
CCCG 2015, Kingston, Ontario, August 10–12, 2015

A Streaming Algorithm for the Convex Hull

Raimi A. Rufai∗† Dana S. Richards‡

Abstract

Consider a base station in a wireless sensor network that
receives incoming input points and must maintain a run-
ning convex hull within a memory constraint. We give
a new streaming algorithm that processes each point in
time O (log k) where k is the memory constraint, while
maintaining an optimal area error of O

(
1/k2

)
.

1 Introduction

A streaming algorithm is an on-line approximation al-
gorithm constrained to work within a memory budget.
When more memory than the allowed budget is de-
manded, we must make decisions on what is worth keep-
ing and what must be discarded. A streaming algorithm
has three parts: an initialization procedure, a process-
ing algorithm for each successive input, and a facility
for answering queries using the restricted memory.

2 Related Work

Preparata gave an exact online algorithm [5] but with
no memory constraints. The streaming algorithm pro-
posed by Hershberger and Suri [1, 3, 2] maintains ex-
treme points in k uniformly spaced directions and an-
other k extreme points in adaptively sampled directions.
Their algorithm has a distance error of O

(
1/k2

)
; no

area measure was reported.
Lopez and Reizner [4] proposed an algorithm for ap-

proximating an n-gon by a k-gon, k < n. Their algo-
rithm builds an inscribed k-gon by repeatedly removing
an ear of minimum area until only k vertices remain.
(An ear of a convex polygon is any triangle formed by
three consecutive vertices.) However their algorithm,
unlike ours, is not on-line, as all the vertices of the n-
gon are known ahead of time.

3 Streaming Algorithm

Let C = (p1, p2, ..., pn) be a sequence of vertices of a
convex polygon in counter-clockwise order. Each con-
∗Department of Computer Science, George Mason University,

rrufai@gmu.edu
†SAP Labs, Inc., 111 Rue Duke, Montreal, QC H3C 2M1,

Canada, raimi.rufai@sap.com
‡Department of Computer Science, George Mason University,

richards@gmu.edu

tiguous triple (p, q, r) in C defines a measure ∆q =
goodness(p, q, r), which is associated with the vertex
q. We will think of ∆q as measuring the goodness of q.
Note that ∆q is a local measure and depends only on
q and its two immediate neighbors in C. When a di-
rect neighbor is inserted or deleted, the goodness must
be recomputed. The function goodness can be defined
in various ways: as the area of the triangle 4pqr, as
its perimeter, as the length of the segment pr, as the
height of the triangle pqr relative to base pr, or even
as the angle ∠q in 4pqr. This yields different variants
of the same algorithm. In this section, we shall mainly
address the area variant.

3.1 Initialize

The procedure Initialize in Algorithm 1 initializes a
balanced binary search tree T and a priority queue H
to store the Node references using two different keys.
While points in T are ordered by their polar angles rel-
ative to a centroid, the points in H are keyed on their
goodness.

Algorithm 1: Initialize(P)
Input : P : The first 3 input points in a data

stream S.
Output: T : balanced BST with vertices of conv(P)

sorted by angles about centroid c;
H: min-heap of vertices of conv(P) using
goodness as priority.

1 L← conv(P)
2 c← centroid(L)
3 (N,W,S,E)← directionalExtrema(L)
4 foreach p ∈ L do
5 Θ← polar(p, c)
6 if p ∈ (N,W,S,E) then
7 ∆←∞
8 else
9 ∆← goodness(L.pred(p), p, L. succ(p))

10 x← Node(p,∆p,Θp, false)
11 T. insert(Θp, x)
12 H. insert(∆p, x)

13 return (T,H, c, k)

The structure L in Step 1 is a cyclic array and
supports pred and succ operations. The func-
tion Node(p,∆p,Θp,deleted) creates a new node

27th Canadian Conference on Computational Geometry, 2015

(a 4-tuple), whose attributes can be accessed using
the attribute names point, goodness, polar, and
deleted. Clearly initialization takes constant time.

3.2 Process

Algorithm 2: Process(T,H, c, k, p)

Input : T : balanced BST with ≤ k nodes;
H: min-heap of the nodes of T ;
p: new point; k: memory budget

Output: T : a balanced BST updated with p,
H: a min-heap updated with p.

1 x← Node(p, 0,polar(p, c), false)
2 (T,H)← updateHull(T,H, c, x)
3 if |T | > k then
4 (T,H)← shrinkHull(T,H)
5 return (T,H)

Procedure Process is invoked each time a new point
arrives. A new node x is created and used to update
the current hull by invoking procedure updateHull.
The call to updateHull(T,H, c, x) in line 2 of Proce-
dure Process updates the structures T and H with x.
If the point associated with x falls within the interior
of the current convex hull or on its boundary, it is dis-
carded. This test is done in Line 4 of updateHull.
Further, x’s goodness is computed and if it is smaller
than H.minimum, again x is discarded. Otherwise, the
chain of vertices that lie between the two new neigh-
bors of x on the hull are deleted from both T and H.
This deletion is done in Lines 8 to 16 of updateHull.
The goodness of x’s neighbors are then updated. The
directional extrema are also updated if required.

Whenever the number of nodes in T exceeds k, the
procedure shrinkHull is called to choose one vertex
for deletion. This is done by calling deleteMin() on
the min-heap structure H to obtain the node q that
should be deleted. The procedure then updates the
goodnesses of q’s neighbors and deletes q from T .

This algorithm is sensitive to the order in which the
points arrive in the stream. Consider the six points
A,B,C,D,E, F shown in Figure 1 and Figure 2 below.

3.3 Query

Algorithm Query is invoked to obtain the current hull
at any point in the streaming process. It simply tra-
verses T to return the hull vertices in a cyclic list, and
runs in linear time.

3.4 Complexity Analysis

Lemma 1 Procedure UpdateHull runs in O (log k)
amortized time on the input stream S.

Algorithm 3: UpdateHull(T,H, c, x)

Input : T : balanced BST with ≤ k of conv(S);
H: min-heap of ≤ k nodes;
x: new node.

Output: T : balanced BST updated with x;
H: min-heap updated with x.

1 T. insert(x)
2 y ← T.pred(x)
3 z ← T. succ(x)
4 if not contains(4ycz, x) then
5 (s, t)← tangents(T, x)
6 x.∆← goodness(s, x, t)
7 if x.∆ ≥ H.minimum() then
8 w ← T. succ(s)
9 while w 6= t do

10 w.deleted← true
11 H.changeKey(w,−∞)
12 T.deleteKey(w)
13 w ← T. succ(s)

14 q ← H.minimum()
15 while q.deleted do
16 q ← H.deleteMin()
17 H. insert(x)
18 H.changeKey(s,goodness(T.pred(s), s, x))
19 H.changeKey(t,goodness(x, t, T. succ(t)))

� Update extrema if needed �
20 (N,W,S,E)← updateExtrema(T, c, x)
21 foreach n ∈ (N,W,S,E) do

� To prevent the deletion of an extremum
�

22 H.changeKey(n,∞)

23 else
24 T.deleteKey(x)

25 else
26 T.deleteKey(x)
27 return (T,H)

Algorithm 4: ShrinkHull(T,H)
Input : T : BST with k + 1 vertices of conv(S);

H: min-heap of k + 1 vertices of conv(S).
Output: T : BST with k vertices of conv(S);

H: min-heap of k vertices of conv(S).
1 q ← H.deleteMin()
2 p← T.pred(q)
3 r ← T. succ(q)
4 T.deleteKey(q)
5 H.changeKey(p,goodness(T.pred(p), p, r))
6 H.changeKey(r,goodness(p, r, T. succ(r)))
7 return (T,H)

Proof. The initial steps take O (log k) time using stan-
dard BST techniques. Step 4 takes O (1) time. The

CCCG 2015, Kingston, Ontario, August 10–12, 2015

C

D

A

B

E

F

Figure 1: k = 4, arrival sequence: A,B,C,D,E, F . D
is deleted after E arrives, and B after F .

C

D

A

B

E

F

Figure 2: k = 4 with arrival sequence: A,B,C,D, F,E.
B is deleted after F arrives. E is deleted since it is an
interior point.

call to tangents takes O (log k) time [5]. The rest of
the procedure — Steps 8 through 16 — deletes a vertex
chain that no longer belongs to the hull. Since these
vertices are only deleted once per point in S, the total
cost over all invocations of the procedure UpdateHull
is O (n log k), where n is the length of S. �

Lemma 2 Procedure ShrinkHull runs in time
O (log k).

Proof. Every step of Procedure ShrinkHull takes
O (log k). �

Lemma 3 Procedure Process runs in time O (log k)
time.

Proof. Each invocation of Process makes a single
call to UpdateHull and at most a single call to
ShrinkHull. Thus Process also runs in O (log k)
time. �

Lemma 4 Let Ti−1 be the convex hull computed before
invoking Algorithm UpdateHull, and let Ti be the re-
sulting hull after it returns. Then the following invari-
ant holds

|Ti−1| ≤ |Ti|. (3.1)

Proof. Consider the invocation of UpdateHull on an
arbitrary point pi. The fate of pi is one of the following
two cases.

Case 1 (pi lies in the interior of Ti−1.)
UpdateHull ignores pi, in which case the hull
does not grow and Ti = Ti−1.

Case 2 (pi lies in the exterior of Ti−1.)
UpdateHull expands Ti−1 by adding pi to the
hull and therefore Ti has a bigger area than Ti−1.

�

Lemma 5 When k ≥ | conv(S)| the algorithm com-
putes the exact convex hull of S.

Proof. The algorithm then is equivalent to that of
Preparata [5]. �

3.5 Error Analysis

We only discuss in this section the relative area error,
which is defined as

errarea(P, P ′) =
|area(P)− area(P ′)|

area(P)
(3.2)

where P denotes the vertex set of the true convex hull,
and P ′ that of the approximate convex hull.

Lemma 6 Each deletion from a convex (k + 1)-gon by
Algorithm shrinkHull introduces an error no worse
than O

(
1/k3

)
.

Proof. Letm = k+1. Let Q be a convexm-gon and let
e1, e2, ..., em be its ears. Let |ei| denote the area of ei.
Let Q′i = Q−ei denote the k-gon that would result if ei
were deleted. Therefore, the ratio |ei|/|Q| represents the
area error that would result from deleting ei. Further,
let Rm denote a regular m-gon with unit area, and let
R be the circumradius of Rm.

Renyi and Sulanke [6] proved that

1

|Q|m
m∏
i=1

|ei| ≤ |r|m, (3.3)

whenever r is an ear of Rm.

27th Canadian Conference on Computational Geometry, 2015

By taking logarithms and invoking the mean-value
theorem, it is clear that there must exist at least one
ear ej in Q such that |ej ||Q| ≤ |r|. Since

|r| = 4R2 π
3

m3

[
1− π2

m2
+O

(
1

m4

)]
, (3.4)

it follows that

|ej |
|Q|

< 4R2 π
3

m3
(3.5)

= O
(

1

k3

)
. (3.6)

�

Lemma 7 Let e1, e2, ..., em denote the sequence of ears
deleted by the streaming algorithm. Then

|ei| ≤ |ei+1| < H.minimum for all i = 1, 2, ...,m− 1.
(3.7)

Proof. Recall that Algorithm UpdateHull only in-
serts a new node if its goodness is greater than
H.minimum. By definition, H.minimum increases
with each deletion. Before the the ith deletion,
H.minimum = |ei|, but becomes |ei+1| afterwards. �

Note that the computed hull consists of four (x-y
monotone) chains: from W to N , from N to E, from
E to S, and from S to W . Our discussion will only be
for the chain from W to N . Suppose that chain is s1,
s2, . . . sl. Let s0 be a short vertical side below W and
sl+1 be a short horizontal side to the right of N . (The
reason for these two additional sides is to automatically
take into account the fact that all points seen will be in
a bounding box, as indicated by the next lemma. If we
do not maintain the bounding box, then our chains are
not monotone and the definitions below would be more
complex.) Let pi be the vertex common to si and si+1.

Lemma 8 After processing the points in S, the direc-
tional extrema (N,W,S,E), maintained by Algorithm
updateHull define an axis-parallel bounding box B
that contains conv(S).

Proof. Note that these directional extrema are extreme
over all of S in the four axis-parallel directions. Sup-
pose there were some point p in S not contained in B.
Further suppose, without loss of generality, that p lies
above B. Then p must be more extreme than N in the
positive y direction, a contradiction. �

The outer ear for side si is the triangle formed by si
and the extensions of the sides si−1 and si+1. The flap
for side si is a trapezoidal subset of its outer ear: it is
the region 2pipi+1q1q2 where q1q2 is parallel to si and

q1 and q2 are on the boundary of the outer ear. The
height of the flap, hi, perpendicular to si will be chosen
to be the minimum value that maintains an invariant.
The hi is used in the analysis and is not calculated by
the algorithm.

We will choose hi after each deletion that creates the
side si so that this invariant holds (if si was not created
by a deletion, then hi = 0).

Invariant 1 Each deleted point, not in the hull itself,
is from one of the flaps. Further, the area of the corre-
sponding ear is contained in the flap.

When pi is deleted and a new side s = pi−1pi+1 cre-
ated, the corresponding h is calculated: it is minimized
subject to the constraint that the new flap includes the
flaps from si−1 and si. Let h′ be the height of pi in
4pi−1pipi+1. Then h ≤ 2h′, by similar triangles. Recall
that h corresponds to a triangle (ear) chosen because it
had minimum area. Hence we get the following lemma.

Lemma 9 The area of any flap is ≤ 4H.minimum().

Proof. Suppose si is the side for a given flap. Let a =
H.minimum(). The height h satisfies

h ≤ 2h′ ≤ 2
2a

si
. (3.8)

Since the top of the trapezoid is less than its base, it fits
within a parallelogram M of base si and height h. �

The following theorem gives an upper bound on the
area error for processing n� k points.

Theorem 10 The total area error incurred in the
streaming process is bounded above by O

(
1/k2

)
.

Proof. A deleted point contributes to the error if it is
outside the computed hull. Some or all of its ears may
not be in the computed answer. We know that each such
ear is from some flap. A single flap may cover many such
(overlapping) ears, but the total missed area of all such
ears is bounded by the area of that flap. Hence the total
area error is bounded by the total area of all the flaps.

By Lemma 6, H.minimum is at most O
(
1/k3

)
and since there are k outer ears, the total error is
O
(
1/k2

)
. �

Note that, in general, not all deletions will have an
impact on the final k-gon returned after processing all
the points in the stream. However, when an adversary
could provide a stream of points that all lie on the con-
vex hull, such as the vertices of a regular n-gon, the
above error bound, being a worst-case bound, will still
apply.

CCCG 2015, Kingston, Ontario, August 10–12, 2015

Theorem 11 (Lopez and Reisner [4]) Given an adver-
sarial input, the total area error accumulated by all the
deletions is at least

2π2

[
1

k2
− 1

n2

]
. (3.9)

Proof. This bound was obtained by [4], but in their
case, they had access to all the vertices offline, as men-
tioned earlier in Section 2. �

4 Empirical Results

A stream S of 10,000 random points lying on a common
circle was generated. We then fed 33 random shuffles of
S to the streaming algorithm and computed the mean
distance and area relative errors. These were then used
to compute the lower and upper bounds as defined in
Theorem 10 and Theorem 11. The empirical area er-
ror is neatly sandwiched between the two bounds, as
expected.

Figure 3: Empirical area error sandwiched between the
curves of the lower and upper bounds

The relative distance measure between the set P of
vertices of the true convex hull and the set P ′ of vertices
of the approximate hull is defined as

errδ,diam(P, P ′) = δ(P, P ′)/ diam(P), (4.1)

where δ(·, ·) stands for the Hausdorff distance1.
Figure 4 and Figure 5 show the distance and area

relative errors using three goodness measures: the area
of an ear, the height of the ear, and the angle made
by the ear with the centroid. What is clear from these
results is that the measure of goodness based on the

1The Hausdorff distance between a finite point
set P and another Q is defined as δ(P,Q) =
max(maxp∈P minq∈Q ‖p− q‖ ,maxq∈Q minp∈P ‖q − p‖).

area and that based on the distance (height of the ears)
are both very effective. The results for the angle of
an ear were not as good, indicating that the relation
between the measure of goodness and the error measure
is important.

Figure 4: Distance Relative Errors

Figure 5: Area Relative Errors

5 A More General Approach

We propose a refinement of Algorithm 2, which uses
the idea from Lopez and Reisner [4]. The essential dif-
ference is that rather than invoke shrinkHull every
time the k-gon grows into a (k + 1)-gon, the algorithm
waits until the k-gon grows into an mk-gon for some
small constant m before invoking shrinkHull. The al-
gorithm Process2 shows the details. This only works,
of course, if the memory constraint allows the use of
(m − 1)k extra memory for processing. The main ben-
efit of this enhancement is that it reduces the effect of
the order of the point sequence (illustrated earlier in

27th Canadian Conference on Computational Geometry, 2015

Figure 1 and Figure 2), while keeping the same over-
all asymptotic time bounds. We hope to analyze this
approach both analytically and empirically.

Algorithm 5: Process2(T,H, c, k, p)

Input : T : balanced BST with ≤ k of conv(S);
H: min-heap of ≤ k of conv(S);
p: new point; k: memory budget

Output: T : a height-balanced BST update with p
if on the hull, H: a binary min-heap
updated with p if on the hull.

1 x← Node(p, 0,polar(p, c), false)
2 (T,H)← updateHull(T,H, c, x)
3 if |T | > mk then
4 while |T | > k do
5 (T,H)← shrinkHull(T,H)

6 return (T,H)

6 Conclusion

We have presented a new streaming algorithm for the
convex hull and analyzed its runtime and error bounds.
We have proven that it is optimal for the area error
measure. We have empirically shown that it is robust
with respect to different goodness and error measures.
Further analytic results are being studied.

The generalization of this approach to three or higher
dimensions is conceptually straightforward. Each new
point that is outside the current hull subtends a volume
analogous to an ear, which can be given a goodness mea-
sure. Points which can be stored in memory are deleted
according to this measure. However, we have not ex-
plored the computational complexity of these steps.

Acknowledgement

We thank the anonymous referees for their feedback and
comments, which have helped us improve the readability
of this paper.

References

[1] J. Hershberger and S. Suri. Convex hulls and re-
lated problems in data streams. In Proc. of the
ACM/DIMACS Workshop on Management and Pro-
cessing of Data Streams, 2003.

[2] J. Hershberger and S. Suri. Adaptive sampling for geo-
metric problems over data streams. Computational Ge-
ometry, 39(3):191–208, 2008.

[3] J. Hershberger and S. Suri. Simplified planar coresets
for data streams. In Algorithm Theory—SWAT 2008,
pages 5–16. Springer, 2008.

[4] M. A. Lopez and S. Reisner. Efficient approximation
of convex polygons. International Journal of Computa-
tional Geometry & Applications, 10(05):445–452, 2000.

[5] F. Preparata. An optimal real-time algorithm for planar
convex hulls. Communications of the ACM, 22:402–405,
1979.

[6] A. Rényi and R. Sulanke. Über die konvexe Hülle von
n zufällig gewählten Punkten. Probability Theory and
Related Fields, 2:75–84, 1963. 10.1007/BF00535300.

