
CCCG 2015, Kingston, Ontario, August 10–12, 2015

Range Counting with Distinct Constraints

J. Ian Munro∗ Yakov Nekrich† Sharma V. Thankachan‡

Abstract

In this paper we consider a special case of orthogo-
nal point counting queries, called queries with distinct
constraints. A d-dimensional orthogonal query range
Q = [b1, b2]× [b3, b4]× . . .× [b2d−1, b2d] is a range with r
distinct constraints if there are r distinct values among
b1, b2, . . ., b2d. We describe a data structure that sup-
ports orthogonal range counting queries with r distinct
constraints. We show that the space and query time
complexity of such queries depend only on the number
of distinct constraints r even if r is much smaller than
d. An application of queries with r distinct constraints
to persistent range counting is also considered.

1 Introduction

In the orthogonal range counting problem we keep a
set S of d-dimensional points in a data structure; for
any orthogonal query range Q = [b1, b2] × [b3, b4] ×
. . .× [b2d−1, b2d] we must be able to compute the num-
ber of points from S that are inside Q. Henceforth
[s, e] denotes a closed interval that contains all real val-
ues x satisfying s ≤ x ≤ e; (−∞, a] (or [b,+∞)) de-
notes a half-open interval that contains all real values
x satisfying x ≤ a (resp. x ≥ b). Two-dimensional
orthogonal range counting queries can be supported
in O(log n/ log log n) using an O(n)-space data struc-
ture [7]. For d > 2, the query time and space usage grow
by a factor O(log n/ log log n) with every further di-
mension; thus d-dimensional orthogonal range counting
queries can be answered in O((log n/ log log n)d−1) time
by a data structure that needs O(n(log n/ log log n)d−2)
space [7]. In this paper we consider a special case of or-
thogonal range counting queries that can be supported
in less time and using less space. For a query range
Q = [b1, b2]× [b3, b4]× . . .× [b2d−1, b2d] let r denote the
number of distinct values bi in the multiset { b1 . . . , b2d }
such that bi 6= ±∞. We will say that r is the number of
distinct constraints of a query Q. A query Q such that
r < d will be called a distinct-constraint query. We
show that distinct-constraint queries can be answered

∗Cheriton School of CS, University of Waterloo, Waterloo,
Canada. imunro@uwaterloo.ca
†Cheriton School of CS, University of Waterloo, Waterloo,

Canada. ynekrich@uwaterloo.ca
‡School of CSE, Georgia Institute of Technology, Atlanta,

USA. sharma.thankachan@gatech.edu

faster and using less space than the general orthogonal
range counting queries.

We describe our data structure in Sections 2 and 3.
Potential applications are discussed in Section 4 and
Section 5. In Section 4 we describe a data structure that
supports persistent range counting queries. In Section 5
we describe data structures for some special cases of the
orthogonal color counting problem; our solution for the
color counting problem has the same complexity as the
best previously known data structure.

2 Stabbing Counting Queries

As a warm-up we describe a folklore data structure for
counting one-dimensional intervals that are stabbed by
a query point.

Lemma 1 Suppose that there exists an s(n)-space data
structure that counts the number of points in a one-
dimensional range (−∞, a] in time q(n). Then there
exists a 2s(n)-space data structure that counts the num-
ber of intervals that are stabbed by a query point q in
time 2q(n).

Proof : Let Ss be the set that contains the starting
points of all intervals and let Se be the set that con-
tains the endpoints of all intervals. An interval [s, e] is
stabbed by a query point q if and only if s ≤ q.x1 ≤ e.

Let cq = |{ [s, e] ∈ S | s ≤ q ≤ e }|, c+ = |{ s ∈
Ss | s ≤ q }| and c− = |{ e ∈ Se | e < q }|. That is, cq is
the answer to a query q, c+ is the number of intervals
with starting point at most q, and c− is the number of
intervals with endpoint before q. If the endpoint of an
interval is smaller than q, then its starting point is also
smaller than q. If the starting point of an interval s is
smaller than q, then either its endpoint is smaller than q
or q stabs s. Hence cq = c+− c−. We can thus compute
cq by answering two range counting queries on sets of
one-dimensional points. �

3 Counting with Distinct Constraints

In this section we generalize the result of Section 2 to
d > 1 dimensions. We consider queries that ask for
the number of points in a set { p ∈ S | p.x1 ≷ a1, p.x2 ≷
a2, . . . , p.xd ≷ ad} where ≷ denotes either “greater than
or equal” or “smaller than or equal”. We show that the
complexity of such queries depends only on the number



27th Canadian Conference on Computational Geometry, 2015

of distinct values in the sequence a1, . . . , ad and does
not depend on d itself.

Lemma 2 Suppose that there exists a (d + 1)-
dimensional s(n)-space data structure that counts the
number of points in a range (−∞, a] × Qd, where Qd

is an arbitrary d-dimensional range and a is an ar-
bitrary real value, in time q(n). Then there exists a
(d+2)-dimensional data structure that uses space 3s(n)
and counts the number of points in a range (−∞, a] ×
[a,+∞)×Qd in time 3q(n).

Proof : Let Qm = (−∞, a] × [a,+∞) × Qd. We
define Q+ = (−∞, a] × (−∞,+∞) × Qd, Q− =
(−∞, a] × (−∞, a] × Qd, and Qa = (−∞, a] × [a, a] ×
Qd. Then Qm = (Q+ \ Q−) ∪ Qa. We keep two
(d + 1)-dimensional sets. The set S+ contains a point
plus(p) = (p.x1, p.x3, . . . , p.xd+2) for every point p =
(p.x1, p.x2, p.x3, . . . , p.xd+2) in S. Whereas the set S−

contains a point max(p) = (p.x′1, p.x3, . . . , p.xd+2) for
every p ∈ S, where the new coordinate x′1 is defined as
p.x′1 = max(p.x1, p.x2). We also keep a set Sv that
contains the point plus(p) for all p ∈ S, such that
p.x2 = v. We keep a set Sv for every value v, such that
p.x2 = v for at least one p ∈ S. All auxiliary sets are
kept in data structures that support (d+1)-dimensional
range counting queries. A point p ∈ S is in Q+ if and
only if plus(p) is in (−∞, a] × Qd. A point p ∈ S is
in Q− if and only if p.x′1 = max(p.x1, p.x2) ≤ a and
(p.x3, . . . , p.xd+2) ∈ Qd. Hence p is in Q− if and only if
max(p) is in (−∞, a]×Qd. Finally p ∈ S is in Qa if and
only if p ∈ Sa and plus(p) is in (−∞, a] × Qd. Hence
the numbers of points in Q+, Q−, and Qa can be found
by answering range counting queries on S+, S− and Sa

respectively. Thus a query (−∞, a]×[a,+∞)×Qd is an-
swered by answering three (d+ 1)-dimensional counting
queries. �

The following Theorem is a direct corollary of
Lemma 2 for the case when a (d+2r)-dimensional query
contains at most d+ r distinct constraints.

Theorem 3 Suppose that there exists a (d + r)-
dimensional s(n)-space data structure that counts the
number of points in a range (−∞, a1]× (−∞, a2]× . . .×
(−∞, ar]×Qd, where Qd is an arbitrary d-dimensional
range and a1, . . . , ar are arbitrary real values, in time
q(n). Then there exists a (d + 2r)-dimensional data
structure that uses space 3rs(n) and counts the number
of points in a range (−∞, a1]× [a1,+∞)× (−∞, a2]×
[a2,+∞)×. . .×(−∞, ar]×[ar,+∞)×Qd in time 3rq(n).

Proof : Lemma 2 is applied r times. �

We can also generalize our result for the case when
the same constraint value occurs more than twice.

Lemma 4 Suppose that there exists a (d + 1)-
dimensional s(n)-space data structure that counts the
number of points in a range (−∞, a] × Qd, where Qd

is an arbitrary d-dimensional range and a is an ar-
bitrary real value, in time q(n). Then there exists a
(d+d1 +d2)-dimensional data structure that uses space
3s(n) and counts the number of points in any range
Q = (−∞, a1] × . . . × (−∞, ad1 ] × [ad1+1,+∞) × . . . ×
[ad1+d2 ,+∞) ×Qd, where a1 = a2 = . . . = ad1+d2 = a,
in time 3q(n).

Proof : Let S be a set of (d + d1 + d2)-dimensional
points. We replace the first d1 coordinates of each
point by their maximum and the following d2 co-
ordinates by their minimum. The resulting set
Snew contains a (d + 2)-dimensional point pnew =
(µ1, µ2, p.xd1+d2+1, . . . , p.xd1+d2+d) for every point p ∈
S where µ1 = max(p.x1, . . . , p.xd1

) and µ2 =
min(p.xd1+1, . . . , p.xd1+d2

). Clearly, pnew is in Qnew =
(−∞, a]× [a,+∞)×Qd if and only if the corresponding
point p is in Q. By Lemma 2 we can count the num-
ber of points in Snew ∩Qnew in time 3q(n) using 3s(n)
space. �

Theorem 5 The problem of answering d-dimensional
range counting queries with r distinct constraints has
the same asymptotic space and query time complexity
as the general r-dimensional range counting, when r is
constant.

Proof : For each point p = (p.x1, . . . , p.xd)
in S we create a 2d-dimensional point p =
(x1, x1, x2, x2, . . . , xd, xd). That is, p contains two
copies of each p’s coordinate. Let S be the set of
such points p. A query Q = [a1, b1] × [a2, b2] ×
. . . × [ad, bd] on S is equivalent to a 2d-dimensional
query [a1,+∞) × (−∞, b1] × [a2,+∞) × (−∞, b2] ×
. . . × [ad,+∞) × (−∞, bd] on S. We re-order the co-
ordinates of points in S so that half-open intervals
with the same constraint value are grouped together
and intervals (−∞, a] precede intervals [a,+∞) for the
same value a. The transformed query is of the form
Q′ = (−∞, a1] × (−∞, a2] × . . . × (−∞, a2d] and only
Q′ = Q1 × Q2 × . . . × Qr where each Qi is a query
range with one distinct constraint: for 1 ≤ i ≤ r, Qi =
(−∞, a1]×. . .×(−∞, afi ]×[afi+1,+∞)×. . .×[agi ,+∞)
where aj = vi for some v and for all j such that
fi ≤ j ≤ gi. Lemma 4 is applied r times to query
range Q′. In this way the query is reduced to 3r r-
dimensional queries. The total space usage of our data
structure is 3rs(n), where s(n) is the space needed by a
data structure for r-dimensional counting queries.

�



CCCG 2015, Kingston, Ontario, August 10–12, 2015

4 Persistent Counting

Now we turn to applications of our approach. Consider
a dynamic set of points S. A data structure on S is
called partially persistent if every update (insertion or
deletion of a point) creates a new version and queries
on any version of the data structure are supported. A
partially persistent range counting query (Q, tq) asks
for the number of points p ∈ Q ∩ S that were stored
in D at time t. A data structure is called offline par-
tially persistent if the sequence of updates is known in
advance (that is, all updates of S are known when the
data structure is constructed). We refer to the seminal
paper of Driscoll et al. [5] and to a survey of Kaplan [9]
for an extensive description of persistence.

In this section we describe a general method of design-
ing persistent data structures for counting problems.
Let Qd denote an arbitrary d-dimensional range. Our
approach enables us to transform any data structure
that answers (d + 1)-dimensional queries of the form
Qd × (−∞, a] into a partially persistent data structure
that counts the number of points in Qd and supports
both insertions and deletions. The same method can
be also applied to other geometric objects (segments,
rectangles etc.) We show that d-dimensional offline par-
tially persistent range counting is equivalent to (d+ 1)-
dimensional static orthogonal range counting. For in-
stance, one-dimensional partially persistent counting
queries can be answered in O(log n/ log log n) time us-
ing an O(n) space data structure. We remark that a
straightforward application of techniques for obtaining
partially persistent data structures from dynamic data
structures [5] does not lead to a linear space data struc-
ture for one-dimensional persistent range counting: the
data structure of Driscoll et al [5] can be used to turn a
balanced tree into a persistent data structure. In order
to support one-dimensional counting queries, we have to
keep information about the number of leaves stored be-
low every tree node. Every insertion or deletion changes
this information forO(log n) nodes. Hence a straightfor-
ward algorithm for making a data structure persistent
would result in an O(n log n)-space data structure.

Lemma 6 Suppose that there exists an s(n)-space data
structure that counts the number of points in a range
Qd × (−∞, a], where Qd is an arbitrary d-dimensional
range, in time q(n). Then there exists an offline par-
tially persistent data structure that uses space 3s(n) and
counts the number of points in a range Qd in time 3q(n).

Proof : We associate a lifetime interval [ts(p), te(p)] with
each point p, where ts(p) and te(p) denote the times
when p was inserted into S and deleted from S. We
associate a point temp(p) = (ts(p), te(p), p.x1, . . . , p.xd)
to each p ∈ S. Let Stemp = { temp(p) | p ∈ S }. Given
a query (Qd, t), we must count points p such that p ∈

Qd and ts(p) ≤ t ≤ te(p). Counting all points that
are in Qd and are stored in a data structure at time
t is equivalent to answering (d + 2)-dimensional query
(−∞, t]× [t,+∞)×Qd on Stemp. Such queries have at
most d + 1 constraint. By Lemma 2, such queries can
be answered in time 3q(n) using 3s(n) space. �

5 Color Counting

Colored or categorical orthogonal range searching is an
important variant of the range searching problem. The
set of points S of size n, such that each point is assigned
a color, is pre-processed and stored in a data structure.
For any rectangular query range Q, we must be able to
find some information about colors of points in S∩Q. In
the case of color counting queries, we want to compute
the number of distinct point colors in S ∩ Q. In the
case of color reporting queries, we want to enumerate all
distinct point colors in S∩Q. In this section we describe
a data structure for color counting. Our solution, based
on counting with distinct constraints, matches the best
previously known bounds. Thus we show that distinct-
constraint counting provides an alternative solution for
this problem.

Color searching problems arise naturally in many
database applications when the input data objects are
distributed into categories. We may want to enumer-
ate (or count the number of) categories of objects
whose attribute values are in a certain range. For in-
stance, suppose that a geographic database contains
data about locations. Given a query area, we may be
interested in listing (or counting) types of soil in that
area. Other applications of this problem include doc-
ument retrieval [12, 13], computational geometry [10],
and VLSI layout [6].

Color range searching problem were studied exten-
sively during the last two decades, see e.g., [8, 6, 3, 4, 2,
12, 10, 14, 15, 11]. In spite of significant efforts, space-

efficient data structures (i.e., using n logO(1) n space)
are known only for color reporting in d ≤ 3 dimensions.
Space-efficient color counting in d ≥ 2 dimensions is
possible only in some special cases. Thus counting or re-
porting distinct point colors appears to be significantly
harder than counting or reporting all points in an or-
thogonal range.

Gupta et al. [6] describe a data structure for one-
dimensional color counting queries that uses O(n log n)
space and supports queries in O(log n) time. This result
is obtained by reducing one-dimensional color count-
ing to two-dimensional point counting. Using the re-
duction from [6] and a linear size data structure for
point-counting, described by JaJa et al. [7], we can
obtain an O(n)-space data structure that answers one-
dimensional color counting queries in O(log n/ log log n)
time. Space-efficient data structures for some special



27th Canadian Conference on Computational Geometry, 2015

cases of two-dimensional queries are also known. A
two-dimensional dominance query is a product of two
half-open intervals, e.g., (−∞, b] × (−∞, h]. A three-
sided query range is a product of a closed interval and
a half-open interval, e.g., [a, b]× (−∞, h]. In [6] the au-
thors describe an O(n log n)-space data structure that
supports dominance color counting in O(log n) time and
an O(n log2 n)-space structure that supports three-sided
color counting in O(log2 n) time; they also describe an
O(n2 log2 n) data structure that answers general queries
in 2-D in O(log2 n) time. Kaplan et al [10] describe a
general method that reduces the problem of counting
colors in d-dimensional dominance range to counting
d-dimensional rectangles that are stabbed by a point
q. The set of rectangles used in [10] consists of O(n)
rectangles for d = 2 or d = 3. Kaplan et al [10] de-
scribe an O(n log n)-space data structure that answers
two-dimensional dominance color counting queries in
O(log n) time and an O(n log2 n) space data structure
that answers three-dimensional dominance color count-
ing queries in O(log2 n) time.

However if we combine the best currently known
data structures for rectangle stabbing counting with
the reduction from [10], then both query time and
space usage can be reduced. There is a data struc-
ture that answers two-dimensional dominance color
counting queries in O(log n/ log log n) time and uses
space O(n). There is also a data structure that
answers three-dimensional dominance color counting
queries in O((log n/ log log n)2) time and uses space
O(n(log n/ log log n).

Below we provide an alternative solution for color
dominance in two and three dimensions. Although our
data structures have the same complexity as previous
best solutions, we believe that our alternative solution
is also of interest.

Dominance Color Counting in 2-D. In the
two-dimensional dominance query (aka 2-sided two-
dimensional query), the query range Q is a product
of two half-open intervals. We will consider queries
(−∞, a] × (−∞, b]. A two-dimensional point q domi-
nates a point p if both coordinates of q are not smaller
than p, q.x1 ≥ p.x1 and q.x2 ≥ p.x2. The skyline M of a
set S consists of all points in S that do not dominate any
other point in S. If we arrange the points on a skyline
M in increasing order of their first coordinates, then the
second coordinates of points in M will form a decreas-
ing sequence. For a point p ∈ M , let next(p) = p′.x1
where p′ is the right neighbor of p on M .

Let the set Sc contain all points of color c in S. Let
Mc denote the skyline of Sc. The set S1 contains a
three-dimensional point p1 = (p.x1, next(p), p.x2) for
each p ∈ Mc and for all colors c. It was shown in [6]
that Q = (−∞, a] × (−∞, b] contains a point of color

a

b

Figure 1: Answering a two-dimensional dominance color
counting query on a set of red, blue, and green points.
Skyline points are connected by straight lines. For a
query Q = (−∞, a] × (−∞, b], we count the number of
circled points. Exactly one point for each color that
occurs in (−∞, a]× (−∞, b] is considered.

c if and only if there is exactly one point p ∈ Mc such
that p.x1 ≤ a, next(p) ≥ a, and p.x2 ≤ b. See Fig. 1 for
an example.

Thus we can count the number of colors in Q by an-
swering a query (−∞, a] × [a,+∞) × (−∞, b] with 2
distinct constraints on S1.

Theorem 7 Two-dimensional dominance color count-
ing has the same space and query time complexity as
two-dimensional point counting.

Optimal data structures in the RAM and external mem-
ory models follow immediately. We plug the data struc-
tures from [7] and [1] into Theorem 7.

Corollary 1 There exists an O(n)-space data structure
that answers two-dimensional dominance color counting
queries in optimal O(log n/ log log n) time.

Corollary 2 There exists an external-memory data
structure that uses O(n) words of space and answers
two-dimensional dominance color counting queries in
O(logB n) I/Os.

Insertion-Only Dominance Color Counting in 2-D.
Let D1 denote the data structure that supports two-
dimensional dominance queries. The data structure D1

can also support insertions. Suppose that a new point
pnew of color c is inserted. If p1 dominates some p ∈Mc,
then we do not have to change Mc and no updates of
D1 are necessary. Otherwise, we insert pnew into Mc.
In this case we also may have to remove a number of
other points from Mc. Data structure D1 is updated
accordingly. An insertion of a single point into Mc can
lead to a large number of updates. But Gupta et al. [6]
have shown that n insertions into an initially empty data
structure require O(n) updates of skylines Mc. Hence
D1 is also updated O(n) times. The key observation is



CCCG 2015, Kingston, Ontario, August 10–12, 2015

that each point in inserted and removed from some Mc

at most once: if p is removed from Mc, it will not be
re-inserted into Mc in the future. We refer to [6] for
details.

Dominance Counting in 3-D. Following the ap-
proach of [6], we can transform a 2-D dominance query
into a 3-D dominance using a persistent version of the
two-dimensional data structure described above. While
in [6] this technique was applied to range reporting, we
use it to obtain a range counting data structure. We sort
points of a three-dimensional set S in increasing order
by their z-coordinates. These points are then inserted
in the same order into a partially persistent variant of
the data structure D1 which we will denote by D2. We
use the approach outlined in Section 4 for adding per-
sistence. Each point in D2 is associated with two ad-
ditional coordinates. For every point p ∈ D1 that was
inserted at time ts and removed at time te, D2 contains
a point p = (p.x, next(p), p.y, ts, te). In order to an-
swer a query (−∞, a] × (−∞, b] × (−∞, h],we find the
version th that corresponds to the largest z-coordinate
that does not exceed h. Then we count the number
of colors in a two-dimensional range (−∞, a]× (−∞, b]
at time th. That is, we answer a counting query
(−∞, a] × [a,+∞) × (−∞, b] at time th. As shown
in Section 4, this is equivalent to answering a query
(−∞, a]× [a,+∞)× (−∞, b]× (−∞, th]× [th,+∞). Al-
though this is a five-dimensional query, it has three dis-
tinct constraints. Hence, it has the same complexity as
three-dimensional point counting.

Theorem 8 Three-dimensional dominance color
counting has the same space and query time complexity
as three-dimensional point counting.

Again we plug the data structures from [7] and [1]
into Theorem 8.

Corollary 3 There exists an O(n(log n/ log log n))-
space data structure that answers three-
dimensional dominance color counting queries in
O((log n/ log log n)2) time.

Corollary 4 There exists an external-memory data
structure that uses O(n logB n) words of space and
answers three-dimensional dominance color counting
queries in O((logB n)2) I/Os.

References

[1] Pankaj K. Agarwal, Lars Arge, Sathish Govindara-
jan, Jun Yang, and Ke Yi. Efficient external mem-
ory structures for range-aggregate queries. Com-
put. Geom., 46(3):358–370, 2013.

[2] Pankaj K. Agarwal, Sathish Govindarajan, and
S. Muthukrishnan. Range searching in categori-
cal data: Colored range searching on grid. In Proc.
10th Annual European Symposium on Algorithms
(ESA 2002), pages 17–28, 2002.

[3] Panayiotis Bozanis, Nectarios Kitsios, Christos
Makris, and Athanasios K. Tsakalidis. New upper
bounds for generalized intersection searching prob-
lems. In Proc. 22nd International Colloquium on
Automata, Languages and Programming (ICALP
95), pages 464–474, 1995.

[4] Panayiotis Bozanis, Nectarios Kitsios, Christos
Makris, and Athanasios K. Tsakalidis. New results
on intersection query problems. Computer Journal,
40(1):22–29, 1997.

[5] James R. Driscoll, Neil Sarnak, Daniel Dominic
Sleator, and Robert Endre Tarjan. Making data
structures persistent. J. Comput. Syst. Sci.,
38(1):86–124, 1989.

[6] Prosenjit Gupta, Ravi Janardan, and Michiel H. M.
Smid. Further results on generalized intersection
searching problems: Counting, reporting, and dy-
namization. Journal of Algorithms, 19(2):282–317,
1995.

[7] Joseph JáJá, Christian Worm Mortensen, and
Qingmin Shi. Space-efficient and fast algorithms for
multidimensional dominance reporting and count-
ing. In Proc. 15th International Symposium on Al-
gorithms and Computation (ISAAC 2004), pages
558–568, 2004.

[8] Ravi Janardan and Mario A. Lopez. General-
ized intersection searching problems. International
Journal of Computational Geometry and Applica-
tions, 3(1):39–69, 1993.

[9] Haim Kaplan. Persistent data structures. In
Handbook on Data Structures and Applications, D.
Mehta and S. Sahni (Editors), pages 241–246. CRC
Press 2001, 2005.

[10] Haim Kaplan, Natan Rubin, Micha Sharir, and
Elad Verbin. Efficient colored orthogonal range
counting. SIAM J. Comput., 38(3):982–1011, 2008.

[11] Marek Karpinski and Yakov Nekrich. Searching for
frequent colors in rectangles. In Proc. 20th Annual
Canadian Conference on Computational Geometry
(CCCG), 2008.

[12] S. Muthukrishnan. Efficient algorithms for doc-
ument retrieval problems. In Proc. 13th Annual
ACM-SIAM Symposium on Discrete Algorithms
(SODA), pages 657–666, 2002.



27th Canadian Conference on Computational Geometry, 2015

[13] Gonzalo Navarro. Spaces, trees, and colors: The
algorithmic landscape of document retrieval on se-
quences. ACM Comput. Surv., 46(4):52, 2013.

[14] Yakov Nekrich. Efficient range searching for cate-
gorical and plain data. ACM Trans. Database Syst.,
39(1):9, 2014.

[15] Matthew Skala. Array range queries. In Space-
Efficient Data Structures, Streams, and Algo-
rithms, pages 333–350, 2013.


