
CCCG 2015, Kingston, Ontario, August 10–12, 2015

Bottleneck Segment Matching

Arita Banik∗ Matthew J. Katz Marina Simakov∗

Department of Computer Science, Ben-Gurion University, Israel
aritrabanik@gmail.com {matya,simakov}@cs.bgu.ac.il

Abstract

Let R be a set of n red segments and B a set of n blue
segments, we wish to find the minimum value d∗, such
that there exists a perfect matching between R and B
with bottleneck d∗, i.e., the maximum distance between
a matched red-blue pair is d∗. We first solve the corre-
sponding decision problem: Given R, B and a distance
d > 0, find a maximum matching between R and B
with bottleneck at most d. We begin with the simpler
case where d = 0 and then extend our solution to the
case where d > 0. We focus on the settings for which
we are able to solve the decision problem efficiently, i.e.,
in roughly O(n1.5) time. The most general of these, is
when one of the sets consists of disjoint arbitrary seg-
ments and the other of vertical segments. We apply
similar ideas to find a matching in the setting in which
the vertical segments are replaced by points in the plane.

After solving the decision problem, we explain how
to find the minimum value d∗. Finally, we show how
to compute a shortest path tree for a given set of n
orthogonal segments and a designated root segment in
O(n log2 n) time.

1 Introduction

The maximum matching problem is a fundamental
problem in graph theory. Given a graph G = (V,E),
find a matching in G of maximum cardinality, where
M ⊆ E is a matching in G if each vertex of V is ad-
jacent to at most one edge of M . If |V | is even and
|M | = |V |/2, then M is perfect. The maximum match-
ing problem has received a lot of attention, see below
for some of the known algorithmic results. When G
is a weighted graph, i.e., when each edge of E is as-
signed some weight, then one often is interested in a
minimum weight matching or bottleneck matching in G,
i.e., in a perfect matching that minimizes the sum of the
edge weights or the weight of the heaviest edge, respec-
tively. In this context, bipartite graphs received special
attention, since many of the motivating problems are
naturally modeled using bipartite graphs.

∗Work by A. Banik and M. Simakov was partially supported
by the Lynn and William Frankel Center for Computer Sciences.

Bottleneck matching and minimum weight matching
in geometric graphs, i.e., in graphs induced by geomet-
ric settings, are well-studied topics. The most common
geometric setting is of course points in the plane. For
a set P of points in the plane, the bottleneck matching
problem (alternatively, the minimum weight matching
problem) is to compute a bottleneck matching (resp., a
minimum weight matching) in the complete graph in-
duced by P , where the weight of an edge e = {p, q} is
the Euclidean distance between points p and q. In the
bipartite version of this problem, one is given two sets
of points, a red set R and a blue set B, each of size n,
and the induced bipartite graph consists of all red-blue
edges.

In this paper we study maximum matching problems
in bipartite graphs induced by a pair of sets of line seg-
ments, i.e., a red set R and a blue set B, each consisting
of n line segments. We are not aware of any previous
results dealing with these problems. We are mainly in-
terested in the variants for which a maximum matching
can be found efficiently, i.e., in time roughly O(n1.5).

In the first variant that we study, R is a set of vertical
segments and B is a set of arbitrary disjoint segments,
and there is an edge between r ∈ R and b ∈ B if and
only if the two segments intersect. The goal is to com-
pute a maximum matching in this graph. One could
do this by applying one of the known graph algorithms
for maximum matching in bipartite graphs, however,
the running time of these algorithms is in general su-
perquadratic; it is either O(

√
nm) [4], or O(n2.376) [8],

or Õ(m10/7) [7], where m is the number of edges in the
graph. We present an O(n1.5 log2 n)-time algorithm for
this variant.

In the second variant, we are also given a distance d >
0, such that there is an edge between r ∈ R and b ∈ B if
and only if the distance between the two segments is at
most d; we denote this graph by G(R,B, d). We would
like to compute a maximum matching in this graph.
This variant is more difficult than the former, and we
present an O(n1.5+ε)-time algorithm for it.

When R is also a set of arbitrary disjoint segments,
the time bound increases to roughly O(n11/6) (which is
still subquadratic), for both variants above.

Our algorithms are based on the algorithm of Efrat
et al. [2] for computing a maximum matching in a bi-

27th Canadian Conference on Computational Geometry, 2015

partite graph induced by a set of n red points and a set
of n blue points in the plane, where there is an edge be-
tween a red and a blue point if and only if the distance
between them is at most d, for a given parameter d.
For each of the variants above, we need to replace the
“oracle” component in their algorithm with a different
oracle that meets our needs, see below for more details.

Using similar ideas, we also obtain an efficient algo-
rithm for the following “mixed” problem. Given a set
of n arbitrary disjoint segments and a set of n points,
compute a maximum matching in the induced bipartite
graph, where there is an edge between a segment and
a point if and only if the distance between them is at
most d, for a given parameter d. This problem can be
viewed as a special case of the second variant above.

The second variant above is actually the decision ver-
sion of the following optimization problem: Given R
and B, find the minimum distance for which there ex-
ists a perfect matching in the graph G(R,B, d), or, in
other words, find a bottleneck matching in the graph
G(R,B,∞). We show that this optimization prob-
lem can be solved within the same time bound, i.e.,
in O(n1.5+ε) time.

Finally, we present an efficient algorithm for comput-
ing a shortest path tree from a designated segment s.
Consider a scene consisting of n horizontal and vertical
segments and let s be one of the segments. Let G be
the bipartite graph induced by the scene (i.e., there is
an edge between a horizontal and a vertical segment if
and only if they intersect). The distance in G between
two segments is the length (in terms of number of edges)
of a shortest path between them. We wish to compute
a shortest path tree T from s, that is, a tree rooted at s,
such that, for any other input segment s′, the length of
the path in T between s and s′ is the distance between
them in G. We show how to construct a shortest path
tree from s in O(n log2 n) time.

2 Solving the decision problem

2.1 The basic segment matching problem

The basic segment matching problem is defined as fol-
lows: let R be a set of n vertical segments and B a
set of n disjoint arbitrary segments, find a maximum
matching between R and B, where two segments may
be matched only if they intersect. This is the decision
problem of the extended problem for the case d = 0.

Consider the corresponding bipartite intersection
graph G = (V,E), where each segment in R ∪ B cor-
responds to a vertex in V , and the edge (r, b) between
a red vertex r and a blue vertex b is in E if and only if
the segments intersect. Computing G explicitly requires
O(n2) time, and the best known graph-theoretic bipar-
tite matching algorithm runs in O(n2.376) time [8] (or
O(
√
nm), where m = |E| [4]). We seek a subquadratic

Figure 1: A segment’s arena (race track) of radius d.

solution.

Theorem 1 The basic segment matching problem can
be solved in time O(n1.5 log2 n).

Proof. Efrat et al. [2] show how to find a maximum
matching without constructing the entire graph, by im-
plicitly computing augmenting paths until a maximum
matching is obtained. Their solution relies on an or-
acle, which is actually a data structure supporting a
certain type of queries and an update operation. They
show that if each of these operations (i.e., handling a
query and deletion) can be performed within T (n) time,
then the maximum matching problem can be solved in
O(n1.5 · T (n)).

In our case, the oracle data structure, D(S), would be
a segment tree for a set of segments S ⊆ B, which con-
sists of disjoint arbitrary segments. The data structure
requires O(n log n) space (see, e.g., [1]). The required
operations are defined as follows:

• match(D(S), q) — For a query segment q ∈ R,
return a segment s ∈ S such that q intersects s, or
null if no such segment exists.

• delete(D(S), s) — Delete the segment s from S.

Since we are using a segment tree and the the query
segments are vertical, each operation can be completed
in T (n) = O(log2 n) time [1]. Thus, by using the or-
acle we can compute a maximum matching in O(n1.5 ·
T (n)) = O(n1.5 log2 n). �

2.2 An extended segment matching problem

After solving the basic matching problem, we consider
the case where d > 0. We define the extended segment
matching problem: let R be a set of n vertical segments
and B a set of n disjoint arbitrary segments, find a max-
imum matching between R and B, where two segments
may be matched if the distance between them is at most
d.

Given a segment b ∈ B, denote the arena (or race
track) of radius d induced by it by Ad(b) (see Figure 1).

CCCG 2015, Kingston, Ontario, August 10–12, 2015

(a) Case 2 (b) Case 3

Figure 2: Matching segments.

In order to solve the given problem, we require a data
structure which supports the following operations:

• match(D(S), q) — For a query segment q ∈ R,
return a segment s ∈ S, such that q ∩ Ad(s) 6= ∅,
or null if no such segment exists.

• delete(D(S), s) — For a segment s ∈ S, delete s
from D(S) to prevent s from being returned again.

If we can solve these queries efficiently, we can obtain
an efficient maximum matching algorithm, by applying
the scheme of Efrat et al. [2], as we did for the basic
matching problem.

Let us distinguish between the different cases in which
we can match a vertical segment r to a segment b (notice
that there is no restriction on b):

1. The segments r and b intersect.

2. At least one of r’s endpoints lies inside Ad(b) (see
Figure 2(a)).

3. The most difficult case we have to consider is the
one in which the segments do not intersect, and
none of r’s endpoints lies inside Ad(b). Let us draw
two horizontal segments of length d starting at each
of b’s endpoints and extending away from b (see
Figure 2(b)). If r intersects one of the horizontal
segments we have added, then it can be matched
with segment b.

Lemma 2 If b and r are at distance at most d from
each other, then they satisfy at least one of the condi-
tions described above.

Proof. Given segments b and r at distance at most d
from each other, we will prove that r, b satisfy at least
one of the conditions described above. Assume the seg-
ments do not satisfy the first and second conditions, we
will show that they must satisfy the third one. Note
that this means that the segments do not intersect, and
none of r’s endpoints lies inside Ad(b). Since the dis-
tance between r and b is at most d, segment r must
intersect Ad(b) in at least one point. Also, since r is

a vertical segment which does not intersect segment b,
we infer that it must intersect one of the horizontal seg-
ments we have added. We conclude that the segments
satisfy the third condition. �

We conclude that by detecting each of the three
cases, we can determine whether two segments can be
matched. We will maintain three data structures, each
one allowing the detection of one of the cases. Our goal
is to use the oracle once again, so each data structure
must support the match, delete operations. The follow-
ing data structures will be required:

1. Data structure D1: A segment tree for the segments
in B, as in the previous section. This data structure
allows us to detect segments which satisfy the first
condition. match, delete operations are performed
in O(log2 n).

2. Dynamic data structure D2: A structure for the
arenas Ad(S), induced by a set of segments S ⊆ B.
Let us define the required operations for using the
oracle:

• match(D2(Ad(S)), q) — Given point q, return
a segment s, such that q ∈ Ad(s). For a verti-
cal segment r ∈ R we will perform two queries
using the segment’s endpoints, this way we
can match segments which satisfy the second
condition.

• delete(D2(Ad(S)), s) — Given segment s ∈ S,
remove the arena Ad(s) from the data struc-
ture. Note that this operation requires D2 to
be a dynamic data structure.

Lemma 3 The complexity of the union of the are-
nas induced by S is linear in |S|.

Proof. First we observe that any two arenas can
intersect in at most two points, this is due to the
assumption that the segments b ∈ B are pairwise
disjoint, and that the arenas are all of the same
radius. By a result of Kedem et al. [6], we conclude
that the complexity of the union of the arenas is
linear in |S|. �

Lemma 3 enables us to use the dynamic data struc-
ture of Efrat et al. [3], which is able to perform
queries in O(log2 n) time and deletions in O(nε)
time, for any constant ε > 0. Thus, the running
time of a single match, delete operation in D2 is
bounded by O(nε). The size of the data structure
is near linear in |S|.

3. Data structure D3: A segment tree for the hori-
zontal segments of length d, starting at the end-
points of the segments in B and extending away

27th Canadian Conference on Computational Geometry, 2015

from them. For each segment b ∈ B, we add two
segments, thus the size of the segment tree remains
O(n log n). This data structure allows the detec-
tion of segments which satisfy the third condition.
Let us define the required operations:

• match(D3(S), q) — Given a vertical segment
q, return a segment s ∈ S such that q inter-
sects s.

• delete(D3(S), s) — Delete segment s from S.
When deleting s we must also delete its ‘twin’
segment, so that the corresponding segment in
B would not be matched twice.

These operations can be implemented in time
O(log2 n) per operation.

Now, given a vertical segment r ∈ R, we will conduct
at most four queries for each match operation of the
oracle, and exactly four removals for each delete oper-
ation of the oracle. The running time of each of the
oracle’s operations is determined by the maximum run-
ning time in the three data structures, which is bounded
by O(nε). Thus, using the oracle, we conclude that the
extended segment matching problem can be solved in
O(n1.5+ε) time. The following theorem summarizes the
main result of this section.

Theorem 4 The extended segment matching problem
can be solved in time O(n1.5+ε).

2.3 Maximum matching between segments and
points

Let d > 0. An important special case of the extended
segment matching problem is the problem of comput-
ing a maximum matching between a set of n disjoint
arbitrary segments and a set of n points, both in the
plane, where we match match a point to a segment if
the Euclidean distance between them is at most d.

Theorem 5 The segments and points matching prob-
lem can be solved in time O(n1.5+ε).

Proof. We observe that the distance between point p
and segment s is at most d if and only if p lies inside
Ad(s). Thus, this is the only case in which a matching
between p and s is valid. By maintaining a single data
structure, similar to D2 in the previous section, we can
detect all relevant matchings satisfying this condition.
Since each operation is bounded by O(nε), the overall
matching problem can be solved in O(n1.5+ε). �

2.4 The general case

The most general setting of the segment matching prob-
lem is when both sets consist of disjoint arbitrary seg-
ments. This case requires more sophisticated data struc-
tures, and balancing between the space allocation and
the total time required for query processing in one round
of the matching algorithm. This case can be solved in
roughly O(n11/6) time using O(n4/3) space, which is
still subquadratic, but significantly worse than our goal
of roughly O(n1.5) time.

2.5 Optimization

After solving the decision problem, we focus on the op-
timization problem which is defined as follows: let R
be a set of n vertical segments and B a set of n dis-
joint arbitrary segments, find d∗, which is the smallest
value d for which there exists a perfect matching with
bottleneck d.

Theorem 6 The segment matching optimization prob-
lem can be solved in time O(n1.5+ε).

Proof. We perform a binary search in the set of po-
tential values. This set consists of all the distances
between a segment in R and a segment in B. Such
a distance, if not 0, is determined by the distance be-
tween an endpoint of one of the segments and the other
segment. The size of the set is O(n2), so we cannot af-
ford to compute it explicitly. Instead, we slightly adapt
the distance selection algorithm of Katz and Sharir [5],
so that given k, it returns the k’th smallest distance
in roughly O(n4/3) time. For each potential value we
run the algorithm for the decision problem described
in section 2.2, each run requires O(n1.5+ε), and there
would be at most O(log n) potential values examined
until d∗ is found. Thus, we reach the total running time
of (O(n4/3) + O(n1.5+ε)) · log n = O(n1.5+ε). �

3 Computing a shortest path tree

The shortest path tree problem in our setting is defined
as follows: Given S, a set of n orthogonal segments and
a segment s ∈ S, compute a shortest path tree T rooted
at s; (see Figure 3). We say that there is a path from u
to v if there exist segments u = s1, s2, . . . , sn = v ∈ S,
such that any two consecutive segments intersect and
have different orientations. We show how to construct
T efficiently.

Theorem 7 Given S, a set of n orthogonal segments,
and a segment s ∈ S, we can compute a shortest path
tree rooted at s in O(n log2 n) time.

Proof. Our algorithm is based on the well-known BFS
algorithm. We maintain two segment trees: one for

CCCG 2015, Kingston, Ontario, August 10–12, 2015

s s

a

a

b

b
c

d

e

c

d

e

Figure 3: A shortest path tree for a set of orthogonal
segments and root segment s.

the horizontal segments, D1, and one for the vertical
segments, D2. Assume s is a vertical segment, we can
find all the segments at distance 1 from s by performing
a query in D1, let us denote all these segments by S1.
In a similar manner, we can find all the segments at
distance 2 from s by performing a query in D2 with each
of the segments in S1. A segment that is found during
a query, is deleted from the appropriate data structure
in O(log2 n) time. We repeat the previous step, until no
new intersections are found, implying that our shortest
path tree is complete.
Running time: for a given segment t, a query re-

quires O(log2 n + k) time, where k is the number of
segments (remaining in the data structure) intersecting
t. We perform at most n queries for each data structure
and each segment is returned at most once, thus overall
the construction takes O(n log2 n) time. �

Acknowledgments The authors would like to thank
Alon Efrat for helpful discussions.

References

[1] M. de Berg, O. Cheong, M. van Kreveld, and M.
Overmars. Computational Geometry — Algorithms
and Applications. Springer-Verlag, 3rd edition, 2008.

[2] A. Efrat, A. Itai, and M. J. Katz. Geometry helps
in bottleneck matching and related problems. Algo-
rithmica 31 (2001), 1–28.

[3] A. Efrat, M. J. Katz, F. Nielsen, and M. Sharir.
Dynamic data structures for fat objects and their
applications. Computational Geometry 15 (2000),
215–227.

[4] J. E. Hopcroft and R. M. Karp. An n5/2 algorithm
for maximum matchings in bipartite graphs. SIAM
Journal on Computing 2(4) (1973), 225-231.

[5] M. J. Katz and M. Sharir. An expander-based ap-
proach to geometric optimization. SIAM Journal on
Computing 26(5) (1997), 1384–1408.

[6] K. Kedem, R. Livne, J. Pach, and M. Sharir. On
the union of Jordan regions and collision-free trans-
lational motion amidst polygonal obstacles. Discrete
Comput. Geom. 1 (1986), 59–71.

[7] A. Madry. Navigating central path with electrical
flows: From flows to matchings, and back. In Proc.
54th IEEE Symp. Foundations of Computer Science
pp. 253-262, 2013.

[8] M. Mucha and P. Sankowski. Maximum match-
ings via Gaussian elimination. In Proc. 45th IEEE
Symp. Foundations of Computer Science, pp. 248-
255, 2004.

