
CCCG 2015, Kingston, Ontario, August 10–12, 2015

Open Problems from CCCG 2014

Sue Whitesides ∗

Abstract

This report provides the problems posed by the partici-
pants at the open problem session of the 26th Canadian
Conference on Computational Geometry.

This well-attended session was held Tuesday, August
12, 2014, as a scheduled session of the conference. Six
participants presented a total of seven problems. All
presenters kindly agreed to provide written versions of
their problems, including references and attributions.
The problems appear in the sections below. The ref-
erences appear at the end. The text is essentially the
same, modulo minor editing, as the text provided by
the presenters. This material is not refereed.

1 Guarding Orthogonal Terrains

presented by: Giovanni Viglietta1

Partition the plane into finitely many (possibly un-
bounded) orthogonal polygons, and extrude them in 3D,
obtaining a set of “orthogonal skyscrapers” of different
heights. Let n be the total number of vertices of the or-
thogonal polygons. We ask to find the minimum number
(as a function of n) of vertex guards for the terrain in-
duced by the skyscrapers. In other words, we seek to
select a minimum number of “guards” among the ver-
tices of the skyscrapers such that each point in 3-space
lying “above” some skyscraper is visible to some guard,
where lines of sight must not intersect a skyscraper’s
top face or a side face.

The best known lower bound is given by a row of k
equal cuboidal skyscrapers, where n = 8k. In this case
k + 1 vertex guards are needed, which yields a lower
bound of (n/8) + 1 vertex guards. We conjecture n/8 +
O(1) guards to be sufficient for all orthogonal terrains
on n vertices (observe that an L-shaped skyscraper on
12 vertices needs three guards). To our knowledge, the
problem is open even in the case of a single “tower”
made of nested orthogonal prisms of increasing height,
or a single “well”.

For background, see [1].
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2 Flows on Terrains

presented by: Jack Snoeyink2

What local actions can make a general difference for
flow of water, nutrients, and pollutants in a terrain?
This is more of an open application area for computa-
tional geometry techniques than an open problem.

Consider a real-world terrain with patches having dif-
ferent soil types (e.g., different absorbency properties)
together with a network of streams, house gutters, park-
ing lot drains, and underground sewers. There are rain
gauges reporting rainfall in cm/hr at some points and
flow meters reporting liters/min profiles on some water-
ways. (These are increasingly common in the “internet
of things.”)

If we model a rainfall, do we see the measured flows?
If not, can we suggest where our information about the
flow network is incomplete or inaccurate? If we don’t
like, say, the surge of flow in the sewers from a rainfall,
can we suggest where rain gardens could most effectively
delay the flow? At what scale should these questions be
asked based on the sensors we have?

There are many simulations that are used [2, 3], but
the ideas of computational geometry (like continuous
Dijkstra for paths in weighted regions [4], or partition-
ing terrain into catchments and capturing flow in equi-
librium [5]) can be used to preprocess the terrain for
more efficient exploration of modifications that would
produce the observed or desired flow profiles.

2Professor, Dept. of Computer Science, U. North Carolina;
email: snoeyink@cs.unc.edu
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Figure 1: H ' K5 and its finite planar emulator H.

3 Finding a Shared Delaunay Triangle in Linear
Time

presented by: Michael Biro3

Let P = {p1, p2, . . . , pn} be a set of n points in the
plane and s, t be two query points. The problem is to
determine, in linear time, whether or not s and t lie in
the same face of the Delaunary triangulation of P . The
problem was posed by Joseph S. B. Mitchell in personal
correspondence.

The problem can be solved trivially in time O(n log n)
by constructing the Delaunay triangulation and per-
forming point location queries. However, constructing
the full Delaunay triangulation has a lower bound of
Ω(n log n) so this approach cannot be used to deter-
mine the answer in linear time. Thus the question is
asking, in essence, if we can quickly find local informa-
tion about a Delaunay triangulation without first having
to construct the entire triangulation.

One reason to expect the answer to be affirmative is
that the dual question of determining if s and t lie in
the same face of the Voronoi diagram of P is trivial to
answer in time O(n): simply find the nearest neighbors
of s and t, respectively. The two points s and t share
nearest neighbors if and only if they are in the same face
of the Voronoi diagram of P .

Jack Snoeyink proposed a linear-time solution by lift-
ing the set P to a paraboloid in 3D and locating the
lifted points s and t on faces of the convex hull.

4 Finite Planar Emulators

presented by: Martin Derka4

A graph G has a finite planar emulator H if H is a
planar graph and there is a graph homomorphism ϕ :
V (H) → V (G) where ϕ is locally surjective, i.e. for
every vertex v ∈ V (H), the neighbours of v in H are
mapped surjectively onto the neighbours of ϕ(v) in G.
We also say that such a G is planar-emulable. If we
insist on ϕ being locally bijective, we get H a planar
cover.

3Visiting Asst. Professor, Mathematics and Statistics, Swarth-
more College PA; email: michael.j.biro@gmail.com
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K4,4-e

Figure 2: K4,4 − e, one of the minor-minimal obstruc-
tions for the projective plane, where the existence of a
finite planar emulator is open.

The concept of planar emulators was proposed in 1985
by M. Fellows [11], and it tightly relates (although it is
of independent origin) to the better known planar cover
conjecture of Negami [12]. Fellows also raised the main
question: What is the class of graphs with finite planar
emulators?

Soon thereafter, he conjectured that the class of
planar-emulable graphs coincides with the class of
graphs with finite planar covers (conjectured to be the
class of projective graphs by Negami [12]—still open at
present). This was later restated as follows:

Conjecture 1 [M. Fellows, falsified in 2008] A con-
nected graph has a finite planar emulator if and only if
it embeds in the projective plane.

It is known that if a graph embedds in the projec-
tive plane, it has a finite planar emulator (which takes
form of its finite planar cover). The conjecture fails
in the converse. Rieck and Yamashita [13], and Chi-
mani et al. [6] constructed finite planar emulators of
all the minor minimal obstructions for the projective
plane with the exception of those that have been shown
non-planar-emulable already by Fellows (the K3,5 and
“two disjoint k-graphs” cases), and with the exception
of K4,4 − e. The graph K4,4 − e is the only forbidden
minor for the projective plane where the existence of a
finite planar emulator remains open. For more exam-
ples of planar emulators and for some graphs that are
not planar-emulable, see [6].

5 Colored Radial Orderings

presented by: Ruy Fabila-Monroy5

Let S be a set of n points in general position in the
plane. Let p be a point not in S such that S ∪ {p}
is in general position; we call p an observation point.
A radial ordering of S with respect to p is a clockwise
circular ordering of the points in S by their angle around
p. If every point in S is assigned one of two colors,
say red and blue, then a colored radial ordering of S
with respect to p is a circular clockwise ordering of the
colors of the points in S by their angle around p. Let

5Professor, Dept. of Mathematics, Cinvestav-IPN, Mexico;
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ρ(S) be the number of distinct radial orderings of S
with respect to every observation point in the plane.
Likewise, let col ρ(S) be the number of distinct colored
radial orderings of S with respect to every observation
point in the plane. Define the following functions:

g(n) := min{ρ(S) : S is a set of n points}
gcol(n) := min{ρcol(S) : S is a set of m red and

m blue points, and n = 2m}

Open Problems

1. Give a tight asymptotic bound for g(n).

2. Give a tight asymptotic bound for gcol(n).

In [14] it is shown that g(n) ≥ Ω(n3) and it is con-
jectured that g(n) = Θ(n4). For the colored case in the
same paper they showed that gcol(n) = Ω(n) and gave
an example of a set of n red and n blue points with
O(n2) colored radial orderings.

6 Finite Simplicial Complexes

two problems presented by: Tamal Dey6

Problem 1: Let K := K(P ) be a finite simplicial com-
plex linearly embedded in Rd with vertex set P . Denote
by fkd (K,P ) the number of k-simplices in K. Consider
the following quantity:

fkd (n) = max
K,|P |=n

fkd (K,P ).

What is the correct bound on fkd (n) in terms of n, k, d?
We know that f12 (n) = Θ(n) because planar graphs have
at most 3n edges and clearly there are planar graphs
with Ω(n) edges. Next question is: what is f23 , that is,
how many triangles with a total of n vertices can be
linearly embedded in R3? It was proved in [15] that
f23 = O(n2) and a tight lower bound of Ω(n2) exists
because cyclic polytopes with n vertices in R3 have a
triangulation with Ω(n2) triangles. Actually, the lower
bound generalizes, that is,

fkd (n) = Ω(nmin{k+1,d d2 e})

because of the known lower bounds for triangulations of
cyclic polytopes in Rd. For example, in R4, of course
there could be all possible n(n − 1)/2 = Θ(n2) edges,
but all possible

(
n
3

)
= Θ(n3) triangles cannot be linearly

embedded. In fact, the following bound is known [16]

f34 (n) = O(n3−
1
3 ).

6Professor, Dept. of Computer Science and Engineering, The
Ohio State U.; email: tamaldey@cse.ohio-state.edu

conjecture: fkd (n) = Θ(nmin{k+1,d d2 e})

Problem 2: Let K be a finite simplicial complex lin-
early emedded in R3. Let C be any given 1-cycle in
K. We are interested in detecting if C is trivial in the
first homology group, that is, if there is a set of trian-
gles in K whose boundaries when summed over Z2 give
C. This problem can be solved in O(M(n)) time by
first reducing the boundary matrix of K (triangle-edge
matrix) to Echelon form and then reducing a column
corresponding to C to see if it becomes an empty col-
umn or not. Here M(n) is the matrix multiplication
time whose current best bound is O(n2.37..).

conjecture: Let K be a finite simplicial complex linearly
embedded in R3 with a total of n simplices. Given a 1-
cycle C in K, one can detect if C is trivial in the first
homology group (with Z2 coefficient) in O(n2) time.

If K is a 2-manifold, the detection can be performed
in O(n) time by a simple depth-first walk in K. If K
is a 3-manifold, the algorithm in [17] can be modified
to accomplish the task in O(n2) time. The question re-
mains open for general simplicial complexes. Although
the conjecture is posed here for K embedded in R3 and
for a 1-cycle C, it can be posed for a finite simplicial
complex embedded linearly in Rd and a given p-cycle C
in it.
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