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Abstract

Let P = {C1, C2, . . . , Cn} be a set of color classes, where
each color class Ci consists of a set of points. In this pa-
per, we address a family of covering problems, in which
one is allowed to cover at most one point from each color
class. We prove that the problems in this family are NP-
complete (or NP-hard) and offer several constant-factor
approximation algorithms.

1 Introduction

Let P = {C1, C2, . . . , Cn} be a set of color classes, where
each color class Ci consists of a set of points. In this
paper we address several closely related covering prob-
lems, in which one is allowed to cover at most one point
from each color class. Before defining the problems, let
us introduce some terminology. Let the set P of point
color classes be on a line. We call an interval on the
x-axis that contains at most one point from each color
class a conflict-free interval (or CF-interval for short).

In this paper we consider the following problems.
Covering color classes with CF-intervals: Given
a set P of point color classes on a line where each color
class consists of a pair, find a minimum-cardinality set
I of CF-intervals, such that at least one point from
each color class is covered by an interval in I.
Covering color classes with arbitrary unit
squares: Given a set P of point color classes in the
Euclidean plane where each color class consists of a
vertically or horizontally unit separated pair of points,
find a minimum-cardinality set S of unit squares
(assuming a feasible solution exists), such that exactly
one point from each color class is covered by a square
in S.
Covering color classes with a convex polygon:
Given a set P of point color classes in the Euclidean
plane where each color class consists of either a pair or
a triple of points, decide whether or not there exists
a convex polygon Q such that Q contains exactly one
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point from each color class. We also consider the
related problem in which each color class consists of a
pair of points and the goal is to maximize the number
of color classes covered by a convex polygon Q, with Q
containing exactly one point from each color class.

1.1 Related work

As far as we know, the first to consider a “multiple-
choice” problem of this kind were Gabow et al. [7], who
studied the following problem. Given a directed acyclic
graph with two distinguished vertices s and t and a set
of k pairs of vertices, determine whether there exists a
path from s to t that uses at most one vertex from each
of the given pairs. They showed that the problem is
NP-complete. A sample of additional graph problems
of this kind can be found in [2, 8, 13]. The first to con-
sider a problem of this kind in a geometric setting were
Arkin and Hassin [3], who studied the following prob-
lem. Given a set V and a collection of subsets of V , find
a cover of minimum diameter, where a cover is a sub-
set of V containing at least one representative from each
subset. They also considered the multiple-choice disper-
sion problem, which asks to maximize the minimum dis-
tance between any pair of elements in the cover. They
proved that both problems are NP-hard and gave O(1)-
approximation algorithms. Recently, Arkin et al. [1]
considered the following problem. Given a set S of n
pairs of points in the plane, color the points in each pair
by red and blue, so as to optimize the radii of the mini-
mum enclosing disk of the red points and the minimum
enclosing disk of the blue points. In particular, they
consider the problems of minimizing the maximum and
minimizing the sum of the two radii. In another recent
paper, Consuegra and Narasimhan [4] consider several
problems of this kind.

1.2 Our results

In Section 2 we consider the problem dealing with cov-
ering color classes, each consisting of a pair of points,
with a minimum-cardinality set of CF-intervals. We
prove that it is NP-hard by first proving that the fol-
lowing problem (covering color classes with a given set of
CF-intervals) is NP-hard. Given a set P of point color
classes and a set I of CF-intervals, find a minimum-
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cardinality set I ′ ⊆ I (if it exists), such that, at least
one point from each color class is covered by an interval
in I ′. The latter proof is by a reduction from minimum
vertex cover. The former proof also requires the follow-
ing auxiliary result, which we state as an independent
theorem. More precisely, we prove that minimum ver-
tex cover remains NP-hard even when we restrict the
underlying set of graphs to graphs in which each vertex
is of degree at least |V |/2, where V is the set of vertices
of the graph. We present a 4-approximation algorithm
for this problem. We also present a 2-approximation
algorithm for covering with arbitrary CF-intervals.

In Section 3 we consider the case where P is a set of
point color classes in the Euclidean plane.

Suppose each color class consists of a pair and each
pair of points from the same color class is unit distance
apart, either vertically or horizontally separated. We
show that finding a minimum-cardinality set S of axis
parallel unit squares (assuming a feasible solution ex-
ists), such that exactly one point from each color class
is covered by a square in S is NP-hard. We then present
a 6-approximation algorithm.

We then consider the case that each color class con-
sists of either a pair or triple of points. We show that
deciding if there exists a convex polygon Q such that Q
contains exactly one point from each color class is NP-
complete. If each color class consists of a pair of points,
we show that maximizing the number of color classes
covered by Q is NP-hard. Finally, we consider the case
that each color class consists of an arbitrary amount of
points and all points from the same color class are verti-
cally collinear. We (optimally) maximize the number of
color classes covered (exactly one point from each color
class) by Q in polynomial time.

2 Covering Color Classes

Let P = {C1, C2, . . . , Cn} be a set of n color classes,
where each color class Ci is a pair of points {pi, pi} on
the x-axis. We call an interval on the x-axis that con-
tains at most one point from each color class a conflict
free interval (CF-interval). A main goal in this section
is to prove that the following problem is NP-hard; ad-
ditionally, we give a 2-approximation.

Problem 1 Covering color classes with CF-
intervals. Find a minimum-cardinality set I of arbi-
trary CF-intervals, such that at least one point from
each color class is covered by an interval in I.

Before presenting the proof, we prove that the problem
in which one has to pick the covering CF-intervals from
a given set of CF-intervals is NP-hard. We then use
this result in our proof for Problem 1, together with an
auxiliary result stated as Theorem 2 below.

2.1 Covering with a given set of CF-intervals

We prove that the following problem is NP-hard.

Problem 2 Covering color classes with a given
set of CF-intervals. Given a set I of CF-intervals,
find a minimum-cardinality set I ′ ⊆ I (if it exists), such
that at least one point from each color class is covered
by an interval in I ′.
We describe a reduction from vertex cover. A vertex
cover of a graph G is a subset of the vertices of G, such
that each edge of G is incident to at least one vertex
of the subset. Given a positive integer k, determining
whether there exists a vertex cover of size k is an NP-
complete problem [9]. Let G = (V,E) be a graph, where
V = {v1, . . . , vn} and E = {e1, . . . , em}. We construct
a set P of point color classes and a set I of CF-intervals,
such that G has a vertex cover of size k if and only if
there exists a subset I ′ ⊆ I of size k that covers at least
one point from each color class.

v1 v2

v3

v4

v5

v6
e1

e2

e3

e4

e5

e6

e7
L1 = {e1} L2 = {e1, e2, e3}

L3 = {e2, e4, e6}

L4 = {e4, e5}

L5 = {e3, e5, e7}

L6 = {e6, e7}

p1
p1

p2 p2
p3 p3p4 p4

p5p6 p6
I1 I2

p5
I3 I4

p7 p7

I5 I6

Figure 1: Reduction from vertex cover.

For each vertex vi create an initially empty set Li.
For each edge ek = {vi, vj}, where i < j, add ek to Li

and ek to Lj . Now, draw n disjoint intervals on the x-
axis, one per set, such that interval Ii+1 is to the right
of interval Ii, i = 1, . . . , n−1. Moreover, for each set Li,
draw |Li| arbitrary points on the interval Ii as follows.
For each element in Li, if it is of the form ej , then add
the point pj to Ii, and if it is of the form ej , then add the
point pj to Ii. Finally, set P = {{p1, p1}, . . . , {pm, pm}}
and I = {I1, . . . , In}. See Figure 1 for an illustration.

It is easy to see that G has a vertex cover of size
k if and only if there exist k intervals in I which to-
gether cover at least one point from each color class in
P . Hence we have the following theorem.

Theorem 1 Problem 2 is NP-hard.

2.2 Covering with arbitrary CF-intervals

In order to show that Problem 1 is NP-hard, we first
need to prove the following theorem, which says that
minimum vertex cover remains NP-hard even when we
restrict our attention to highly dense graphs.
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Figure 2: The graph G′.

Theorem 2 (Min vertex cover in dense graphs)
Finding a minimum vertex cover of a graph in which
the degree of each vertex is at least n

2 is NP-hard, where
n is the number of vertices in the graph.

Proof. Let G = (V,E) be any graph. We construct a
new graph G′ = (V ′, E′) in which the degree of each ver-

tex is at least |V
′|

2 , and show that one can immediately
obtain a minimum vertex cover of G from a minimum
vertex cover of G′ (and vice versa).

Let G1 = (V1, E1) be the complete graph of |V | + 2
vertices. We construct G′ as follows. Set V ′ = V ∪
V1 ∪ {u1, u2}, where u1, u2 are two new vertices. Set
E′ = E ∪ E1 ∪ E2 ∪ E3, where E2 = V × V1 and E3 =
V1 × {u1, u2} (see Figure 2). Notice that G′ has the
desired property, i.e., for each v ∈ V ′, the degree of v (in

G′) is at least |V
′|

2 = 2|V |+4
2 = |V |+ 2. (If v comes from

V , then degG′(v) = degG(v)+|V |+2 ≥ |V |+2, if v comes
from V1, then degG′(v) = degG1

(v) + |V |+ 2 ≥ |V |+ 2,
and if v ∈ {u1, u2}, then degG′(v) = |V1| = |V |+ 2.)

We now claim that given a minimum vertex cover of
G′, one can immediately obtain a minimum vertex cover
of G, and vice versa. Let V ∗ be a minimum vertex cover
of G′. We first show that V1 ⊆ V ∗. Since G′ contains
the complete graph G1 of size |V | + 2, any minimum
vertex cover of G′ must include at least |V |+ 1 vertices
of V1. If one of V1’s vertices, v, is not in V ∗, then
both u1 and u2 are necessarily in V ∗ (to cover the edges
{v, u1}, {v, u2}). But, if so, V ∗ is not a minimum vertex
cover, since V ∗ \ {u1, u2} ∪ {v} is also a vertex cover of
G′. We conclude that V1 ⊆ V ∗. Notice that V1 covers
all the edges in E′ except for the edges in E. Thus, the
rest of the vertices in V ∗ consist of a minimum vertex
cover of G. In other words, V ∗∩V is a minimum vertex
cover of G.

On the other hand, let Ṽ be a minimum vertex cover
of G, then V1 ∪ Ṽ is a minimum vertex cover of G′.
(Since, as shown above, V1 is contained in any mini-
mum vertex cover of G′, and in order to cover the re-
maining uncovered edges, we need a minimum vertex
cover of G.) �

Corollary 3 Finding a minimum vertex cover of a
graph G = (V,E) in which the degree of each vertex
is at least ε|V |, where 0 < ε < 1, is NP-hard.

Proof. Similar to the proof of Theorem 2. �
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Figure 3: Illustration of Theorem 4.

We are now ready to prove that Problem 1 is NP-
hard. We describe a reduction from minimum vertex
cover in dense graphs (see Theorem 2 above). Let
G = (V,E) be any graph in which the degree of each ver-
tex is at least n

2 , where n = |V |. By Dirac’s theorem [5]
(or Ore’s theorem [11]), G contains a Hamiltonian cycle;
moreover, Palmer [12] presented a simple and efficient
algorithm for computing such a cycle, under the condi-
tions of Ore’s theorem.

Let v1, v2, . . . , vn, v1 be a Hamiltonian cycle in G.
As for Problem 2, we construct a set P of point color
classes. For each vertex vi ∈ V , we construct a set Li

as follows. For each edge ek = {vi, vj} adjacent to vi,
we add ek (resp., ek) to Li, if i < j (resp., j < i).
We now draw n disjoint intervals on the x-axis, such
that interval Ii corresponds to set Li and precedes in-
terval Ii+1 (for i < n). We draw |Li| points in Ii as
follows. Let ej = {vi−1, vi} and ek = {vi, vi+1}. Then
ej , ek ∈ Li. Place a point pj corresponding to ej at the
left endpoint of Ii and place a point pk corresponding
to ek at the right endpoint of Ii. In addition, place a
point anywhere in the interior of Ii, for each of the other
elements in Li. For example, in Figure 3 ej and ek are
the edges connecting vi to vi−1 and to vi+1, respectively,
and e1, e2, e3, e4 are the other edges incident to vi. The
corresponding interval representation is shown in Fig-
ure 3.

Now, set P = {{p1, p1}, {p2, p2}, . . .} and I =
{I1, . . . , In}. Observe that Ii is conflict free (by con-
struction), for i = 1, . . . , n. Moreover, any other CF-
interval is necessarily contained in one of the intervals
already in I (since any interval that covers the right
endpoint of Ii and the left endpoint of Ii+1 is not con-
flict free). Thus, one might as well pick intervals from
I when covering the color classes of P with a minimum
number of arbitrary CF-intervals. But, by Theorem 1
this is NP-hard. Hence we have the following theorem.

Theorem 4 Problem 1 is NP-hard.

A 4-approximation algorithm for Problem 2.
Let P = {C1, C2, . . . , Cn} be a set of point color classes
(pairs, Ci = {pi, pi}) on the set of points P =

⋃
i Ci.

We assume there exists I ′ ⊆ I such that I ′ covers at
least one point from each color class and we provide a 4-
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approximation algorithm for covering P with the fewest
number of CF-intervals. For a given p ∈ P, let Ip ∈ I
be a CF-interval (if it exists) that covers p and extends
farthest to the right among all intervals that cover p.

Let I
(r)
p ⊆ Ip be the subinterval of Ip that contains p

and all points to the right of p.

Input: P = {C1, C2, . . . , Cn}, a set of point color
classes and I, a set of CF-intervals.
Output: A subset I ′ ⊆ I covering at least one
point from each color class.
T = ∅
while there exists p ∈ P such that p is uncovered
in T and there exists I ∈ I such that p ∈ I do

Let p be the leftmost uncovered point in P that
is contained in some interval in I.

T ← T ∪ I(r)p

end
Compute a subset of intervals T to cover at least
one point of each of the Ci’s, using a low-frequency
set cover approximation algorithm.
Let I ′ be the set of intervals Ip ∈ I corresponding

to each I
(r)
p of T in the resulting cover.

Algorithm 1: An algorithm for Problem 2.

Lemma 5 |I ′| ≤ 4|OPT |.

Proof. Consider the set T of intervals at the end of
the while loop. Let OPTT ⊆ T be an optimal set cover
of the Ci’s. First we claim that |OPTT | ≤ 2|OPT |.
Consider the leftmost point p in an arbitrary interval A
of OPT. By the construction of Algorithm 1, we know
that there must exist an interval T ∈ T that contains
p. If there exists a point that is covered by A and not
covered by T , then let q be the leftmost such point. We

know there exists an interval I
(r)
q ∈ T that starts at q

and extends at least as far to the right as does A. Thus,
for any A ∈ OPT , there exist at most two intervals in
T , the union of which entirely contains A.

Observe that since each newly added interval to T
cannot contain a previously covered point, then, at the
end of the while loop, each p ∈ P is contained in at
most one interval of T ; thus, each pair Ci is covered by
at most two intervals of T (one covering pi, one covering
pi). Therefore, we are approximating a low-frequency
(at most 2) set cover instance, for which LP relaxation
gives a 2-approximation [14] (pp. 119-120). Hence, we
have |I ′| ≤ 2|OPTT | ≤ 4|OPT |. (For color classes of
size at most c, we obtain a 2c-approximation.) �

A 2-approximation algorithm for Problem 1.
Let P = {C1, C2, . . . , Cn} be a set of point color classes
(pairs, Ci = {pi, pi}) on the set of points P =

⋃
i Ci. We

provide a simple 2-approximation algorithm for covering
P with arbitrary CF-intervals. For any point p ∈ P,
denote the maximal CF-interval starting at p and ending
at a point of P to the right of p (or at p) by Imax(p).

Input: P = {C1, C2, . . . , Cn}, a set of point color
classes.
Output: A set I of CF-intervals.
I = ∅
while P 6= ∅ do

Let p be the leftmost point in P
I ← I ∪ Imax(p)
For each point of P that lies in Imax(p), remove
it and its twin point from P

end
Algorithm 2: A greedy algorithm for Problem 1.

Consider the set I computed by Algorithm 2. Clearly,
I is a set of (disjoint) CF-intervals, such that at least
one point from each color class is covered by the in-
tervals of I. It remains to prove that I is a 2-
approximation of OPT , where OPT denotes any op-
timal solution.

Lemma 6 |I| ≤ 2|OPT |.

Proof. For any two points x and y, let [x, y] (resp.,
(x, y)) denote the closed (resp., open) interval with end-
points x and y. Let [pa, pb] and [pc, pd] be two consecu-
tive intervals in I. Observe that since [pa, pb] is a max-
imal CF-interval, there exists a point pi (resp., pi) in
[pa, pb], such that pi (resp., pi) is in (pb, pc). Therefore
any interval in OPT can intersect at most two inter-
vals in I. Moreover, since OPT must cover the color
class Ci = {pi, pi}, there exists an interval I ∈ OPT ,
such that I ∩ {pi, pi} 6= ∅. We thus conclude that
|OPT | ≥ |I|/2. �

3 Two Dimensions

Let P = {C1, C2, . . . , Cn} be a set of n color classes
in the Euclidean plane. We explore covering problems
where exactly one point from each color class must be
covered.

3.1 Unit Squares

Problem 3 Covering color classes with arbitrary
unit squares. Let P = {C1, C2, . . . , Cn} be in the Eu-
clidean plane and let each color class Ci consist of a
vertically or horizontally unit separated pair of points.
Find a minimum-cardinality set S of axis-aligned unit
squares (assuming a feasible solution exists), such that
exactly one point from each color class is covered by a
square in S.

Theorem 7 Problem 3 is NP-hard.

Proof. The reduction is from PLANAR 3-SAT [10],
where one is given a formula in conjunctive normal
form with at most three literals per clause, with the
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objective of deciding whether or not the formula is sat-
isfiable. Given variables {x1, x2, . . . , xn} and clauses
{c1, c2, . . . , cm}, we consider the graph whose nodes are
the clauses and variables and whose edges join variable
xi with clause cj if and only if xi ∈ cj or ¬xi ∈ cj . The
resulting bipartite graph, G, is planar.

In a manner similar to Fowler et al. [6], in a planar
embedding of G we replace all of the edges incident to
a variable node with a variable chain that visits the
corresponding clauses and returns to the variable node
to form a loop. The variable chains consist of a se-
quence of unit separated pairs (see Figure 4) and are
designed in such a way that any minimum cardinality
solution will either cover {ai+k, ai+k+1 : k is even} or
{ai+k, ai+k+1 : k is odd}. That is, for a given variable
chain, either all blue unit squares or all red unit squares
will be used. Using red (resp. blue) squares for variable
xi is equivalent to setting this variable to TRUE (resp.
FALSE). Using planarity of the graph embedding, no
two variable chains intersect, and any two points from
different chains are spaced at least unit distance apart.

ai+1

ai+1

ai+2

ai

ai

ai+2

ai+3

ai+3

1

1 1

1

Figure 4: Variable chain.

Clause ci consists of a single (green) pair (see Fig-
ure 5). If ci evaluates to FALSE, then a square that is
not associated with any variable loop will be needed to
cover ci. If ci evaluates to TRUE, then a point from
ci can be covered by a square from an incoming loop
whose literal evaluates to TRUE.

clause ci
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¬xk
1− ε

1− ε

1− ε

1

1

1

1

1

1

1

Figure 5: Clause gadget.

Let ri be the number of pairs used in variable chain
i, 1 ≤ i ≤ 3m. We design the variable chains so that ri
is even for all i. Let r =

∑
i ri. It is now apparent that

there exists a satisfying truth assignment in PLANAR

3-SAT if and only if a minimum cardinality covering
with unit squares uses r

2 squares. �

Remark: If P is on a line and pairs are unit sep-
arated, we can minimize the number of unit intervals
used in a complete cover (assuming a solution exists) in
polynomial time using dynamic programming.

A 6-approximation algorithm. We lay out a grid with
unit dimensions on top of our point set P and two-
color the cells of the grid red and black in the style
of a checkerboard. We say that a cell is occupied if it
contains a point in P . Let R be the set of occupied
red cells and B the set of occupied black cells. As a
solution, we use the set of smaller cardinality.

Lemma 8 min{|R|, |B|} ≤ 6|OPT |.

Proof. Suppose w.l.o.g that min{|R|, |B|} = |R|. Note
that R is a feasible solution because any two points of
a color class are unit separated either vertically or hor-
izontally, thus one of the two points must occupy a red
cell and the other must occupy a black cell. Therefore,
R covers all color classes of points and no two points
from the same color class are covered by R.

Now we claim that in the optimal solution, OPT , at
least 1

12 (|R|+ |B|) unit squares are used. An arbitrary
unit square, s, used in OPT stabs at most four cells
of the checkerboard. These four cells are adjacent to
at most eight other cells in total, each of which can be
occupied by the pair of one of the points covered by s.
Thus, at most 12 occupied cells of the checkerboard can
be accounted for by any unit square used in OPT .

Combining the fact that min{|R|, |B|} ≤ 1
2 (|R|+ |B|)

and OPT ≥ 1
12 (|R|+|B|), we have that min{|R|, |B|} ≤

6|OPT |. �

3.2 Covering with a Convex Polygon

Problem 4 Let P = {C1, C2, . . . , Cn} be in the Eu-
clidean plane and let each color class Ci consist of either
a pair or a triple of points. Decide whether or not there
exists a convex polygon Q such that Q contains exactly
one point from each color class.

Problem 5 Let P = {C1, C2, . . . , Cn} be in the Eu-
clidean plane and let each color class Ci consist of a pair
of points. Maximize the number of color classes covered
by a convex polygon Q such that Q contains exactly one
point from each covered color class.

Theorem 9 Problem 4 is NP-complete.

Proof. Problem 4 is clearly in NP because we can check
whether or not polygon Q is convex and whether or
not Q contains exactly one point from each color class
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in polynomial time. We present a reduction from EX-
ACTLY 1-IN-3-SAT, where one is given a formula in
conjunctive normal form with at most three literals per
clause, with the objective of deciding whether or not the
formula is satisfiable. In a satisfying assignment, every
clause must contain exactly one TRUE literal.
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Figure 6: Construction of hardness for Problem 4.
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Figure 7: Close-up of variable gadget for Problem 4.

Given variables {x1, x2, . . . , xn} and clauses
{c1, c2, . . . , cm}, we start by considering 2n points,
S = {s1, s2, . . . , s2n}, in the position of a regular
2n-gon. These 2n points are not part of any color class;
we use them to help explain the construction. We place
two pairs of points around each point of S in such a
way that convex polygon Q must have vertices at each
point of S (see Figure 6). We create a variable gadget
xi in between points s2i−1 and s2i for 1 ≤ i ≤ n. Each
variable gadget consists of color class that is a pair
of points {qi, qi}, 1 ≤ i ≤ n (see Figure 7). We place
{qi, qi} so that Q can be expanded to cover either qi
(green lines in Figure 7) or qi (red lines in Figure 7),
while remaining convex. Setting xi to TRUE (resp.
FALSE) corresponds to expanding Q to cover qi (resp.
qi). If xi (resp. ¬xi) appears in clause cj , a point
from a color class that contains triple {dj1, dj2, dj3}
will appear in the expansion of Q that covers qi (resp.
qi), and not in the expansion of Q that covers qi (resp.
qi). It is now apparent that there exists a satisfying
truth assignment in EXACTLY 1-IN-3-SAT if and only
if convex polygon Q covers exactly one point from each
color class. �

Theorem 10 Problem 5 is NP-hard.

Proof. The reduction is from MAX EXACTLY 1-IN-
2-SAT where each clause has at most two literals and

the objective is to maximize the number of clauses that
evaluate to TRUE. A clause evaluates to TRUE if and
only if it contains exactly one TRUE literal. Using the
same construction as in Problem 4, it is easy to see that
maximizing the number of TRUE clauses is equivalent
to maximizing the number of color classes covered. �
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