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Folding Polyominoes into (Poly)Cubes∗
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Abstract

We study the problem of folding a given polyomino S
into a polycube C under different folding models, allow-
ing faces of C to be covered multiple times.

1 Introduction

When can a polyomino S be folded into a polycube C?
This problem has been considered by Abel et al. [1] and
Aloupis et al. [2], but with the restriction that there
must be a one-to-one mapping between the unit squares
of S and the faces of C. We allow polycube faces to be
covered multiple times, only requiring C to be covered
by S. We show that different sets of allowed folding an-
gles give distinct variations from each other. We charac-
terize polyominoes that can fold to a single cube, count
foldings of polyominoes of different orders into cubes,
and investigate the complexity of finding foldings into
higher-order polycubes.

2 Notation

A polyomino S is a 2D polygon formed by a union of
|S| = n unit squares on the square lattice connected
edge-to-edge. Not all edge-to-edge connections of the n
unit squares must be used for the polyomino, that is we
allow “cuts” on the lattice. A polyomino is a tree shape
if the dual graph of its unit squares is a tree. A polycube
C is a connected 3D polyhedron formed by a union of
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unit cubes on the cubic lattice connected face-to-face. If
C is a rectangular parallelipiped, we refer to its size by
its exterior dimensions, e.g., a 2×2×1-polycube.

We study the problem of folding a given S into a
given C, allowing axis-aligned +90◦ and +180◦ moun-
tain folds, −90◦ and −180◦ valley folds, folds of any
degree, diagonal folds through opposite corners of a
square, and half-grid folds that bisect a unit square in
an axis-parallel fashion.

A face of S is an interior face of C if it is not flat
folded on any of the outer faces of C; see Fig. 3(a) and
(b) for examples. A folding model F specifies a subset
of F = {grid: +90◦,−90◦, +180◦, −180◦, any◦; interior
faces; diagonal; half-grid} as allowable folds.

3 Folding hierarchy

We say that model Fx is stronger than Fy (Fx ≥ Fy)
if for all polyomino-polycube pairs {S,C} such that S
folds into C in Fy, S also folds into C in Fx. If there
also exists a pair {S′,C ′} such that S′ folds into C ′ in
Fx, but not in Fy, then Fx is strictly stronger than
Fy (Fx > Fy). The relation ‘≥’ satisfies the properties
of reflexivity, transitivity and antisymmetry, therefore
it defines a partial order on the set of folding models.
Fig. 1 shows the resulting hierarchy of the folding mod-
els that consist of combinations of the following folds:
{grid: +90◦,−90◦, +180◦, −180◦, any◦; interior faces}.

Integrating diagonal and half-grid folds (which are
omitted from this section) can result in stronger mod-
els: a 1×7 polyomino can be folded into a unit cube
C in model {grid: ± 90◦/180◦; diagonal}, but not
in {grid: any◦; interior} (the strongest model from
Fig. 1); the example from Fig. 4(b)–(c) shows that
Fall = {grid: any◦; interior faces; diagonal; half-grid}
is strictly stronger than F = {grid: any◦; interior faces;
diagonal}. In addition, Lemma 3 still holds for F =
{grid: ± 90◦/180◦; interior faces; diagonal; half-grid}.

The following establishes the relationships between
models presented in Fig. 1.

Theorem 1 The folding models consisting of combina-
tions of the following folds {+90◦, −90◦, +180◦, −180◦,
arbitrary degree folds, interior folds} have the mutual re-
lations presented in Fig. 1. In particular, these mutual
relations hold for polyominoes without holes.
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Figure 1: Hierarchy of fold operations. A black arrow from
Fx to Fy indicates that Fy > Fx. Blue and green arrows
indicate incomparable models.
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Figure 2: Examples for Thm. 1, where C is (a) a unit cube,
(b) a 2×1×1 polycube, (c) a 3×3×2 polycube with a 1-cube
hole centered in a 3×3 face, and (d) a 5-cube cross.

Proof. All cases can be shown using the polyomino-
polycube pairs from Fig. 2. They fold with: (a)
+90◦/180◦ folds, (b) +90◦ and interior faces (see
Lemma 3), (c) ±90◦folds, (d) +90◦, 180◦ and interior
faces.

Ex. (a) shows relations 2, 4, 7, 12, 15, 19, 20, 23.
Ex. (b) shows relations 3, 6, 9, 10, 13, 16, 21, 22.
Ex. (c) shows relations 1, 5, 8, 11, 14, 17, 18, 24.
Ex. (d) shows relation 25.
We will detail as an example the proof for relation

25; the others are left to the reader. The claim is
that F9 = {grid: any◦; interior faces} is strictly stronger
than F8 = {grid: ±90◦/180◦; interior faces}. Any poly-
omino S that folds into polycube C in F8 also folds into
C in F9. To prove a strict relation, we are left to show
that there exists some polyomino S′ that folds into some
polycube C ′ in F9, but that does not fold into C ′ in F8.
Let C ′ consist of five cubes forming a cross, and let S′

be as in Fig. 2(d). Assume that S′ can be folded into C ′

in folding model F8. |S′| = 24, while C ′ has 22 square
faces on its surface. Therefore, 22 out of the 24 squares

(a) (b) (c)

Figure 3: (a)/(b) Examples for interior faces shown in green.
They connect to the red cube edges. (c) Shape S from the
proof of Lemma 2.

(a) (b) (c)

Figure 4: (a) Shape S needs interior faces to be folded into
a 2×1×1-cube. (b) Shape S does not fold to a unit cube C,
if we allow ±90◦/180◦ and diagonal folds. However, if we
allow half-grid folds, S does fold into C, the mountain (red)
and valley folds (blue) are shown in (c).

of S′ will be the faces of C ′ when folded. Consider the
12×1 sub-polyomino of S′. When folded, it has to form
the “walls” of the cross C ′, otherwise this strip can form
not more than eight faces of the cross (looping around
one of the 3×1×1 sub-polycubes). It is straightforward
to see now, that in F8 the two yellow squares prevent
S′ from folding into C ′. While in F9 the two yellow
squares can form interior faces with a 60◦ interior fold.
Therefore, F8 < F9. �

Conjecture 1 Theorem 1 holds for tree shapes.

Lemma 2 There exist tree shapes S that need both
mountain and valley folds to cover a unit cube.

Proof. The shape S from Fig. 3(c) does not fold into a
unit cube C with only valley folds: the four unit squares
in the left column (gray) fold to a ring of size four, and
the two flaps can only cover one of the two remaining
cube faces. But with both mountain and valley folds S
can be folded into C, by using a 180◦ fold between the
first column and the longer flap. �

Lemma 3 Folding the tree shape S from Fig. 2(b) into
a 2× 1× 1-cube C with F = {grid: ±90◦/180◦; interior
faces} requires interior faces. (Any of the faces A, 8 or
10 from Fig. 4(a) can be the interior face.)

Proof. We label the faces of S as shown in Fig. 4(a).
The case analysis below shows that a folding without
interior faces does not exist:

If A covers one of the 1×1 faces of C, face 1 or 2 is
needed for the opposite 1×1 face. By symmetry suppose
face 1 covers that side. Thus, 3 needs to be folded on top
of A. Face 4 folds either on 5 or A. So, we doubled two
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faces. But as |S|= 11 and C has 10 faces, the remaining
faces are not enough.

If 3, A, and 4 all cover parts of 1×2 faces of C, then
the row of 5, 3, A, 4, 6 maps to only four 1×2 faces with
at least one overlap. But then the 1× 1 face adjacent
to A cannot be covered by 7, 8, 9, 10, 1 or 2 without
doubling on 3 or 4—again more than one overlap.

If A covers part of a 1×2 face of C and one of 3 or 4
(without loss of generality 3) covers the adjacent 1× 1
face, then the only way to cover the two squares that are
adjacent to A in the polycube but not in the polyomino
is to double 4 with A and wrap column 4–9–10–2 around
the polycube; but then 6 must also be doubled, again
leading to more than one overlapping pair. �

4 Polyominoes that fold into a cube

In this section we characterize all polyominoes that can
be folded into a unit cube and all tree shaped polyomi-
noes that are a subset of a 2×n or 3×n strip that can
be folded into a unit cube using arbitrary grid folds.

Theorem 4 Consider a polyomino S of size |S| = n
and a unit cube C under a folding model F = {grid:
any◦; diagonal; half-grid}, such that each face of C has
to be covered by a full unit square of S. Then n ≥ 10
is the best possible universal bound, i.e., there is a poly-
omino of size n = 9 that cannot be folded into C, while
all polyominoes with n≥ 10 can be folded.

(k)

X

X
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X

(a) (b) (c)

O
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(h) (i)

(j)

(e) (f)

Figure 5: Proof details for Theorem 4. Unit squares marked
with ”X” can be located at an arbitrary height. For the two
adjacent corner reductions in the left of (f), fold away the
upper shaded corner before folding away the lower one.

Proof. We consider a bounding box of S of size X×Y,
with X ≤ Y . The unit squares are arranged in columns
and rows, indexed 1, . . . ,X and 1, . . . ,Y , with ni unit
squares S in column i, and mj unit squares in row j.

For the lower bound see Fig. 4(b). Note that if we
allow half-grid folds without requiring faces of C to be
covered by full unit squares of S, we can turn this shape
S into a unit cube; see Fig. 4(c).

For the upper bound n ≥ 10, we start by identifying
several target polyominoes shown in Fig. 5(a)–(c). Each
can be folded into a cube using only grid folds:
(a) A 1+4+1 polyomino, composed of one contiguous

column of four unit square, with one more unit
square on either side, at an arbitrary height.

(b) A 2–2–2 polyomino, composed of three (vertical)
pairs attached in the specific manner shown.

(c) A 2–3+1 polyomino, composed of a (vertical) pair
and triple attached in the specific manner shown,
with one more unit square at an arbitrary height.

See Fig. 5(d)–(g) for the following. If ni is the maxi-
mum number of unit squares in any column (say, in i),
we can apply a connectivity reduction (d) by using (hor-
izontal) half-grid folds to convert S into a polyomino S′

in which these ni unit squares form a contiguous set,
while leaving at least one unit square in each previously
occupied column. A number reduction (e) lets us fold
away extra unit squares for n > 10. Corner reductions
(f) fold away unneccessary unit squares (or half-squares)
in target shapes by using diagonal folds when turning
them into a unit cube. Finally, width and height reduc-
tions (g) fold over whole columns or rows of S onto each
other, producing a connected polyomino with a smaller
total number of columns.

Now consider a case distinction over X; see Fig. 5(h)–
Fig. 6(t). For X = 1, the claim is obvious, as we can
reduce S to a 1+4+1 target; see Fig. 5(h). For X = 2,
note that Y ≥ 5 and assume that n1 ≥ n2. If n1 ≥ 8,
a width reduction yields the case X = 1, so assume
n1 ≤ 7, and therefore n2 ≥ 3. By a number reduction,
we can assume n2 ≤ 5. If S is a 2×5 polyomino, we
can make use of a 1+4+1 polyomino with corner reduc-
tions; see Fig. 5(i). If n1 > n2, we have n1 ≥ 6. Be-
cause S is connected, any two units squares in column 1
must be connected via column 2, requiring at least three
unit squares; because of n2 ≤ 5, we conclude that col-
umn 1 contains at most two connected components of
unit squares. Thus, at most one connectivity reduction
makes column 1 connected, with n′2 ∈ {n2− 1,n2} unit
squares in column 2. Possibly using height reduction, we
get a connected polyomino S′′ with vertical size six, six
unit squares in column 1, and n′′2 ∈{1,. . .,4} unit squares
in column 2. For n′′2 ∈ {1, . . . ,3}, there is a reduction to
target shape 1+4+1; see Fig. 5(j). For n′′2 = 4, a simi-
lar reduction exists; see Fig. 5(k). This leaves n1 = 5,
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Figure 6: Proof details for Theorem 4.

and thus n2 = 5, without S being a 2×5 polyomino. As
shown in Fig. 6(l), this maps to a 1+4+1 target shape,
by folding a unit square from column 2 that extends be-
yond the vertical range of the unit squares in column 1
over to column 0.

For X = 3 and n2 ≥ 4, we can use connectivity, height
and width reductions to obtain a new polyomino S′ that
has height four, a connected set of n′2 = 4 unit squares
in column 2 and 1 ≤ n′1 ≤ 4, as well as 1 ≤ n′3 ≤ 4 unit
squares in columns 1 and 3. This easily converts to
a 1+4+1 shape, possibly with corner reductions; see
Fig. 6(m). Therefore, assume n2 ≤ 3 and (w.l.o.g.)
n1 ≥ n3, implying n1 ≥ 4. If n1 ≥ 5 and column 2 is
connected, then S contains a 2–3+1 target shape, see
Fig. 6(o); if column 2 is disconnected, we can use a ver-
tical fold to flip one unit square from column 3 to col-
umn 0, obtaining a 1+4+1 target shape, see Fig. 6(p).
As a consequence, we are left with n1 = 4, 2 ≤ n2 ≤ 3,
3 ≤ n3 ≤ 4, n2 + n3 = 6, possibly after folding away an
extra unit square in column 3 in case of n2 = 3,n3 = 4.
If n2 = 2, the unit squares in columns 1 and 3 must be
connected. For this it is straightforward to check that
we can convert S into a 2–2–2 target polyomino; see
Fig. 6(q). Therefore, consider n2 = 3, n3 = 3. This im-
plies that column 1 contains at most two connected sets
of unit squares. If there are two, then the unit squares in
column 2 must be connected, implying that we can con-
vert S into a 2–3+1 target shape; see Fig. 6(r). Thus,
the four unit squares in column 1 must be connected.
If the three unit squares in column 1 are connected, we
get a 2–3+1 target shape; see Fig. 6(r). If the unit
squares in column 2 are disconnected, but connected by
the three unit squares in column 3, we convert this to
a 2–2–2 target shape; see Fig. 6(s). This leaves the sce-
nario in which there is a single unit square in column 1
whose removal disconnects the shape; for this we can
flip one unit square from column 3 to column 0 in order

Figure 7: A vertical edge in a subset of a 2×n strip with
possible adjacent vertices for subtrees.

(a) (b) (c) (d) (e)

Figure 8: (a) A shape S that folds into a unit cube. (b)–(e)
Shapes S, only (d) folds into a unit cube.

Figure 9: Infinite families that cannot fold into a unit cube.

to create a 1+4+1 target shape; see Fig. 6(t).
For X ≥ 4, we proceed along similar lines. If there is

a row or column that contains four unit squares, we can
create a 1+4+1; otherwise, a row or column with three
unit squares allows generating a 2–3+1. If there is no
such row or column, we immediately get a 2–2–2. �

Theorem 5 Given a tree shape S, a unit cube C and
F = {grid: any◦}.

(a) If S is a subset of a 2×n strip, then only the infinite
families defined by Fig. 9 cannot fold into C.

(b) If S is a subset of a 3×n strip, then only the infinite
families defined by Fig. 10 cannot fold into C.

Proof. For the subset of a 2×n strip consider one ver-
tical edge, as shown in Fig. 7, and the possible subtrees
attached at A, B, C and D. One such vertical edge has
to exist, otherwise the strip is a 1×n strip and never
folds to a cube. We consider the length of subtrees at-
tached at A, B, C and D when folded to the same row
as this “docking” unit square to the vertical edge. With
slight abuse of notation we refer to these lengths by A,
B, C and D again.

The first observation is: If (A≥ 2 and B ≥ 2) or (C ≥
2 and D ≥ 2), S folds to a cube; see Fig. 8(a). Not
included in this categorization are the 4 shapes shown
in Fig. 8(b)–(e). Of those only (d) folds into a cube.

Thus, more precisely, we obtain a cube for:

{(A≥ 2 or D ≥ 3) and (B ≥ 2 or C ≥ 3)} or
{(A≥ 3 or D ≥ 2) and (B ≥ 3 or C ≥ 2)} or
{(A≥ 2 and C ≥ 3) or (A≥ 3 and C ≥ 2)} or
{(B ≥ 2 and D ≥ 3) or (B ≥ 3 and D ≥ 2)} or
{(A≥ 1 and C ≥ 1 and B ≥ 2 and D ≥ 2)} or
{(A≥ 2 and C ≥ 2 and B ≥ 1 and D ≥ 1)} .

For the subset of a 3×n strip: If there are vertical
edges adjacent to a 1×n strip to two different sides
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n free dual foldable and and n
poly- trees with ±180◦ dia- o

ominoes ±90◦ gonal t
2 1 1
3 2 2
4 5 5
5 12 15
6 35 54 11 0 0 43
7 108 212 90 24 39 59
8 369 908 571 175 126 36
9 1285 4011 3071 697 233 10

10 4655 18260 15645 2230 385 0
11 17073 84320 77029 6673 618 0
12 63600 394462 374066 19337 1059 0
13 238591 1860872 1803568 55477 1827 0
14 901971 8843896 8682390 158208 3298 0

Table 1: Different ways of folding small polyominoes into a
cube.

(above and below), this folds to a cube. Consequently, if
we have height three, a long 1×n strip cannot be located
in the center row. W.l.o.g. let the 1×n strip be located
in the lowest row. As we have height three, there is at
least a height two part which is a subset of the red part
in Fig. 10. If there exists another vertical edge of length
at least one that is only adjacent to the 1×n strip (but
not directly to the height two part) we can fold over the
height two part and obtain a case from above which can
easily be folded to a unit cube. Consequently, only a
single vertical subset of length two can be attached, as
shown in red in Fig. 10. �

4.1 Enumeration of cube-foldable polyominoes

In this section we present results on folding polyominoes
of constant size—consisting of up to 14 unit squares—
into a cube. These results have been obtained by ex-
haustive computer search. For polyominoes whose dual
graph contains cycles, we considered all possible dual
trees. Thus, we first generated all such dual trees for
polyominoes of size up to 14. The third column of Ta-
ble 1 shows their number, compared to the number of
different free polyominoes, given in the second column.
In both cases, elements which can be transformed into
each other by translation, rotation and/or reflection are
counted only once. While the number of different free
polyominoes is currently known for shapes of size up to
28 (http://oeis.org/A000105), the number of differ-
ent dual trees was known only for up to 10 elements,
see http://oeis.org/A056841.

Based on the generated dual trees we checked each of

Figure 10: Infinite families that cannot fold into a unit cube,
with at least a height 2 red subset (others are optional).

Figure 11: Polyominoes of size 6 that cannot be folded to a
cube (for any dual tree).

them whether it can be folded into a unit cube. We did
this in three different steps. First, only 90◦ folds have
been allowed. Column 4 of Table 1 shows how many
(dual trees of) polyominoes can be folded to a cube this
way. It is interesting to observe that while for n = 6
only 11 polyominoes can be folded to a cube, for n = 14
it already works for over 98% of all shapes.

In the second step we tried ±90◦ and ±180◦ folds for
the remaining dual trees. Table 1 gives in column 5
how many additional cube foldings can be obtained this
way. It is interesting to note, that never more than two
±180◦ folds were needed, if the shape was foldable this
way at all. For n = 11 and n = 12 there are each only
one example which needs two ±180◦ folds, and no such
examples for n ≥ 13 exist, i.e., in that case all foldable
examples can be folded with just one ±180◦ fold.

In the last step we allowed for the remaining dual
trees also diagonal folds. Column 6 of Table 1 shows
how many additional dual trees can be folded in this
case, and the last column gives the number of remaining
(non-foldable) dual trees. The most interesting result
here is that for n≥ 10 all polyominoes, regardless which
dual tree we select for them, can be folded this way.
This partially affirms Theorem 4: here we do not allow
half-grid folds, but covering a cube face with triangles
from diagonal folds. Moreover, all such foldings need
at most one such diagonal fold, with the exception of
the 7×1 strip, which is the only example that needs two
diagonal folds.

Figs. 11 and 12 show all polyominoes of size n ≥ 6
for which dual trees exist, such that they cannot be

n = 7

n = 8 n = 9

Figure 12: Polyominoes of size 7 to 9 that can be cut into
a tree shape that cannot be folded to a cube.

http://oeis.org/A000105
http://oeis.org/A056841
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Figure 13: Puzzle: which cuttings of a 3×3 square fold to
a cube? (For solution see the full version of the paper.)

folded to the unit cube using 90◦, 180◦, and diagonal
folds. There are 24 such polyominoes with a total of
43 different dual trees for n = 6, 12 polyominoes with
59 dual trees for n = 7, 3 polyominoes with 36 dual
trees for n = 8, and one polyomino with 10 dual trees
for n = 9. Note, however, that for many of them there
are cuts (i.e., dual trees) such that they can be folded
to the cube. For example, the 3×3 square has 18 dual
trees that can fold to a cube (Fig. 13).

5 Dynamic program for trees

Theorem 6 Let S be a tree shape, C be a polycube with
O(1) cubes, no four squares meeting at an edge, and
F = {grid :±90◦}. Then it is possible in linear time to
determine whether S can fold to C in folding model F .

Proof. (sketch) We choose an arbitrary root of S; for
each square s of S define the subtree of s to be the
tree shape consisting of all squares whose shortest path
in S to the root passes through s. For a square s of S,
define a placement of s to be an identification of s with
a surface square of C together with the subset of the
squares of C covered by squares in the subtree of s. We
use a dynamic program that computes, for each square
s of S, and each placement of s, whether there is a
folding of the subtree of s that places s in the correct
position and correctly covers the specified subset. Each
square has O(1) placements, and we can test whether a
placement has a valid folding in constant time given the
same information for the children of s. Therefore, the
algorithm takes linear time. �

We have been unable to extend this result to fold-
ing models that allow 180◦ folds, nor to folds with in-
terior faces, nor to polycubes for which four or more
squares meet at an edge. The difficulty is that the dy-
namic program constructs a mapping from the poly-
omino to the polycube surface (topologically, an im-
mersion) but what we actually want to construct is a

three-dimensional embedding of the polyomino without
self-intersections, and in general testing whether an im-
mersion can be lifted to a three-dimensional embedding
is NP-complete [3]. For 90◦ folds, a three-dimensional
lifting always exists, as can be seen by induction on the
number of squares in the tree shape: given a folding of
all but one square of the tree shape, there can be noth-
ing blocking the addition of the one remaining square to
its neighbor in the tree shape. However, if a pentomino
formed by a single row of five squares is given +180◦
folds at the two edges incident to its central square,
the result cannot be embedded into three dimensional
space: one of the two-square flaps will be blocked by
the fold from the other flap.

It is tempting to attempt to extend our dynamic
program to a fixed-parameter algorithm for non-trees
(parameterized by feedback vertex number in the dual
graph of the polyomino), by finding an approximate
minimum feedback vertex set, trying all placements of
the squares in this set, and using dynamic programming
on the remaining tree components of the graph. How-
ever, the problem of parts of the fold blocking other
parts of the fold becomes even more severe in this case,
even for 90◦ folds. Additionally, we must avoid knots
and twists in the three-dimensional embedding. These
issues make it difficult to extend the dynamic program
to the non-tree case.

6 Conclusion

Various open problems remain. We gave an example
of a tree shape S that does fold into a polycube C for
F = {grid: any◦; interior faces}, but not in weaker mod-
els, in particular, not without interior faces. C consists
of 5 unit cubes; is it minimal? Moreover, we charac-
terized tree shapes that fold into a unit cube in the
F = {grid: any◦} model—can we characterize polyomi-
noes with holes (possibly of area zero) that fold into a
unit cube? If a tree shape folds into a unit cube, can it
be folded with rigid faces (continuous blooming)?
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