
are the free wings (c) Unfolding nets N and N ′ that
realize the links p ∼ q and p′ ∼ q′ respectively, with
p = a, q ∈ {y, z}, p′ ∈ {b, c} and q′ ∈ {x, y, z, t}; the
dash-outlined piece of RA (BA) gets attached to N if
q = y (q = z), otherwise it gets attached to N ′; the
dark-shaded pieces are the free wings.

four cases:

• If q = x, then C can be unfolded as in Figure 6b,
with the dash-outlined piece of TA attached to N
(and not to N ′) the dash-outlined piece of LA at-
tached to N ′ (and not to N).

• If q = t, then C can be unfolded as in Figure 6b,
with the dash-outlined piece of TA attached to N ′

290

33rd Canadian Conference on Computational Geometry, 2021

(and not to N) the dash-outlined piece of LA at-
tached to N (and not to N ′).

• If q = y, then C can be unfolded as in Figure 6c,
with the dash-outlined piece of RA attached to N
(and not to N ′) the dash-outlined piece of BA at-
tached to N ′ (and not to N).

• If q = z, then C can be unfolded as in Figure 6c,
with the dash-outlined piece of RA attached to N ′

(and not to N) the dash-outlined piece of BA at-
tached to N (and not to N ′).

In all cases, it can be easily verified that N ∪N ′ covers
the surface of C, and N and N ′ satisfy property (P1)
of Definition 6. Note that the free wings of C, which are
dark-shaded in Figure 6(b,c), can be removed from N
(N ′) without disconnecting N (N ′). This is also true
for any of C’s free gates (so any gate other than p = a,
q, p′, q′). Thus property (P2) of Definition 6 is also
satisfied. It follows that N and N ′ are proper nets.

6.2.2 Unfolding a Type-2 Connector

In this section we prove the result of Theorem 8 for the
case when C is a type-2 connector. Assume without loss
of generality that C is in standard position, and A and
D are the front and right neighbors of C, respectively
(refer to Figure 7a). Property 1 guarantees that no port
is associated with the edge shared by A and D. Possible
entry (exit) ports for C are labeled a, b and c (x, y
and z) in Figure 7a. Mapped onto the surface of C is
an unfolding multipath that spans these entry and exit
ports.

z

C

b

c

y

(a)

b

y

BC

TC

BC

LC KC

(b)

c

TC

z

y

xa

LC KC
A

D

x

a

e

Figure 7: (a) Type-2 connector C in standard position
and unfolding multipath that spans entry ports {a, b, c}
and exit ports {x, y, z}. (b) Unfolding nets N (bottom)
and N ′ (top) that realize the links p ∼ q and p′ ∼ q′

respectively, with p = a, q ∈ {x, y}, p′ ∈ {b, c} and
q′ ∈ {y, z}; the dash-outlined piece of KC gets attached
to the bottom net if q = y, otherwise it gets attached to
the top net; the dark-shaded pieces are the free wings.

Assume without loss of generality that one of the

ports, say p, is equal to a. Note that the case p = c
is vertically symmetric, and if p = b, then p′ is either a
or c, so this case reduces to the general case as well.

Assume first that the two links correspond to non-
crossing paths on C’s surface, meaning that one path is
always on the same side of the other path (although the
two paths may share vertices and edges). We consider
two cases:

• If the first link is a ∼ x, then possible choices for
the second link are b ∼ y, b ∼ z, c ∼ y and c ∼ z.
The unfolding for this case is depicted in Figure 7b,
with the dash-outlined piece of KC attached to the
top net N ′ (and not to N).

• If the first link is a ∼ y, then the only possible
choices for the second link are b ∼ z and c ∼ z (any
other choice would correspond to a path crossing
the path from a to x in Υ). The unfolding for
this case is the same as before (see Figure 7b), but
with the dash-outlined piece of KC attached to the
bottom net N (and not to N ′).

In both cases, it can be easily verified that N ∪ N ′

covers the entire surface of C, and N and N ′ satisfy
property (P1) of Definition 6. The free wings of C,
which are dark-shaded in Figure 7b, can be removed
from N (N ′) without disconnecting N (N ′). This is
also true for any of C’s free gates (so any gate other
than p, q, p′, q′). Thus property (P2) of Definition 6 is
also satisfied, so N and N ′ are proper nets.

y

C

A
a

x

b

c

z

(b)(a)

(c)

a

BA

RA

TA

BC

y
LC

BC

z

KC

KC

x
TC

LC

b

KC

c
BC

KC

y

D

N0

N

Figure 8: Type-2 connector C with front neighbor A
and right neighbor D, case when BA and TA are open.
(a) Unfolding multipath that spans entry ports {a, b, c}
and exit ports {x, y, z}. (b) Unfolding net N that real-
izes the link a ∼ q, for any q ∈ {y, z}; the dash-outlined
piece of KC gets attached here only if q = y; otherwise,
it gets attached to N ′. (c) Unfolding net N ′ that real-
izes the link p′ ∼ q′, for any p′ ∈ {b, c} and q′ ∈ {x, y};
the dark-shaded pieces are the free wings of C.

Assume now that the two links correspond to crossing
paths on C’s surface. In this case, since p = a, the only
cases leading to crossing paths are q ∈ {y, z}, p′ ∈ {b, c}
and q′ ∈ {x, y}, with q′ ∕= q. First note that BA and

291

CCCG 2021, Halifax, Canada, August 10–12, 2021

xTC

y

C

A
a

x

b
D

c

z

LC

b
KC

c BC

KC

(a)

(c)

a

TC

BC

y

LC KC

TC

TD

FD

RA

BA

LC

BC

z

KC

(b)

KC

y

N0N

Figure 9: Type-2 connector C with front neighbor A
and right neighbor D, case when BA and TD are open.
(a) Unfolding multipath that spans entry ports {a, b, c}
and exit ports {x, y, z}. (b) Unfolding net N that real-
izes the link a ∼ q, for any q ∈ {y, z}; the dash-outlined
piece of KC gets attached here only if q = y; otherwise,
it gets attached to N ′. (c) Unfolding net N ′ that real-
izes the link p′ ∼ q′, for any p′ ∈ {b, c} and q′ ∈ {x, y};
the dark-shaded pieces are the free wings of C.

BD cannot both be closed, since the surface of O is a
2-manifold. Assume without loss of generality that BA

is open. If TA is also open, then C’s unfolding for this
case is shown in Figure 8. Mapped onto the surface of
C ∪ A is an unfolding multipath that spans all entry
and exit ports of C (see Figure 8a). The unfolding net
N shown in Figure 8b realizes any of the links a ∼ y
and a ∼ z. The unfolding net N ′ shown in Figure 8c
realizes the link p ∼ q, for any p ∈ {b, c} and q ∈ {x, y}.
If the link a ∼ y exists, then the dash-outlined piece of
KC is attached to N ; otherwise, it is attached to N ′. In
either case, if y is an exit port, the dash-outlined piece
lies along y.

Note that N and N ′ satisfy property (P1) of Defini-
tion 6, and N ∪N ′ covers the entire surface of C. One
observation here is that N borrows four free extension
wings and one free extension gate from the front box A
(see the striped pieces from Figure 8b). By Property 2,
these pieces are extensions of C only, therefore there is
no conflict over their use. By property (P2) of Defini-
tion 6 applied to A, removal of these wings and gates
from A’s net does not disconnect A’s net. Now notice
that the free wings of C (dark-shaded in Figure 8b,c)
can be removed from N (N ′) without disconnecting N
(N ′). This is also true for any of C’s free gates (so
any gate other than p, q, p′, q′). Thus property (P2)
of Definition 6 is also satisfied, so N and N ′ are proper
nets.

If TA is closed, then TD must be open (this is the
more difficult case). C’s unfolding for this case is shown
in Figure 9. Mapped onto the surface of C ∪ A ∪ D is
an unfolding multipath that spans all entry and exit
ports of C (see Figure 9a). The unfolding net N shown
in Figure 9a realizes any of the links a ∼ y and a ∼ z.

The unfolding net N ′ shown in Figure 9c realizes the
link p′ ∼ q′, for any p′ ∈ {b, c} and any q′ ∈ {x, y}. As
in the previous case, if the link a ∼ y exists, then the
dash-outlined piece of KC is attached to N ; otherwise,
it is attached to N ′. It can be verified that N and N ′

satisfy property (P1) of Definition 6. Note that N bor-
rows four free extension wings and two free extension
gates from neighbors A and D (see the striped pieces
from Figure 9b). Arguments similar to the ones above
show that only C’s nets can use these pieces (by Prop-
erty 2) and their removal from A’s and D’s nets does
not disconnect these nets (by property (P2) of Defini-
tion 6 applied to A and D). All other pieces in N ∪N ′

belong to the surface of C and cover the entire surface
of C. Finally, notice that the free wings of C (dark-
shaded in Figure 9b,c) can be removed from N (N ′)
without disconnecting N (N ′). This is also true for any
of the free gates, so property (P2) of Definition 6 is sat-
isfied. It follows that N and N ′ are proper nets. This
concludes the proof of Theorem 8.

6.3 Unfolding a Degree-3 Junction

As discussed in Section 3.2, each degree-3 junction J is
associated with two null links and one non-null link.
The null links are realized by empty unfolding nets,
while the non-null link is realized by J ’s unfolding net
according to the following theorem.

Theorem 9 Let p ∼ q be a non-null link associated
with a degree-3 junction J . Then the surface of J can
be unfolded into a proper net NJ that realizes the link
p ∼ q and covers the surface of J .

BJ

FJ

J

(a)

a

b

y

z

(b)

xa

yb

c

J

x

FJ

RJ

a x

yb RJ

TJ

TJ

a x

yb

c z

A

A

D

D

Figure 10: Unfolding degree-3 junction J . (a) Unfolding
net NJ of ortogonal junction J that realizes the link
p ∼ q, for any p ∈ {a, b} and q ∈ {x, y}. (b) Unfolding
net NJ of T -shaped junction J that realizes the link
p ∼ q, for any p ∈ {a, b, c} and q ∈ {x, y, z}. The dark-
shaded pieces in the unfolding nets are the free wings.

292

33rd Canadian Conference on Computational Geometry, 2021

Proof. Let A and D be J ’s neighbors connected by
the non-null link. Consider first the case when J is
orthogonal, as depicted in Figure 10a. Potential entry
ports for J are labeled a and b, and potential exit ports
are labeled x and y. Mapped onto the surface of J is
an unfolding multipath that spans these entry and exit
ports. The unfolding net NJ from Figure 10a realizes
the link p ∼ q, with p ∈ {a, b} and q ∈ {x, y}.

Consider now the case when J is a T-shaped junction,
as depicted in Figure 10b. Potential entry (exit) ports
for J are labeled a, b and c (x, y and z). Marked on the
surface of J is an unfolding multipath that spans these
entry and exit ports. The unfolding net NJ from Fig-
ure 10b realizes the link p ∼ q, with p ∈ {a, b, c} and
q ∈ {x, y, z}.

Note that each net NJ from Figure 10(a,b) covers the
surface of J and trivially satisfies property (P1) of Defi-
nition 6. Also note that the free wings of J (dark-shaded
in NJ) can be removed from NJ without disconnecting
NJ , and the same is true for J ’s gates. Thus prop-
erty (P2) of Definition 6 is also satisfied, so NJ is a
proper net. This concludes the proof. □

7 Unfolding Algorithm

In this section, we use the notationNA to refer to an un-
folding net associated with a box A. IfNA andNB share
a locked gate segment (along the right vertical bound-
ary line of NA, and left vertical boundary line of NB),
then NA ∪NB refers to the compound net obtained by
gluing NA and NB along the shared locked gate (with
potentially some free wings and free gates redistributed
between the two). Table 1 outlines our unfolding algo-
rithm.

Figure 11 shows an unfolding example. The Eu-
lerUnf algorithm (step 1) starts by visiting the junc-
tion edge C3 → D1 associated with the null link a ∼ a.
Next along the Euler cycle (shown in Figure 11c) is the
junction edge D1 → A1 associated with the non-null
link b ∼ c. Step 2.2 of the EulerUnf algorithm at-
taches to the unfolding net N (initially empty) the net
ND1

that realizes the link a ∼ b, followed by the net
NJ1 that realizes the link b ∼ c. Next along the Eu-
ler cycle is the junction edge A1 → D2 associated with
the null link d ∼ d. Step 2.2 of the EulerUnf algo-
rithm attaches to N the net NA1 that realizes the link
c ∼ d (the junction net realizing the null link is empty).
The algorithm continues this way up to the last edge
A4 → C3 of the Euler cycle. At this point the last vis-
ited port is t and the next edge along the Euler cycle is
the junction edge C3 → D1 associated with the null link
a ∼ a. Finally, the EulerUnf algorithm attaches to N
the net NC3 that realizes the link t ∼ a and terminates
(since all edges along the Euler cycle have been visited).

Lemma 10 Let N k be the partial unfolding net ob-
tained by the EulerUnf algorithm upon visiting k edges
of ξ, for some k ≥ 1. Let q be the last port visited by ξ.
Then N k is a (connected) net that lies left of a vertical
line passing though the locked gate on q.

Proof. The proof is by induction on k. The base case
corresponds to k = 1. In this case, N k is empty (step
1 of the EulerUnf algorithm) and thus satisfies the
conditions of this lemma.

The inductive hypothesis states that the theorem
holds for N k−1, for some k > 1. Let A → B (p) be
the last edge (port) visited by ξ up to this point. To
prove the inductive step, let B → C be the next (kth)
edge visited by ξ. We discuss two cases, depending on
whether B → C is a connector edge or a junction edge.

Assume first that B → C is a connector edge. This
implies that B and C are adjacent in O and share two
ports along their shared closed face. Note that at least
one of these two ports has not yet been visited (since
this is the first time ξ visits B → C, and associated
with each closed face are two ports and two edges in
G). The algorithm picks one such port q and pairs it
with p. Note that p and q are on different closed faces
of B, so the link p ∼ q must be realized by one of B’s
nets.

Let’s consider now the net NB that realizes the link
p ∼ q. By Theorem 8, NB is a proper net. Note
that NB may borrow from its neighbors A and C some
free wings/gates extending B (as in Figures 8 and 9);
by Property 2, such pieces are an extension of B only,
so there is no contention over their use. Similarly, some
of B’s free wings/gates extending A may have been em-
ployed by a net NA associated with A. By property
(P2) of Definition 6 applied to A, removing such pieces
from NA does not disconnect NA (and consequently
Nk−1), and similarly for NB ; the remaining Nk−1 and
NB are glued together along the shared locked gate on
p. The resulting net has no overlap, since N k−1 and NB

lie on either side of the vertical line passing through the
locked gate on p (by the inductive hypothesis and the
fact that NB is a proper net. These together show that
the lemma holds for N k = N k−1 ∪NB .

Assume now that B → C is a junction edge, and let
J be the junction adjacent to both B and C. Let j ∼ q
be the link associated with the junction edge B → C,
according to the rules described in Section 3.2. Let NJ

be the net that realizes the link j ∼ q (could be empty,
if j = q). By Theorem 9, NJ is a proper net. Since J is
a junction, each of B and C is either a connector or a
leaf. Furthermore, p and j lie on different closed faces of
B, so the link p ∼ j must be realized by one of B’s nets,
say NB . Arguments similar to the ones above show that
N k = N k−1 ∪NB ∪NJ satisfies the lemma. □

It can be verified that all unfoldings from Figures 5 to 10

293

CCCG 2021, Halifax, Canada, August 10–12, 2021

Algorithm EulerUnf(O)

Let G be the modified dual graph of O (Section 5).
Let ξ be a directed Euler unfolding cycle in G (Theorem 5).
1. If O contains at least one junction

Let A → B be a junction edge in ξ associated with a null link p ∼ p (always exists).
Else (* O contains only connectors *):

Let A → B be a connector edge in ξ and let p be an arbitrary port shared by A and B.
Mark A → B and p as visited.
Initialize the unfolding net N ← ∅.

2. repeat
Let A → B (p) be the last dual edge (port) visited by ξ.
Let B → C be the next dual edge along ξ.
2.1 If B → C is a connector edge:

Let q be an unvisited port shared by B and C.
Associate with B the link p ∼ q.
Let NB be the unfolding net that realizes the link p ∼ q.
Update N ← N ∪NB .

2.2 Else (* B → C is a junction edge *):
Let J be the junction box adjacent to both B and C in O.
Let j ∼ q be the link corresponding to the junction edge B → C,

with j on B and q on C (Section 3.2).
Associate with B the link p ∼ j.
Let NB be the unfolding net that realizes the link p ∼ j.
Let NJ be the unfolding net that realizes the link j ∼ q (could be null, if j = q).
Update N ← N ∪NB ∪NJ .

Mark B → C and q as visited.
until the cycle ξ has been completed.

Table 1: Unfolding Algorithm.

can be realized with a (7× 7) refinement. The require-
ment for 7 strips along one dimension arises from the
unfolding from Figure 9, where 3 horizontal strips are
needed in front of the C’s locked gate adjacent to port
x on C’s top face. Counting 3 strips on each side of
the gate, plus the gate strip, gives us 7 strips along one
dimension. Our main result is stated by the theorem
below.

Theorem 11 The EulerUnf algorithm produces a
connected net that covers the entire surface of O, with
cuts restricted to a (7× 7) refinement.

8 Conclusion

This paper introduces a new class of orthographs of ar-
bitrary genus that can be unfolded using a (7×7) refine-
ment of the grid faces. If we allow a non-uniform grid
refinement, this result extends to orthographs composed
of rectangular boxes of arbitrary sizes. The only mod-
ification to the current approach would be to fix the
smaller dimension of each ring face to dmin/7, where
dmin is the smallest of all box dimensions; the remain-
ing refinement cuts could then be equally distributed
across non-ring faces. This modification would prevent
the vertical strip RA from Figure 9 from extending too

far left and cause overlap; this is the only instance where
the sizes of different boxes matter.

Our unfolding algorithm currently handles polycube
graphs of maximum degree 3, however it shows promise
of extending to polycube graphs of arbitrary degree.
The algorithm can be easily extended to handle junc-
tions of degrees 5 and 6, for which the existence of ports
that satisfy Property 1 is evident; the links are then con-
structed as in [10], and the algorithm works as is. The
only obstacle appears to be in handling cross-shaped
junctions of degree 4, such as the junction J from Fig-
ure 12 with two type-2 connectors A and C as neighbors.
The approach from [10] would link two ports shared by
an open face of J with the neighbors A and C, however
one of these two ports would fail to satisfy Property 1
(since it would be shared by the two neighbors of either
A or C). This is the only configuration that requires
a different approach to selecting ports and links. One
strategy would be to select each edge shared by two
neighbors of J as a port (these would be J ’s four verti-
cal edges in Figure 12) and link each port to itself (so
the unfolding path doesn’t cross any of J ’s open faces),
then find a different placement for the two open faces
of J (in the unfolding nets of J ’s neighbors).

294

33rd Canadian Conference on Computational Geometry, 2021

C2

TC3

TC3

LC3
KC3

TA4

RA4

BA4

LA4

RC2

RC2

FC2
TC2

FA3

RA3

KA3

TC1

TC1

RC1
FC1

LC2

LC2

FC2
TC2

TD3
BD3

LD3

FD3

KD3

FJ3

BJ3

KJ3

RA2

RD1
LD1

TD1

FD1

KD1

RA1

(a) (b) (c)

C3

C1

A2

D3

A4

C3
D1

A1

D2A2

C1D3

A4

FJ1

RJ1

KJ1

A1

BD2
TD2

RD2

FD2

KD2

BC1

BC1

RC1
FC1

J2 D2

LA4

BA4

BC3

BC3

LC3
KC3

FA1

LA1

KA1 BJ2

LJ2

LJ2

KJ2

TA2

LA2

BA2

LA3

a

a

b

b c d

e f

g h i j

j k

l m

n o

p q r

s t a

A3

J1

J3

C2
c

d

e

f

gh

i

j

k

l

m

n

o

p
q

r

s
t

C2

C3

A1

A2

C1

A4

A3

D1

D2

D3

(d)

D1

A3

Figure 11: Unfolding example. (a) Polycube graph O with leaves D1 . . . D3, type-1 connectors A1 . . . A4, type-2
connectors C1 . . . C3 and junctions J1 . . . J3. (b) Modified dual graph G of O. (c) Directed Euler unfolding path in
G; inner circles corresponds to links (two links per connector and one link per leaf; adjacent links share a port). (d)
Unfolding net of O.

A

C
J

Figure 12: The approach from [10] for selecting ports
and links does not work on this junction J of degree 4,
since opposite neighbors of J must be linked together
and at least one port shared by A or C fails to sat-
isfy Property 1.

References

[1] M. Bern, E. Demaine, D. Eppstein, E. Kuo,
A. Mantler, and J. Snoeyink. Ununfoldable poly-

hedra with convex faces. Computational Geome-
try: Theory and Applications, 24(2):51–62, Febru-
ary 2003.

[2] T. Biedl, E. Demaine, M. Demaine, A. Lubiw,
M. Overmars, J. O’Rourke, S. Robbins, and
S. Whitesides. Unfolding some classes of orthogo-
nal polyhedra. In Proceedings of the 10th Canadian
Conference on Computational Geometry, Montréal,
Canada, August 1998.

[3] Y.-J. Chang and H.-C. Yen. Unfolding orthogonal
polyhedra with linear refinement. In Proceedings of
the 26th International Symposium on Algorithms
and Computation, ISAAC 2015, Nagoya, Japan,
pages 415–425. Springer Berlin Heidelberg, 2015.

[4] M. Damian, E. Demaine, and R. Flatland. Un-
folding orthogonal polyhedra with quadratic refine-
ment: the Delta-unfolding algorithm. Graphs and
Combinatorics, 30(1):125–140, 2014.

295

CCCG 2021, Halifax, Canada, August 10–12, 2021

[5] M. Damian, E. Demaine, R. Flatland, and
J. O’Rourke. Unfolding genus-2 orthogonal poly-
hedra with linear refinement. Graph. Comb.,
33(5):1357–1379, Sept. 2017.

[6] M. Damian and R. Flatland. Unfolding low-degree
orthotrees with constant refinement. In Proceedings
of the 30th Canadian Conference on Computational
Geometry, pages 189–208, Winnipeg, Canada, Au-
gust 2018.

[7] M. Damian, R. Flatland, and J. O’Rourke. Un-
folding Manhattan towers. In Proceedings of the
17th Canadian Conference on Computational Ge-
ometry, pages 211–214, Windsor, Canada, August
2005.

[8] M. Damian, R. Flatland, and J. O’Rourke. Epsilon-
unfolding orthogonal polyhedra. Graphs and Com-
binatorics, 23(1):179–194, 2007.

[9] E. Demaine and J. O’Rourke. Geometric Folding
Algorithms: Linkages, Origami, Polyhedra. Cam-
bridge University Press, July 2007.

[10] K.-Y. Ho, Y.-J. Chang, and H.-C. Yen. Unfold-
ing some classes of orthogonal polyhedra of arbi-
trary genus. Journal of Combinatorial Optimiza-
tion, 37(2):482–500, 2019.

[11] M.-H. Liou, S.-H. Poon, and Y.-J. Wei. On
edge-unfolding one-layer lattice polyhedra with cu-
bic holes. In The 20th International Computing
and Combinatorics Conference (COCOON) 2014,
pages 251–262, 2014.

296

CCCG 2021, Halifax, Canada, August 10–12, 2021

Dispersion on Intervals

Tetsuya Araki ∗ Hiroyuki Miyata † Shin-ichi Nakano ‡

Abstract

Given a set of n disjoint intervals on a line and an in-
teger k, we want to find k points in the intervals so
that the minimum pairwise distance of the k points is
maximized. Intuitively, given a set of n disjoint time
intervals on a timeline, each of which is a time span
we are allowed to check something, and an integer k,
which is the number of times we will check something,
we plan the k checking times so that the checks occur at
equal time intervals as much as possible, that is, we want
to maximize the minimum time interval between the k
checking times. We call the problem the k-dispersion
problem on intervals. If we need to choose exactly one
point in each interval, so k = n, and the disjoint inter-
vals are given in the sorted order on the line, then two
O(n) time algorithms to solve the problem are known.

In this paper we give the first O(n) time algorithm
to solve the problem for any constant k. Our algorithm
works even if the disjoint intervals are given in any (not
sorted) order. If the disjoint intervals are given in the
sorted order on the line, then, by slightly modifying the
algorithm, one can solve the problem in O(log n) time.
This is the first sublinear time algorithm to solve the
problem. Also we show some results on the k-dispersion
problem on disks, including a PTAS.

1 Introduction

The facility location problem and many of its variants
have been studied [11, 12]. Typically, given a set of loca-
tions on which facilities can be placed and an integer k,
we want to place k facilities on some locations so that a
designated objective function is minimized. By contrast
in the dispersion problem, we want to place facilities so
that a designated objective function is maximized.

In this paper we consider the dispersion problem on
intervals. Given a set of n disjoint intervals on a line and
an integer k, we want to find k points in the intervals
so that the minimum pairwise distance of the k points
is maximized. See an example in Fig. 1.

Intuitively, given a set of n disjoint (non-overlapping)
time intervals on a timeline, each of which is a time
span we are allowed to check something, and an integer
k, which is the number of times we will check something,

∗Gunma University, Japan tetsuya.araki@gunma-u.ac.jp
†Gunma University, Japan hmiyata@gunma-u.ac.jp
‡Gunma University, Japan nakano@cs.gunma-u.ac.jp

Figure 1: An example of the dispersion problem on in-
tervals with k = 6.

we plan the k checking times so that the checks occur at
equal time intervals as much as possible, that is, we want
to maximize the minimum time interval between the k
checking times. We call the problem the k-dispersion
problem on intervals.

Let S be a set of optimal k points on the line (cor-
responding to the k checking times), and cost(S) =
min{s,t}⊂S{d(s, t)} the minimum pairwise distance of
the k points in S.

If we need to choose exactly one point in each time
interval, and so k = n, and the disjoint intervals are
given in the sorted order on the line, two O(n) time
algorithms to solve the problem are known [5, 18].

Our result In this paper we give the first O(n) time
algorithm to solve the problem for any constant k. First
we solve the problem where one can choose any number
of points in each interval. Then we solve the problem
where one can choose at most one point in each inter-
val. Our algorithm works even if the disjoint intervals
are given in any (unsorted) order. Our algorithms is
based on the pigeonhole principle, and is a generaliza-
tion of the algorithm in [3] to solve a similar dispersion
problem.

If the disjoint intervals are given in the sorted order
on the line, then, by slightly modifying the algorithm,
one can solve the problem in O(log n) time. This is the
first sublinear time algorithm to solve the problem.

Related result Given a set P of n possible locations,
and a distance function d for each pair of locations, and
an integer k with k ≪ n, the max-min k-dispersion prob-
lem computes a subset S ⊂ P with |S| = k such that
the cost cost(S) = min{u,v}⊂S{d(u, v)} is maximized.
Several results are known for this max-min k-dispersion
problem [1, 2, 14, 19, 21]. For the max-sum version sev-
eral results are also known [4, 6, 8, 9, 10, 15, 17, 19]. For
a variety of related problems, see [4, 10]. See more ap-

297

33rd Canadian Conference on Computational Geometry, 2021

p
l

p
r

U
1

U
2

U
3

U
4

U
5

U
6

U
7

i
1

i
2

i
3

i
4

i
5

i
6

i
7

i
0

Figure 2: Illustration of U1, U2, · · · for k = 8.

plications, including result diversification, in [9, 19, 20].
Given a set of n disks on a plane, we want to choose

k points, at most one point in each disks, so that the
minimum distance among the points is maximized. The
problem is called the dispersion problem on disks, and
some results are known [7, 13, 16]. The k-dispersion
problem on intervals is the 1D version of the dispersion
problem on disks.

We show some results on the k-dispersion problem
on disks. Also we show a variant of the problem where
we can choose any number of points in each disk has a
PTAS.

The remainder of this paper is organized as follows.
In Section 2 we design an O(n) time simple algorithm
to solve the dispersion problem when intervals are given
unsorted on a line. In Section 3 we give an O(log n) time
algorithm to solve the dispersion problem when intervals
are given sorted on a line. In Section 4 we show several
results on the k-dispersion problem on disks. Finally
Section 5 is a conclusion.

2 k-dispersion for unsorted intervals

In this section we design a simple O(n) time algorithm
to solve the k-dispersion problem on intervals when the
disjoint n intervals are given unsorted on a line. The
idea of our algorithm is a simple divide and conquer al-
gorithm using the pigeonhole principle, as follows. Sim-
ilar idea is used to solve a similar max-min dispersion
problem on a line [3].

Let I be a set of disjoint intervals on a horizontal line
and pℓ and pr are the leftmost point and the rightmost
point in I. One can find pℓ and pr in O(n) time.

If k = 1 then a solution S of the 1-dispersion problem
is {pℓ}.

If k = 2 then the solution S of the 2-dispersion prob-
lem is {pℓ, pr}.

If k = 3 then let the solution S be {pℓ, ps, pr}. The
solution S consists of pℓ and pr and exactly one more
point ps in some interval in I. We can compute ps as
follows.

Let i0 = pℓ, i2 = pr, and let i1 be the midpoint
between pℓ and pr. If some interval in I contains i1 then
ps = i1. Otherwise, let U1 be the interval (i0, i1), and
U2 be the interval (i1, i2). Now ps appears in either U1

or U2. So, by pigeonhole principle, ps does not appear
in U1, or ps does not appear in U2. Thus we have two
cases.

Case 1: ps does not appear in U1.

In this case, S consists of pℓ and the solution of the
2-dispersion problem on intervals in (i1, i2], say R ⊂ I,
which consists of (1) the leftmost point in R and (2) pr.

Case 2: ps does not appear in U2.

In this case, S consists of pr and the solution of the
2-dispersion problem on intervals in [i0, i1), say L ⊂ I,
which consists of (1) the rightmost point in L and (2)
pℓ.

We can generalize this method for a constant k > 3,
as follows.

Let i0 = pℓ, ik−1 = pr and let i1, i2, · · · , ik−2 be the
points which evenly spaced on the line between pℓ and
pr. Clearly the cost of the solution is at most d(i0, i1),
where d(i0, i1) is the distance between i0 and i1. If each
of i1, i2, · · · , ik−2 is contained in some interval in I, then
{i0, i1, · · · , ik−1} is the solution, and the cost is d(i0, i1).
Assume otherwise. Let Uj be the interval (ij−1, ij] for
j = 1, 2, · · · , k−2, and Uk−1 be the interval (ik−2, ik−1).
See an example in Fig. 2.

The solution for the k-dispersion problem consists of
pℓ and pr and exactly k − 2 points in (i0, ik−1). So, by
pigeonhole principle, S has no point in at least one of
U1, U2, · · · , Uk−1. Thus we have k − 1 cases as follows.

Case 1: S has no point in U1.

If there is an interval in I containing i1, then replace
its left end to i1.

In this case, S consists of (1) pℓ and (2) the solution of
(k − 1)-dispersion problem for the intervals in [i1, ik−1].

Case 2: S has no point in U2.

In this case, for some s with 1 ≤ s ≤ k − 1, S con-
sists of (1) the solution of s-dispersion problem for the
intervals, say L, in [i0, i1] (if there is an interval in I con-
taining i1 then replace its right end to i1) and (2) the
solution of (k − s)-dispersion problem for the intervals,
say R, in [i2, ik−1] (if there is an interval in I containing
i2 then replace its left end to i2). Note that since S has
no point in U2 the solution for L does not affect the solu-
tion for R, so we can solve the two smaller subproblems
independently. Also note that if there is an interval in I
containing both i1 and i2, then two subintervals of the
interval appear one in L and the other in R.

Case 3: S has no point in U3.

Similar to Case 2.

· · ·
Case k − 2: S has no point in Uk−2.

Similar to Case 2.

Case k − 1: S has no point in Uk−1.

If there is an interval in I containing ik−2, then re-
place its right end to ik−2.

In this case, S consists of (1) the solution of (k − 1)-
dispersion problem for the intervals in [i0, ik−2] and (2)

298

CCCG 2021, Halifax, Canada, August 10–12, 2021

Algorithm Find-dispersion-on-Intervals(I, k)

/* pℓ and pr are the leftmost point and the rightmost
point in I */
if k = 1 then

S = {pℓ}
return S

end if
if k = 2 then

S = {pℓ, pr}
return S

end if
/* i0 = pℓ, ik−1 = pr and let i1, i2, · · · , ik−2 be the
points which evenly spaced on the line between pℓ and
pr */
/* k ≥ 3 */
if each of i1, i2, · · · , ik−2 is contained in some interval
in I then

S = {i0, i1, · · · , ik−1}
return S

end if
/* Case: S has no point in U1 = (i0, i1] */
Let R be the set of intervals in (i1, ik−1].
(if there is an interval in I containing i1 then replace
its left end to i1)
SL = {pℓ}
SR =Find-dispersion-on-a-line(R, k − 1)
S = SL ∪ SR

/* Case: S has no point in Uj = (ij−1, ij] for j =
2, 3, · · · , k − 2 */
for j = 2 to k − 2 do

Let L be the intervals in [i0, ij−1].
(If there is an interval in I containing ij−1 then
replace its right end to ij−1)
Let R be the intervals in (ij , ik−1].
(If there is an interval in I containing ij then re-
place its left end to ij)
for s = 1 to k − 1 do

SL =Find-dispersion-on-a-line(L, s)
SR =Find-dispersion-on-a-line(R, k − s)
if cost(SL ∪ SR) > cost(S) then

S = SL ∪ SR

end if
end for

end for
/* Case: S has no point in Uk−1 = (ik−2, ik−1) */
Let L be the set of intervals in [i0, ik−2].
(If there is an interval in I containing ik−2 then re-
place its right end to ik−2)
SL =Find-dispersion-on-a-line(L, k − 1)
SR = {pr}
if cost(SL ∪ SR) > cost(S) then

S = SL ∪ SR

end if
return S

pr.

We (recursively) check all possible cases and choose
the best one. See algorithm Find-dispersion-on-
intervals.

Thus if we have the solution of at most 2k2 smaller
dispersion problems then we can solve the original k-
dispersion problem.

We have the following theorem.

Theorem 1 One can solve the k-dispersion problem on
intervals in O(n) time even when the intervals are given
unsorted on a line.

Proof. Consider the tree structure of the recursive
calls. Each inner node has at most 2k2 children and
the height of the tree is at most k, so the number of in-
ner node is at most (2k2)k. Before calling the children
one needs to compute pℓ, pr, L and R by scanning the
list of unsorted intervals with buckets L and R. So it
needs O(n) time, where n is the number of intervals.
Thus each inner node needs O(n) time except for the
calls for its children. Therefore the total running time
of the algorithm is O((2k2)kn). Since k is a constant it
is O(n). □

By slightly modifying the algorithm we can solve the
similar dispersion problem on intervals where we can
choose at most one point in each interval, as follows.
(We cannot choose two or more points in an interval in
I.) If there is an interval, say I ′ ∈ I, containing both
endpoints of an empty interval (ij−1, ij) in Case j, then
we need to consider the following two more subcases.
Case (L): The subinterval of I ′ appears only in L, with
its right endpoint (ij−1). Case (R): the subinterval of I ′

appears only in R, with its left endpoint (ij) . Now the
number of subproblems is at most (4k2)k, and the total
running time of the algorithm is O((4k2)kn). Since k is
a constant it is O(n).

Theorem 2 One can solve the k-dispersion problem on
intervals with the constraint that we can choose at most
one point in each interval in O(n) time even when the
intervals are given unsorted on a line.

3 k-dispersion for sorted intervals

If I is a set of sorted disjoint intervals on a line, and the
coordinates of the endpoints of intervals are given as an
array in which the coordinates are stored in the sorted
order, then by slightly modifying the algorithm we can
solve the dispersion problem in O(log n) time.

We can compute pℓ and pr in O(log n) time using
the array. We can also decide whether some point i
is contained in some interval or not in O(log n) time by
binary search on the array. Also instead of computing L

299

33rd Canadian Conference on Computational Geometry, 2021

explisitly, we can compute the leftmost interval in L and
the rightmost interval in L in O(log n) time by binary
search, and we can regard L as the intervals in I between
those two intervals. Similar for R. Thus we can call each
child with those information as arguments, instead of L
and R. Now the running time is O((2k2)k log n), which
is O(log n) since k is a constant.

Theorem 3 One can solve the k-dispersion problem on
intervals in O(log n) time when the intervals are given
sorted on a line.

4 Dispersion on Disks

Given a set D of n disjoint disks on a plane and an
integer k ≤ |D|, we wish to find k points in those disks so
that the minimum distance between them is maximized.
We can choose at most one point in each disk. (Later
we consider a similar problem where we can choose any
number of points in each disk in Theorem 7.) We call the
problem the dispersion problem on disks. Note that the
1D version of the problem is the k-dispersion problem
on intervals, which we have discussed in Section 2 and
Section 3.

We need some notations. For a set S of points let
cost(S) be the minimum pairwise distance of the points
in S.

Let C be the set of n center points of the disks in D,
C∗ a set C ′ of k points in C maximizing cost(C ′).

Let S∗ be a set S′ of k points in D maximizing
cost(S′), D(S∗) the set of k disks containing S∗, and
C(S∗) the set of k center points of D(S∗).

For k = n the problem is NP-hard, APX-hard, and
polynomial time 0.707-approximate algorithm is known
[13]. For k < n no results are known for the problem.

We have the following lemma and two theorems. Note
that we can choose at most one point in each disk since
we always choose points from C.

Lemma 4 One can choose a set CA ⊂ C of k points in
O(n2) time so that cost(CA) ≥ cost(C∗)/2.

Proof. Similar to the proof of Theorem 2 in [19]. First
we choose the two points having the maximum distance
in C. Let initially CA be the set of the two points.
Then repeatedly we append to CA a point in C − CA

having the maximum distance to CA so that CA finally
has k points. Thus the algorithm is a simple greedy
algorithm.

Let D(C∗) be the set of k disks having centers at C∗

with radii cost(C∗)/2. Note that the proper inside of
disks in D(C∗) are disjoint. When we append a point
in C − CA to CA, |CA| < k holds, so there is a disk
in D(C∗) properly containing no point in CA. Now the
center of the disk has no point in CA within distance
cost(C∗)/2. Thus we can always find a point in C −CA

having no point in CA within distance cost(C∗)/2.

(a)

(b)

Figure 3: An example with cost(CA) = cost(S∗)/2. The
radii of disks are 0.5.

Therefore cost(CA) ≥ cost(C∗)/2 holds. □

Theorem 5 When D is a set of n disjoint disks with
arbitrary radii, given an integer k ≤ n one can find a
set CA of k points in C ⊂ D in O(n2) time so that (1)
no two points in CA are contained in a disk in D and
(2) cost(CA) ≥ cost(S∗)/4 holds.

Proof. Since D is disjoint cost(C(S∗)) ≥ cost(S∗)/2
holds. Also cost(C∗) ≥ cost(C(S∗)) holds. If we find a
set CA by Lemma 4 we have cost(CA) ≥ cost(C∗)/2 ≥
cost(C(S∗))/2 ≥ cost(S∗)/4. □

Theorem 6 When D is a set of n disjoint disks with
uniform radii, say r, given an integer k ≤ n one can
find a set CA of k points in C ⊂ D in O(n2) time so
that (1) no two points in CA are contained in a disk in
D and (2) cost(CA) ≥ cost(S∗)/3 holds.

Proof. Now cost(S∗) ≥ cost(C∗). Since D is disjoint
cost(S∗) − 2r ≤ cost(C∗) holds. Thus cost(S∗) ≤
cost(C∗) + 2r holds. If we find a set CA by Lemma
4 we have cost(CA) ≥ cost(C∗)/2 and so cost(C∗) ≤
2cost(CA). Now cost(S∗) ≤ 2cost(CA) + 2r. There-
fore, since cost(CA) ≥ 2r, cost(CA)/cost(S∗) ≥
cost(CA)/(2cost(CA)+2r) = 1/(2+2r/cost(CA)) ≥ 1/3
holds. □

See Fig. 3. The cost of optimal k = 4 points S∗

is 2 (See Fig. 3(a)), however the cost of k = 4 points
CA computed by the greedy algorithm in the proof of
Lemma 4 is 1. (See Fig. 3(b)). Thus there is an example
for which the greedy algorithm computes a set CA with
cost(CA) = cost(S∗)/2.

Now we consider a variant of the problem where we
can choose any number of points in each disk. We have
the following theorem. Let S∗ be a set S′ of k points in
D maximizing cost(S′).

Theorem 7 When D is a set of n disjoint disks with
arbitrary radii, given an integer k ≤ n and a posi-
tive real number ϵ << 1 one can choose a set GA of

300

CCCG 2021, Halifax, Canada, August 10–12, 2021

k points in D in O(n2/ϵ4) time so that cost(GA) ≥
cost(S∗)/(2(1+ ϵ)) holds. Also one can choose a set G∗

of k points in D in O((n/ϵ2)k) time so that cost(G∗) ≥
cost(S∗)/(1 + ϵ) holds.

Proof. Let r be the radius of the largest disk in D, and
(x′, y′) be the coordinate of the center of the largest disk.
Since we can locate k points in the largest disk so that
they evenly spaced on a line segment corresponding to
the diameter, cost(S∗) ≥ 2r/(k − 1) > 2r/k holds.

Now we define the grid points as follows. A point p
located at (x, y) is a grid point iff x = x′ +(rϵ/ck)i and
y = y′ + (rϵ/ck)j with some integers i and j. We will
explain later the constant c which defines the size of the
cell of the grid.

Let G be the set of points consists of (1) the centers
of disks in D, and (2) the grid points contained in disks
in D. Now |G| ≤ n + (2r/(rϵ/ck))2n = n + 4(ck/ϵ)2n
holds, so |G| is O(n/ϵ2).

Let G(S∗) be the set of points derived from S∗ by
choosing a nearest point in G for each point in S∗.
We choose c large enough so that (1) cost(G(S∗)) ≥
cost(S∗)/(1 + ϵ) holds and (2) no two points in S∗ have
the common nearest point in G.

Let G∗ ⊂ G be the set of k points maximizing
cost(G∗).

If we find a set GA ⊂ G of k points with cost(GA) ≥
cost(G∗)/2 in O(|G|2) time by the greedy algorithm
in the proof of Lemma 4, we have cost(GA) ≥
cost(G∗)/2 ≥ cost(G(S∗))/2 ≥ cost(S∗)/(2(1 + ϵ)).

If we find a set G∗ in O(|G|k) time by a brute
force algorithm we have cost(G∗) ≥ cost(G(S∗)) ≥
cost(S∗)/(1 + ϵ). □

Thus this version of the dispersion problem on disks
has a PTAS.

5 Conclusion

In this paper we have designed a simple algorithm to
solve the k-dispersion problem on intervals. This is the
first O(n) time algorithm to solve the problem for any
constant k.

Then we have shown, if intervals are given sorted on a
line, by slightly modifying the algorithm, one can solve
the problem in O(log n) time. This is the first sublinear
time algorithm to solve the problem.

If disjoint intervals on a circle are given sorted on the
circle an O(n) time algorithm to solve the n-dispersion
problem is known [5, 18]. Can we apply the method
in this paper for the k-dispersion problem on disjoint
intervals on a circle for any constant k?

We have shown some results on the k-dispersion prob-
lem on disks. Also we have shown a variant of the prob-
lem where we can choose any number of points in each
disk has a PTAS.

References

[1] T. Akagi and S. Nakano, Dispersion on the
line, IPSJ SIG Technical Reports, 2016-AL-158-3
(2016).

[2] T. Akagi, T. Araki, T. Horiyama, S. Nakano, Y.
Okamoto, Y. Otachi, T. Saitoh, R. Uehara, T. Uno,
K. Wasa, Exact Algorithms for the Max-Min Dis-
persion Problem, Proc. of FAW 2018, LNCS 10823,
pp.263-272 (2018).

[3] T. Araki and S. Nakano, Max-Min Dispersion on
a Line, Journal of Combinatorial Optimization.
Springer, (2020)

[4] C. Baur and S. P. Fekete, Approximation of ge-
ometric dispersion problems, Proc. of APPROX
1998, pp. 63–75 (1998).

[5] T. Biedl, A. Lubiw, A. M. Naredla, P. D. Ralbovsky
and G. Stroud, Dispersion for Intervals: A Geomet-
ric Approach, Prc. of SOSA 2021 (2021)

[6] B. Birnbaum and K.J.Goldman, An improved anal-
ysis for a greedy remote-clique algorithm using
factor-revealing LPs, Algorithmica, 50, pp. 42–59
(2009).

[7] S. Cabello, Approximation algorithms for spread-
ing points, Journal of Algorithms, 62, pp.49–73
(2007).

[8] A. Cevallos, F. Eisenbrand and R. Zenklusen, Max-
sum diversity via convex programming, Proc. of
SoCG 2016, pp. 26:1–26:14 (2016).

[9] A. Cevallos, F. Eisenbrand and R. Zenklusen, Local
search for max-sum diversification, Proc. of SODA
2017, pp. 130–142 (2017).

[10] B. Chandra and M. M. Halldorsson, Approxima-
tion algorithms for dispersion problems, J. of Al-
gorithms, 38, pp. 438-465 (2001).

[11] Z. Drezner, Facility location: A Survey of Applica-
tions and Methods, Springer (1995).

[12] Z. Drezner and H.W. Hamacher, Facility Location:
Applications and Theory, Springer (2004).

[13] A. Dumitrescu and M. Jiang, Dispersion in Disks,
Theory of Computing Systems volume 51, pp.125–
142 (2012).

[14] E. Erkut, The discrete p-dispersion problem, Eu-
ropean Journal of Operational Research, 46, pp.
48–60 (1990).

301

33rd Canadian Conference on Computational Geometry, 2021

[15] S. P. Fekete and H. Meijer, Maximum dispersion
and geometric maximum weight cliques, Algorith-
mica, 38, pp. 501-511 (2004).

[16] J. Fiala, J. Kratochvil, A. Proskurowski, Systems
of distant representatives, Discrete Appl. Math.,
145, pp.306–36 (2005).

[17] R. Hassin, S. Rubinstein and A. Tamir, Approxi-
mation algorithms for maximum dispersion, Oper-
ation Research Letters, 21, pp. 133–137 (1997).

[18] S. Li and H. Wang, Dispersing Points on Intervals,
Discrete Applied Mathematics, 239, pp. 106-118
(2018).

[19] S. S. Ravi, D. J. Rosenkrantz and G. K. Tayi,
Heuristic and special case algorithms for disper-
sion problems, Operations Research, 42, pp. 299–
310 (1994).

[20] M. Sydow, Approximation guarantees for max sum
and max min facility dispersion with parameterised
triangle inequality and applications in result diver-
sification, Mathematica Applicanda, 42, pp. 241–
257 (2014).

[21] D. W. Wang and Y.-S. Kuo, A study on two ge-
ometric location problems, Information Processing
Letters, 28, pp. 281–286 (1988).

302

CCCG 2021, Halifax, Canada, August 10–12, 2021

Approximation Algorithms for the Euclidean Dispersion Problems

Pawan K. Mishra* Gautam K. Das�

Abstract

In this article, we consider the Euclidean dispersion
problems. Let P = {p1, p2, . . . , pn} be a set of n
points in R2. For each point p ∈ P and S ⊆ P ,
we define costγ(p, S) as the sum of Euclidean distance
from p to the nearest γ point in S \ {p}. We define
costγ(S) = minp∈S{costγ(p, S)} for S ⊆ P . In the γ-
dispersion problem, a set P of n points in R2 and a
positive integer k ∈ [γ + 1, n] are given. The objective
is to find a subset S ⊆ P of size k such that costγ(S)
is maximized. We consider both 2-dispersion and 1-
dispersion problem in R2. Along with these, we also
consider 2-dispersion problem when points are placed
on a line.

In this paper, we propose a simple polynomial time
(2
√

3 + ε)-factor approximation algorithm for the 2-
dispersion problem, for any ε > 0, which is an im-
provement over the best known approximation factor
4
√

3 [Amano, K. and Nakano, S. I., An approximation
algorithm for the 2-dispersion problem, IEICE Trans-
actions on Information and Systems, Vol. 103(3), pp.
506-508, 2020]. Next, we develop a common framework
for designing an approximation algorithm for the Eu-
clidean dispersion problem. With this common frame-
work, we improve the approximation factor to 2

√
3 for

the 2-dispersion problem in R2. Using the same frame-
work, we propose a polynomial time algorithm, which
returns an optimal solution for the 2-dispersion problem
when points are placed on a line. Moreover, to show
the effectiveness of the framework, we also propose a
2-factor approximation algorithm for the 1-dispersion
problem in R2.

1 Introduction

The facility location problem is one of the extensively
studied optimization problems. Here, we are given a
set of locations on which facilities can be placed and
a positive integer k, and the goal is to place k facil-
ities on those locations so that a specific objective is
satisfied. For example, the objective is to place these
facilities such that their closeness is undesirable. Often,
this closeness measured as a function of the distances

*Department of Computer Science and Engineering, Indian In-
stitute of Technology Guwahati, pawan.mishra@iitg.ac.in

�Department of Mathematics, Indian Institute of Technology
Guwahati, gkd@iitg.ac.in

between a pair of facilities. We refer to such facility
location problem as a dispersion problem. More specifi-
cally, we wish to minimize the interference between the
placed facilities. The most studied dispersion problem
is the max-min dispersion problem.

In the max-min dispersion problem, we are given a
set P = {p1, p2, . . . , pn} of n locations, the non-negative
distances between each pair of locations p, q ∈ P , and a
positive integer k (k ≤ n). Here, k refers to the number
of facilities to be opened and distances are assumed to
be symmetric. The objective is to find a k size subset
S ⊆ P of locations such that cost(S) = min{d(p, q) |
p, q ∈ S} is maximized, where d(p, q) denotes the dis-
tance between p and q. This problem is known as 1-
dispersion problem in the literature. In this article, we
consider a variant of the max-min dispersion problem.
We refer to it as a 2-dispersion problem. Now, we define
2-dispersion problem as follows:

2-dispersion problem: Let P = {p1, p2, . . . , pn} be
a set of n points in R2. For each point p ∈ P and
S ⊆ P , we define cost2(p, S) as the sum of Euclidean
distance from p to the first closest point in S \ {p} and
the second closest point in S \ {p}. We also define
cost2(S) = minp∈S{cost2(p, S)} for each S ⊆ P . In
the 2-dispersion problem, a set P of n points in R2 and
a positive integer k ∈ [3, n] are given. The objective is
to find a subset S ⊆ P of size k such that cost2(S) is
maximized.

We find an immense number of applications for the
dispersion problem in the real world. The situation in
which we want to open chain stores in a community has
generated our interest in the dispersion issue. In order
to eliminate/prevent self-competition, we need to open
stores far away from each other. Another situation in
which the issue of dispersion occurs is installing haz-
ardous structures, such as nuclear power plants and oil
tanks. These facilities need to be dispersed to the fullest
degree possible so that an accident at one of the facil-
ities would not affect others. The dispersion problem
also has its application in information retrieval where we
need to find a small subset of data with some desired va-
riety from an extensive data set such that a small subset
is a reasonable sample to overview the large data set.

2 Related Work

In 1977, Shier [13] studied the k-center problem and
the max-min dispersion problem on a tree network.

303

33rd Canadian Conference on Computational Geometry, 2021

Shier showed that the max-min dispersion problem and
(k−1)-center on a tree network are dual and established
an equivalence between the max-min dispersion problem
and (k − 1)-center problem. In 1981, Chandrasekaran
and Daughety [7] studied the max-min dispersion prob-
lem on a tree network. In 1982, Chandrasekaran and
Tamir [8] also studied the max-min dispersion problem
and k-center problem on a tree network, where set of
locations is a finite subset. They also established an
equivalence between the max-min dispersion problem
and (k−1)-center problem on a tree network. So, using
k-center algorithm on a tree (proposed in [10]), a lin-
ear time algorithm for the max-min dispersion problem
on a tree can be devised. The max-min dispersion prob-
lem is NP-hard even when the distance function satisfies
triangle inequality [9]. Wang and Kuo [15] introduced
the geometric version of the max-min dispersion prob-
lem. They consider the problem in the d-dimensional
space where the distance between two points is Eu-
clidean. They proposed a dynamic programming that
solves the problem for d = 1 in O(kn) time. They
also proved that the problem is NP-hard for d = 2.
In [16], White studied the max-min dispersion problem
and proposed a 3-factor approximation result. In 1991,
Tamir [14] studied the max-min dispersion problem on
a graph, where continuum set of points on the edges
are considered as locations. Tamir showed that for a
continuum set of locations on a graph, the max-min
dispersion problem can not be approximated within a
factor of 3

2 unless P = NP . In [14], a heuristic is pro-
posed that produces a 2-factor approximation result for
the max-min dispersion problem on a graph. Later in
1994, Ravi et al. [12] studied the max-min dispersion
problem on a complete graph, where each edge is as-
sociated with a non-negative weight (distance). They
independently analyzed the same heuristic proposed in
[14] (for the max-min dispersion problem on a complete
graph), and showed that the same heuristic produces a
2-approximation result for the complete graph. Further-
more, they also demonstrated that unless P = NP , the
max-min dispersion problem on complete graph cannot
be approximated within a factor of 2 even if the distance
function satisfies the triangle inequality.

Recently, Akagi et al. [1] established a relationship
between the max-min dispersion problem and the max-
imum independent set problem, and using it they pro-
posed an exact algorithm for the problem. The running
time of the exact algorithm is O(nwk/3 log n), where
w < 2.373. They also studied two special cases, namely,
the input points are on a line and on a circle separately.
They proposed a polynomial time exact algorithm for
both special cases.

The other popular variant of the dispersion problem
is max-sum k-dispersion problem. In the max-sum k-
dispersion problem, the objective is to maximize the

sum of distances between k facilities. Erkut [9] idea’s
can be adapted to show that the problem is NP-hard.
Ravi et al. [12] gave a polynomial time exact algorithm
when the points are placed on a line. They also pro-
posed a 4-factor approximation algorithm if the distance
function satisfies the triangle inequality. In [12], they
also proposed a (1.571 + ε)-factor approximation algo-
rithm for 2-dimensional Euclidean space, where ε > 0.
In [5] and [11], the approximation factor of 4 was im-
proved to 2. One can see [4] and [6] for other varia-
tions of the dispersion problems. In comparison with
max-min dispersion (1-dispersion) problem, a handful
amount of research has been done in 2-dispersion prob-
lem. Recently, in 2018, Amano and Nakano [2] pro-
posed a greedy algorithm, which produces an 8- factor
approximation result. In 2020, [3] they analyzed the
same greedy algorithm proposed in [2] and proposed a
4
√

3(≈ 6.92)-factor approximation result.

2.1 Our Contribution

In this article, we first consider the 2-dispersion problem
in R2 and propose a simple polynomial time (2

√
3 + ε)-

factor approximation algorithm for any ε > 0. The best
known result in the literature is 4

√
3-factor approxima-

tion algorithm [3]. We also develop a common frame-
work that improves the approximation factor to 2

√
3

for the same problem. We present a polynomial time
optimal algorithm for 2-dispersion problem if the input
points lies on a line. Though a 2-factor approximation
algorithm available in the literature for the 1-dispersion
problem in R2 [12], but to show the effectiveness of the
proposed common framework, we propose a 2-factor ap-
proximation algorithm for the 1-dispersion problem us-
ing the developed framework.

2.2 Organization of the Paper

The remainder of the paper is organized as follows. In
Section 3, we propose a (2

√
3 + ε)-factor approxima-

tion algorithm for the 2-dispersion problem in R2, where
ε > 0. In Section 4, we propose a common framework for
the dispersion problem. Using the framework, followed
by 2
√

3-factor approximation result for the 2-dispersion
problem in R2, a polynomial time optimal algorithm
for the 2-dispersion problem on a line and 2-factor ap-
proximation result for the 1-dispersion problem in R2.
Finally, we conclude the paper in Section 5.

3 (2
√

3 + ε)-Factor Approximation Algorithm

In this section, we propose a (2
√

3 + ε)-factor approxi-
mation algorithm for the 2-dispersion problem, for any
ε > 0. Actually, we consider the same algorithm pro-
posed in [3], but using different argument, we will show

304

CCCG 2021, Halifax, Canada, August 10–12, 2021

that for any ε > 0, it is a (2
√

3 + ε)-factor approxi-
mation algorithm. For completeness of this article, we
prefer to discuss the algorithm briefly as follows. Let
I = (P, k) be an arbitrary instance of the 2-dispersion
problem, where P = {p1, p2, . . . pn} is the set of n points
in R2 and k ∈ [3, n] is a positive integer. Initially, we
choose a subset S3 ⊆ S of size 3 such that cost2(S3) is
maximized. Next, we add one point p ∈ P into S3 to
construct S4, i.e., S4 = S3 ∪ {p}, such that cost2(S4)
is maximized and continues this process up to the con-
struction of Sk. The pseudo code of the algorithm is
described in Algorithm 1.

Algorithm 1 GreedyDispersionAlgorithm(P, k)

Input: A set P = {p1, p2, . . . , pn} of n points, and a
positive integer k(3 ≤ k ≤ n).
Output: A subset Sk ⊆ P of size k.

1: Compute {pi1 , pi2 , pi3} ⊆ P such that cost2(S3) is
maximized.

2: S3 = {pi1 , pi2 , pi3}
3: for (j = 4, 5 . . . , k) do
4: Let p ∈ P \ Sj−1 such that cost2(Sj−1 ∪ {p}) is

maximized.
5: Sj ← Sj−1 ∪ {p}
6: end for
7: return (Sk)

Theorem 1 For any ε > 0, Algorithm 1 produces
(2
√

3 + ε)-factor approximation result in polynomial
time.

Proof. Let I = (P, k) be an arbitrary input instance of
the 2-dispersion problem, where P = {p1, p2, . . . , pn} is
the set of n points and k is a positive integer. Let Sk and
OPT be the output of Algorithm 1 and optimum solu-
tion, respectively, for the instance I. To prove the the-

orem, we have to show that cost2(OPT)
cost2(Sk)

≤ 2
√

3 + ε. Here

we use induction to show that cost2(Si) ≥ cost2(OPT)

2
√
3+ε

for each i = 3, 4, . . . , k. Since S3 is an optimum solu-
tion for 3 points (see line number 1 of Algorithm 1),

therefore cost2(S3) ≥ cost2(OPT) ≥ cost2(OPT)

2
√
3+ε

holds.

Now, assume that the condition holds for each i such
that 3 ≤ i < k. We will prove that the condition holds
for (i+ 1) too.

Now, we define a disk Di centered at each pi ∈ P as

follows: Di = {p` ∈ R2|d(pi, p`) ≤ cost2(OPT)

2
√
3+ε

}. Let D∗

be a set of disks corresponding to each point in OPT .

A point pj is contained in Di, if d(pi, pj) ≤ cost2(OPT)

2
√
3+ε

.

Lemma 2 For any point pi ∈ P , |Di ∩OPT | ≤ 2.

Proof. On the contrary, assume that three points
pa, pb, pc ∈ Di ∩ OPT . Let S = {pa, pb, pc}. With-
out loss of generality assume that cost2(pa, S) ≤

cost2(pb, S) and cost2(pa, S) ≤ cost2(pc, S), i.e.,
d(pa, pb)+d(pa, pc) ≤ d(pa, pb)+d(pb, pc) and d(pa, pb)+
d(pa, pc) ≤ d(pa, pc) + d(pb, pc), which leads to
d(pa, pb) ≤ d(pb, pc) and d(pa, pc) ≤ d(pb, pc). We no-
tice that maximizing d(pa, pb)+d(pa, pc) results in min-
imizing d(pb, pc)(see Figure 1). The minimum value of

d(pb, pc) is
√

3 cost2(OPT)

2
√
3+ε

as both d(pa, pb) and d(pa, pc)

is less than equal to d(pb, pc). Therefore, from the pack-
ing argument inside a disk, d(pa, pb) + d(pa, pc) is max-
imum if pa, pb, pc are on an equilateral triangle and
on the boundary of the disk Di. Then, cost2(S) ≤
d(pa, pb) + d(pa, pc) ≤

√
3 cost2(OPT)

2
√
3+ε

+
√

3 cost2(OPT)

2
√
3+ε

=

2
√

3 cost2(OPT)

2
√
3+ε

< cost2(OPT), which leads to a contra-

diction to the optimal value cost2(OPT). Therefore for
any pi ∈ P , Di contains at most two points from the
optimal set OPT .

pa pa

pb pc

pcpb

Figure 1: Points pa, pb, pc ∈ Di

�

Lemma 3 For some pj ∈ OPT , |Dj ∩ Si| < 2.

Proof. On the contrary, assume that there does not ex-
ist any j ∈ [1, k] such that |Dj∩Si| < 2. Let D∗ = {Di |
pi ∈ OPT}. Construct a bipartite graph H(Si ∪D∗, E)
as follows: (i) Si and D∗ = {D1, D2, . . . , Dk} are two
partite vertex sets, and (ii) for u′i ∈ Si, (u′i, Dj) ∈ E if
and only if u′i is contained in Dj . According to assump-
tion, each disk Dj contains at least 2 points from Si.
Therefore, the total degree of the vertices in D∗ in H
is at least 2k. Note that |D∗| = k. On the other hand,
the total degree of the vertices in Si in H is at most
2×|Si| (see Lemma 2). Since |Si| < k (based on the as-
sumption of the induction hypothesis), the total degree
of the vertices in Si in H is less than 2k, which leads to
a contradiction that the total degree of the vertices in
D∗ in H is at least 2k. Thus, there exist at least one
pj ∈ OPT such that |Dj ∩ Si| < 2. �

Without loss of generality, assume that disk Dj ∈ D∗
has at most one point from the set Si. Suppose Dj

contains only one point of the set Si, then the distance
of pj to the second closest point in Si is greater than
cost2(OPT)

2
√
3+ε

(see Figure 2). Also, from triangle inequality

d(pi, pj) + d(pi, p`) >
cost2(OPT)

2
√
3+ε

for each point p` ∈ Si.
So, we can add the point pj ∈ OPT to the set Si to

305

33rd Canadian Conference on Computational Geometry, 2021

construct set Si+1. Here, Si+1 = Si ∪ {pj}. Therefore,

the cost of Si+1 ≥ cost2(OPT)

2
√
3+ε

.

Now, assume that Dj does not contain any point from
the set Si, then the distance of the point pj ∈ OPT to

any point of Si is greater than cost2(OPT)

2
√
3+ε

. By adding the

point pj in the set Si, we construct the set Si+1, which

leads to the cost2(Si+1) ≥ cost2(OPT)

2
√
3+ε

. Since our algo-

rithm chooses a point (see line number 4 of Algorithm
1) that maximizes cost2(Si+1), therefore algorithm will
always choose a point in the iteration i + 1 such that

cost2(Si+1) ≥ cost2(OPT)

2
√
3+ε

.

By the help of Lemma 2 and Lemma 3, we can con-

clude that the cost2(Si+1) ≥ cost2(OPT)

2
√
3+ε

and thus con-

dition holds for (i+ 1) too.
Therefore, for any ε > 0, Algorithm 1 produces

(2
√

3 + ε)-factor approximation result in polynomial
time. �

pj

p`

pi

Figure 2: Points pj , pi ∈ Dj and p` outside the disk Dj

4 An Algorithm for the Dispersion Problem

In this section, we propose an algorithm for the
dispersion problem. It is a common algorithm
for 1-dispersion, 2-dispersion problem in R2 and 1-
dispersion/2-dispersion problem in R. Input of the al-
gorithm are (i) a set P = {p1, p2, . . . pn} of n points, (ii)
an integer γ(= 1or 2) for the γ-dispersion problem, and
(iii) an integer k(γ + 1 ≤ k ≤ n). In the first line of the
algorithm, we set the value of a constant λ. If γ = 2
and points are in R2 (resp. R), then we set λ = 2

√
3

(resp. λ = 1), and if γ = 1 and points are in R2, then
we set λ = 2. We prove that the algorithm is λ-factor
approximation algorithm. We use Si(⊆ P) to denote a
set of size i. We start algorithm with Sγ+1 ⊆ P con-
taining γ + 1 points as a solution set. Next, iteratively
we add one by one point from P into the solution set
to get a final solution set, i.e., if we have a solution set
Si of size i, then we add one more point into Si to get
solution set Si+1 of size i+ 1. Let α = costγ(Si). Now,
we add a point from P \Si into Si to get Si+1 such that
costγ(Si+1) ≥ α

λ . We stop this iterative method if we
have Sk or no more point addition is possible. We re-
peat the above process for each distinct Sγ+1 ⊆ P and
report the solution for which the γ-dispersion cost value
is maximum.

Algorithm 2 Dispersion Algorithm(P, k, γ)

Input : A set P of n points, a positive integer γ
and an integer k such that γ + 1 ≤ k ≤ n.

Output: A subset Sk ⊆ P such that |Sk| = k and
β = costγ(Sk).

1: If γ = 2(γ = 1), then λ ← 2
√

3 (λ ← 2), and if
points are on a line then λ← 1 .

2: β ← 0 // Initially, costγ(Sk) = 0
3: for each subset Sγ+1 ⊆ P consisting of γ+ 1 points

do
4: Set α← costγ(Sγ+1)
5: Set ρ← α/λ
6: if ρ > β then
7: flag ← 1, i← γ + 1
8: while i < k and flag 6= 0 do
9: flag ← 0

10: choose a point p ∈ P \ Si (if possible)
such that costγ(Si ∪ {p}) ≥ ρ and costγ(p, Si) =
minq∈P\Si

costγ(q, Si).
11: if such point p exists in step 10 then
12: Si+1 ← Si ∪ {p}
13: i← i+ 1, flag ← 1
14: end if
15: end while
16: if i = k then
17: Sk ← Si and β ← ρ
18: end if
19: end if
20: end for
21: return (Sk, β)

4.1 2
√

3-Factor Approximation Result for the 2-
Dispersion Problem

Let S∗ ⊆ P = {p1, p2, . . . , pn} be an optimal solution
for a given instance (P, k) of the 2-dispersion prob-
lem and Sk ⊆ P be a solution returned by greedy
Algorithm 2 for the given instance, provided γ = 1
as an additional input. A point s∗o ∈ S∗ is said to
be a solution point if cost2(S∗) is defined by s∗o, i.e.,
cost2(S∗) = d(s∗o, s

∗
r)+d(s∗o, s

∗
t) such that (i) s∗r , s

∗
t ∈ S∗,

and (ii) s∗r and s∗t are the first and second closest points
of s∗o in S∗, respectively. We call s∗r , s

∗
t as supporting

points. Let α = cost2(S∗). In this problem, the value
of λ is 2

√
3 (line number 1 of Algorithm 2).

Lemma 4 The triangle formed by three points s∗o, s∗r
and s∗t does not contain any point in S∗ \ {s∗o, s∗r , s∗t },
where s∗o is the solution point, and s∗r, s∗t are supporting
points.

Proof. Suppose there exist a point s∗m ∈ S∗ inside the
triangle formed by s∗o, s

∗
r and s∗t . Now, if d(s∗o, s

∗
r) ≥

d(s∗o, s
∗
t) then d(s∗o, s

∗
t)+d(s∗o, s

∗
m) < d(s∗o, s

∗
r)+d(s∗o, s

∗
t)

which contradict the optimality of cost2(S∗). A similar
argument will also work for d(s∗o, s

∗
r) < d(s∗o, s

∗
t). �

306

CCCG 2021, Halifax, Canada, August 10–12, 2021

In this problem, ρ = α
λ = cost2(S

∗)
2
√
3

. We define a

disk Di centered at pi ∈ P as follows: Di = {pj ∈
R2|d(pi, pj) ≤ ρ}. Let D = {Di | pi ∈ P}. Let D∗

be the subsets of D corresponding to disks centered at
points in S∗. A point pj is properly contained in Di, if
d(pi, pj) < ρ, whereas if d(pi, pj) ≤ ρ, then we say that
point pj is contained in Di.

Lemma 5 For any point p ∈ P , if Dp = {q ∈ R2 |
d(p, q) ≤ ρ} then Dp properly contains at most two
points of the optimal set S∗.

Proof. On the contrary, assume that three points
pa, pb, pc ∈ S∗ such that pa, pb, pc are properly con-
tained in Dp. Using the similar arguments discussed
in the proof of Lemma 2, cost2({pa, pb, pc}) is maxi-
mum if pa, pb, pc are on equilateral triangle inside Dp.
Therefore, d(pa, pb) = d(pa, pc) = d(pb, pc). Now,
cost2({pa, pb, pc}) = d(pa, pb)+d(pa, pc) <

√
3ρ+
√

3ρ =
2
√

3ρ = cost2(S∗). Therefore, pa, pb, pc ∈ S∗ and
cost2({pa, pb, pc}) < cost2(S∗) leads to a contradiction.
Thus, the lemma.

�

Lemma 6 For any three points {pa, pb, pc} ∈ S∗, there
does not exist any point s ∈ R2 such that s is properly
contained in Da ∩Db ∩Dc.

Proof. On the contrary, assume that s is properly con-
tained in Da ∩ Db ∩ Dc. This implies d(pa, s) < ρ,
d(pb, s) < ρ and d(pc, s) < ρ. Therefore, the disk
Ds = {q ∈ R2 | d(s, q) ≤ ρ} properly contains three
points pa, pb and pc, which is a contradiction to Lemma
5. Thus, the lemma.

�

Corollary 7 For any point p ∈ P , if D′ ⊆ D∗ is the
subset of disks that contains p, then |D′| ≤ 3 and p lies
on the boundary of each disk in D′.

Proof. Follows from Lemma 6. �

Corollary 8 For any point p ∈ P , if D′′ ⊆ D∗ is
the subset of disks that properly contains point p, then
|D′′| ≤ 2.

Proof. Follows from Lemma 6 and Corollary 7. �

Lemma 9 Let S ⊆ P be a set of points such that |S| <
k. If cost2(S) ≥ ρ, then there exists at least one disk
Dj ∈ D∗ = {D1, D2, . . . , Dk} that properly contains at
most one point from the set S.

Proof. On the contrary, assume that each Dj ∈ D∗

properly contains at least two points from the set S.
Construct a bipartite graph G(S ∪D∗, E) as follows: (i)
S and D∗ are two partite vertex sets, and (ii) for u ∈ S,
(u,Dj) ∈ E if and only if u is properly contained in

Dj . According to assumption, each disk Dj contains
at least 2 points from the set S. Therefore, the total
degree of the vertices in D∗ in G is at least 2k. Note
that |D∗| = k. On the other hand, the total degree of
the vertices in S in G is at most 2 × |S| (see Corollary
8). Since |S| < k, the total degree of the vertices in S
in G is less than 2k, which leads to a contradiction that
the total degree of the vertices in D∗ in G is at least 2k.
Thus, there exist at least one disk Dj ∈ D∗ such that
the disk Dj properly contains at most one point from
the set S.

�

Theorem 10 Algorithm 2 produces a 2
√

3-factor ap-
proximation result for the 2-dispersion problem in R2.

Proof. Since it is a 2-dispersion problem, so γ = 2
and set λ = 2

√
3 in line number 1 of Algorithm 2.

Now, assume α = cost2(S∗) and ρ = α
γ = cost2(S

∗)
2
√
3

,

where S∗ is an optimum solution. Here, we show that
Algorithm 2 returns a solution set Sk of size k such

that cost2(Sk) ≥ ρ = cost2(S
∗)

2
√
3

. More precisely, we

show that Algorithm 2 returns a solution Sk of size k

such that cost2(Sk) ≥ cost2(S
∗)

2
√
3

and Sk ⊇ {s∗o, s∗r , s∗t },
where s∗o is the solution point and s∗r and s∗t are sup-
porting points, i.e., cost2(S∗) = d(s∗o, s

∗
r) + d(s∗o, s

∗
t).

Let S∗3 = {s∗o, s∗r , s∗t }. Now, consider the case when
S3 = {s∗o, s∗r , s∗t } in line number 3 of Algorithm 2. Our
objective is to show that if S3 = {s∗o, s∗r , s∗t } in line num-
ber 3 of Algorithm 2, then it computes a solution Sk
of size k such that cost2(Sk) ≥ cost2(S

∗)
2
√
3

. Note that

any other solution returned by Algorithm 2 has a 2-

dispersion cost better than cost2(S
∗)

2
√
3

. Therefore, it is

sufficient to prove that if S3 = {s∗o, s∗r , s∗t } in line num-
ber 3 of Algorithm 2, then the size of Sk (updated) in
line number 17 of Algorithm 2 is k as every time Algo-
rithm 2 added a point (see line number 12) into the set
with the property that 2-dispersion cost of the updated

set is greater than or equal to cost2(S
∗)

2
√
3

. Therefore, we

consider S3 = {s∗o, s∗r , s∗t } in line number 3 of Algorithm
2.

We use induction to establish the condition
cost2(Si) ≥ ρ for each i = 3, 4, . . . k. Since S3 = S∗3 ,
therefore cost2(S3) = cost2(S∗3) = α > ρ holds. Now,
assume that the condition cost2(Si) ≥ ρ holds for each
i such that 3 ≤ i < k. We will prove that the condition
cost2(Si+1) ≥ ρ holds for (i+ 1) too.

Let D∗ be the set of disks centered at the points in
S∗ such that the radius of each disk is ρ. Since i < k
and Si ⊆ P with condition cost2(Si) ≥ ρ, there exist
at least one disk, say Dj ∈ D∗ that properly contains
at most one point in Si (see Lemma 9). We will show
that cost2(Si+1) = cost2(Si ∪{pj}) ≥ ρ, where pj is the
center of the disk Dj . Suppose, Dj contains only one

307

33rd Canadian Conference on Computational Geometry, 2021

point px ∈ Si, then px is the first closest point of pj in
the set Si. Now, by Corollary 7 and by Lemma 9, we
claim the second closest point p` of pj in the set Si may
lie (i) on the boundary of the disk Dj (see Figure 3(a))
or (ii) outside of the disk Dj(see Figure 3(b)).

pj

px

p`

(a)

pj

px

p`

(b)

Figure 3: (a) p` lies on the boundary of the disk Dj and
(b) p` lies outside of the disk Dj

Since d(pj , p`) ≥ ρ for both the above mentioned
cases, therefore cost2(pj , Si) ≥ ρ. Also, from triangle
inequality d(px, pj) + d(px, p`) ≥ d(pj , p`) ≥ ρ for each
point p` ∈ Si. So, we can add the point pj to the set Si
to construct set Si+1. Here, Si+1 = Si ∪ {pj}. There-
fore, cost2(Si+1) ≥ ρ.

Now, if Dj does not properly contain any point from
the set Si, then the distance of pj to any point of the
set Si is greater than or equal to ρ. Since there exists
at least one point pj ∈ P \ Si such that cost2(Si+1) =
cost2(Si ∪ {pj}) ≥ ρ, therefore Algorithm 2 will always
choose a point (see line number 10 of Algorithm 2) in
the iteration i+ 1 such that cost2(Si+1) ≥ ρ.

So, we can conclude that cost2(Si+1) ≥ ρ and thus
condition holds for (i+ 1) too.

Therefore, Algorithm 2 produces a set Sk of size k

such that cost2(Sk) ≥ ρ. Since ρ ≥ cost2(S
∗)

2
√
3

, Algorithm

2 produces 2
√

3-factor approximation result for the 2-
dispersion problem.

�

4.2 2-Dispersion Problem on a Line

In this section, we discuss the 2-dispersion problem on
a line L. Let the point set P = {p1, p2, . . . pn} be on a
horizontal line arranged from left to right. Let Sk ⊆ P
be a solution returned by Algorithm 2 and S∗ ⊆ P be
an optimal solution. Note that, the value of γ is 2 and
the value of λ (line number 1 of Algorithm 2) is 1 in
this problem. Let s∗o be a solution point and s∗r , s

∗
t be

supporting points, i.e., cost2(S∗) = d(s∗o, s
∗
r) +d(s∗o, s

∗
t).

Let S∗3 = {s∗o, s∗r , s∗t }. We show that if S3 = S∗3 in line
number 3 of Algorithm 2, then cost2(S3) = cost2(S∗).
Let S∗ = {s∗1, s∗2, . . . s∗k} are arranged from left to right.

Lemma 11 Let S∗ be an optimal solution. If s∗o is the
solution point and s∗r , s

∗
t are supporting points, then both

points s∗r and s∗t cannot be on the same side on the line
L with respect to s∗o and three points s∗r , s

∗
o, s
∗
t are con-

secutive on the line L in S∗.

s∗os∗ts∗r
L

Figure 4: s∗r and s∗t on left side of s∗o

Proof. On the contrary, assume that both s∗r and s∗t
are on the left side of s∗o, and s∗t lies between s∗r and s∗o
(see Figure 4). Now, d(s∗t , s

∗
o) + d(s∗t , s

∗
r) < d(s∗o, s

∗
t) +

d(s∗o, s
∗
r) which leads to a contradiction that s∗o is a so-

lution point, i.e., cost2(S∗) = d(s∗o, s
∗
r)+d(s∗o, s

∗
t). Now,

suppose s∗r , s
∗
o, s
∗
t are not consecutive in S∗. Let s∗

be the point in S∗ such that either s∗ ∈ (s∗r , s
∗
o) or

s∗ ∈ (s∗o, s
∗
t). If s∗ ∈ (s∗r , s

∗
o), then d(s∗o, s

∗
r)+d(s∗o+s

∗
t) >

d(s∗o, s
∗)+d(s∗o+s∗t), which leads to a contradiction that

s∗r is a supporting point. Similarly, we can show that if
s∗ ∈ (s∗o, s

∗
t), then s∗t is not a supporting point. Thus,

s∗r , s
∗
o, s
∗
t are consecutive points on the line L in S∗.

�

Lemma 11 says that if s∗o is a solution point, then
s∗o−1 and s∗o+1 are supporting points as s∗1, s

∗
2, . . . , s

∗
k are

arranged from left to right.

Lemma 12 Let S3 = {s∗o, s∗r , s∗t } and α = cost2(S3).
Now, if Si = Si−1 ∪ {pi} constructed in line number 12
of Algorithm 2, then cost2(Si) = α.

Proof. We use induction to prove cost2(Si) = α for
i = 4, 5 . . . , k.

Base Case: Consider the set S4 = S3 ∪ {p4} con-
structed in line number 12 of Algorithm 2. If s∗o is a
solution points, and s∗r , s

∗
t are supporting points and

cost2(p4, S3) ≥ α, therefore p4 /∈ [s∗o−1, s
∗
o+1] (oth-

erwise one of s∗o−1 and s∗o+1 will not be supporting
point). This implies p4 either lies in [p1, s

∗
o−1) or

(s∗o+1, pn]. Assume p4 ∈ (s∗o+1, pn]. In Algorithm
2, we choose p4 such that cost2(p4, S4) ≥ α (see
line number 10 of Algorithm 2) and cost2(p4, S4) =
minq∈P\S3

cost2(q, S4). Therefore, p4 ∈ (s∗o+1, s
∗
o+2].

Let S′4 = {s∗1, s∗2, . . . , s∗o−2} ∪ S4 ∪ {s∗o+3, s
∗
o+4, . . . , s

∗
k}.

Suppose p4 = s∗o+2 and we know that S3 = S∗3
then S′4 = S∗. So, cost2(S′4) = cost2(S∗) = α.
This implies cost2(S4) = α. Now assume that p4 ∈
(s∗o+1, s

∗
o+2), then also we will show that cost2(S′4) =

α. We calculate cost2(p4, S
′
4) = d(p4, s

∗
o+1) +

d(p4, s
∗
o+3) = d(s∗o+2, s

∗
o+1) + d(s∗o+2, s

∗
o+3) ≥ α

and cost2(s∗o+3, S
′
4) = d(s∗o+3, p4) + d(s∗o+3, s

∗
o+4) ≥

d(s∗o+3, s
∗
o+2) + d(s∗o+3, s

∗
o+4) ≥ α (see Figure 5). Thus

if p4 ∈ (s∗o+1, s
∗
o+2), then cost2(S′4) = α. Therefore, if

308

CCCG 2021, Halifax, Canada, August 10–12, 2021

k ≥ 4, then p4 exists and cost2(S4) = α. Similarly,
we can prove that if p4 ∈ [p1, s

∗
o−1), then cost2(S′4) = α,

where S′4 = {s∗1, s∗2, . . . , s∗o−3}∪S4∪{s∗o+2, s
∗
o+4, . . . , s

∗
k}.

In this case also p4 exists and cost2(S4) = α.

s∗o−1 s∗i s∗o+1 s∗o+2 s∗o+3
p4 s∗o+4

Figure 5: Snippet of S′4

Now, assume that Si = Si−1 ∪ {pi} for i < k such
that cost2(S′i) = α and cost2(Si) = α where S′i =
{s∗1, s∗2, . . . , s∗u}∪Si ∪{s∗v, s∗v+1, . . . , s

∗
k}. If pi ∈ (s∗o, pn],

then s∗v−1 ∈ S∗ is the left most point in the right of pi
and u ≥ k − (i+ k − v + 1) = v − i− 1 with each point
of Si are on the right side of s∗u (see Figure 6(a)) and if
pi ∈ [p1, s

∗
o), then s∗u+1 ∈ S∗ is the right most point in

the left of pi where v ≥ u+ i+ 1 (see Figure 6(b)).

p1 p2 pns∗u s∗vSi−1

pi

(b)

p1 p2 pns∗u s∗vSi−1

pi s∗v−1

(a)

s∗u+1

Figure 6: Placement of set Si−1 ∪ {pi}.

We prove that cost2(Si+1) = α, where Si+1 = Si ∪
{pi}. It follows from the fact that size of Si is less than
k, and the set {s∗1, s∗2, . . . , s∗su} ∪ {s∗v, s∗v+1, . . . , s

∗
k} 6=

φ and the similar arguments discussed in the base
case. �

Lemma 13 The running time of Algorithm 2 on line
is O(n4).

Proof. Since it is a 2-dispersion problem on a line, so
algorithm starts by setting λ = 1 in line number 1 of
Algorithm 2, and then compute solution set for each
distinct S3 ⊆ P independently. Now, for each S3, algo-
rithm selects a point iteratively based on greedy choice
(see line number 10 of Algorithm 2). Now, for choos-
ing remaining (k − 3) points, the total amortize time
taken by the algorithm is O(n). So, the overall time
complexity of Algorithm 2 on line consisting of n points
is O(n4).

�

Theorem 14 Algorithm 2 produces an optimal solu-
tion for the 2-dispersion problem on a line in polynomial
time.

Proof. Follows from Lemma 12 that cost2(Si) = α =
cost2(S∗3) for 3 ≤ i ≤ k, where S3 = {s∗o, s∗r , s∗t }. There-
fore, cost2(Sk) = α. Also, Lemma 13 says that Algo-
rithm 2 computes Sk in polynomial time. Thus, the
theorem. �

4.3 1-Dispersion Problem in R2

In this section, we show the effectiveness of Algorithm
2 by showing 2-factor approximation result for the 1-
dispersion problem in R2. Here, we set γ = 1 as input
along with input P and k. We also set λ = 2 in line
number 1 of the algorithm 2.

Let S∗ be an optimal solution for a given instance
(P, k) of 1-dispersion problem and Sk ⊆ P be a solution
returned by our greedy Algorithm 2 provided γ = 1
as an additional input. Let s∗o ∈ S∗ a solution point,
i.e., cost1(S∗) = d(s∗o, s

∗
r) such that s∗r is the closest

points of s∗o in S∗. We call s∗r as supporting point. Let
α = d(s∗o, s

∗
r) and ρ = α

2 .
We define a disk Di centered at pi ∈ P as follows:

Di = {pj ∈ R2|d(pi, pj) ≤ ρ}. Let D = {Di | pi ∈
P}. Let D∗ be the subsets of D corresponding to disks
centered at points in S∗. If d(pi, pj) < ρ, then we say
that pj is properly contained in Di and if d(pi, pj) ≤ ρ,
then we say that pj is contained in Di.

Lemma 15 For any point s ∈ P , if Ds = {q ∈ R2 |
d(s, q) ≤ ρ} then Ds properly contains at most one point
of the optimal set S∗.

Proof. On the contrary, assume that pa, pb ∈ S∗ such
that pa, pb are properly contained in Ds. If two points
pa and pb are properly contained in Ds, then d(pa, pb) ≤
d(pa, s)+d(pb, s) <

α
2 + α

2 = α, which leads to a contra-
diction to the optimality of S∗. Thus, the lemma. �

Lemma 16 For any two points pa, pb ∈ S∗, there does
not exist any point s ∈ R2 that is properly contained in
Da ∩Db.

Proof. On the contrary, assume that s is properly con-
tained in Da ∩ Db. This implies d(pa, s) < α

2 and
d(pb, s) < α

2 . Therefore, the disk Ds = {q ∈ R2 |
d(s, q) ≤ ρ} properly contains two points pa and pb,
which is a contradiction to Lemma 15. Thus, the
lemma.

�

Corollary 17 For any point s ∈ P , if D′ ⊆ D∗ is the
set of disks that contain s, then |D′| ≤ 2 and s lies on
the boundary of both the disk in D′.

Proof. Follows from Lemma 16. �

Corollary 18 For any point s ∈ P , if D′′ ⊆ D∗ be
a subset of disks that properly contains point s, then
|D′′| ≤ 1.

309

33rd Canadian Conference on Computational Geometry, 2021

Proof. Follows from Lemma 16 and Corollary 17. �

Lemma 19 Let M ⊆ P be a set of points such that
|M | < k. If cost2(M) ≥ α

2 , then there exists at least
one disk Dj ∈ D∗ = {D1, D2, . . . , Dk} that does not
properly contain any point from the set M .

Proof. On the contrary, assume that each Dj ∈ D∗

properly contains at least one point from the set M .
Construct a bipartite graph G(M ∪ D∗, E) as follows:
(i) M and D∗ are two partite vertex sets, and (ii) for
u ∈M , (u,Dj) ∈ E if and only if u is properly contained
in Dj . According to assumption, each disk Dj contains
at least 1 points from the set M . Therefore, the total
degree of the vertices in D∗ in G is at least k. Note that
|D∗| = k. On the other hand, the total degree of the
vertices in M in G is at most |M | (see Corollary 18).
Since |M | < k, the total degree of the vertices in M
in G is less than k, which leads to a contradiction that
the total degree of the vertices in D∗ in G is at least
k. Thus, there exist at least one disk Dj ∈ D∗ such
that Dj does not properly contain any point from the
set M . �

Theorem 20 Algorithm 2 produces a 2-factor approx-
imation result for the 1-dispersion problem in R2.

Proof. Since it is a 1-dispersion problem, so γ = 1 and
set λ = 2 in line number 1 of the algorithm. Now,

assume α = cost1(S∗) and ρ = α
λ = cost1(S

∗)
2 , where

S∗ is the optimum solution. Here, we show that Al-
gorithm 2 returns a solution set Sk of size k such that
cost1(Sk) ≥ ρ. More precisely, we show that Algorithm
2 returns a solution Sk of size k such that cost1(Sk) ≥ ρ
and Sk ⊇ {s∗o, s∗r}, where s∗o is the solution point and s∗r
is the supporting point. Our objective is to show that
if S2 = {s∗o, s∗r} in line number 3 of Algorithm 2, then it
computes a solution Sk of size k such that cost1(Sk) ≥ ρ.
Note that any other solution returned by Algorithm 2

has a 1-dispersion cost better than cost1(S
∗)

2 . Therefore,
it is sufficient to prove that if S2 = {s∗o, s∗r} in line num-
ber 3 of Algorithm 2, then the size of Sk (updated) in
line number 17 of Algorithm 2 is k as every time Algo-
rithm 2 added a point (see line number 12) into the set
with the property that 1-dispersion cost of the updated

set is greater than or equal to ρ = cost1(S
∗)

2 . Therefore,
we consider S2 = {s∗o, s∗r} in line number 3 of Algorithm
2.

We use induction to establish the condition
cost1(Si) ≥ ρ for each i = 3, 4, . . . k. Since S2 = S∗2 ,
therefore cost1(S2) = cost1(S∗2) = α holds. Now, as-
sume that the condition cost1(Si) ≥ ρ holds for each i
such that 3 ≤ i < k. We will prove that the condition
cost1(Si+1) ≥ ρ holds for (i+ 1) too.

Let D∗ be the set of disks centered at the points in
S∗ such that the radius of each disk be ρ = α

2 . Since

i < k and Si ⊆ P with condition cost1(Si) ≥ ρ = α
2 ,

there exist at least one disk, say Dj ∈ D∗ that does
not contain any point from the set Si (see Lemma 19).
We will show that cost1(Si+1) = cost1(Si ∪ {pj}) ≥ ρ,
where pj is the center of the disk Dj .

Now, if Dj does not properly contain any point from
the set Si, then the closest point of pj ∈ S∗ may lie on
the boundary of the disk Dj (by Corollary 17) or outside
the disk Dj (by Lemma 19). In both the cases, distance
of pj to any point of the set Si is greater than or equal
to ρ (see Figure 7). Since there exists at least one point
pj ∈ P \Si such that cost1(Si+1) = cost1(Si∪{pj}) ≥ ρ,
therefore Algorithm 2 will always choose a point (see
line number 10 of Algorithm 2) in the iteration i + 1
such that cost1(Si+1) ≥ ρ.

So, we can conclude that cost1(Si+1) ≥ ρ and thus
condition holds for (i+ 1) too.

pj pj

p` p`

Figure 7: Second closest point of pj lies on boundary of
Dj or outside of Dj .

Therefore, Algorithm 2 produces a 2-factor approxi-
mation result for the 1-dispersion problem in R2. �

5 Conclusion

In this article, we proposed a (2
√

3 + ε)-factor approx-
imation algorithm for the 2-dispersion problem in R2,
where ε > 0. The best known approximation factor
available in the literature is 4

√
3 [3]. Next, we proposed

a common framework for the dispersion problem. Us-
ing the framework, we further improved the approxima-
tion factor to 2

√
3 for the 2-dispersion problem in R2.

We studied the 2-dispersion problem on a line and pro-
posed a polynomial time algorithm that returns an opti-
mal solution using the developed framework. Note that,
for the 2-dispersion problem on a line, one can propose
a polynomial time algorithm that returns an optimal
value in relatively low time complexity, but to show the
adaptability and flexibility of our proposed framework,
we presented an algorithm for the same problem using
the developed framework. We also proposed a 2-factor
approximation algorithm for the 1-dispersion problem
using the proposed common framework to show the ef-
fectiveness of the framework.

310

CCCG 2021, Halifax, Canada, August 10–12, 2021

Acknowledgment

We thank Prof. Arie Tamir (Tel Aviv University, Tel
Aviv, Israel) for his useful suggestions on the literature
of the problem.

References

[1] Akagi, Toshihiro and Araki, Tetsuya and Horiyama,
Takashi and Nakano, Shin-ichi and Okamoto, Yoshio
and Otachi, Yota and Saitoh, Toshiki and Uehara,
Ryuhei and Uno, Takeaki and Wasa, Kunihiro. Exact
algorithms for the max-min dispersion problem. Inter-
national Workshop on Frontiers in Algorithmics, pp.
263–272, 2018.

[2] Amano, Kazuyuki and Nakano, Shin-Ichi. Away from
Rivals. CCCG, pp. 68–71, 2018.

[3] Amano, Kazuyuki and Nakano, Shin-Ichi. An Approx-
imation Algorithm for the 2-Dispersion Problem. IE-
ICE Transactions on Information and Systems, 103(3):
506–508, 2020.

[4] Baur, Christoph and Fekete, Sándor P. Approxima-
tion of geometric dispersion problems. Algorithmica,
30(3):451–470, 2001.

[5] Birnbaum, Benjamin and Goldman, Kenneth J. An
improved analysis for a greedy remote-clique algorithm
using factor-revealing LPs. Algorithmica, 55(1):42–59,
2009.

[6] Chandra, Barun and Halldórsson, Magnús M. Approx-
imation algorithms for dispersion problems. Journal of
algorithms, 38(2):438–465, 2001.

[7] Chandrasekaran, R and Daughety, Andrew. Location
on tree networks: p-centre and n-dispersion problems.
Mathematics of Operations Research, 6(1):50–57, 1981.

[8] Chandrasekaran, R and Tamir, Arie. Polynomially
bounded algorithms for locating p-centers on a tree.
Mathematical Programming, 22(1): 304–315, 1982

[9] Erkut, Erhan. The discrete p-dispersion problem. Eu-
ropean Journal of Operational Research, 46(1):48–60,
1990.

[10] Frederickson, Greg N. Optimal algorithms for tree
partitioning. Proceedings of the Second Annual ACM-
SIAM Symposium on Discrete Algorithms, 168–177,
1991.

[11] Hassin, Refael and Rubinstein, Shlomi and Tamir,
Arie. Approximation algorithms for maximum disper-
sion. Operations research letters, 21(3):133–137, 1997.

[12] Ravi, Sekharipuram S and Rosenkrantz, Daniel J and
Tayi, Giri Kumar. Heuristic and special case algo-
rithms for dispersion problems. Operations Research,
42(2):299–310, 1994.

[13] Shier, Douglas R. A min-max theorem for p-center
problems on a tree. Transportation Science, 11(3):243–
252, 1977.

[14] Tamir, Arie. Obnoxious facility location on graphs.
SIAM Journal on Discrete Mathematics, 4(4): 550-567,
1991.

[15] Wang, DW and Kuo, Yue-Sun. A study on two geomet-
ric location problems. Information processing letters,
28(6):281–286, 1988.

[16] White, Douglas J. The maximal-dispersion problem.
IMA Journal of Mathematics Applied in Business and
Industry, 3(2):131–140, 1991.

311

CCCG 2021, Halifax, Canada, August 10–12, 2021

The Discrete Median and Center Line Segment Problems in the Plane

Ovidiu Daescu* Ka Yaw Teo�

Abstract

Let P be a set of n points in the plane. The discrete
median line segment of P is the line segment with both
its endpoints in P such that the sum of the distances
from P to the line segment is minimized. Similarly, the
discrete center line segment of P is the line segment
bounded by two points of P such that the maximum of
the distances from P to the line segment is minimized.
We present exact algorithms for computing the discrete
median and center line segments of P . Our algorithms
run in O(n2) time and use O(n2) space.

1 Introduction

In this paper, we consider the following two problems.

Discrete median line segment problem Given a
set P of n points in R2, locate a line segment bounded
by two points of P such that the sum of the Euclidean
distances from P to the line segment is minimized.

Discrete center line segment problem Given a
set P of n points in R2, locate a line segment bounded
by two points of P such that the maximum of the
Euclidean distances from P to the line segment is
minimized.

It appears, as far as the authors are aware, that the
problems defined above, albeit interesting and geomet-
ric in nature, have been seemingly overlooked in facility
location theory. The proposed problems are closely re-
lated to a class of “discrete” problems in facility location
theory, where the goal is to select one point (or several)
from a given set of points P so as to minimize an ob-
jective function that is distance-dependent with respect
to P .

In general, there are two types of problems in facil-
ity location theory depending on the objective function
used – i) center (minimax) and ii) median (minsum).
In regards to the discrete point facility location prob-
lems aforementioned, the discrete center problem asks
to locate a point in P that minimizes the maximum of
the distances between the points of P and the located

*Department of Computer Science, University of Texas at Dal-
las, ovidiu.daescu@utdallas.edu

�Department of Computer Science, University of Texas at Dal-
las, ka.teo@utdallas.edu

point. This is analogous to finding the smallest disk
centered at a point of P and containing P . The discrete
center problem can be solved in O(n log n) time using
the farthest-neighbor Voronoi diagram of P [5, Chapter
7]. The discrete median, which is commonly known as
the medoid, is a point in P that has the minimal sum of
distances to P . One can find the medoid of P by simply
computing all O(n2) pairwise distances. However, it has
been argued that no exact algorithm exists for solving
the medoid problem in o(n2) time [8].

2 Our results

We begin in Section 3 by addressing the discrete median
line segment problem. First, we solve the problem in
O(n2 log n) time by using enumeration enhanced with
logarithmic query-time data structures (Section 3.1).
We then improve the time complexity of our algorithm
to O(n2) by reducing the query time of our data struc-
tures to amortized O(1) (Section 3.2).

In the process of deriving our solution to the discrete
median line segment problem, we develop efficient data
structures supporting half-plane distance-sum queries
(see Subproblems 1 and 2 for detailed definitions), which
happen to be more general than required for solving our
problem.

We proceed to solve the discrete center line segment
problem in Section 4 along similar lines. We obtain an
O(n2 log n)-time algorithm for the problem based on the
query data structures proposed in [1, 4] (Section 4.1).
We then follow by deriving an O(n2)-time algorithm,
which requires a data preprocessing approach different
from that in the prior algorithm (Section 4.2).

In Section 5, we show that, against intuition, the dis-
crete median or center line segment of P does not neces-
sarily have an endpoint at a vertex on the convex hull of
P . This rules out any algorithm whose time complexity
depends on the number of vertices on the convex hull
of P , which is typically smaller than n for random (and
many practical) sets of points.

We end the paper with some brief concluding remarks
in Section 6.

3 Discrete median line segment

One can find the discrete median line segment in O(n3)
time using a brute-force method – namely, by enumer-
ating all

(
n
2

)
candidate line segments (i.e., distinct pairs

312

33rd Canadian Conference on Computational Geometry, 2021

of points in P) and computing the corresponding sum
of n− 1 distances for each candidate line segment.

3.1 An O(n2 logn)-time algorithm

In this section, we derive an O(n2 log n)-time algorithm
for the discrete median line segment problem. The idea
is to preprocess P into some data structures of loga-
rithmic query time for use in computing the sum of dis-
tances for each candidate line segment. We begin by
addressing the required query data structures, which
are derived from solving the following two subproblems
(refer to Figure 1).

Figure 1: Illustration for Subproblems 1 and 2.

Subproblem 1 Given a set P of n points in the plane,
let H be a query half-plane bounded by a line L contain-
ing a point p ∈ P . Preprocess P so that, for a point
p ∈ P and a half-plane H given at query time, one can
efficiently report the sum of the distances from P ∩ H
to p.

Subproblem 2 Given a set P of n points in the plane,
let H be a query half-plane bounded by a line L contain-
ing a point p ∈ P . Let ρ be the ray emanating from
p, perpendicular to L, and contained in H. Preprocess
P so that, for a point p ∈ P and a half-plane H given
at query time, one can efficiently report the sum of the
orthogonal distances from P ∩H to ρ.

Here we give a brief description of the preprocessing
procedure for solving the subproblems. For each point
p ∈ P , we i) sort the points of P \ {p} around p in
O(n log n) time, ii) define a sequence of O(n) intervals
in the sorted order such that P ∩ H remains constant
within each interval, iii) enumerate the intervals in the
sorted order so that it takes O(1) time to evaluate the
sum of distances in each interval, and iv) store the dis-
tance sums computed for the intervals in an O(log n)-
query time data structure. The details of the solutions
to Subproblems 1 and 2 are presented in the following
two subsections.

Subproblem 1

Recall that L denotes a line passing through a point
p ∈ P . Without loss of generality, let H be one of
the two half-planes bounded by L (the other half-plane
can be handled similarly due to symmetry). As line L
rotates around point p, a point q ∈ P \ {p} may enter
and leave H. These point-entering and -leaving events
can be determined in O(1) time each by computing the
line passing through p and each point q ∈ P \{p}. Since
a point q ∈ P \ {p} can enter and leave H at most
once during a full rotation of line L around point p,
the total number of point-entering and -leaving events
is bounded by 2n − 2. These events can be sorted in
counterclockwise order, according to the slopes of their
corresponding lines L, in O(n log n) time.

Let qi and qj be the points in P \ {p} associated with
any two consecutive events in the sorted order. Note
that, within the event interval bounded by qi and qj , the
subset of points P\{p} contained inH remains constant,
and so does the sum of their distances to p. The said
distance sum for the set of points (P ∩H)\{p} for each
of these event intervals can be computed as follows. We
begin with the event interval with the smallest slope of
L (in the sorted order), for which we determine the set
of points (P ∩ H) \ {p} and calculate the sum of their
distances to p in O(n) time. For each subsequent event
interval in the sorted order, the distance sum can be
computed in constant time using that of the preceding
event interval – that is, by adding to (or subtracting
from) the current distance sum the distance between p
and the point entering (or leaving) H. Therefore, for a
given point p ∈ P , the total time for the computation
of the distance sums for all event intervals is bounded
by O(n).

A data structure D1 can then be built as follows. For
each point p ∈ P , we construct a simple logarithmic
query-time data structure to store the distance sums
computed for the event intervals. Given a query point
p ∈ P and a query half-plane H defined by a line L
passing through p, we can use data structure D1 to look
up the event interval that contains the slope of line L,
and report the sum of the distances from the points of
P ∩H to p in O(log n) time.

Lemma 1 In Subproblem 1, a set P of n points can be
preprocessed in O(n2 log n) time into a data structure
of size O(n2) so that, given a query point p ∈ P and
a query half-plane H, one can report the sum of the
distances from P ∩H to p in O(log n) time.

Subproblem 2

The line containing ray ρ can be described by y =
mx + c. Let xi and yi be the x- and y-coordinates,
respectively, of a point pi ∈ P , where 1 ≤ i ≤ n. Define
T+ = {i : yi −mxi > c} and T− = {i : yi −mxi < c}.

313

CCCG 2021, Halifax, Canada, August 10–12, 2021

The sum of the distances from P ∩H to ρ can then be
expressed as

∑

i∈T+∪T−

|yi −mxi − c|
(m2 + 1)1/2

= (m2 + 1)−1/2
[∑

i∈T+

(yi −mxi − c)

−
∑

i∈T−

(yi −mxi − c)
]

= (m2 + 1)−1/2
[∑

i∈T+

yi −m
∑

i∈T+

xi −
∑

i∈T+

c

−
∑

i∈T−

yi +m
∑

i∈T−

xi +
∑

i∈T−

c

]
(1)

In order to solve Subproblem 2, we will follow a strat-
egy similar to that in Subproblem 1. Assume, without
loss of generality, that H is one of the two half-plane
bounded by L (the other case can be handled symmet-
rically). Observe that, when L rotates counterclockwise
around p, a point q ∈ P \ {p} may enter H, leave H, or
move from set T+ to T−. Each of these point-entering
and -leaving events can be determined in constant time
by computing i) the line L passing through p and each
point q ∈ P \ {p}, and ii) the ray ρ emanating from p
and passing through each point q ∈ P \ {p}. The total
number of events is at most 3n − 3. These events can
be sorted in counterclockwise order, according to the
slopes of their respective lines L, in O(n log n) time.

Notice that, within any interval delimited by two con-
secutive events in the sorted order, sets T+ and T−

remain constant. We will determine, for each event in-
terval, the following set Q of values (from Equation 1)

∑

i∈T+

xi,
∑

i∈T−

xi,
∑

i∈T+

yi,
∑

i∈T−

yi,
∑

i∈T+

1,
∑

i∈T−

1

by keeping track of T+ and T− as we sweep the event
intervals in the counterclockwise order. We begin with
the first event interval in the ordering by determining its
corresponding sets T+ and T−, as well as the respective
set of values Q, in O(n) time. For each subsequent
event interval, we can determine the corresponding set
of values Q by updating those of the preceding event
interval in O(1) time. Hence, for a point p ∈ P , it takes
O(n) time to compute Q for all event intervals.

We can then built a query data structure D2 as fol-
lows. For each point p ∈ P , we construct a linear-size
data structure with a logarithmic query time to store
the sets of values Q computed for the event intervals.
Given a query point p ∈ P and a query half-plane H
bounded by a line L passing through p (along with the
calculated values of parameters m and c associated with
the line supporting ray ρ), by employing data structure

D2, we retrieve in O(log n) time the corresponding set
of values Q, from which we can calculate the sum of the
distances from the points of P ∩H to ρ using Equation
1 in constant time.

Lemma 2 In Subproblem 2, a set P of n points can be
preprocessed in O(n2 log n) time into a data structure
of size O(n2) so that, given a query point p ∈ P and
a query half-plane H, one can report the sum of the
orthogonal distances from P ∩H to ρ in O(log n) time.

Figure 2: Computing the distances from P to s.

We are now in position to describe an O(n2 log n)-
time algorithm for the discrete median line segment
problem. Let a and b denote the two endpoints of a
candidate line segment s, where a, b ∈ P and a 6= b (see
Figure 2). Let La (resp. Lb) be the line passing through
a (resp. b) and perpendicular to s. Let Ha (resp. Hb)
be the half-plane bounded by La (resp. Lb) and not con-
taining s. Define Hab = R2 \ (Ha ∪Hb). Recall that D1

and D2 denote the query data structures derived from
Subproblems 1 and 2, respectively. We can compute the
sum of the distances from P \ {a, b} to s using D1 and
D2 as follows.

We denote by i) Σa the sum of the distances from
P ∩Ha to s, ii) Σb the sum of the distances from P ∩Hb

to s, and iii) Σab the sum of the distances from P ∩Hab

to s. We can determine Σa by querying D1 using a and
Ha as the query inputs. Similarly, Σb can be found using
D1 with b and Hb as inputs for the query. In order to
calculate Σab, we execute the following queries. Define
H ′a = R2 \ Ha. Let Υa be the distance sum reported
by querying D2 using a and H ′a as the query inputs.
Likewise, let Υb be the distance sum retrieved from a
query of D2 with b and Hb as the query inputs. Then,
Σab = Υa −Υb. Finally, the sum of the distances from
P \ {a, b} to s is given by Σa + Σb + Σab. Overall, we
perform four O(log n)-time queries for each of the O(n2)
candidate line segments. We hence reach the following
conclusion.

314

33rd Canadian Conference on Computational Geometry, 2021

Figure 3: Keeping track of query half-plane Ha in Subproblem 1 as line L and its perpendicular ray r rotate around
a point a ∈ P in a counterclockwise direction (illustrations from left to right).

Theorem 3 The discrete median line segment problem
can be solved in O(n2 log n) time using O(n2) space.

Remark 1 It is worth noting that the logarithmic
query-time data structures given in Lemmas 1 and 2 are
in fact more general than necessary to solve our prob-
lem. Namely, using those data structures, the distance
sum can be reported for any query half-plane defined by a
line passing through a point p ∈ P , whereas each query
half-plane in our problem is always associated with a
line passing through a pair of points in P . This obser-
vation would become one of the keys in improving the
time bound of our algorithm to O(n2), as detailed in the
next section.

3.2 An O(n2)-time algorithm

We can reduce the running time of the algorithm above
by an O(log n) factor as follows.

Using the point-line duality transform, point set P
can be mapped into a set of n lines, whose arrangement
can be constructed in O(n2) time using O(n2) space
[2, 6]. For any point p ∈ P in the primal plane, let p∗

denote its corresponding line in the dual plane. Observe
that the line containing p and a point q ∈ P \ {p} in
the primal plane corresponds to the intersection point
of lines p∗ and q∗ in the dual plane. By the properties
of the duality transform, the ordering of slopes of the
lines passing through p and every point q ∈ P \ {p}
in the primal plane is equivalent to the ordering of x-
coordinates of the intersections between line p∗ and each
line q∗ in the dual plane. Using this trait, for any point
p ∈ P , the set of points P \ {p} can be obtained in
sorted order around p by simply traversing the vertices
along the dual line of point p in O(n) time. Notice
that these sorted points correspond to the endpoints
of the sorted event intervals in Subproblems 1 and 2.
Consequently, the preprocessing time of the query data
structures given in Lemmas 1 and 2 is reduced to O(n2).

In addition, we note that each query half-plane in our
problem is associated with a pair of points in P . We can
predetermine and index each of these query half-planes,
and use the static indices to create perfect hash tables

[3, Chapter 11] for constant-time look-ups (in the worst
case) in place of the current logarithmic-time query data
structures D1 and D2.

Specifically, for a candidate line segment s bounded
by a pair of points a and b in P , the respective set of
query half-planes consists of Ha, Hb, and H ′a = R \Ha

(Figure 2). In the ensuing discussion, we will give an
argument for query half-plane Ha, and an analogues
argument can be made about query half-planes Hb and
H ′a.

Recall that a query half-plane Ha is uniquely defined
by a and b (i.e., a pair of points in P) as being i) de-
limited by the line passing through a and orthogonal to
s, and ii) not containing b. For a given point a ∈ P ,
let L denote any line passing through a, and let H be
one of the two half-planes bounded by L. In Subprob-
lem 1, a point-entering or leaving event is indicated by
line L passing through a point q ∈ P \ {a}. Let r be
the ray emanating from a, perpendicular to L, and not
contained in H (see Figure 3). Notice that a query half-
plane Ha is equivalent to H when ray r passes through
a point b ∈ P \ {a}. Thus, for a candidate point a ∈ P ,
there exists a set of n− 1 query half-planes Ha, due to
n− 1 other possible points b ∈ P \ {a}. For each point
a ∈ P , by computing the ray r passing through each
point b ∈ P \ {a}, we can obtain in advance the set of
all O(n) possible query half-planes Ha according to the
counterclockwise ordering of points b ∈ P \ {a} around
point a.

In Subproblem 1, when we perform the sweep proce-
dure for a point p = a ∈ P by rotating line L coun-
terclockwise around a, in addition to processing each
point-entering or leaving event due to line L passing
through a point of P \ {a}, we record the distance sum
for each query half-planes Ha as ray r passes through
a point b ∈ P \ {a}. For each point a ∈ P , we create
a linear-size (perfect) hash table that maps each query
half-plane Ha to its corresponding sum of distances. As
a result, we can perform each query in O(1) time.

Theorem 4 The discrete median line segment problem
can be solved in O(n2) time using O(n2) space.

315

CCCG 2021, Halifax, Canada, August 10–12, 2021

4 Discrete center line segment

Naively, we can find the discrete center line segment for
point set P in O(n3) time (with a linear space usage) by
simply enumerating all O(n2) candidate line segments
and determining the farthest point of P from each can-
didate line segment in O(n) time.

Before proceeding any further, we denote by i) [P]
the convex hull of P , ii) bd[P] the boundary of [P], and
iii) int[P] the interior of [P].

4.1 An O(n2 logn)-time algorithm

We can derive an O(n2 log n)-time algorithm for the dis-
crete center line segment problem based on the previous
results given by Aronov et al. [1] and Daescu et al. [4].

According to [4, Theorem 6], after a preprocessing of
P that takes O(n log n) time and space, the farthest
point of P from a query line segment can be deter-
mined in O(log2 n) time. As a direct consequence, we
can compute the discrete center line segment for P in
O(n2 log2 n) time.

As shown in [4, Theorems 5 and 6], the time and
space complexities of finding the farthest point of P
from a query line segment are dominated by those
of solving the following key subproblem (half-plane
farthest point queries):

Preprocess [P] into a data structure so that, given a
point q and a directed line L, report the point p ∈ [P]
farthest from q among those located to the left of L.

So, if we use the O(n log3 n)-space data structure pro-
posed by Aronov et al. [1, Corollary 11] for answering
half-plane farthest point queries in O(log n) time, we
can then obtain the following result.

Theorem 5 The discrete center line segment problem
can be solved in O(n2 log n) time using O(n log3 n)
space.

4.2 An O(n2)-time algorithm

In this section, we derive an O(n2)-time algorithm for
computing the discrete center line segment of P .

Let s denote a line segment bounded by two points of
P . We begin with the following observation.

Observation 1 The point of P farthest from s is a ver-
tex of [P].

Proof. Since s is a line segment with both its endpoints
in P , s must lie within [P]; that is, s ⊂ bd[P] ∪ int[P].
Note that, for any point p ∈ bd[P]∪ int[P], the point of
P farthest from p is a vertex of [P]. Thus, the farthest
point of P from any point on s is a vertex of [P]. We
conclude that the point of P farthest from s must be a
vertex of [P]. �

Let α be the point of P farthest from s. Let β be the
closest point on s to α. The Euclidean distance between
α and s is defined as the distance between α and β.

Let a and b denote the two endpoints of s. Recall that
Ha (resp. Hb) is the half-plane i) bounded by the line
passing through a (resp. b) and perpendicular to s, and
ii) not containing s. In addition, Hab = R2 \ (Ha ∪Hb).

If α ∈ Ha, then the closest point on s to α is a.
Similarly, if α ∈ Hb, then the closest point on s to α
is b. If α ∈ Hab, then the closest point on s to α is an
interior point of s. Furthermore, if α ∈ Hab, then α is
also the point of P farthest from the line containing s.

Based on the observations above, for line segment s,
we can find the farthest point of P from s using the
following approach. We determine

I. the point of [P] ∩Ha farthest from a,

II. the point of [P] ∩Hb farthest from b, and

III. the point of [P] farthest from the line containing s.

Then, the farthest of the three is the farthest point of P
from s. Since there are O(n2) candidate line segments,
in order to obtain an O(n2)-time algorithm, we have to
address each of parts I, II, and III above in constant
time (on average) for each candidate line segment.

Parts I and II

The subproblem of interest associated with parts I and
II can be stated as follows.

Subproblem 3 Preprocess P into a data structure so
that, given a point p ∈ P and a directed line L pass-
ing through p, one can efficiently report the point of P
farthest from p among those located to the left of L.

Consider the following approach for solving Subprob-
lem 3.

Let H denote the half-plane to the left of directed
line L. As line L rotates around point p, a point q ∈
P \{p} may enter and leave half-plane H. Each of these
point-entering and -leaving events can be determined
in O(1) time by computing the line passing through p
and each point q ∈ P \ {p}. Given that a point q ∈
P \ {p} can enter and leave H only once, there exist
2n− 2 point-entering and -leaving events. These events
can be obtained in counterclockwise order in O(n) time
by employing the point-line duality transform – that
is, mapping P , using O(n2) time and space, into an
arrangement of n lines, through which the set of points
P \ {p} can be determined in sorted order around p in
O(n) time.

Within an interval bounded by any two consecutive
events in the sorted order, the subset of points P \ {p}
contained in H remains unchanged, and so does the
maximum of the distances from points (P ∩ H) \ {p}

316

33rd Canadian Conference on Computational Geometry, 2021

to p. As we sweep the event intervals in the sorted
(counterclockwise) order, we can keep track of the max-
imum of the distances from points (P ∩H)\{p} to p by
maintaining a monotonic double-ended queue Q, whose
elements are a subset of P \ {p}, as follows.

For a point qi ∈ P \ {p}, let di be the distance from
qi to p. Let qf denote the first element in Q, and q` be
the last element of Q. Upon a point-entering event, in
which a point qi enters half-plane H, if di < d`, then qi
is added to the back of Q; otherwise, we keep removing
the last element of Q until the condition di < d` is
satisfied, and qi is appended to the back of Q. For a
point-leaving event, where a point qi leaves half-plane
H, if qi = qf (i.e., qi is the first element in Q), then we
remove qf from the front of Q; otherwise, no update is
made to Q (see Figure 4 for an illustrative example).

Figure 4: Illustrative example of point-entering and -
leaving events in Subproblem 3. Note that d1 < d3 <
d2 < di. (A) Q is updated from (q2, q3) to (qi) upon the
entering of qi into H. (B) Q is updated from (qi, q2, q3)
to (q2, q3) upon the leaving of qi from H.

For the first event interval in the sorted order, we sim-
ply treat each of the points (P∩H)\{p} as a point enter-
ing H, and process the points in counterclockwise order
according to the rules above. Note that, within an event
interval, Q always contains a subset of (P∩H)\{p} such
that the points, from the front to the back of Q, form
a monotonic sequence with strictly decreasing distances
from p. Thus, the first element of Q always corresponds
to the point of (P ∩H) \ {p} with the farthest distance
from p for a given event interval. Since there are O(n)
point-entering and -leaving events, and each point of
P \ {p} can only be inserted into or removed from Q at
most once, it takes a total of O(n) time to determine

the point of (P ∩ H) \ {p} farthest from p in all event
intervals.

For each point p ∈ P , we then construct an O(n)-size
data structure with a logarithmic query time to store
the farthest point of (P ∩H)\{p} from p for each event
interval. Given a point p ∈ P and a directed line L
passing through p, by using the associated query data
structure, we can retrieve in O(log n) time the farthest
point of P from p among those situated to the left of L.

Lemma 6 In Subproblem 3, a set P of n points can be
preprocessed using O(n2) time and space so that, given
a point p ∈ P and a directed line L passing through p,
one can report, in O(log n) time, the point of P farthest
from p among those located to the left of L.

As with the queries required in solving the discrete
median line segment problem (Section 3.2), for any
point p ∈ P , a query line L passing through p must
be perpendicular to the line passing through p and an-
other point q ∈ P . Thus, we can pre-compute and index
these O(n) query lines, and use the indices to create a
perfect hash map [3, Chapter 11] for O(1)-time searches
instead of constructing the logarithmic query-time data
structure above for each point p ∈ P .

Ergo, with respect to parts I and II of our current
approach, it takes O(n2) time total to find i) the point
of [P]∩Ha farthest from a, and ii) the point of [P]∩Hb

farthest from b, for all O(n2) candidate line segments.

Part III

First, we note that the convex hull [P] of P can be
computed in O(n log n) time [5, Chapter 11]. Let L be
a line passing through any two points of P , and let H
denote either of the two half-planes bounded by L. Since
the orthogonal distances from the vertices of [P]∩H to
line L are unimodal (as the vertices are traversed in
order) [9, Theorem 1], we can find the farthest point of
[P] to line L using two binary searches in O(log n) time.
Thus, we can compute, for all lines L in O(n2 log n) time
total, the farthest point of [P] from line L.

In order to achieve O(n2) time, we propose the fol-
lowing approach.

We begin by using the point-line duality transform to
map P into a set P ∗ of n lines, whose arrangement can
be computed in O(n2) time [2, 6]. Specifically, a point
p = (xp, yp) ∈ P in the primal plane is transformed into
a line p∗ represented by y = xpx− yp in the dual plane.
Notice that the x-coordinate xp of point p in the primal
plane is equivalent to the slope of line p∗ in the dual
plane.

Let Vu and V` denote the upper and lower envelopes
of P ∗ in the dual plane. Note that Vu and V` correspond
to the lower and upper hulls of [P], respectively, in the
primal plane. We can compute Vu and V` in O(n log n)
time using O(n) space [5, Chapter 11].

317

CCCG 2021, Halifax, Canada, August 10–12, 2021

For a point p ∈ P , we can obtain the sequence of n−1
lines, each of which passes through p and a point q ∈ P \
{p}, in increasing order of their slopes in O(n) time by
simply traversing the vertices along the dual line p∗. We
denote the sequence of lines as S = (L1, L2, ..., Ln−1).
For each line Li in the primal plane, we designate its
dual point as L∗i . Note that the slope of line Li in the
primal plane corresponds to the x-coordinate of point
L∗i in dual plane.

In the ensuing description, for conciseness, we present
the arguments only for upper envelope Vu (i.e., the lower
hull of [P]), and the same arguments can be similarly
applied to lower envelope V` (i.e., the upper hull of [P])
due to symmetry.

First, we observe the following. For a line Li ∈ S,
let ρi be the vertical upward ray emanating from L∗i
in the dual plane. The line containing the edge of Vu
intersected by ρi corresponds to the farthest point of
the lower hull of [P] from Li in the primal plane.

Consequently, we can find the farthest point in the
lower hull of [P] from each line Li ∈ S – that is, L1,
L2, . . . , Ln−1 in increasing order of their slopes – by
simply traversing along Vu in the positive x-direction,
while keeping track of the edge of Vu intersected by each
ρi (see Figure 5).

Figure 5: Traversal of upper envelope Vu in part III. The
polygonal chain qk, qk+1, qk+2 belongs to the lower hull
of [P] in the primal plane. The dual lines of qk, qk+1,
and qk+2 are denoted by q∗k, q∗k+1, and q∗k+2, respectively.
The farthest point in the lower hull of [P] from Li in
the primal plane is given by line q∗k containing the edge
of Vu bounded to the right by v in the dual plane.

Specifically, let u and v be any pair of adjacent ver-
tices in Vu, where the x-coordinate of u is smaller than
that of v. For every line Li ∈ S whose slope lies between
the x-coordinates of u and v, the farthest point in the

lower hull of [P] from Li is given by (the line support-
ing) the edge connecting u and v. Thus, we only have
to keep track of each vertex encountered in our traver-
sal of Vu and process the sequence of lines S in order
accordingly. That is, upon encountering vertex v in the
traversal of Vu, for the contiguous subsequence of lines
in S whose slopes fall between the x-coordinates of u
and v, we record, as the farthest point in lower hull of
[P] from each of those lines, the point dual to the line
containing the edge bounded on the right by v.

Note that, for the first line L1 in S, it takes O(log n)
time (i.e., a binary search on Vu) to locate the edge in-
tersected by ρ1. From there on, by traversing along Vu
(and S in order), for each successive line Li ∈ S (in in-
creasing order of slope), where 2 ≤ i ≤ n−1, it requires
only a constant number of operations to determine the
edge of Vu intersected by ρi and thus the farthest point
in the lower hull of [P] from Li.

Since S and Vu are bounded by O(n) in size, the entire
process above takes O(n) time. In other words, for each
point p ∈ P , it takesO(n) time to determine the farthest
point of the lower hull of [P] from Li for all i ∈ [1, n−1].

The same traversal procedure can be performed on
lower envelope V` to find the farthest point of the upper
hull of [P] from each line Li, where 1 ≤ i ≤ n− 1.

Recall that L denotes any line containing two points
of P . Since |P | = n, we conclude that, in O(n2) time
total, we can find the farthest point of [P] from each of
the O(n2) lines L. That is, in part III, it takes a total
of O(n2) time to find the point of [P] farthest from the
line containing a candidate line segment s for all O(n2)
candidates.

Finally, based on the results obtained for parts I, II,
and III, we arrive at the following conclusion.

Theorem 7 The discrete center line segment problem
can be solved in O(n2) time using O(n2) space.

5 A remark on discrete median and center line seg-
ments and convex hull of points

Recall that, for any given set P of points, [P] denotes
the convex hull of P .

Observation 2 The discrete median line segment of P
does not necessarily have an endpoint at a vertex of
[P].

Proof. It suffices to disprove the statement “if s is
a discrete median line segment of P , then s has an
endpoint at a vertex of [P]” by giving a counterexam-
ple. Consider a set of six points P = {p1, p2, ..., p6}
in the plane with the following coordinates (see Figure
6): p1 = (0, 0), p2 = (1, 0), p3 = (1, 1), p4 = (0, 1),
p5 = (x, 12), and p6 = (1− x, 12).

318

33rd Canadian Conference on Computational Geometry, 2021

Figure 6: Illustrative example used in proving Observa-
tions 2 and 3.

It can be verified, using algebraic geometry, that p5p6
is the discrete median line segment of P for any 0 < x <
1
14 (note that, when 1

14 < x < 1
2 , either p1p3 or p2p4

is the discrete median line segment of P). Since the
vertices of [P] consist of p1, p2, p3, and p4, the discrete
median line segment of P (i.e., p5p6) does not have an
endpoint at a vertex of [P]. �

Observation 3 The discrete center line segment of P
does not necessarily have an endpoint at a vertex of
[P].

Proof. Using the same counterexample as in the proof
of Observation 2, with 0 < x < 1

2 , we can show that the
statement “if s is a discrete center line segment of P ,
then s has an endpoint at a vertex of [P]” is false, thus
proving Observation 3. �

With respect to solving the discrete median and cen-
ter line segment problems, Observations 2 and 3 es-
sentially preclude the potential of finding efficient algo-
rithms with a time complexity dependent on the num-
ber of vertices on the convex hull of P , which may be
significantly smaller than n in practice.

6 Concluding remarks

We have described an O(n2)-time algorithm for com-
puting the discrete median line segment as well as the
discrete center line segment for a set P of n points in
the plane.

Our O(n2)-time algorithm for solving the discrete me-
dian line segment problem matches in time complexity
the lower bound of the medoid problem, as well as the
fastest known algorithm for finding the median line in
R2 (i.e., the line having the minimal sum of distances
from P) [7]. Hence, we conjecture that our algorithm
for the discrete median line segment problem is opti-
mal. Nevertheless, we have no reason to believe that
our O(n2) time bound is tight for the discrete center
line segment problem.

By allowing each point of P to be associated with a
positive weight, we can generalize our problems to those

of minimizing the sum and maximum of weighted dis-
tances. The algorithms proposed herein can be directly
extended to solve the weighted problems with the same
time and space bound.

We end our paper with the following open ques-
tions. Can we reduce the quadratic space usage of our
O(n2)-time algorithms to O(n)? Can we obtain efficient
(subcubic-time) algorithms for solving the discrete me-
dian and center line segment problems in Rd for d ≥ 3?

References

[1] B. Aronov, P. Bose, E. D. Demaine, J. Gudmundsson,
J. Iacono, S. Langerman, and M. Smid. Data structures
for halfplane proximity queries and incremental voronoi
diagrams. Algorithmica, 80(11):3316–3334, 2018.

[2] B. Chazelle, L. J. Guibas, and D. T. Lee. The power
of geometric duality. BIT Numerical Mathematics,
25(1):76–90, 1985.

[3] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and
C. Stein. Introduction to algorithms. MIT press, 2009.

[4] O. Daescu, N. Mi, C. S. Shin, and A. Wolff. Farthest-
point queries with geometric and combinatorial con-
straints. Computational Geometry, 33(3):174–185, 2006.

[5] M. de Berg, O. Cheong, M. van Kreveld, and M. Over-
mars. Computational Geometry: Algorithms and Appli-
cations. Springer Berlin Heidelberg, 2008.

[6] H. Edelsbrunner, J. O’Rourke, and R. Seidel. Construct-
ing arrangements of lines and hyperplanes with appli-
cations. SIAM Journal on Computing, 15(2):341–363,
1986.

[7] N. M. Korneenko and H. Martini. Approximating fi-
nite weighted point sets by hyperplanes. In Scandi-
navian Workshop on Algorithm Theory, pages 276–286.
Springer, 1990.

[8] J. Newling and F. Fleuret. A sub-quadratic exact medoid
algorithm. In Artificial Intelligence and Statistics, pages
185–193. PMLR, 2017.

[9] G. T. Toussaint. Complexity, convexity, and unimodal-
ity. International journal of computer & information sci-
ences, 13(3):197–217, 1984.

319

CCCG 2021, Halifax, Canada, August 10–12, 2021

Oblivious Median Slope Selection

Thore Thießen∗ Jan Vahrenhold∗

Abstract

We study the median slope selection problem in the
oblivious RAM model. In this model memory accesses
have to be independent of the data processed, i. e., an
adversary cannot use observed access patterns to derive
additional information about the input. We show how
to modify the randomized algorithm of Matoušek [26]
to obtain an oblivious version with O(n log2 n) expected
time for n points in R2. This complexity matches a
theoretical upper bound that can be obtained through
general oblivious transformation. In addition, results
from a proof-of-concept implementation show that our
algorithm is also practically efficient.

1 Introduction

Data collected for statistical analysis is often sensitive
in nature. Given the increasing reliance on cloud-based
solutions for data processing, there is a demand for data-
processing techniques that provide privacy guarantees.
One such guarantee is obliviousness, i. e., an algorithm’s
property to have externally observable runtime behavior
that is independent of the data being processed. De-
pending on the runtime behavior observed, oblivious
algorithms can be used to perform privacy-preserving
computations on externally stored data or mitigate side
channel attacks on shared resources [32, 25].

In the oblivious RAM model of computation [13, 14]
algorithms need to be oblivious with respect to the
memory access patterns; we refer to memory-access
obliviousness as obliviousness. In general this leads to
an Ω(logm) overhead compared to RAM algorithms
when operating on m memory cells [14, 21, 17]. A trans-
formation approach matches this lower bound asymp-
totically [4], but is known to result in prohibitively large
constant runtime overhead.

The median slope, know as the Theil-Sen estimator,
is a linear point estimator that is robust against out-
liers [30]. The randomized algorithm of Matoušek [26]
computes the median slope of n points in R2 with ex-
pected runtime O(n log n) and is fast in practice. We
derive an oblivious version of Matoušek’s algorithm that
is slower by a logarithmic factor — matching the com-
plexity obtainable through general transformation —
but still fast in practice.

∗Westfälische Wilhelms-Universität Münster, Dept. of Com-
puter Science {t.thiessen,jan.vahrenhold}@uni-muenster.de

1.1 Median slope selection problem

Median slope selection is a special case of the general
slope selection problem: Given a set of points P in the
plane, the slope selection problem for an integer k is
to select a line with k-th smallest slope among all lines
through points in P [9]. Formally, given a set of n points
P ⊂ R2 let L := {{p, q} ⊆ P | px 6= qx} be the set of all
pairs of points from P with distinct x-coordinates. We
use `pq ∈ L to denote the line through points {p, q} ∈ L.
No line in L is vertical by definition,1 so the slopem(`pq)
is well-defined for all `pq ∈ L. Let k be an integer with
k ∈ [|L|] := {0, . . . , |L|−1}. The slope selection problem
for k then is to select points {p, q} ∈ L such that `pq
has a k-th smallest slope in L.

Unless noted otherwise and in line with Matoušek [26]
our exposition assumes that the points P are in general
position: All x-coordinates of points {p, q} ⊆ P are
distinct and all lines through different pairs of points
have different slopes. For simplicity we also assume that
|L| is odd, so that the median slope can be determined
by solving the slope selection problem for k = |L|−1

2 . In
Section 3, we discuss how to lift these restrictions.

Matoušek’s algorithm approaches the slope selection
problem by considering the dual intersection selection
problem [26]: Each point p = 〈px, py〉 ∈ P can be
mapped to dual non-vertical line p : x 7→ (pxx − py)
and vice versa. Since we have p(x) = q(x) = y ⇐⇒
〈x, y〉 = `pq, a point in the set L of (dual) intersection
points with k-th smallest x-coordinate is dual to a line
in L with k-th smallest slope [26, 10].

We thus restrict ourselves to finding an intersection
of dual lines P with k-th smallest x-coordinate. By the
above assumption regarding the general position of the
points in P , the lines in P have distinct slopes and all
intersection points have distinct x-coordinates.

1.2 Oblivious RAM model

We work in the oblivious RAM (ORAM) model [13, 14].
This model is concerned with what can be derived by an
adversary observing the memory access patterns during
the execution of a program. The general requirement is
that memory accesses are (data-)oblivious, i. e., that the

1Cole et al. [9] allow the selection of vertical lines and thus
points with identical x-coordinates, but we exclude these as the
Theil-Sen estimator is defined for non-vertical lines only.

320

33rd Canadian Conference on Computational Geometry, 2021

adversary can learn nothing about the input (or output)
from the memory access pattern.

In line with standard assumptions, we assume a prob-
abilistic word RAM with word length w, a constant
number of registers in the processing unit and access
to m ≤ 2w memory cells with w bits each in the mem-
ory unit [17]. The constant number of registers in the
processing unit are called private memory and do not
have to be accessed in an oblivious manner.

Whether a given probabilistic RAM program R op-
erating on inputs X is oblivious depends on the way
memory is accessed. Let A := {read, write} × [m]
be the set of memory probes observable by the adver-
sary. Each probe is identified by the memory operation
and the access location i ∈ [m]. The random variable
AR(x) : Ω → A∗ denotes the probe sequence performed
by R for an input x ∈ X where Ω := {0, 1}l·w is the
set of possible random tape contents. The program R is
secure if no adversary, given inputs x, x′ ∈ X of equal
length and a probe sequence A ∈ A∗, can reliably decide
whether A was induced by x or x′. For a program with
an output determined by the input this implies that no
adversary can decide between given outputs [3].

We operationalize obliviousness by restricting the def-
inition of Chan et al. [8] to perfect security, determined
programs, and perfect correctness. The definition also
generalizes the allowed dependence of the probe se-
quence on the length of the input to a general leakage;
the leakage determines what information the adversary
may be able to derive from the memory access patterns.

Definition 1: Oblivious simulation. Let f : X → Y
be a computable function and let R be a probabilistic
RAM program. R obliviously simulates f with regard
to leakage leak : X → {0, 1}∗ if R is correct, i. e.,
for all inputs x ∈ X the equality Pr[R(x) = f(x)] =
1 holds, and if R is secure, i. e., for all inputs
x, x′ ∈ X with leak(x) = leak(x′) the equality∑

A∈A∗
∣∣Pr[AR(x) = A]− Pr[AR(x′) = A]

∣∣ = 0 holds.

The composition of oblivious programs is also oblivi-
ous if the sub-procedures invoke each other in an oblivi-
ous manner. Here relaxing the leakage allows us to place
fewer restrictions on sub-procedures while maintaining
obliviousness of the complete program.

For the specific problem in this paper, the algorithm
is only allowed to leak the number of given lines, or, for
subroutines, the length of each given input array. We
will prove the obliviousness of our algorithm by com-
posability, so we will consider the obliviousness of sub-
procedures individually. In line with Definition 1 we will
show the obliviousness of each procedure in relation to
the input. Since we only consider sub-procedures with
determined result this implies the obliviousness in rela-
tion to the output.

1.3 Related work

There exists a breadth of research on the slope selec-
tion problem. Cole et al. [9] prove a lower bound of
Ω(n log n) for the general slope selection problem in the
algebraic decision tree model that also holds in our set-
ting. Both deterministic algorithms [9, 18, 7] and ran-
domized [26, 10] algorithms have been proposed that
achieve an O(n log n) (expected) runtime. The problem
has also been considered in other models, see, e. g., [6].

Asharov et al. [4] recently proposed an asymptotically
optimal ORAM construction that matches the overhead
factor of Ω(logm) per memory access. This construc-
tion provides a general way to transform RAM programs
into oblivious variants with no more than logarithmic
overhead per memory operation. Due to large constants
this optimal oblivious transformation is not viable in
practice, though practically efficient (yet asymptotically
suboptimal) constructions are available, see, e. g., [33].
Our algorithm matches the asymptotic runtime of an
optimal transformation while maintaining practical ef-
ficiency and perfect security.

A different approach is the design of problem-specific
algorithms without providing general program transfor-
mations. Oblivious algorithms for fundamental prob-
lems have been considered, e. g., for sorting [16, 3], sam-
pling [28, 31], database joins [1, 22, 20], and some ge-
ometric problems [12]. To the best of our knowledge
neither the slope selection problem nor the related in-
version counting problem have been considered in the
oblivious setting before.

2 A simple algorithm

As mentioned above, our approach is to modify the ran-
domized algorithm proposed by Matoušek [26]. For this,
we replace all non-trivial building blocks of the original
algorithm — most notably intersection counting and in-
tersection sampling — by oblivious counterparts.

2.1 The original algorithm

Algorithm 1 shows the original algorithm as described
by Matoušek [26]. In a nutshell the algorithm works
by maintaining intersections a and b as lower and up-
per bounds for the intersection pk with k-th smallest
x-coordinate to be identified.2

In the main loop a randomized interpolating search
is performed, tightening the bounds a and b until only
N ∈ O(n) intersections remain in between. For this,
a multiset R of n intersections is sampled from the re-
maining intersections (with replacement) in each itera-
tion. Then new bounds a′ and b′ are selected from R

2Generalizing the description of the algorithm in [26] we main-
tain the intersections a, b instead of only their x-coordinates.

321

CCCG 2021, Halifax, Canada, August 10–12, 2021

Algorithm 1 Randomized intersection selection algorithm [26].
1: function IntSelection(P , k) . k ∈ [IntCount(P ,−∞,+∞)]
2: n← |P |;N ← IntCount(P , a, b) . Number of input lines and of remaining intersections
3: a← −∞; b← +∞
4: do
5: j ← n · (k − IntCount(P ,−∞, a) + 1) / N − 1 . Adjust k relative to current boundaries
6: ja ← max{0, bj − 3

√
nc}; jb ← min{n− 1, dj + 3

√
ne}

7: R← IntSample(P , a, b, n) . Sample intersection points
8: a′ ← Selectx(R, ja); b

′ ← Selectx(R, jb) . Select candidate boundaries for next iteration
9: ma′ ← IntCount(P ,−∞, a′);mb′ ← IntCount(P ,−∞, b′) . Count intersections left of a′ and left of b′

10: if ma′ ≤ k < mb′ ∧mb′ −ma′ ≤ 11N /
√
n then

11: a, b← a′, b′ . Update boundaries
12: N ← mb′ −ma′ . Update remaining intersections
13: while N > n
14: R← IntEnumeration(P , a, b) . Enumerate all remaining intersections
15: return Selectx(R, k − IntCount(P ,−∞, a)) . Select correct intersection

based on the relative position of pk among the remain-
ing intersections. The check in Line 10 ensures that pk
lies within these new bounds and that the number of
intersections has been sufficiently reduced. Matoušek
proves that this check has a high probability to pass,
implying that the number of remaining intersections is
reduced by a factor of Ω(

√
n) in an expected constant

number of iterations. Thus only an expected constant
number of loop iterations are required overall. With
only N ∈ O(n) intersections remaining, the solution is
computed by enumeration and selection.

The only non-standard building blocks required for
the algorithm are intersection counting, the sampling of
n intersections and the enumeration of intersections, all
in a given range. Due to the composability of oblivi-
ous programs the use of oblivious replacements in Algo-
rithm 1 leads to an oblivious algorithm; see Section 2.4.

2.2 Known oblivious building blocks

Sorting In the ORAM model, an array A of n elements
can be sorted by a comparison-based algorithm in opti-
mal Θ(n log n) time [2, 16, 3]. We refer to this building
block as Sort(A).

For the application in this paper we require a sort-
ing algorithm which is fast in practice. To this end
we can use bucket oblivious sort [3]: The algorithm
works by performing an oblivious random permutation
step with runtime O(n log n), followed by a comparison-
based sorting step (which is not necessarily oblivious).
This leads to a total runtime ofO(n log n) when using an
optimal comparison-based sorting algorithm. The ran-
dom permutation ensures that the complete algorithm
is oblivious, even if the sorting step is not (equal keys
need to be handled separately). The permutation step
in [3] has a bounded failure probability, but since fail-
ure of the random permutation leaks nothing about the

input this step can be repeated until it succeeds. This
leads to an O(n log n) runtime in expectation.

Merging The building block Merge(A,B) takes two in-
dividually sorted arrays A and B and sorts the concate-
nation A ‖ B. There is a lower bound of Ω(n log n) for
merging in the indivisible oblivious RAM model.3 Odd-
even merge [5, 19] is an optimal merge algorithm (in the
indivisible oblivious RAM model) with a good perfor-
mance in practice.

Selection Select(A, k) denotes the selection of an el-
ement with rank k, i.e., a k-th smallest element, from
an unordered array A. An optimal algorithm in the
RAM model is Blum’s linear-time selection algorithm.
This problem can be solved by a near-linear oblivious
algorithm [24], but current implementations suffer from
high constant runtime factors due to the use of oblivious
partitioning. For practical efficiency, we realize selection
by sorting the given array A. Since for our application
we may leak the index k, only one additional probe is
required. We thus have leakage leak : 〈A, k〉 7→ 〈|A|, k〉.

Filtering Filtering a field A with a predicate Pred
(FilterPred(A)) extracts a sorted sub-list A′ with all
elements for which the predicate is true. The elements
a ∈ A′ are stable swapped to the front of A and the
number |A′| of such elements is returned. Since filtering
can be used to realize stable partitioning, the lower run-
time bound of Ω(n log n) for inputs of length n in the
indivisible ORAM model of [24] applies. This opera-
tion can be implemented with runtime O(n log n) using
oblivious routing networks [15].

3Lin, Shi, and Xie [23] prove a lower bound of Ω(n logn) for
stable partition in the indivisible oblivious RAM model that also
applies to merging. Due to [27] this bound applies even when
restricting the input to arrays of (nearly) equal size.

322

33rd Canadian Conference on Computational Geometry, 2021

Appending The building block Append(A,B, i, k) is
given two fields A and B as well as two indices i and
k and appends the first k elements of B to the first
i elements of A. This ensures that A′ after the op-
eration contains A[0 : i] ‖ B[0 : k] in the first i + k
positions. All other positions may contain arbitrary el-
ements. This operation can also be implemented with
runtime O(n log n) by using oblivious routing networks.

2.3 New oblivious building blocks

2.3.1 Inversion and intersection counting

The number of inversions in an array A is defined as the
number of pairs of indices i, j ∈ [|A|] with A[i] > A[j]
and i < j. In the RAM model, an optimal comparison-
based approach to determine the number of inversions
is a modified merge sort. Our oblivious merge-based
inversion counting Inversions generalizes this to an
arbitrary merge algorithm (with indivisible keys).

As noted by Cole et al. [9], inversion counting can be
used to calculate the number of intersections of a set
of lines in a given range [ax, bx). This is by ordering
the lines according to the y-coordinates at x = ax (≤a)
and counting inversions relative to the order at x = bx
(≤b). We use this to implement IntCount(P , a, b) for
determining the number of intersections of lines P :

Algorithm 2 Intersection counting.
1: function IntCount(P , a, b)
2: P a ← Sorta(P) . Sort according to ≤a

3: return Inversionsb(P a) . Count inversions

Given an array A of elements (in our case: lines sorted
according to ≤a), Inversions computes all inversions
(in our case: corresponding to intersections in [ax, bx))
while at the same time sorting A. Inversions recur-
sively computes all inversions in the first half Alo and
in the second half Ahi of the input. The inversions in-
duced by lines from different halves, i. e., the number of
pairs 〈a, b〉 ∈ Alo×Ahi with a < b, then is computed by
BiInversions(Alo, Ahi) which leverages that Alo and
Ahi may be assumed inductively to be sorted.

Algorithm 3 Merge-based inversion counting.
1: procedure BiInversions(Alo, Ahi)
2: l(e)← 0, e ∈ Alo; l(e)← 1, e ∈ Ahi . Label
3: A← Merge(Alo, Ahi) . Permute labels as well
4: I ← 0; c← 0 . No. of inversions / counter
5: for e← A[0], . . . , A[|A| − 1] do
6: if l(e) = 0 then
7: I ← I + c . Record inversions
8: else . l(e) = 1
9: c← c+ 1 . Increase counter

10: return I

To do this obliviously, BiInversions labels the el-
ements according to which half they come from, then
merges the labeled elements, and finally uses these la-
bels to simulate the standard RAM merging algorithm.
For this algorithm to work correctly, in general a sta-
ble merge algorithm is required, which sorts elements
from the first half before elements from the second half
if they are equal with regard to the order. We can drop
this requirement since we only work on totally ordered
inputs of unique elements.

The correctness of inversion counting follows from the
correctness of BiInversions. Independent of the par-
ticular merge algorithm used, BiInversions is func-
tionally equivalent to the merging step of the RAM al-
gorithm. The runtime of BiInversions is dominated
by merging, thus Inversions runs in time O(n log2 n).
As merging has a lower bound of Ω(n log n) in the indi-
visible ORAM model and, even without assuming indi-
visibility, no ORAM algorithm with runtime o(n log n)
is known, any divide-and-conquer approach based on
2-way merges currently incurs a runtime of Ω(n log2 n).

Except for the invocation of Merge, all operations in
BiInversions can be realized obliviously by a constant
number of linear scans over the elements A := Alo ‖Ahi

and their labels. Since Merge is oblivious, the oblivious-
ness of BiInversions follows from the composability of
oblivious programs. The obliviousness of Inversions

again follows from composability. Finally, since the in-
put is divided depending only on the size of the input,
Inversions and IntCount only leak the input size.

Defining a suitable order Intuitively, the algorithm
sorts the input (lines sorted according to ≤a) accord-
ing to ≤b while recording intersection points. At each
such point, two lines adjacent in the underlying order
exchange their position. In addition to handling bound-
ary cases correctly, it is not immediately obvious how
this approach can be modified to handle non-general po-
sitions, since there may be an arbitrary number of lines
intersecting in a single point.

To be able to handle non-general positions obliviously,
we do not explicitly use the y-coordinates to define ≤a

and ≤b. Instead, we — more generally — order the
lines by their intersection points in relation to a given
intersection p. For this, we use pi×j := `i ∩ `j to denote
the intersection point of two lines `i 6= `j .

Definition 2. Let P× := L ∪ {−∞,+∞} be the set of
all intersections formed by P with additional elements
−∞ and +∞. Let also � be an order over P× (with
the corresponding strict order ≺). For each p ∈ P×, we
define the binary relation ≤p over P as

`1 ≤p `2 :⇔





> if `1 = `2

p � p1×2 if m(`1) > m(`2)

p1×2 ≺ p if m(`1) < m(`2)

323

CCCG 2021, Halifax, Canada, August 10–12, 2021

For lines in general position, this definition essentially
captures the ordering by y-coordinate: If the slope of `1
is larger than the slope of `2, `1 lies below `2 if their
intersection point lies to the right of p; if the slope of
`1 is smaller than the slope of `2, `1 lies above `2 if and
only if their intersection point lies to the right.

Lemma 1: Correctness of IntCount. Let P×, �, ≺,
and ≤p be as defined above. If
(a) � is a total order over P× with minimum −∞ and

maximum +∞ and
(b) ≤p is a total order over P for all p ∈ P×,
then, given a, b ∈ P× with a � b, IntCount determines
the number of intersections p ∈ L with a � p ≺ b.

Proof. IntCount sorts according to the order ≤a and
then counts inversions according to the order ≤b. The
algorithm thus exactly counts the number of unique
pairs {`1, `2} ⊆ P (assuming w.l.o.g. m(`1) > m(`2))
for which (`1 ≤a `2) 6= (`1 ≤b `2). Since � is a total or-
der and a � b this can only occur if `1 ≤a `2 ∧ `1 6≤b `2.
Then a � p1×2 ≺ b follows directly from the definition
of ≤p, thus IntCount counts exactly the number of in-
tersections in the range [a, b).

Since we want to identify the intersection with median
x-coordinate, the intersections need to be ordered pri-
marily by their x-coordinate. If all intersection points
have distinct x-coordinates — which is the case for lines
P in general position — we have:

Remark 1. Let P be in general position and � be de-
fined as p � q :⇔ px ≤ qx for p, q ∈ P× with special
cases −∞ � p and p � +∞ for all p ∈ P×. Then both
conditions in Theorem 1 are satisfied.

We will prove this more generally in Section 3.
The intersection point of two given lines can be de-

termined in constant time, so ≤p can be evaluated in
constant time as well. As such the runtime of IntCount
is dominated by Inversions and thus O(n log2 n) for n
given lines. The method is oblivious by composability.

2.3.2 Intersection sampling and enumeration

The last building blocks to consider are the indepen-
dent sampling as well as the enumeration of intersec-
tion points from a given range [a, b). We need to avoid
calculating all intersections explicitly, as this would re-
sult in a runtime of O(n2). Recall that sampling can
be done efficiently in the RAM model by modifying the
standard intersection counting algorithm: First, a set
K of k indices from the range [IntCount(P , a, b)] are
sampled and then the intersection count is computed
while iterating over the generated indices, reporting the
corresponding intersections on the fly [26].

Unfortunately, this approach is not oblivious: First,
synchronized iterations (such as over K and the set of

intersections generated) are not oblivious in general as
step widths depend on the data values encountered.
Second, reporting an intersection on the fly leaks in-
formation about the lines inducing it.

We address these challenges in the following way. Just
as we have done in BiInversions, we simulate a syn-
chronized traversal over arrays A and B by first sorting
the (labeled) elements and then iterating over their con-
catenation A‖B. For each element, we decide in private
memory how to process the element based on its label.

To avoid leaking information about the two lines in-
ducing a single intersection, we operate on batches pro-
ducing partial results padded to their maximum possible
length where needed. This way we do not leak the num-
ber of samples from a specific sub-range of the input.

We combine sampling and enumerating into a single
building block IntCollect(P , a, b,K); K contains the
indices of the intersections to sample in ascending order.

Algorithm 4 Enumerating specified intersections.
1: function IntCollect(P , a, b,K) . a ≺ b, |K| > 0
2: k′ ← 0; K ′ ← array[|K|] . Intersection storage
3: P a ← Sorta(P) . Sort according to ≤a

4: I ← 0 . Intersection counter
5: for l← 0, . . . , dlog2|P |e − 1 do . All layers
6: DetermineLineIndicesb(P a, I, l) . Upd. I
7: X ← MatchAgainstLines(P a,K, l)
8: StoreIntersections(X,K ′, k′) . Upd. k′

9: return K ′

From a high-level perspective, the algorithm first
sorts the input according to ≤a and then iteratively
implements a bottom-up divide-and-conquer strategy:
As in the RAM algorithm sketched before, unique con-
secutive indices are (implicitly) assigned to all encoun-
tered intersection points. Note that, as we randomly
sample/enumerate intersections, we may assign indices
to the intersections arbitrarily. All lines are explicitly
labeled with indices so that — given the index for an
intersection — the lines inducing that intersection can
easily be identified.

The intersection indices K are then matched against
the lines, determining the inducing lines of each inter-
section. Finally, we store the pair of inducing lines as
intersection in K ′. These three steps are repeated for
each layer l so that after processing all layers the induc-
ing lines of all specified intersections are known.

We now discuss the routines called for each layer l.

Assigning indices to lines The first sub-routine called
for each layer l is DetermineLineIndices. Building on
the general ideas used in Algorithm 3, it iterates over
pairs of subarrays of 2l lines each, updates the intersec-
tion counter I, and assigns to each line in P four indices
defined below that guide the oblivious sampling.

324

33rd Canadian Conference on Computational Geometry, 2021

before merge after merge
i 0 1

→

0 1
half 0 0 1 1 0 0 1 1 0 1 1 0 1 1 0 0

e ∈ L `0 `6 `1 `5 `4 `7 `2 `3 `0 `1 `5 `6 `2 `3 `4 `7
0-index 3 3 5 7
1-index 0 0 1 2 2 3 2 2

Table 1: Labels assigned by DetermineLineIndices in layer l = 1 for an input of 8 lines `0, . . . , `7, numbered
according to their ≤b-order. In layer 0, I = 3 inversions have been counted. Layer 1 contains 6 inversions.

assigned index 3 4 5 6 7 8
intersection point p6×1 p6×5 p4×2 p4×3 p7×2 p7×3

i 0 0 1 1 1 1
0-index (index of inducing 0-line) 3 3 5 5 7 7
1-index (index of inducing 1-line) 0 1 2 3 2 3

Table 2: Result of the merging step shown in Table 1. Note that the indices are only assigned conceptually and the
intersections are not computed explicitly. The assigned index is equal to 0-index + (1-index− i · 2l).

• The index i of a line ` (or: l(`, i)) denotes the pair
of blocks (on the current layer) containing `. On
each layer, we process only intersections of lines
with the same index i.

• The index half of a line ` indicates whether ` was
stored in the first subarray P lo (l(`,half) = 0, “0-
line”) or in the second subarray P hi (l(`,half) = 1,
“1-line”). For each pair of subarrays, we process
only intersections of lines with different indices half.

• For a 0-line `0, the index 0-index is the offset of the
first intersection induced by `0. By construction
all intersections induced by `0 in this layer have
consecutive indices. For a 1-line, 0-index stores
the number of intersections counted thus far, i. e.,
all lines are sorted by their values of 0-index after
merging.

• For a 1-line `1, 1-index is the offset among all 1-
lines in this layer. For a 0-line `0, 1-index stores
the number of intersection points induced by `0.

The resulting algorithm is given as Algorithm 5. Ta-
ble 1 shows the labels assigned by Algorithm 5 in layer
l = 1 when processing a sample input. The labels corre-
spond to the indices implicitly assigned to the intersec-
tion points shown in Table 2. The indices are assigned
to the lines so that an intersection with index i ∈ K is
induced by a 0-line `0 with next lower 0-index relative
to i. The 1-index of the inducing 1-line `1 then is

l(`1, 1-index) = i− l(`0, 0-index)︸ ︷︷ ︸
relative index of `1 in the current pair of blocks

+ l(`0, i) · 2l

Like BiInversions the runtime of BiInversions′b
is dominated by the call to Merge and thus
O(s log s) for sorted P lo, P hi of size s. This means
that the runtime of DetermineLineIndices is in
O
(
n
s · s log s

)
⊆ O(n log n). BiInversions′b is obliv-

ious like BiInversions is. Since the main loop for

Algorithm 5 Assigning indices to lines.
1: procedure DetermineLineIndices(P a, I, l)
2: c∗ ← 0 . Ctr. for 1-lines on level l
3: for i← 0, . . . ,

⌈
|Pa|
2·2l
⌉

do . Pairs of subarrays
4: P lo ← P a[2 · i · 2l : 2 · (i+ 1) · 2l − 1]
5: P hi ← P a[2 · (i+ 1) · 2l : 2 · (i+ 2) · 2l − 1]
6: l(`, i)← i for all ` ∈ P lo ‖ P hi

7: BiInversions′b(P lo, P hi, I, c
∗)

8: procedure BiInversions′b(P lo, P hi, I, c
∗)

9: l(`,half)← 0, ` ∈ P lo; l(`,half)← 1, ` ∈ P hi

10: A← Merge(P lo, P hi) . Permute labels as well
11: c← 0 . Local counter for 1-lines
12: for `← A[0], . . . , A[|A| − 1] do
13: l(`, 0-index)← I
14: if l(`,half) = 0 then
15: l(`, 1-index)← c . Number of int. for `
16: I ← I + c . Update intersection count
17: else . l(`,half) = 1
18: l(`, 1-index)← c∗ . Record offset
19: c← c+ 1 . Update local counter
20: c∗ ← c∗ + 1 . Update level counter

DetermineLineIndices only depends on n and l, as
does the size of the input to BiInversions′b, the proce-
dure is oblivious by composability with regard to leak-
age leak : 〈P a, I, l〉 7→ 〈|P a|, l〉.

Matching lines and indices The second sub-routine,
MatchAgainstLines (Algorithm 6), pairs the lines in-
ducing intersection points encountered in this layer that
correspond to indices in K.

First, the indices are matched against the 0-lines.
This is done by assigning each index i ∈ K the 0-index
i + 0.5 and then merging them with the lines (by

325

CCCG 2021, Halifax, Canada, August 10–12, 2021

Algorithm 6 Method for matching intersection indices against lines.
1: function MatchAgainstLines(P a,K, l) . Lines P a already have the appropriate labels
2: l(i,K)← > for all i ∈ K . Mark intersection indices
3: l(i, 0-index)← i+ 0.5 for all i ∈ K
4: X ← Merge0-index(P a,K) . Merge lines and intersection indices
5: `0 ← ⊥; `1 ← ⊥ . l(⊥, 0-index) := l(⊥, 1-index) := 0
6: for e← X[0], . . . , X[|X| − 1] do . Iterate over lines and indices, ignoring 1-lines
7: if ¬l(e,K) ∧ l(e,half) = 0 ∧ l(e, 1-index) > 0 then . Found 0-line inducing intersections
8: `0 ← e
9: else if l(e,K) ∧ l(e, 0-index) < l(`0, 0-index) + l(`0, 1-index) then . Found intersection index

10: l(e, 0-line)← `0 . Mark index with inducing 0-line
11: l(e, 1-index)← l(`0, i) · 2l + l(e, 0-index)− l(`0, 0-index) . Calculate offset of the inducing 1-line
12: Sort1-index(X)
13: for e← X[0], . . . , X[|X| − 1] do . Iterate over lines and indices, ignoring 0-lines
14: if ¬l(e,K) ∧ l(e,half) = 1 then . Found 1-line
15: `1 ← e
16: else if l(e,K) ∧ l(e, 1-index) = l(`1, 1-index) + 0.5 then . Found intersection index
17: l(e, 1-line)← `1 . Mark index with inducing 1-line
18: return X

0-index). When iterating over the merged sequence X,
the 0-line inducing an intersection from this layer is ex-
actly the last 0-line encountered before the index (that
induces at least one intersection). Each index i ∈ K is
labeled with the inducing 0-line `0 as 0-line and with the
index of the corresponding 1-line as 1-index; the 1-index
can be determined from the indices assigned to `0.

Similarly, the indices are matched against the 1-lines
by sorting the array X of lines and indices according to
the 1-index. When iterating over the sorted sequence,
the previous 1-line before each intersection index is the
second line inducing the intersection. Each i ∈ K al-
ready assigned a 0-line can thus be labeled with the
inducing 1-line `1 as 1-line.

The runtime is dominated by the runtime for merging
and sorting and thus is in O((n+k) log(n+k)) for k :=
|K| and n := |P a|. The algorithm is oblivious since, in
addition to merging and sorting, it only consists of linear
scans over the array X. The input size for merging and
sorting is at most n+ k. Although not explicitly shown
it is trivial to implement the loop bodies obliviously
with respect to both memory access and memory trace-
obliviousness. By composability, MatchAgainstLines

is oblivious with regard to leakage leak : 〈P a,K, l〉 7→
〈|P a|, |K|〉.

Storing intersection The third subroutine called for
each layer, StoreIntersections (Algorithm 7), stores
the intersections (consisting of the pairs of lines matched
in the previous step) in K ′. Exactly the indices with an
assigned 0-line (and thus also 1-line) have been found in
this layer. For storing, the building block Append is used
where k′ is the number of indices already stored in K ′.
Append is oblivious and thus does not leak the number

of intersections k∆ from this layer. The runtime of this
last step is dominated by the filtering and appending
steps and thus realizable with runtime O(n log n) where
n := |X|. The obliviousness follows from composability
with regard to leakage leak : 〈X,K ′, k′〉 7→ 〈|X|, |K|〉.

Algorithm 7 Storing the sampled indices
1: procedure StoreSampledIntersections(X,K ′, k′)
2: k∆ ← FilterK∧0-line(X) . Matched indices
3: Append(K ′, X, k′, k∆) . Append (pairs of) lines
4: k′ ← k′ + k∆

Runtime and obliviousness Let n := |P | be the num-
ber of lines and k := |K|. The runtime of IntCollect
is dominated by the main loop. This results in a total
runtime of O(log n(n+k) log(n+k)) k∈O(n)

= O(n log2 n).
The number of iterations and the sequence of values for l
only depends on n and sub-routines only leak n, k, n+k,
or l. Thus, IntSample is oblivious by composability
with regard to leakage leak : 〈P , a, b,K〉 7→ 〈|P |, |K|〉.

2.4 Analysis

Since our implementation of Matoušek’s algorithm re-
places only the building blocks used internally, the cor-
rectness and runtime properties follow from the respec-
tive analyses of the building blocks. We thus have:

Lemma 2: Correctness and runtime. Let
IntSelection be Algorithm 1 instantiated with the
oblivious building blocks described above. Then, given
a set P of n lines in general position and an inte-
ger k ∈

[(
n
2

)]
, IntSelection(P , k) determines the in-

326

33rd Canadian Conference on Computational Geometry, 2021

tersection with k-th smallest x-coordinate in expected
O(n log2 n) time.

We now turn our attention to the analysis of the pro-
posed algorithm’s obliviousness. Since oblivious pro-
grams are composable, we can prove the security by
considering the leakage of each oblivious building block.
Lemma 3: Obliviousness. Let P be a set of n lines in
general position such that

(|P |
2

)
is odd. If Algorithm 1 is

instantiated with the oblivious building blocks described
above, MedianSelection(P) := IntSelection(P , k)

with k :=
(|P |

2)−1

2 obliviously realizes the median inter-
section selection with respect to leakage leak(P) := |P |.
Proof. For the proof, we need to show both the correct-
ness and the security of the algorithm for the specified
inputs. The requirements above imply that k is an inte-
ger, so correctness follows from Theorem 2. It remains
to show the security.

The oblivious algorithm directly uses the build-
ing blocks S := 〈Sort, Select, IntCount, IntCollect〉
The building block IntCollect is used to real-
ize IntSample(P , a, b, k) by first determining the
number of inversions i := IntCount(P , a, b) in
range [a, b), independently sampling k random in-
dices K ∈ [I]

k, sorting the indices K and calling
IntCollect(P , a, b,K). Similarly IntCollect is used
to realize IntEnumeration(P , a, b) by initializing an ar-
ray K := 〈0, . . . , i − 1〉 and calling IntCollect. All
building blocks are oblivious, with Select additionally
leaking the rank of the selected element, IntSample

leaking the number of samples via the size of K and
IntEnumeration leaking the number of intersections in
the given range, also via the size of K. The arithmetic
expressions and assignments operate on a constant num-
ber of memory cells and are trivially oblivious.

We first examine the values of n, k, N and N ′ :=
IntCount(P ,−∞, a) throughout the execution of the
algorithm. The value of n remains constant and k
is fixed relative to n, so we consider the sequence
B = 〈〈N0, N

′
0〉, 〈N1, N

′
1〉, . . . , 〈Nm, N

′
m〉〉 where Ni, N

′
i

are the values for N,N ′ after the i-th iteration of the
main loop for a total of m loop iterations. In each
iteration of the main loop, n intersections R are cho-
sen uniformly at random from the range [a, b). Since
P is in general position, the intersections of distinct
pairs of lines are distinct and all intersections are to-
tally ordered. This implies that the random distribu-
tion of IntCount(P ,−∞, c) for an intersection c with
fixed rank in R only depends on n, N and N ′. Both
ja and jb are fixed relative to n, N and N ′, so the ran-
dom distribution of the next values for N and N ′ is
solely determined by n and the previous values. Since
initially N0 =

(
n
2

)
and N ′

0 = 0 and the sequence ends
with Nm ≤ n, the random distribution of the complete
sequence B is solely determined by n.

It can easily be seen that each sequence B of values
for N,N ′ determines the sequence A of memory probes
and sub-procedure invocations. This implies that any
sequence A is equally likely for inputs of the same size
and thus that MedianSelection is secure by compos-
ability.

3 Non-general positions

For simplicity of exposition, we assumed so far that the
lines P are in general position, i. e., that all intersec-
tion points of two lines in P have distinct x-coordinates
and that all lines in P have distinct slopes. We also
assumed that the number of intersection points is odd,
so that the median intersection point selection problem
can always be solved by one call to a general intersection
point selection algorithm; this latter assumption can
be removed by computing both the element with rank
k1 =

⌊
N−1
2

⌋
and with rank k2 =

⌈
N−1
2

⌉
(for N =

(|P |
2

)
)

and returning their mean if there is an even number of
intersections [30]. Since k1 and k2 differ by one at most
by one, both intersections can be computed simultane-
ously with no significant impact on the runtime.

In RAM algorithms, degenerate configurations are
a nuisance, but often can be handled by generic ap-
proaches — see, e. g., [11, 29, 34]. For our proposed
algorithm, we must take care that these approaches do
not affect the obliviousness. In particular, the runtime
of the algorithm must not depend on the number of in-
tersection points with identical x-coordinates; this rules
out the problem-specific technique described by Dillen-
court, Mount, and Netanyahu [10] to explicitly handle
non-general position.

Regarding arithmetic precision, we note that the only
arithmetic computation performed on the input values
is the calculation of the x-coordinate of an intersection
point. Thus, recall we are working in the word RAM
model, for fixed-point input values with b bits of pre-
cision the use of 2(b + 1) bits of precision suffices to
perform all arithmetic computations exactly.

Parallel lines For technical reasons, we first discuss
how to deal with inputs in which lines are parallel, i. e.,
for which we cannot assume distinctness of slopes.

Earlier on, we noted that our algorithm is allowed to
leak the values of N and k.4 This means that we can-
not introduce data-dependency of these values and this,
in turn, implies that (a) pairs of parallel lines cannot
simply be excluded and that (b) k cannot be adjusted
based on the number of pairs of parallel lines.

4Assuming the leakage of k allows us to treat the original algo-
rithm of Matoušek as a black box. The author proves an expected
lower bound on the reduction of N per loop iteration which is in-
dependent of k. This does not necessarily imply that the exact
reduction of N is in fact independent of k.

327

CCCG 2021, Halifax, Canada, August 10–12, 2021

We address this using a problem-specific, controlled
version of the symbolic perturbation described in [11]
and [34]. We perturb the lines P in such a way that each
pair {`1, `2} of lines intersects in a single intersection
point p1×2. Let V be the set of intersections induced by
lines that were parallel previous to the perturbation. We
ensure that V is partitioned into V = V−∪V+ such that
V− and V+ are (nearly) equally sized and each v ∈ V−
has a x-coordinate less and each v′ ∈ V+: By equally
distributing these “virtual” intersections to the left and
to the right of all “real” intersections we maintain data-
independent values of N =

(
n
2

)
and k = N−1

2 .
To realize this (symbolic) perturbation, we follow

Edelsbrunner and Mücke [11] and introduce an infinites-
imally small value ε > 0. We then identify each
line ` : x 7→ m(`) · x + b(`) with the perturbed line
`′ : x 7→ m′(`) ·x+b′(`) where m(`′) := m(`)+s` ·#` ·ε2,
b(`′) := b(`)+#` ·ε, s` ∈ {−1,+1} is a factor to achieve
the distribution into V− and V+, and #` ∈ N0 is a
unique index given to each line with respect to the order
of the line offsets, i. e. ∀`1, `2 ∈ P : b(`1) < b(`2) =⇒
#`1 < #`2 . We obtain the set P ′ of perturbed lines.

Due to space constraints, we omit the details of how
to compute #` and s` as well how to avoid leaking the
number of “virtual” intersections.

Intersections with identical x-coordinates To handle
intersections p, q ∈ L with identical x-coordinates with-
out significantly affecting the runtime of the algorithm,
we establish a total order � over all intersections, so
that the lines P can be totally ordered relative to each
intersection p as in Definition 2. For this, we charac-
terize an intersection by its inducing pair of lines and
define an order based on these lines’ properties:

Definition 3. Let P× := L ∪ {−∞,+∞} be the set
of all intersections with additional elements −∞ and
+∞. Let each p ∈ L be formed by lines p↑ and p↓ with
m(p↑) > m(p↓). We define a total order � over P× via:

p � q :⇔





px < qx if px 6= qx

m(p↑) < m(q↑) else if p↑ 6= q↑
m(p↓) ≤ m(q↓) else

for p, q ∈ P× \{−∞,+∞} and with special cases −∞ �
p and p � +∞ for all p ∈ P×. Let ≺ denote the
corresponding strict order over P×.

By construction, � is a (lexicographic) total order.
This is ensured by the fact that all slopes are distinct.
This order suffices to construct the total order over the
lines in P . To show this, we need the following lemma:

Lemma 4. Let `1, `2, `3 be non-vertical lines with
m(`1) < m(`2) < m(`3). Of the three intersections
induced by these lines, the intersection p1×3 of the two

lines with extremal slopes is the median with respect to
the order � defined above.

Assuming only the distinctness of slopes (which, as
discussed above, may be assumed w.l.o.g.), we have:

Lemma 5. Let P×, �, and ≺ be as in Definition 3. For
each p ∈ P×, we have a total order ≤p over P :

`1 ≤p `2 :⇔





> if `1 = `2

p � p1×2 if m(`1) > m(`2)

p1×2 ≺ p if m(`1) < m(`2)

With the above definition, we can impose a total order
on the set of lines irrespective of whether or not their
intersection points’ x-coordinates are distinct. Since the
predicate p � q for intersections p, q ∈ P× can still be
evaluated in constant time, the asymptotic runtime of
the algorithm remains unchanged.

Summary In conclusion, the two techniques sketched
in this section generalize the algorithm not only to in-
puts P with parallel lines, but also to inputs with iden-
tical lines. The algorithm is thus applicable to arbitrary
inputs. Since we can achieve the desired (symbolic) per-
turbation via pre-processing in O(n log n) time for an
input of n lines, our main theorem follows:

Theorem 6: Main result. There exists a RAM pro-
gram that obliviously realizes the median intersection
selection in expected O(n log2 n) time for n non-vertical
lines inducing at least one intersection.

4 Implementation and evaluation

We developed a prototype of our oblivious algorithm in
C++.5 The goal of the implementation is to show that
the algorithm is easily implementable and to provide an
estimate of the algorithm’s performance. For this we
also implemented the baseline algorithm [26].

Limitations The primary limitation is that our pro-
totype only accesses arrays of non-constant size in an
oblivious manner. Code fragments such as inner loops
and methods accessing only a constant number of mem-
ory cells do not necessarily probe memory obliviously.
Even though it is conceptually trivial to transform those
code fragments to achieve “full” obliviousness, we note
that — without publicly available libraries providing
low-level primitives for implementations of oblivious al-
gorithms — the obliviousness eventually might depend
on the compiler and platform used.

We believe that our implementation still provides a
good estimate of the performance of a “fully” oblivi-
ous implementation: The loops in our runtime-intensive

5http://go.wwu.de/ms6fz

328

33rd Canadian Conference on Computational Geometry, 2021

ru
nt

im
e	

ov
er

he
ad

	fa
ct

or

25
50
75

100
125
150
175
200

#	of	input	lines
5k 10k 15k 20k 25k 30k

Figure 1: Runtime overhead factor (averaged over 10
random inputs) of the oblivious algorithm compared to
the baseline algorithm with non-oblivious primitives.

primitives are all linear scans over arrays. As such
“fully” oblivious loop bodies will not introduce a large
overhead since they will likely not introduce cache
misses. Also our oblivious primitives can also be imple-
mented largely without data-dependent branches, thus
potentially eliminating branch mispredictions.

The second main limitation is that we do not imple-
ment the handling of parallel lines (as described in Sec-
tion 3). This would require an additional pre-processing
step as well as extending both the slope and the offset
with a symbolic perturbation. As mentioned above this
would result in a low constant factor overhead in both
runtime and memory space usage. Since this applies
to both the oblivious and non-oblivious algorithm this
has no direct implication for the performance evaluation
below, although there might be a more efficient way to
handle identical slopes in the non-oblivious case.

Finally our implementation resorts to a suboptimal,
but easy-to-implement oblivious sorting primitive with
O(n log2 n) and thus has an expected O(n log3 n) run-
time in the oblivious setting. This leads to an additional
O(log n) overhead in runtime as compared to our non-
oblivious implementation and thus underestimates the
performance of the proposed algorithm.

Performance We used libbenchmark6 to measure the
runtime for inputs ranging from 1,000 to 30,000 lines.
The input consists of shuffled sets of lines with non-
uniformly increasing slope and a random offset, both
represented by 64-bit integers. For all our experiments
and independent of n, we fixed an interval [mmin,mmax]
and an interval [bmin, bmax]. To generate a set of n
random lines, we then set r := (mmax −mmin) / n and
constructed each line `i = 〈mi, bi〉 in turn by indepen-
dently sampling a random slope mi from mmin + i · r ≤
mi < mmin + (i + 1) · r (thus ensuring both spread
and distinctness of slopes) and a random offset bi from
bmin ≤ bi ≤ bmax. We then permuted the resulting set
of lines using std::ranges::shuffle.

6https://github.com/google/benchmark

ru
nt

im
e	

[m
s]

0.8

1

1.2

1.4

1.6
1.8

non-oblivious	algorithm
linear random

ru
nt

im
e	

[m
s]

50

100

150

200

250

oblivious	algorithm
linear random

Figure 2: Runtime distribution over 500 runs of the
oblivious and non-oblivious algorithms for n = 1000
lines. Left (in each subfigure): Data for a fixed, sorted
input of lines intersecting in a single point. Right (in
each subfigure): Data for a shuffled input of lines with
non-uniformly increasing slopes and a random offset.

The performance evaluation results are shown in
Fig. 1. For inputs of 10,000–30,000 random lines our
algorithm is about 150–210 times slower than the base-
line algorithm. While this is a significant slowdown, we
remind the reader of both the logarithmic overhead in-
curred by choosing a suboptimal sorting algorithm and
the fact that the baseline algorithm does not offer any
obliviousness. The runtime was less than 10 seconds for
all evaluated input sizes.

All experiments were performed on a Dell XPS 7390
with an Intel i7–10510U CPU and 16 GiB RAM running
Ubuntu 20.04.

Obliviousness We assessed the obliviousness of our im-
plementation of the building blocks by tracing memory
accesses as part of unit testing. For this, we abstracted
the memory sections as arrays of fixed but dynamic
size. We assigned a fingerprint to each sequence of reads
and writes by hashing both the memory operation and
the access location. Since all building blocks used by
the main algorithm are deterministic, we asserted their
obliviousness by comparing fingerprints for different in-
puts with identical leakage.

Additionally, we evaluated the runtime of both our
oblivious algorithm and the baseline algorithm when ap-
plied to two inputs of different characteristics. For this
we compared the random lines described above with a
sorted set of lines `i = 〈i,−i〉, intersecting in the single
point p = 〈1, 0〉. The baseline algorithm showed signif-
icantly different runtimes for different inputs (Fig. 2),
making it abundantly clear that even without statisti-
cal analyses an adversary can distinguish these different
kinds of input from the runtime alone. In contrast, there
was only slight variation in the runtime of our proposed
algorithm which we attribute to the presence of code
processing constant-sized subproblems in a (currently)
non-oblivious manner.

329

CCCG 2021, Halifax, Canada, August 10–12, 2021

5 Conclusion

We presented a modification of the randomized algo-
rithm of [26] for obliviously determining the median
slope for a given set of n points. We also showed how
to generalize the algorithm to arbitrary inputs — allow-
ing both collinear points and multiple points with iden-
tical x-coordinate — while maintaining obliviousness.
Our modified algorithm has an expected O(n log2 n)
runtime, matching the general oblivious transformation
bound of the original algorithm. We provide a proof-
of-concept of the oblivious algorithm in C++, showing
that the algorithm indeed can be implemented and has
a runtime that make its application viable in practice.

References

[1] Rakesh Agrawal et al. “Sovereign Joins”. In: Pro-
ceedings of the 22nd International Conference on
Data Engineering. 2006. doi: 10 . 1109 / ICDE .
2006.144.

[2] Miklós Ajtai, János Komlós, and Endre Sze-
merédi. “An O(n log n) Sorting Network”. In: Pro-
ceedings of the Fifteenth Annual ACM Symposium
on Theory of Computing. 1983, pp. 1–9. doi: 10.
1145/800061.808726.

[3] Gilad Asharov et al. “Bucket Oblivious Sort: An
Extremely Simple Oblivious Sort”. In: Proceed-
ings of the 3rd SIAM Symposium on Simplicity
in Algorithms. 2020, pp. 8–14. doi: 10.1137/1.
9781611976014.2.

[4] Gilad Asharov et al. “OptORAMa: Optimal
Oblivious RAM”. In: Advances in Cryptology –
EUROCRYPT 2020. Vol. 12106. Lecture Notes in
Computer Science. 2020, pp. 403–432. doi: 10.
1007/978-3-030-45724-2_14.

[5] Ken E. Batcher. “Sorting Networks and Their Ap-
plications”. In: Proceedings of the April 30–May
2, 1968 Spring Joint Computer Conference. 1968,
pp. 307–314. doi: 10.1145/1468075.1468121.

[6] Henrik Blunck and Jan Vahrenhold. “In-Place
Randomized Slope Selection”. In: Algorithms and
Complexity. Vol. 3998. Lecture Notes in Com-
puter Science. 2006, pp. 30–41. doi: 10 . 1007 /
11758471_6.

[7] Hervé Brönnimann and Bernard Chazelle. “Op-
timal Slope Selection via Cuttings”. In: Compu-
tational Geometry 10.1 (1998), pp. 23–29. doi:
10.1016/S0925-7721(97)00025-4.

[8] T.-H. Hubert Chan et al. “Cache-Oblivious and
Data-Oblivious Sorting and Applications”. In:
Proceedings of the Twenty-Ninth Annual ACM-
SIAM Symposium on Discrete Algorithms. 2018,
pp. 2201–2220. doi: 10.1137/1.9781611975031.
143.

[9] Richard Cole et al. “An Optimal-Time Algorithm
for Slope Selection”. In: SIAM Journal on Com-
puting 18.4 (1989), pp. 792–810. doi: 10.1137/
0218055.

[10] Michael B. Dillencourt, David M. Mount, and
Nathan S. Netanyahu. “A Randomized Algo-
rithm for Slope Selection”. In: International
Journal of Computational Geometry & Appli-
cations 2.1 (1992), pp. 1–27. doi: 10 . 1142 /
S0218195992000020.

[11] Herbert Edelsbrunner and Ernst Peter Mücke.
“Simulation of Simplicity: A Technique to Cope
with Degenerate Cases in Geometric Algorithms”.
In: ACM Transactions on Graphics 9.1 (1990),
pp. 66–104. doi: 10.1145/77635.77639.

[12] David Eppstein, Michael T. Goodrich, and
Roberto Tamassia. “Privacy-Preserving Data-
Oblivious Geometric Algorithms for Geographic
Data”. In: Proceedings of the 18th SIGSPATIAL
International Conference on Advances in Geo-
graphic Information Systems. 2010, pp. 13–22.
doi: 10.1145/1869790.1869796.

[13] Oded Goldreich. “Towards a Theory of Soft-
ware Protection and Simulation by Oblivious
RAMs”. In: Proceedings of the Nineteenth Annual
ACM Symposium on Theory of Computing. 1987,
pp. 182–194. doi: 10.1145/28395.28416.

[14] Oded Goldreich and Rafail Ostrovsky. “Software
Protection and Simulation on Oblivious RAMs”.
In: Journal of the ACM 43.3 (1996), pp. 431–473.
doi: 10.1145/233551.233553.

[15] Michael T. Goodrich. “Data-Oblivious External-
Memory Algorithms for the Compaction, Selec-
tion, and Sorting of Outsourced Data”. In: Pro-
ceedings of the Twenty-Third Annual ACM Sym-
posium on Parallelism in Algorithms and Ar-
chitectures. 2011, pp. 379–388. doi: 10 . 1145 /
1989493.1989555.

[16] Michael T. Goodrich. “Randomized Shellsort: A
Simple Oblivious Sorting Algorithm”. In: Pro-
ceedings of the Twenty-First Annual ACM-
SIAM Symposium on Discrete Algorithms. 2010,
pp. 1262–1277. doi: 10.1137/1.9781611973075.
101.

330

33rd Canadian Conference on Computational Geometry, 2021

[17] Pavel Hubáček et al. “Stronger Lower Bounds
for Online ORAM”. In: Theory of Cryptography.
Vol. 11892. 2019, pp. 264–284. doi: 10.1007/978-
3-030-36033-7_10.

[18] Matthew J. Katz and Micha Sharir. “Optimal
Slope Selection via Expanders”. In: Information
Processing Letters 47.3 (1993), pp. 115–122. doi:
10.1016/0020-0190(93)90234-Z.

[19] Donald Ervin Knuth. Sorting and Searching.
Vol. 3. The Art of Computer Programming. 1973.

[20] Simeon Krastnikov, Florian Kerschbaum, and
Douglas Stebila. “Efficient Oblivious Database
Joins”. In: Proceedings of the VLDB Endowment
13.12 (2020), pp. 2132–2145. doi: 10 . 14778 /
3407790.3407814.

[21] Kasper Green Larsen and Jesper Buus Nielsen.
“Yes, There Is an Oblivious RAM Lower Bound!”
In: Advances in Cryptology. Vol. 10992. Lecture
Notes in Computer Science. 2018, pp. 523–542.
doi: 10.1007/978-3-319-96881-0_18.

[22] Yaping Li and Minghua Chen. “Privacy Preserv-
ing Joins”. In: Proceedings of the 2008 IEEE 24th
International Conference on Data Engineering.
2008, pp. 1352–1354. doi: 10.1109/ICDE.2008.
4497553.

[23] Wei-Kai Lin, Elaine Shi, and Tiancheng Xie. Can
We Overcome the n log n Barrier for Oblivious
Sorting? 2018/227. 2018. url: https://eprint.
iacr.org/2018/227.

[24] Wei-Kai Lin, Elaine Shi, and Tiancheng Xie. “Can
We Overcome the n log n Barrier for Oblivi-
ous Sorting?” In: Proceedings of the 2019 An-
nual ACM-SIAM Symposium on Discrete Algo-
rithms. 2019, pp. 2419–2438. doi: 10.1137/1.
9781611975482.148.

[25] Chang Liu, Michael Hicks, and Elaine Shi. “Mem-
ory Trace Oblivious Program Execution”. In: 2013
IEEE 26th Computer Security Foundations Sym-
posium. 2013, pp. 51–65. doi: 10 . 1109 / CSF .
2013.11.

[26] Jiří Matoušek. “Randomized Optimal Algorithm
for Slope Selection”. In: Information Processing
Letters 39.4 (1991), pp. 183–187. doi: 10.1016/
0020-0190(91)90177-J.

[27] Peter Bro Miltersen, Mike Paterson, and Jun
Tarui. “The Asymptotic Complexity of Merging
Networks”. In: Journal of the ACM 43.1 (1996),
pp. 147–165. doi: 10.1145/227595.227693.

[28] Sajin Sasy and Olga Ohrimenko. “Oblivious Sam-
pling Algorithms for Private Data Analysis”. In:
Advances in Neural Information Processing Sys-
tems 32. 2019, pp. 6495–6506. url: http : / /
papers . nips . cc / paper / 8877 - oblivious -
sampling - algorithms - for - private - data -
analysis.

[29] Stefan Schirra. “Precision and Robustness in Ge-
ometric Computations”. In: Algorithmic Foun-
dations of Geographic Information Systems.
Vol. 1340. Lecture Notes in Computer Science.
1996, pp. 255–287. isbn: 978-3-540-69653-7.

[30] Pranab Kumar Sen. “Estimates of the Regres-
sion Coefficient Based on Kendall’s Tau”. In: Jour-
nal of the American Statistical Association 63.324
(1968), pp. 1379–1389. doi: 10.1080/01621459.
1968.10480934.

[31] Elaine Shi. “Path Oblivious Heap: Optimal and
Practical Oblivious Priority Queue”. In: Proceed-
ings of the 2020 IEEE Symposium on Security
and Privacy. 2020, pp. 842–858. doi: 10.1109/
SP40000.2020.00037.

[32] Emil Stefanov and Elaine Shi. “ObliviStore: High
Performance Oblivious Distributed Cloud Data
Store”. In: Proceedings of the 20th Annual Net-
work & Distributed System Security Symposium.
2013. url: https://www.ndss-symposium.org/
ndss2013/ndss-2013-programme/oblivistore-
high - performance - oblivious - distributed -
cloud-data-store/.

[33] Emil Stefanov et al. “Path ORAM: An Extremely
Simple Oblivious RAM Protocol”. In: Proceedings
of the 2013 ACM SIGSAC Conference on Com-
puter & Communications Security. 2013, pp. 299–
310. doi: 10.1145/2508859.2516660.

[34] Chee-Keng Yap. “A Geometric Consistency The-
orem for a Symbolic Perturbation Scheme”. In:
Journal of Computer and System Sciences 40.1
(1990), pp. 2–18. doi: https://doi.org/10.
1016/0022-0000(90)90016-E.

331

CCCG 2021, Halifax, Canada, August 10–12, 2021

Any Regular Polyhedron Can Transform to Another by O(1) Refoldings

Erik D. Demaine∗ Martin L. Demaine∗ Yevhenii Diomidov∗

Tonan Kamata† Ryuhei Uehara† Hanyu Alice Zhang‡

Abstract

We show that several classes of polyhedra are joined
by a sequence of O(1) refolding steps, where each re-
folding step unfolds the current polyhedron (allowing
cuts anywhere on the surface and allowing overlap) and
folds that unfolding into exactly the next polyhedron;
in other words, a polyhedron is refoldable into another
polyhedron if they share a common unfolding. Specifi-
cally, assuming equal surface area, we prove that (1) any
two tetramonohedra are refoldable to each other, (2) any
doubly covered triangle is refoldable to a tetramono-
hedron, (3) any (augmented) regular prismatoid and
doubly covered regular polygon is refoldable to a tetra-
monohedron, (4) any tetrahedron has a 3-step refold-
ing sequence to a tetramonohedron, and (5) the regu-
lar dodecahedron has a 4-step refolding sequence to a
tetramonohedron. In particular, we obtain a ≤ 6-step
refolding sequence between any pair of Platonic solids,
applying (5) for the dodecahedron and (1) and/or (2)
for all other Platonic solids. As far as the authors know,
this is the first result about common unfolding involving
the regular dodecahedron.

1 Introduction

A polyhedron Q is refoldable to a polyhedron Q′ if Q
can be unfolded to a planar shape that folds into ex-
actly the surface of Q′, i.e., Q and Q′ share a common
unfolding/development, allowing cuts anywhere on the
surfaces of Q and Q′. (Although it is probably not nec-
essary for our refoldings, we also allow the common un-
folding to self-overlap, as in [6].) The idea of refolding
was proposed independently by M. Demaine, F. Hur-
tado, and E. Pegg [5, Open Problem 25.6], who specifi-
cally asked whether every regular polyhedron (Platonic
solid) can be refolded into any other regular polyhe-
dron. In this context, there exist some specific results:
Araki et al. [2] found two Johnson-Zalgaller solids that
are foldable to regular tetrahedra [2], and Shirakawa et

∗CSAIL, MIT, USA. {edemaine,mdemaine,diomidov}@mit.edu
†School of Information and Science, Japan Ad-

vanced Institute of Science and Technology, Japan.
{kamata,uehara}@jaist.ac.jp

‡School of Applied and Engineering Physics, Cornell Univer-
sity, USA. hz496@cornell.edu

al. [9] found an infinite sequence of polygons that can
each fold into a cube and an approaching-regular tetra-
hedron.

More broadly, Demaine et al. [4] showed that any con-
vex polyhedron can always be refolded to at least one
other convex polyhedron. Xu et al. [11] and Biswas and
Demaine [3] found common unfoldings of more than two
(specific) polyhedra. On the negative side, Horiyama
and Uehara [6] proved impossibility of certain refoldings
when the common unfolding is restricted to cut along
the edges of polyhedra.

In this paper, we consider the connectivity of polyhe-
dra by the transitive closure of refolding, an idea sug-
gested by Demaine and O’Rourke [5, Section 25.8.3].
Define a (k-step) refolding sequence from Q to
Q′ to be a sequence of convex polyhedra Q =
Q0, Q1, . . . , Qk = Q′ where each Qi−1 is refoldable to
Qi. We refer to k as the length of the refolding se-
quence. To avoid confusion, we use “1-step refoldable”
to refer to the previous notion of refoldability.

Our results. Do all pairs of convex polyhedra of the
same surface area (a trivial necessary condition) have a
finite-step refolding sequence? If so, how short of a se-
quence suffices? As mentioned in [5, Section 25.8.3], the
regular polyhedron open problem mentioned above is
equivalent to asking whether 1-step refolding sequences
exist for all pairs of regular polyhedra. We solve a
closely related problem, replacing “1” with “O(1)”: for
any pair of regular polyhedra Q and Q′, we give a re-
folding sequence of length at most 6.

More generally, we give a series of results about O(1)-
step refolding certain pairs of polyhedra of the same
surface area:

1. In Section 3, we show that any two tetramonohedra
are 1-step refoldable to each other, where a tetra-
monohedron is a tetrahedron that consists of four
congruent acute triangles.

This result offers a possible “canonical form” for
finite-step refolding sequences between any two
polyhedra: because a refolding from Q to Q′ is also
a refolding from Q′ to Q, it suffices to show that
any polyhedron has a finite-step refolding into some
tetramonohedron.

332

33rd Canadian Conference on Computational Geometry, 2021

2. In Section 4, we show that every regular prismatoid
and every augmented regular prismatoid are 1-step
refoldable to a tetramonohedron.

In particular, the regular tetrahedron is a tetra-
monohedron, the regular hexahedron (cube) is a
regular prismatoid, and the regular octahedron and
regular icosahedron are both augmented regular
prismatoids. Therefore, the regular tetrahedron
has a 2-step refolding sequence to the regular hexa-
hedron, octahedron, and icosahedron (via an inter-
mediate tetramonohedron); and every pair of poly-
hedra among the regular hexahedron, octahedron,
and icosahedron have a 3-step refolding sequence
(via two intermediate tetramonohedra).

3. In Section 5, we prove that a regular dodecahedron
is refoldable to a tetramonohedron by a 4-step re-
folding sequence.

As far as the authors know, there are no previous
explicit refolding results for the regular dodecahe-
dron, except the general results of [4].

Combining the results above, any pair of regu-
lar polyhedra (Platonic solids) have a refolding se-
quence of length at most 6.

4. In addition, we prove that every doubly covered tri-
angle (Section 3) and every doubly covered regular
polygon (Section 4) are refoldable to a tetramono-
hedron, and that every tetrahedron has a 3-step re-
folding sequence to a tetramonohedron (Section 6).

Therefore, every pair of polyhedra among the list
above have an O(1)-step refolding sequence.

2 Preliminaries

For a polyhedron Q, V (Q) denotes the set of vertices
of Q. For v ∈ V (Q), define the cocurvature σ(v) of
v on Q to be the sum of the angles incident to v on
the facets of Q. The curvature κ(v) of v is defined by
κ(v) = 2π − σ(v). In particular, if κ(v) = σ(v) = π, we
call v a smooth vertex . We define Πk to be the class of
polyhedra Q with exactly k smooth vertices. It is well-
known that the total curvature of the vertices of any
convex polyhedron is 4π, by the Gauss–Bonnet Theo-
rem (see [5, Section 21.3]). Thus the number of smooth
vertices of a convex polyhedron is at most 4. Therefore,
the classes Π0,Π1,Π2,Π3,Π4 give us a partition of all
convex polyhedra.

An unfolding of a polyhedron is a (possibly self-
overlapping) planar polygon obtained by cutting and
developing the surface of the polyhedron (allowing cuts
anywhere on the surface). Folding a polygon P is an
operation to obtain a polyhedron Q by choosing crease
lines on P and gluing the boundary of P properly. When

the polyhedron Q is convex, the following result is cru-
cial:

Lemma 1 (Alexandrov’s Theorem [8, 5]) If we
fold a polygon P in a way that satisfies the following
three Alexandrov’s conditions, then there is a
unique convex polyhedron Q realized by the folding.

1. Every point on the boundary of P is used in the
gluing.

2. At any glued point, the summation of interior an-
gles (cocurvature) is at most 2π.

3. The obtained surface is homeomorphic to a sphere.

By this result, when we fold a polygon P to a poly-
hedron Q, it is enough to check that the gluing sat-
isfies Alexandrov’s conditions. (In this paper, it is
easy to check that the conditions are satisfied by our
(re)foldings, so we omit their proof.)

A polyhedron Q is (1-step) refoldable to a polyhe-
dron Q′ if Q can be unfolded to a polygon that folds
to Q′ (and thus they have the same surface area). A
(k-step) refolding sequence of a polyhedron Q to
a polyhedron Q′ is a sequence of convex polyhedra
Q = Q0, Q1, . . . , Qk = Q′ where Qi−1 is refoldable to
Qi for each i ∈ {1, . . . , k}. To simplify some arguments
that Q is refoldable to Q′, we sometimes only partially
unfold Q (cutting less than needed to make the surface
unfold flat), and refold to Q′ so that Alexandrov’s con-
ditions hold.

We introduce some key polyhedra. A tetrahedron is a
tetramonohedron if its faces are four congruent acute
triangles.1 We consider a doubly covered polygon as
a special polyhedron with two faces. Precisely, for a
given n-gon P , we make a mirror image P ′ of P and
glue corresponding edges. Then we obtain a doubly
covered n-gon which has 2 faces, n edges, and zero
volume.

3 Refoldabilty of Tetramonohedra and Doubly Cov-
ered Triangles

In this section, we first show that any pair of tetra-
monohedra can be refolded to each other. We note that
a doubly covered rectangle is a (degenerate) tetramono-
hedron, by adding edges along two crossing diagonals
(one on the front side and one on the back side). It is
known that a polyhedron is a tetramonohedron if and
only if it is in Π4 [7]. In other words, Π4 is the set of
tetramonohedra.

Theorem 2 For any Q,Q′ ∈ Π4, Q is 1-step refoldable
to Q′.

1This notion is also called isotetrahedron in some literature.

333

CCCG 2021, Halifax, Canada, August 10–12, 2021

Q

aa

b

2a
2a

2a′￼

2a′￼2a′￼ 2a

b

2a′￼

b′￼

b′￼

a′￼

Q′￼

Figure 1: A refolding between two tetramonohedra

Proof. Let T be any triangular face of Q. Let a be
the length of the longest edge of T and b the height
of T for the base edge of length a. We define T ′, a′,
and b′ in the same manner for Q′; refer to Figure 1.
We assume a > a′ without loss of generality. Now we
have a′ > b′ because a′ is the longest edge of T ′, and
a′b′ = ab because T and T ′ are of the same area. Thus,
(a′)2 = a′b′ a

′

b′ > a′b′ = ab, and 2a′ > a′ > b by a > a′.
We cut two edges of Q of length a, resulting in a

cylinder of height b and circumference 2a. Then we
can cut the cylinder by a segment of length 2a′ because
2a′ > b. The resulting polygon is a parallelogram such
that two opposite sides have length 2a and the other
two opposite sides have length 2a′. Now we glue the
sides of length 2a and obtain a cylinder of height b′ and
circumference 2a′. Then we can obtain Q′ by folding
this cylinder suitably (the opposite of cutting two edges
of Q′ of length 2a′). �

To complement the doubly covered rectangles han-
dled by Theorem 2, we give a related result for doubly
covered triangles:

Theorem 3 Any doubly covered triangle Q is 1-step re-
foldable into a doubly covered rectangle. Thus, Q has a
refolding sequence to any doubly covered triangle Q′ of
length at most 3. If doubly covered triangles Q and Q′

share at least one edge length, then the sequence has
length at most 2.

Proof. Let Q consist of a triangle T and its mirror
image T ′. We first cut Q along any two edges, and
unfold along the remaining attached edge, resulting in
a quadrilateral unfolding as shown in Figure 2. Let b be
the length of the uncut edge, which we call the base ,
and let h be the height of T with respect to the base.
Let p and q be the midpoints of the two cut edges. Then
the line segment pq is parallel to the base and of length
b/2. In the unfolding of Q, let p′ and q′ be the mirrors
of p and q, respectively. Then we can draw a grid based
on the rectangle pp′q′q as shown in Figure 2. By folding

Q

b

h

Q′￼′￼

h

p
q

p
q

p′￼

q′￼

p

p′￼

q

q′￼

Figure 2: A refolding from a doubly covered triangle to
a doubly covered rectangle

along the crease lines defined by the grid, we can obtain
a doubly covered rectangle Q′′ of size b/2×h (matching
the doubled surface area of Q). (Intuitively, this folding
wraps T and T ′ on the surface of the rectangle pp′q′q.)

Because Q′′ is also a tetramonohedron, the second
claim follows from Theorem 2. When Q has an edge of
the same length as an edge of Q′, as in the third claim,
we can cut the other two edges of Q and Q′ to obtain
the same doubly covered rectangle, resulting in a 2-step
refolding sequence. �

The technique in the proof of Theorem 3 works for
any doubly covered triangle Q even if its faces are acute
or obtuse triangles.

4 Refoldability of a Regular Prismatoid to a Tetra-
monohedron

In this section, we give a 1-step refolding of any reg-
ular prism or prismatoid to a tetramonohedron. We
extend the approach of Horiyama and Uehara [6], who
showed that the regular icosahedron, the regular octa-
hedron, and the regular hexahedron (cube) can be 1-
step refolded into a tetramonohedron. As an example,
Figure 3 shows their common unfolding for the regular
icosahedron.

A polygon P = (p0, c1, p1, c2, p2, . . . , p2n, c2n, p2n+1, p0)
is called a spine polygon if it satisfies the following
two conditions (refer to Figure 4):

1. Vertex pi is on the line segment p0pn for each 0 <
i < n; vertex pi is on the line segment pn+1p2n+1

for each n + 1 < i < 2n + 1; and the polygon
B = (p0, pn, pn+1, p2n+1, p0) is a parallelogram. We
call B the base of P , and require it to have positive
area.

2. The polygon Ti = (pi, ci+1, pi+1, pi) is an isosceles
triangle for each 0 ≤ i ≤ n − 1 and n + 1 ≤ i ≤
2n. The triangles T0, T1, . . . , Tn−1 are congruent,
and Tn+1, Tn+2, . . . , T2n are also congruent. These
triangles are called spikes.

334

33rd Canadian Conference on Computational Geometry, 2021

Figure 3: A common unfolding of a regular icosahedron
and a tetramonohedron, from [6]

p0 p1 p2 pn−2 pn−1 pn

p2n+1 p2n p2n−1 pn+3 pn+2 pn+1

c1 c2 cn−1 cn

c2n c2n−1 cn+2 cn+1

Figure 4: A spine polygon with 2n spikes

Lemma 4 Any spine polygon P can be folded to a tetra-
monohedron.

Proof. Akiyama and Matsunaga [1] prove that a poly-
gon P can be folded into a tetramonohedron if the
boundary of P can be divided into six parts, two of
which are parallel and the other four of which are rota-
tionally symmetric. We divide the boundary of a spine
polygon P into l1 = (p0, c1, . . . , cn); l2 = (cn, pn), l3 =
(pn, pn+1); l4 = (pn+1, cn+1, . . . , c2n), l5 = (c2n, p2n+1);
and l6 = (p2n+1, p0). Then l3 and l6 are parallel be-
cause the base of P is a parallelogram. Each of l2 and
l5 is trivially rotationally symmetric. Each of l1 and l4
is rotationally symmetric because each spike of P is an
isosceles triangle. �

Now we introduce some classes of polyhedra; refer to
Figure 5.

A prismatoid is the convex hull of parallel base and
top convex polygons. We sometimes call the base and
the top roofs when they are not distinguished. We
call a prismatoid regular if (1) its base P1 and top P2

are congruent regular polygons and (2) the line passing
through the centers of P1 and P2 is perpendicular to P1

and P2. (Note that the side faces of a regular prismatoid
do not need to be regular polygons.) The perpendicular
distance between the planes containing P1 and P2 is the
height of the prismatoid. The set of regular prismatoids
contains prisms and antiprisms, as well as doubly

Figure 5: A regular prismatoid and an augmented reg-
ular prismatoid

covered regular polygons (prisms of height zero).
A pyramid is the convex hull of a base convex poly-

gon and an apex point. We call a pyramid regular
if the base polygon is a regular polygon, and the line
passing through the apex and the center of the base is
perpendicular to the base. (Note that the side faces of
a regular pyramid do not need to be regular polygons.)
A polyhedron is an augmented regular prismatoid
if it can be obtained by attaching two regular pyramids
to a regular prismatoid base-to-roof, where the bases of
the pyramids are congruent to the roofs of the prisma-
toid and each roof is covered by the base of one of the
pyramids.

Theorem 5 Any regular prismatoid or augmented reg-
ular prismatoid of positive volume can be unfolded to a
spine polygon.

Proof. Let Q be a regular prismatoid. Let c1 and c2 be
the center points of two roofs P1 and P2, respectively.
Cutting from ci to all vertices of Pi for each i = 1, 2
and cutting along a line joining between any pair of
vertices of P1 and P2, we obtain a spine polygon. For an
augmented regular prismatoid Q, we can similarly cut
from the apex ci of each pyramid to the other vertices
of the pyramid, which are the vertices of the roof Pi of
the prismatoid. �

When the height of the regular prismatoid is zero (or
it is a doubly covered regular polygon), the proof of
Theorem 5 does not work because the resulting polygon
is not connected. In this case, we need to add some
twist.

Theorem 6 Any doubly covered regular n-gon is 1-step
refoldable to a tetramonohedron for n > 2.

Proof. First suppose that n is an even number 2k
for some positive integer k > 1. We consider a spe-
cial spine polygon where the top angles are 2π

k ; the
vertices p0, p2n+1, p1 are on a circle centered at c1;
and the vertices p2n+1, p1, p2 are on a circle centered
at c2n; see Figure 6. Then we can obtain a dou-
bly covered n-gon by folding along the zig-zag path

335

CCCG 2021, Halifax, Canada, August 10–12, 2021

p0

p1
p2n

p2n+1

c1

c2n

2π
n

2π
n

cn

cn+1

pn
pn+1

Figure 6: The case of a doubly covered regular 8-gon

p0

p2n+1

c1

cn+1

pn+1

pn

c2n

p1

Figure 7: The case of a doubly covered regular 5-gon

p2n+1, p1, p2n, p2, . . . , pn+2, pn shown in Figure 6. Thus
when n = 2k for some positive integer k, we obtain the
theorem.

Now suppose that n is an odd number 2k + 1 for
some positive integer k. We consider the spine polygon
whose top angles are 4π

2k+1 ; the vertices p0, p2n+1, p1 are
on a circle centered at c1; and the vertices p2n+1, p1, p2
are on a circle centered at c2n. From this spine
polygon, we cut off two triangles c1, p0, c2n+1 and
cn+1, pn+1, pn, as in Figure 7. Then we can obtain a
doubly covered n-gon by folding along the zig-zag path
p2n+1, p1, p2n, p2, . . . , pn+2, pn shown in Figure 7. Al-
though the unfolding is no longer a spine polygon, it
is easy to see that it can also fold into a tetramono-
hedron by letting l′1 = (c1, p1, . . . , pn), l′2 = (pn, pn),
l′3 = (pn, cn+1), l′4 = (cn+1, pn+2 . . . , p2n+1), l′5 =
(p2n+1, p2n+1), and l′6 = (p2n+1, c1) in the proof of
Lemma 4. �

The proof of Theorem 6 is effectively exploiting that
a doubly covered regular 2k-gon (with k > 1) can be
viewed as a degenerate regular prismatoid with two k-
gon roofs, where each of the side triangles of this pris-
matoid is on the plane of the roof sharing the base of
the triangle.

Because the cube and the regular octahedron are reg-
ular prismatoids and the regular icosahedron is an aug-
mented regular prismatoid, we obtain the following:

Corollary 7 Let Q and Q′ be regular polyhedra of the
same area, neither of which is a regular dodecahedron.
Then there exists a refolding sequence of length at most
3 from Q to Q′. When one of Q or Q′ is a regular
tetrahedron, the length of the sequence is at most 2.

5 Refoldability of a Regular Dodecahedron to a
Tetramonohedron

In this section, we show that there is a refolding se-
quence of the regular dodecahedron to a tetramonohe-
dron of length 4. Combining this result with Corol-
lary 7, we obtain refolding sequences between any two
regular polyhedra of length at most 6.

Demaine et al. [4] mention that the regular dodeca-
hedron can be refolded to another convex polyhedron.
Indeed, they show that any convex polyhedron can be
refolded to at least one other convex polyhedron using
an idea called “flipping a Z-shape”. We extend this idea.

Definition 1 For a convex polyhedron Q and n, k ∈ N,
let p = (s1, s2, . . . , s(2k+1)n) be a path that consists of
isometric and non-intersecting (2k + 1)n straight line
segments si on Q. We cut the surface of Q along p.
Then each line segment is divided into two line segments
on the boundary of the cut. For each line segment si,
let sli and sri correspond to the left and right sides on
the boundary along the cut (Figure 8). Then p is a Z-
flippable (n, k)-path on Q, and Q is Z-flippable by p,
if the following gluing satisfies Alexandrov’s conditions.

• Glue sl1, s
l
2, . . . , s

l
n to sl2n, s

l
2n−1, . . . , s

l
n+1.

sl2nsl2n+2 sl2n+1 sl2n−1 sr2n+1

sl2kn+1
sl2n−1sl2nsl2n+1

sl2n+2

sr(2k+1)n

sr(2k+1)n−1

sr3n

sr3n−1

sl(2k+1)n−1 sr(2k+1)n−1

sl(2k+1)n sr(2k+1)nsr3n
sl3n

sr3n−1
sl3n−1sl

n+2

sr
n

sl
n−1 sr

n−1

sr
n+2 sl

n+1

sr
n+1

sl2 sr2

sr2kn−1

sr2n−1 sr2n+2

sl2 sr2 sr2n−1 sr2n+2

sr2kn+2
sl2kn+2

sr2kn+2

sr2n+1sr2n

sl1 sr1 sr2n

sr2kn+1

sr2kn+1sr2kn

sr2(k−1)n+2

sr
n+2

sr
n

sr
n−1

sl
n+2sl

n−1

Z-flip

sl1 sr1

sl
n

sl
n+1 sl3n

sl3n−1

sr2(k−1)n+1sr
n+1

sl
n

Figure 8: Z-flip

336

33rd Canadian Conference on Computational Geometry, 2021

• Glue sr1, s
r
2, . . . , s

r
n to sl2n+1, s

l
2n+2, . . . , s

l
3n.

• Glue srn+1, s
r
n+2, . . . , s

r
2n to sr3n, s

r
3n−1, . . . , s

r
2n+1.

...

• Glue sr2(k−1)n+1, s
r
2(k−1)n+2, . . . , s

r
2kn to

sr(2k+1)n, s
r
(2k+1)n−1, . . . , s

r
2kn+1.

If there are Z-flippable paths p1, p2, . . . , pm inducing
a forest on Q, we can flip them all at the same time.
Then we say that Q is Z-flippable by p1, p2, . . . , pm.

Theorem 8 There exists a 4-step refolding sequence
between a regular dodecahedron and a tetramonohedron.

Proof. Let D be a regular dodecahedron. To simplify,
we assume that each edge of a regular pentagon is of
length 1. We show that there exists a refolding sequence
D,Q1, Q2, Q3, Q4 of length 4 for a tetramonohedron Q4.

All cocurvatures of the vertices of D are equal to 9π
5 .

For any vertices v, there are 3 vertices of distance 1 from

v and 6 vertices of distance φ = 1+
√
5

2 from v. Here-
after, in figures, each circle describes a non-flat vertex
on a polyhedron and the number in the circle describes
its cocurvature divided by π

5 . Each pair of vertices of
distance 1 is connected by a solid line, and each pair
of vertices of distance φ is connected by a dotted line.
Figure 9 shows the initial state of D in this notation.
We note that solid and dotted lines do not necessarily
imply edges (or crease lines) on the polyhedron.

9 9

9 99

9

99

9

9

9

9

9

9 9

9

9 9

9

9

Figure 9: The initial regular dodecahedron

First, we choose p1 = (s11, s
1
2, . . . , s

1
6), p2 = (s21, s

2
2, s

2
3),

p3 = (s31, s
3
2, . . . , s

3
6), and p4 = (s41, s

4
2, s

4
3) on the surface

of D on the left of Figure 10. Then, p1 and p3 are
Z-flippable (2, 1)-paths and p2 and p4 are Z-flippable
(1, 1)-paths. Thus, D is Z-flippable by p1, p2, p3, p4 to
the polyhedron on the right of Figure 10. Let Q1 be the
resulting polyhedron.

Second, we choose p1 = (s11, s
1
2, . . . , s

1
5) on the surface

of Q1 on the left of Figure 11. Then, p1 is a Z-flippable

9 9

9 99 9

9

99

9

9

99

9

9

9

9 9 9

10 10
8 10

9

7

88

8

8

107

10

10108 10

1010

9

9

s31
s23

s22s21

s14 s15
s13

s12

s42 s41

s43

s16

s11

s32
s33

s34s35

s36

Figure 10: A refolding from D to Q1

10 10
8 10

9

7

88

8

8

107

10

10

108 10

1010

9

10 10
8 10

9 10

88

5

8

10

10
10

105 10

1010

9

10

s11
s12

s13

s14

s15

Figure 11: A refolding from Q1 to Q2

(1, 3)-path. Thus, Q1 is Z-flippable by p1 to the next
polyhedron Q2 on the right of Figure 11.

Third, we choose p1 = (s11, s
1
2, s

1
3) and p2 = (s21, s

2
2, s

2
3)

on the surface of Q2 on the left of Figure 12. Then,
p1 and p2 are Z-flippable (1, 1)-paths. Thus, Q2 is Z-
flippable by p1 and p2 to the polyhedron Q3 on the right
of Figure 12.

Fourth, we choose p1 = (s11, s
1
2, . . . , s

1
5), p2 =

(s21, s
2
2, . . . , s

2
5), and p3 = (s31, s

3
2, s

3
3) on the surface of

337

CCCG 2021, Halifax, Canada, August 10–12, 2021

10 10
8 10

7 10

108

7

10

10

10
8

107 10

1010

7

8

10 10
8 10

9 10

88

5

8

10

10
10

105 10

1010

9

10

s11

s12
s13

s21

s22s23

Figure 12: A refolding from Q2 to Q3

10 10
8 10

7 10

108

7

10

10

10
8

107 10

1010

7

8

10 10
5

10
10

10
5

1010

10 5
1010 10

1010

10

5
10

10

s11

s12

s13

s14

s15

s31

s32

s33

s21

s22
s23

s24

s25

Figure 13: A refolding from Q3 to Q4

Q3 on the left of Figure 13. Then, p1 and p2 are Z-
flippable (1, 3)-paths and p3 is a Z-flippable (1, 1)-path.
Thus, Q3 is Z-flippable by p1, p2, and p3 to the polyhe-
dron Q4 on the right of Figure 13. Finally, we obtain
a tetramonohedron Q4 from a regular dodecahedron D
by a 4-step refolding sequence.

In this proof, we used partial unfolding between pairs

∈ Π4pj

pis
pm2

pm1

Smooth vertex

Π3 ∩ 𝒬5
pjpm1

pm2
pi

vj vi

λ1
λ2

λ3

m

π

κ(vi)

c3

c2
pm1

pm2

pj

pi

×

s

c1
×

×

κ(vi)

θ
σ(vi)

π − θ∈

Smooth vertex

Figure 14: A refolding of a polyhedron in Π3∩Q5 to Π4

of polyhedra in the refolding sequence. Appendix A
gives the (fully unfolded) common unfoldings. �

6 Refoldability of a Tetrahedron to a Tetramonohe-
dron

In this section, we prove that any tetrahedron can be
refolded to a tetramonohedron. Let Qk denote the class
of polyhedra with exactly k vertices.

6.1 Refoldability of Π3 to Π4

First we show a technical lemma: any polyhedron Q in
Π3 can be refolded to a tetramonohedron by a refolding
sequence of length linear in the number of vertices of Q.

Lemma 9 For any Q ∈ Π3 ∩ Qn with n ≥ 5, there is
a refolding sequence of length 2n − 9 from Q to some
Q′ ∈ Π4.

Proof. (Outline) We prove the claim by induction. As
the base case, suppose n = 5; refer to Figure 14. Let
λ1, λ2, λ3 be the smooth vertices of Q and vi, vj be the
other vertices. Take a point m on the segment λ1λ2
with ∠vivjm = κ(vi) and cut the surface of Q along the
segments λ1λ2, vivj , and vjm. Then σ(vj)− κ(vi) = π
because κ(vi) + κ(vj) = π. The point vj is then di-
vided into a point of degree κ(vi) and a point of de-
gree π on the boundary. Trace the obtained boundary
from vi counterclockwise and denote points correspond-
ing to vi, vj ,m,m by pi, pj , pm1

, pm2
, respectively. Let

c1 and c2 be the center points of the segments pipj and
pm1

pm2
, respectively. We take the point s which has the

same distance with pm1 from c1. Let c3 be the center of
the segment pm2s. Now glue the segment sc1 to c1pm1 ,
the segment pm2

c2 to c2pm1
, and the segment pm2

c3 to
c3, s. Let Q′ be the obtained polyhedron after the glu-
ing. Then Q′ is in Π4 because each curvature of every
vertex of Q′ is π.

Now we turn to the inductive step. Let Q be any
polyhedron in Π3∩Qk with k > 5. We prove that there

338

33rd Canadian Conference on Computational Geometry, 2021

λ3

vi vjλ′￼1

λ′￼2

λ1

λ2

m
π

vj

λ3

vi

pm′￼2
pm′￼1

m′￼

λ′￼1

πκ(vj)

λ3

vi vj

λ′￼2
pi2

pi1

pj

c2 c3pm′￼2

pi1

pm′￼1

pj

pi2

c1

s

×

×

×

σ(vi) − κ(vj) − π
= π − (κ(vi) + κ(vj))

θ
π − θ

κ(vj) σ(vj)

Π3 ∩ 𝒬k−1
∈

s
pi1

pj

pm′￼1
pm′￼2

pi2

Smooth vertex

Π3 ∩ 𝒬k ∈

Figure 15: A refolding sequence from Π3 ∩ Qk to Π3 ∩
Qk−1

exists a refolding sequence (Q,Q′, Q′′) for two polyhedra
Q′ and Q′′ with Q′′ ∈ Π3 ∩Qk−1; refer to Figure 15.

Let λ1, λ2, λ3 be the smooth vertices of Q and vi, vj be
any other vertices on Q. Note that 0 < κ(vi)+κ(vj) < π
because k > 5. Take a point m on the segment λ1λ2
with ∠vivjm = π, cut the surface of Q′ along the seg-
ment λ1λ2, and glue it again so that m is an endpoint.
(This can be done because the cut produces a “rolling
belt” in terms of folding; see [5] for the details.) Let Q′

be the obtained polyhedron, and let λ′1(= m), λ′2, λ
′
3(=

λ3) be the smooth vertices of Q′. Now take a point m′

on the segment λ′2, λ
′
3 such that ∠λ′1vim′ = κ(vj) and

cut the surface of Q′ along the segments λ′1vi, λ
′
2λ
′
3,

vivj , and vim
′. Trace the obtained boundary from

vj counterclockwise and denote points corresponding
to vj , vi,m

′,m′, vi by pj , pi1 , pm′
1
, pm′

2
, pi2 , respectively.

Let c1 and c2 be the midpoints of pi1pj and pm′
1
pm′

2
,

respectively. Take the point s which has the same dis-
tance with pm′

1
from c1. Let c3 be the midpoint of the

segment pm′
2
s. Now glue the segment pm′

1
c1 to c1s,

the segment pm′
2
c2 to c2pm′

1
, and the segment pm′

2
c3

to c3s. Let Q′′ be the obtained polyhedron. Then Q′′

is in Π3 ∩ Qk−1 because each curvature of points cor-
responding to c1, c2, c3 is π and 0 < σ(v′4) < π be-
cause σ(v′4) = σ(vi) − κ(vj) = σ(vi) + σ(vj) − 2π and
0 < κ(vi) + κ(vj) < π. �

Theorem 10 For any Q ∈ Q4, there is a 3-step refold-
ing sequence from Q to some Q′′′ ∈ Π4.

∈

Π2 ∩ 𝒬5 ∈

pj2

pj1

vi

m
vj

λ1

λ2

pm1

pm2
pi

κ(vi)

Π3 ∩ 𝒬5

pj2

pm1

pm2

pj1
pi

Co-curvature 
 3π − (κ(vj) + κ(vi))

Smooth vertex

c3
c2

s
pm1

pm2 ×

pi

pj2

pj1
×

×

c1

σ(vi)κ(vi)θ

π − θ
σ(vj) − κ(vi) = 2π − (κ(vj) + κ(vi))

Figure 16: Refolding from any tetrahedron to a tetra-
monohedron

Proof. (Outline) Let v, v′ be two vertices of Q with
smallest cocurvature. (That is, σ(v), σ(v′) ≤ σ(v′′) for
the other two vertices v′′ of Q.) We cut along the seg-
ment vv′ and glue the point v to v′. Let Q′ be the
resulting polyhedron. Then, because σ(v) + σ(v′) ≤ 2π
by the Gauss–Bonnet Theorem, Q′ satisfies the Alexan-
drov’s conditions. That is, Q′ is a convex polyhedron in
Π2∪Q5. (We assume that the original Q has no smooth
vertex to simplify the arguments.)

Let λ1 and λ2 be the two smooth vertices of Q′ (which
was generated by the gluing of v and v′), and vi, vj
be two vertices of Q′ of larger cocurvature than others
with κ(vi) < κ(vj). By the Gauss–Bonnet Theorem,
4π
3 ≤ σ(vi) + σ(vj) ≤ 2π. We take the point m on the

segment λ1λ2 so that ∠(vi, vj ,m) = κ(vi). Now we cut
along the segments λ1λ2, vivj , and vjm; see Figure 16.
Trace the obtained boundary from vi counterclockwise
and denote points corresponding to vi, vj ,m,m, vj by
pi, pj1 , pm1 , pj2 , pm2 , respectively. Let c1 and c2 be the
midpoints of the segments pipj2 and pm1pm2 , respec-
tively. Furthermore, we take the point s which has the
same distance with pm2

from c1, and let c3 be the mid-
point of spm1

.
Now glue segment pic1 to pj2c1, segment pis to

pj2pm2
, segment pm1

c2 to pm2
c2, and segment sc3 to

pm1
c3. Let Q′′ be the resulting polyhedron. Then

the gluing to fold Q′′ produces four vertices. Among
them, three vertices produced by the points c1, c2, c3
are smooth vertices of curvature π. The cocurvature of
the vertex of Q′′ generated by the gluing of pj1 to the
boundary is 3π − (κ(vj) + κ(vi)), which is in [π, 5π3] by
4π
3 ≤ σ(vi)+σ(vj) ≤ 2π. Therefore, Q′′ satisfies Alexan-

drov’s conditions, and hence we obtain Q′′ ∈ Π3 ∪ Q.
By Lemma 9, there exists Q′′′ ∈ Π4 such that there is a
3-step refolding sequence from Q to Q′′′. �

339

CCCG 2021, Halifax, Canada, August 10–12, 2021

7 Conclusion

In this paper, we give a partial answer to Open Problem
25.6 in [5]. For every pair of regular polyhedra, we ob-
tain a refolding sequence of length at most 6. Although
this is the first refolding result for the regular dodeca-
hedron, the number of refolding steps to other regular
polyhedra seems a bit large. Finding a shorter refolding
sequence than Theorem 8 is an open problem.

The notion of refolding sequence raises many open
problems. What pairs of convex polyhedra are con-
nected by a refolding sequence of finite length? Is there
any pair of convex polyhedra that are not connected by
any refolding sequence?

At the center of our results is that the set of tetra-
monohedra induces a clique by the binary relation of
refoldability. Is the regular dodecahedron refoldable to
a tetramonohedron? Are all Archimedean and Johnson
solids refoldable to tetramonohedra? Is there any con-
vex polyhedron not refoldable to a tetramonohedron?
(If not, we would obtain a 3-step refolding sequence be-
tween any pair of convex polyhedra.)

Another open problem is the extent to which allowing
or forbidding overlap in the common unfoldings affects
refoldability. While we have defined refoldability to al-
low overlap, in particular to follow [4] where it may be
necessary, most of the results in this paper would still
apply if we forbade overlap. For example, Appendix A
confirms this for our refolding sequence from the regular
dodecahedron to a tetramonohedron; while the general
approach of Lemma 9 is likely harder to generalize. Are
there two polyhedra that have a common unfolding but
all such common unfoldings overlap? (If not, the two
notions of refolding are equivalent.)

Acknowledgments

This work was initiated during MIT class 6.849: Geo-
metric Folding Algorithms, Fall 2020.

Erik Demaine was partially supported by the Cornell
Center for Materials Research with funding from the
NSF MRSEC program (DMR-1120296). Hanyu Zhang
was primarily supported by the Cornell Center for Ma-
terials Research with funding from the NSF MRSEC
program (DMR-1719875). Ryuhei Uehara was partially
supported by MEXT/JSPS Kakenhi Grant JP17H06287
and JP18H04091.

References

[1] Jin Akiyama and Kiyoko Matsunaga. An algorithm
for folding a Conway tile into an isotetrahedron or a
rectangle dihedron. Journal of Information Processing,
28:750–758, December 2020.

[2] Yoshiaki Araki, Takashi Horiyama, and Ryuhei Uehara.
Common unfolding of regular tetrahedron and Johnson-

Zalgaller solid. Journal of Graph Algorithms and Ap-
plications, 20(1):101–114, February 2016.

[3] Amartya Shankha Biswas and Erik D. Demaine. Com-
mon development of prisms, anti-prisms, tetrahedra,
and wedge. In Proceedings of the 29th Canadian Confer-
ence on Computational Geometry (CCCG 2017), pages
202–207, 2017.

[4] Erik D. Demaine, Martin L. Demaine, Jin-ichi Itoh,
Anna Lubiw, Chie Nara, and Joseph O’Rourke. Refold
rigidity of convex polyhedra. Computational Geometry:
Theory and Applications, 46(8):979–989, October 2013.

[5] Erik D. Demaine and Joseph O’Rourke. Geomet-
ric Folding Algorithms: Linkages, Origami, Polyhedra.
Cambridge University Press, 2007.

[6] Takashi Horiyama and Ryuhei Uehara. Nonexistence of
common edge developments of regular tetrahedron and
other Platonic solids. In Proceedings of the China-Japan
Joint Conference on Computational Geometry, Graphs
and Applications (CGGA 2010), pages 56–57, 2010.

[7] Tonan Kamata, Akira Kadoguchi, Takashi Horiyama,
and Ryuhei Uehara. Efficient folding algorithms for
regular polyhedra. In Proceedings of the 32nd Canadian
Conference on Computational Geometry (CCCG 2020),
pages 131–137, 2020.

[8] Yu. G. Reshetnyak and S. S. Kutateladze, editors. A.
D. Alexandrov: Selected Works, chapter Existence of a
convex polyhedron and a convex surface with a given
metric, pages 169–173. Part I. Gordon and Breach,
1996.

[9] Toshihiro Shirakawa, Takashi Horiyama, and Ryuhei
Uehara. On common unfolding of a regular tetrahe-
dron and a cube (in Japanese). Origami No Kagaku
(Journal of Science Origami in Japanese), 4(1):45–54,
2015. (See [10] for details.).

[10] Ryuhei Uehara. Introduction to Computational
Origami: The World of New Computational Geometry.
Springer, 2020.

[11] Dawei Xu, Takashi Horiyama, Toshihiro Shirakawa, and
Ryuhei Uehara. Common developments of three in-
congruent boxes of area 30. Computational Geometry:
Theory and Applications, 64:1–17, August 2017.

A Common Unfoldings from Regular Dodecahedron
to Tetramonohedron in Theorem 8

Figures 17, 18, 19, and 20 show the common unfoldings of
each consecutive pair of polyhedra in the refolding sequence
from the proof of Theorem 8.

340

33rd Canadian Conference on Computational Geometry, 2021

Figure 17: A common unfolding of D and Q1

Figure 18: A common unfolding of Q1 and Q2

341

CCCG 2021, Halifax, Canada, August 10–12, 2021

Figure 19: A common unfolding of Q2 and Q3

Figure 20: A common unfolding of Q3 and Q4

342

CCCG 2021, Halifax, Canada, August 10–12, 2021

Edge-Unfolding Prismatoids: Tall or Rectangular Base

Vincent Bian∗ Erik D. Demaine† Rachana Madhukara∗

Abstract

We show how to edge-unfold a new class of convex poly-
hedra, specifically a new class of prismatoids (the con-
vex hull of two parallel convex polygons, called the top
and base), by constructing a nonoverlapping “petal un-
folding” in two new cases: (1) when the top and base
are sufficiently far from each other; and (2) when the
base is a rectangle and all other faces are nonobtuse
triangles. The latter result extends a previous result
by O’Rourke that the petal unfolding of a prismatoid
avoids overlap when the base is a triangle (possibly ob-
tuse) and all other faces are nonobtuse triangles. We
also illustrate the difficulty of extending this result to a
general quadrilateral base by giving a counterexample
to our technique.

1 Introduction

A famous open problem known as Dürer’s problem [2,
Open Problem 21.11, p. 298] asks whether every con-
vex polyhedron has an edge unfolding , that is, a set
of edges to cut such that the remaining surface unfolds
into the plane without overlap. Despite the simple state-
ment of the problem, a solution remains elusive. One
approach to making partial progress on this problem is
to prove that special classes of convex polyhedra have
edge unfoldings.

One of the simplest yet still-open cases is prisma-
toids, defined as the convex hull of two parallel convex
polygons, called the top and base (bottom). Aloupis
[1] showed that, if we omit the top and base, the re-
sulting “band” of side faces has an edge unfolding. The
challenge is thus to place the top and base without over-
lap; indeed, O’Rourke [3] showed that it is impossible
to simply attach these polygons to an unfolded band
without overlap (a “band unfolding”).

A simpler goal is to unfold a prismatoid with the top
removed, resulting in a polyhedron homeomorphic to
a disk called a topless prismatoid . At CCCG 2013,
O’Rourke [4] constructed an edge unfolding for any top-
less prismatoid whose faces other than the base are tri-
angles. Specifically, the edge unfolding has a strong

∗MIT Department of Mathematics, Cambridge, MA, USA
{vinvinb,rachanam}@mit.edu

†MIT Computer Science and Artificial Intelligence Laboratory,
Cambridge, MA, USA, edemaine@mit.edu

property called petal unfolding , meaning that it does
not cut any of edges incident the base.

A topless prismatoid can be viewed as the local neigh-
borhood of a single face on an arbitrary convex poly-
hedron; indeed, this work extends past petal unfold-
ings of a single face and its edge-adjacent faces (“edge-
neighborhood patch”) on a convex polyhedron [5] and of
“domes” where all faces except a base share a single ver-
tex [2, Section 22.5.2, p. 319] (which introduced petal
unfoldings as “volcano unfoldings”). On the negative
side, O’Rourke [4] showed that the larger neighborhood
of faces sharing a vertex with a single face on a convex
polyhedron (“vertex-neighborhood patch”) does not al-
ways have a nonoverlapping petal unfolding. On the
positive side, O’Rourke [4] showed that such a neighbor-
hood has a nonoverlapping petal unfolding if the base is
a triangle (possibly obtuse) and all other incident faces
are nonobtuse triangles.

The latter result also leads to an edge unfolding of
prismatoids with both the top and base, provided the
base B is a triangle (possibly obtuse) and all other faces
(including the top A) are nonobtuse triangles. In this
setting, the definition of petal unfolding extends to
mean that it does not cut any of edges incident to the
base B, and cuts all but one of the edges incident to the
top A. (Thus, in all cases, the side faces unfold by sim-
ple rotation around one edge of the base B.) O’Rourke
[4] in fact showed that all petal unfoldings of such pris-
matoids avoid overlap.

1.1 Our Results

We expand O’Rourke’s methods to encompass a broader
family of prismatoids, showing that petal unfoldings
never overlap in two new situations. Our first result
is a step toward O’Rourke’s conjecture that the base
can be any convex polygon, provided the other faces
are nonobtuse triangles:

Theorem 1.1 For any prismatoid where the base B is
a rectangle and all other faces are nonobtuse triangles,
every petal unfolding avoids overlaps.

Our second result takes a different approach, showing
that “tall” prismatoids always petal unfold, and thus
thin prismatoids form the remaining hard case:

Theorem 1.2 For any prismatoid whose top A and
base B are sufficiently far apart, every petal unfolding

343

33rd Canadian Conference on Computational Geometry, 2021

bi

aj

ak

ri−1

ri

bi−1

Ri

Di

bi+1

Bi Bi−1

θ

θ

Figure 1: The diamond region Di and the A-triangles
it contains. [Based on Figure 12(a) of [4], used with
permission.]

avoids overlaps. More precisely, petal unfolding avoids
overlap if

z ≥ 3πPA + 4dAB
2∆B

,

where

• z is the distance between the planes containing the
two bases A,B of the prismatoid;

• PA is the perimeter of the top A;

• ∆B = π − maxi∠B(bi) is the smallest turn angle
in the base B (in radians);

• A′ is the projection of A onto the plane of B; and

• dAB is the diameter of the region A′ ∪B.

We prove these theorems in Sections 3 and 4 respec-
tively, after covering the relevant background from [4]
in Section 2. In Section 3.1, we give counterexamples
for extending our technique of Theorem 1.1 to general
quadrilaterals.

2 Background

We follow the notation given in O’Rourke’s paper [4].
Let A and B be the top and base of the prismatoid,
respectively. Let a1, a2, . . . , am and b1, b2, . . . , bn be the
vertices of A and B respectively. Let Bi be the triangle
with one vertex on A and two vertices at bi and bi+1,
where indices are treated modulo n. Call these triangles
B-triangles, and define A-triangles similarly.

Consider two consecutive B-triangles Bi−1 = bi−1biaj
and Bi = bibi+1ak in the unfolding, as in Figure 1. De-
fine a diamond region Di bounded by line segments biaj
and biak, and by the rays through aj and ak perpen-
dicular to biaj and biak respectively. Because all the
A-triangles are nonobtuse, all the A-triangles attached
to edges biaj or biak stay within the region Di.

bi

aj

ak

bi−1

Vi

bi+1

Bi Bi−1

A

Di+1 Di−1
Bi+1

Bi−2

Figure 2: The region Vi containing A-triangles and the
top A. [Based on Figure 13 of [4], used with permission.]

Define a larger wedge region Vi bounded by rays
−−→
biaj

and
−−→
biak (and disjoint from B, Bi−1, and Bi), as shown

in Figure 2. Wedge Vi contains all the A-triangles at-
tached to biaj or biak, as well as the top A, should it be
attached to one of these A-triangles.

3 Unfolding Rectangular-Base Prismatoids
(Proof of Theorem 1.1)

O’Rourke [4] showed that petal unfoldings never overlap
for prismatoids with a convex base B and all other faces
nonobtuse triangles provided that the region Vi does
not intersect any B-triangles or any diamonds Dj for
j 6= i (which contain all other A-triangles). He showed
that this property holds when the base B is a triangle
(possibly obtuse). We extend this result to include the
case where B is a rectangle, as in Figure 3.

b1

b2

b3

b4

a1
a2

a3

Figure 3: An acutely triangular prismatoid with a rect-
angular base.

Theorem 1.1 For any prismatoid where the base B is
a rectangle and all other faces are nonobtuse triangles,
every petal unfolding avoids overlaps.

Proof. O’Rourke [4] showed that it suffices to prove
that Vi does not intersect any B-triangles or any dia-
monds Dj for j 6= i. He already showed that Vi does

344

CCCG 2021, Halifax, Canada, August 10–12, 2021

not intersect Bj , for i− 2 ≤ j ≤ i+ 1. For a rectangle,
this covers all four B-triangles. Because Bi and Bi+1 are
acute, the rays bounding Di+1 and Di−1 lie strictly out-
side Vi, so Vi cannot intersect those diamonds. Thus,
all that remains is to show that Vi does not intersect
Di+2.

By symmetry, it suffices to show that V1 does not
intersect D3, as shown in Figure 4. In fact, we claim
that D3 is contained within the region S bounded by

rays
−−→
b1b2 and

−−→
b1b4 containing b3. We will show that the

line segments and rays bounding D3 never leave S.

B B1

B2

B3

B4

b1

b2b3

b4

V1

D3

d1

d2

aj

ak

Figure 4: The regions V1 and D3 for the rectangular
prismatoid in Figure 3. Note that D3 always lies in
the lower left quarter-plane, and V1 always lies in the
remaining three quarters of the plane.

Let aj and ak be the apices of triangles B2 and B3,
so D3 is bounded by the line segments b3ak and b3aj ,

and by the rays
−→
d1 and

−→
d2 perpendicular to b3ak and

b3aj at ak and aj respectively.

First, if b3ak intersected line b1b4, then ∠b3b4ak of B3

would be obtuse. Also, b3ak cannot intersect ray b1b2,
as it is on the wrong side of line b3b4. Thus, b3ak is
contained in S. Similarly, b3aj is contained in S.

Now consider ray
−→
d1. Suppose it intersected

−−→
b1b2 at

some point x. Then, in quadrilateral b2b3akx, we have
∠b3akx = ∠xb2b3 = 90◦, meaning ∠b2b3ak = 180◦ −
∠akxb2 < 180◦. However, this would make ∠b4b3ak =
360◦−∠b2b3b4−∠b2b3ak > 90◦, contradicting B3 being
nonobtuse.

Similarly, suppose that
−→
d1 intersects

−−→
b1b4 at some

point y. Then, in triangle yakb4, we have ∠yakb4 <
180◦, so ∠b4akb3 = 360◦ − ∠yakb4 − ∠b3aky > 360◦ −
180◦−90◦ = 90◦, contradicting the assumption that B3

is nonobtuse. Hence,
−→
d1 never intersects

−−→
b1b2 or

−−→
b1b4,

and is thus contained in S. A similar argument shows

that
−→
d2 is contained in S.

Finally, we show that V1 intersects S only at point
b1. This claim holds because the two rays bounding V1

only ever intersect
−−→
b1b2 and

−−→
b1b4 at b1. Therefore, all

petal unfoldings do not overlap. �

3.1 Difficulty of Quadrilateral Bases

It is natural to hope that Theorem 1.1 can be extended
to all quadrilateral bases, or any convex base. How-
ever, our technique above relies on the fact that each
angle of B is nonobtuse. Specifically, showing that Vi
and Di+2 do not intersect requires the assumption that
∠b1b2b3 ≤ 90◦, and ∠b1b4b3 ≤ 90◦. Every angle of
polygon B is nonobtuse only when B is a rectangle or a
nonobtuse triangle, so other quadrilaterals will require
a more careful treatment.

Furthermore, the prismatoid Pc, shown in Figure 5
and coordinatized in Table 1, is counterexample to the
conjecture that the regions do not overlap when B is a
general quadrilateral. Figure 6 shows the overlap.

1
0

1
2

3
4

5
6

3
2

1
0

1
2

3

0
1
2

Figure 5: Prismatoid Pc has a quadrilateral base and
all other faces nonobtuse triangles. The largest angle
among the triangular faces is 89.7◦.

The points of this prismatoid can be moved so that
the base B is cyclic (vertices lie on a common circle),
forming a new prismatoid Pcyc with coordinates given
by Table 2. To find the coordinates of Pcyc, we used
a gradient descent method to minimize |∠b1b2b3 − 90◦|
while maintaining that all triangles are nonobtuse. The
overlap of the regions in Pcyc is much more difficult to
see (refer to Figure 6): the angle formed at the inter-
section point is less than 0.003◦.

These examples mean that extending the proof of
Theorem 1.1, even to just cyclic quadrilaterals, requires
a more precise treatment than considering the regions
Vi and Di. On the other hand, all petal unfoldings of
Pc and Pcyc have no overlap, so O’Rourke’s conjecture
about petal unfoldings with an arbitrary convex base
remains plausible.

345

33rd Canadian Conference on Computational Geometry, 2021

b1

b2

b3

b4

V2

D4

Figure 6: The regions V2 and D4 intersect.

Point(s) Coordinates
b1 (−0.95, 0.00, 0.00)

b2, b4 (0.00, ±3.00, 0.00)
b3 (6.00, 0.00, 0.00)
a1 (−0.90, 0.00, 1.45)

a2, a3 (0.30, ±0.10, 1.45)

Table 1: The coordinates of the vertices of Pc.

Point(s) Coordinates
b1 (−1.5633, 0.0000, 0.0000)

b2, b4 (0.0000, ±3.7169, 0.0000)
b3 (8.8372, 0.0000, 0.0000)
a1 (−1.5581, 0.0000, 1.6435)

a2, a3 (0.2225, ±0.0299, 1.6435)

Table 2: The coordinates of the vertices of Pcyc.

4 Unfolding Tall Prismatoids
(Proof of Theorem 1.2)

For a given prismatoid, let z denote the distance be-
tween the planes of the top and base. We show that,
for prismatoids with large enough z, all petal unfoldings
avoid overlap.

Theorem 1.2 For any prismatoid whose top A and
base B are sufficiently far apart, every petal unfolding
avoids overlaps. More precisely, petal unfolding avoids
overlap if

z ≥ 3πPA + 4dAB
2∆B

,

where

• z is the distance between the planes containing the
two bases A,B of the prismatoid;

bi
bi + 1

aj
aj

pi

Mi
Mi + 1

Figure 7: One of the B-triangles, along with some A-
triangles attached to its left. In this configuration, pi is
on the opposite side of bi as bi+1, so ∠bi+1biaj is obtuse.

• PA is the perimeter of the top A;

• ∆B = π − maxi∠B(bi) is the smallest turn angle
in the base B (in radians);

• A′ is the projection of A onto the plane of B; and

• dAB is the diameter of the region A′ ∪B.

Proof. We show that, in any petal unfolding, every face
that gets attached to a B-face Bi will stay in a region

Si bounded by the edge bibi+1 and the rays
−→
Mi and−−−→

Mi+1 bisecting the exterior angles of B at bi and bi+1

respectively, as shown in Figure 7. Note that the angle

between edge bibi+1 and
−→
Mi is at least π

2 + ∆B

2 , and
every edge of the form biaj has length at least z.

Let 0 < ` < 1 be a constant. Consider a B-face
Bi with vertices bibi+1aj . First we claim that the angle
∠bi+1biaj will be at most π

2 + ∆B

2 ·`, as long as z ≥ 2dAB

∆B`
.

Consider the projection pi of aj onto bibi+1. If it lies
on the same side of bi as bi+1, then ∠bi+1biaj is acute,
and we are done. Otherwise, the angle is obtuse, but we
can use the fact that the length of bipi is at most dAB .

In this case, we know ∠bi+1biaj = π
2 + arctan bipi

piaj
.

Also piaj ≥ z, so

∠bi+1biaj ≤
π

2
+ arctan

dAB
z
≤ π

2
+
dAB
z
.

Substituting in our assumption that z ≥ 2dAB

∆B`
, we get

that ∠bi+1biaj ≤ π
2 + ∆B

2 · `, as desired.

Second, we show that, as long as z ≥ 3π
2∆B

PA · 1
1−` , the

angle ∠ajbia′j subtended by the A-triangles attached to

346

CCCG 2021, Halifax, Canada, August 10–12, 2021

edge ajbi is at most ∆B

3 (1 − `). We start by bounding
the measure of ∠ajbiaj+1 for any edge ajaj+1 of A. By

the Law of Sines,
sin∠ajbiaj+1

ajaj+1
=

sin∠ajaj+1bi
ajbi

, so

∠ajbiaj+1 = arcsin
ajaj+1 sin∠ajaj+1bi

ajbi

≤ arcsin
ajaj+1

z
.

Because arcsinx ≤ π
2x for x ≥ 0, we obtain ∠ajbiaj+1 ≤

π
2 ·

ajaj+1

z .
The sum of these lengths ajaj+1 over all A-triangles

is PA, so the sum of the angles over all A-triangles is
at most πPA

2z . Because the angle ∠ajbia′j is the sum of
∠ajbiaj+1 over some subset of the edges ajaj+1 of A, we
can substitute z ≥ 3π

2∆B
PA · 1

1−` to get that ∠ajbia′j ≤
∆B

3 (1− `).

Third, we show that, if z ≥ min
(

2d
∆B`

, 3π
2∆B

PA · 1
1−`

)
,

then no matter where the top face A is attached in
the unfolding, it will not exit the region Si. We ac-
complish this by proving that the shortest distance

dmin between the point a′j and the ray
−→
Mi is at least

PA

2 . By the triangle inequality, this means that A can-

not intersect
−→
Mi. Note that this shortest distance is

dmin = bia
′
j sin

(
π
2 + ∆B

2 − ∠bi+1biaj − ∠ajbia′j
)
.

We know that bia
′
j ≥ z, and from our previous results,

we know that

π

2
+

∆B

2
− ∠bi+1biaj − ∠ajbia′j

≥ π

2
+

∆B

2
− π

2
− ∆B

2
· `− ∆B

3
(1− `)

=
∆B

6
(1− `).

Using the fact that sinx ≥ 2x
π for 0 ≤ x ≤ π

2 , we obtain

dmin ≥
3π

2∆B
PA ·

1

1− ` ·
2

π
· ∆B

6
(1− `) =

PA
2
,

as desired.
Repeating this argument for every side biaj of every

B-triangle, we obtain that, if

z ≥ min

(
2d

∆B`
,

3π

2∆B
PA ·

1

1− `

)
,

then no petal unfolding of P can overlap. This lower
bound is minimized when the two inputs to the min
are equal. This occurs when ` = 4d

4πPA+4d , which when

substituted yields the desired z ≥ 3πPA+4dAB

2∆B . �

The most room for improvement in this proof is the
second step’s bound z ≥ 3π

2∆B
PA · 1

1−` , as it is impossible
for all the A-triangles to be attached to a single point
on A.

Acknowledgments

This work began as a final project in an MIT class on
Geometric Folding Algorithms (6.849, Fall 2020). We
thank Professor Joseph O’Rourke for his guidance on
this project. We also thank Yevhenii Diomidov for help-
ful suggestions.

References

[1] Greg Aloupis. Reconfigurations of Polygonal Structures.
PhD thesis, McGill University, 2005.

[2] Erik D. Demaine and Joseph O’Rourke. Geometric Fold-
ing Algorithms: Linkages, Origami, Polyhedra. Cam-
bridge University Press, 2007.

[3] Joseph O’Rourke. Band unfoldings and prismatoids: A
counterexample. Technical Report 087, Smith College,
October 2007. arXiv:0710.0811.

[4] Joseph O’Rourke. Unfolding prismatoids as convex
patches: Counterexamples and positive results. In
Proceedings of the 25th Canadian Conference on Com-
putational Geometry, 2013. Full paper available as
arXiv:1205.2048.

[5] Val Pinciu. On the fewest nets problem for convex poly-
hedra. Proceedings of the 19th Canadian Conference on
Computational Geometry, pages 21–24, 2007.

347

CCCG 2021, Halifax, Canada, August 10–12, 2021

On Guarding Polygons with Holes

Sharareh Alipour∗

Abstract

There is an old conjecture by Shermer [7] that in a poly-

gon with n vertices and h holes, bn+ h

3
c vertex guards

are sufficient to guard the entire polygon. The conjec-
ture is proved for h = 1 by Shermer [7] and Aggarwal
[5] seperately. In this paper, we prove a theorem simi-
lar to the Shermer’s conjecture for a special case where
the goal is to guard the vertices of the polygon (not the
entire polygon) which is equivalent to finding a domi-
nating set for the visibility graph of the polygon. Our
proof also guarantees that the selected vertex guards
also cover the entire outer boundary (outer perimeter
of the polygon) as well.

1 Introduction

A set S of points is said to guard a polygon if, for every
point p in the polygon, there is some q ∈ S such that
the line segment between p and q is inside the polygon.

The art gallery problem asks for the minimum num-
ber of guards that are sufficient to guard any polygon
with n vertices. There are numerous variations of the
original problem that are also referred to as the art
gallery problem. In some versions guards are restricted
to the perimeter, or even to the vertices of the polygon
which are called vertex guards. Some versions require
only the perimeter or a subset of the perimeter to be
guarded. The version in which guards must be placed
on vertices and only vertices need to be guarded is equiv-
alent to the minimum dominating set problem for the
visibility graph of the polygon.

In graph theory, for a given graph G with vertex
set V (G), U ⊆ V (G) is a dominating set for G if ev-
ery vertex v ∈ V (G)\U has a neighbor in U . Mini-
mum dominating set problem is to find a dominating
set V ∗ ⊆ V (G) such that the size of V ∗ (denoted by
|V ∗|) is minimum among all dominating sets.

Related results

Chvátal’s art gallery theorem [2] states that bn3 c vertex
guards are always sufficient and sometimes necessary to
guard a simple polygon with n vertices. Later, Fisk [3]
gave a short proof for Chvátal’s art gallery theorem.

∗School of Computer Science, Institute for Research in Funda-
mental Sciences, Iran, alipour@ipm.ir

O’Rourke [6] proved that any polygon P with n ver-
tices and h holes can be guarded with at most bn+2h

3 c
vertex guards. Note that n is the total number of ver-
tices of the polygon including the boundary and holes.
But Shermer conjectured that any polygon P with n
vertices and h holes can always be guarded with bn+h

3 c
vertex guards. This conjecture has been proved by Sher-
mer [7] and Aggarwal [5] independently for h = 1. For
h > 1, the conjecture is still open for more than 35
years. However Hoffmann, Kaufmann and Kriegel in
[4] and Bjorling-Sachs and Souvaine in [1] proved Sher-
mer’s conjecture for point guards (i.e. the guards can
be chosen from any points inside or on the boundary of
the polygon).

Our result

In this paper, we prove that every polygon with holes
has a special kind of triangulation to be specified
shortly. Next by using this theorem, we prove that
bn+h

3 c vertex guards are sufficient to guard the bound-
ary of a polygon with n vertices and h holes. By bound-
ary of P we mean the outer perimeter of P . As far as
we know this version has not been studied.

2 Special triangulation

In this section, we present some basic definitions and
a theorem in order to prove our main result. It has
been proved that every polygon with (or without) holes
can be triangulated and this triangulation is not always
unique.

Definition 1 In a given polygon P with h holes, a tri-
angle ∆ in a triangulation of P is called a special trian-
gle if one of its edges is an edge of a hole and the apex
vertex is a vertex of the polygon not on that hole (see
Figure 1).

Theorem 2 Every polygon with holes has a triangula-
tion with a special triangle.

Note that according to the definition of special triangle,
one edge of a special triangle is always on a hole and its
apex vertex is on the boundary or on a different hole.
In the following we explain the proof of Theorem 2.

348

33rd Canadian Conference on Computational Geometry, 2021

P

h1

h2

e f

∆

a

b c

d

∆′

Figure 1: A polygon with 2 holes. In this example, ∆
and ∆′ are special triangles.

2.1 Proof of Theorem 2

Consider a triangulation of our polygon. If the number
of holes is bigger than one, then there must exist an edge
of this triangulation from a vertex of one of these holes
to a vertex of the boundary of the polygon. If we make
this edge into two parallel edges of very small distance
from each other, we can make this hole into a part of the
boundary, hence reduce the number of holes. A special
triangle for this reduced polygon is also a special triangle
for the original polygon. By induction on the number
of holes, therefore it is enough to consider only the case
when we have a polygon with one hole. Let us assume
that this polygon with one hole has n vertices, and the
existence of a special triangle for a polygon with one
hole is proved for the case when the number of vertices
is less than n. Note that the smallest possible n is 6 that
happens when we have a triangle with a triangle as hole
inside. Any triangulation for this particular polygon
has a special triangle and in fact 3 special triangles.
With this assumption, we can assume that non-adjacent
vertices of the boundary can not see each other. Since if
they do, the chord connecting them divide the boundary
into two smaller parts where the hole is inside one of
them. A special triangle for this smaller instance of a
polygon with one hole, is also a special triangle for the
original polygon. Hence a triangulation for the polygon
does not have a triangle whose vertices are all on the
boundary. This implies that any vertex of the boundary
must see at least one vertex of the hole. Assume that
we do not have a special triangle, we want to reach to
a contradiction.

Let B1 be a vertex of the boundary. According to the
previous argument, it will see a vertex on the hole, say
H1. Without loss of generality, we may assume that the
ray B1H1 in a counter clockwise rotational sweep, sees
part of the edge H1H

′
1 of the hole.

Since a special triangle does not exist, this rotating
ray will hit an obstacle that prevents it from seeing the

entire edge H1H
′
1. Let H ′′1 be the point on the edge

H1H
′
1 obtained by rotating this ray until it hits an ob-

stacle. This obstacle is either a vertex from the bound-
ary or a vertex from the hole. Assume that it is a vertex
B2 from the boundary (we will discuss the second pos-
sibility shortly). Since the vertices on the boundary do
not see non-adjacent vertices on the boundary, B2 must
be adjacent to B1. Then B2 also sees the portion H1H

′′
1

of H1H
′
1 and even more. Repeating the sweeping pro-

cedure with the ray B2H
′′
1 , we will hit another obstacle,

unless B2H1H
′
1 is a special triangle. The sequence of

obstacles obtained this way can not be all the vertices
of the boundary, because they keep seeing larger and
larger portions of the edge H1H

′
1 and hence they are

different and we only have a finite number of vertices
of the boundary. So we will reach a vertex H2 of the
hole after say k1 ≥ 1 steps. The vertices B1, . . . , Bk1

are consecutive vertices on the boundary and the angles
Bi−1BiBi+1 are all less than π, since they are obtained
by counter clockwise sweeps. The vertex Bk1 will see a
portion of the edge of the hole with the end-point H2,
say H2H

′
2. Since both of the edges of the hole with end-

point H2 are to the left of the ray Bk1
H2, therefore we

still need to rotate this ray counter clockwise along the
edge H2H

′
2 and hence if we hit a boundary vertex ob-

stacle, say Bk1+1, the angle Bk1−1Bk1
Bk1+1 is less than

π.
Notice that the obstacles encountered for a vertex

of the boundary B by rotating its corresponding ray
counter-clockwise, can not all be among the vertices of
the hole. In this case the rotating ray will make a full
rotation of 2π, and this is impossible since the maxi-
mum rotational angle that this ray can have is less than
the angle of the vertex B, which is definitely less than
2π degrees.

Now since we are assuming that no special triangle
exists, the process of sweeping rays and hitting obsta-
cles will be continued forever, producing a sequence of
vertices of the boundary and hole. Since after reaching a
boundary vertex, we can not get only vertices from the
hole, the sequence of boundary vertices that are con-
secutive vertices of the polygon must come back to the
starting point. Hence we go along all the vertices of the
boundary, however the outer angles Bi−1BiBi+1 are all
less than π. This is a contradiction.

3 Guarding vertices with vertex guards

Now as a result of Theorem 2, we present our main
theorem.

Theorem 3 For a given polygon P with n vertices and
h holes, bn+h

3 c vertex guards are always sufficient to
guard the vertices of P and also the entire boundary.

Proof. The proof is by induction on the number of
holes. Chvátal’s theorem implies that when h = 0, bn3 c

349

CCCG 2021, Halifax, Canada, August 10–12, 2021

P ′

h2

a1 a2

Figure 2: We split the vertex a into 2 vertices a1 and
a2. Now the polygon has 1(h − 1) hole and 16(n + 1)
vertices.

vertex guards are sufficient to guard the entire polygon.
Suppose that the theorem is proved for h−1 holes. Now
suppose that we are given a polygon P with n vertices
and h holes. According to Theorem 2, there is a tri-
angulation with a special triangle ∆. Suppose that ∆
has a vertex a, on the boundary or a hole and another
edge, bc on some other hole. We split a into two ver-
tices a1 and a2. So, P is changed into a polygon P ′ with
h−1 holes and n+ 1 vertices (See Figure 2). According
to the induction assumption, we can choose bn+1+h−1

3 c
vertex guards that guard the vertices of polygon P ′ and
the boundary of P ′. Since a1 and a2, are guarded in
P ′, then all vertices of P are guarded by at most bn+h

3 c
vertex guards of P . Also by induction the boundary of
P ′ is guarded. On the other hand the boundary of P is
a subset of the boundary of P ′, so the boundary of P
is guarded too. Note that if we have two vertex guards
on a1 and a2, in P they are combined into one vertex
guard. �

Remark 4 Note that in fact this proof, gives something
slightly more. The guards will cover not only the entire
outer perimeter of the polygon, but also the perimeter
of holes with an exception of at most h segments on
them. The reason is that the segment that is the base of
the special triangle that was used in the proof above is
not necessarily guarded, so a similar induction on the
number of holes will prove our claim.

4 Concluding remarks

In this paper, we have proved a theorem similar to
the Shermer’s conjecture for a special case of the Art
Gallery problem where we only need to guard the ver-
tices of the polygon. The proof is based on the existence
of a special triangle in the polygon. The proposed algo-
rithm is simple and easy to implement. In future work
one can possibly extend this idea for the general case.

Also for a given connected graph G, it has been
proved that the size of minimum dominating set of G is

≤ n

2
. So if we construct a polygon with minimum num-

ber of holes such that its visibility graph is isomorphic
to G, our proof gives an upper bound of bn+h

3 c for the
size of minimum dominating set of G.

References

[1] I. Bjorling-Sachs and D. L. Souvaine. An efficient algo-
rithm for guard placement in polygons with holes. Dis-
crete & Computational Geometry, 13:77–109, 1995.

[2] V. Chvatal. A combinatorial theorem in plane geome-
try. In Journal of Combinatorial Theory, Series B, vol-
ume 18, pages 39–41.

[3] S. Fisk. A short proof of chvátal’s watchman theorem.
J. Comb. Theory, Ser. B, 24(3):374, 1978.

[4] F. Hoffmann, M. Kaufmann, and K. Kriegel. The art
gallery theorem for polygons with holes. In 32nd Annual
Symposium on Foundations of Computer Science, San
Juan, Puerto Rico, 1-4 October 1991, pages 39–48, 1991.

[5] J. O’Rourke. The art gallery theorem: its variations, ap-
plications, and algorithmic aspects. Ph.D. thesis, Johns
Hopkins Univ, 1984.

[6] J. O’Rourke. Art Gallery Theorems and Algorithms. Ox-
ford University Press, Inc., New York, NY, USA, 1987.

[7] T. Shermer. Triangulation graphs that require extra
guards. NYIT Computer Graphics Technical Report, 3D-
13, 1984.

350

CCCG 2021, Halifax, Canada, August 10–12, 2021

An Acrophobic Guard Watchtower Problem on Terrains

Ritesh Seth∗ Anil Maheshwari† Subhas C Nandy‡

Abstract

In the acrophobic guard watchtower problem for a poly-

hedral terrain, a square axis-aligned platform is placed

on the top of a tower whose bottom end-point lies on the

terrain’s surface. As in the standard watchtower prob-

lem, the objective is to minimize the tower’s height such

that every point on the surface of the terrain is weakly

visible from the platform placed on the top of the tower.

In this paper, we show that in R2, the problem can be

solved in O(n) time, and in R3, it takes O(n2) time,

where n is the total number of vertices in the terrain.

1 Introduction

The problem of placing watchtowers on a polyhedral

terrain in R3 is a matter of great interest to the com-

putational geometers for a long time. The problem is

to establish a given number (k) of watchtowers on a

polyhedral terrain such that every point on the sur-

face of the terrain becomes visible to at least one of

the watchtowers, and the maximum height among these

k watchtowers is minimized. It has many applications

in surveillance and navigation in the context of defence

and geographic information systems. Initial research on

this topic was on the extension of the art-gallery prob-

lems in polyhedral terrain.

Cole and Sharir [3] proved that the problem of find-

ing the minimum number of vertex guards on a poly-

hedral terrain in R3 is NP-hard. Bose et al. [2] ob-

tained lower bounds on the number of vertex and edge

guards for a polyhedral terrain. The first algorithm for

the one watchtower placement problem in R3 was pro-

posed by Sharir [5]; it runs in O(n log2 n) time. Later

the time complexity of the problem was improved to

O(n log n) by Zhu [7]. Agarwal et al. [1] proposed

a deterministic polynomial-time algorithm for the dis-

crete version of the two watchtower problem where the

∗Indian Statistical Institute, Kolkata, India,

ritesh1996seth2015@gmail.com
†Carleton University, Ottawa, Canada, anil@scs.carleton.ca
‡Indian Statistical Institute, Kolkata, India,

nandysc@isical.ac.in

watchtowers are allowed to be placed only at the ver-

tices of the terrain. The time complexity of their algo-

rithm is O(n
11
3 polylog(n)), and it uses the parametric

search technique of Meggido [4]; here n is the number

of vertices of the polyhedral terrain. The general k-

watchtower problem is studied recently in [6], and the

proposed time complexity is (k3nk+4). For the special

case, where k = 2, their algorithm works in O(n4 log n)

worst-case time, which is slightly less efficient than the

algorithm by [1]. The algorithm in [6] is simpler to im-

plement as compared to that of [1].

This paper introduces a new variation of the watch-

tower problem, the acrophobic guard watchtower prob-

lem. Given a terrain T in R3 with x-y plane as its base,

and a square horizontal (parallel to the x-y plane) plat-

form L whose sides are parallel to the x and y axis of

unit side-length, the watchtower is a vertical (parallel to

the z-axis) line segment τ whose top end-point touches

any point of L and the bottom end-point touches the

surface of T . Here, the objective is to find a point on

the surface of T such that if the tower is placed at that

point, then every point on the surface of T is weakly

visible from L. In other words, a guard can observe ev-

ery point on the surface of the terrain while patrolling

on the (transparent) platform L, and the length of the

tower τ is minimized.

We first study the problem for terrains in R2 where the

platform is a unit length line segment parallel to the

x-axis and propose a linear time algorithm. A terrain

in R2 is a x-monotone polygonal chain consisting of n-

vertices. Next, we extend the problem for terrains in

R3 where the platform is an axis-aligned unit square

parallel to the x-y plane. A terrain in R3 is typically

visualized as a planar triangulation consisting of n-faces

in the x-y plane, where each point also has an associated

height, i.e., its z-coordinate.

2 Watchtower problem in R2

A terrain T in R2 is a x-monotone connected polygo-

nal chain whose both the end-points touch the x-axis

at two points, defining the base of the terrain. (In

351

33rd Canadian Conference on Computational Geometry, 2021

the literature, often this is referred to as a terrain in

1.5-dimension.) A watchtower τ at a point γt on an

edge/vertex of T is a vertical line segment [γt, γl], and

a horizontal line segment L = [a, b] of unit length, called

the platform, touching the point γl (see Figure 1). The

point γt will be referred to as the base of the watch-

tower, and the height h(γt) of the watchtower τ is the

length of [γt, γl]. The objective is to locate the base

γt ∈ T such that the height of the tower at γt, denoted

by h(γt), is minimum, and the entire terrain T is weakly

visible1 from the platform L placed at γt.
L

T

τ

γt

γl
a b

a′

b′

Figure 1: Demonstration of segment watchtower

Observe that for a platform L = [a, b], the height of the

watchtower is defined as follows: take vertical projec-

tions a′ and b′ of the points a and b on the poly-chain

T . If γt is a point of maximum y-coordinate on the

poly-chain T from a′ to b′, and γl is the vertical projec-

tion of γt on the line segment [a, b], then the height of

the watchtower is the length of the line segment [γt, γl]

(see Figure 1).

The objective is to identify an appropriate point γt on

the surface of T and place the platform L = [a, b] on a

point γl which is vertically above γt such that the entire

T is weakly visible from L, and the length of [γt, γl] is

minimum among every other point on the polyline T
as the base of the watchtower. Note that the optimal

height of the acrophobic guard watchtower is no larger

than the height of the usual (point) watchtower [5, 7].

First let us fix some notations. We use V and E to

denote the vertices and edges of T ; |V | = n, and hence

|E| = n − 1. Let ll and lr be two vertical lines at the

left and right end-points of T . T splits the vertical strip

bounded by ll and lr into two regions, namely the upper

region and the lower region, respectively. An edge e of T
is completely visible from a point α if for any point β ∈ e
the line segment [α, β] does not intersect the interior of

the terrain T . The line containing an edge e ∈ E splits

the plane into two regions (half-planes), namely positive

region e+ and negative region e−; e is not at all visible

1T is said to be weakly visible from L if every point of T is

visible from some point of L

from any point in the e− region (assuming e 6∈ e−).

Result 1 [7] The terrain T is completely visible from

every point of the region S bounded by the intersection

of the positive regions defined by the lines containing all

the edges in E.

We further split the edge set of T into two subsets. The

edges with positive (resp. negative) slope with respect

to positive x axis are referred to as acute (resp. obtuse)

edges. We assume that there is no edge perpendicular

to the x-axis. We use A (resp. O) to denote the set of

all acute (resp. obtuse) edges; E = A∪O and A∩O = φ.

Definition 1 With respect to the edges in A (resp. O),

the positive region A+ (resp. O+) is the region such that

every point in A+ (resp. O+) lies in the positive region

of all the edges in A (resp. O).

Please refer to Figures 2-4 for illustration of what fol-

lows. Note that all the edges in A (resp. O) are visible

from every point in A+ (resp. O+) region. The bound-

ary of the region A+ (resp. O+) is the upper envelope of

the lines containing all the edges e ∈ A (resp. e ∈ O),

which is a convex polychain such that as x increases,

the y-coordinate on the curve monotonically increases

(resp. decreases) (See Figure 2c). Let the boundary of

A+ and O+ intersect at a point r, called the critical

point. The horizontal (parallel to x-axis) line on which

the critical point lies is referred to as the threshold line.

The region S = A+ ∩ O+ is a convex region, which is

unbounded above, and is formed by the part of those

upper envelopes A+ and O+ up to the threshold line.

The part of the boundary of S on A+ (resp. O+) is

referred to as the right (resp. left) boundary of S.

We computeM = (A+⊕L)∩ (O+⊕L), where ⊕ is the

Minkowski sum operator. It is a convex region bounded

by two polychains from left and right where the left

chain is parallel to the boundary of O+ and the right

chain is parallel to the boundary of A+ (see Figure 3a).

We define M+ as the region of M that lies above the

threshold line (see Figure 3b). So M+ ⊆ M. Observe

that M+ = S ⊕ L. Also we define M− = M \M+.

Needless to say that M− is the region of M below the

threshold line. The region defined by M+ \ S and that

lies to the left (resp. right) of S is referred as the left

annulus (resp. the right annulus) (see Figure 3c). By

Result 1, if a point of L lies in the region S, then from

that point, the entire terrain T is visible. This indicates

that if L properly lies in the region M+, then T is

entirely visible from L (see Figure 3c). We now show

352

CCCG 2021, Halifax, Canada, August 10–12, 2021

threshold line

rA+ O+

S

Figure 2: (a) Terrain T in 2-dimensions with acute (Blue) and obtuse (Green) edges (b) Extension of edges of terrain,

(c) Demonstration of A+, O+, S, critical point r and threshold line

threshold line

rA+ O+

S

M

threshold line

r

S

M

A+ O+

threshold line

r

S

A+ O+

M+left
annulus

right
annulus

Figure 3: (a) Minkowski sum of A+ and O+ with the platform L (b) M (c) Left and right annulus and M+

threshold line

rA+ O+

M−

M M̂

γ∗l

γ∗t

Figure 4: The feasible region: (a)M− containing M̂− (shaded), (b)M containing M̂ (shaded), (c) Minimum height

watchtower (dashed line) between M̂ and T with respect to event points

that it is also possible to see the entire terrain T by

placing L completely inside M− below the threshold

line. By the property of A+ and O+ regions, we have

the following result:

Result 2 If L intersects the boundary of both A+ and

O+ regions, then for every point α on the surface of T ,

there exists a point β ∈ L that can see the point α.

Proof. L intersects the boundary of both A+ and O+

regions implies that there exists a point on L that lies

inside A+, and also there exists a point on L that lies

inside O+. The result follows by the property of A+

and O+ regions. �

Observe that, below the threshold line, if the segment

L entirely lies inside the region M− then L intersects

both A+ and O+ regions (see the shaded region in Fig-

ure 4a). Thus, Result 2 suggests the following:

353

33rd Canadian Conference on Computational Geometry, 2021

Result 3 Terrain T is weakly visible from L if and only

if L lies completely inside the region M.

Proof. If part follows from the above discussion. To

prove the only if part, suppose L properly intersects the

boundary of M (i.e., part of L is outside M). With-

out loss of generality, assume that L intersects the left

boundary ofM. The left boundary ofM is a poly-chain

defined by the Minkowski sum of L and the boundary

of O+ (see Figure 3a). If L intersects the left boundary,

it cannot lie completely inside (O+⊕L). So, L does not

touch the boundary of O+. This implies that L does

not intersect the e+ region of at least one of the edges

of O; hence that edge is not visible from L. �

Definition 2 Let a horizontal line at y = y0 intersect

the boundary of M at two points α and β. A cut on

M at y0 is defined as the line segment [α, β] and it is

denoted by W(y0).

Definition 3 A point p ∈ M is feasible if there exists

a point q ∈ L such that if L is positioned coinciding the

point q with the point p then entire L lies inside M.

Result 4 Let yp be the y-coordinate of a point p ∈M.

Point p is feasible if and only if |W(yp)| ≥ 1.

Let yr denote the y-coordinate of the critical point r.

Observe that the length of W(yr) is twice the length of

L (see Figure 4a). Hence any point p ∈M+ is feasible.

Recall that M− is a convex region bounded above by

W(yr). It may have an infeasible region at its bottom

(see the unshaded region in Figure 4a). Observe that a

point p ∈M− is infeasible if the length of |W(yp)| < 1.

Since M− is convex, the infeasible region lies at the

bottom of M−. Thus we have the following result :

Result 5 The bottom side of the feasible region of plac-

ing L in M− is bounded by a horizontal line W(y∗)
at y = y∗ such that the length of W(y) for any height

y ∈ [y∗, yr] is at least ≥ 1 and there exists no y < y∗

such that |W(y)| ≥ 1.

We remove the infeasible region from M− by perform-

ing a linear scan of its boundary and let the feasible

region thus obtained is denoted by M̂−. The feasible

region of entireM is M̂ = (M+ ∪M̂−), see Figure 4b.

Observe that M̂ is a convex region that is unbounded

from above and bounded below by a horizontal line seg-

ment (parallel to x-axis) of length ≥ 1.

Lemma 1 A point p ∈ M is feasible if and only if

p ∈ M̂.

Lemma 2 Let τ∗ be an optimal height watchtower,

where γ∗l is its top end point and γ∗t is its bottom end

point. Then, γ∗l lies on the boundary of M̂.

Proof. From the above discussion we know that any

point p ∈ M̂ is feasible. Since the objective is to find the

minimum vertical distance between T and the convex

object M̂, the height of τ∗ is minimized if the end point

γ∗l is not in the interior of M̂ (see Figure 4c). �

To find an optimum placement of the watchtower, we

vertically project the vertices of M̂ on the boundary of

the terrain T (see Figure 4c). These projected points

and the vertices of T define the event points. We com-

pute the height of τ at each event point. The minimum

of these heights gives us the desired result. The platform

L is placed with its one endpoint touching the boundary

of M̂ at that height. As the vertices of T are available

in order, the boundaries of A+ and O+ are available

in O(n) time using a stack. Thus, the region S, and

hence the boundary of M+ (the portion of M above

the threshold line) are also computable in O(n) time.

Similarly, the boundary of M− is also computable in

O(n) time. By performing a linear scan of the bound-

ary of M−, we can compute M̂− in O(n) time. Thus

the computation of M̂ =M+∪M̂− requires O(n) time.

As the complexity of M is O(n), the complexity of M̂
and the number of event points is O(n). By processing

the event points in order, we have the following.

Theorem 3 The minimum height watchtower for a

terrain in R2 can be computed in O(n) time.

3 Watchtower problem in R3

In R3, a terrain T with x-y plane as its base is a tri-

angulated polyhedral surface such that any line vertical

to the x-y plane hits the surface of T at most at one

point. We use n to denote the number of vertices of T ;

the number of edges and faces of T are both O(n). Any

plane parallel to the x-y plane will be referred to as the

horizontal plane and any line perpendicular to the x-y

plane will be referred to as a vertical line. We use VT ,

ET , FT to denote the set of vertices, edges and faces

of T , respectively. Here the platform is a unit square

plate L parallel to the x-y plane, and the two pairs of

non-adjacent edges of L are parallel to x and y axis,

354

CCCG 2021, Halifax, Canada, August 10–12, 2021

respectively. The watchtower with acrophobic guard is

formed by placing L on the top of a vertical line segment

τ = [γt, γl], called the tower, whose bottom end-point

γt touches the surface of T and the top end-point γl
touches a point of L. The problem is to identify the

point γt on the surface of T and γl on the surface of

L such that T is weakly visible from L and the height

(=|γtγl|) of the tower τ is minimized.

The height of the of watchtower τ in R3 at a particu-

lar level (z-coordinate) is defined as follows: Vertically

project the four edges of L on the surface of T ; thus,

we have a region on the surface of T bounded by four

polychains. Let θ be a point on the surface of T inside

that region having maximum z-coordinate value. Now,

vertically project θ at a point θ′ on L. Then the height

of the tower τ is (z(θ′)− z(θ)).
Next, we extend some of the concepts from the R2 case

to R3.

Definition 4 A face f ∈ FT is said to be completely

visible from a point α ∈ R3 if for any point β ∈ f the

line segment [α, β] does not intersect the interior of T .

The plane containing a face f ∈ FT splits R3 into two

half-spaces, namely positive region f+ and negative re-

gion f−. The face f is invisible from f− (assuming

f ∈ f+, f+ ∩ f− = ∅). We now classify each face

X

Y

af

bf

a′f

b′f

Figure 5: Method of classification of the faces of T

f ∈ FT into one of the following eight classes as follows.

Let [af , bf] be a line segment of unit length, with af ∈ f
and bf ∈ f+, that is normal to the face f . Let, [a′f , b

′
f]

be the vertical projection of [af , bf] on x-y plane. Trans-

late the line segment [a′f , b
′
f] such that a′f coincides with

the origin of the coordinate system (see Figure 5). Now,

• if b′f lies in the proper inside of the i-th quadrant

in the projection, then f ∈ Fi, i = 1, 2, 3, 4,

• if b′f lies at a point on the positive (resp. negative)

part of the x-axis then f ∈ FX+ (resp. f ∈ FX−),

and

• if b′f lies at a point on the positive (resp. negative)

part of the y-axis then f ∈ FY+ (resp. f ∈ FY−).

Thus, we have eight sets of faces, namely

F1, F2, F3, F4,FX+, FX−, FY+, FY−. From now on-

wards, we use F5, F6, F7, and F8 to denote FX+,

FX−, FY+, and FY−, respectively. Observe that,

every pair of sets (Fi, Fj), i, j ∈ {1, . . . , 8}, i 6= j, are

disjoint, and
⋃8
i=1 Fi = FT . Also we consider four sets

as Q0 = F1 ∪ F7, Q1 = F2 ∪ F6, Q2 = F3 ∪ F8 and

Q3 = F4 ∪ F5. We use F+
i =

⋂
f∈Fi

f+; any point

π ∈ F+
i can see all the faces f ∈ Fi. Finally, we

define S =
⋂8
i=1 F

+
i =

⋂
f∈F f

+, the region bounded

by the upper envelopes of all the planes f ∈ F . It

is a convex polytope that is unbounded above (See

Figure 6(a)). We refer the point r ∈ S having the

minimum z-coordinate (say z0) as the critical point.

A horizontal plane G passing through the point r is

referred to as the threshold plane (see Figure 6(a)).

S

threshold plane

moving
corner

fixing
corner

f

M(f+,L)

f+ f−
L

Figure 6: Demonstration of (a) S region, and (b)

Minkowski sum of a plane and the platform L

Result 6 [7] From any point π ∈ S the entire terrain

is visible.

Definition 5 Let R be a convex region in R3. We use

BR to denote the boundary surface (a polyhedron in R3)

of the object R. Let M(BR, O) denote the boundary

surface of the Minkowski sum R⊕O of R with another

convex object O.

For a non-vertical face f ∈ FT , and the object O = L,

the Minkowski sum M(f+,L) is obtained by moving

one corner (called the moving corner) of L on the bound-

ary surface of f+ such that the entire L lies in the f−

region, (see Figure 6(b)).

Definition 6 The corner of L opposite to the moving

corner with respect to a face f ∈ FT is referred to be as

the fixing corner.

355

33rd Canadian Conference on Computational Geometry, 2021

Note that M(f+,L) is the locus of the fixing corner

of L, and hence M(f+,L) is a plane lying in f− re-

gion. If L is placed above threshold plane by putting

its fixing corner atM(f+,L), then L will touch S, and

the entire terrain T will be visible from L. We define

M(F+
i ,L) =

⋂
f∈Fi

M(f+,L), the boundary of the en-

velope of the planesM(f+,L) for all f ∈ Fi. Finally, we

compute M =
⋂8
i=1M(F+

i ,L), which is the envelope

of all the planes M(f+,L) for f ∈ FT . M is a convex

polytope, which is unbounded above. We will use M+

(resp. M−) to denote the portion of
⋂8
i=1M(F+

i ,L)

above (resp. below) the threshold plane G.

Let us first consider M+. Observe that M+ =

M(S,L). It properly contains S. The boundaries of

M+ and S are mutually parallel, and the platform L
exactly (horizontally) fits in the annulus (M+ \S). Ob-

serve that, if L lies completely insideM+, then at least

one point L must lie inside (or may touch) S. Thus,

from Result 6, we have

Result 7 If L lies completely inside M+ then T is

completely visible from L.

As S 6= ∅ above the threshold plane, we have positions

of placing L such that it lies entirely inside M+. As in

Section 2, here also we show that though S = ∅ below

the threshold plane, there are regions to place L below

the threshold plane such that the entire T is weakly

visible from L. Observe that, M− is also a convex

region (consult Figure 4a). Here, if we can place L such

that it intersects the f+ regions of all the faces f ∈ FT ,

then every point on the surface of T is weakly visible

from L. This implies T is weakly visible from L if L is

placed completely inside the boundary of M−. So, our

next objective is to identify the feasible region of M−
such that if an appropriate corner of L is placed inside

M− then T becomes weakly visible from L. From now

onwards, we will use H(z) to denote a planar convex

region obtained by the intersection ofM− and the hor-

izontal plane at height z. From the convexity of M−,

we have the following result.

Result 8 The bottom side of the feasible region of plac-

ing L in M− is bounded by a horizontal plane H(z∗)
at z = z∗ such that the region H(z) for any height

z ∈ [z∗, z0] completely contains L, and there exists no

z < z∗ such that L entirely lies inside H(z) (see Figure

7).

To obtain H(z∗) we need the following results:

H(z)

H(z∗)

Figure 7: A portion of M− bounded by two horizontal

planes. Top view of H(z) and H(z∗) are shown on the

left and right, respectively. Shaded region denotes the

feasible region for the placement of L.

Result 9 One can test whether L entirely fits in a con-

vex polygonal region C by formulating the problem as a

four variate linear programming problem, and it can be

solved in O(n) time.

Proof. Let the coordinates of the bottom-left and the

top-right corners of the diagonal of L be (x1, y1) and

(x2, y2), respectively. We need to test whether all the

four points (x1, y1), (x1, y2), (x2, y1) and (x2, y2) lie in-

side C. In other words, each point must satisfy the linear

inequality with respect to every edge of C. In addition,

x2 − x1 = y2 − y1. Assuming the coordinate system

such that the entire M− lies in the first quadrant, we

also have the non-negativity constraints for the variables

x1, x2, y1, y2. This is a 4-variate linear programming for

the constraint satisfaction, which can be solved in O(n)

time, where n is the number of sides of C. They are

bounded by the number of faces of T . �

The above result suggests the following procedure for

computing H(z∗):

• Perform a binary search among the vertices ofM−
with respect to their z-coordinate.

• At each chosen vertex v, compute the intersection

of a horizontal plane h(v) passing through v and the

polytope M−, which is a convex polygonal region

C(v).

• One can test whether L fits in C(v) in O(n) time

by formulating the problem as a four variate linear

programming problem (see Result 9)

• Thus, we can identify two vertices v′ and v′′ ofM−
such that L can be placed inside C(v′) but L cannot

be placed completely inside C(v′′), and there exists

no vertex v ofM− satisfying z(v′) < z(v) < z(v′′).

• Now, we can obtain the exact height z∗ ∈
[z(v′′), z(v′)] such that the polygon C(z∗) obtained

356

CCCG 2021, Halifax, Canada, August 10–12, 2021

p

p

Figure 8: Illustration of feasible region (shaded) of

H(z): (a) p is feasible, (b) p is infeasible.

by the horizontal plane at height z∗ contains L, and

for any height z′ < z∗, the polygon C(z′) does not

contain L by the following result.

Result 10 Let v′ and v′′ be two consecutive vertices of

M− as above. Consider the glass shaped convex polyhe-

dron µ obtained by slicing M− at the heights z(v′) and

z(v′′). The top and bottom faces of µ are bounded by

two horizontal planes at height z′ and z′′, respectively,

such that the top face contains the unit square platform

L, but the bottom face does not contain the platform L.

We can formulate the problem of identifying a height

z∗ (z′′ < z∗ ≤ z′) such that the polygon C(z∗) obtained

by the horizontal plane at height z∗ contains L, and for

any height z < z∗ the polygon C(z) does not contain L
as a linear programming problem and can be solved in

O(n) time.

Proof. We formulate this problem also as an optimiza-

tion version of the linear programming problem. Let the

coordinate of the two end-points of the diagonal of L fit-

ted in µ at height z be (x1, y1, z) and (x2, y2, z). The

LP formulation of the problem is to minimize z sub-

ject to the constraints that the four vertices (x1, y1, z),

(x1, y2, z), (x2, y1, z) and (x2, y2, z) lies inside µ. If µ

has k faces, we have 4k linear constraints; in addition,

we have x2 − x1 = y2 − y1, z(v′′) ≤ z ≤ z(v′), and all

the five variables are positive. This also can be solved

in O(n) time to obtain the optimum value of z∗. �

By Result 8, the portion of M− below z = z∗ is infea-

sible. With little abuse of notation, from now onwards,

we will use M− to denote the portion of M− inside

the slab bounded by the horizontal plane at z = z0 and

z = z∗. We know that the intersection region H(z) of

a horizontal plane at any height z ∈ (z∗, z0] with M−
completely contains L. However, the entire region of

H(z) is not feasible (see Definition 7) for placing L. We

now discuss the method of identifying the feasible region

(of placing L) on H(z).

Definition 7 A point p ∈ H(z) is said to be feasible if

there exists a point q ∈ L such that if L is positioned

coinciding the point q with the point p then entire L lies

inside H(z) (see Figure 8).

We now discuss the problem of computing the feasible

region of H(z). Let EH(z) denotes the set of edges on

the boundary of H(z). Consider a pair of edges e1 and

e2 of EH(z). Let `1 and `2 be the half-lines containing e1
and e2 respectively such that the cone χ(e1, e2) formed

by `1 and `2 contains H(z). In Lemmas 4 and 5, we

first characterize the feasible region in χ(e1, e2). The

intersection of the feasible regions for pairs of edges in

EH(z) will lead us to the feasible region of H(z).

e1
e2

(a) (c)(b) (d)

α

β

l
p

p

α

p
e1 e2

p

s

r

s

r

Figure 9: (a) and (b): Illustration of proof of Lemma 4 -

(a) p is in the infeasible region of χ(e1, e2), and (b) p is in

the feasible region of χ(e1, e2); (c) and (d): Illustration

of proof of Lemma 5

Lemma 4 For a pair of edges e1 and e2 of two sets

where e1 ∈ Qi and e2 ∈ Qi+1 mod 4, a point p ∈
χ(e1, e2) is feasible for the placement of L (see Defi-

nition 7) inside χ(e1, e2) if and only if the segment `

obtained by the intersection of the cone χ(e1, e2) and a

horizontal (resp. vertical) line (depending on i is even

(resp. odd)) passing through p has length greater than

or equal to 1.

Proof. If part follows from the fact that the slope of e1
and e2 have different signs. If an edge of L is matched

with the segment `, the entire L lies inside the truncated

region of the cone χ(e1, e2) by `.

The only if part follows from (i) if p 6∈ χ(e1, e2), p is

infeasible, and (ii) if p lies inside the triangular region

formed by the cone χ(e1, e2) and the line segment ` then

the horizontal (resp. vertical) line incident on i, if i is

even (resp. odd), through p with the cone χ(e1, e2) is

of length less than one, and if a point q ∈ L is made

coincident with p then the unit length horizontal line

segment through q inside L goes outside χ(e1, e2) (see

Figure 9a and 9b)). �

357

33rd Canadian Conference on Computational Geometry, 2021

(a) (b)

Figure 10: Feasible region Ĥ(z) of H(z): two instances

are demonstrated, where Ĥ(z) is the shaded region.

Lemma 5 For a pair of edges e1 and e2 of two

sets where e1 ∈ Qi and e2 ∈ Qi+2 mod 4, a point

p ∈ χ(e1, e2) is feasible for the placement of L inside

χ(e1, e2) if and only if the length of both the line seg-

ments making an angle π
4 from the projections q1 and

q2 of p on the lines `1 and `2, respectively, are of length

greater than or equal to
√

2.

Proof. Since the slopes of e1 and e2 are of the same

sign, the platform L may not fit inside the cone χ(e1, e2)

by aligning a side of L through the point p (see Figure

9c). In order to fit L inside the cone χ(e1, e2) keeping

p ∈ χ(e1, e2), one may need to fit the diagonal of L (of

length
√

2) at the horizontal projection of p (a point r)

on either e1 or e2 depending on whichever is closer. In

other words, a segment of length
√

2 making an angle
π
4 can be placed inside χ(e1, e2) aligning one of its end-

points at the point r (see Figure 9d). Thus, the if part

follows.

To prove the only if part assume that p is feasible inside

χ(e1, e2) and a segment of length
√

2 making an angle
π
4 cannot fit inside χ(e1, e2) by aligning one of its end-

points at the point r (on the line, say `1). Thus, the

unit-length horizontal line segment through p with one

of its end-points coinciding at r intersects `2. Thus,

p cannot be on the boundary of L. If p lies properly

inside L then the said boundary moves closer to the

point of intersection of `1 and `2 than the previous case,

and hence it would intersect either `1 or `2 or both.

Thus, we have the contradiction that p is feasible inside

χ(e1, e2). �

Lemmas 4 and 5 suggest the shape of the feasible region

Ĥ(z) of H(z), where z ∈ [z0, z
∗], in M− as follows:

Observation 1 Ĥ(z) has two horizontal edges eN , eS
at its North and South sides, respectively, and two verti-

cal edges eE, eW at its East and West sides, respectively.

The length of each of the edges in {eN , eE , eS , eW } is

greater than or equal to 1. The edges eS and eW may

or may not be adjacent on the boundary of Ĥ(z). In the

latter case eS and eW can have length ≥ 1, and they are

connected by a polygonal chain, which is a part of the

boundary of H(z) in the third quadrant (see Figure 10a).

In the former case the length of eN and eE are exactly

equal to 1, and their point of contact lies inside the inte-

rior of H(z) (see Figure 10b). The same holds for each

of the pairs (eW , eN), (eN , eE) and (eE , eS).

During the presentation of the algorithm, the edges eN ,

eE , eS and eW may sometimes be referred to as the

extreme edges in North, East, South and West sides,

respectively.

Extraction of feasible region in H(z): Let

P1, P2, P3, and P4 be the polychains of H(z) that corre-

spond to the sets Q0, Q1, Q2 and Q3, respectively. We

can compute Ĥ(z) ⊆ H(z) by executing the following

three steps:

Step 1: We consider each pair of adjacent quadrants

Pi and Pi+1 mod 4. Consider every pair of edges (ea, eb)

of H(z), ea ∈ Pi and eb ∈ Pi+1 mod 4; if they are not

adjacent (i.e., do not have a common vertex) inH(z), we

extend ea and eb to meet at a point α (see Figures 9a and

9b). Let e′a and e′b be those two half-lines (originating at

α). Let `ab be a horizontal line segment of unit length

that touches both e′a and e′b. Thus, the cone χ(e1, e2)

splits into two parts: (i) a triangle and (ii) an open

polygon Πab bounded by e′a, e
′
b, `ab. Part (i) is infeasible

and part (ii) is feasible for placing L. For each pair of

adjacent quadrants, consider all possible pairs of edges

taking one from each of these quadrants, and generate

such polygons. Let EN be the set of the edges `ab of all

the generated polygons Πab. These open polygons will

be referred to as type-1 polygons.

Step 2: Now, consider each pair of diagonally opposite

quadrants Pi and Pi+2 mod 4. Consider every pair of

edges ea ∈ Pi and eb ∈ Pi+2 mod 4, and extend them to

meet at a point β (see Figure 9c). As earlier, name these

two half-lines as e′a and e′b, respectively. Now, draw a

line segment of length
√

2 and making an angle π
4 with

the positive (resp. negative) direction of the x-axis de-

pending on whether i = 1 or 2 touching e′a and e′b at r

and s respectively (see Figure 9d). Draw a horizontal

line segment `1ab at r and a vertical line segment `2ab at

s that touch at a point π inside H(z). Now, we have an

open polygon with four edges `1ab, `
2
ab, e

′
a, and e′b, called

type-2 polygon. Generate all possible type-2 polygons.

Let EO be the set of edges `ab of all the generated poly-

gons.

358

CCCG 2021, Halifax, Canada, August 10–12, 2021

Step 3: Finally, we obtain Ĥ(z) as the intersection of

all possible type-1 polygons, all possible type-2 polygons

and H(z). The significance of the sets EN and EO will

be discussed in Lemma 6.

We denote the set of edges on the boundary of Ĥ(z) by

EĤ(z). So any edge e ∈ EĤ(z) is either part of an edge

e′ ∈ EH(z) or a newly added edge from {EN ∪ EO}.

Lemma 6 Any point p ∈ H(z) is feasible if and only if

p ∈ Ĥ(z).

Proof. First we show that if p ∈ Ĥ(z) then p is a feasi-

ble point of H(z). We need to show that for every point

p ∈ Ĥ(z) there exists a point q on the platform L such

that if q and p coincides in a placement of L then every

point in L lies in Ĥ(z).

Let us draw a horizontal half-line ` from p to its right

side, that may hit (i) the polychain P1, or (ii) the edge

eE , or (iii) the polychain P4. In Case (i) (resp. (iii)),

let θ be the point on the edge e ∈ P1 (resp. P4) where `

hits. Due to the presence of eN , eS , eW and eE , it can

be ensured that if the top-right (resp. bottom-right)

corner is placed on θ then all the other corners of L lie

inside Ĥ(z). In Case (ii), let ` hits eE at the point θ. We

move upward until the top end-point of eE is reached.

We place the top-right corner of ` at that point, and

can ensure that L lies inside Ĥ(z) arguing as above.

Now we show that if p ∈ H(z) is feasible then p ∈ Ĥ(z).

For contradiction, assume that p 6∈ Ĥ(z). Since, p ∈
H(z) but p 6∈ Ĥ(z) =⇒ p ∈ (H(z) \ Ĥ(z)). Then,

surely there exist an edge e ∈ EĤ(z) such that, either

e ∈ EH(z) or e ∈ {EN ∪EO}, and p ∈ e−. If e ∈ EH(z),

then p must be outside of H(z) which is a contradiction.

If e ∈ {EN ∪EO}, e must bound an infeasible region of

some pair of edges say e1, e2 ∈ EH(z). Since p ∈ e−, then

p is in the infeasible region of χ(e1, e2), where L cannot

be placed, which is a contradiction that p is feasible for

H(z). �

u

v

G(u, v)

H(z)

H(z′)

u

v

G(u, v)

Ĥ(z)

Ĥ(z′)

(a) (b)

Tapes

Figure 11: (a) A glass G(u, v), and (b) Feasible region

of G(u, v): Ĥ(z), Ĥ(z′) and tapes

The characterization of the feasible region in H(z) of

Lemma 6 will be used in the computation of the feasible

region of M−. As we will see, the intersection of the

feasible region of the cones corresponding to every pair

of boundary planes of M− will determine its feasible

region. In order to compute the feasible region M̂− of

M−, we process every pair of consecutive vertices u and

v of M− with respect to their z-coordinate values. We

define a glass G(u, v), which is the intersection of M−
and a slab U defined by two horizontal planes at two

consecutive vertices u and v (see Figure 11a).

For each glass G(u, v) of M−, we compute the feasible

region Ĝ(u, v) as follows: Let H(z) (resp. H(z′)) be the

top (resp. bottom) face of the glass G(u, v), where z

(resp. z′) are the z-coordinate of the vertex u (resp. v).

Here also two types of open polyhedron will be gener-

ated. Type 1 polyhedrons are obtained by considering

each pair of adjacent quadrants (Qi, Qi+1 mod 4) and

then consider every pair of faces (f, f ′), f ∈ Qi and

f ′ ∈ Qi+1 mod 4. Draw a plane passing through two

line segments parallel to the x (resp. y) axis depending

on i is odd (resp. even) that creates unit length edges

of Ĥ(z) (resp. Ĥ(z′)). The type 2 open polyhedrons

are bounded by four planes where two planes are mutu-

ally orthogonal with respect to the x-y plane, and are

obtained by considering the diagonal of L as was done

in R2. Finally, we compute the intersection of all the

type-1 and type-2 polyhedrons and G(u, v) to compute

the feasible region Ĝ(u, v) inside the glass G(u, v) (see

Figure 11b). Since the feasible region Ĥ(z′) is same for

each pair of consecutive glasses G(u, v) and G(v, w) of

M−, one can obtain the feasible region M̂− by merging

the feasible regions of all the glasses of M−.

Lemma 7 The feasible region of all the glasses in M−
can be computed in O(n2) time.

Proof. We process the glasses inM− from top to bot-

tom with respect to the z-coordinate of its vertices.

For the first glass G(u, v)2, let us consider the compu-

tation of the right-most face(s)3 that is parallel to the

y-axis. We have O(n2) such faces obtained from O(n2)

type-1 and type-2 polyhedrons. We compute the en-

velope E(u, v) of these faces closer to the vertical line

through the critical point r in time linear in the num-

2u corresponds to the top face ofM− and v is the next vertex

with respect to the z-coordinate values of the vertices
3We may have multiple faces whose projection on the x-y plane

is parallel to the y axis, and bound the right side of the feasible

region of M−; these faces make different angles with the x-y

plane.

359

33rd Canadian Conference on Computational Geometry, 2021

ber of faces. The shape of this envelope is a tape like

structure. The computation of the tapes in the left, top

and bottom sides of Ĝ(u, v) is analogous. Merging the

generated faces with the faces of the glass can also be

done in time linear in the number of faces of the glass.

From the next glass G(v, w) onwards, observe that

we may have exactly one new face f ′ that ap-

pears/disappears in this glass. Thus, we may have at

most n many y-axis parallel new faces generated. The

computation of the tape in the right side of the feasi-

ble region of this glass needs the computation of the

envelope of the extension of E(u, v) and the O(n) new

y-axis parallel faces that are generated due to the ap-

pearance of the new face f ′ in the glass G(v, w). Thus

O(n) time is needed to compute the envelope E ′(v, w) of

these new y-axis parallel faces, and finally another O(n)

time is needed to compute the envelope E(v, w) by merg-

ing E(u, v) and E ′(v, w). Since the number of vertices

of M− is O(n), the overall time complexity bound for

computing M̂− follows. �

Data structure: We can store M+ and M̂− as

a planar map on the x-y plane; its each vertex is

attached with the z-coordinate of the corresponding

vertex in M+ and M̂−, respectively, and each face

is associated with the moving corner (top-left/top-

right/bottom-left/bottom-right) information of L. This

information will be used to decide whether to place L
at a point q on the boundary of M+ and M̂−.

Computation of minimum height watchtower for

T : We have computed the feasible region M̂ of M by

merging M+ and the feasible region M̂− of M−. As

in Section 2, here also, we first vertically project all the

vertices and edges of M̂ to get a set VM̂ of points on

the surface of T . It needs to mention that VM̂ contains

the projection of vertices of M̂ as well as contains the

intersections of the projection of edges of M̂ with the

edges of T . Now, the event points are V̂ = VM̂ ∪ VT .

We project each of these event points on the surface of

M̂. Thus, for each event point γ, we have a tower τ(γ).

We choose the tower whose length is minimum among

these towers for the placement of the platform L.

Lemma 8 The number of vertices in the feasible region

of M is O(n).

Proof. Size of the set FT is O(n). M is the intersection

region of Minkowski planes corresponding to each face

f ∈ FT . Since,M is the intersection of O(n) number of

half-planes, the size ofM is O(n) [7]. While computing

the feasible region M̂− of M−, we have merged the

feasible region of each pair of consecutive glasses. The

number of faces whose projection on the x-y plane are

not axis-aligned is O(n) since these are (part of) the

original faces ofM. We now need to count the number

of new faces (whose projection on the x-y plane are axis-

aligned) that are generated in M̂−.

Let us consider the faces whose projection of the x-y

plane is parallel to the y-axis and keepsM− to its right

side. These form a continuous tape such that at every

height (z-coordinate), the width of the tape is greater

than or equal to 1. Observe that the intersection of this

tape with each face is a single line segment. Thus, the

number of edges (and hence the number of vertices) of

this tape is O(n). The same argument holds for the

other three tapes boundingM− to its South, West and

North sides, respectively. Thus, the result follows. �

Theorem 9 Given a terrain T consisting of n vertices,

we can compute in O(n2) time a watchtower τ of min-

imum height with its base on T and the location of an

axis-parallel unit-square plate L placed on the top of τ

such that T is weakly visible from L.

Proof. Correctness and the optimality of the height of

the tower follow from the above discussion. Now we

analyze the overall time complexity by analyzing each

of the tasks.

Task 1: Computing the Minkowski sum of each face f ∈
∪8i=1F

+
i and L needs O(1) time. M is the intersection

of a set of half-spaces which needs O(n log n) time to

compute, and its combinatorial complexity is O(n) [7].

By Lemma 7, the time complexity of computing the

feasible region M̂− ofM− is O(n2). Thus computation

of M̂ takes O(n2) time.

Task 2: By Lemma 8, the number of vertices and faces

of M̂ is O(n). We triangulate the surface of M̂. Project

M̂ on the terrain L obtaining an arrangement consist-

ing of O(n2) planar cells, where each cell has an O(1)

complexity. Now, the minimum height watchtower for

each cell can be computed in O(1) time.

Task 3: Finally, the placement of the plate L above

the tower at a point q on the surface of M̂ so that

it completely lies in M̂ can be done in O(1) time as

follows:

• If q is on a face φ of M̂, then we place the cor-

ner of L that is the fixing corner (see Definition 6)

attached with the face φ.

• If q is on a tape of M̂−, we align the corresponding

360

CCCG 2021, Halifax, Canada, August 10–12, 2021

boundary of L with q. The point on the boundary

of L that is to be aligned with q can be computed in

O(1) time by considering the two boundary edges

of the tape on which q lies.

Thus, the overall time complexity of the algorithm is

dominated by that of Task 1. �

4 Conclusions

In this paper, we study a new variant of a watchtower

problem where the terrain is guarded by a unit-size

square platform that resides on the top of the tower. We

considered the problem of minimizing the height of the

tower. One can consider several variants of this prob-

lem, including having more than one watchtower and/or

having various platform shapes. We believe that our al-

gorithm for the terrain in R3 is not optimal. It may

be possible to find an o(n2) time algorithm by further

exploiting the structure of the feasible region below the

threshold plane for the case of a square platform.

References

[1] Pankaj K. Agarwal, Sergey Bereg, Ovidiu Daescu,

Heim Kaplan, Simeon Ntafos, Micha Sharir, and

Binhai Zhu. Guarding a terrain by two watchtowers.

Algorithmica, 58:352–390, 2010.

[2] Prosenjit Bose, Thomas Shermer, Godfried Tous-

saint, and Binhai Zhu. Guarding polyhedral ter-

rains. Computational Geometry, 7:173–185, 1997.

[3] Richard Cole and Micha Sharir. Visibility problems

for polyhedral terrians. Journal of Symbolic Com-

putation, 7:11–30, 1989.

[4] Nimrod Megiddo. Applying parallel computation al-

gorithms in the design of serial algorithms. Journal

of the ACM (JACM), 30:852–865, 1983.

[5] Micha Sharir. The shortest watchtower and related

problems for polyhedral terrains. Information Pro-

cessing Letters, 29(5):265–270, 1988.

[6] Nitesh Tripathi, Manjish Pal, Minati De, Gautam

Das, and Subhas C Nandy. Guarding polyhedral

terrain by k-watchtowers. In International Work-

shop on Frontiers in Algorithmics, pages 112–125.

Springer, 2018.

[7] Binhai Zhu. Computing the shortest watchtower of

a polyhedral terrain in O(n log n) time. Computa-

tional Geometry, 8(4):181–193, 1997.

361

CCCG 2021, Halifax, Canada, August 10–12, 2021

Constrained Obnoxious Facility Location on a Line Segment

Vishwanath R. Singireddy∗ Manjanna Basappa∗

Abstract

In this paper we study two restricted variations of the
obnoxious facility location problem in the plane, given
as follows. Given a line segment pq and a set P =
{p1, p2, p3, . . . , pn} of n demand points in the plane, and
a positive integer k, pack k maximum-radius congruent
disks centered on pq such that no point of P lies inside
any of these disks. We first prove that the decision
version of this problem can be solved in linear time and
then propose an (1− ε)-factor approximation algorithm

for the problem, that runs in O((n + k) log (||pq||2(k−1)ε))

time if the points are given in order, where ||pq|| is the
length of the line segment pq and ε > 0.

Another restricted problem is the minsum ob-
noxious facility location problem, in which we
are given a line segment pq and a set P =
{p1, p2, p3, . . . , pn} of n weighted demand points (hav-
ing weights w1, w2, . . . , wn, respectively) in the plane,
an integer k, and a distance λ, the goal is to pack k
disks of radius λ centered on the segment pq such that
the sum of weights of the points covered by the union
of these disks is minimal. For k = 1 we show that this
problem can be solved in O(n log n) time, and for any
k > 0 we give a dynamic programming solution that
runs in O(n3k) time.

1 Introduction

The obnoxious facilities (such as nuclear plants, garbage
dump yards, airports, industries from which toxic sub-
stances are released, etc.) need to be placed as much as
possible away from the other facilities such as residential
areas, hospitals, fire stations, post offices, etc. There is
a requirement for heavy transportation for these obnox-
ious facilities. Hence many of these facilities are located
on the sides of highway roads. Locating places for such
obnoxious facilities on highways such that they are away
from other non-obnoxious facilities is an essential prob-
lem to solve.

In most spatial location problems, the facilities are lo-
cated as close as possible to clients such that the clients
will get service by traveling less distance. In the case of
obnoxious facilities, these facilities have to be placed as

∗Computer Science & Information Systems Dept., Birla Insti-
tute of Technology & Science Pilani, Hyderabad Campus, India
{p20190420,manjanna}@hyderabad.bits-pilani.ac.in

far as possible from the other communities to have the
minimum nuisance generated by these obnoxious facili-
ties.

The obnoxious facility location problems are modeled
in different ways. The most common way is maximiz-
ing the cumulative minimum distance between obnox-
ious facilities and other non-obnoxious facilities in a
given location. Church and Garfinkel [6] introduced
the obnoxious p-median problem of locating p facili-
ties such that the cumulative minimum distance from
non-obnoxious facilities to p obnoxious facilities is max-
imized. The obnoxious p-median problem is modeled as
p-max-sum problem and is proved NP-hard [1]. Drezner
and Wesolowsky [9] formulated a variant of the obnox-
ious facility location problem: locating an obnoxious
facility that is as far as possible from arcs and nodes of
a network. They gave an (1 − ε)-approximation algo-
rithm that runs in O(a3 log (1/ε) time for the weighted
version of the problem, where a is the number of arcs
in the network. Later, its running time was improved
by Michael [7] with a slight modification of the problem
by considering rectilinear (grid city) network and reduc-
ing its running time to O(a2 log n log (1/ε)) time, where
n is the number of nodes in the network. Colmenar
et al. [3] gave an approximation algorithm for obnox-
ious p-median problem on a general network using a
heuristic method known as greedy randomized adaptive
search procedure. Gokalp [5] gave an iterative greedy
algorithm that produces a high-quality solution within
a short time.

Another variation of the obnoxious facility location
problem studied in the literature is the minimum-sum
obnoxious facility location problem, in which for a given
set of weighted points, we are required to place undesir-
able facilities that cover a subset of these points, sum
of weights of which is minimized. This kind of prob-
lem is motivated by the situation where some obnox-
ious facilities are required to be placed in a crowded
area. These facilities affect their close neighborhood
area. This neighborhood area may be approximated to
be a disk or a rectangle and a crowded region may be
approximated to a point with its weight equal to the
number of people in it. Now, we would like to place the
facilities so that the total number of people who will be
affected by these facilities is minimized. Drezner and
Wesolowsky [8] first studied this problem that positions
only a single facility by modeling this facility as a rect-
angle or a circle. Their algorithm runs in O(n2) time in

362

33rd Canadian Conference on Computational Geometry, 2021

both the rectangular and circular cases. Katz et al., [4]
later on improved the running time to O(n log n) for the
rectangular case. In this paper, we study a variation of
this problem, which may be considered a generalization
of this problem in one aspect, and a restricted version
of it in other aspects.

Our Contribution

In this paper, we first consider the constrained obnox-
ious facility location problem on a line segment, both
decision and optimization versions. We propose a lin-
ear time solution for the decision version and a fully
polynomial time approximation scheme for the opti-
mization version of the problem, that runs in O((n +

k) log (||pq||2(k−1)ε)) time if the given demand points are or-

dered from left to right. Later, we consider the weighted
version of a variant of the problem, namely, the minsum
obnoxious facility location problem. For k = 1 we show
that this problem can be solved in O(n log n) time, and
for any k > 0 we give a dynamic programming algorithm
that runs in O(n3k) time.

2 Problem Statement

We now define formally the two variants of the obnox-
ious facility location problem restricted to a line seg-
ment pq. Instead of maximizing the cumulative distance
from demand points to obnoxious facilities, we compute
the locations for obnoxious facilities near the highway
so that none of the demand points or points with a min-
imal sum of their weights lie within a specified distance
from the facilities.

Problem 1 The constrained obnoxious facility location
(COFL) problem is defined as follows: Given a set
P = {p1, p2, p3, . . . , pn} of n demand points in the
plane, a line segment pq and a positive integer k, pack
k maximum-radius (non-overlapping) congruent disks
d1, d2, d3, . . . , dk centered on pq such that no point of
P lies inside any of these disks, where p = (x(p), y(p)),
q = (x(q), y(q)), and y(p) = y(q).

Figure 1 shows the optimal solution for the problem
instance: given a set P of n points, line segment pq,
and k = 2.

Problem 2 The minsum obnoxious facility location
(MOFL) problem is defined as follows: Given a hor-
izontal line segment pq and a set P of n weighted
points {p1, p2, . . . , pn} whose weights are given by
w1, w2, . . . , wn respectively, in the plane, a positive in-
teger k and a distance λ > 0, pack k (non-overlapping)
disks d1, d2, d3, . . . , dk of radius λ centered on pq such

p q

d1 d2

Figure 1: Line segment pq, n points and k = 2

that

k∑

j=1

∑

{i|pi∈dj}
wi is minimized, i.e., the sum of weights

of the points covered by these non-overlapping disks is
minimized.

3 Constrained Obnoxious Facility Location (COFL)
Problem

First, we consider the following obvious observation,
then discuss how to solve the decision version of the
COFL problem.

Observation 1 If k is the number of disks that need to
be packed on the segment pq and rmax is the radius of

the optimal packing, then rmax ≤ (||pq||2(k−1)).

3.1 Decision version of Constrained Obnoxious Fa-
cility Location problem (DCOFL)

Given a set P of n points in the plane, a line segment pq,
an integer k and a real number L, the decision version
of the obnoxious facility location problem (DCOFL) is
to answer the question: can we pack k disks of radius
L, centered on pq such that none of the n points of P
lie inside any of these k disks?

Consider a set P of n points and pq as shown below in
Figure 2. Then for a given k, observe that if L ≤ rmax,
there is always a positive answer (i.e., yes-answer) to
the above question. Next, we give an algorithm that an-
swers this decision question and returns a corresponding
packing of k disks centered on pq if the answer is yes.

p q

Figure 2: Line segment pq and n points

363

CCCG 2021, Halifax, Canada, August 10–12, 2021

The solution to the DCOFL problem is as follows.
First, consider a regionR whose boundary is at distance
L from the line segment pq (i.e., the Minkowski sum of
pq and a disk of radius L) (see Figure 3).

p q

R

↓

↑

↓

L

← →L ← L→
↑

L
↓

Figure 3: Region R of distance L from pq

Observation 2 None of the points of P lying outside of
the region R will influence the choice of locating centers
for disks in the optimal solution to DCOFL.

Now, from every point inside or on the boundary of
the region R, we can locate center-points on pq which
are at distance L from this point, where a center-point
is a candidate center point for the disks in a packing.

Lemma 1 Each point of P lying in the region R will
have at least one center-point and at most two center-
points on pq at distance L.

Proof. Each of the points lying on the boundary of
R has exactly one center-point on pq at distance L,
whereas the points lying strictly in the interior of R
will have at most two center-points on pq at distance L,
(note that the coordinates of these center-points can be
computed in O(1) time using formulas from elementary
geometry). Hence, there will be O(1) center-points on
the line segment pq for every point in P ∩R (see Figure
4). �

p q

R

↓

↑

↓

L

← →L ← L→
↑

L
↓

pi

ci,1 ci,2

Figure 4: Point pi in the region R has two points ci,1
and ci,2 on pq at distance L

Observation 3 Let pi ∈ P be a point inside the region
R, and ci,1 and ci,2 be the center-points corresponding

to pi, then none of the k disks in an optimal solution to
DCOFL will have their center points lying on the open
interval (ci,1, ci,2) of the segment pq.

Now, consider another point pj ∈ P (i 6= j) inside
the region R, which has two center-points cj,1 and cj,2
on the segment pq (see Figure 5). In figure 5, we can
also observe that the intervals [ci,1, ci,2] and [cj,1, cj,2]
formed by ci,1ci,2 and cj,1cj,2 are overlapping. Hence,
from observation 3 none of the k disks in the optimal
solution will have their centers lying on the interval
([ci,1, ci,2] ∪ [cj,1, cj,2]) \ {ci,1, cj,2}, excluding the end
points of the union of the two intervals.

p q

R

↓

↑

↓

L

← →L ← L→
↑

L
↓

pi

ci,1 ci,2

pj

cj,2cj,1

Figure 5: Another point pj in the region R has two
points cj,1 and cj,2 on pq at distance L

Without loss of generality, let {p1, p2, . . . , pm} be
the points of P lying strictly inside R, above the line
y = y(p), and ordered from left to right, where m ≤ n.
We have seen that for every point pi inside the region R
there will be two center-points on the line segment pq
which are at distance L, i.e., there is an interval [li, ri]
for every point pi inside the regionR, where li = ci,1 and
ri = ci,2. Merge all the overlapping intervals and then
update the end points of the new intervals on pq. Let
I = {[l1, r1], [l2, r2], . . . , [lm′ , rm′]} be the set of result-
ing pairwise disjoint intervals ordered by their left-end
points in left-right order, where m′ ≤ m.

Consider the complement of I with respect to pq, de-
noted as Ic = {[p, l1], [r1, l2], . . . , [rm′ , q]}, (here we as-
sumed that none of the intervals in I contains the end-
points of pq). We can now greedily pack disks centered
from point p to q on the segment pq by considering the
complemented intervals from Ic. For the convenience
assume r0 = p, and lm′+1 = q. The k disks of radius L
are packed on pq by Algorithm 1.

3.2 Correctness Proof

Theorem 2 Given the set Ic of complemented intervals
ordered from left to right, and an integer k > 0, Algo-
rithm 1 (Greedy LPacking) solves the DCOFL problem
in linear time.

Proof. The proof is as follows:
We can prove the correctness of Algorithm 1 by induc-

tion. If Ic is non-empty and k = 1, then we can place

364

33rd Canadian Conference on Computational Geometry, 2021

Algorithm 1: Greedy LPacking(Ic, k)

Let j = 0.
for i = 1 to m′ + 1 do

index = b ||ri−1li||
2L c, where [ri−1, li] ∈ Ic;

if (j + index+ 1) ≤ k then
Pack index+ 1 disks of radius L on the
segment ri−1li.
j ← (j + index+ 1)

end
else

Pack (k − j) disks of radius L on the
segment ri−1li
j ← k

end

end
if j = k then

Let D = {d1, d2, . . . , dk} be the set of disks
computed in the above for-loop.
return (yes, D)

end
else

return (no, ∅)
end

a disk d1 of radius L, centered on any interval from
Ic. The disk d1 does not contain any point of P in its
interior because of the way the set Ic was constructed.

Now, consider an integer k′ such that 1 < k′ < k.
By induction hypothesis, Algorithm 1 packs k′ disks
d1, d2, . . . , dk′ of radius L as tightly as possible starting
with centering the first disk d1 at the left-most left-end
point of an interval in Ic. If L ≤ rmax, it is always
possible to place the disk dk′+1 of radius L, centered at
the right-most right-end point of an interval in Ic (as
k′ < k). Hence, the algorithm is correct.

The analysis of the running time of Algorithm 1 is
given below:

• The region R can be chosen in constant time.

• The points inside the regionR can be found in time
linear in the number of points in P .

• Given the points in P ordered from left to right,
their corresponding intervals on pq can be found in
O(n) time, and so are the sets I and Ic.

• Algorithm 1 packs the disks on the complemented
intervals of Ic in O(k) time.

Hence, the overall time taken by our solution of DCOFL
problem is O(n+ k). �

3.3 FPTAS for the COFL Problem

Now, we propose a fully polynomial time approximation
scheme (FPTAS) for the constrained obnoxious facility

location (COFL) problem, i.e., (1 − ε)-approximation
algorithm for any 1 > ε > 0. To solve the COFL prob-
lem, we consider many instances of DCOFL problem
repeatedly.

In the COFL problem, our goal is to pack maximum-
radius k (non-overlapping) congruent disks on the line
segment pq such that none of the points of the set P
lie inside of any of these disks. As we discussed above,
the answer to the DCOFL problem is yes if we are able
to pack k congruent disks of radius L on pq such that
none of the points of P lie inside any of the disks, oth-
erwise the answer is no. Hence, to find the maximum
radius of k congruent disks, we solve the DCOFL prob-
lem repeatedly for L = 2i, where i = 0, 1, 2, . . . , as
long as DCOFL problem returns yes. From Observa-

tion 1 the optimal radius rmax is at most ||pq||
2(k−1) . Let

that small value of L be 2j when the answer to the
DCOFL problem is no. However, when L = 2j−1 the

answer to DCOFL problem is yes. Hence, if 2j ≤ ||pq||
2(k−1)

then rmax lies in the interval [2j−1, 2j], else rmax lies

in the interval [2j−1, ||pq||2(k−1)] for a given set P of n

points, a line segment pq and an integer k. Given
a real number ε, we bisect the interval [2j−1, 2j] log 1

ε
time. Initially, |2j − 2j−1| ≤ rmax, since we are able
to pack k disks of radius 2j−1. Let [α, β] be the in-
terval after bisecting the interval [2j−1, 2j] by log 1

ε

times. Then |α − β| ≤ |2j−2j−1|
2log

1
ε
≤ rmax

2log
1
ε
≤ εrmax.

Hence, rmax lies in the interval [α, β], which implies that
α ≥ β − εrmax ≥ (1 − ε)rmax. Therefore, the radius of
the k congruent disks returned along with a positive an-
swer by the last invocation of Algorithm 1 with r = α
is at least (1 − ε)rmax, where ε is an input parameter.
Hence, we have the following theorem.

Theorem 3 For a given line segment pq and an ordered
set P of n points in the plane, we can get an (1 − ε)-
factor approximation algorithm with ε > 0 for the COFL

problem, that runs in O((n + k) log(||pq||2(k−1)ε)) time, by

employing doubling search and bisection methods.

Proof. From Theorem 2, we know that each call to
solve the DCOFL problem will take O(n+k) time. Dou-
bling search guarantees that the optimal radius rmax of
k congruent disks lies either in the interval [2j−1, 2j]
or [2j−1, ||pq||2(k−1)]. We then divide this interval by log 1

ε

times. In the worst case the number of invocations of
the DCOFL problem is O(log ||pq||

2(k−1) + log 1
ε) time, for

an input parameter ε. Hence, the total running time is

O((n+ k) log(||pq||2(k−1)ε)). �

365

CCCG 2021, Halifax, Canada, August 10–12, 2021

4 Minsum Obnoxious Facility Location (MOFL)
Problem

Recall that in the MOFL problem, we have an hori-
zontal segment pq in the plane, without loss of gener-
ality we can assume that all the points in P are lying
the above the horizontal line through pq. As in the
previous section, we again compute the intervals [li, ri]
on pq for every point pi ∈ P , but now defined by the
center-points li and ri on pq, each at the distance λ
from pi. We call these intervals mega-intervals denoted
by Imega = {[l1, r1], [l2, r2], . . . , [ln, rn]}. Observe that
Imega can be computed in O(n) time as we are given
the ordered set P of n points. Also, observe that a disk
of radius λ centered anywhere on pq but only within
[li, ri], covers the point pi.

To solve the MOFL problem for k = 1 we use the
approach of Katz et al., [4], but here the mega-intervals
are defined differently as we are placing a disk instead
of a rectangle in [4]. Then, similar to their approach, we
define the elementary intervals on pq, defined by every
consecutive pair of end points of the intervals of Imega

starting with the left-end point p of the segment pq. We
call these elementary intervals mini-intervals, denoted
by Imini = {[µ1, τ1], [µ2, τ2], . . . , [µ2n+1, τ2n+1]}. Ob-
serve that there can be at most 2n+1 mini-intervals de-
fined by n points in P and τj = µj+1 for j = 1, 2, . . . , 2n.
We define the weight of each mini-interval [µj , τj] to be

κj =
∑

{i | [µj ,τj]⊆[li,ri]∈Imega}
wi, where wi is the weight of

the point pi ∈ P , i.e., the sum of weights of all the points
whose corresponding mega-intervals contain [µj , τj] en-
tirely within them (see Fig. 6 for an illustration of mega-
interval, mini-interval, and their weights). Observe that
an optimal disk d, i.e., the disk d of radius λ such that∑

{i | pi∈d}
wi is minimized, can be centered anywhere in

the mini-interval [µj , τj] whose κj is minimal. As in [4],
to efficiently find such a [µj , τj] we construct a segment
tree data structure on the mini-intervals [µj , τj] ∈ Imini.

The construction of the segment tree and finding of
minimum κj is briefly described as follows. We first
construct a balanced binary tree T whose leaves corre-
spond to the mini-intervals that are ordered from left to
right. Since T is balanced and has n leaves, its depth
must be O(log n). Further, we associate each node v
of T with two attributes: (1) an interval which is the
union of the mini-intervals of all the leaves of the sub-
tree rooted at v, and (2) the weight which is equal to
the sum of the minimum of the weights of its two child
nodes and the weights of the mega-intervals that are
stored in v. Initially, the weights of all the nodes of T
including the leaves are zero. The intervals of the leaves
are their mini-intervals. A mega-interval will be stored
at a node v if the interval of v is completely contained

in it, and if so, then not at any of its descendant nodes.
We now insert all the mega-intervals of I into T one by
one, and during each insertion, we update the weight
attributes of the nodes. The key feature of the segment
tree is that each insertion of a mega-interval and the
corresponding updates in T takes O(log n) time. At
each insertion, the weight of the root of T is the small-
est κj . The corresponding mini-interval [µj , τj] can be
found by traversing down the tree in the direction of the
child with smaller attribute weight, where ties can be
broken arbitrarily. This traversal clearly takes O(log n)
time. The mini-interval (not necessarily unique) corre-
sponding to the weight of the root of the segment tree
is the location for placing the disk d of radius λ such

that
∑

{i | pi∈d}
wi is minimized. The construction of the

segment tree takes O(n log n) time. Hence, we have the
following theorem.

p1, w1 = 3

p2, w2 = 4

p3, w3 = 2

Mega-interval:

Mini-interval:

Weights: 0 3 7 9 6 2 0

p q

λ

λ

λ

Figure 6: An illustration of splitting of mega-intervals
into mini-intervals and their weight calculations

Theorem 4 The MOFL problem for k = 1 can be
solved in O(n log n) time.

Remark 1 A lower bound of Ω(n log n) for the MOFL
problem with k = 1 can be obtained using the same re-
duction as Katz et al., [4] did it for their version of the
obnoxious facility location problem.

4.1 Dynamic programming solution for any k > 0

Here, we first discuss a dynamic programming recur-
rence for computing the minimum weight of the points
covered by k non-overlapping disks of radius λ centered
on pq. Then, we discuss how to actually reconstruct the
solution, i.e., the mini-intervals on which the k disks of
radius λ can be packed such that the sum of weights of
the points covered by the union of these disks is mini-
mal.

We now define the subproblem as follows:
Let C(i, j, h) denote the minimum weight of the points
covered by j non-overlapping disks of radius λ centered
on the sub-segment pτi =

⋃i
s=1[µs, τs], where the j +

1th disk was centered on the mini-interval [µt, τt] such

366

33rd Canadian Conference on Computational Geometry, 2021

that ||µiτt−1|| = h. Clearly, i ∈ {1, 2, . . . , 2n + 1}, j ∈
{1, 2, . . . , k}, and h ∈ {||µατβ || | α < β}.

To define the recurrence which relates between the
subproblems (WLOG), we can assume that all the disks
in an optimal solution are centered close to the left-end
points of their respective mini-intervals (κl 6= 0 for every
mini-interval [µl, τl]) and that C(i, j, h) = ∞ denotes
the impossibility. Now, for computing C(i, j, h), observe
that the minimum-weighted packing of j(≤ k) disks of
radius λ either centers a disk on the mini-interval µiτi or
not, but never centers a disk on µiτi if h < 2λ. There-
fore, we have the recurrence below.

C(i, j, h) =

min

{
κi + C(i− 1, j − 1, ||µi−1τi−1||) if h ≥ 2λ

C(i− 1, j, h+ ||µi−1τi−1||) always

The base cases are the following:

• If i = 1, j = 1, and h ≥ 2λ, then C(i, j, h) = κi.

• If i = 1, j = 1, and h < 2λ, then C(i, j, h) =∞.

• If i > 1, C(i, 1, h) can be computed in O(n log n)
time using Theorem 4.

The minimum weight of the points covered by the opti-
mal packing can be obtained from C(2n+ 1, k, 2λ+ 1).
The number of possible values for h is

(
2n+1

2

)
. We can

reconstruct the minimum-weighted packing (and their
corresponding mini-intervals) by storing parent point-
ers between the entries in the three-dimensional array
C[2n + 1, k,

(
2n+1

2

)
]. From the above recurrence, it is

clear that a subproblem depends on subproblems with
strictly smaller i, and hence there is no cyclic depen-
dency between the subproblems. We can fill the three-
dimensional array by start filling its lower indexed en-
tries first. Since computing the value of an entry re-
quires the values of two lower indexed entries of the
array, the work per subproblem is O(1). Therefore, we
have the following theorem.

Theorem 5 The MOFL problem for any k ≥ 1 can
be solved in O(n3k) time using dynamic programming
approach.

5 Conclusion

In this paper, we have considered two obnoxious facility
location problems restricted to a line segment, namely,
the COFL and MOFL problem. We gave a linear time
solution for the decision version of the COFL problem,
and using this linear time solution as a subroutine, we
have proposed a FPTAS for the COFL problem. In
future, we want to investigate whether the COFL prob-
lem can be solved optimally in polynomial time or is

NP-hard. We have solved the MOFL problem exactly
in polynomial time using the dynamic programming ap-
proach.

References

[1] A. Tamir. Obnoxious facility location on graphs. Trans-
portation Science, 4(4):550–567, 1991.

[2] G. Frederickson and D. Johnson. Generalized selection
and ranking: sorted matrices. SIAM Journal of Com-
puting, 13:14–30, 1984.

[3] J. M. Colmenar, P. Greistorfer, R. Mart and A. Duarte.
Advanced greedy randomized adaptive search proce-
dure for the obnoxious p-median problem European
Journal of Operational Research, 252(2):432–442, 2016.

[4] M. J. Katz, K. Kedem, and M. Segal. Improved algo-
rithms for placing undesirable facilities. Computers &
Operations Research, 29:1859-1872, 2002.

[5] O. Gokalp. An iterated greedy algorithm for the ob-
noxious p-median problem. Engineering Applications
of Artificial Intelligence, 92:103674, 2020.

[6] R. L. Church and R. S. Garfinkel. Locating an ob-
noxious facility on a network. Transportation Science,
12(2):107–118, 1978.

[7] S. Michael. Placing an obnoxious facility in geometric
networks. Nord. J. Comput, 10(3):224–237, 2003.

[8] Z. Drezner and G. O. Wesolowsky. Finding the circle
or rectangle containing the minimum weight of points.
Location Science, 2(2):83-90, 1994.

[9] Z. Drezner and G. O. Wesolowsky. Obnoxious facility
location in the interior of a planar network. Journal of
Regional Science, 35:675–688, 1995.

367

CCCG 2021, Halifax, Canada, August 10–12, 2021

Succinct Euler-Tour Trees

Travis Gagie∗ Sebastian Wild†

Abstract

We show how a collection of Euler-tour trees for a forest
on n vertices can be stored in 2n+ o(n) bits such that
simple queries take constant time, more complex queries
take logarithmic time and updates take polylogarithmic
amortized time.

1 Introduction

Tarjan and Vishkin [7] showed how we can efficiently
solve several problems in algorithmic graph theory by
representing planar embeddings of trees as Euler tours
of corresponding directed graphs. To obtain the graph
corresponding to a tree, we replace each undirected edge
(u, v) in the tree by the directed edges (u, v) and (v, u),
so the resulting Eulerian tour of the graph is like a
depth-first traversal of the tree without the need for of a
distinguished root. Henzinger and King [2] then showed
how to implement such Euler tours for trees as dynamic
balanced binary search trees, such that we can quickly
support navigation queries and updates such as inserting
an edge joining two trees and deleting an edge from a
tree. These implementations are called Euler-tour trees
(ETTs).

As far as we know, all current ETTs of a tree on n
vertices take Ω(n) words of space. In contrast, we can
store a rooted planar embedding of a tree (that is, an
ordinal tree) on n vertices in only 2n+o(n) bits of space
while still quickly supporting navigation queries and
some updates, and such representations of ordinal trees
are central to the field of compact data structures; see [4]
and references therein. For example, Ferres et al. [1]
showed how to represent an embedding of a connected
planar graph G with m edges in 4m + o(m) bits by
rooting and storing compactly a spanning tree of G
and an interdigitating spanning tree of the dual of G.
(The observation that any connected planar graph has
such a pair of spanning trees appeared in Von Staudt’s
book Geometrie de Lage [6] in 1847.) Figure 1 shows
the example from Ferres et al.’s paper, with the primal
spanning tree shown in red and the dual spanning tree
shown in blue.

∗Faculty of Computer Science, Dalhousie University,
travis.gagie @ dal.ca

†Department of Computer Science, University of Liverpool,
sebastian.wild @ liv.ac.uk

Ferres et al.’s data structure can be made to support
quickly insertions of vertices and edges, but it does not
adequately support deletions. To see why, consider a
graph on n vertices with three arms of equal length, as
shown on the left in Figure 2 (with the dotted edge (c, e)
not present initially). The primal spanning tree must
be the whole graph and, wherever we root it, two whole
arms are branches. Without loss of generality, suppose
we root the spanning tree at r, so the paths from b to
c and from d to e are branches in the spanning tree, as
shown on the right. If we delete the edge (a, b) from the
graph and insert the dotted edge (c, e), then we have
no choice but to reverse the directions in the spanning
tree of all the edges either in the path from b to c or in
the path from r to e. With the balanced-parentheses
representation Ferres et al. used for their spanning trees,
this takes Ω(n) time. If we then delete (c, e) and reinsert
(a, b), undoing the updates again takes Ω(n) time.

If the spanning tree in Figure 2 were represented
by an ETT rather than with balanced paretheses, on
the other hand, then deleting (a, b) and inserting (c, e)
would be easy. Indeed, we conjecture that it is possible
to implement Ferres et al.’s data structure with ETTs
such that all queries and updates take polylogarithmic
time – but doing so would not currently be interesting
because the entire data structure would no longer be
compact. Therefore, in this paper we start to investigate
whether ETTs can be made compact while still quickly
supporting a reasonable selection of queries and updates.

In Section 2 we describe a representation of ETTs that
we call macro-trees, which slightly extend previous rep-
resentations to allow weighted corners, where a corner
is the “gap between consecutive edges incident to some
vertex” [3]. For a forest G on n vertices, this represen-
tation takes O(n) words of space and supports simple
queries in constant time and more complex queries and
updates in logarithmic time.

In Section 3 we describe how if G consists of a single
tree with maximum degree d ≥ 2 and n is sufficiently
large then, given a positive constant ε, we can cluster
the vertices such that each cluster contains between
lg1+ε(n) and d lg1+ε(n) + 1 vertices. We represent each
cluster with a succinct micro-tree, such that all the
clusters take a total of 2n+o(n) bits, and then represent
the O(n/ log1+ε n) inter-cluster edges with an o(n)-bit
macro-tree. The weight of each corner between two inter-
cluster edges is the number of steps (all taken within
the cluster) between those edges in the Euler tour of G.

368

33rd Canadian Conference on Computational Geometry, 2021

1

4

5

67

8

A

B

C

D

E

F

2

3

G

H

H G C B

E D

F

A

3 4 6

2 5

1

7

8

Figure 1: Ferres et al.’s example of a planar graph (left), with the primal spanning tree (top right) shown in red
and the dual spanning tree (bottom right) shown in blue.

ar b c

d

e

r

a

b d

c e

Figure 2: A hard case for Ferres et al.’s data structure: however we choose to root the spanning tree of the graph
(left), deleting one edge and inserting another – for example, if the root r is in the left arm, then deleting (a, b) and
inserting (c, e) – forces us to reverse at least about n/3 edges in the spanning tree (right).

If G consists of multiple trees, we cluster their vertices
independently – with the bounds on the cluster sizes still
depending on the maximum degree d of the whole graph
and the number n of vertices it contains. This gives us
our first result: we can store a collection of Euler-tour
trees for a forest on n vertices with maximum degree d
in 2n+ o(n) bits and support simple queries in constant
time, more complex queries in O(log n) time and updates
in O(d log1+ε n) amortized time. Since submitting this
paper, we have realized how to remove the dependence
on d from the update time, as we describe in Section 4.

Unless specified otherwise, all trees in this paper are
taken to be planar embeddings of an unrooted tree (a. k. a.
unrooted plane trees). We assume throughout that n is

the total number of vertices in the maintained forest and
we are working in the word-RAM model with Θ(log n)-
bit words.

2 Macro-Trees

Suppose we are given a planar embedding of a forest
G with weighted corners, where each weight fits in a
constant number of machine words; Figure 3 shows an
example at the top left, consisting of a single tree. For
each tree T in G, we store T ’s edges in a circular, doubly-
linked list, in the order they are crossed in the Euler
tour of T . We also store a bidirectional pointer between
each directed edge (u, v) in T and its reverse, (v, u).

369

CCCG 2021, Halifax, Canada, August 10–12, 2021

2

3

1

2
3

2

2

1
3

2

1
2

2

0

1

2
2

2

3

2

4

3

4

5

1

2

1

2

0

2

2
3

1
2

1

2

2

32
4

2

1 3

1

3

2

2

2

1

0

1

3

4 2 1 3

21322122

2

0

2

2

3

1

2

1

1 2 3 2

2

1

4

2

3

2

2

45

2

3

1

2

3

1

2
3

2

2

1
3

2

1
2

2

0

3

4

5

1

2

1

2

0

2

2
3

1
2

1

2

2

3

2

3

2

4

2

1 3

1

2

4

5
2

0

2

2

3

1

2

1

4

2

3

2 5

1

0

1

3

1 2 3 5

2

4
2

2

1
31 4

2

3
2

122

2

3

2

1

3

2
2

Figure 3: An example of a macro-tree (top left) and its representation (top right), and then the forest of two
macro-trees obtained by deleting an edge (bottom left), and their representations (bottom right).

370

33rd Canadian Conference on Computational Geometry, 2021

This allows us to move forward and backward in the
Euler tour for T one edge at a time, and to enumerate
the edges incident to a given vertex u in constant time
per edge. To see why, notice that if (u, v) precedes (u,w)
in the counter-clockwise order of the edges incident to
u, then (v, u) precedes (u,w) in the Euler tour.

Finally, we store an AVL tree whose leaves are the
nodes in the list for T , and augment it such that given a
directed edge e and an integer t, in logarithmic time we
can return the edge e′ such that the distance from e to
e′ in the list is t, or the total weight of the corners from
e and e′ is as close to t as possible without being greater
(or optionally less), or the sum of the distance and the
total weight of the corners from e to e′ is as close to t
as possible without being greater (or optionally less).

With the same AVL tree, in logarithmic time we can
find the distance, or the total weight of the corners, in
the list between two given edges of T . This means, e. g.,
that we can quickly determine the size and total weight
of the subtrees on either side of a given edge.

Figure 3 includes an illustration of our representation
at the top right, with the circular, doubly-linked list of
directed edges shown as a square of arrows (with the
pointer from each edge to its predecessor and successor
in the list omitted for the sake of legibility); bidirectional
pointers between directed edges (u, v) and (v, u) shown
as arcs outside the square; and the AVL tree shown in
grey inside the square, with the topmost nodes shown
as circles with arrows from parents to children and then
lower subtrees shown as triangles.

To advance from the red edge to the green edge, we
follow the pointer to the reverse of the red edge, then
move one position forward in the list; to advance from
the green edge to the blue edge, we do the same thing.
To find the size of the subtree we traverse between the
red edge and its reverse, we use the AVL tree to count the
6 directed edges between them in the list in logarithmic
time, divide by 2 to get the number 3 of undirected edges
in the tree, and add 1 to get the number 4 of vertices.
Similarly, we can sum the weights of the corners between
the red edge and its reverse in the list.

We can change the weight of a corner in logarithmic
time or, by splitting and joining doubly-linked lists and
AVL trees, delete an edge in a tree represented by a
macro-tree or insert an edge between vertices in two
trees represented by macro-trees. In our example, if we
delete the undirected edge corresponding to the green
edge and its reverse and assign the new corners weights
5 and 4, then we obtain two macro-trees shown at the
bottom left of Figure 3, whose representations are shown
at the bottom right. Notice that now the blue edge
follows the reverse of the red edge in the list.

Lemma 1 Given a planar embedding of a forest G on n
vertices with weighted corners, we can store macro-trees
for the trees in G in a total of O(n) words of space

such that operations (i) and (ii) take constant time and
operations (iii) – (xii) take O(log n) time:

(i) given a directed edge e, return its predecessor and
successor in the Euler tour of the tree containing e;

(ii) given a directed edge (u, v), return its predecessor
and successor in the counter-clockwise enumeration
of edges incident to u;

(iii) given a directed edge e and an integer t, return the
directed edge e′ such that the distance from e to e′

is t in the Euler tour of the tree containing e;

(iv) given a directed edge e and an integer t, return the
edge e′ such that the total weight of the corners from
e to e′ in the Euler tour of the tree containing e is
as close to t as possible without being greater (or
optionally less);

(v) given a directed edge e and an integer t, return
the edge e′ such that the sum of the distance and
the total weight of the corners from e to e′ in the
Euler tour of the tree containing e is as close to t as
possible without being greater (or optionally less);

(vi) given two directed edges e and e′ in the same tree, re-
turn the distance and the total weight of the corners
from e to e′ in the Euler tour of that tree;

(vii) given an edge e, return the number of vertices and
total weight of the corners in the subtrees on either
side of e;

(viii) given a directed edge e and a weight w, set to w the
weight of the corner after e in the Euler tour of the
tree containing e;

(ix) given an edge e and weights w and w′, delete e
from the tree containing it and set the new corners’
weights to w and w′;

(x) given corners in two different trees T and T ′ and
four weights, insert an edge between T and T ′ bisect-
ing those corners and assign the four new corners
the given weights;

(xi) given an edge e, contract e, thus fusing its endpoints
and removing e and its reverse edge from the Euler
tour, adding up fused corner weights;

(xii) given two corners of the same vertex v, split v into
two nodes v1 and v2, connected by a new edge e, so
that the neighborhoods of v1 and v2 result from the
neighborhood of v by splitting it at the given corners
and inserting the new edge e there.

371

CCCG 2021, Halifax, Canada, August 10–12, 2021

3 Micro-Trees

For now, suppose G consists of a single tree with maxi-
mum degree d ≥ 2 and n is sufficiently large. Given a
planar embedding of G and a positive constant ε, we
can use essentially a centroid decomposition to parti-
tion G recursively into clusters each containing between
lg1+ε(n) and B = d lg1+ε(n) + 1 vertices.

Suppose at some step of the recursion we are con-
sidering a subtree S of G on nS vertices such that
nS > lg1+ε(n). If nS ≤ B = d lg1+ε(n) + 1, then we
can stop recursing. Otherwise, we find a vertex or edge
whose removal from S leaves a forest in which each tree
has size at most nS/2.

If we find such an edge e, then the two trees in the
forest left by e’s removal from S each have size

nS
2
≥ B

2
> lg1+ε(n)

and so are large enough (and maybe too large) to be
clusters; we recurse on them. If instead we find such a
vertex v then, since v has degree at most d, at least one
of the trees S′ in the forest left by v’s removal from S
has size

nS − 1

d
> lg1+ε(n)

and so is large enough (and maybe too large) to be a
cluster. Since S′ contains at most nS/2 vertices, the rest
of S (including v) is a tree at least as big as S′, so it too
is large enough (and maybe too large) to be a cluster.
We recurse on S′ and the rest of S.

Once we have partitioned G into clusters, we consider
that partition as a tree P on O(n/ log1+ε n) vertices,
with clusters in G as vertices in P and edges between
clusters in G as edges in P . We store a macro-tree for P ,
which takes O(n/ log1+ε n) words or O(n/ logε n) ⊂ o(n)
bits, with the weight at a corner between e and e′ in P
the number of steps between e and e′ in the Euler tour
of G. We note that P can have maximum degree more
than d, but this does not affect Lemma 1.

Figure 4 shows an example of clusters embedded in
vertices of the macro-tree from Figure 3, before and after
an edge is deleted, with triangles representing subtrees.
The expanded view of one of the clusters shows why the
corners incident to that cluster have weights 3, 2, 2 and
5: if we enter the cluster along the reverse of the blue
edge, then we take 3 steps of the Euler tour inside the
cluster before leaving the cluster again; when we re-enter
for the first time, we take 2 steps inside before leaving
again; when we re-enter for the second time, we also take
2 steps inside before leaving again; and finally, when we
re-enter for the last time, we take 5 steps inside before
leaving again, along the blue edge. We note that the
steps in the Euler tour to enter and leave the cluster do
not count toward the weights of the corners.

We represent each cluster C with a micro-tree: we
temporarily ignore inter-cluster edges, root the remaining
tree arbitrarily, and represent it succinctly as an ordinal
tree using 2nC + o(nC) bits, where nC is the number of
vertices in C. This takes a total of 2n+ o(n) bits over
all the clusters. Therefore, including the o(n) bits for
the macro-tree for P , thus far we are still representing
G using 2n + o(n) bits. However, we need to provide
an interface between the inter-cluster edges and the
micro-trees.

For a micro-tree on nC vertices, we store a “ports
bitvector” with 2nC copies of 0 corresponding to the
steps in a depth-first traversal of the micro-tree, with
copies of 1 marking where inter-cluster edges are incident
to vertices in the cluster (the cluster’s “ports” to other
clusters). The total length of these bitvectors is 2n +
O(n/ log1+ε n) but only O(n/ log1+ε n) of the bits are
1s, so compressed representations takes a total of o(n)
bits including support for rank and select [5]. We store a
mapping from the inter-cluster edges ending in a cluster
to the ranks of the 1s in that cluster’s ports bitvector,
marking when in the depth-first traversal those inter-
cluster edges touch vertices. We also store a mapping
back from these 1s to the inter-cluster edges in the macro-
tree. This takes O(log n · n/ log1+ε n) ⊂ o(n) bits, so we
are still using 2n+ o(n) bits overall.

For example, if we root the cluster shown in the ex-
panded view in Figure 4 at the vertex reached by the
green directed edge, on the right by the 5, then the
bitvector is 0010001001001000. This means that if we
start at our chosen root and walk counter-clockwise
around the cluster, we take 2 steps before passing the
first inter-cluster edge (pointing up and to the right),
then 3 steps before passing our second (pointing up and
left), then 2 before passing our third (pointing down
and left), then 2 before passing our fourth (pointing
down and right), and finally three more before reaching
the root again. Of course, if we view the bitvector as
cyclic – corresponding to an Euler tour of the cluster
rather than a depth-first traversal of the micro-tree –
then the lengths of the runs of 0s are the weights of the
corners around that cluster in P .

If G consists of multiple trees, we cluster them inde-
pendently – with the bounds on the cluster sizes still
depending on the maximum degree d of the whole graph
and the number n of vertices in G. If G contains trees
with less than lg(n) nodes, we store these all as a single
dynamic string of balanced parentheses. To be able to
update the representations of the individual small trees,
we keep the string divided into blocks of size roughly
lg1+ε(n) and completely replace any block we want to
edit – much like the clusters. The representation still
takes 2n+ o(n) bits overall; since queries on those tiny
trees trivially take O(log n) time, we obtain the same
overall efficiency.

372

33rd Canadian Conference on Computational Geometry, 2021

3

2

1

2

2
2

4

3

2

2

2

52

3
5

4

Figure 4: An example of clusters, before the orange edge is deleted (above) and after (below). Deleting the orange
undirected edge (adjacent to the green edge in the “before” example) means the green directed edge and its reverse
retract into the other cluster (in the “after” example), as shown in the expanded view of that cluster (bottom right).

3.1 Queries

Suppose we know that the ith 0 in a cluster u’s bitvector
indicates the step across a directed edge e in the Euler
tour of u, and the jth 0 in a cluster v’s bitvector indicates
the step across a directed edge e′ in the Euler tour of v,
and we want to compute the number of steps between e
and e′ in the Euler tour of G. To do this, we first use
rank and select queries on u’s and v’s bitvector to find
the first 1 after the ith 0 in u’s bitvector and the last 1
before the jth 0 in v’s bitvector, the ranks of those 1s
and their distances from the ith and jth 0s. This tells us
how many steps in the Euler tour we take after crossing
e before we leave u for the first time on an inter-cluster
edge, and how many steps we take before crossing e′ after
we enter v for the last time on an inter-cluster edge. We
then map those 1s to directed inter-cluster edges (u,w)
and (x, v) and use Lemma 1 to compute the distance and
total weight of the corners between them in the Euler
tour of the tree containing those edges. The distance
tells us the number of steps we take across inter-cluster

edges between crossing e and e′ in the Euler tour, and
the total weight of the corners tells us the number of
steps we take across intra-cluster edges between crossing
(u,w) and (x, v). Since we already know how many edges
we cross between e and (u,w) and between (x, v) and e′,
we can compute the distance from e to e′ in the Euler
tour of the tree containing them. This all takes O(log n)
time, dominated by the time to query the AVL tree in
the macro-tree representation to find out the distance
and total weight of the corners between (u,w) and (x, v).

For example, suppose e is the violet directed edge
shown in the expanded view of the cluster in Figure 4,
and e′ is the green edge in the same cluster (so u = v
in this case). We cross 2 intra-cluster edges after e
before we leave the cluster across the inter-cluster edge
pointing up and left, and cross 2 intra-cluster edges
after re-entering the cluster across the inter-cluster edge
arriving from down and right (the reverse of the red
directed edge) before reaching e′. The AVL tree at the
bottom of Figure 3 tells us there are 26 steps in the Euler

373

CCCG 2021, Halifax, Canada, August 10–12, 2021

tour of P between when we leave the cluster heading up
and left and when we re-enter it from down and right
(including crossing those two inter-cluster edges), and
the total weight of the corners between those directed
inter-cluster edges is

2 + 1 + 3 + 2 + 2 + 1 + 2 + 2 + 4 +

3 + 1 + 2 + 0 + 2 + 2 + 3 + 1 + 2 +

1 + 2 + 2 + 5 + 1 + 2 + 3

= 51 ,

so the number of steps between e and e′ in the Euler
tour is

2 + 2 + 26 + 51 = 81 ,

not including crossing e and e′ themselves.
Similarly, if we know the 0 in the bitvector of a cluster

indicating a step across a directed edge e and we are
given an integer t, we can find the cluster containing the
directed edge e′ that is t steps after e in the Euler tour
of the tree containing e, and find the 0 in that cluster’s
bitvector indicting the step across e′, all in O(log n)
time. Using queries in the micro-trees and macro-tree
we can also move forward or backward one step in any
Euler tour in constant time, and enumerate the edges
incident to a given vertex in constant time per edge. Of
course we cannot store identifiers of all the vertices in
only 2n+ o(n) bits, so in general we need intra-cluster
directed edges to be specified by which clusters they are
in and the ranks of the 0s indicating them, and vertices
to be specified by specifying a directed edge leaving them.
We can afford to store mobile fingers to O(n/ log1+ε n)
edges and vertices, however, without affecting our space
bound.

Lemma 2 Given a planar embedding of a forest G on n
vertices, we can partition G into clusters, store the parti-
tion as macro-trees and store each cluster as a micro-tree
in a total of 2n+ o(n) bits, such that operations (i) and
(ii) take constant time and (iii) – (v) take O(log n) time:

(i) given a directed edge e, return its predecessor and
successor in the Euler tour of the tree containing e;

(ii) given a directed edge (u, v), return its predecessor
and successor in the counter-clockwise enumeration
of edges incident to u;

(iii) given a directed edge e and an integer t, return the
directed edge e′ such that the distance from e to e′

is t in the Euler tour of the tree containing e;

(iv) given two directed edges e and e′, return the distance
from e to e′ in the Euler tour of the tree containing
them;

(v) given an edge e, return the number of vertices in
the subtrees on either side of e.

Notice that we do not mention G’s maximum degree
d in Lemma 2. This is because d appears only in the
upper bound B on clusters’ sizes, which does not affect
query times but only updates, which we discuss next.

3.2 Updates

Recall that B = d lg1+ε(n)+1 here. To insert an edge be-
tween two trees or delete an edge in a tree, we completely
rebuild the micro-trees, bitvectors and mappings for the
affected clusters, in O(B) time – possibly choosing new
roots for the new micro-trees – and update the macro-
tree or macro-trees in O(log n) time. We may need to
split or join a constant number of clusters to maintain
the invariant that they all have between lg1+ε(n) and B
vertices, but this can still be handled in O(B) time using
standard techniques. A more drastic problem occurs
when so many vertices are added or deleted that the
bounds for our cluster sizes change and we must rebuild
many clusters, but this cost can be amortized over the
insertions and deletions.

To delete the orange edge in Figure 4, we move the
shared endpoint of the orange and green edges into the
same cluster as the other endpoint of the green edge,
then completely rebuild the micro-trees, bitvectors and
mappings for the clusters shown inside the vertices of
the macro-tree. We update the macro-tree by deleting
the green edge and its reverse from the macro-tree (since
they are now intra-cluster edges), and weighting the
new corners by the number of steps in the Euler tours
of the clusters between the preceding and succeeding
edges: the cluster that contained the orange edge now
has 3 vertices, 2 (undirected) intra-cluster edges and 1
(undirected) inter-cluster edge, so the number of steps
in the Euler tour of T between entering it and leaving
it is 4, so that is the weight of its new single corner;
the cluster that now contains the green edge now has
7 vertices, 6 (undirected) intra-cluster undirected edges
and 4 (undirected) inter-cluster edges, and the number
of steps in the Euler tour between entering it across the
last inter-cluster edge before the green edge and leaving
it across the first inter-cluster edge after the green edge
is 5, so that is the weight of its new corner.

Lemma 3 After deleting a given edge from a tree in a
forest on a total of n vertices with maximum degree d,
we can update our representation of that tree in O(B)
amortized time and obtain the representations of the
two resulting trees. Similarly, after inserting an edge
bisecting given corners in two trees of a forest on a total
of n vertices with maximum degree d, we can update
our representations of those trees in O(B) amortized
time and obtain a representation of the single resulting
tree. We can add or delete an isolated vertex in O(B)
amortized time.

374

33rd Canadian Conference on Computational Geometry, 2021

Combining Lemmas 2 and 3, we obtain our first theo-
rem:

Theorem 4 Given a planar embedding of a forest G
on n vertices with maximum degree d, we can store G
in 2n+ o(n) bits such that operations (i) and (ii) take
constant time, operations (iii) – (v) take O(log n) time
and (vi) and (vii) take O(d log1+ε(n)) time:

(i) given a directed edge e, return its predecessor and
successor in the Euler tour of the tree containing e;

(ii) given a directed edge (u, v), return its predecessor
and successor in the counter-clockwise enumeration
of edges incident to u;

(iii) given a directed edge e and an integer t, return the
directed edge e′ such that the distance from e to e′

is t in the Euler tour of the tree containing e;

(iv) given two directed edges e and e′ in the same tree,
return the distance from e to e′ in the Euler tour of
that tree;

(v) given an edge e, return the number of vertices in
the subtrees on either side of e;

(vi) given an edge e, delete e from the tree containing it
and return the representations of the two resulting
trees;

(vii) given corners in two different trees T and T ′, insert
an edge between T and T ′ bisecting those corners
and return the representation of the resulting tree.

4 Trees of Arbitrary Degree

The above scheme for bounded-degree forests can be
generalized to arbitrary forests by splitting high-degree
vertices. In the following, we describe the necessary
changes to the data structure.

4.1 Macro-Trees

We modify the macro-tree by allowing (inter-cluster)
edges to be either “true” or “false”. A true edge is as
before, whereas a false edge does not actually correspond
to any edge in G, but rather connects two clones of the
same graph vertex in different clusters. In the imple-
mentation, we can identify each edge and its preceding
corner into a single entity with a weight, a “macro-edge”;
a false edge adds weight 0 and a true edge adds weight
1 to the macro-edge. Conceptually, edges in the macro-
tree are (potentially empty) sequences of (consecutive)
true edges in the Euler tour, plus optionally one false
edge at the end of such a sequence.

As before, macro-edges are kept in a linked list, with
pointers to their reverse traversals. We also add pointers

to the immediate true successors and predecessors of
each macro-edge. Any balanced BST that supports
splitting and merging, augmented with subtree weights,
can be used to implement efficient access to macro-edges.
Operations stay the same, except that false edges have
to be counted with weight 0.

4.2 Micro-Trees

Our decomposition for unbounded degrees follows a sim-
ilar approach as above, but caters for large degrees by
splitting vertices. Given a total size n and a constant
ε > 0, we now set B = 3 lg1+ε(n). We decompose a
tree T on nT vertices as follows: If nT ≤ B, it forms a
cluster of its own. Else, we find a centroid, i.e., a node
or edge, so that after its removal, all remaining subtrees
have size at most 1

2nT . If we find a centroid edge in T ,
we recurse as before. Otherwise we find a node v that
splits T into subtrees S1, . . . , Sd, for d = deg(v), of sizes
nS1

, . . . , nSd
≤ 1

2nT . If any of these subtrees has size
nSi
≥ 1

3B, we recursively decompose Si and the rest of
the tree. Otherwise, if nS1 , . . . , nSd

< 1
3B, let j be the

index that minimizes
∣∣(nS1

+ · · ·+ nSj
)− (nSj+1

+ · · ·+ nSd
)
∣∣ < 1

3B.

We split v into two “clones”, v1 and v2, and give
v1 the neighbors S1, . . . , Sj , v2 and v2 the neighbors
v1, Sj+1, . . . , Sd. The edge {v1, v2} is marked as a “false”
edge and separates T into two components, which are
recursively decomposed.

If we start with a tree T with nT ≥ B, then all
clusters have between 1

3B = lg1+ε(n) and B nodes, and
the number of clusters is Θ(n/B). Note that intra-cluster
edges are always true edges, hence the representation of
clusters using micro-trees remains unaffected.

We thus obtain the same result as in Theorem 4 for
general forests:

Theorem 5 Given a planar embedding of a forest G on
n vertices, we can store G in 2n + o(n) bits such that
operations (i) and (ii) from Theorem 4 take constant
time, operations (iii) – (v) take O(log n) time and (vi)
and (vii) take O(log1+ε(n)) time.

5 Acknowledgments

The first author was funded by NSERC Discovery Grant
RGPIN-07185-2020.

References

[1] L. Ferres, J. Fuentes-Sepúlveda, T. Gagie, M. He, and
G. Navarro. Fast and compact planar embeddings. CGTA,
89:101630, 2020.

[2] M. Rauch Henzinger and V. King. Randomized fully
dynamic graph algorithms with polylogarithmic time per
operation. J. ACM, 46(4):502–516, 1999.

375

CCCG 2021, Halifax, Canada, August 10–12, 2021

[3] J. Holm and E. Rotenberg. Dynamic planar embeddings
of dynamic graphs. Theory Comp. Sys., 61(4):1054–1083,
2017.

[4] G. Navarro. Compact Data Structures: A Practical Ap-
proach. Cambridge University Press, 2016.

[5] R. Raman, V. Raman, and S. Rao Satti. Succinct index-
able dictionaries with applications to encoding k-ary trees,
prefix sums and multisets. ACM Trans. Alg., 3(4):43–es,
2007.

[6] K. G. C. von Staudt. Geometrie de Lage. Bauer und
Raspe, Nürnberg, 1847.

[7] R. E. Tarjan and U. Vishkin. An efficient parallel bi-
connectivity algorithm. SIAM J. Comp., 14(4):862–874,
1985.

376

CCCG 2021, Halifax, Canada, August 10–12, 2021

Turning Around and Around:
Motion Planning through Thick and Thin Turnstiles

Aster Greenblatt∗ Oscar Hernandez† Robert A. Hearn‡ Yichao Hou§ Hiro Ito¶ Minwoo Kang‖

Aaron Williams∗∗ Andrew Winslow††

Abstract

We examine the computational complexity of turnstile
puzzles, which are grid-based tour puzzles with walls
and turnstiles. A turnstile is a wall that can be rotated
in 90° increments, either clockwise or counter-clockwise,
around a central pivot when pushed by the player’s to-
ken. In a ‘thick’ turnstile, the pivot and arms occupy
cells of the grid, whereas in a ’thin’ turnstile the pivot
and arms occupy grid points and lines, respectively. We
prove that reaching an exit is PSPACE-hard, even when
restricted to just one of the following turnstiles types:

, , , , , or . This establishes
PSPACE-hardness for a dozen video games spanning
several decades, including Kwirk (1989), Pokemon Ruby
(2002), and Super Mario Odyssey (2017). Our hardness
results are obtained by applying the motion planning
framework in Jayson Lynch’s PhD thesis A framework
for proving the computational intractability of motion
planning problems [MIT, 2020]. We also show that the
decision problem can be solved in polynomial-time when
restricted to or . We also formulate new open
problems, and provide a survey of puzzles and games
using turnstiles, which have also been called rotating
doors, revolving gates, and spinning blocks.

1 Introduction

This article explores the familiar territory of grid-based
motion planning, but with a few twists. In Section 1.1
we discuss the mechanism that we investigate, and in
Section 1.2 we specify the tool that we will use.

∗Division of Science, Mathematics, and Computing, Bard Col-
lege at Simon’s Rock, asterj.greenblatt@gmail.com

†Department of Mathematics & Statistics, University of Alaska
Fairbanks, oihernandez@alaska.edu

‡bob@hearn.to
§yhou17@simons-rock.edu
¶School of Informatics and Engineering, University of Electro-

Communications, itohiro@uec.ac.jp
‖Electrical Engineering and Computer Science, University of

California, Berkeley, minwoo kang@berkeley.edu
∗∗Department of Computer Science, Williams College,

aaron.williams@williams.edu
††andrewwinslow@gmail.com

(a) Level 1. (b) Fortree City.

Figure 1: Solutions from (a) Kwirk, and (b) Pokemon Ruby.

1.1 Pushing, Pulling, Sliding, . . . and Rotating

There have been numerous studies on the computa-
tional complexity of grid-based puzzles and games that
use pushing, pulling, or sliding as a core mechanism,
with early contributions involving pushing by Fryers
and Greene [11], Dor and Zwick [10], and Culberson
[5]. More recently, in the Games in Particular section
of Hearn and Demaine’s Games, Puzzles, and Compu-
tation, 7 of the 10 puzzles use some form of pushing or
sliding, including generalizations of Dad’s Puzzle and
Sokoban [15]. Research in this area is still active, with
Barr et al. using a side-view and normal gravity [4], and
Ani et al. [1] on block pulling being recent examples.

We consider a push-based rotation mechanism. Turn-
stiles have appeared in physical puzzles and video games
for at least four decades, with two examples in Figure
1. Our main result is that single-player turnstile puzzles
are PSPACE-hard, even when restricted to any of the
following shapes: , , , , , or .

377

33rd Canadian Conference on Computational Geometry, 2021

o

o

(a) State 1 with traversals.

o

o

(b) State 2 with traversals.

Figure 2: One of the first gadgets that we designed has two
‘tunnels’ (black arrows) and two states. (a) The top tunnel
is traversable in both directions since the turnstile can
spin freely, and the bottom tunnel is traversable only from
left-to-right since the turnstile can only spin counter-
clockwise. (b) The top tunnel is not traversable in either
direction since the turnstile is blocked, and the bottom
tunnel is traversable only from right-to-left since the
turnstile can only spin clockwise. It is not possible to move
between the two tunnels, and traversing the bottom tunnel
always causes the state to change.

1.2 Motion Planning Framework

Jayson Lynch’s PhD thesis [16] facilitates “proof by pic-
ture” hardness results. For example, Figure 2 shows one
of the first constructions developed by the authors (see
Section 5.2). Although it appears to do “something”
non-trivial, we were unable to integrate it into a stan-
dard hardness reduction. Miraculously, the framework
views this as a “non-crossing toggle lock (NTL)” gad-
get, and it suffices as the key component of a PSPACE-
hardness proof. The framework1 was developed and ap-
plied across the following publications.

• A simplified framework was introduced in Compu-
tational Complexity of Motion Planning of a Robot
through Simple Gadgets at FUN 2018 by Demaine,
Grosof, Lynch, and Rudoy [7]. Its focus is on two
state gadgets and a single agent.

• A generalization appears in Toward a General
Complexity Theory of Motion Planning: Charac-
terizing Which Gadgets Make Games Hard by De-
maine, Hendrickson, and Lynch at ITCS 2020 [9].

• The framework has been applied in Trains, Games,
and Complexity: 0/1/2-Player Motion Planning
through Input/Output Gadgets by Ani, Demaine,
Hendrickson, and Lynch [3], and also in [2].

As indicated by the third item, the general framework
is quite broad. In many ways, it promises to be an
agent-based analog to the well-known constraint logic
framework developed by Hearn and Demaine [14, 15]. In
this paper, we are only concerned with 1-player puzzles,
so the simplified setting of [7] still holds particular value.

1Appendix A includes an auxiliary series of images that shows
how Figure 1a can be modeled using the framework.

1.3 Outline

In Section 2, we discuss rotation mechanisms, with a
focus on turnstile puzzles. In Sections 3–4, we intro-
duce concepts from the motion planning framework, and
show how they can be applied to turnstile puzzles. Sec-
tion 5 concludes with a summary, and open problems.
Throughout the paper, we include additional informa-
tion with an eye towards facilitating new research.

2 Rotation Mechanisms

Readers are likely familiar with several pushing mech-
anisms found in the literature, many of which can be
categorized using the Push[Push]-1/k/*-[X] classifi-
cation, as discussed in Demaine, Demaine, Hoffmann,
and O’Rourke [6] (also see [8]). Some of these variations
have been inspired by video games, with Sokoban (1981)
and Pengo (1982) being two prominent examples. In
Sokoban, the player controls a warehouse worker who
can push a single box one grid cell at a time, and the
worker moves with the box. In Pengo, the player con-
trols a penguin who can push a single ice block, but in
this case, the block slides along the ice as far as possible,
and the penguin remains stationary.

Similarly, there are many rotation mechanisms found
in video games, but fewer of them have been studied
in the literature. We discuss five such mechanisms in
Section 2.1. Then in Section 2.2 we define our decision
problem, and prove that two special cases can be solved
efficiently. Section 2.3 provides a survey of games and
puzzles that have used the turnstile mechanism.

2.1 Specific Mechanisms

Here we discuss five different rotation mechanisms found
in video games. The first mechanism was previously
studied using the motion planning framework [7]. To
the best of our knowledge, the remaining mechanisms
have not previously been considered.

2.1.1 k-Spinners

The Legend of Zelda: Oracle of Seasons and Oracle of
Ages were released for Nintendo’s Game Boy Color in
2001. Both games include a mechanism that is referred
to as a 4-spinner in [7]. The mechanism can be embed-
ded in a 3-by-3 grid of cells, with a pivot in the center,
walls in each corner, and open chambers in the remain-
ing four cells. The player interacts with the mecha-
nism by entering one the chambers. Once inside, the
4-spinner turns 90◦, and then stops, so that the player
must exit the chamber. The direction of the turn de-
pends on its state. In its blue state, the spinner turns
counterclockwise, while in its red state, it turns clock-
wise. After the spinner has rotated, it changes state.

378

CCCG 2021, Halifax, Canada, August 10–12, 2021

Figure 3: 4-Spinner. Link enters the chamber on the left.
The spinner is blue, so it rotates 90◦counterclockwise, and
Link must exit downward. Once Link exits, the spinner turns
red, indicating that its next rotation is 90◦clockwise.

(a) Entering L-shape wall. (b) Exit Up. (c) Exit Right.

(d) Entering =-shape wall. (e) Exit Down. (f) Exit Up.

Figure 4: Rotating walls. (a) Circuit Dude enters an L-shape
wall from an open side, then (b)–(c) can exit through either
open side, and upon exiting, the walls rotate 90◦clockwise
in-place. (d)–(f) The =-shape wall behaves similarly. Note:
Rotating walls appeared earlier in Bobby Carrot.

(a) Entering swivel (b) Exit ↑ (c) Exit→ (d) Exit ↓ (e) Exit←

Figure 5: Swivel Door. (a) Melinda enters the swivel through
an open side, then (b)–(c) exiting through an open side
leaves the swivel unchanged, or (d)–(e) exiting through a
wall causes the swivel to rotate 90◦so that side opens.

Figure 3 illustrates a 4-spinner from the Moonlit Grotto
in the Oracle of Ages. A k-spinner generalizes a 4-
spinner by having k chambers.

Theorem 1 ([7]) Motion planning is PSPACE-
complete when restricted to k-spinners, for all k ≥ 4.

2.1.2 Rotating Walls

Bobby Carrots is a series of early mobile puzzle games.
The first game was implemented in Java (J2ME) and
was available for various handsets in 2004, including
Nokia phones running Symbian. The most recent game,

(a) Approaching a T -turnstile. (b) Push Down. (c) Push Left.

(d) Rotate with no extra move. (e) Turning a thin T -turnstile.

Figure 6: Turnstiles. (a) Kwirk approaches an internal cor-
ner of a thick turnstile, then (b)–(c) turns it clockwise or
counterclockwise with a single push, with the trailing arm
moving Kwirk one extra cell. (d) Pushing the turnstile with
a trailing arm does not cause the extra move. (f) Thin turn-
stiles behave similarly, but without the extra move.

Bobby Carrot 5: Forever, was released on the Nintendo
Wii and iPhone2) and elsewhere in 2011. The series
includes a both L-shaped and =-shaped rotating walls.
These mechanisms occupy one grid cell, and a pair of
thin walls occupy two of the four gridlines inside its
perimeter. The player can enter or exit the cell through
either open side, and the cell rotates 90◦once the player
exits it. The same mechanism has been used in other
games, including Circuit Dude, which launched on the
Arduboy in 2016, followed by iOS / Android / Steam /
Switch. Figure 4 illustrates the mechanism.

2.1.3 Swivel Doors

Chip’s Challenge was released for the Atari Lynx in
1989, and was popularized in Microsoft Entertainment
Pack 4 for Windows 3.1 in 1992. Its sequel, Chip’s
Challenge 2 (CC2), was developed in 1999, but was not
available to the public until its 2015 release on Steam.
The sequel added new mechanisms, including the swivel
door. The swivel door is visually identical to L-shaped
rotating walls, as they both involve two consecutive thin
walls around a single grid cell. Furthermore, the player
enters the mechanisms in the same way (i.e. through
one of the two openings). However, Chip and Melinda
can exit a swivel door in any of the four cardinal direc-
tions. If they exit through either of the two openings,
then the swivel door does not change. Otherwise, if
they exit through one of the walls, then the cell rotates
90◦. More specifically, the rotation is chosen so that the
exited side of the mechanism becomes open. In other
words, the mechanism behaves as if the walls are slid out
of the way upon exit. Figure 5 provides an illustration.

2Due to Apple’s iconoclastic update policies, this game, and
so many other classics, are no longer available on their platforms.

379

33rd Canadian Conference on Computational Geometry, 2021

2.1.4 Thick Turnstiles

Puzzle Boy (1989) was developed for the Game Boy
by Atlus, and localized as Kwirk (1990). The game
uses thick turnstiles, which have a central pivot that oc-
cupies a single cell, and arms that occupy at most one
cell radiating outward in each direction, producing the

, , , , and (and their rotations). Each
mechanism can rotate 90◦around its pivot, either clock-
wise or counterclockwise, when the player pushes one of
its arms. If a turnstile can rotate, then the player will
also move in the direction of the push. Furthermore, if
an arm is following behind the player, and would occupy
their cell after the rotation, then the player is pushed
one extra cell by the trailing arm. A turnstile cannot
be rotated if a wall, or another turnstile, occupies a cell
that the arm would need to rotate through. Figure 6
shows a thick T -shaped turnstile.

2.1.5 Thin Turnstiles

Lady Bug is a maze chase game released in arcades in
1981 by Universal, and later ported to home consoles.
The game features thin turnstiles, which have a central
pivot that occupies a grid point, and arms that radiate
out along single grid lines, in the shape (or its rota-
tion). In Pokemon Ruby and Sapphire, the mecha-
nism was generalized to include additional shapes. The
mechanism behaves similarly to thick turnstiles. How-
ever, the player is never pushed an extra cell by a trail-
ing arm, since the arms occupy grid lines instead of cells.
Figure 6 shows a thin T -shaped turnstile.

When considering multiple thin turnstiles, it is natu-
ral to wonder if overlapping arms are allowed. In other
words, can the arms of two turnstiles occupy the same
grid line?3 This question is not answered by the Poke-
mon games, since the turnstiles are placed in ways that
prevent this possibility. We take the position that over-
lapping arms are never allowed. Thus, a thin turnstile
cannot be given a particular rotation if that rotation
would result in an overlap. For the same reason, we do
not mix thin and thick turnstiles in the same puzzles.

2.2 Turnstile Decision Problem

The Turnstile decision problem takes as input a level
L, which is a grid in which the cells, points, and lines
form walls and well-formed turnstiles (either thick or
thin), with an initial position and exit position. If the
player can move from the initial position to the exit by
a sequence of moves, then the output is yes. The proof
of Proposition 2 appears in Appendix B.

Proposition 2 Turnstile is in PSPACE.

3This is not a concern with rotating walls or swivel doors, since
their thin obstacles are internal to a specific grid cell.

(a) A level with turnstiles.

B A

(b) Graph corresponding to (a).

Figure 7: When restricted to , the Turnstile decision
problem can be solved using undirected s-t connectivity.

We will prove that Turnstile is PSPACE-hard, and
hence PSPACE-complete. In fact, we’ll see that Fig-
ure 2 guarantees this. Therefore, we’ll focus on de-
termining whether Turnstile remains PSPACE-hard
(and PSPACE-complete) when the turnstile types are
restricted. Let TurnstileS denote the restriction of
Turnstile to levels that only use turnstiles from the
set S . For example, we now prove that the decision
problem can be solved efficiently when restricted to
or . Figure 7 illustrates the proof of Proposition 3.

Proposition 3 TurnstileS for S = { } is decid-
able in polynomial-time.

Proof. We’ll show that the decision problem can be
transformed into an undirected s-t connectivity problem
in polynomial-time.

First observe that the turnstile is unique amongst
the thick turnstiles in that it has only one orientation.
In other words, rotating a turnstile does not change
which cells are occupied. Therefore, when S = { },
we can partition the turnstiles into two classes: those
that can always rotate, and those that can never rotate.
Furthermore, it is easy to identify those in the latter
category, since they are precisely those in which one of
the four cells that are diagonally-adjacent to its pivot is
occupied by a wall or the arm of another turnstile.

We create a graph associated with the level as follows.
Begin with a grid graph with points associated with
cells of the grid that are either empty, along with the
initial the exit positions. Now we consider each turnstile
that can rotate. Given such a turnstile whose pivot
occupies position (i , j) of the grid, we add edges of the
form (a, b) where a ∈ {(i + 1, j + 1), (i − 1, j − 1)}
and b ∈ {(i − 1, j + 1), (i + 1, j − 1)}. In other words,
we add a square that connects the empty cells that are
diagonally-adjacent to the pivot. The creation of this
graph can be done in polynomial-time.

Finally, we check if the start and exit positions are
connected, which can be done in deterministic log-space.
Hence, the overall algorithm takes polynomial-time. �

The following proposition can be proven similarly.

Proposition 4 TurnstileS for S = { } is decid-
able in deterministic log-space.

380

CCCG 2021, Halifax, Canada, August 10–12, 2021

2.3 History

Tables 1–2 list puzzles and games that use thick or thin
turnstiles, either as a primary or secondary mechanism,
respectively. Our results apply to all of the entries, ex-
cept for Lady Bug and Drelbs, which are action games
rather than puzzle games, and the physical puzzle Turn-
stiles which is a multi-player game.

3 Gadgets in General

We begin our presentation of the motion planning
framework by considering gadgets and their properties.
Our presentation focuses on sets and functions, and we
use the graphical styles from both the initial framework
[7] and the generalized framework [9]. We begin by in-
troducing the simplest gadgets: hallways and 1-toggles.

3.1 Branching Hallways

A branching hallway simply connects three locations.
Since there is no gravity in Turnstile, it is easy to
implement these gadgets.

Proposition 5 Branching hallways can be imple-
mented in Turnstile without turnstiles.

Proof. The branching hallway gadget from [7] is shown
below on the left, with an implementation on the right.

Branching hallway. Implementation in Turnstile.

�

3.2 1-Toggle

A 1-toggle connects two locations, A and B, via a dy-
namic path known as a tunnel. In state 1, it possible
to travel from A to B, while in state 2, it is possible
to travel from B to A. Furthermore, the gadget toggles
its state whenever one of these traversals in completed.
The 1-toggle is illustrated in several ways in Figure 8.

• Figure 8a is the graphical style from [7], in which a
single diagram represents two states. In this type of
diagram, a directed arrow represents a toggle, and
traversing it causes its direction to switch.

• Figure 8b is the graphical style from [9], in which
both states are shown. One can think of the
rounded rectangles as being drawn on top of each
other, since the left side of both rectangles refer
to the same location, as do the right sides of both

Release Title Developer Platform(s) Screenshot

1989

1990

Puzzle Boy

Kwirk

Atlus Game Boy

1989 Maze-kun
(Mr. Maze)

Telenet
Japan

NEC PC-8800,
MSX 2

1990 Puzzle Boys Atlus
Famicom Disk

System

1991 Puzzle Boy
Telenet
Japan

NEC PC
Engine

1991

1992

Puzzle Boy 2

Amazing Tater

Atlus Game Boy

1998 Kwirk† Ludvig
Strigeus

TI-89 / TI-90
Calculator

2003
Shin Megami

Tensei: Nocture
Atlus PlayStation 2

2003
Devil Children:
Puzzle de Call!

Atlus
Game Boy
Advance

2008
Puzzle Boy

Flash† Blawars Web browser

2013 Kwirk Free†

Kwirk 2†
Galiksoft

Android /
Amazon App

Store

2020 Turner†
Pico
Beast

Pico-8

Table 1: Video games using thick turnstiles. †clone

Release Title Developer Platform(s) Screenshot

1981 Lady Bug Universal
Arcade

Intellivision
Colecovision

1983 Lady Tut Programe
Apple][

Commodore 64

1983 Drelbs
Synapse
Software

Atari 8-bit
Apple][

Commodore 64

2002

2003

Pokemon Ruby
and Sapphire

Game
Freak

Game Boy
Advance

2004

2005

Pokemon
Emerald

Game
Freak

Game Boy
Advance

2012 Turnstile ThinkFun Physical puzzle

2014
Pokemon Omega
Ruby and Alpha

Sapphire

Game
Freak

Nintendo 3DS

2017
Super Mario

Odyssey
Nintendo

Nintendo
Switch

Table 2: Puzzles and games using thin turnstiles.381

33rd Canadian Conference on Computational Geometry, 2021

(a) Graphical style from [7].

1
2

2
1

(b) Graphical style from [9].

o

A
o

B

(c) Implementation in Kwirk.
Left: State 1. Right: State 2.

1
2

2
1A B

(d) Graphical style from [9] with
location labels.

Figure 8: A 1-Toggle gadget in several graphical styles, and
implemented with one . In state 1, the gadget’s only
traversal is A → B (left to right). In state 2, the gadget’s
only traversal is B → A (right to left). The state changes if
and only if a traversal occurs.

rectangles. In this style, the arrows are labeled
with the state number that the gadget changes to
after that particular traversal. The dotted line il-
lustrates that the tunnel is reversible (i.e. once a
traversal is complete, it can be done in reverse, and
the gadget will return to its previous state).

• Figure 8c illustrates how a 1-toggle can be imple-
mented with a single turnstile. The two states can
again be interpreted as being drawn on top of each
other, and in this case we have explicitly labeled
the left location as A, and the right location as B.

• Figure 8d provides our slight modification of the
graphical style from [9], which is the result of stu-
dent feedback from the second-last author’s course
on the theory of computation. Specifically, we add
explicit location labels, and we shorten the dot-
ted line between the states. The first modification
makes it easier to discuss the gadget, while the sec-
ond is avoid a common misunderstanding. When
an A to B traversal is conducted in state 1, the
gadget toggles to state 2, and the agent ends in lo-
cation B. The agent does not magically transport
back to location A, as some have interpreted the
dotted line to indicate.

3.3 Definition of a Gadget

Now we formally define a gadget. A gadget is a triple
g = (n,L,T) whose components are defined below,
where [x] denotes {1, 2, . . . , x}.

• n is the finite number of states.

• L is a finite ground set of m locations.

• T ⊆ [n] × L × [n] × L is a set of traversals. An
individual traversal is a 4-tuple (s1, `1, s2, `2) ∈ T ,
where s1 is the current state, `1 is the entry location,
s2 is next state, and `2 is the exit location.

The reader may wonder why the definition includes
a set of locations, rather than the number of locations.
The reason is that sets allow for gadgets to share, or
not share, locations. For example, we could have two
instances of a 1-toggle, the first with states L1 = {A,B},
and the second with states L2 = {B ,C}.

In later sections, we will be considering systems of
gadgets, and how they are connected to each other. In
this context, planarity is a consideration, and we need to
know the cyclic order of the locations around a gadget.
This leads to the following definition.

A planar gadget is a pair p = (g , π) where

• g = (n,L,T) is a gadget.

• π is a cyclic order of the gadget’s locations. (In
other words, π is a necklace over L.)

4 Gadget Types

At the end of Section 3, we formally defined gadgets.
Now we define several specific types of (planar) gadgets,
and show how to implement them with turnstiles.

As a simple example, we can formally define a 1-toggle
as g1T = (n,L,T), with n = 2 states, two locations
L = {A,B}, and two transitions

T = {(1,A, 2,B), (2,B , 1,A)}.

There are no planar variations of this gadget, since at
least four locations are required to have multiple cyclic
orders of the location set.

When implementing a gadget type, it is important
to think of the type as a template, rather than a sin-
gle gadget. More specifically, an implementation of a
gadget must have the property that separate copies are
independent in the sense that they do not share any
state. For example, if a video game has a button that
acts globally (i.e. opens or toggles all doors), then it
cannot be used in an implementation. This is will not
be an issue in Turnstile since each turnstile has its
own orientation. For example, if we make two copies of
the 1-toggle implementation in Figure 8c, then they will
act independently of each other.

4.1 Noncrossing Toggle Lock (NTL)

A toggle-lock (TL) is a gadget gTL = (n,L,T) with
n = 2 states, four locations L = {A,B ,C ,D}, and the
following set of four transitions T :

{(1,A, 1,B), (1,B , 1,A), (1,C , 2,D), (2,D , 1,C}. (1)

In other words, a toggle lock has two tunnels, A-B
and C-D. The first tunnel is traversable in both direc-
tions in state 1, and is not traversable in state 2, while
the second tunnel is always traversable in one-direction.

382

CCCG 2021, Halifax, Canada, August 10–12, 2021

(a) NTL drawing from [7].

A B
2 1

1 2

C D

(b) NTL drawing from [9].

Figure 9: Noncrossing toggle lock (NTL) gadget.

o

o

A B

C D
(a) State 1 of NTL.

o

o

A B

C D
(b) State 2 of NTL.

Figure 10: Implementing a noncrossing toggle-lock.

Traversing the second tunnel toggles the gadget’s state,
which changes the traversability of both tunnels. The
first tunnel will be referred to as a lock in [7].

We are particularly interested in the one of the planar
toggle-locks.

• A noncrossing toggle-lock (NTL) is a pair p =
(gTL, π) with πn = ABDC .

The πn order implies that the two tunnels do not cross
each other. The NTL gadget is illustrated in Figure 9.

The first non-trivial gadget that the authors con-
structed happened to be a noncrossing toggle-lock, and
Figure 2 is reproduced in Figure 10. Fortuitously, the
simplified motion planning framework proves that the
ability to implement NTL gadgets (and branching hall-
ways) is sufficient for establishing PSPACE-hardness.
One detail that we mention

Theorem 6 Turnstile is PSPACE-complete.

Proof. The decision problem is in PSPACE by Propo-
sition 2, and branching hallway can be implemented in
Turnstile by Proposition 5. Figure 2 implements a
noncrossing toggle-lock. Therefore, the result follows
from Corollary 5.2 of [7]. �

4.2 Crossing 2-Toggle (C2T)

A 2-toggle (2T) is a gadget g2T = (n,L,T) with n = 2
states, four locations L = {A,B ,C ,D}, and the follow-
ing set of four transitions:

T = {(1,A, 2,B), (1,C , 2,D), (2,B , 1,A), (2,D , 1,C}.

In other words, a 2-toggle has two tunnels, A-B and
C-D, which are always one-directional, and traversing
either either tunnel toggles the direction of both tunnels.

We are particularly interested in the one of the planar
2-toggles.

• A crossing 2-toggle (C2T) is a pair p = (g2T , πc)
with πc = ADBC .

The order πc implies that the two cross each other. The
C2T gadget is illustrated in Figure 11.

Although we did not have a name for it at the time,
the second non-trivial gadget that the authors con-
structed was a crossing 2-toggle using a pair of turn-
stiles. Later we added thin turnstiles to our investiga-
tion, and it was possible to mimic the construction with
thick turnstiles using a pair of turnstiles. In both
cases, the turnstiles are positioned so that they each
have two possible orientations, and a single enclosed
cell between them. During a traversal, the player ro-
tates one of the turnstiles to enter the enclosed cell, then
must either retreat, or turn the other turnstile to con-
tinue along the direction that the entered from. Figures
12 and 13 illustrate the two constructions. Amazingly,
the simplified motion planning framework again proves
that these images are central to establishing PSPACE-
hardness.

Theorem 7 Turnstile is PSPACE-complete when
restricted to thick T-shaped or thin T-shaped turn-
stiles. That is, TurnstileS is PSPACE-complete when
S = { } or S = { }.

Proof. The decision problem is in PSPACE by Propo-
sition 2, and branching hallway can be implemented in
Turnstile by Proposition 5. Figures 12 and 13 im-
plement a crossing 2-toggle S = { } and S = { },
respectively. Therefore, the result follows from Corol-
lary 5.2 of [7]. �

4.3 Locking 2-Toggles (L2T)

A locking 2-toggle (L2T) is a gadget gL2T = (n,L,T)
with n = 3 states, four locations L = {A,B ,C ,D}, and
the following set of four transitions:

T = {(1,B , 3,A), (2,D , 3,C), (3,A, 1,B), (3,C , 2,D}.

In other words, a locking 2-toggle has two tunnels, A-B
and C-D, which are always traversable in at most one
direction. In state 3, both tunnels are traversable, and
traversing the first tunnel changes the gadget to state 1,
while traversing the second tunnel changes the gadget
to state 2. In state 1, only the first tunnel is traversable
(in the opposite direction), while only the second tunnel
is traversable (in the opposite direction) in state 2.

We consider two planar locking 2-toggles.

• A parallel locking 2-toggle (PL2T) is a pair p =
(gL2T , πp) with πp = ACDB .

383

33rd Canadian Conference on Computational Geometry, 2021

(a) C2T drawing from [7].

1

2

2

1

1C B
A D

2

(b) C2T drawing from [9].

Figure 11: Crossing 2-toggle (C2T) gadget drawing..

o

o
A B

C

D
(a) State 1 of C2T

o

o
A B

C

D
(b) State 2 of C2T

Figure 12: Crossing 2-toggle using .

A B

C

D
(a) State 1 of C2T

A B

C

D
(b) State 2 of C2T

Figure 13: Crossing 2-toggle using .

• An antiparallel locking 2-toggle (AL2T) is a pair
p = (gL2T , πa) with πa = ADCB .

Both orders implies that the two tunnels do cross each.
In the first case, the traversal directions in state 3 are
the same, while in the second case, the traversal di-
rections in state 3 are opposite. The PL2T and AL2T
gadgets are illustrated in Figure 14 and 16, respectively.
Since the L2T gadget has three states, the simplified
graphical style in [7] cannot be used.

We were able to implement the PL2T gadget in one
way, and the AL2T gadget in three ways. In each case,
the general idea is to place two 1-toggles together in such
a way that they interfere with the other 1-toggle in one
or the two states. Figures 15 illustrates our construction
of PL2T, and Figures 17, 18, and 19 illustrate our con-
structions of AL2T. The generalized motion planning
framework again proves that these images are central
to establishing PSPACE-hardness.

Theorem 8 Turnstile is PSPACE-complete when
restricted to thick or thin L-shaped or 1-shaped turn-
stiles. That is, TurnstileS is PSPACE-complete when
S = { } or S = { } or S = { } or S = { }.

31 2

1
3

2
3

A C

B D
Figure 14: Parallel locking 2-toggle (PL2T) gadget drawing.

o o

o

o

D

A

CB

(a) State 1 of PL2T

o o

o

o

D

A

CB

(b) State 3 of PL2T

o o

o

o

D

A

CB

(c) State 2 of PL2T

Figure 15: Parallel locking 2-toggle using .

Proof. The decision problem is in PSPACE by Propo-
sition 2. Figures 15, 18, 17, and 19, implement locking
2-toggles with S = { } or S = { } or S = { } or
S = { }, respectively. Therefore, the result follows
from Theorem 10 of [9]. �

5 Summary and Future Work

We have shown that motion planning through turnstiles
is PSPACE-complete for three shapes of turnstiles, re-
gardless of whether they are thick or thin. However, the
decision problem is solvable in polynomial-time when
restricted to +-shaped turnstiles that are thick or thin.
The unresolved singleton case is i -shaped turnstiles (i.e.

and); the pairings of +-shaped and i -shaped is
also open. These complexity results are summarized in
Figure 20 for thick turnstiles, and the same results hold
for thin turnstiles.

5.1 Future Work

One can classify the turnstiles that we have considered
in this article as short turnstiles, in the sense that the
arms have length one. Considering long turnstiles is a
natural next step, and these mechanisms would better
model the Pokemon series of games (see Figure 1b).

Rotating walls and swivel doors from Section 2 also
provide open problems. Another variation involves
ratchet rotation, in which turnstiles can only turn one
direction (i.e. clockwise or counterclockwise).

384

CCCG 2021, Halifax, Canada, August 10–12, 2021

3 1
2

2 3

A

C

D

1
3

B
Figure 16: Antiparallel locking 2-toggle (AL2T) gadget.

o

o

D

C

A

B
(a) State 1 of AL2T

o

o

D

C

A

B
(b) State 3 of AL2T

o

o

D

C

A

B
(c) State 2 of AL2T

Figure 17: Antiparallel locking 2-toggle using .

D

C

A

B
(a) State 1 of AL2T

D

C

A

B
(b) State 3 of AL2T

D

C

A

B
(c) State 2 of AL2T

Figure 18: Antiparallel locking 2-toggle using .

C

A

DB

(a) State 1 of AL2T

C

A

DB

(b) State 3 of AL2T

C

A

DB

(c) State 2 of AL2T

Figure 19: Antiparallel locking 2-toggle using .

∅

Figure 20: A summary of computational complextiy
results for the TurnstileS decision problem for all
S ⊆ { , , , , }. The subsets in red nodes are
PSPACE-complete, and the subsets in green nodes are
in P. The two subsets in white nodes, { } and { , },
remain open.

5.2 Acknowledgements

The initial work on this project was conducted at the
32nd Bellairs Winter Workshop on Computational Ge-
ometry in early 2017. We thank participant Mikhail
Rudoy for pointing us towards the motion planning
framework, which was still in its early stages of devel-
opment at the time. We also thank Erik Demaine and
Jayson Lynch for several helpful discussions.

References

[1] J. Ani, S. Asif, E. D. Demaine, Y. Diomidov, D. H. Hen-
drickson, J. Lynch, S. Scheffler, and A. Suhl. Pspace-
completeness of pulling blocks to reach a goal. J. Inf.
Process., 28:929–941, 2020.

[2] J. Ani, J. Bosboom, E. D. Demaine, Y. Diomidov, D. H.
Hendrickson, and J. Lynch. Walking through doors is
hard, even without staircases: Proving pspace-hardness
via planar assemblies of door gadgets. In M. Farach-
Colton, G. Prencipe, and R. Uehara, editors, 10th In-
ternational Conference on Fun with Algorithms, FUN
2021, May 30 to June 1, 2021, Favignana Island, Sicily,
Italy, volume 157 of LIPIcs, pages 3:1–3:23. Schloss
Dagstuhl - Leibniz-Zentrum für Informatik, 2021.

[3] J. Ani, E. D. Demaine, D. H. Hendrickson, and
J. Lynch. Trains, games, and complexity: 0/1/2-player
motion planning through input/output gadgets. CoRR,
abs/2005.03192, 2020.

[4] A. Barr, C. Chang, and A. Williams. Push-2-f is
PSPACE-complete. In Proceedings of the 33rd Cana-
dian Conference on Computational Geometry, Dal-
housie University, Halifax, Canada, August 10-12,
2021, 2021.

[5] J. Culberson. Sokoban is PSPACE-complete. In In
Proceedings of the 1st International Conference on Fun
with Algorithm, pages 65–76, 1998.

385

33rd Canadian Conference on Computational Geometry, 2021

[6] E. Demaine, M. Demaine, M. Hoffmann, and
J. O’Rourke. Pushing blocks is hard. Computational
Geometry, 26:21–36, 2003.

[7] E. D. Demaine, I. Grosof, J. Lynch, and M. Rudoy.
Computational complexity of motion planning of a
robot through simple gadgets. In H. Ito, S. Leonardi,
L. Pagli, and G. Prencipe, editors, 9th International
Conference on Fun with Algorithms, FUN 2018, June
13-15, 2018, La Maddalena, Italy, volume 100 of
LIPIcs, pages 18:1–18:21. Schloss Dagstuhl - Leibniz-
Zentrum für Informatik, 2018.

[8] E. D. Demaine, R. A. Hearn, and M. Hoffmann.
Push-2-f is PSPACE-complete. In Proceedings of the
14th Canadian Conference on Computational Geome-
try, University of Lethbridge, Alberta, Canada, August
12-14, 2002, pages 31–35, 2002.

[9] E. D. Demaine, D. H. Hendrickson, and J. Lynch. To-
ward a general complexity theory of motion planning:
Characterizing which gadgets make games hard. In
T. Vidick, editor, 11th Innovations in Theoretical Com-
puter Science Conference, ITCS 2020, January 12-14,
2020, Seattle, Washington, USA, volume 151 of LIPIcs,
pages 62:1–62:42. Schloss Dagstuhl - Leibniz-Zentrum
für Informatik, 2020.

[10] D. Dor and U. Zwick. Sokoban and other motion plan-
ning problems. Computational Geometry, 13(4):215 –
228, 1999.

[11] M. Fryers and M. T. Greene. Sokoban, 1995.

[12] A. Greenblatt, J. Kopinsky, B. North, M. Tyrrell, and
A. Williams. MazezaM levels with exponentially long
solutions. In 20th Japan Conference on Discrete and
Computational Geometry, Graphs, and Games (JCD-
CGGG 2017), pages 109–110, 2017.

[13] A. Greenblatt and A. Williams. MazezaM –
puzzle game. https://community.arduboy.com/t/

mazezam-puzzle-game/3723/25.

[14] R. A. Hearn and E. D. Demaine. The nondeterministic
constraint logic model of computation: Reductions and
applications. In P. Widmayer, F. T. Ruiz, R. M. Bueno,
M. Hennessy, S. J. Eidenbenz, and R. Conejo, editors,
Automata, Languages and Programming, 29th Interna-
tional Colloquium, ICALP 2002, Malaga, Spain, July
8-13, 2002, Proceedings, volume 2380 of Lecture Notes
in Computer Science, pages 401–413. Springer, 2002.

[15] R. A. Hearn and E. D. Demaine. Games, Puzzles, and
Computation. A K Peters/CRC Press, 1st edition, 2009.

[16] J. R. Lynch. A framework for proving the
computational intractability of motion plan-
ning problems. PhD thesis, MIT, 9 2020.
https://dspace.mit.edu/handle/1721.1/129205.

[17] B. North. Simpler exponential MazezaM
level family. https://bennorth.github.io/

simpler-exponential-mazezam/index.html.

Appendix

We conclude with several notes, which may be helpful for
some readers.

A Modeling Level 1

Figures 21–23 shows how Level 1 in Kwirk can be modeled
using gadgets and the motion planning framework. Note
that the two gadgets are simply rotations of each other.

(a) Locations. (b) State 1. (c) State 2. (d) State 3. (e) State 4.

(f) Locations. (g) State 1. (h) State 2. (i) State 3. (j) State 4.

Figure 21: (a)–(e) Gadget g1 = (n1,L1,T1) with n1 = 4
states, location set L1 = {A,B ,C}, and traversal set T1 =
{(1,A, 2,B), (1,A, 3,B), (1,A, 3,C), (1,A, 4,C), . . .}. (f)–
(j) Gadget g2 = (4,L2,T2) with L2 = {X ,Y ,Z} and T2 =
{(1,X , 2,Y), (1,X , 3,Y), (1,X , 3,Z), (1,X , 4,Z), . . .}.

Figure 22: Modeling Level 1 from Figure 1a using the system
of gadgets S = (G,C), with gadget set G = {g1, g2}, and
connections C = {{B ,Z}, {C ,Y }}. Note that gadget g1 is
on the right.

(a) System state (a, s1, s2) with agent location a = C , and gadget
states s1 = 3 and s2 = 4.

(b) System state (a, s1, s2) with agent location a = B , and gadget
states s1 = 2 and s2 = 4.

Figure 23: (a)–(b) A traversal move in gadget g1 in system S .
The traversal is (3,C , 2,B) ∈ T1, and the agent can move
right, down, down, right, left, left, left to make this traversal.

386

CCCG 2021, Halifax, Canada, August 10–12, 2021

B Membership in PSPACE

The proof of Proposition 2 uses standard techniques and
appears below.

Proof. We will prove that Turnstile is in NPSPACE,
which establishes the result by Savitch’s theorem. For sim-
plicity, our argument only considers levels with thick turn-
stiles; thin turnstiles can be handled by considering grid lines
as well as grid cells.

Consider an instance of the problem Turnstile(L) in
which L has a total of n grid cells. The size of the input is
then O(n) since each cell can be occupied by a small num-
ber of different game elements, hence, each cell contributes
a small number of bits to the level’s encoding.

Our algorithm starts in the initial state of the level, and
then non-deterministically makes moves (i.e. up, down, left,
right) until the player reaches the exit position and the algo-
rithm returns yes, or we exceed a pre-determined maximum
number of moves. The maximum number of moves that we
allow is chosen to be at least the number of different states
that the level can have, since if there is a solution, then there
is a solution that does not repeat any states. The state of
a level consists of the position of the player’s token, and
the orientation of each turnstile. Each turnstile can have at
most 4 orientations, and the number of turnstiles is at most
n. Thus, the number of states is at most n · 4n . To imple-
ment our algorithm, we need to store the current state of the
level, and the move counter. The state of the level requires
O(n)-bits, and the move counter requires log n ·4n = 2n log n
bits. Therefore, our algorithm uses O(n log n) nondetermin-
stic space. �

C Explicit Exponential Level Construction

There are two distinct benefits to constructing simple levels
that require an exponential number of moves to solve.

1. It illustrates that the simplest certificate (i.e. the se-
quence of moves) is not sufficient for establishing mem-
bership in NP. For example, see [12, 17] for the puzzle
game MazezaM.

2. Game developers may wish to include such a level in
their game. For example, this is true for MazezaM on
the Arduboy [13].

For these reasons, a lexicographic 4-bit binary counter
using crossing 2-toggles (C2T) is given in Figure 25, along
with an implementation in Kwirk using turnstiles.

1

2

2
12 1

SG

(a) A 4-bit counter in its initial state b4b3b2b1 = 0000.

SG

(b) State 0000. The highlighted loop complements b1.

SG

(c) State 0001. The highlighted loop complements b2b1.

SG

(d) State 0010. The highlighted loop complements b1.

SG

(e) State 0011. The highlighted loop complements b3b2b1.

...

SG

(f) State 1111. Reaching the goal via the highlighted path.

Figure 24: Binary counting with motion planning gad-
gets. (a) A 4-bit counter using crossing 2-toggles. (b)–(f)
Each image begins with the player at the start location S ,
and the counter state is a binary string b4b3b2b1 based on
the state of each gadget. The player must traverse states
0000, 0001, . . . , 1111 to reach the goal location G.

SG

(a) The 4-bit counter drawn with branching hallways as per [7].

C4

o
G A4 B4

o

D4

C3

o
A3 B3

o

D3

C2

o
A2 B2

o

D2

C1

o
A1 B1 X S

o

D1

(b) A 4-bit counter in Kwirk.

Figure 25: (a) The 4-bit counter from Figure 24 implemented
in Kwirk using the crossing 2-toggle with S = { }. It
follows the same design, but with (a) branching hallways, as
in the style of [7].

387

CCCG 2021, Halifax, Canada, August 10–12, 2021

Integer Cow-path Problem and Simple Robot Street Search

Azadeh Tabatabaei∗ Farehe Soheil† Mohammad Aletaha‡ Mohammad Ghodsi§

Abstract

In this paper, we revisit the well-known cow-path prob-
lem and introduce a new variation called Integer Cow-
path Problem (ICP). In the general cow-path problem,
w rays with one common end-point and a robot stand-
ing on the end-point are given. A target point is put
along one of the rays and can be detected only when it
is reached by the robot. The robot has to find the tar-
get by traversing the rays starting from the end-point.
In the ICP, the robot is restricted to take an integer
number of steps. The goal is to design a strategy for
the robot to find the target such that the length of
the traveled path is as small as possible. We present
a randomized strategy that gives an upper bound on
the competitive ratio for the ICP. Furthermore, as an
application of this variation, we study the Simple Robot
Street Search problem and give a randomized strategy
that is inspired from the strategy for the ICP.

1 Introduction

The problem of searching in unknown geometric en-
vironments is a fundamental problem in the fields
of computational geometry, robotics, and online algo-
rithms [13]. The cow-path problem is a well-known
problem that has been studied by mathematicians and
computer scientists [3, 6]. Many geometric search prob-
lems have applied the cow-path search algorithms.

In the general cow-path problem, we are given w ≥
2 rays with a common end-point s and a target point
t that is put along one of the rays, see Figure 1(a).
A searcher (robot), which is not aware of the location
of the target t, must find it. The searcher can only
move along the rays and cannot detect t before reaching
it. The name «cow-path» comes from the scenario in
which, metaphorically a cow is searching for her calf in w
concurrent paths [15]. Note that the cow-path problem
is also called star-search or ray-search. Furthermore,
when w = 2, it is called searching on a line or linear
search, see Figure 1(b).

∗Department of Computer Engineering, University of Science
and Culture, Iran. a.tabatabaei@usc.ac.ir

†Department of Computer Engineering, Sharif University of
Technology, Iran. soheil@ce.sharif.edu

‡Department of Computer Engineering, Sharif University of
Technology, Iran. mohammadaletaha@ce.sharif.edu

§Sharif University of Technology and Institute for Research in

s

t

s t

(a)

(b)

Figure 1: (a) An example of cow-path problem with w = 6.
The robot’s search path is shown in blue (b) Searching on a
line (w = 2).

Searching in an unknown environment can be seen as
an online problem since the robot does not have access
to the information about the position of the target and
must decide in an online manner. The notion of the
competitive analysis is proposed for measuring the per-
formance of the online algorithms [17]. In the cow-path
problem, the competitive ratio is the length of the path
traveled by the robot from the start point s to the target
point t over the shortest path from s to t. A strategy is
α-competitive if its competitive ratio is at most α.

The distances in this problem are expressed in steps.
A step is the unit of measurement in the literature [6].
We revisit the general cow-path problem in a way that
the robot is limited to take an integer number of steps
along the rays. While in the general problem such a
limitation does not exist and the robot can take any
real number of steps, see Figure 2. Notice that like the
general cow-path problem, the searcher stops whenever
it achieves the target and does not go further even if
it is in a middle of a step. We name this new varia-
tion Integer Cow-path Problem (ICP) and will study it
in section 2.

The motivation behind considering such a variation
(ICP) is to use simpler and cheaper searching agents
(robots). The robots which can take any real number
of steps need powerful movement capabilities, while the
robots whose number of steps are limited to integers
have simpler and less powerful movement capabilities.
More powerful and complicated dynamic abilities will
always lead to more expenses and costs. A stepper-

Fundamental Sciences (IPM), Iran. ghodsi@sharif.edu

388

33rd Canadian Conference on Computational Geometry, 2021

s

step

t

Figure 2: Example of the cow-path problem with w = 4.
Traversing an integer number of steps (shown in blue) in
the ICP, and traversing a real number of steps (shown in
dashed line) in the general problem. The target t is placed
n ∈ R (n ≥ 1) steps away from s.

motor (or stepping-motor) is an electric motor that in-
stead of rotating continuously, rotates in a number of
discrete equal steps. Then, one can command the motor
to move or hold at each step without any position sen-
sor for feedback (see [2] for more details about stepper-
motors). A stepper-motor makes the robot take only
an integer number of steps when attached to one. Note
that we configure the step-size of the robot’s stepper-
motor to be equal to the step-size of the problem. In
the general cow-path problem the searcher might take
any real number of steps along the rays. Hence, we
have introduced the ICP to find the same target in the
same environment with a simpler robot equipped with
a stepper-motor.

As an application of the ICP, we study the Simple
Robot Street Search problem. This problem refers to
searching for a specific target in a particular polygonal
environment (a street polygon) using a minimal sensing
robot. We will discuss it properly in section 3.

1.1 Our contribution

In this paper, we introduce and study the Integer Cow-
path Problem (ICP) and present the first randomized
search strategy for it. In fact, this strategy gives an
upper bound on the competitive ratio of the ICP. Our
randomized strategy for the ICP is β-competitive where

β = min
r∈Z,r>1

{
2 (rw − 1)

w(r − 1) ln r
+ (w + 1) · (0.56) + 1

}

and w is the number of rays, given as the input of the
problem. We have summarized the competitive ratio of
our strategy for some values of w in Table 1.

Furthermore, we study the Simple Robot Street
Search problem and show that in the worst case, this
problem can be seen as the ICP with w = 2. So, we
give a 6.29-competitive randomized strategy that uses
the strategy for the ICP as a subroutine.

2 Integer Cow-path Problem (ICP)

In this section, first, we express the Integer variation
of the Cow-path Problem (ICP) in detail and mention
some related works. Then, we present a randomized

w β
2 6.29
3 9.98
4 14.63
5 22.25
6 35.22

Table 1: The competitive ratio β for some values of w
for the integer cow-path problem.

strategy for the ICP and finally discuss the performance
of the proposed strategy in the remaining of this section.

2.1 Problem Definition

Given w ≥ 2 concurrent rays sharing a common end-
point s, and a robot R standing on s. A target point
t is put n ∈ R (n ≥ 1) steps away from s along an
arbitrary ray. The robot R moves in a round-to-round
manner and can only move back and forth along the
rays. At each round i ∈ Z0+, R takes di ∈ N steps on
ray li ∈ {0, 1, ..., w− 1} and if it does not find t, returns
back to s and advances on round i + 1. So, we use a
function S(i) = (di, li) to formulate the robot’s moving
strategy at round i.

Note that before t is reached, R always takes an in-
teger number of steps. Since the target’s distance can
be non-integer (n ∈ R), R is allowed to take only one
non-complete step during its travel, which is when it
encounters t. The robot R immediately stops as soon
as it reaches t even in a middle of a step. Let D denote
the length of the path (in steps) traveled by R from s to
find t. The problem refers to designing an online strat-
egy minimizing C = D/n, where C is the competitive
ratio of the strategy.

Note that a lower bound on n is necessary for having a
bounded competitive ratio. Otherwise, the competitive
ratio will be unbounded in the worst case. Consider t is
placed at distance ε > 0 steps from s on ray j. Now, if
the robot takes λ steps in the first round, on any other
ray k 6= j, then the competitive ratio is at least λε and it
might be unbounded. Hence, like many previous works,
we assume n ≥ 1.

2.2 Related works

The general cow-path problem was first proposed by
Bellman [8] and then, studied by mathematicians like
Beck and Newman [7] and Gal [12] who gave solutions to
this problem. After that, the problem was rediscovered
by computer scientists. Baeza-Yates et al. [6] and Kao
et al. [15] gave optimal deterministic and randomized
strategies for the general problem, respectively. The

389

CCCG 2021, Halifax, Canada, August 10–12, 2021

deterministic strategy in [6] is λ-competitive where

λ = 2 · ww

(w − 1)w−1
+ 1

and the randomized strategy in [15] is γ-competitive
where

γ = min
r>1

{
2

w
· 1 + r + r2 + · · ·+ rw−1

ln r
+ 1

}
.

Here, we mention the values of λ and γ for some w in Ta-
ble 2. So far, several variations of the general problem

w λ γ
2 9 4.6
3 14.5 7.74
4 19.97 10.85
5 25.42 13.95
6 30.86 17.04

Table 2: The competitive ratios λ and γ for some values
of w for the general cow-path problem.

have been introduced and studied by researchers, in-
cluding moving target, having turn cost, the existence
of lower and upper bounds on the target’s location, and
maximum clearance [5, 9, 10, 11].

2.3 Algorithm for the ICP strategy

Here, we present a randomized strategy for the ICP. Our
strategy is a modified version of the SmartCow strategy
by Kao et al. [15] such that it always generates integer
values for di at each round i. In fact, we apply the idea
of rounding using the ceiling function. We denote this
strategy by IntegerCow and express it as an algorithm
in Algorithm 1. The analysis of the algorithm can be

Algorithm 1: IntegerCow
Compute a random permutation σ of
{0, 1, ..., w − 1}
Compute the best value for r
Choose ε u.a.r.1 from [0, 1)
d← rε

i← 0
while the target t is not achieved do

Move along ray σ(i mod w) up to dde step(s)
Move back to the start point s
d← r · d
i← i+ 1

end

represented in terms of r > 1 which is a constant real
value. Also, r approximately determines by what factor
the number of steps in the next round should be more
than the current round. We will show how to find the

best value for r in the analysis section. Compared to
the SmartCow algorithm, the modification is slight but
it makes the analysis more complicated and non-trivial.

2.4 Analysis

Now, we obtain the competitive ratio of the Inte-
gerCow algorithm. Since this algorithm is random-
ized, its competitive ratio is defined as the expected
distance traveled by the robot over the actual distance
between s and t. The algorithm is designed to move
the robot

⌈
ri+ε

⌉
steps from s on round i ≥ 0, i.e.

S(i) = (
⌈
ri+ε

⌉
, lσ(i mod w)). As we noted earlier, n de-

notes the distance between s and t in the worst case.
Let k ∈ Z0+ and 0 ≤ δ < 1 such that n = rk+δ. Sup-
pose t lies on ray lj and let m be the first round where
R travels a distance of at least

⌈
rk
⌉
steps from s on lj .

Depending on the random order of rays in σ, the
value of m in the worst case satisfies k ≤ m ≤ k+w−1
(It is possible for m to take values less than k because
of the ceiling function, but this only decreases the
competitive ratio). Let D be the random variable
denoting the overall distance traveled by R to find
t. We denote the competitive ratio of the algorithm
by C that is computed as C = E[D]/n. To obtain C,
we need to calculate E[D] for which there are two cases:

Case 1: When m = c ≥ k + 1, R certainly finds t at
round c and the expected value of D is calculated as

E[D|m = c] = E

[
2
c−1∑

i=0

⌈
ri+ε

⌉
+ n

]

= E

[
2

c−1∑

i=0

(ri+ε +
⌈
ri+ε

⌉
− ri+ε) + n

]

= 2

c−1∑

i=0

(
E
[
ri+ε

]
+ E

[⌈
ri+ε

⌉
− ri+ε

])
+ n.

Now, we define functions f(r, i) and fM (r) as follows:

f(r, i) = E
[⌈
ri+ε

⌉
− ri+ε

]
=

∫ 1

0

(
⌈
ri+ε

⌉
− ri+ε)dε,

fM (r) = max
i∈Z0+

f(r, i).

So, the expression for E[D|m = c] can be written as

E[D|m = c] = 2

c−1∑

i=0

(
E
[
ri+ε

]
+ f(r, i)

)
+ n

≤ 2

c−1∑

i=0

(
E
[
ri+ε

]
+ fM (r)

)
+ n

1uniformly at random

390

33rd Canadian Conference on Computational Geometry, 2021

=
2(rc − 1)

r − 1
· E[rε] + 2c · fM (r) + n

=
2(rc − 1)

r − 1
·
∫ 1

0

rεdε+ 2c · fM (r) + n

=
2(rc − 1)

r − 1
· (r − 1

ln r
) + 2c · fM (r) + n

=
2(rc − 1)

ln r
+ 2c · fM (r) + n.

Case 2: When m = k, depending on the values of
ε and δ, R may find t on round k or may fail. In case
of failure, it continues to search and finally finds t on
round k + w. We classify this case into three events as
follows:

F1: When ε > δ, then trivially
⌈
rk+ε

⌉
> rk+δ and R

will find t on round k.

F2: When ε ≤ δ and
⌈
rk+ε

⌉
≥ rk+δ, again R will find t

on round k.

F3: When ε < δ and
⌈
rk+ε

⌉
< rk+δ, R will not find t

on round k. So, it continues searching and will find t on
round k + w.

So, the expected traveled distance in case 2 is

E[D|m = k] = Pr(F1) · E
[
2
k−1∑

i=0

⌈
ri+ε

⌉
+ n | F1

]

+ Pr(F2) · E
[
2
k−1∑

i=0

⌈
ri+ε

⌉
+ n | F2

]

+ Pr(F3) · E
[
2
k+w−1∑

i=0

⌈
ri+ε

⌉
+ n | F3

]
.

Similar to calculations of case 1, we have

E[D|m = k] ≤ Pr(F1) ·
[
2(rk − 1)

r − 1

]
· E[rε|F1]

+ Pr(F2) ·
[
2(rk − 1)

r − 1

]
· E[rε|F2]

+ Pr(F3) ·
[
2(rk+w − 1)

r − 1

]
· E[rε|F3]

+ Pr(F1) · 2k · fM (r) + Pr(F2) · 2k · fM (r)

+ Pr(F3) · 2(k + w) · fM (r) + n.

To calculate the expectations on rε, we define
α = minx ∈ [0, δ] such that

⌈
rk+x

⌉
≥ rk+δ. Notice that

r > 1 and 0 ≤ α ≤ δ. By the definition of α, for
event F2 we have α ≤ ε ≤ δ and for event F3 we have
0 ≤ ε < α. So, in events F2 and F3, we have rα ≥ 1
and rα ≤ rδ, respectively. Now, we can compute the
conditional expectations as follows:

E[rε|F1] =

∫ 1

δ

rεdε

Pr(F1)
=

r − rδ
Pr(F1) · ln r

,

E[rε|F2] =

∫ δ

α

rεdε

Pr(F2)
=

rδ − rα
Pr(F2) · ln r

≤ rδ − 1

Pr(F2) · ln r
,

E[rε|F3] =

∫ α

0

rεdε

Pr(F3)
=

rα − 1

Pr(F3) · ln r
≤ rδ − 1

Pr(F3) · ln r
.

Putting all these together, we have

E[D|m = k] ≤ 2(k + w) · fM (r) + n

+
2 ·
[
(r − rδ)(rk − 1) + (rδ − 1)(rk+w + rk − 2)

]

(r − 1) ln r
.

Thus, considering both cases and knowing that
Pr(m = j) = 1

w for any k ≤ j ≤ k + w − 1, the total
expected traveled distance equals to

E[D] =
k+w−1∑

j=k

Pr(m = j) · E[D|m = j]

=
1

w
· E[D|m = k] +

k+w−1∑

j=k+1

1

w
· E[D|m = j].

By the results of case 1 and case 2, we get

E[D] ≤ 2 ·
[
(r − rδ)(rk − 1) + (rδ − 1)(rk+w + rk − 2)

]

w(r − 1) ln r

+
2

w
(k + w) · fM (r) +

n

w

+
1

w

k+w−1∑

c=k+1

(
2(rc − 1)

ln r
+ 2c · fM (r) + n

)
.

After simplification, we have

E[D] ≤ 2 ·
[
rk+δ+w − rk − rδ − rw + w + 1

]

w(r − 1) ln r

+(2k + w + 1) · fM (r) + n.

Since k, δ ≥ 0 and r > 1, we have −rk < −1, −rδ ≤ −1,
and −rw < −w. So,

E[D] ≤ 2
(
rk+δ+w − 1

)

w(r − 1) ln r
+ (2k + w + 1) · fM (r) + n.

Since k, δ ≥ 0 and n = rk+δ, we have

C ≤ 2
(
rk+δ+w − 1

)

rk+δw(r − 1) ln r
+

(2k + w + 1) · fM (r)

rk+δ
+ 1.

(1)

Using (1), we demonstrate the following lemma.

Lemma 1 The competitive ratio C is upper bounded by

min
r>1

{
2 (rw − 1)

w(r − 1) ln r
+ (w + 1) · fM (r) + 1

}

391

CCCG 2021, Halifax, Canada, August 10–12, 2021

Proof. We are interested to obtain an upper bound on
C and we want this upper bound to be as small as possi-
ble. The number of rays, w, is the input of the problem.
The value of r is a parameter of the algorithm for which
we determine its value. After deciding about the value
of r, the adversary determines the value of k and δ to
maximize the competitive ratio C. As a result, we must
choose the proper value for r to assure that for a fixed
value of δ and k, given by the adversary, still we obtain a
minimum upper bound for C. So, we consider the right
hand side of (1) as a function of r. This function has a
minimum in r ∈ [1,∞) and it can be verified by taking
the first derivative of the r.h.s function with respect to
r. Now, inspiring from (1), we define function Frhs(k, δ)
as below

min
r>1

{
2
(
rk+δ+w − 1

)

rk+δw(r − 1) ln r
+

(2k + w + 1) · fM (r)

rk+δ
+ 1

}
.

It is obvious that C ≤ Frhs(k, δ). The adversary can
determine the value of k and δ to maximize Frhs(k, δ).
It can be proven that Frhs(k, δ) is maximized when
k, δ = 0 (by taking the derivatives, one can show this
function is non-increasing with respect to k, δ ≥ 0). So,
we can conclude that C ≤ Frhs(0, 0) and this completes
the proof of lemma. �

From now on, we focus on proving an upper bound
for fM (r). Since we use Ramanujan’s bounds for ln(n!)
further, we claim it as the following theorem.

Theorem 2 [4] For ln(n!), the following lower and up-
per bounds hold:

ln(n!) < n ln(n)− n+ 1
6 ln

(
8n3 + 4n2 + n+ 1

30

)
+ 1

2 ln(π),

ln(n!) > n ln(n)− n+ 1
6 ln

(
8n3 + 4n2 + n+ 1

100

)
+ 1

2 ln(π).

Now, we state the following lemma which gives an
upper bound for fM (r).

Lemma 3 For all integers r > 1, we get fM (r) < 0.56.

Proof. According to definition of f(r, i), we have

f(r, i) =

∫ 1

0

(
⌈
ri+ε

⌉
− ri+ε)dε

=

∫ 1

0

⌈
ri+ε

⌉
dε−

∫ 1

0

ri+εdε. (2)

The second part of (2) is easily calculated as
∫ 1

0

ri+εdε =
ri+1 − ri

ln r
(3)

In order to compute the first part of (2), let z = i + ε,
then dz = dε which gives

∫ 1

0

⌈
ri+ε

⌉
dε =

∫ i+1

i

drze dz

=

∫ i+1

0

drze dz −
∫ i

0

drze dz.

Let

g(i) =

∫ i

0

drze dz,

then
∫ 1

0

⌈
ri+ε

⌉
dε = g(i+ 1)− g(i). (4)

Considering the graph of f(x) = drxe in Figure 3, we
can compute g(i) by summing up the areas of the blue
rectangles.

logr(2)

2

3

4

logr(3) logr(4) ilogr(
⌈
ri
⌉
− 1)

drie

drie − 1

f(x)

x

Figure 3: The function f(x) = drxe is shown in red. The
blue region is g(i).

According to Figure 3, g(i) can be calculated as:

g(i) =

∫ i

0

drze dz =
drie−1∑

j=2

j · (logr (j)− logr (j − 1))

+
⌈
ri
⌉
·
(
i− logr

(⌈
ri
⌉
− 1
))
.

The above expression is hard to simplify for all real val-
ues of r > 1 because of the ceiling functions. So, by
considering only integer values for r, one can reduce the
difficulties induced by the ceiling functions. Since i is an
integer, by letting r be an integer we will have drie = ri

and i = logrdrie. Note that r is a parameter of the algo-
rithm not the input of the problem, so we are allowed to
decide its value. Henceforth, we study r only for integer
values, i.e. r > 1 and r ∈ Z. So the above summation
can be simplified as

g(i) =
ri∑

j=2

j · (logr (j)− logr (j − 1))

= ri · logr(ri)−
ri−1∑

j=2

logr(j)

= i · ri − logr
(
(ri − 1)!

)
. (5)

By applying (5) in (4) and using (3), we can calculate (2)

392

33rd Canadian Conference on Computational Geometry, 2021

as follows:

f(r, i) = (i+ 1)ri+1 − logr
(
(ri+1 − 1)!

)

− (i)ri + logr
(
(ri − 1)!

)
− ri+1 − ri

ln r

= ri
(
(r − 1) i+ r − r − 1

ln r

)
− logr

((
ri+1 − 1

)
!

(ri − 1)!

)

= ri
(
(r − 1) i+ r − r − 1

ln r

)
− logr

(
ri+1!

r · ri!

)

= ri
(
(r − 1) i+ r − r − 1

ln r

)

− 1

ln r

(
ln
(
ri+1!

)
− ln

(
ri!
))

+ 1.

Using inequalities in Theorem 2, we get

f(r, i) < 1 + ri
(
(r − 1) i+ r − r − 1

ln r

)

+
1

ln r

(
ri ln

(
ri
)
− ri − ri+1 ln

(
ri+1

)
+ ri+1

)

− 1

ln r

(
1

6
ln

(
8
(
ri+1

)3
+ 4

(
ri+1

)2
+ ri+1 +

1

100

))

+
1

ln r

(
1

6
ln

(
8
(
ri
)3

+ 4
(
ri
)2

+ ri +
1

30

))
. (6)

We denote the right hand side of (6) by fub(r, i). Ac-
cording to the definition of fM (r), any upper bound on
f(r, i) for all i ∈ Z0+ yields an upper bound on fM (r).
If we fix r (for all integers r > 1), then fub(r, i) is non-
increasing with respect to i ∈ [0,∞) (Section A in the
Appendix covers the proof of this statement). So, the
maximum value of fub(r, i) happens at i = 0.

The function fub(r, 0) is non-increasing with respect
to r (proof is similar). Therefore, for all integers r > 1
the maximum value of fub(r, 0) happens at r = 2 and
it approximately equals to 5.557. So, we conclude that
for all integers r > 1, we have

fM (r) < fub(2, 0) < 0.56.

This completes the proof of lemma. �

Now, by Lemma 1 and Lemma 3, we conclude the fol-
lowing theorem which is the main contribution of this
paper.

Theorem 4 The IntegerCow algorithm for the ICP is
β-competitive where

β = min
r∈Z,r>1

{
2 (rw − 1)

w(r − 1) ln r
+ (w + 1) · (0.56) + 1

}
.

By Theorem 4, for any w ≥ 2, Algorithm 1 computes
the best value for r (denoted by r∗) which minimizes
the above function. For some values of w, the values for
r∗ and their corresponding β are given in Table 3.

w r∗ β
2 4 6.29
3 2 9.98
4 2 14.63
5 2 22.25
6 2 35.22

Table 3: The values of r∗ and β for some w

3 Simple Robot Street Search

In this section, we introduce an application of the ICP
called Simple Robot Street Search and give a random-
ized strategy for it, inspired by the ICP strategy.

3.1 Preliminaries

A simple polygon P with two distinct vertices s and
t is called a street if the clockwise chain (Lchain) and
counter-clockwise chain (Rchain) which are constructed
on the polygon from s to t, are mutually weakly visible.
In other words, each point on Lchain must see at least
one point on Rchain and vice versa, see Figure 4.

The set of points that are visible from a point q in P is
called the visibility polygon of q, denoted by vis(q). An
edge of vis(q) which does not belong to the boundary
of P is called a gap (sometimes called window), see Fig-
ure 4. Each gap g is induced by a reflex vertex called
ref(g) and a region of P is hidden on one of its sides
called pocket of g. We assume a gap g is oriented such
that its start point is ref(g). The gap g is called a l-gap
(r-gap), denoted by L (R), if the pocket of g lies on its
left (right) side, see Figure 4.

A simple robot B is a point robot which can only
detect gaps in a cyclical order, see Figure 4. As a tech-
nical point of view, it is equipped with a sensor which
detects the order of discontinuities in depth information
(gaps) in its visibility polygon. A simple robot can only

s

t

RR

L

Lchain

Rchain

B

Figure 4: A street polygon with respect to s and t, Rchain

and Lchain, two r-gaps and one l-gap. The visibility polygon
of the robot B is shown in blue.

move toward gaps and the target t when it becomes
visible. The unit of simple robot’s movement is called
step which is a constant distance that has been speci-
fied by the robot’s manufacturer. Technically speaking,
a stepper-motor is put on the robot which makes it move

393

CCCG 2021, Halifax, Canada, August 10–12, 2021

in discrete equal distances (steps). Furthermore, a sim-
ple robot has a stopping function that, whenever called,
forces the robot to stop immediately even if in a middle
of a step. For example, at the point that the target t
becomes visible, one can call its stopping function to
stop the robot and prevent it from going further in the
wrong direction.

3.2 Problem Definition

We are given a street polygon P with point s and t and
a simple robot B. The robot B is placed at s and moves
through P in an arbitrary number of steps. We assume
a step is small enough compared to the scale of P . The
robot is presumed to take an integer number of steps
except when the strategy forces the robot to stop. The
goal is to reach the target t starting from s such that
the traversed path by B is as short as possible.

3.3 Related Works

In 1992, Klein [16] introduced street polygons and pro-
posed a 5.73-competitive strategy for the street search
problem using a 360◦-vision robot. The 360◦-vision
robots can detect any vertex and edge of the polygon,
measure any angle and distance between objects, and
move freely in any direction. After several improve-
ments, finally, Icking et al. [14] presented the optimal√
2-competitive strategy for this problem.
The limited sensing model (gap sensor) that a sim-

ple robot is equipped with, was introduced by To-
var et al [22]. Note that unlike 360◦-vision robots, a
simple robot’s vision and movement are strictly lim-
ited. For the first time, Tabatabaei et al. [20] used
the simple robots for the street search problem and
gave an 11-competitive strategy using auxiliary tools
called pebbles. After that, Tabatabaei et al. [19] and
Wei and Tan [23] independently presented the opti-
mal 9-competitive deterministic strategies for the Sim-
ple Robot Street Search problem. In this paper, we
study the latter problem and give a randomized 6.29-
competitive strategy. The cooperation of two robots [1]
and minimizing the number of turns in street search-
ing [18], and searching in generalized streets [21] are
other works that used simple robots.

3.4 Motion primitives

Gaps are maintained in a data structure called S-
GNT [20]. While B is moving, combinatorial changes
called critical events, occur in its visibility polygon
which update S-GNT. There are four critical events:

• Appearance and Disappearance of gaps occur when
the robot crosses the inflection rays.

• Merge and Split of gaps occur when the robot
crosses the bitangent complements.

as illustrated in Figure 5. An inflection ray is the ex-

inflection ray

R

bitangent

complement

R

L

(c) (d)

(e)

R

R

L

bitangent

complement

R

R

R

L

R

R

L
R

R

L

R

L R

LR

R

LL R

LR

R

R

R R

inflection ray

(f)

RR

(a)

LR

Lchain

s

t

gr

gl

L

R

Rchain

(b)

R

bitangent

complement

R

L
LR

L
R

Figure 5: A street polygon and the dynamical changes
of the gaps as the robot moves. The black circle is the
location of B. Pink squares and blue circles denote prim-
itive and non-primitive gaps, respectively. (a) Existing
gaps at s. (b) A split event. (c) A disappearance event.
(d) An appearance event. (e) Another split event. (f)
A merge event.

tension of the hidden edge of a gap into the interior
of the polygon, see Figure 5(c). A bitangent comple-
ment is a line that is tangential to two reflex vertices of
the polygon, see Figure 5(b). A new gap whose pocket
was formerly visible is called primitive. Otherwise, it
is called non-primitive, see Figure 5. We are only in-
terested in probing non-primitive gaps since the region
behind a non-primitive gap had never been visible to
the robot before. We define gl to be the rightmost non-
primitive l-gap, and gr to be the leftmost non-primitive
r-gap, see Figure 5(a). As the robot moves, the critical
events may dynamically change gl and gr in a way that
one the followings happens:

• Uni-gap: if there exists only one of gr or gl or they
are collinear, a uni-gap occurs, see Figure 6(a).

• Funnel: When both gr and gl exist, we say a fun-
nel is created, see Figure 6(b). Also, by the robot’s

394

33rd Canadian Conference on Computational Geometry, 2021

movement, a funnel may end or a new one may
start. We refer to the point, in which a funnel
ends, a critical point of that funnel, see point 2
in Figure 6(b).

t

Critical point

s

j

(a)

3

1

(b)

t

2

1

2

s

gls

grs

3

Figure 6: The bold path is the robot’s search path, the
dotted path is the shortest path. (a) There is only gr. (b)
Both gr and gl at the start point s and a funnel case. The
angle ϕ between the gaps, is the opening angle.

In a funnel case, as the robot moves toward gl or gr,
the following events update the location of gl and gr as
well as the location of the funnel.

1. When gr/gl splits into itself and a new r-gap/l-
gap. Then the gr/gl will be replaced by this new
r-gap/l-gap (point 1 in Figure 6(b)).

2. When gr/gl splits into itself and a new l-gap/r-
gap, then this new l-gap/r-gap will be set as gl/gr.
This point is a critical point in which the funnel
ends (point 2 in Figure 6(b)).

3. When gl or gr disappears, a critical point has
been achieved and the funnel ends (point 3 in Fig-
ure 6(a)).

Note that the split and disappearance events may occur
concurrently (point 3 in Figure 6(b)).

3.5 Strategy

When the target t is not visible, it is hidden behind one
of the gaps. Otherwise, the robot could see it. The
following theorem states that when t is not visible, it is
behind one of gl or gr. So, we can ignore other ones and
focus only on gl and gr.

Theorem 5 [20] While t is not visible, it is behind gl
or gr.

In a uni-gap case, where there exists only one of gr or
gl or they are collinear, according to Theorem 5, t is
behind that gap, see Figure 6(a). But at each funnel,

where both gr and gl exist, the robot is not aware be-
hind which of gr or gl the target t is hidden. So, usually,
a detour from the shortest path (an extra undesirable
longer path) is unavoidable. Notice that potentially,
there might be more than one critical point for a fun-
nel. But, as soon as the robot achieves a critical point,
according to its strategy, the funnel ends. So, B achieves
only one critical point for each funnel.

Now, we demonstrate our strategy. Until B does not
see the target t, it continues to search. If t becomes
visible, B’s stopping function will be called. So, B im-
mediately stops and moves directly toward t. Before t
becomes visible, at each point of the search path, two
cases might happen:

1. If there exists only one of gr or gl (uni-gap case),
then t is behind the existing gap, see Figure 6(a).
In this case, B moves toward this gap until one of
these happens: either t becomes visible, a funnel
case occurs or B reaches the reflex vertex of this
gap. In any of these three conditions, B’s stopping
function will be called.

2. If a funnel case occurs, to bound the detour, the
robot moves toward gr and gl alternatively, see Fig-
ure 6(b). In fact, a funnel can be seen as two con-
current rays created by gr and gl. So, we can apply
the ICP strategy when w = 2 with a minor differ-
ence. In the ICP when w = 2, the robot goes d
steps along one ray, takes another d steps to turn
back to the starting point, and then goes d′ steps
along the other ray. However in this strategy, af-
ter traversing d steps along a gap, the robot stops
but does not turn back to the starting point of the
funnel. Rather, it changes its direction toward the
other gap and takes d + d′ steps in the new di-
rection. As the robot moves, whenever t becomes
visible or B reaches the critical point of the funnel,
the strategy will call B’s stopping function.

Each time the strategy calls B’s stopping function, the
robot stops and checks which of the above two cases is
happening. We have demonstrated the above strategy
as an algorithm in Algorithm 2.

3.6 Analysis

Throughout the search, in uni-gap cases or when the
target t is visible, the search path coincides with the
shortest path. But as noted earlier, in funnel cases de-
tours are unavoidable. So, to prove the competitive ra-
tio of the strategy, we compare the length of the tra-
versed path and the shortest path in funnel cases. In
this case, the angle between gr and gl, which is always
smaller than π, is called the opening angle, denoted by
ϕ, see Figure 6(b). In Lemma 6, we show that the de-
tour from the shortest path depends on the size of ϕ.

395

CCCG 2021, Halifax, Canada, August 10–12, 2021

Algorithm 2: Randomized Street Search
while the target t is not visible do

if a uni-gap case occurs then
repeat

Move toward the existing gap
until a funnel case happens or reflex
vertex of the gap is achieved or t
becomes visible;

else if a funnel case occurs then
{d0, d1} ← {r, l}
Choose i u.a.r. from {0, 1}
Choose ε u.a.r. from [0, 1)
j ← 4ε

Move toward gdi up to dje step(s)
i← (i+ 1)mod(2)
repeat

d← dje+ d4 · je
Move toward gdi up to d steps
i← (i+ 1)mod(2)
j ← 4 · j

until a critical point of the funnel is
achieved or t becomes visible;

end
Move directly toward t

Lemma 6 In a funnel case, the detour from the short-
est path for a small opening angle is shorter than the
detour for a large opening angle.

Proof. According to our strategy, in a funnel case, B
moves toward gr and gl alternatively. In this alterna-
tive movement, moving toward one of the directions is
correct and moving toward the other is a deviation. As-
sume that at point pi, when a funnel case occurs, B
moves toward gr and reaches point pi+1 while the tar-
get t is behind gl, see Figure 7(a). Now, to achieve t, B
should traverse at least a distance

δ =

√
|pipi+1|2 + |pivl|2 − 2 · |pipi+1| · |pivl| · cosϕ

by the law of cosines, see Figure 7(a). It can be verified
that δ is strictly increasing as a function of ϕ by taking
the derivative with respect to ϕ where 0 < ϕ < π. So,
greater opening angle ϕ results in greater detour taken
by the robot. �

The following theorem demonstrates the competitive
ratio of the strategy.

Theorem 7 Given a street P and a simple robot B,
Our randomized strategy for the street search problem is
6.29-competitive.

Proof. As we noted before, except in funnel cases, the
search path coincides with the shortest path. So, the
detours from the shortest path happen only in the pres-
ence of funnels. Therefore, to compute the competitive

s

gl

vl

gr

vr

pi

pi+1

vl vr

d

j

(a)

(b)

Figure 7: (a) pipi+1 is a detour from the shortest path. (b)
The worst case.

ratio of our strategy, only funnel cases matter. In a
funnel case, by Theorem 6, for larger opening angles
the robot deviates more from the shortest path. Since
ϕ never exceeds π, the worst case happens when the
opening angle ϕ is adequately close to π and the robot
can only move toward left and right. In this situation,
searching for a critical point in a funnel case reduces to
the ICP with w = 2, see Figure 7(b). Hence, to obtain
the worst-case analysis, we consider the case when ϕ is
very close to π. According to Algorithm 2, our strategy
in a funnel case with opening angel ϕ close to π, oper-
ates the same as the strategy for the ICP presented in
Algorithm 1 with w = 2 and r = 4. Note that for the
ICP, we have obtained r∗ = 4 for the case of w = 2,
see Table 1. By Theorem 4, the strategy for the ICP is
6.29-competitive for w = 2 and this completes the proof
of the theorem. �

4 Conclusion

We introduced and studied a new variation of the cow-
path problem called the Integer Cow-path Problem
(ICP). In this variation, the robot is restricted to take
only an integer number of steps. We present a ran-
domized strategy for this problem which gives an upper
bound on the competitive ratio of all randomized strate-
gies. Moreover, we use this strategy for the problem of
searching in a street using a simple robot. Improving
the upper bound and proving a lower bound on the com-
petitive ratio can be one of the future works. Also, it
is interesting to design deterministic strategies for the
ICP. Albeit the doubling strategy in [6] is a determinis-
tic solution to the ICP for w = 2, the ICP remains an
interesting open problem for w > 2.

References

[1] M. Abouei Mehrizi, M. Ghodsi, and A. Tabatabaei.
Robots’ cooperation for finding a target in streets.
In International Conference on Topics in Theoretical
Computer Science, pages 30–43. Springer, 2015.

396

33rd Canadian Conference on Computational Geometry, 2021

[2] P. P. Acarnley. Stepping motors: a guide to theory and
practice. Number 63. Iet, 2002.

[3] S. Alpern and S. Gal. The theory of search games and
rendezvous, volume 55. Springer Science & Business
Media, 2006.

[4] G. E. Andrews and B. C. Berndt. Ramanujan’s lost
notebook, volume 1. Springer, 2005.

[5] S. Angelopoulos and M. Voss. Online search with maxi-
mum clearance. arXiv preprint arXiv:2011.14144, 2020.

[6] R. A. Baezayates, J. C. Culberson, and G. J. Rawlins.
Searching in the plane. Information and computation,
106(2):234–252, 1993.

[7] A. Beck and D. Newman. Yet more on the linear search
problem. Israel journal of mathematics, 8(4):419–429,
1970.

[8] R. Bellman. Problem 63-9, an optimal search. SIAM
review, pages 274–274, 1963.

[9] P. Bose and J.-L. De Carufel. A general framework
for searching on a line. Theoretical Computer Science,
703:1–17, 2017.

[10] P. Bose, J.-L. De Carufel, and S. Durocher. Searching
on a line: A complete characterization of the optimal so-
lution. Theoretical Computer Science, 569:24–42, 2015.

[11] E. D. Demaine, S. P. Fekete, and S. Gal. Online
searching with turn cost. Theoretical Computer Sci-
ence, 361(2-3):342–355, 2006.

[12] S. Gal. Minimax solutions for linear search problems.
SIAM Journal on Applied Mathematics, 27(1):17–30,
1974.

[13] S. K. Ghosh and R. Klein. Online algorithms for search-
ing and exploration in the plane. Computer Science
Review, 4(4):189–201, 2010.

[14] C. Icking, R. Klein, E. Langetepe, S. Schuierer, and
I. Semrau. An optimal competitive strategy for walking
in streets. SIAM Journal on Computing, 33(2):462–486,
2004.

[15] M.-Y. Kao, J. H. Reif, and S. R. Tate. Searching in
an unknown environment: An optimal randomized al-
gorithm for the cow-path problem. Information and
Computation, 131(1):63–79, 1996.

[16] R. Klein. Walking an unknown street with bounded
detour. Computational Geometry, 1(6):325–351, 1992.

[17] D. D. Sleator and R. E. Tarjan. Amortized efficiency
of list update and paging rules. Communications of the
ACM, 28(2):202–208, 1985.

[18] A. Tabatabaei and M. Ghodsi. Optimal strategy for
walking in streets with minimum number of turns for
a simple robot. In International Conference on Combi-
natorial Optimization and Applications, pages 101–112.
Springer, 2014.

[19] A. Tabatabaei and M. Ghodsi. Randomized strategy
for walking in streets for a simple robot. arXiv preprint
arXiv:1512.01784, 2015.

[20] A. Tabatabaei and M. Ghodsi. Walking in streets with
minimal sensing. Journal of Combinatorial Optimiza-
tion, 30(2):387–401, 2015.

[21] A. Tabatabaei, F. Shapouri, and M. Ghodsi. A com-
petitive strategy for walking in generalized streets for a
simple robot. In CCCG, pages 75–79, 2016.

[22] B. Tovar, R. Murrieta-Cid, and S. M. LaValle. Distance-
optimal navigation in an unknown environment with-
out sensing distances. IEEE Transactions on Robotics,
23(3):506–518, 2007.

[23] Q. Wei, X. Tan, and Y. Ren. Walking an un-
known street with limited sensing. International Jour-
nal of Pattern Recognition and Artificial Intelligence,
33(13):1959042, 2019.

.

397

CCCG 2021, Halifax, Canada, August 10–12, 2021

Appendix

A

To prove that fub(r, i) is non-increasing with respect to
i ∈ [0,∞), all we need is to show that the derivative of
fub(r, i) is least equal to zero. It can be calculated as:

d

di
fub(r, i) = ri(i(r − 1) + r) ln(r)

+ (
1

3
)ri
(
−3r ln

(
r(i+1)

)
+ 3 ln

(
ri
))

− (
1

3
)ri




50r
(
8r(i+1) + 24r(2i+2) + 1

)

100r(i+1) + 400r(2i+2) + 800r(3i+3) + 1




+ (
1

3
)ri
(

15
(
24r2i + 8ri + 1

)

240r3i + 120r2i + 30ri + 1

)

After multiplying all the above terms, we get:

= ri(ir − i+ r) ln r − ri(ir − i+ r) ln r

+
9600r4i+3(1− r) + 48003i+1(1− r2)

(800r3i+3 + 400r2i+2 + 100ri+1 + 1)(240r3i + 120r2i + 30ri + 1)

+
1200r2i+1(r − 1) + 24ri(1− 10

3
r2 + 3ri − 10ri+3)

(800r3i+3 + 400r2i+2 + 100ri+1 + 1)(240r3i + 120r2i + 30ri + 1)

Since the first expression yields 0 and the denominator of
the remaining fraction above is positive, we only need to
consider the sign of the numerator, so:

= (1− r)(9600r4i+3 + 48003i+1(1 + r) + 1200r2i+1)

+ 24ri(1− 10

3
r2 + 3ri − 10ri+3). (7)

According to the fact that r > 1, with a precise look at (7)
we get

(9600r4i+3 + 48003i+1(1 + r) + 1200r2i+1) > 0

and we know (1− r) < 0. So,

(1− r)(9600r4i+3 + 48003i+1(1 + r) + 1200r2i+1) < 0.

Also, we have − 10
3
r2 < − 10

3
, and 3ri < 10ri+3. Then,

24ri(1− 10

3
r2 + 3ri − 10ri+3) < 0.

Hence, (7) is always least equal to zero and this completes
the proof.

398

Author Index

A. Cire, Andre 185
Afshani, Peyman 167
Agarwal, Pankaj K. 126
Ahn, Hee-Kap 36, 200
Ahn, Taehoon 36
Aichholzer, Oswin 72
Akitaya, Hugo A. 271
Aletaha, Mohammad 388
Alipour, Sharareh 348
Araki, Tetsuya 297
Armaselu, Bogdan 237

Bae, Sang Won 36
Ballinger, Brad 271
Barr, Austin 114
Basappa, Manjanna 362
Bian, Vincent 343
Biedl, Therese 78
Biniaz, Ahmad 228
Bolle, Eva 260
Bonerath, Annika 12
Bosch, Miguel Calvo 195
Bose, Prosenjit 228
Buchin, Kevin 1
Buchin, Maike 175
Böltz, Lucas 127

C. de Souza, Cid 185
Cardinal, Jean 149
Choi, Jongmin 36
Chung, Calvin 114
Chung, Chaeyoon 36

Daescu, Ovidiu 312
Dallant, Justin 149, 157
Damian, Mirela 286
Darryl, Hill 107
Das, Gautam K 219, 303
De Carufel, Jean-Lou 107
Demaine, Erik D. 97, 271, 332, 343
Demaine, Martin L. 332
Devillers, Olivier 24

399

Diomidov, Yevhenii 332
Duménil, Charles 24
Dvorak, Martin 89

Eppstein, David 56

Flatland, Robin 286
Frey, Hannes 127
Frishberg, Daniel 56

Gagie, Travis 368
Ghodsi, Mohammad 388
Greenblatt, Aster 377

Haunert, Jan-Henrik 12
Hearn, Robert A. 377
Hernandez, Oscar 377
Hou, Yichao 377
Hull, Thomas C. 271

Iacono, John 149
Ito, Hiro 377

J. de Rezende, Pedro 185
Jain, Princy 139
Jena, Sangram K. 219

Kamata, Tonan 332
Kang, Minwoo 377
Kelk, Steven 195
Killmann, Rasmus 167
Kim, Mincheol 200
Kleist, Linda 260
Koerts, Hidde 1

Liotta, Giuseppe 78
Lynch, Jayson 78, 97
Löffler, Maarten 47

Madhukara, Rachana 343
Maheshwari, Anil 107, 351
Matsumoto, Elisabetta 248
Meulemans, Wouter 1
Mishra, Pawan K. 303
Mitchell, Joseph S. B. 12
Miyata, Hiroyuki 297

400

Montecchiani, Fabrizio 78

Nakano, Shin-Ichi 297
Nandy, Subhas C 351
Nathenson, Andrew 249
Nicholson, Sara 89
Niedermann, Benjamin 12

O’Rourke, Joseph 279
Osegueda, Martha C 56

Rodatz, Benjamin 1
Roy, Sasanka 107
Rudoy, Mikhail 97

Sapucaia, Allan 185
Schmidt, Christiane 271
Schnider, Patrick 157
Schultz Xavier da Silveira, Lúıs Fernando 107
Selbach, Leonie 175
Seth, Ritesh 351
Singireddy, Vishwanath R. 362
Soheil, Farehe 388
Speckmann, Bettina 1

Tabatabaei, Azadeh 388
Teo, Ka Yaw 312
Thießen, Thore 320
Tran, Michelle 65

Uehara, Ryuhei 332
Uno, Yushi 97
Urhausen, Jérôme 47

Vahrenhold, Jan 320
van Beusekom, Nathan 1
Vilcu, Costin 279

Wang, Haitao 139, 211
Wang, Yunkai 228
Wild, Sebastian 368
Williams, Aaron 114, 377
Winslow, Andrew 377

Yoon, Sang Duk 36

401

Zhang, Hanyu Alice 332
Zhao, Yiming 211

402

