
CCCG 2015, Kingston, Ontario, August 10–12, 2015

Time-Windowed Closest Pair∗

Timothy M. Chan† Simon Pratt†

Abstract

Given a set of points in any constant dimension, each of
which is associated with a time during which that point
is active, we design a data structure with O(n log n)
space that can find the closest pair of active points
within a query interval of time in O(log log n) time using
a quadtree-based approach in the word-RAM model.

1 Introduction

Let P be a set of n points in Rd. Additionally, let
each point p ∈ P be associated with a time tp at which
that point is active. In the time-windowed closest pair
problem, we want to preprocess P into a data structure
that can efficiently determine the closest pair of points
that are active during an interval of time [t1, t2] called
a time window.

Time-windowed geometric problems are motivated by
Geographic Information System (GIS) data which some-
times consists not only of longitude, latitude, and alti-
tude coordinates but also time. Bannister et al. [3] ex-
amined time-windowed versions of convex hull, approx-
imate spherical range searching, and approximate near-
est neighbor queries. Their solution for this last prob-
lem is to store the points in a balanced binary search
tree indexed by time, and store the Z-order (also known
as Morton or shuffle order) [4] of subsets of the points.
However, the time-windowed closest pair problem ap-
pears more challenging, because it involves minimizing
quadratically many pairs.

We can consider the time of each point as its coordi-
nate in the (d+1)th dimension. If we do so, the problem
becomes finding the closest pair of points within a strip
in Rd+1. Sharathkumar and Gupta [10] wrote a tech-
nical report in which they solve the problem of finding
the closest pair in 2 dimensions within a query range, a
special case of which is when the range is a strip. Their
solution can be used to solve the time-windowed closest
pair problem in 1 dimension in O

(
n log2 n

)
space and

O(log n) query time.
Our approach answers queries in O(log log n) time

using O(n log n) space and O(n log n log log n) prepro-
cessing time in the w-bit word-RAM model for any

∗Research supported by The Natural Sciences and Engineering
Research Council of Canada and the Ontario Graduate Scholar-
ship.
†{tmchan,s2pratt}@cs.uwaterloo.ca

constant dimension d. (The algorithm finds the ex-
act closest pair.) Here, we assume the time value of
each point is an integer from 0 to n − 1 and that each
point has a distinct time value. If time is given as a
w-bit integer instead, we can pre-sort the time values
and replace them by their ranks; this adds the cost of a
predecessor search to the query time (which is at most

O
(

min{logw, logw n,
√

log n/ log log n}
)

[9]).

The main idea behind our approach is to compute a
centroid cell B of a quadtree, consider O(n) pairs in
which one point is inside the centroid cell and the other
is outside, then recurse on P ∩B and P \B.

The idea of the centroid cell of a quadtree is due to
Arya et al. [2]. In that paper they describe a data struc-
ture related to quadtrees called a Balanced Box Decom-
position (BBD) tree, which they use to answer approx-
imate nearest neighbor queries efficiently.

2 Preliminaries

We work in the w-bit word-RAM model, which models
the computer as a sequence of w-bit memory locations
each indexed by a w-bit integer. In this model, we as-
sume that w ≥ log n and standard operations on words
take constant time.

Let P be a set of n points in Rd, and B is a hypercube
(which we call a cell) containing those points. To build
the quadtree for P , we divide B into 2d congruent child
hypercubes. For each of these child hypercubes which
contain more than a single point, we recursively build a
quadtree for that box.

The following lemma, similar to Lemma 4 from Arya
et al. [2], bounds the number of points in a hypercube by
a constant with respect to the hypercube’s side length
and the distance between the closest pair within that
hypercube.

Lemma 1 (Packing) If a point set has closest-pair
distance at least r and lies in a d-dimensional hyper-
cube with side length at most b · r, then there are less
than c0(b + 1)d points, where c0 is some constant that
depends only on d. We call c0 the packing constant.

The following lemma is due to Arya et al. [2]
(Lemma 1).

Lemma 2 (Centroid) Given a point set P containing
n points, there exists a quadtree cell B, which we call a

27th Canadian Conference on Computational Geometry, 2015

centroid cell, such that |P ∩B| ≤ αn and |P \B| ≤ αn
for some constant α < 1 that depends only on d.

Recursive application of this lemma gives a data
structure on a set of points P , called a balanced
quadtree [5], defined as a binary tree where the root
stores B, the left subtree is the balanced quadtree for
P ∩ B, and the right subtree is the balanced quadtree
for P \B where B is a centroid cell of P .

We have the following lemma due to Chan [5] (Obser-
vation 3.2, Lemma 3.3), that says if we draw a constant
number of grids over our points, each shifted by some
amount, then we can guarantee that any pair of points
must be in the same cell in at least one such grid. Since
quadtree cells are related to grid cells, this also implies
that the closest pair will be in the same quadtree cell if
we build a constant number of quadtrees.

Lemma 3 (Shifting) Suppose d is even. Let v(j) =
(bj2w/(d+1)c, . . . , bj2w/(d+1)c) ∈ Rd. For any points
p and q and r = 2` such that ||p− q||∞ ≤ r, there exists
j ∈ {0, 1, . . . , d} such that p+ v(j) and q+ v(j) belong to
the same c1r-grid cell, where c1 is the smallest power of
2 bigger than or equal to 2d+ 2. We call c1 the shifting
constant.

While the preceding lemma requires that d be even,
for odd values of d we can use d+ 1.

3 Decision Problem

Before we solve the time-windowed closest pair prob-
lem, it helps to consider the decision problem version, in
which we are additionally given a fixed distance r and
we want to preprocess P into a data structure which
can efficiently determine, for any query time window,
if there exists a pair of active points pq such that the
distance between p and q is at most r. We call such a
pair a satisfying pair.

The main idea of our approach is to use a constant
number of shifted grids, which by Lemma 3 ensures that
any two points will appear in the same cell together in
at least one such shifted grid. For each point, we con-
sider a constant number of its time-order predecessors
and successors within the same cell, which by Lemma 1
we know must include a satisfying pair if one exists.
From there, we reduce the problem to a standard 2-
dimensional dominance range searching problem.

3.1 Computing Candidate Satisfying Pairs

We begin by bucketing the points of P into grid cells
with side length c1r

′, where c1 is the shifting constant
from Lemma 3 and r′ is the smallest power of 2 bigger
than or equal to r. Each grid cell is assigned a label
` and for each point p we create a tuple (`, tp, p). We

can determine the label of the grid cell containing each
point by hashing in O(n) total expected time.

For each cell, we build a time-ordered array of the
points within that cell. This is done by running radix
sort on the tuples created in the previous step, sorting
first by grid cell label, and then by time. The radix sort
takes O(n) time.

For each such point p, we consider its c0(c1 + 1)d

predecessors and the same number of successors in the
time-ordered array, where c0 is the packing constant
from Lemma 1. Let q be such a predecessor or successor.
If the distance between p and q is at most r, then tp and
tq form a candidate satisfying pair.

We do the preceding steps d + 1 times, where each
time the cells are shifted by v(j) for j ∈ {0, 1, . . . , d} as
defined in Lemma 3. We union together the results to
build the full set of candidate satisfying pairs.

Lemma 4 There are O(n) candidate satisfying pairs.

Proof. Over the d+1 shifts, the total is upper-bounded
by (d+ 1) · c0(c1 + 1)dn = O(n).

�

Lemma 5 If a time window contains a satisfying pair,
then the time window must contain a candidate satisfy-
ing pair.

Proof. Let pq be a satisfying pair for the window which
is closest in terms of time order. From Lemma 3, there
exists j ∈ {0, 1, . . . , d} such that p+ v(j) (which we will
call p′) and q + v(j) (which we will call q′) are in the
same grid cell of side length c1r. Since p′ and q′ are
active, all points between them in time order must also
be active. No two points strictly between p′ and q′ can
have distance smaller than r, for otherwise we would
have a satisfying pair that is closer than pq in terms of
time order. By Lemma 1 there are less than c0(c1 + 1)d

points strictly between p′ and q′. Therefore p′q′ must
be among the candidate satisfying pairs.

�

3.2 Reduction to 2D Dominance Range Emptiness

Now that the number of pairs we need to consider is
reduced to O(n), we would like to store these pairs in
a data structure to support efficient querying. Specifi-
cally, given a query window [t1, t2] we wish to determine
if there exists a candidate satisfying pair pq such that
t1 ≤ min{tp, tq} and t2 ≥ max{tp, tq}.

Consider each candidate satisfying pair as
a point in 2 dimensions with coordinates
(−min{tp, tq},max{tp, tq}). Our query problem is
equivalent to determining whether the quadrant
(−∞,−t1] × (−∞, t2] contains any of these points.
This is exactly the 2D dominance range emptiness
problem. This problem can be solved by computing

CCCG 2015, Kingston, Ontario, August 10–12, 2015

the minima of the 2D point set [8] and testing whether
the query point is above or below the staircase formed
by the minima. Computing the minima of O(n) points
takes O(n) time by a standard sweep-line algorithm,
assuming that the x-coordinates have been pre-sorted.
Since the x-coordinates are in {0, . . . , n−1}, pre-sorting
takes O(n) time.

We can use an array to store the y-value of the stair-
case at every x-value; this requires O(n) words of space.

To save space, we can build a succinct rank/select
data structure [7] with all the same time bounds but
using just 2n+ o(n) bits of space. We do so by consid-
ering the staircase as a monotone chain (after negating
the x-coordinates) through the n× n grid from the ori-
gin to (n− 1, n− 1). This grid is effectively a plot with
start time on the x-axis, and end time on the y-axis.
We can encode a monotone chain as a sequence of 2n
bits. Starting at the origin, whenever the chain moves
upwards from end time i to i+ 1, we store a 0 bit. Sim-
ilarly, whenever the chain moves rightwards, we store
a 1 bit. The answer to the query is yes if and only if
t2 ≥ rank(select(t1)), where select(i) denotes the po-
sition of the ith 1 in the sequence and rank(j) denotes
the number of 1s in the first j positions of the sequence.
The rank and select operations take constant time.

We have thus proven the following result:

Theorem 6 The decision problem version of the time-
windowed closest pair problem in any fixed dimension
can be solved in O(1) time using O(n) bits of space
and O(n) expected preprocessing time in the word-RAM
model.

4 Closest Pair

To solve the original time-windowed closest pair prob-
lem, the main new idea is to replace shifted grids with
shifted balanced quadtrees. For each point outside of
the centroid cell, we consider a constant number of its
time-order predecessors and successors within the cen-
troid cell. We then recurse separately on the points
inside and outside of the centroid cell. This divide-and-
conquer approach gives us O(n log n) candidate pairs.
From there, we reduce the problem to a 2-dimensional
dominance range minimum problem.

4.1 Computing Candidate Pairs

We describe our algorithm to generate candidate pairs
recursively. We first compute the centroid cell B of the
given point set P . Define the set of neighbors N(p) of a
point p as its c0(2c1 + 1)d time-order predecessors and
successors within the centroid cell B, where c0 is the
packing constant from Lemma 1 and c1 is the shifting
constant from Lemma 3. For each point p outside of

the centroid, we consider each pair pq for q ∈ N(p) as a
candidate pair. We then recurse on P ∩B and P \B.

We run the preceding algorithm d + 1 times, where
each time the quadtrees are shifted by v(j) for j ∈
{0, 1, . . . , d} as defined in Lemma 3. We union together
the results to build the full set of candidate pairs.

Lemma 7 There are O(n log n) candidate pairs.

Proof. For each fixed shift, the number of candidate
pairs is given by the recurrence P (n) ≤ P (n1)+P (n2)+
c0(2c1+1)dn, where n1 and n2 are the number of points
inside and outside of the centroid respectively.

Since n1 + n2 = n and n1, n2 ≤ αn, the recurrence
solves to P (n) = O(n log n).

�

Lemma 8 The closest pair for any time window must
be among the candidate pairs.

Proof. Let pq be the closest pair in the window, with
distance r. From Lemma 3, there exists j ∈ {0, 1, . . . , d}
such that p + v(j) (which we will call p′) and q + v(j)

(which we will call q′) are in the same quadtree cell
of side length c1r

′ where r′ is the smallest power of 2
greater than r.

There are 3 cases. Either p′, q′ are both inside or
outside of the centroid cell B, or one is inside and the
other is outside of B. The first 2 cases can be handled
by induction. Now we are in case 3, so suppose q′ is
inside the centroid. (The case where p′ is inside the
centroid is symmetric.)

From Lemma 1, there are no more than c0(2c1 + 1)d

active points in the centroid cell B, since B has side
length at most 2c1r. Since p and q are active during
the time window, all points between them in time or-
der must also be active. Therefore, there are less than
c0(2c1 + 1)d points between p and q in time order, so
q ∈ N(p). �

4.2 Reduction to 2D Dominance Range Minimum

Now that the number of pairs we need to consider is
reduced to O(n log n), we would like to store these pairs
in a data structure to support efficient querying. Specif-
ically, given a query window [t1, t2] we wish to find
a candidate pair pq such that t1 ≤ min{tp, tq} and
t2 ≥ max{tp, tq} while minimizing the distance d(p, q).

Consider each candidate pair as a weighted
point in 2 dimensions with coordinates
(−min{tp, tq},max{tp, tq}) and weight d(p, q). Our
query problem is equivalent to finding a point in the
quadrant (−∞,−t1] × (−∞, t2] with the minimum
weight. This is exactly the 2D dominance range
minimum problem, which we can solve by using
standard techniques. Namely, we first lift the 2D
weighted points to 3D where the weights become

27th Canadian Conference on Computational Geometry, 2015

z-coordinates. We compute the staircase polyhedron of
the 3D point set, defined as the region of all points that
are not dominated by any input point. Then a query
can be answered by finding the highest point on the
staircase polyhedron at a given x- and y-coordinate.
Computing the staircase polyhedron is related to the
standard problem of computing the minima of the
3D point set [8, 1] and can be done by a standard
sweep-plane algorithm. For a set of N points in 3D,
the sweep-plane algorithm takes O(N log logN) time
using van Emde Boas trees, assuming that the x- and
y-coordinates have been pre-sorted (the z-coordinates
need not be pre-sorted). Since the x-coordinates are
in {0, . . . , n− 1}, pre-sorting can be done in O(N + n)
time.

Finding the highest point of the staircase polyhedron
(a monotone polyhedron in 3D) at a query x- and y-
coordinate reduces to point location in a 2D subdivi-
sion of O(N) size, after projecting the faces onto the
xy-plane. We can use Chan’s planar orthogonal point
location structure [6] as a black box to answer queries
in O(log logN) time using O(N) space and O(N) pre-
processing time.

Setting N = O(n log n) gives our main result:

Theorem 9 Time-windowed closest pair queries in any
fixed dimension can be answered in O(log log n) time
using O(n log n) words of space and O(n log n log log n)
preprocessing time in the word-RAM model.

4.3 A Lower Bound on the Number of Candidate
Pairs

As a final remark, we point out that any approach which
stores all candidate pairs must use Ω(n log n) space by
proving the following observation.

Observation 1 There exists a set of n points, where
each point is associated with a time value, such that
there are Ω(n log n) distinct closest pairs over all possi-
ble time windows.

Proof. Our construction works in one dimension. Sup-
pose n is a power of 2. The base case n = 2 is trivial.
To construct a set S of n points on a line, we first re-
cursively construct a set S1 of n/2 points, and duplicate
S1 to create S2. We increase the labels of points in S2

by n/2 and we shift the points along the line by δ for a
sufficiently small δ > 0 (less than half of the closest pair
distance in S1). Since the time labels of S1 and S2 are
disjoint, any closest pair between points in S remains a
closest pair for some time window. Symmetrically, we
have the same closest pairs between points in S2. In
addition, for each time value i ∈ {1, . . . , n/2}, the pair
of points with time values i and i+n/2 is a closest pair
for the time window [i, i+n/2], because the pair has the

smallest possible distance δ, and any other pair with dis-
tance δ has time values of the form j and j+n/2, which
can’t both lie inside [i, i+n/2]. This gives n/2 additional
closest pairs. Therefore, the number of distinct closest
pairs is given by the recurrence C(n) ≥ 2C(n/2) + n/2,
which solves to C(n) = Ω(n log n).

(Note: the construction can alternatively be de-
scribed without recursion using bit-reversal permuta-
tions.) �

References

[1] P. Afshani. Fast computation of output-sensitive max-
ima in a word RAM. In Proceedings of the 25th Annual
ACM-SIAM Symposium on Discrete Algorithms, pages
1414–1423. SIAM, 2014.

[2] S. Arya, D. M. Mount, N. S. Netanyahu, R. Silverman,
and A. Y. Wu. An optimal algorithm for approximate
nearest neighbor searching fixed dimensions. Journal of
the ACM (JACM), 45(6):891–923, 1998.

[3] M. J. Bannister, W. E. Devanny, M. T. Goodrich, J. A.
Simons, and L. Trott. Windows into geometric events:
Data structures for time-windowed querying of tempo-
ral point sets. In Proceedings of the 26th Canadian Con-
ference on Computational Geometry, 2014.

[4] M. Bern, D. Eppstein, and S.-H. Teng. Parallel con-
struction of quadtrees and quality triangulations. In-
ternational Journal of Computational Geometry & Ap-
plications, 9(06):517–532, 1999.

[5] T. M. Chan. Approximate nearest neighbor queries
revisited. Discrete & Computational Geometry,
20(3):359–373, 1998.

[6] T. M. Chan. Persistent predecessor search and orthog-
onal point location on the word RAM. ACM Transac-
tions on Algorithms (TALG), 9(3):22, 2013.

[7] J. I. Munro. Tables. In Foundations of Software Tech-
nology and Theoretical Computer Science, pages 37–42.
Springer, 1996.

[8] F. P. Preparata and M. I. Shamos. Computational Ge-
ometry: An Introduction. Springer-Verlag New York,
Inc., New York, NY, USA, 1985.

[9] Pătraşcu, Mihai. Predecessor search. In Encyclopedia
of Algorithms. 2008.

[10] R. Sharathkumar and P. Gupta. Range-aggregate prox-
imity queries. Technical report, IIIT/TR/2007/80, IIIT
Hyderabad, 2007.

