
CCCG 2015, Kingston, Ontario, August 10–12, 2015

Touring a Sequence of Line Segments in Polygonal Domain Fences

Amirhossein Mozafari∗

mozafari@alum.sharif.edu
Alireza Zarei∗

zarei@sharif.edu

Abstract

In this paper, we consider the problem of touring a se-
quence of line segments in presence of polygonal do-
main fences. In this problem there is a sequence S =
(s = S0, . . . , Sk, Sk+1 = t) in which s and t are respec-
tively start and target points and S1, . . . , Sk are line
segments in the plane. Also, we are given a sequence
F = (F0, . . . , Fk) of planar polygonal domains called
fences such that Si ∪ Si+1 ⊂ Fi. The goal is to obtain
a shortest path from s to t which visits in order each
of the segments in S in such a way that the portion
of the path from Si to Si+1 lies in Fi. In 2003, Dror
et. al. proposed a polynomial time algorithm for this
problem when the fences are simple polygons. Here, we
propose an efficient polynomial time algorithm for this
problem when the fences are polygonal domains (simple
polygons with some polygonal holes inside).

1 Introduction

Computing a shortest path between two points hav-
ing some desired properties is one of the classic and
well studied problems in computer science and compu-
tational geometry. In many applications, we need to
visit a sequence of certain regions while traversing from
s to t. We call this class of problems as visiting prob-
lems. In such visiting problems, a desired path may be
restricted to a fence (or fences) which means that the
path must completely lie inside a special region. Zoo-
Keeper [7], Safari [11] and Watchman Route [4] prob-
lems are famous examples of such visiting problems. In
Zoo-keeper and Safari problems we need to obtain a
shortest tour visiting a set of disjoint convex polygons
(called cages) inside a simple polygon P (the fence) each
of which shared an edge with the boundary of P . The
difference between these two problems is that in the first
one, the desired path cannot enter into the cages while
this restriction does not exist in the second one. In
watchman route problem (fixed source version) we have
a point inside a simple polygon P (the fence) and we
seek for a shortest tour inside P containing s such that
every point in P is visible from at least one point of the
tour.
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Dror et. al. [5] in 2003 introduced a general ver-
sion of these visiting problems called touring polygons
problem (TPP). In this problem there is a sequence
P = (s = P0, . . . , Pk, Pk+1 = t) of polygons where s
and t are respectively start and target points and a se-
quence (F0, . . . , Fk) of simple polygonal fences where
Pi ∪ Pi+1 ⊂ Fi. The goal of this problem is to obtain a
shortest path from s to t which intersects the polygons
of P in order and its subpath from Pi to Pi+1 lies inside
Fi. They proved that TPP is NP-hard for intersecting
polygons and proposed a O(nk2 log n) time algorithm
for convex polygons. They also gave a O(kn log(n/k))
time algorithm for the cases where the polygons are con-
vex and pairwise disjoint and the fences are the whole
plane. Here, n is the total number of vertices of all
fences and polygons. In 2006, Arkin et al. [3] considered
the touring polygons problem in L1 metric for the cases
where polygons are pairwise disjoint segments and the
fences are the whole plane and proposed a O(k2) time
algorithm for this version.

For one decade the complexity of TPP for disjoint
non-convex polygons was unknown and during these
years several approximation algorithms have been pro-
posed for solving this version of the problem [6, 10].
Finally, Ahadi et al. [1] in 2013 proved that TPP is
NP-hard for disjoint polygons in any Lp norm.

Despite many investigations and results on various
kinds of visiting problems with simple polygon fences,
there are less results on visiting problems whose fences
are polygonal domains. In 2014, Ahadi et al. [2] gave a
polynomial time algorithm for touring polygonal objects
problem in which the fences are polygonal domains.
This problem is similar to TPP but in this problem a
desired path cannot enter into the polygons (this is like
the Zoo-Keeper problem in which the tour cannot enter
the cages).

In this paper, we present a polynomial time algorithm
for a version of the TPP called Touring Line Segments
Problem (TLSP) in which the polygons are line seg-
ments and the fences are polygonal domains. This is the
first polynomial time algorithm which considers TPP
when the fences are polygonal domains. Figure 1 shows
an example of TLSP. We show that this problem can
be solved in O(n3k) time where n is the number of ver-
tices of all fences and segments and k is the number
of segments. We use the well-known continuous Dijk-
stra paradigm [9, 8] to obtain a shortest path for our
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problem.

Figure 1: An example of TLSP where (s, S1, S2, S3, t)
is the sequence of segments and (PLN,F1, PLN,F2) is
the sequence of fences and PLN represents the whole
plane.

2 Preliminaries and Definitions

Let T = (S,F) be an instance of TLSP with segments
S = (s = S0, S1, . . . , Sk, Sk+1 = t) and fences F =
(F0, . . . , Fk) in the plane such that Si ∪ Si+1 ⊂ Fi.

Observation 1. Any optimal path is a polygonal
chain which bends only on some vertices of the fences,
endpoints of segments, intersection point of two con-
secutive segments or on some reflection points on the
interior of segments of S.

According to the above observation, when an optimal
path intersects the interior of a segment (not on the
sgment endpoints) according to its order, the optimal
path either passes or reflects on this segment. We de-
note by Ti(x) an instance of TLSP with (S0, . . . , Si, x)
and (F0, . . . , Fi) as its segments and fences, respectively.
The set of optimal paths of Ti(x) is denoted by Pi(x).
Let x ∈ Fi and p ∈ Pi(x) and v be a vertex of Fj or
an endpoint of Sj (j ≤ i). We call v an origin of x if v
is the last fence vertex or segment endpoint on p when
we traverse p from s to x. Thus, p must pass or reflect
on the remaining segments from Sj+1 to Si to reach x.
We say that v′ is a source of x if it is obtained by the
sequence of reflections of v on the supporting lines of
segments that p reflects from v to x in order. For exam-
ple, s is the origin of points x,x′,x′′ and x′′′ in Figure 2,
and s,s′,s′′ and s′′′ are respectively the corresponding
sources of the points x,x′,x′′ and x′′′. According to this
definition, the length of the portion of p from v to x
is equal to |v′x|. According this definition, the number
of distinct sources of all points in Fi can exponentially
grows. Figure 2 shows an example of such situations. In
this figure, if we consider S = (s), s is the only source of
the points in the plane. After adding S1 to S, the set of
sources of points in the plane becomes {s, s′} and after
adding S3, the sources are {s, s′, s′′, s′′′}. In this exam-
ple, each segment doubles the set of sources of all points
of the plane. We say that a point x ∈ Fi is straightly
reachable from Sj(1 ≤ j ≤ i) if it has an optimal path
with an origin in vertices of Fl or an endpoint of Sl

where l < j.

Figure 2: The number of sources can grow exponen-
tially: s,s′,s′′ and s′′′ are respectively the corresponding
sources of the points x,x′,x′′ and x′′′.

To find an optimal path for T , we use the continuous
Dijkstra paradigm [9, 8] (In Appendix 1, we briefly de-
scribe the continuous Dijkstra paradigm using our ter-
minology). Basically, we need some modifications on
this paradigm to enforce shortest paths to visit the seg-
ments in order from s to t. But, as we said before, the
number of sources of all points of the fences may grow
exponentially and we cannot consider them as the set
of initial sites in the continuous Dijkstra paradigm to
obtain a shortest path map for each fence from which
an optimal path is obtained. In next sections, we first
prove some properties about optimal paths and based
on these properties a modified version of the continuous
Dijkstra paradigm is proposed to solve TLSP in poly-
nomial time.

3 TLSP for Consecutively Disjoint Segments

In this section, we restrict ourselves to instances of
TLSP in which the segments of S are consecutively dis-
joint. Our algorithm can be extended to solve TLSP
for intersecting segments as described in Appendix 4
and we skip it because of the limited space here. Let
T = (S,F) be such an instance of the problem. If Si,
for 1 ≤ i ≤ k, is a single point, we can break this prob-
lem into two sub-problems one from s to Si and another
from Si to t. Therefore, we assume that s and t are the
only points in S. To obtain an optimal path for T , we
use the continuous Dijkstra paradigm to build a shortest
path map for each Fi (0 ≤ i ≤ k) namely SPMi such
that having the sequence SPM = (SPM0, . . . , SPMk)
we can obtain a solution for T . For simplicity, we imag-
ine k + 1 planes such that the ith-plane (0 ≤ i ≤ k)
contains only Si, Fi and Si+1, and construct SPMi in
this plane. To construct the shortest path maps we need
k + 1 wavefronts each of which propagates in one plane
and sweeps its fence. To identify the initial wavelets of
these wafefronts, we need some information about the
configuration of T . For this purpose, our algorithm con-
sists of three phases: pre-processing T , building SPM
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and computing an optimal path.

3.1 The pre-processing phase

Before we describe the first phase, we need some defini-
tions. We inductively define the extensions of Sj in ith-
plane (0 < j ≤ i) as follows: For i = j, the extensions
of Sj is simply the two half-lines along S̄j starting from
its endpoints and going away from Sj where S̄j is the
supporting line of Sj . For i > j, let r be the intersection
of Si and an extension e of Sj in the (i−1)th-plane. For
any one of these intersection points, the half-line from
r along e and its reflection with respect to S̄i are ex-
tensions of Sj in the ith-plane. In fact, each extension
of Sj in the (i − 1)th-plane which intersects Si, gener-
ates two extensions of Sj in the ith-plane (If Si does not
intersect any extension of Sj in the (i − 1)th-plane, we
have no extension of Sj in the ith-plane)(See Figure 3).
According to this definition, Si and extensions of Sj in
the ith-plane induces a subdivision which is called the
jth-subdivision of the ith-plane.

Lets assign α and β marks arbitrary to the sides of
the supporting line of each segment Sj ∈ {S1, . . . , Sk}.
Based on this initial marking assignment, we mark all
regions of the jth-subdivision of the ith-plane (i ≥ j) as
follows: For i = j, we mark the half-plane lies on α-side
of Sj as α-region and the other as β-region. For i > j,
each region R of the jth-subdivision of the ith-plane con-
tains exactly one sub-segment of Si on its boundary. We
assign to R the mark of the region of the jth-subdivision
of the (i − 1)th-plane which contains this sub-segment.
Note that according to our definition, this sub-segment
must entirely lie in one region of the jth-subdivision of
the (i− 1)th-plane (Figure 3).

Figure 3: Extensions of S1 in the 1th,2th and 3th-plane
are shown by dashed half-lines.

Let x be a point in the ith-plane. The jth-component
of x for 1 ≤ j ≤ i is defined to be the mark (α or
β) of that region of the jth-subdivision of the ith-plane
which contains x. According to Observation 1 and this
definition, it is simple to verify that if x is straightly
reachable from Sj (1 ≤ j ≤ i) in some path p ∈ Pi(x),

then, for all j ≤ l < i, the mark of the region of the jth-
subdivision of the lth-plane in which p traverses from
Sl to Sl+1 is equal to the jth-component of x. This
fact gives us an intuition about the optimal paths to x
that their origins are vertices of Fl ∪ Sl for some l < j.
These paths will reflect on or pass through segments
Sj , Sj+1, . . . , Si and their traversal (passing through or
reflecting on) from Sj to Si is according to the jth, j +
1th, . . . ,ith component of x.

Let M be an initial marking assignment for sides
of the supporting lines of segments {S1, . . . , Sk}. The
characteristic sequence of a point x ∈ ith-plane is de-
fined as a vector < x1, . . . , xi > in which its jth-term is
computed as follows (this has been described formally
in Algorithm 1 in Appendix 3. In this algorithm, pro-
cedure PChar(j,i,x) is used to find the jth-term of the
characteristic sequence of a point x ∈ ith-plane). The
last term xi is equal to the mark of that side of S̄i which
contains x. For j < i, the jth-term is recursively defined
to be either the jth-term of the characteristic sequence
of x in the (i − 1)th-plane or the jth-term of the char-
acteristic sequence of the reflection of x on S̄i in the
(i− 1)th-plane. The former case happens when x lies in
the α side of S̄i and the later is used otherwise.

Note that the jth-term of the characteristic sequence
of a point in the ith-plane (i > j) is not necessarily equal
to its jth-component. For example, the 1th-component
of x ∈ 3th-plane in Figure 3 is β while its first character-
istic sequence term is α. However this difference is due
to the initial marking assignment used in this example.

Assume that e is an extension of Sj in the (i − 1)th-
plane (j < i) which starts from point r on Si−1 and
intersects Si. We say that an initial marking assign-
ment M has passing property if for all such extensions,
r lies in β-side of Si. The following lemma implies that
there is always an initial marking assignment of S hav-
ing passing property.

Lemma 1. The starting point of all extensions of all
segments Sj ∈ {S1, . . . , Si−1} in the (i−1)th-plane that
intersect Si lie on one side of S̄i.

Proof. See Appendix 2.�
Lemma 1 implies that there is always an initial mark-

ing assignment of sides of segments {S1, . . . , Sk} having
passing property and shows how to obtain such an as-
signment. But, before describing a method for obtain-
ing such a marking assignment we describe how such
a marking is used in obtaining optimal paths. As said
before, identifying all jth-component of a point x ∈ ith-
plane (1 ≤ j ≤ i) are critical in obtaining an optimal
path to x. The following lemma shows how we can ob-
tain these data.

Lemma 2. Let M be an initial marking assignment
of segments which satisfies the passing property, and
x ∈ Fi is straightly reachable from Sj (j ≤ i). Then,
the jth-term of the characteristic sequence of this point
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for marking M is equal to its jth-component.

Proof. See Appendix 2.�

Now, we return to the concept of the initial mark-
ing assignment and propose a method for obtaining a
marking which has passing assignment. This method
has been formally described as procedure MarkSides(S)
in Algorithm 2 in Appendix 3.

Our marking algorithm iteratively marks both sides
of segments from S1 to Sk. According to the definition
of the passing property, the starting points of all exten-
sions of S1, . . . , Si−1 that intersect Si in the (i − 1)th-
plane lie in the β-side of S̄i. Also, from the definition of
the extensions in the (i − 1)th-plane, all these starting
points lie on Si−1. For S1, we do not have any preceding
segment and s = S0 is a point which can be considered
as a degenerate segment. Therefore, we mark the con-
taining half-plane of s as β-side of S̄1 and the other as
α-side. Then, each half-line extension of S0 that starts
from s and intersects S1 has its starting point in the
β-side of S1. Therefore, marking S1 this way supports
the passing property.

Now assume that we have marked sides of segments
S1, . . . , Si−1 in such a way that supports the passing
property. If Si−1 lies completely in one side of S̄i, the
two extensions of Si−1 (from its endpoints) as well as ex-
tensions of preceding segments that intersect Si−1 have
starting point on one side of S̄i. To support the passing
property, we mark this side as β-side and the other as α-
side. Otherwise (if Si−1 intersects S̄i), Si must lie com-
pletely in one side of ¯Si−1. This is due to our assumption
that segments are consecutively disjoint. Then, none of
the two extensions of Si−1 intersects Si. Therefore, the
extensions that intersect Si in the ith-plane are either
extensions in (i − 2)th-plane that intersect Si−1 or the
reflections of these extensions. Thinking inductively, we
have already marked the sides of S̄i−1 which supports
the passing property. This implies that all of the exten-
sions of the (i− 2)th-plane that intersect Si−1 continue
in α-side of S̄i−1 and their reflections continue in β-side.
Then, if Si lies in α-side of S̄i−1 it can be intersected by
extensions of the (i− 2)th-plane and if it lies in β-side,
it may be intersected by reflections of these extensions
on Si−1. For the first case, all extensions that intersect
Si have a starting point on Si−2. This fact helps us to
ignore Si−1 and mark sides of Si considering Si−2 as
its preceding segment. If we do this inductively, we will
finally reach a base case from which the marks of sides
of Si are obtained. In the other case where Si lies in β
side of Si−1, we first reflect Si on S̄i−1 and obtain the
marks for sides of this new segment namely S′i. Then,
the marks of the sides of Si will be the marks of the cor-
responding sides of S′i. It is important to note that the
extensions of the (i−1)th-plane diverse in both α and β
sides of S̄i−1. This forces that when S̄i intersects Si−1
it will be intersected by only extensions whose starting

points from Si−1 lie on one side of S̄i.
There is still one flaw in this inductive algorithm. We

assumed that consecutive segments do not intersect each
other. But, when we reflect Si on S̄i−1 and consider
Si−2 as the preceding segment of Si (ignoring Si−1), Si

may intersect Si−2. To solve this problem, we cut that
part of Si−2 which lies on the α-side of Si−1. Precisely,
in each iteration after marking sides of a segment Si we
cut and remove from Si−1 that part that lies in α-side
of Si (line 16 in Algorithm 2 in Appendix 3). This does
not affect our algorithm because non of the extensions
of the (i − 2)th-plane that have their starting point on
the α-side of ¯Si−1 intersect Si−1, and consequently, does
not affect the passing property of Si.

According to the above discussion, the pre-processing
phase of our algorithm consists of two steps. First,
marking the sides of S using procedure MarkSides and
second, computing the characteristic sequences of all
vertices of Fi and endpoints of Si+1 in the ith-plane
(1 ≤ i ≤ k). These information enables us to efficiently
construct the shortest path maps in the second phase of
our algorithm.

3.2 Building shortest path maps

In order to build the k+ 1 shortest path maps SPM =
(SPM0, . . . , SPMk), we need to perform in parallel k+1
instances of our modified version of the continuous Di-
jkstra algorithm inside fences F0, . . . , Fk in their corre-
sponding planes. The initial wavefront of each Fi prop-
agates from Si and sweeps Fi to build SPMi. For F0,
the initial wavefront is a complete circle with zero radius
around s. For i > 0, the initial wavefront of Fi is deter-
mined according to the wavelets intersect Si during the
wavelet propagation of the wavefront of Fi−1. Precisely,
when a wavelet ω in Fi−1 intersects an endpoint of Si,
a new wavelet centred at this endpoint and zero radius
starts to propagate in Fi. If ω intersects the interior
of Si, it can generate one or two wavelets in Fi accord-
ing to the information we obtained in the pre-processing
phase. In order to detect the wavelets which intersect
Si in Fi−1 in our implementation of the continuous Di-
jkstra paradigm, we consider Si as an obstacle (hole)
in Fi−1. So, we can use the standard event handling
of continuous Dijkstra paradigm [9, 8] to identify such
events. Let ω be a wavelet in Fi−1. When it touches
the interior of Si, it can generate two wavelets in Fi.
One, called passing wavelet, propagates in Fi along ω
and the other, called reflecting wavelet, is the reflection
of the passing wavelet with respect to S̄i. Let ω be a
wavelet in Fi−1 with center Cω which intersects Si = ab
at point I. Without lose of generality, assume that Cω

lies in the α-side of Si. Two cases may happen: First,
I is a point in the interior of ω and second, I is an end-
point of ω. In the first case, the passing wavelet of ω
is a wavelet with center Cω which propagates from I in
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the α-side of Si and is restricted to the angle âCωb in
Fi (See Figure 4).

Figure 4: ω generates a passing wavelet ω′ in Fi when
an interior point of ω intersects Si.

In the second case, the passing wavelet of ω is a
wavelet with center Cω which propagates from I in the
α-side of Si. This wavelet is restricted to the angle

âCωI if a lies on that side of CωI which contains ω, and

is restricted to ÎCωb, otherwise (Figure 5).

Figure 5: ω generates a passing wavelet ω′ in Fi when
an endpoint of ω intersects Si. In this case, another
wavelet (ω′′) from this intersection point is propagated
in Fi.

Note that the center of passing and reflecting wavelets
may lie outside Fi. According to the above discussion,
the initial wavelets of Fi are the wavelets propagate from
the endpoints of Si (these endpoints act like initial sites
in Fi whose weights are assigned by the wavefront of
Fi−1) and a set of passing or reflecting wavelets obtained
according to the pre-processing information. Moreover,
when a wavelet ω in Fi−1 generates a passing or reflect-
ing wavelet in Fi by intersecting Si in its endpoint (the
second case in the above discussion) we consider the in-
tersection point (I in Figure 5) as an initial site in Fi

whose weight is assigned by ω in Fi−1.

If we consider both passing and reflecting wavelets for
all wavelets that intersect Si in Fi−1 for all 1 ≤ i ≤ k+1,
the corresponding cells of passing (resp. reflecting)
wavelets in Fi represent the set of points x ∈ Fi for
which there is an optimal path in Pi(x) that passes
through (resp. reflects on) Si. Furthermore, the site
of each cell (center of the wavelet which sweeps this
cell) in Fi will be a source of its containing points and
for each x ∈ Fi we can recursively construct an opti-
mal path in the same way as what we do in obtaining

an optimal path between two points in a polygonal do-
main using continuous Dijkstra paradigm [9]. But, as we
said in Section 2, the number of sources and therefore
the number of cells can grow exponentially this way.
To overcome this problem, we filter the passing and
reflecting wavelets generated by the wavelets in Fi−1
according to the pre-processing information. For this
purpose, we assign a sequence SQ(ω) to each wavelet
ω in Fi (0 ≤ i ≤ k) as follows: The sequence of all
wavelets in Fi whose center is a vertex of Fi or an end-
point of Si is the empty sequence. If a wavelet ω in Fi−1
generates a wavelet ω′ in Fi (by passing or reflecting)
which propagates in α-side (resp. β-side) of Si, we have
SQ(ω′) = (SQ(ω), α) (resp. SQ(ω′) = (SQ(ω), β)).

Let Pi be the set of all vertices of Fi and endpoints
of Si+1 (1 ≤ i ≤ k) and ω be a wavelet in Fi−1 with
SQ(ω) = (w1, . . . , wl) which intersects the interior of
Si. The wavelet ω generates a wavelet in Fi only when
there exists a point x ∈ Pj (j ≥ i) with characteristic
sequence (x1, . . . , xi−1, xi, . . . , xj) where (w1, . . . , wl) =
(xi−l, . . . , xi−1). Then, if xi = α, ω generates a wavelet
(by passing or reflecting) in α-side of Si and if xi =
β, ω generates a wavelet in β-side of Si in Fi. This
filtering mechanism prevents the exponential growth of
the wavelets in our algorithm.

Lemma 3. The total size of the shortest path maps
SPM obtained according to the above propagation
rules is polynomial in terms of the number of vertices
of all fences and k.

Proof. The complexity of SPMi ∈ SPM is pro-
portional to the number of wavelets propagates in Fi.
Trivially, this is linear with respect to the number
of vertices in F0 for SPM0. The wavelets of SPMi

for i > 0 are generated due to either a vertex in
Fi or intersecting Si by a wavelet in SPMi−1. For
the first case, each vertex of Fi generates exactly one
wavelet. Wavelets of the second type have non-empty
sequences. For each wavelet with non-empty sequence
(w1, . . . , wl) in Fi, there must exist a vertex in Pj with
characteristic sequence (x1, . . . , xi−1, xi, . . . , xj) where
(w1, . . . , wl) = (xi−l+1, . . . , xi). Therefore, the number
of distinct wavelet sequences of length l is proportional
to the number of vertices in

⋃
Pj . On the other hand, all

wavelets with sequence of length l in Fi have emerged in
a vertex of Fi−l. Therefore, |Pi−l|.|

⋃i
j=k Pj | is an upper

bound for the number of wavelets in Fi with sequence
of length l. Summing this for all 1 ≤ l ≤ i results the
lemma.�

Lemma 4. The weights assigned by the wavefront
in SPMi to each vertex v of Fi ∪ Si+1 is equal to the
length of all optimal paths for Ti(v).

Proof. We prove this lemma by induction on i. Ac-
cording to the standard continuous Dijkstra paradigm,
the theorem is true for vertices of F0∪S1. For i > 0, let
x be a vertex of Fi or an endpoint of Si+1. The vertex x
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either has an origin v in the vertices of Fj ∪Sj+1 where
j < i or all of its origins belong to Fi. The first case
means that x is straightly reachable from Sj+1. Ac-
cording to the induction hypothesis, the weight of v is
the optimal length from s to v. Also, by Lemma 2 and
the propagation rules, the wavelet with center v in Fj

generates wavelets in fences Fl(j < l ≤ i) according to
the characteristic sequence of x. This means that we
traverse along an optimal path from v to x which im-
plies the lemma for x. For the other case where in all
optimal paths the origin of x belongs to Fi, let v ∈ Fi

be the origin of x in an optimal path. If v is straightly
reachable from Si+1 then we have the optimal length to
v according to the first case and our version of continu-
ous Dijkstra paradigm computes the shortest path from
v to x. Otherwise, we can repeat this process induc-
tively until reaching an endpoint of Si+1 or a straightly
reachable vertex of Fi from Si+1. �

3.3 Obtaining an optimal path

As the final phase of our algorithm we find an optimal
path from s to t. This is a straightforward usage of
the data in SPM. For this purpose, we use procedure
OPT (i, x) (Described formally in Algorithm 3 in Ap-
pendix 3) which returns an optimal path for Ti(x) as a
list of points. Then, OPT (k, t) will be an optimal path
for T . In this procedure, if s = x, the optimal path
for T0(s) is trivially the single point s. If x is an end-
point of Si, an optimal path for Ti(x) is just an optimal
path for Ti−1(x) which is the optimal path computed by
OPT (i − 1, x). Otherwise, there are two cases for the
last segment of an optimal path to x in Ti(x): First, the
site c of the cell C in SPMi which contains x is a ver-
tex of Fi or an endpoint of Si. Second, this cell belongs
to a passing or reflecting wavelet ω. For the first case
the optimal path is (OPT (i, c), x) which means that the
last segment of the optimal path is cx. For the second
case, let v be an origin of x. We obtain a sub-path
from v to x by a list L of points according to SQ(ω).
Then, (OPT (i−|SQ(ω)|, v), L) is an optimal path from
s to x which means that the optimal path goes to v and
then, from v to x it acts (passes or reflects) according
to SQ(ω).

3.4 Complexity of the Algorithm

In the first phase of our algorithm we compute charac-
teristic sequences of all vertices of fences and endpoints
of segments in T . We use procedure MarkSides to prop-
erly mark the sides of each segment in S. The function
Mark in this procedure takes O(k) time. Therefore,
procedure MarkSides can be run in O(k2) time. Each
execution of procedure PChar takes O(k) and each char-
acteristic sequence have O(k) terms which means that
obtaining characteristic sequence of each point takes
O(k2) time. Therefore, the time complexity of the

first phase of our algorithm is O(k2n) where n is the
total number of all fences vertices and segments end-
points. In the second phase, as discussed in the proof
of Lemma 3, the total number of wavelets in all planes
is O(n2) and we should handle O(n2) events according
to [8]. However, in each event handling procedure, we
have to perform O(k) comparison for all O(n) points to
decide whether this wavelet must generate a passing or
reflecting wavelet in the next plane. Therefore, the com-
plexity of the second phase is O(n3k). The complexity
of the third phase depends on the number of bends and
intersection points on the obtained optimal path which
is O(n). We can store enough information in shortest
path maps to restore such an optimal path in linear time
in terms of the output path length (storing the site of
each cell and the corresponding sequence of its wavelet).
Summing all these costs implies that the complexity of
our algorithm is O(n3k).
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Appendix 1: An Overview on the continuous Dijkstra
paradigm

The Dijkstra paradigm is originally proposed to obtain a
shortest path between two points namely p and q in a polyg-
onal domain namely D [9, 8]. This is done by simulating the
propagation of a wavefront starting to propagate from p and
sweeping the entire polygonal domain. Precisely, If we define
the length of a shortest path between p and x in D as the
weight of x and denote it by w(x), the wavefront at distance
d is :

WF (d) := {x ∈ D|w(x) = d}

A wavefront consists of a set of wavelets each of which is
a circular arc whose center is p or some vertex of D. The
initial wavefront contains a single point p as its only wavelet
(a circle of radius zero centred at p). When a wavefront
propagates, its structure (the set of its wavelets) changes,
i.e., some wavelets may disappear, some may break into two
wavelets and new wavelets may appear. A wavelet is elimi-
nated from the structure of a wavefront when its two neigh-
bour wavelets collide on each other and a wavelet may break
into two wavelets when it collides the interior of an edge
of D. Also, if a wavefront collides a vertex v of D, a new
wavelet with center v appears and starts to propagate in the
region of D that v blocks the wavefront to sweep it.

When the wavefront propagates, the traces of these end-
points decompose the swept part of D into regions having
this property that all points of a region have combinatorially
equivalent shortest paths. Therefore, this wavefront propa-
gation induces a subdivision called shortest path map on D
(See Figure 6). The site of each cell of this subdivision is
the center of the wavelet that has swept it. If q belongs to
a cell with site r, then the last segment of a shortest path
from p to q is rq and the length of the shortest path from
p to q is w(r) + |rq|. We can replace q by r and use the
shortest path map to obtain the last segment of a shortest
path from p to r and repeat this procedure until a shortest
path from p to q is obtained.

We can use the continuous Dijkstra paradigm to solve a
more general shortest path problem in which instead of hav-
ing one initial site (p in the above discussion) we have mul-
tiple initial weighted sites namely {p1, . . . , pi} with weights
w(pj) (1 ≤ j ≤ i). Then, for a query point q in D we
seek a shortest path from q to an initial site pj such that
w(pj) + d(pj , q) is minimum where d(pj , q) is the length of
a shortest path from pj to q. This can be done by delay-
ing wavelet propagation of each site according to its weight.
Hershberger and Suri in [8] gave an implementation of the
continuous Dijkstra paradigm which handles such cases.

Figure 6: An example of a shortest path map

Appendix 2: Proofs

Lemma 1. The starting point of all extensions of all seg-
ments Sj ∈ {S1, . . . , Si−1} in the (i − 1)th-plane that inter-
sect Si lie on one side of S̄i.

Proof. Let e1 be an extension of Sl1 and e2 be an ex-
tension of Sl2 in the (i − 1)th-plane with starting points r1
and r2 respectively which intersect Si (1 ≤ l1, l2 < i). We
prove that both, r1 and r2 lie in one side of S̄i. According to
the fact that the definition of extensions is independent to
the fences, we assume that the fences are the whole plane.
It is simple to see that if x lies on an extension e in the
(i− 1)th-plane, there is always an optimal path p ∈ Pi−1(x)
for which e overlaps the last segment of p. For the sake of a
contradiction, assume that r1 and r2 lie on different sides of
Si. Then, e1 and e2 must intersect each other on a point like
x. Without loss of generality, we assume that e1 intersects
Si after x (Figure 7). Then, there will be two optimal paths
in Pi−1(x): one reaches x from r1 and the other from r2.
But, this implies that for each point x′ after Si on e1 in the
ith-plane there exist an optimal path with two last segments
r2x and xx′ which contradicts Observation 1. �

Figure 7: r1 and r2 must lie on one side of Si.

Lemma 2. Let M be an initial marking assignment of
segments which satisfies the passing property, and x ∈ Fi is
straightly reachable from Sj (j ≤ i). Then, the jth-term of
the characteristic sequence of this point for marking M is
equal to its jth-component.

Proof. Let x ∈ Fi be straightly reachable from Sj in some
optimal path p ∈ Pi(x). This means that x is straightly
reachable from all Sl(j ≤ l ≤ i). Trivially, all fences
Fj , . . . , Fi−1 dos not affect the optimal path p. Therefore,
we can consider this fences as the whole plane and ignore
them at all.

We can prove the lemma by induction on i− j. For i = j,
the lemma follows from the definition of the ith-component
and ith-term of the characteristic sequence. In both cases,
it is the mark of the half-plane of S̄i that contains x.

Now, suppose that the lemma holds for all 0 ≤ i− j < l.
To prove the lemma for i− j = l, we first assume that x lies
in α-side of S̄i. According to the definition, jth-component
of x is equal to the mark of the containing region of x in
jth-subdivision of the ith-plane. As shows in Figure 8, let R
be this region. The mark of this region in this subdivision
is equal to the mark of the containing region of segment ab
in jth-subdivision of the (i − 1)th-plane. While x lies in α-
side of S̄i and our initial marking assignment has passing
property, all extensions of Sj in this half-plane are exactly
the extensions of Sj in the (i − 1)th-plane that intersect Si
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and by considering x as a point in the i− 1th-plane, it is still
straightly reachable from Sj . This means that x and ab lie in
the same region in jth-subdivision of the (i− 1)th-plane and
by induction the jth-term of the characteristic sequence of x
in the (i−1)-plane and its jth-component are equal. On the
other hand, the jth-term of x in the ith-plane is considered
to be equal to the jth-term of its characteristic sequence in
the (i − 1)-plane. These two equalities imply that jth-term
of the characteristic sequence of x ∈ Fi is equal to its jth-
component.

When x lies in β-side of Si, because of having passing
property, all regions of the jth-subdivision of the ith-plane
in this side are reflections of the regions in α-side of S̄i in
this subdivision, and the marks of corresponding regions are
the same. This means that the jth-component of x in β-side
of S̄i is equal to the jth-component of the reflection of x on
S̄i. Similarly, our algorithm computes the jth-term of the
characteristic sequence of the reflection of x on S̄i as the
jth-term of x which follows the lemma in this case as well.
�

Figure 8: An optimal path to x from a point of ab.

Appendix 3: Algorithms

Algorithm 1 PChar(j,i,x)

1: if j = i then
2: if x ∈ α-side of S̄j then
3: return α
4: else
5: return β
6: end if
7: else
8: if x lies in the α-side of S̄i then
9: return PChar(j,i− 1,x)

10: else
11: Let x′ be the reflection of x on S̄i

12: return PChar(j,i− 1,x′)
13: end if
14: end if

Algorithm 2 MarkSides(S)

1: function Mark(S,i)
2: if Si completely lies on one side of S̄ then
3: Mark the side of S̄ which contains Si as β-

side and the other as α-side.
4: else
5: if S lies in the α-side of S̄i then
6: Mark(S,i− 1)
7: else
8: Let S′ be the reflection of S on S̄i

9: Mark(S′,i− 1)
10: Mark sides of S̄ the same as marks of their

corresponding sides of S̄′.
11: end if
12: end if
13: end function
14: for i← 1 to k do
15: Mark(Si,i− 1)
16: Cut Si−1 by removing from it the part that lies

on the α-side of S̄i.
17: end for

Algorithm 3 OPT(i,x)

1: if i = 0 and x = s then
2: return s.
3: end if
4: if x is an endpoint of Si then
5: return OPT(i− 1,x).
6: end if
7: Let C with sequence SQ(C) = (c1, . . . , cl) be the

cell with site c of SPMi which contains x.
8: if the length of SQ(C) is zero then
9: return <OPT(i,c),x >.

10: end if
11: Let j = l and L be a list with L =< x >.
12: while j 6= 0 do
13: Let I be the intersection of cx and Si−(l−j).
14: Append I to the beginning of L.
15: if x does not lie on the cj-side of Si−(l−j) then.
16: Let c be the reflection of c on S̄i−(l−j).
17: end if
18: x = I.
19: j = j − 1.
20: end while
21: return <OPT(i− l,c),L >.

Appendix 4: TLSP for intersecting line segments

In this section, we briefly describe how to extend our algo-
rithm to solve TLSP when a segment Si ∈ S may have in-
tersection with Si+1. Two types of intersections can be hap-
pened when Si intersects Si+1: point intersection and inter-
val intersection. In point intersection, Si and Si+1 have only
one point in common but in interval intersection Si ∩ Si+1
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is a segment. If Si and Si+1 overlap in interval I, we can
simply remove Si and Si+1 from S and replace them by seg-
ment I. So, we consider that there is no interval intersection
between consecutive segments of S.

Let Sj = ab intersects Sj+1 at point r. We define the
extensions of Sj in the ith-plane (i ≥ j) as the union of
extensions of ar and br in the ith-plane (their interior is
disjoint from Sj+1). So, If we mark the sides of Sj by α
and β, each segment ar and br induces its own marking on
the jth-subdivision of the ith-plane. Therefore, the mark of
each region R of the jth-subdivision of the ith-plane is in
{αα, αβ, βα, ββ} which is composed of two letters. Assume
that we have marked R as x1x2 where x1, x2 ∈ {α, β}. If
we replace Sj by ar, R completely lies in the x1-region and
if we replace Sj by rb, R completely lies in the x2-region of
the jth-subdivision of the ith-plane.

If we have characteristic sequences of all vertices and end-
points of segments, we can filter the wavelets in the second
phase as follows: Let ω be a wavelet in Fj−1 and SQ(ω)
coincides (xj−|SQ(ω)|, . . . , xj−1). Assume that the jth-term
of the characteristic sequence of a point in Pj is αβ (other
cases are similar). This means that if ω intersects ar, it
must generate a wavelet by passing or reflecting on ar in the
α-side of Sj in Fj and if it intersects rb it must generate
a wavelet by passing or reflecting on br in the β side of Sj

in Fj . Note that we must also consider r as an initial site
in Fj and its weight is computed by the wavefront of Fj−1.
In both of the above cases the sequences of the generated
wavelets in Fj are (SQ(ω), αβ).

Similar to Section 3, we use characteristic sequences and
according to Lemma 2 if a point x is straightly reachable
from Sj−1, the (j − 1)th-term of its characteristic sequence
is equal to its (j−1)th-component if we have a marking with
passing property. When Sj = ab intersects Sj+1 = cd, two
extensions in the jth-plane may be intersected by Sj+1 while
their starting points lie on different sides of Sj+1. Figure 9
shows an example of such situations.

Figure 9: Extensions of Sj which intersect Sj+1 are
shown by gray dots and the extensions of Sj+1 are shown
by solid dots.

To handle such situations we extend the definition of α-
side and β-side of Sj+1 such that using this new definition,
we can use procedure MarksSides and PChar to obtain char-
acteristic sequences of vertices of fences and endpoints of

segments.
Assume that function Mark marks the sides of cr and

rd in such a way that the starting point of each extension
in the jth-plane which intersects these segments lies in β
side of cr and rd. Lets consider a half-line from r which
does not intersect any extension of Sl in the (j + 1)th-plane
(1 ≤ l ≤ j). We call this half-line and its reflection on S̄j+1

as separators (there is infinite separators of Sj+1 but we
need one in our algorithm) in the (j+1)th-plane (separators
are shown by dashed lines in Figure 9). These separators
divide the plane into two regions namely R1 and R2. Lets
R1 be the one containing rc. We say that a point x or a
segment S lies in α-side of Sj+1 if it completely lies in α-
side of rc and R1 or α-side of rd and R2. Otherwise, we say
that it lies in β-side of Sj+1. By this definition, we see that
all extensions in α-side of Sj+1 coincide their corresponding
extensions in the jth-plane which is exactly the definition
of the passing property. But, we need an extra clause in
function Mark to handle the situation when a segment S
intersects the separators in the (j+ 1)th-plane: If a segment
intersects a separator with starting point r in the (j + 1)th-
plane, we mark the side of it which contains r as β-side and
the other as α-side.

Therefore, in procedure MarkSides, when Sj+1 intersects
Sj we need to use function Mark for both cr and dr. Then,
using a separator we can define its α and β-side. Now, be-
cause the marking obtained by MarkSides has the passing
property, we can use procedure PChar to obtain the charac-
teristic sequences of vertices of fences and endpoints of the
segments.

Note that a separator for Sj+1 from a point r in it can be
easily obtained by considering r or its reflection recursively
on α sides of Sj , . . . , S1 (Similar to procedure PChar) and
in each step l ≤ j we maintain the bounds on the slope
of a separator in which a separator does not intersect an
extension of Sl.

According to the above discussion, if Sj+1 intersects Sj ,
we need a linear time to obtain a separator for it. Also
MarkSides performs function Mark at most 2k times. Also,
the extra clause in Mark does not affect its complexity.
Therefore, the running time of our algorithm remainsO(n3k)
for intersecting segments.


