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Abstract

An α-complex is a subcomplex of the Delaunay tri-
angulation of a point set P ⊂ Rd that is topologi-
cally equivalent to the union of balls of radius α cen-
tered at the points of P . In this paper, we give an
output-sensitive algorithm to compute α-complexes of
n-point sets in constant dimensions, whose running time
is O(f log n log α

s ), where s is the smallest pairwise dis-
tance and f is the number of simplices in the cα-complex
for a constant c. The algorithm is based on a refinement
of a recent algorithm for computing the full Delaunay
triangulation of P . We also extend the algorithm to
work with weighted points provided the weights are ap-
propriately bounded. The new analysis, which may be
of independent interest, bounds the number of intersec-
tions of k-faces of a Voronoi diagram with (d− k)-faces
of the Voronoi diagram of a carefully constructed super-
set.

1 Introduction

The starting point for many algorithmic problems in
computational geometry is the discrete representation
of continuous objects. The α-complex gives a topolog-
ically faithful representation of a union of balls as a
subcomplex of the Delaunay triangulation of the cen-
ters [6]. Weighted α-complexes model the case where
the radii of the balls are permitted to vary.

As with the Delaunay triangulation, the α-complex
has a dramatic difference in the number of simplices
in best- and worst-case examples. However, it can be
that even though the Delaunay triangulation may be
large, say Θ(ndd/2e) simplices, the α-complex may still
be quite small. Thus, our goal is to compute the α-
complex without computing the full Delaunay triangu-
lation. Our approach will be to modify a recent output-
sensitive algorithm for computing Delaunay triangula-
tions [11] as well as providing a new perspective to the
analysis that gives nearly tight bounds on the number
of bistellar flips in a restricted case of kinetic Delaunay
triangulations, a result of independent interest.

Contributions Our main contributions are the follow-
ing.
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1. We introduce a generalization of the aspect ratio
of a Voronoi cell that applies also to the cells of
dimension less than d and relate the aspect ratio
to the number of flips needed in removing a sub-
set of vertices from a Delaunay triangulation in the
output-sensitive Delaunay triangulation algorithm
of Miller and Sheehy [11]. This gives a tighter anal-
ysis and also leads to the following algorithmic re-
sults.

2. We give a generalization of the Miller-Sheehy al-
gorithm to handle weighted points, assuming the
weight of any point is less than half the distance to
its nearest neighbor.

3. We give a variation of the algorithm that returns
the (weighted) α-complex of the point set without
computing the full Delaunay triangulation.

Figure 1: The Voronoi diagram and α-complex of a
point set in the plane.

Related Work The classic reference for α-complexes
is the survey by Edelsbrunner [6]. Several interesting
variations of α-complexes have been proposed including
conformal α-complexes [8] which use an alternative to
weighting to approximate variations in radii and alpha-
beta witness complexes [1] which relax the condition
that the output be embedded in Rd.

We put a restriction on the class of weight func-
tions that are permitted. A generalization to arbitrary
weights would mean a new output-sensitive algorithm
for convex hulls. The restriction is precisely that used by
Cheng et al. [4] on sliver exudation, a method that adds
weights to Delaunay triangulations to eliminate certain
badly shaped simplices. That work is closely related to
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further use of weights in surface reconstruction to ac-
count for curvature [3]. Other curve and surface recon-
struction algorithms explicitly use α-complexes [2, 13].

2 Background

Voronoi and Power Diagrams The Euclidean norm
of a point x ∈ Rd is denoted ‖x‖ and the Euclidean
distance between points x, y ∈ R2 is ‖x − y‖. The dis-
tance from a point to a set is defined as d(x, P ) :=
minp∈P ‖x − p‖. A weighted point set is a finite set
P ⊂ Rd and a weight function w : P → R≥0. An un-
weighted set may be viewed as a weighted set with all
weights 0. The power of a weighted point p is the func-
tion πp(x) := ‖p − x‖2 − w(p)2. The power distance
between a point x and a weighted set P is defined as
πP (x) := minp∈P πp(x). The power diagram VorP of
a weighted point set P is the set of nonempty polyhe-
dra called Voronoi cells indexed by subsets S ⊆ P as
follows.

VorP (S) := {x ∈ Rd | ∀s ∈ S : πP (x) = πs(x)}

One can easily check that for unweighted point sets, this
yields the standard Euclidean Voronoi diagram.

The dual diagram, DelP , is the set of convex clo-
sures of the sets S such that VorP (S) is nonempty.
Duals of power diagrams go by several names includ-
ing weighted Delaunay triangulations, regular triangu-
lations, and coherent triangulations. These names as-
sume that the points are in sufficiently general posi-
tion that the duals are triangulations. In general the
weighted Delaunay triangulation is the orthogonal pro-
jection in Rd of the lower convex hull of the points
P+ := {(p, ‖p‖2 − w(p)2) ∈ Rd+1 | p ∈ P}.

We say that a point set P is mildly weighted if for
all p ∈ P , we have w(p) < 1

2 minq∈P\{p} ‖p − q‖. In
particular, this implies that if the points are viewed as
balls with radii equal to the weights, then the balls are
disjoint. Unweighted points are mildly weighted.

For mildly weighted points P , we define the weighted
feature size as

fP,w(x) :=
√

min
(u,v)∈(P

2)
max
p∈{u,v}

πp(x).

This is the square root of the second smallest power
distance from x to a point of P . If the points were not
mildly weighted, the feature size could be imaginary at
some points. If the points are unweighted, then we will
simply write fP for the feature size, and, in this case,
the square root of the power distance is just the Eu-
clidean distance. The function fP is sometimes called
the Ruppert local feature size and is ubiquitous in the
analysis of Delaunay and Voronoi refinement mesh gen-
eration [12].

Weighted α-Complexes An orthoball of a set of
weighted points S is a ball B with center c and radius
r such that πp(c) = r2 for all p ∈ S. The minimum ra-
dius for an orthoball of S is called the orthoradius. For
unweighted points, the orthoball is called the circumball
and the orthoradius is called the circumradius.

The α-offsets of a weighted point set are defined as
Pα := {x ∈ Rd | πP (x) ≤ α2}. A Voronoi cell of
a subset σ ⊆ P restricted to the offsets is defined
as VorαP (σ) := VorP (σ) ∩ Pα and the corresponding
Voronoi diagram is VorαP := {VorαP (σ) | σ ⊆ P}. The
α-complex is the subcomplex of the Delaunay triangu-
lation restricted to the α-offsets as follows.

DelαP := {σ ∈ DelP | VorαP (σ) 6= ∅}.

Equivalently the α-complex may be defined as the
nerve of set of clipped Voronoi cells {ball(p, α) ∩
VorP (p) | p ∈ P}, i.e. an abstract simplicial com-
plex with a simplex for every subset of P whose cor-
responding clipped Voronoi cells have a common inter-
section. The Nerve Theorem, a standard result in alge-
braic topology guarantees that DelαP is homotopy equiv-
alent to Pα. This topological guarantee was extended
by Edelsbrunner and Shah [7] and forms the foundation
of many of the topological guarantees in surface recon-
struction [5].

Aspect Ratios of Voronoi Cells We will assume here
and throughout that all Voronoi cells are bounded and
convex. There are two different ways this will be en-
forced. First, we will consider a global bounding ball
Ω that contains all the points and restrict our atten-
tion to the intersection of the full Voronoi cells with Ω.
Second, when considering α-complexes, we will intersect
the Voronoi cell of a point p with the ball of radius α
centered at P . Having bounded cells allows the follow-
ing definition (illustrated in Figure 2).

Definition 1 If P is a set of mildly weighted points and
F ∈ V orP , the aspect ratio of F is defined as

aspectP (F ) :=
maxx∈F fP,w(x)

miny∈F fP,w(y)
.

More generally, we let aspectP denote the geomet-
ric mean of the aspect ratios of all Voronoi cells (of all
dimensions) in VorP , i.e.

aspectP :=

( ∏
F∈VorP

aspect(F )

)1/f

,

where f = |VorP |. A more useful way to write this
definition is the following.

f log(aspectP ) =
∑

F∈VorP

log(aspectP (F )). (1)
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Figure 2: The aspect ratio of two cells of a Voronoi
diagram. Left: a 2-dimensional cell. Right: a 1-
dimensional cell. In both cases, the distances are mea-
sured from the point of P (in the interior of the 2-
dimensional cell) to the nearest and farthest points in
the cell F .

Well-Spaced Points A set of points M inside a bound-
ing domain Ω is called τ -well-spaced if for all q ∈ M ,
aspectM (VorM (q)) ≤ τ . As Voronoi cells of well-spaced
points are nearly balls, simple packing arguments im-
ply that there is a constant c1 such that VorM (q) has
at most c1 faces for all q ∈ M . Given a set of n
points P and a bounding ball Ω, there exists a τ -well-
spaced superset M of P as long as τ > 2. Asymp-
totically minimal well-spaced supersets are graded in
the sense that there is a constant K such that for all
v ∈ M , we have fP (v) ≤ KfM (v). The grading con-
dition implies that there is a constant c2 such that for
all r > 0, at most c2 points of M have Voronoi cells
intersecting annulus(q, r, 2r) for any q ∈ P [14], where
annulus(q, r, 2r) denotes ball(q, 2r)\ball(q, r). The con-
stants K, c1 and c2 only depend on d and τ . More-
over, such a superset can be found in O(n log n + |M |)
time [10]. Finally, we will use another important fact
about graded, well-spaced point sets, namely that there
is a constant γ such that r ≤ γfM (x) for all x in any
empty ball of radius r (see [9, Lemma 6.1]).

We will say a point set P is annulus-free if there is no
point p and radius R such that ball(p, r) contains more
than one point of P and annulus(p, r, 10r) contains no
points of P . The constant 10 here is arbitrary. The
size of a τ -well-spaced superset M from an annulus-
free set P is known to be O(n), so the running time to
compute M is O(n log n) [14]. For α-complexes, point
sets that are not annulus-free are rather uninteresting:
if r > α then the ball points in the ball form a separate
component; if r � α then the points are much closer
than the scale and so replacing them with a single point
results in (Hausdorff-)close offsets.

A Kinetic View of Refinement Given a set S ⊂ Rd of
d+ 2 points in general position, there are precisely two
different triangulations of S. A bistellar flip is a local
change in a triangulation that swaps between the two

triangulations of such a subset of d+ 2 points. Given a
point set P in a bounding ball B and a constant τ , there
exists a τ -well-spaced superset M ⊇ P . Starting from
the Delaunay triangulation of M , one may obtain the
Delaunay triangulation of P , by incremental bistellar
flips that ultimately remove the points of M \P except
those on the convex hull. This is done by changing the
weights linearly and tracking the incremental changes
that occur in the weighted Delaunay triangulation. As
the change in weights may be viewed as a change in
heights for a kinetic convex hull problem, the combi-
natorial changes can all be computed by replacing the
coordinates in the usual Delaunay in-sphere predicate
with the linear functions describing the motion. These
changes are stored in a heap and are processed one at a
time.

3 The Algorithm

Figure 3: The algorithm is illustrated from top to bot-
tom in terms of the Voronoi diagram. Starting from the
input points (black), Steiner points are added (white).
Weight is then added to the input points causing lo-
cal changed to the Voronoi diagram until the weighted
Voronoi cells of the input points contain the α-offsets.

In this section, we describe the algorithm for com-
puting the α-complex of a set of mildly weighted points
and prove its correctness. The algorithm starts by build-
ing a linear-size Delaunay triangulation of a well-spaced
superset M of the input points P . The extra points
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are called Steiner points. Then it adjusts the weights
to match the input weights, leaving the weights of the
Steiner points as zero. The projective view of weighted
Delaunay triangulation assigns a height to a point p
equal to ‖p‖2 − w(p)2. Now, this height is treated as a
(d+1)st coordinate and the weighted Delaunay triangu-
lation is the orthogonal projection of the lower convex
hull back into Rd. In the algorithm, we treat the weights
as a function of time, so, the weight w(p) is specified in
the input but the algorithm uses

w(p, t) =

{√
w(p)2 + t if p ∈ P

w(p) otherwise.

The weighted point set at time t is denoted Mt. The
height of a point p at time t is

h(p, t) := ‖p‖2 − w(p, t)2.

As t increases, the input points get pulled downward.
Generically, each combinatorial change in the weighted
Delaunay triangulation is a single bistellar flip. As the
input points move downward, the Steiner points are
flipped out of the triangulation. Note that the defi-
nition of w(p, t) guarantees that the height h(p, t) is ei-
ther constant or a linear function of t. Weighted points
S = {p1, . . . , pd+2} in Rd have a common orthoball ex-
actly when they lie on a common hyperplane after lift-
ing. Thus, we can check this condition by computing

flipS(t) = det


p1,1 · · · pd+2,1

... · · ·
...

p1,d · · · pd+2,d

h(p1, t) · · · h(pd+2, t)
1 · · · 1

 .

Note that flipS(t) is a linear function of t and so we can
compute the flip time tS satisfying flipS(tS) = 0. More
generally, when the coordinates of the points (and not
just the heights) are polynomials in t, flipS(t) is some
polynomial, and computing the roots of flipS(t) gives
the changes in the Delaunay triangulation as the points
move. This more general setting is the quintessential
example in the field of kinetic data structures, a gener-
alization of the line-sweep paradigm.

In our case, we are only modifying the height and so
the algebraic computations are much simpler. The main
data structure is a heap called the flip heap that stores
the possible flips ordered by time. We identify each flip
with a facet in DelMt

The steps of the construction given
in Algorithm 1.

The following lemma guarantees that stopping the
kinetic part of the algorithm at time t = α2, will still
allow us to construct the α-complex.

Lemma 2 If a simplex σ ∈ DelP is contained in a d-
simplex σ′ ∈ DelP , of orthoradius at most

√
t then the

Algorithm 1 Compute the α complex for a mildly
weighted point set.

1: procedure AlphaComplex(P, α)
2: Compute a graded, τ -well-spaced superset M of
P in a bounding ball B containing P .

3: For each facet F of DelM , compute the flip time
tF and insert the key-value pair (tF , F ) into the flip
heap. Skip the insertion if tF > α2.

4: while The flip heap is nonempty do
5: Pop a facet F off the heap
6: Attempt to flip F , and push any new facets

to the heap if their flip time is at most α2.

7: Output all simplices containing only points of P
that have an orthoradius at most α.

flip time when σ first appears in the AlphaComplex
algorithm is at most t.

Proof. First, observe that for sufficiently large α, every
simplex of DelP will appear at some time. Let t0 be the
time when σ first appears and let c be the orthocenter
of the corresponding flip. Let p be any vertex of σ, so
t0 = πp(c). This means that c is the orthocenter of
σ′, the smallest d-dimensional simplex (by orthoradius)
in DelP containing σ. Suppose for contradiction that
t0 > t. At time t, some vertex q of M has a Voronoi cell
containing c such that q 6= p. So, πq(c, t) < πp(c, t) and
so it follows from the definition of the power distance
that 0 ≤ πq(c) ≤ πp(c) − t. Because t0 = πp(c), the
preceding inequality implies that t0 ≤ t, a contradiction.
Therefore, we conclude that the flip time t0 when σ first
appears is at most t as claimed. �

Lemma 2 now implies the following theorem as it
guarantees that the algorithm finds all simplices of the
α-complex despite stopping at time α2.

Theorem 3 Given a set P of mildly weighted points
and a parameter α, the AlphaComplex algorithm
above returns the weighted α-complex of P .

4 Analysis

The starting point for the analysis of the running time
of our output-sensitive algorithm for α-complexes is the
following lemma of Miller & Sheehy (proven as a first
step in Lemma 6 of [11]) describing the flips in the al-
gorithm; it says that the flips are in one-to-one corre-
spondence with intersections between VorM and VorP .
We extend it to the weighted case.

Lemma 4 Let P ⊂ Rd be a finite point set and let M ⊇
P be any superset of P . A set S of d+2 points of M will
be involved in a flip in the kinetic refinement reversal if
and only if VorM (S \ P ) ∩VorP (S ∩ P ) 6= ∅.
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The preceding lemma gives a static way to count the
kinetic changes in the algorithm; it suffices to count in-
tersections between the starting and ending Voronoi dia-
grams. In previous work, a coarse bound on the number
of intersections was given by exploiting the fact that the
point set M in the algorithm is well-spaced. That anal-
ysis give a bound of O(log ∆) flips per simplex. We will
now give a more refined analysis that bounds these flips
instead in terms of a more local parameter. Inciden-
tally, this will also improve the running-time guarantee
for certain known hard instances for Delaunay trian-
gulation, such some that are known to produce Θ(n2)
simplices in R3.

Lemma 4 implies a natural way to partition the set
of flips by assigning the set of points S in the flip to the
simplex S ∩P of DelP . This is clearly possible, because
according to the lemma VorP (S∩P ) must be nonempty
for the flip to occur and so S ∩P ∈ DelP . To count the
total flips, it will suffice to bound the number of flips
assigned to each simplex of DelP .

Lemma 5 Let P ⊂ Rd be a set of mildly weighted
points. Let M be a τ -well-spaced superset of P . Let
F ∈ VorP be any face. There is a constant c that de-
pends only on d and τ such that

|{G ∈ VorM | F ∩G 6= ∅}| ≤ c log(aspectP (F )).

Proof. Let S ⊂ P be such that F = VorP (S) and let
q ∈ S be any point. Recall from Section 2, for graded
supersets M , there is a constant c2 such that for all r >
0, at most c2 points of M have Voronoi cells intersecting
annulus(q, r, 2r). Moreover, there is a constant c1 such
that each such Voronoi cell has at most c1 faces. Let
x = argmaxx∈F fP,w(x) and y = argminy∈F fP,w(y). Let

Ai = annulus(q, 2ir, 2i+1r) for all integers i, where r =
‖q − y‖. By Lemma 9, ‖x − q‖ ≤ r aspectP (F ). It

follows that F ⊂
⋃dlog(aspectP (F ))e−1
i=0 Ai. As there are

at most c1c2 intersections in any Ai and thus at most
c1c2dlog(aspectP (F ))e faces of VorM intersect F . �

We first give an upper bound on the total number of
flips in terms of the aspect ratio of VorP . This bound
applies independent of the value of α and thus gives
a potentially tighter bound on the number of flips in
computing the full Delaunay triangulation of P .

Theorem 6 For a mildly weighted point set P and
any constant α ≥ 0, the total number of flips in the
AlphaComplex algorithm is O(f log(aspectP )), where
f = |VorP |.

Proof. By Lemma 4 and (1), it will suffice to
prove that each k-face F of VorP intersects at most
O(log aspect(F )) (d − k)-faces of VorM , which is pre-
cisely the conclusion of Lemma 5. �

The following lemma guarantees that the flips that
occur in the algorithm, all happen “close” to the input
points. That is, none of the intersections causing a flip
are farther than a constant times α from the points of P .
This is the key to proving an output-sensitive running
time for α-complexes as it says that the output sim-
plices are discovered (approximately) in order of their
orthoradius.

Lemma 7 Let P be a set of mildly weighted points, let
p ∈ P , let α ∈ R, and let x be the center of a flip in the
AlphaComplex algorithm that occurs at time t. There
is a constant c3 that depends only on τ and d such that
if fP (p) ≤ 2

√
2α and t ≤ α2, then ‖x− p‖ ≤ c3α.

Proof. Let b := w(p, t) =
√
w(p)2 + t ≤

√
2α, where

the last inequality follows from the mildness assump-
tion and the hypothesis that t ≤ α2. Let r be the
radius of the orthoball of the flip centered at x, so
r =

√
‖x− p‖2 − b2. Let y be the point on the line seg-

ment xp such that ‖x− y‖ = r. Now, for τ -well-spaced
points M , it is known that there is a constant γ such
that any ball of radius r that contains no points of M
has the property that r ≤ γfP (z) for all z in the ball.
So, in our case, this implies that r ≤ γfP (y) because
y ∈ ball(x, r) and no points M lie in this ball.

We consider two cases. First, if r < b, then ‖x−p‖2 =
r2 + b2 implies that ‖x − p‖ ≤ 2α. So in that case,
it suffices to choose c3 ≥ 2. Second, if r ≥ b, then
similarly,

‖x− p‖ ≤
√

2r

≤
√

2γfM (y)

≤
√

2γfP (y)

≤
√

2γ(fP (p) + ‖p− y‖)

≤
√

2γ(2
√

2α+ b)

≤ 6γα.

So, c3 = 6γ is the desired constant. �

The preceding lemma provides the main new tool
for analyzing the running time of AlphaComplex and
also indicates why the output-sensitive term is not pre-
cisely the output size but rather the size of a constant
factor larger α-complex.

Theorem 8 For a mildly weighted, annulus-free point
set P ⊂ Rd, the total running time of AlphaComplex
(P, α) is O(f log(n) log(α/s)) where s := minp∈P fP (p),
f = |Delc3αP |, and c3 is the constant from Lemma 7.

Proof. The preprocessing phase to compute M and
DelM takes O(n log n) time [12]. Adjusting DelM to
form DelMt

requires only a constant number of flips per
vertex. This fact is used in the work of Cheng et al. on
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sliver exudation [4], but also follows from the arguments
of Lemma 7.

The main loop processes flips and adds them to a
heap. Lemma 7 implies that all of the flips are contained
in P c3α. Let f be the number of faces of Vorc3αP . The
aspect ratio of each such face is at most log(c3α/s).
So, Theorem 6 implies that the total number of flips is
O(f log(α/s)). Not every flip on the heap is performed,
but at most a constant number of potential flips are
added to the flip heap for every actual flip, so the total
number of heap operations is also O(f log(α/s)). Thus,
the total running time is O(f log(n) log(α/s)). �

5 Conclusion

In this paper, we generalized the output-sensitive algo-
rithm of Miller and Sheehy for Delaunay triangulations
to also give guarantees for mildly weighted points and
for α-complexes. Along the way, we generalized the no-
tion of the aspect ratio of a Voronoi cell to give a mean-
ingful definition for weighted Voronoi cells of dimension
less than d. This new definition gives a sharper analysis
for the Miller and Sheehy algorithm and also simplifies
the analysis of the modified algorithm.

One future direction is to look at more recent gen-
eralizations of α-complexes introduced for topological
inference from point cloud data such as the alpha-beta
witness complexes of Attali et al. [1]. It may also be
useful to apply this approach to Voronoi-based mani-
fold reconstruction as many use the Delaunay triangu-
lation restricted to the manifold which is a subcomplex
of the Delaunay triangulation restricted to a union of
balls (see for example [2, 13]). We are also interested in
relaxing the mild weighting assumption and replacing it
with a Lipschitz condition on the weights. In that case,
weights could be larger as long as they don’t vary too
quickly.
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A The Weighted Aspect Ratio

In the following lemma, we show that if we replace the
power distance with the Euclidean distance, the aspect
ratio cannot go up.

Lemma 9 Let P be a mildly weighted point set. Let
S ⊂ P and let F = VorP (S), where |S| ≥ 2. Let x =
argmaxx∈F fP,w(x) and y = argminy∈F fP,w(y). For all
q ∈ S, ‖q − x‖ ≤ ‖q − y‖aspectP (F ).

Proof. First, observe that by the choice of x and y, we
know that fP,w(x)2 = πq(x) and fP,w(y)2 = πq(y). The
desired inequality now follows from the definitions of πq
and aspectP (F ) as follows.

‖q − x‖2 = πq(x) + w(q)2

= πq(y)aspectP (F )2 + w(q)2

≤ aspectP (F )2(πq(y) + w(q)2)

= ‖q − y‖2aspectP (F )2.
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