
CCCG 2015, Kingston, Ontario, August 10–12, 2015

Bounds on Mutual Visibility Algorithms∗

Gokarna Sharma† Costas Busch† Supratik Mukhopadhyay†

Abstract

We consider the fundamental Mutual Visibility
problem for a set of n identical autonomous point robots
(n is not known to the robots) that operate following
Look-Compute-Move cycles starting from arbitrary dis-
tinct positions in the Euclidean plane under obstructed
visibility – a robot ri can see robot rj , rj 6= ri, if and
only if there is no other robot in the line segment joining
their positions. The objective is to determine a schedule
to reposition these robots without collisions such that
they reach in finite time a configuration where they all
see each other. In the recently proposed so-called robots
with lights model, Di Luna et al. [15] gave two deter-
ministic algorithms Contain and Shrink for this prob-
lem; however, no runtime bounds were given except the
proof that they terminate in finite time. In this paper,
we first study the runtime bounds of these algorithms
in the fully synchronous setting showing that Contain
is tight (Θ(n) rounds) and Shrink needs Ω(n2) rounds
in the worst-case. We then present a new deterministic
algorithm, called Modified Shrink, for fully synchronous
setting that solves this problem in O(n log n) rounds,
improving significantly over Shrink. We also show that
Modified Shrink has the lower bound of Ω(n) rounds.

1 Introduction

Consider a set of n autonomous point robots (n is not
known to the robots) in the distinct positions in the Eu-
clidean plane R2 which are anonymous, indistinguish-
able, and without any direct means of communication.
Each robot is equipped with a local coordinate system
and sensor capabilities (i.e., vision) to determine the po-
sitions of other robots. The local coordinate system of
a robot may be different with that of other robots. The
robots execute the same algorithm. They operate in
Look-Compute-Move cycles, i.e., when a robot becomes
active, it uses its vision to get a snapshot of its surround-
ings (Look), computes a destination point based on the

∗The project is supported by Army Research Office (ARO)
under Grant #W911-NF1010495. Any opinions, findings, and
conclusions or recommendations expressed in this material are
those of the authors and do not necessarily reflect the views of
the ARO or the United States Government.
†School of Electrical Engineering and Computer Sci-

ence, Louisiana State University, {gokarna, busch,

supratik}@csc.lsu.edu.

snapshot (Compute), and finally moves towards the des-
tination (Move), if any. Most of the literature assumes
that the robots are oblivious - each robot has no memory
of its past Look-Compute-Move actions - and visibility
is unobstructed - three collinear robots are assumed to
be mutually visible to each other [2, 8, 9, 12, 19, 22].

In this paper, we consider obstructed visibility [4,
3, 10, 1, 5, 6] under which a robot ri can see robot
rj , ri 6= rj , if and only if there is no other robot in
the line segment joining their positions. We study the
following fundamental Mutual Visibility problem:
Starting from the arbitrary distinct positions in the Eu-
clidean plane R2, determine a schedule to reposition the
robots without collisions such that they reach within fi-
nite time a configuration where they all see each other.
Note that robots moves do not follow grid coordinates
of the plane R2, i.e., we do not assume the existence
of some underlying universal grid in R2. Although ob-
structed visibility is considered before in the classical
oblivious robots model for the Spreading problem [4]
and in the so-called fat robots model [1, 6, 12, 17], the
technique of [4] cannot be generalized for Mutual Vis-
ibility, since it works only in the one-dimensional space
R1, and the techniques of [1, 6, 12, 17] are also not suit-
able, since collisions are allowed and used as an explicit
communication tool.

Di Luna et al. [16] were the first to study Mutual
Visibility problem. They studied Mutual Visibil-
ity in the robots with lights model initially suggested
by Peleg [18], where each robot has an externally visible
persistent light that can assume colors from a fixed set of
colors and the color set is identical to all the robots. The
robots communicate with other robots using these col-
ored lights [12, 7, 11, 13, 21, 18]; the reason for consider-
ing robots with lights model is that there is no Mutual
Visibility algorithm in the classical oblivious robots
model when n is not known. The lights are not erased
at the end of each cycle in this model and the robots are
oblivious, except the direct communication capability
provided by lights. Moreover, this model corresponds
to the classical oblivious robots model when the num-
ber of colors c = 1 in the color set, since a light with
only one possible color acts as no light. Di Luna et al.
[16] gave a deterministic algorithm that solves Mutual
Visibility with c = 6 colors in the semi-synchronous
setting and with c = 10 colors in the asynchronous set-
ting. Later, Di Luna et al. [15] gave two deterministic
algorithms Contain and Shrink with c = 3 and c = 2

27th Canadian Conference on Computational Geometry, 2015

colors, respectively, in the semi-synchronous setting.
Di Luna et al. [15] proved the correctness of both

algorithms Contain and Shrink. However, no runtime
bounds were given except the proof that they terminate
in finite time. Recently, Vaidyanathan et al. [20] gave
an algorithm similar to Contain for Mutual Visibil-
ity in the fully synchronous setting and proved that it
has running time of O(log n) rounds. However, their
algorithm assumes chirality [1, 6] and does not avoid
robot collisions due to the crossing of paths during robot
movements.

In this paper, we consider the fully synchronous set-
ting (where all robots are activated in a round and
robots perform their cycles in a perfectly synchronous
setting) and study the runtime bounds of Mutual Vis-
ibility algorithms. In particular, we have made follow-
ing three contributions.

• We show that Contain [15] has the tight bound of
Θ(n) rounds on running time.

• We show that there exists an initial configuration
of n robots in which Shrink [15] needs Ω(n2) rounds.

• We present a new deterministic algorithm, called
Modified Shrink, for fully synchronous setting that
uses c = 3 colors and needs only O(n log n) rounds
to solve Mutual Visibility starting from any ini-
tial configuration of n robots. This is a signifi-
cant improvement over the runtime bound of Shrink
which is at least Ω(n2) rounds. We also prove that
Modified Shrink has a lower bound of Ω(n) rounds.

Paper Organization: We proceed as follows. We
present model in Section 2. We prove bounds for Con-
tain in Section 3. We then prove a lower bound for
Shrink in Section 4. In Section 5, we present and ana-
lyze Modified Shrink. Many proofs are omitted due to
space constraints.

2 Model

We consider a set of n anonymous robots R =
{r1, r2, . . . , rn} operating in the Euclidean plane R2; n
is not assumed to be known. We denote by pi(k) ∈ R2

the position occupied by robot ri ∈ R at time k. A
robot ri sees robot rj , rj 6= ri, at time k if and only if

the line segment pi(k)pj(k) does not contain any other
robot at time k. Two robots ri and rj are said to col-
lide at time k if pi(k) = pj(k). If no ambiguity arises,
we omit k from ri(k) and pi(k), and use ri to denote
both the robot ri and its position pi. Each robot ri
has its own coordinate system centered in itself and it
knows its position with respect to its coordinate system.
Moreover, robots have their own unit of distance which
may not agree on the unit of measure of other robots.

The robots do not agree on the orientation of their co-
ordinate system, i.e., there is no common notion of the
clockwise direction.

Each robot ri is equipped with an externally visible
persistent light which can assume any color from a fixed
finite set of colors C. The colors in C are the same for all
robots in R. We use variable ri.light to denote the light
of a robot ri. The color of the light of a robot r at time
k can be seen by all robots that are visible to r at time
k. Robots are oblivious − do not remember decisions
performed in previous cycle − and a robot’s decision at
any cycle is only based on the positions of the robots
visible to it at that cycle. Robots are autonomous (i.e.,
without any external control), indistinguishable (i.e., do
not have external markings), and do not have any direct
means of communication (except the lights). Moreover,
they are anonymous (i.e., do not have internal identi-
fiers). Each robot executes the same algorithm locally
every time it is activated.

A configuration C is a set of n tuples in C×R2 which
defines the position and color of a robot. Let Ck de-
notes the configuration at time k. Let Ck(ri) denotes
the configuration Ck for robot ri. A configuration C is
obstruction-free if ∀ri ∈ R, we have that |C(ri)| = n
(i.e., all robots can see each other). Let Hk denotes
the convex hull formed by Ck which can be easily com-
puted using Graham’s convex hull algorithm [14]. Let
∂Hk = Vk ∪ Ek denotes the robots in the boundary of
Hk, where Vk ⊆ R are the set of robots lying at the
vertices of Hk and Ek ⊆ R are the set of robots lying
at the sides (or edges) of Hk. The robots in the set Vk
are called vertex robots and in the set Ek are called edge
robots. The robots in Vk∪Ek are called boundary robots.
The robots in the set Hk\∂Hk are called internal robots.
Given a robot ri ∈ R, we denote by Hk(ri) the convex
hull of Ck(ri). Given two points a, b ∈ R2, we denote

by
←→
ab the line that contains them.

We assume that the execution starts at time 0. There-
fore, at time t = 0, the robots start in an arbitrary
configuration C0 occupying distinct positions in R2

and the color of the light of each robot is set to Off.
The Mutual Visibility problem is defined as follows:
Given any C0, reach in finite time an obstruction-free
configuration without collisions. An algorithm is said
to solve Mutual Visibility if it always achieves an
obstruction-free configuration regardless of the choices
of the adversary and from any arbitrary C0.

We assume that, when active, each robot ri ∈ R per-
forms a sequence of Look-Compute-Move (LCM) oper-
ations: a robot takes the snapshot of the positions of
the robots visible to it in its own coordinate system
(Look); executes its algorithm using the snapshot which
returns a destination point x ∈ R2 and a color c ∈ C
(Compute); and sets its own light to color c and moves
towards the computed destination x ∈ R2 (if x is differ-

CCCG 2015, Kingston, Ontario, August 10–12, 2015

Figure 1: An illustration of T , T1, and T2 of a vertex
robot ri in H(ri), where a and b, respectively, are the
neighbor robots of ri in H(ri) in its counterclockwise
and clockwise direction, x, y, and m are the midpoints
of line segments ria, rib, and ab, respectively, and m′ is
the intersection point of rim and xy.

ent than its current position), if any (Move). We assume
the rigid moves throughout the paper in the sense that
the movement of robots are not controlled by an adver-
sary and every robot reaches its destination at all times
when it moves from a current position to its computed
destination. Moreover, we consider a fully synchronous
scheduler for the activation of the robots in R. In the
fully synchronous scheduler, the time is discrete and at
each time instant k all the robots of R are activated and
perform their LCM operations instantaneously, ending
at time k+1. Therefore, we use round k instead of time
k from now on. Finally, we measure the quality of the
algorithm by counting the number of rounds until the
robots have reached the mutual visibility configuration
(all robots are the vertices of H).

As shown in Fig. 1, let ri be a vertex of H and a and
b are its counterclockwise and clockwise neighbors in H.
Moreover, let x and y be the midpoints of line segments
ria and rib, respectively, and m be the midpoint of line
segment ab. We have that, according to construction,
xy is parallel to ab. For each vertex robot ri, we denote
by T the triangular area riab, by T1 the triangular area
rixy, and by T2 the trapezoidal area xyba (i.e., T2 :=
T\T1). When we say that a robot w is closest to ri then
we mean that there is no other robot in the area of H(ri)
between ri and a line parallel to ab (or xy) that passes
through w’s position.

3 Tight Bounds for Contain Algorithm

Contain [15] has two phases: an interior depletion phase
and a vertex adjustment phase. The second phase is exe-
cuted only after the first phase is finished. In the interior
depletion phase, the robots in the interior of H move to-
wards the boundary of H and in the vertex adjustment
phase the robots in the vertices of H move towards the
interior of H to reach a strictly convex configuration
with all the robots being in the vertices of H. Three
colors are used, namely C = {Off ,External ,Adjusting}.

We prove the following lemma for the lower bound.

Lemma 1 There is an initial configuration C0 of the
robots in which Contain takes Ω(n) rounds to solve Mu-
tual Visibility in the fully synchronous setting.

We prove the following lemma for the upper bound.

Lemma 2 Starting from any initial configuration of a
set of n robots, Contain needs O(n) rounds to solve Mu-
tual Visibility in the fully synchronous setting.

Combining the lower and upper bounds of Lemmas 1
and 2, we obtain the following theorem.

Theorem 3 The round complexity of Contain for Mu-
tual Visibility is Θ(n) in the worst-case in the fully
synchronous setting.

4 Lower Bound for Shrink Algorithm

Shrink works as follows. The vertex robots set their light
to Vertex. Let ri be a vertex robot of H(ri) and a and
b be ri’s counterclockwise and clockwise neighbors both
in the boundary of H(ri). Let x and y be the midpoints
of line segments ria and rib, respectively, and m be the
midpoint of ab. If there is an interior robot, say r′, in
T1, then ri moves to some point in T1 in the line seg-
ment that is parallel to xy and passes through r. If
there are more than one robot in T1, then some point
in the line segment parallel to xy passing through the
closest robot is chosen. However, if there is no robot
inside T1 (i.e. all interior robots are outside T1), then
ri moves to the point m′ in xy, irrespective of the po-
sitions of the interior robots, where m′ is the point in
which the line segment rim intersects xy (see Fig. 1).
If there is only one robot in the interior of H(ri), then
that interior robot moves to the midpoint of some edge
in the boundary of H(ri). Two colors are used, namely
C = {Off ,Vertex}. We prove the following theorem for
the lower bound.

Theorem 4 There is an initial configuration C0 of the
n robots in which Shrink takes Ω(n2) rounds to solve
Mutual Visibility in the fully synchronous setting.

5 The Modified Shrink Algorithm

We present Modified Shrink which improves significantly
over the runtime of Shrink in the fully synchronous set-
ting. The pseudocode of Modified Shrink is given in Al-
gorithms 1. Algorithm 1 uses Algorithms 2–4 as sub-
routines to accomplish the mutual visibility of robots
starting from any arbitrary initial configuration C0.

Modified Shrink uses three colors in the set C of col-
ors, namely C = {Off ,Vertex ,Edge}. The colors in the
set C are used by robots to detect whether Mutual

27th Canadian Conference on Computational Geometry, 2015

Algorithm 1: Modified Shrink algorithm for any round k > 0

1 // Look-Compute-Move cycle for each robot ri ∈ R
2 Ck(ri)← configuration Ck for robot ri (including ri);
3 Hk(ri)← convex hull of the positions of the robots in Ck(ri);
4 if |Ck(ri)| = 3 ∧ Hk(ri) is a line segment then
5 Move orthogonal to (the line segment) Hk(ri) by any non-zero distance;
6 else
7 if ri is in vertex of Hk(ri) then Corner(ri,Ck(ri),Hk(ri));
8 else if ri is in edge of Hk(ri) then Side(ri,Ck(ri),Hk(ri));
9 else if ∀r ∈ Ck(ri)\{ri}, r.light ∈ {Vertex ,Edge} ∧ ri is in interior of Hk(ri) then Interior(ri,Hk(ri));

Algorithm 2: Corner(ri,Ck(ri),Hk(ri))

1 if ri.light = Off then ri.light← Vertex;
2 if ∀r ∈ Ck(ri), r.light = Vertex then Terminate;
3 else if |Ck(ri)| > 2 then
4 a← counterclockwise neighbor on the boundary of Hk(ri);
5 b← clockwise neighbor on the boundary of Hk(ri);
6 x← midpoint of the line segment ria;

7 y ← midpoint of the line segment rib;
8 if there exists at least a robot in Ck(ri)\{ri} with light Off then

9 r′ ← robot in Ck(ri)\{ri} with light Off that is closest to ri w.r.t. the line parallel to the line segment ab
(if more than one robot satisfies this criteria, choose as r′ the robot that is closer to b);

10 if r′ is not in the triangular area riab then

11 Move to the midpoint of the line segment rir′;
12 else if r′ is in the triangular area riab ∧ r′ is not in the triangular area rixy then

13 Move to the intersection point of the line segments rir′ and xy;
14 else if r′ is in the triangular area rixy then

15 L← line parallel to ab that passes through r′;

16 z ← intersection point of L and rib;

17 Move to the midpoint of the line segment r′z;
18 else if there exists at least a robot in Ck(ri)\{ri} with light Edge then
19 Move to the midpoint of the line segment xy;

Visibility is solved and correctly terminate their com-
putation. The lights of all robots in R are set to Off in
the initial configuration C0. When a robot after acti-
vation in some round k > 0 realizes that it is a vertex
of H, it sets its light to Vertex (Line 7 of Algorithm 1,
Line 1 of Algorithm 2). This task is easy since, if a
robot ri with light Off after activation in some round
k > 0 sees that Ck(ri) contains a region of plane that is
free of robots and wider than 180◦, then ri knows it is a
vertex of H. If a robot realizes after activation in some
round k > 0 that it is on an edge of H, it sets its light
to Edge (Line 8 of Algorithm 1, Line 1 of Algorithm 3).
Similar to the realization of vertex robots, if a robot ri
with light Off after activation in some round k sees that
Ck(ri) contains a region of plane that is free of robots
and wide exactly 180◦, then ri knows it is on an edge
of H. When the lights of all the robots that are seen by
a robot are set to Vertex, the robot knows that it can
see all the robots in R and hence it terminates (without

the knowledge of n, the total number of robots).
Since our algorithm uses the convex hull shrinking

process, the vertex and edge robots move inside. We
now describe how vertex robots move and give the de-
tails on how edge robots move in the next paragraph. If
there is an interior robot (i.e., a robot with light Off),
say r′, in T1, then the vertex robot ri moves somewhere
in the line parallel to the line segment ab that passes
through r′, where a and b are the neighbor robots of
ri in Hk(ri) in its counterclockwise and clockwise direc-
tion, respectively. If there is more than one robot in T1,
the closest one from ri (w.r.t. a line parallel to ab) is cho-
sen as the robot r′ (Lines 14-17 of Algorithm 2). In case
all the interior robots are outside T1 then if there are
robots in T2, ri moves to the point in the line segment
xy that intersects the line segment rir′, where r′ is the
robot in T2 that is closest to ri again w.r.t. a line paral-
lel to ab, and x and y, respectively, are the midpoints of
the line segments ria and rib (Lines 12,13 of Algorithm

CCCG 2015, Kingston, Ontario, August 10–12, 2015

Algorithm 3: Side(ri,Ck(ri),Hk(ri))

1 if ri.light = Off then ri.light← Edge;
2 if there exists at least a robot in Ck(ri)\{ri} with light Off then
3 a← counterclockwise neighbor on the boundary of Hk(ri);
4 b← clockwise neighbor on the boundary of Hk(ri);

5 rj ← closest robot to ri in Ck(ri)\{ri} with light Off w.r.t. a line parallel to line segment ab;
6 Move to the midpoint of the line segment rirj ;

Algorithm 4: Interior(ri,Hk(ri))

1 if ri is not in the triangular area formed by any three consecutive robots of Hk(ri) then
2 x← midpoint of any edge between two consecutive robots of Hk(ri);
3 Move to the midpoint of the line segment rix;
4 else
5 e← the closest among two edges of the triangular area that are in Hk(ri);
6 Move to the midpoint of the edge e;

2). When all the interior robots are outside T , ri moves
halfway to the line segment overlinerir

′ connecting ri
with the robot r′ that is closest to it (Lines 10,11 of Al-
gorithm 2). Note that if more than one robot is closest
to the vertex robot ri according to our criteria (w.r.t.
a line parallel to ab), then the robot that is closer to
b among the closest robots is chosen as r′ (Line 9 of
Algorithm 2).

On the other hand, a robot, rj , on the edge of H
(which is not a vertex of H) moves halfway to an internal
robot that is closest to rj w.r.t. a line parallel to ab (ab
in this case is in fact a straight line segment that passes
through rj) (Lines 2–5 of Algorithm 3).

Moreover, there can be a situation in our algorithm
that there is no robot in the interior of H but there are
still some robots on the edges of H. The robots in the
edges do not move since there should not be any robot
with light Off in the system for this situation to hap-
pen. On the other hand, the vertex robots recognize this
situation and start moving to the midpoint of the line
segment xy (Lines 18,19 of Algorithm 2). These moves
of vertex robots are sufficient since we can show that
eventually all edge robots become vertices even under
these moves.

We now have two special cases in our algorithm. The
first special case is when there is only one internal robot.
In this case, we can show that if the internal robot
does not move, Mutual Visibility cannot be achieved
without collisions since, all the robots in R converge to
the position of the only internal robot. However, our
algorithm resolves this situation as follows. When there
is only one robot, say w, in the interior of Hk(w), then
the robot w recognizes this situation and moves towards
the boundary of Hk(w). This recognition is easy as all
the robots w sees have lights either Vertex or Edge (Line
9 of Algorithm 1). If w is inside the triangular area riab

of some vertex robot ri, it chooses the closest edge be-
tween ria and rib and moves to the midpoint of that
edge (Lines 1, 5, 6 of Algorithm 4). Otherwise, it moves
halfway from its location to the line segment connecting
it with the midpoint of any edge between two consec-
utive robots of Hk(w) (Lines 2,3 of Algorithm 4). The
second special case is when a robot ri ∈ R sees only
two other robots (Lines 4,5 of Algorithm 1). In this
case, Hk(ri) must be a line segment. The robot ri then
moves orthogonal to Hk(ri) by any non-zero distance.
These movements translate line segment Hk(ri) into a
polygonal Hk(ri) which remains as polygonal Hk(ri) in
future rounds.

5.1 Analysis of the Modified Shrink Algorithm

We here analyze Modified Shrink for both correctness
and running time. We first show that the paths that
robots follow when they move inside do not cross which
is essential to show that Modified Shrink avoids collisions
due to hitting each other while relocating. We have the
following lemma.

Lemma 5 The paths of robots do not cross during the
execution of Modified Shrink.

We now show that two robots do not land up to the
same position during the execution of Modified Shrink
which is essential to prove that there is no collision due
to position sharing. Note that in C0, robots do not
share their positions since it is assumed that they start
from the distinct positions (otherwise no collision re-
quirement can not be achieved).

Lemma 6 Two robots do not land up to the same po-
sition during the execution of Modified Shrink.

27th Canadian Conference on Computational Geometry, 2015

Figure 2: An illustration of robot movements in
Modified Shrink: (left) the closest robot to ri, r, is in
T1; (right) the closest robot to ri, r, is in T2.

Combining Lemmas 5 and 6, we obtain the fol-
lowing theorem on collision avoidance property of
Modified Shrink.

Theorem 7 Starting from any configuration of n
robots, Modified Shrink avoids robot collisions.

We now show that vertex robots remain vertex which
is essential to prove the convergence property of our al-
gorithm and guarantee progress towards a mutual visi-
bility configuration.

Lemma 8 No vertex robot of H becomes internal or
edge robot during the execution of Modified Shrink.

Proof. When there is no interior robot in the triangular
area T of the vertex robots, the external (vertex and
edge) robots converge to the same limit, i.e., in every
round, all the robots in the boundary of H move exactly
half distance to their closest robots in the line segment
connecting them to their closest internal robots in H.
It can be easily seen that this process guarantees that
the vertices of H remain as vertices of H in every future
round. Therefore, we focus on the scenario where some
vertex robots have internal robots in their triangular
areas T and others do not have internal robots in their
triangular areas.

We will show that the moves of some vertex robots
to the positions inside T1 and the moves of other vertex
robots to the positions outside T1 still guarantee that
vertex robots remain as vertices of H. One example
configuration for such scenario is given in Fig. 2. Let
ri be a vertex robot in H and a and b are its neighbors
in H with a being in its counterclockwise direction and
b being in its clockwise direction. Let r be the robot
that is inside the triangular area T of ri. Assume that
r is also the closest robot in the interior of H from the
vertex robots a and b and it is not inside the triangular
area T of both a and b. According to Algorithm 1,
if r is inside the triangular area T1 of ri, ri moves as
shown in the left of Fig. 2 in the line, say L, that is

parallel to the line segment xy that passes through the
position of r. The exact point where ri moves is the
midpoint of the line segment rz of the line L, where x is
the intersection point of the line L and the line segment
rib. The robots a and b move halfway to r since r is
outside the triangular area T of both a and b.

We now show that the convexity of H is maintained
in this situation. We first consider robot b and then
the argue for robot a. We have that line segments br
and rib intersect at b before b and ri move inside which
is also the vertex of H. After they move inside, the
line segment rib (bold dotted line in the left of Fig. 2)
connecting the new positions of ri and b is parallel to the
line segment rib connecting their old positions because
their new positions are the midpoints of two sides rb and
rz of the triangle rbz. Now since r is also the closest
robot to a the move of a makes the line segment ar (from
a’s new position to r) parallel to the line segment ari
(from a’s old position to ri) if ri moves to the midpoint
of the line segment rz′ (the argument here is similar to
the one used for robot b), otherwise ar remains as the
segment of line ←→ar that intersects ←→ria at a. Therefore,
under any movements of ri, a, and b, ri does not become
internal or edge robot because neither a nor b crosses the
line segment zz′ to reach some point in the triangular
area rizz

′ of ri. Note that r actually becomes vertex
after the moves of ri, a, and b. Since this process is
applied by all the vertex robots of H, it is clear that
the convexity of H is maintained and no vertex robot
becomes an internal or edge robot.

Consider now the scenario where r is inside the trape-
zoidal area T2 of ri (the right of Fig. 2). In this case,
ri moves to the point where line segments xy and rir
intersect. As the distance from ri to its new position
(after move) is at least half of rir, the line segments
connecting the new positions of a, ri, and ri, b become
parallel to the current edges of H, ap and pb, when r
is at some position in the line segment ab. Therefore,
under any movements of ri, a, and b, ri does not become
internal or edge robot because neither a nor b crosses
the line segment xy to reach some point in the triangu-
lar area T1 of ri. Hence, combining the above claims,
the lemma follows. �

We are now ready to analyze the runtime bound of
Modified Shrink.

Theorem 9 Modified Shrink solves Mutual Visibil-
ity in O(n log n) rounds using lights with 3 colors in
the fully synchronous setting.

Proof. When H is a line in C0 it becomes a polygo-
nal H in one round due to the fully synchronous setting
and it is easy to see that once line H is transitioned to
polygonal H, it does not become line H again in future.
Starting from polygonal H, according to Algorithm 1,

CCCG 2015, Kingston, Ontario, August 10–12, 2015

when there exists a robot in T1, then it becomes ver-
tex in one round. When there is a robot in T2, then
the robot reaches at least halfway close to it in next
round. Therefore, the worst-case number of rounds of
Algorithm 1 is when all the interior robots are not inside
any T of vertex robots. However, we have from Algo-
rithm 1 that external robots reach halfway to those in-
terior robots (even if they are not inside T of any vertex
robots) in every round. As vertex robots remain vertex
(Lemma 8) and external robots move halfway to the
interior robots in each round, after at most O(log n)
rounds, at least one internal robot becomes an exter-
nal robot (vertex or edge). This is because the distance
between a vertex robot and its closest internal robot de-
creases by half in every round and the closest internal
robot for a vertex robot remains as closest until it even-
tually becomes an external robot. Therefore, as there
are n robots in R, they become external in at most
O(n log n) rounds. Moreover, we need at most O(n)
rounds to make robots in edges the vertex robots after
all internal robots reach the boundary of H (Lines 18,19
of Algorithm 2). Therefore, Algorithm 1 needs at most
O(n log n) +O(n) = O(n log n) rounds. �

We have the following theorem for the lower bound
of Modified Shrink which shows the inherent difficulty in
obtaining faster algorithms for the Mutual Visibility
problem.

Theorem 10 There exists an initial configuration C0

of the robots in which Modified Shrink takes Ω(n) rounds
to solve Mutual Visibility in the fully synchronous
setting.

References

[1] C. Agathangelou, C. Georgiou, and M. Mavronicolas.
A distributed algorithm for gathering many fat mobile
robots in the plane. In PODC, pages 250–259, 2013.

[2] N. Agmon and D. Peleg. Fault-tolerant gathering algo-
rithms for autonomous mobile robots. In SODA, pages
1070–1078, 2004.

[3] K. Bolla, T. Kovacs, and G. Fazekas. Gathering of fat
robots with limited visibility and without global navi-
gation. In SIDE, pages 30–38, 2012.

[4] R. Cohen and D. Peleg. Local spreading algorithms
for autonomous robot systems. Theor. Comput. Sci.,
399(1-2):71–82, June 2008.

[5] A. Cord-Landwehr, B. Degener, M. Fischer,
M. Hüllmann, B. Kempkes, A. Klaas, P. Kling,
S. Kurras, M. Märtens, F. Meyer auf der Heide,
C. Raupach, K. Swierkot, D. Warner, C. Weddemann,
and D. Wonisch. Collisionless gathering of robots with
an extent. In SOFSEM, pages 178–189, 2011.

[6] J. Czyzowicz, L. Gasieniec, and A. Pelc. Gathering few
fat mobile robots in the plane. Theor. Comput. Sci.,
410(6-7):481–499, 2009.

[7] S. Das, P. Flocchini, G. Prencipe, N. Santoro, and
M. Yamashita. The power of lights: Synchronizing
asynchronous robots using visible bits. In ICDCS, pages
506–515, 2012.

[8] X. Défago and S. Souissi. Non-uniform circle formation
algorithm for oblivious mobile robots with convergence
toward uniformity. Theor. Comput. Sci., 396(1-3):97–
112, 2008.

[9] Y. Dieudonné, O. Labbani-Igbida, and F. Petit. Circle
formation of weak mobile robots. TAAS, 3(4), 2008.

[10] A. Dutta, S. G. Chaudhuri, S. Datta, and
K. Mukhopadhyaya. Circle formation by asyn-
chronous fat robots with limited visibility. In ICDCIT,
pages 83–93, 2012.

[11] A. Efrima and D. Peleg. Distributed models and algo-
rithms for mobile robot systems. In SOFSEM, pages
70–87, 2007.

[12] P. Flocchini, G. Prencipe, and N. Santoro. Distributed
computing by oblivious mobile robots. Synthesis Lec-
tures on Distributed Computing Theory, 3(2):1–185,
2012.

[13] P. Flocchini, N. Santoro, G. Viglietta, and M. Ya-
mashita. Rendezvous of two robots with constant mem-
ory. In SIROCCO, pages 189–200, 2013.

[14] R. L. Graham. An efficient algorithm for determining
the convex hull of a finite planar set. Inf. Process. Lett.,
1(4):132–133, 1972.

[15] G. A. D. Luna, P. Flocchini, S. G. Chaudhuri, F. Poloni,
N. Santoro, and G. Viglietta. Mutual visibility by lu-
minous robots without collisions. To appear in Infor-
mation and Computation, Available at http: // arxiv.
org/ abs/ 1503. 04347 , 2015.

[16] G. A. D. Luna, P. Flocchini, S. G. Chaudhuri, N. San-
toro, and G. Viglietta. Robots with lights: Overcoming
obstructed visibility without colliding. In SSS, pages
150–164, 2014.

[17] G. A. D. Luna, P. Flocchini, F. Poloni, N. Santoro, and
G. Viglietta. The mutual visibility problem for oblivious
robots. In CCCG, 2014.

[18] D. Peleg. Distributed coordination algorithms for mo-
bile robot swarms: New directions and challenges. In
IWDC, pages 1–12, 2005.

[19] I. Suzuki and M. Yamashita. Distributed anonymous
mobile robots: Formation of geometric patterns. SIAM
J. Comput., 28(4):1347–1363, 1999.

[20] R. Vaidyanathan, C. Busch, J. L. Trahan, G. Sharma,
and S. Rai. Logarithmic-time complete visibility for
robots with lights. In IPDPS, pages 375–384, 2015.

[21] G. Viglietta. Rendezvous of two robots with visible bits.
In ALGOSENSORS, pages 291–306, 2013.

[22] M. Yamashita and I. Suzuki. Characterizing geomet-
ric patterns formable by oblivious anonymous mobile
robots. Theor. Comput. Sci., 411(26-28):2433–2453,
2010.

http://arxiv.org/abs/1503.04347
http://arxiv.org/abs/1503.04347

	Introduction
	Model
	Tight Bounds for Contain Algorithm
	Lower Bound for Shrink Algorithm
	The Modified_Shrink Algorithm
	Analysis of the Modified_Shrink Algorithm

