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An Upper Bound on Trilaterating Simple Polygons
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Abstract

In this work, we introduce the Minimum Trilateration
Problem, the problem of placing distance measuring
guards in a polygon in order to locate points in the in-
terior. We provide the first non-trivial bounds on trilat-
erating simple polygons, by showing that b 8N9 c guards
suffice for any non-degenerate polygon of N sides, and
present an O(N logN) algorithm for the corresponding
placement. We also show how this mapping can be effi-
ciently inverted, in order to determine a point’s location
given its distances to the guards which can see it.

1 Introduction

Trilateration is the technique of determining absolute
locations of points using distances and the geometry of
circles and spheres. For example, in 2-D if the two dis-
tances of a point from two fixed centers are known then
there are only two possible candidate locations for the
point. If three distances of a point from three fixed, non
collinear points are known, there is only one possible lo-
cation for the unknown point.

Formally, suppose we have a set of known points {ri},
and their corresponding distances {di} to an unknown
point p. Then, to trilaterate p, we must solve the sys-
tem:

‖ri − p‖ = di (1)

for all possible solutions p. If there exists a unique
solution, then we say that the set {ri} trilaterates p.

Observation 1 If r1, r2, r3 are non collinear points,
and the di’s are valid distances, then the system in
Equation 1 is always solvable for a unique p.

We define distance measuring guards as points which
can measure the distance to other points in their
visibility region. Given a polygon P , we wish to find
a set of distance measuring guards R such that for
every point p, when we consider only those {ri} which
can view p, the system in Equation 1 has a unique so-
lution in P . We will formalize this problem in Section 2.
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We call the problem of finding the smallest such
guard set for a polygon as the Minimum Trilater-
ation Problem. Our results show upper bounds for
this problem analogous to the upper bounds for the
Art Gallery Problem [12]. As the Art Gallery Problem
is analogous to dominating sets in visibility graphs, our
problem also has an analogous graph theory problem
known as the metric dimension of the graph. [8].
There has also been work on guarding polygons where
each point must be viewed by multiple guards [3], but
although they mention trilateration as an application,
k-guarding a polygon is not sufficient for unambiguous
trilateration.

First, we show that when constrained to certain prop-
erties, partitioning a polygon and finding a trilaterating
guard set for each individual piece can result in a valid
trilateration of the original polygon. We demonstrate
that every polygon admits such a partition, and show
how to efficiently map these partitions into trilaterating
guard sets of size no more than 8N/9 when the polygon
has N sides.

We also show how these algorithms and bounds can
be extended to the case where the polygon is not in
general position. This is an important case because
of the role that collinearity plays in our problem. We
show that even in this case, collinear guards can locate
points by taking advantage of the visibility geometry
of the polygon.

2 Simple Trilateration

2.1 Definitions

Let P be a simple polygon, which may or may not be
in general position (both cases will be addressed in this
paper). For any two points a, b ∈ P , we say that a and
b are mutually visible if ab ⊂ P . For a specific point
p, we define the visibility region V (p), as the set of all
points visible from p. The kernel of P , K(P ) is the
set of points k ∈ P such that V (k) = P . A polygon is
star-shaped if K(P ) is non-empty.

For a specific point r, we can define a “vision-
masked distance” function, dr : P → R, such that
dr(p) = ‖p− r‖ if r can view p, and −1 otherwise. For
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a group of k points R, we similarly define DR : P → Rk

as the vector of vision-masked distances from p to the
various r ∈ R.

Our goal is to find a guard set such that, for all
pairs of points p, q ∈ P , we have DR(p) 6= DR(q). We
formalize this with the following definition:

Definition 1 For a simple polygon P , and a finite set
of points R ⊂ P , we say that R trilaterates P without
ambiguity if the vision-masked distance vector function
DR(p) is injective over the domain P .

2.2 Simple cases

There are several simple cases to consider. The most
obvious is when P is the unbounded plane, and R is a
set of three, non-collinear guards. Then, by solving a
system of equations describing the intersection of three
circles, we can uniquely locate any point p. If P is a
star shaped polygon with at least 3 non-collinear points
in the kernel, then we can trilaterate P with these three
points.

When the kernel of P includes two points on the same
edge, we can trilaterate P with only those two points.
To see why, consider when R is two such points a and b,
and we attempt to solve System 1. Solving the system
of equations yields two points, p and p′, reflected across
ab. WLOG p is on the same side of ab as the polygon
P . Then, since a and b are in the kernel of P and are
on an edge of it, this edge alone blocks their view of the
other half of the plane induced by ab. Thus we know
that p′ is not in the domain polygon P , and return p as
the correct point. We give a generalized observation:

Observation 2 Let R be a guard set in P , and consider
two a, b ∈ R. If V (a) ∩ V (b) is entirely on one side of
the closed half plane induced by ab, then a and b can
trilaterate points in the set V (a) ∩ V (b).

The logic is the same as above. Solving System 1 with
the distances to a and b yields two points, in opposite
half planes induced by ab. Thus we can rule out one of
them from our domain, based on which one is on the
same side of ab as the region V (a) ∩ V (b).

2.3 Partition and cover

One possible approach for finding a trilaterating set is to
partition P into polygons which are simple to trilaterate
(star-shaped or otherwise), individually trilaterate each
one, and take the union of all guard sets. However, this
doesn’t always work. Consider the simple case where
we wish to trilaterate a square, and we split it into two
triangles via a diagonal. If we trilaterate each piece with
two guards on the shared diagonal, the square cannot be

trilaterated, as all guards are collinear. If we partition
the polygon and use two guards on an edge to cover a
piece, we need to be sure that the piece sharing that
edge does not also put guards on it. We address this
issue with the following lemma:

Lemma 1 Let P be a simple polygon, partitioned into
P1, P2, ..., Pk. Let Ri ⊂ K(Pi) be sets of disjoint guards
that trilaterate each respective polygon in the partition.
Then, if Ri∪Rj contains three non-collinear guards for
all i, j, R trilaterates P .

Proof. We show that given any p ∈ P , we can derive
p from the given distance vector DR(p). We will split
it into parts DRi

(p), projected onto the respective Ri

components. Note that since Ri ⊂ K(Pi), all points in
Ri can see all points in Pi. Thus if an entry of DRi(p)
is −1, we can conclude that p 6∈ Pi. If this is the case,
we will say that Pi is an impossible location for p, else
we consider it plausible. Observe that there must be at
least one plausible Pi, since we have that p is in some
Pi, we just do not know which yet.

Suppose there is only one plausible Pi. Then, the
same process used to trilaterate Pi with Ri can be
reused.

Suppose instead that there are at least two plausible
Pi, Pj . Then all guards in Ri∪Rj can see p and yield dis-
tance values. Since Ri∪Rj contains three non-collinear
guards, we can solve for the location of p. �

We will show how to find such a partition for a gen-
eral polygon P which satisfies Lemma 1. In particular,
we will partition using only diagonals of P . For each
piece and corresponding guard placement (Pi, Ri), we
will have either Ri being three non-collinear guards, or
two guards on an edge of Pi, which is a diagonal or edge
of P . If we make sure not to reuse the same diagonal
for different placements, this will limit our placement to
distinct diagonals. Our first argument will assume that
P is in general position, meaning the above placement
satisfies Lemma 1. Our second argument will address
the case when diagonals of P may be collinear, and show
that, as long as we are still using distinct diagonals for
placement, an application of Observation 2 will let us
locate all points in P .

Observation 3 If P is in general position, and a, b
and c, d are on distinct diagonals, then a, b, c, d are not
collinear.

3 Upper bound for general position polygons

Before we state our main theorem, we first show a
trivial upper bound and lower bound. Suppose we put
a distance measuring guard on each vertex of a polygon
with N vertices. If we consider its triangulation, then
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we can see that any point in P can always view three
non-collinear vertices of P . Hence it can see three
non-collinear guards, and can be trilaterated. Thus N
guards always suffices for any polygon.

To show a lower bound, we can reuse the comb
polygon lower bound for the art gallery problem. No
point in the comb can view into two different comb
spikes. Thus we need at least two guards per spike to
trilaterate all of the points in its interior. Thus 2N/3
is a lower bound for minimum trilateration.

We now present the main theorem of this paper,
which is giving an upper bound better than N guards:

Theorem 2 Any simple polygon P with N vertices can
be trilaterated by a guard set of size no more than 8N/9.

To prove Theorem 2, we give both a method of con-
structing a guard set, and a method for inverting dis-
tance vectors back to points. Our method has several
steps. First, we use a generic fan partition to divide P
into N/3 pieces, each piece being star shaped, and some
having several prospective edges (which are either diag-
onals or edges of P ) on which we could place guards.
Second, we use a bipartite graph connecting pieces of
the partition to possible diagonals / edges for place-
ment of guards, preventing separate pieces from using
the same diagonal for placement. After finding a maxi-
mum matching in this graph, we return, along with each
piece of the partition, the set of guards which trilaterate
that piece. The pseudocode for this algorithm is pre-
sented later on as Algorithm 1. For inverting these dis-
tances, we still use the procedure presented in Lemma
1, the pseudocode for which is presented as Algorithm
2.

The partition that we use is Chvátal’s fan partition
from the original proof of the art gallery theorem [5].
Although it is classic, it has largely been overshadowed
by the Fisk proof using coloration [7]. Thus we will
restate it here:

Definition 2 A fan is a polygon P with at least one
vertex u, such that for all other vertexes v not adjacent
to u, uv is a proper diagonal of P . We call u the center
of the fan.

Theorem 3 Every N -triangulation can be partitioned
into m fans where m ≤ bn/3c. Furthermore, this can
be done in O(N logN) time.

This theorem is useful as it allows us to use any trian-
gulation method we wish in order to find a fan partition.
Thus our algorithm is agnostic to the method used to
find the triangulation. Our run time is essentially dom-
inated by the O(N logN) time needed to convert the
triangulation into a fan partition. Thus, we can use the

Figure 1: A polygon partitioned into three fans, with
centers labeled c1, c2, c3.

standard O(N logN) triangulation method. See Figure
1 for an example of a polygon partitioned into fans.

3.1 Trilaterating fans

We show several important structural lemmas. Mainly,
we show that every fan with 4 or more triangles can
be trilaterated by 3 guards, while every fan with fewer
than 4 triangles can be trilaterated by 2 guards on an
edge.

We refer to a fan with k triangles in its triangulation
as a k-fan.

Definition 3 For an edge e of a polygon P , we say that
e is a prospective edge if there are two points a, b ∈ e in
the kernel of P . As such, any polygon with a prospective
edge can be trilaterated with 2 guards.

Lemma 4 Every fan of k edges can be trilaterated with
3 guards, which can be found in O(k) time.

Lemma 5 Every 1-fan has 3 prospective edges, every
2-fan has at least 2 prospective edges, and every 3-fan
has at least 1 prospective edge. Further, these edges can
be found in O(1) time.

We defer the proof of these structural lemmas to the
appendix.

3.2 Finding a diagonal disjoint placement

We have shown that every fan can be trilaterated,
either with three guards in its kernel, or two guards on
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Figure 2: The fan partition from Figure 1 with guards
covering each fan.

its boundary. Such a boundary placement corresponds
to a placement on a diagonal or edge of P . In order to
maintain the requirement of Lemma 1, we must find a
placement such that no two fans put their guards on
the same diagonal.

To do this, our algorithm uses the following steps:

• Partition P into a set F of no more than N/3 fans.

• For each fan f , associate with it all diagonals or
edges which intersect K(f) in at least two points.
We do not bother attempting this step if f has 4
or more triangles.

• Given each fans’ prospective edges, find a max
matching between fans and edges.

• For each fan, report an appropriate pair of guards
if it was matched to an edge, or triple of guards
inside its kernel otherwise.

To do this, we create a bipartite graph G =
((F ∪D), E), where F is the set of fans, and D is the
set of diagonals and edges of the partition. We add the
edge (f, d) if d is a viable boundary edge for fan f . We
note a few properties of the graph. First, all 3-fans have
degree at least 1, 2-fans at least 2, 1-fans exactly 3, and
4+-fans exactly 0. Second, if d ∈ D, then deg(d) ≤ 2.
Lastly, Because our graph is defined by the partition, it
is a tree. Note that in finding a matching on this graph

and reporting approprite guards, we do not guarantee
that a fan which could have been trilaterated with 2
guards will still only use 2 in our placement. However,
this is necessary in order to satisfy Lemma 1. See Fig-
ure 2 for an example of a valid placement of guards in
a fan partition which could result from this algorithm.

Consider the number of fans using i triangles, for
i = 1, 2, 3, 4, ..... Call these sets Fi. As previously
shown in Lemma 5, all fans in F1 have at least 3
prospective edges, F2 at least 2, and F3 at least 1.
Hence these nodes in the bipartite graph will have
degrees at least 3, 2, and 1 respectively. Fans with 4 or
more triangles we will simply cover with 3 guards and
not pair with any diagonals. Any diagonal can border
at most 2 distinct fans, so every diagonal node in the
graph will have degree no more than 2.

Suppose that we had k fans, so that |F | = k, and we
found a matching of size j. Then, for j of the fans, we
could use 2 guards, and for the remaining k − j fans
we would use 3 guards. This makes our total guard
usage 2j + 3(k − j) = 3k − j. Since Theorem 3 implies
k ≤ bN3 c, we are using no more than N − j guards. We
thus minimize our guard count by maximizing j.

We now present the main lemma regarding our graph
construction, which we present as a generalized result
on bipartite graphs with certain degree constraints:

Lemma 6 Let G = (A ∪ B,E) be a bipartite graph,
satisfying that for all nodes v ∈ B, deg(v) ≤ 2. Let
c0, c1, c2+ be the sets of nodes in A with degrees 0, 1,
and ≥ 2, respectively, as well as the sizes of these sets.
Then a matching of size c1

2 + c2+ is always possible.

Proof. We prove the above by an application of the
deficit version of Hall’s Theorem [10]. Let S ⊂ A. Then
the defect of S is defined as df(S) = |S| − |N(S)|, the
size of S minus the number of unique neighbors of S
in B. Then the maximum matching M satisfies |M | =
minS⊂A{|A| − df(S)}.

We will upper bound df(S), which gives us a lower
bound on |M |. Consider an arbitrary such S. Let m
be the number of edges leaving S, and let d(k) be the
number of nodes of degree k in S. Then |N(S)| ≥ m/2,
as each node in B has degree at most 2. Also note that
m =

∑
kd(k), and |A| = c0 + c1 + c2+.

|S| − |N(S)| ≤ |S| −m/2

=
∑

d(k)− 1/2
∑

kd(k)

=
∑

(1− k/2)d(k)

≤ d(0) + d(1)/2

≤ c0 + c1/2

Hence df(S) ≤ c0+c1/2, and |M | ≥ A−(c0+c1/2) =
c1/2 + c2+, as desired. �
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We can now prove the main theorem of the paper,
restated below:

Theorem 2 Any simple polygon P with N vertices can
be trilaterated by a guard set of size no more than 8N/9.

Proof. We can partition P into k ≤ N/3 fans, asso-
ciate with each fan its plausible diagonal placements,
and find a matching on the graph G as above. For
any set Ri ∪ Rj , either Ri contains three non collinear
guards, or Ri and Rj are on distinct, non-collinear
diagonals. Thus the placement satisfies Lemma 1 and
trilaterates P .

The matching of G will have size at least c1/2+c2+ =
F3/2+F2 +F1. Thus, the number of guards we will use
is no more than 3k−F3/2−F2−F1. Thus we can bound
the number of guards returned by analyzing the linear
program:

max 3k − F3/2− F2 − F1

s.t. F1 + F2 + ... = k

k ≤ bN/3c
F1 + 2F2 + 3F3 + ... = N − 2

Fi ≥ 0

It can be shown via standard dual arguments that for
all N the objective function is bounded above by 8N/9.
See the appendix for a derivation of this bound. Thus
we can always achieve less than 8N/9 guards. �

We now present the algorithm pseudocode for place-
ment and for location. Although the lemma for locating
points provides an algorithm, we will explicitly give it
as pseudocode, in order to generalize our results to ar-
bitrary simple polygons in the next section.

Lemma 7 Algorithm 1 runs in O(N logN) time.

We defer the proof to the appendix, as it is a routine
examination of the algorithm step by step.

4 Extending the upper bound to polygons that are
not in general position

Consider now a polygon which may not be in general
position. The argument that guards on distinct diago-
nals can trilaterate points is no longer valid, as distinct
diagonals may be collinear. We show how to augment
the the location step with an additional method, in or-
der to still locate points, even if the only guards that
can see them are all collinear. To do this, we use the
following lemma:

Algorithm 1: guard Locations Algorithm

Input : Polygon P
Output: Partition of P with corresponding guard

placements
T = Any triangulation of P
F = FanPartition(T)
D = Edges of F
f = Faces of F
G = (f ∪D, {})
for fi ∈ f do

di ← viable diagonal edges for fi
Add edge (fi, d) to G for all d ∈ di

end
M = MaxMatching(G)
for (fi, di) ∈M do

r1, r2 ← two points ∈ di ∩K(fi)
Yield (fi, {r1, r2})

end
for fi 6∈M do

r1, r2, r3 ← three non-collinear points ∈ K(fi)
Yield (fi, {r1, r2, r3})

end

Algorithm 2: Distance Vector Reversing

Input : Polygon P, Partition {Pi, Ri}, Distance
Vector D

Output: Unique point p that generates D
for {Pi, Ri} in partition do

Di ← D projected onto Ri

if Di has a −1 entry then
Disregard {Pi, Ri}

end

end
if At least two (Pi, Ri), (Pj , Rj) remain then

locatePoint(Ri ∪Rj , Di ∪Dj)
end
else

locateWithinP (Pi, Ri)
end

Lemma 8 Let r1 6= r2 be points in P such that the line
segment e = r1r2 intersects δ(P ), the boundary of P .
Then, the intersection of visibility regions V (r1)∩V (r2)
is entirely in one closed half plane induced by r1r2.

We defer the proof of the above to the appendix. The
application of this lemma is that, if r1 and r2 are on
distinct diagonals, at least one point directly between
them is on the border of P . Thus if p ∈ V (r1) ∩ V (r2),
we can narrow down its location to a specific half plane
defined by r1, r2.

Suppose we had a method which took queries of pairs
of collinear diagonals dl, dr, and returned which of their
sides cannot have common visibility to both. Then, up-
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dating our location method involves only updating the
method locatePoint. First check if the input guards
are collinear. If they are not, solve the system as before.
If they are collinear, then since they are on distinct di-
agonals, we determine on which side of these diagonals p
cannot be in. Once we know this side, we can solve the
system for two potential points, and return the point
that is on the correct side.

Our proposed method will require us to maintain the
triangulation structure from the placement part of the
algorithm, and perform path finding in the dual graph.
Let d1, d2 be collinear diagonals in a triangulation T ,
and consider how the graph dual of T is partitioned by
the edge corresponding to d1. Then the piece of the
partition which has d2 contains the piece of the polygon
which can have common visibility to d1 and d2. We can
make a similar claim on d2. To determine which side
of d1 this piece is on, use the triangulation structure
to determine the triangle which uses d1 and is in the
same piece of the partition as d2. Use a clockwise test
to return whether the third point of this triangle is to
the right or the left of d1. The piece of P with common
visibility must also be to the right or to the left of d1.
See Algorithm 3 for the pseudocode for this method.

Algorithm 3: General Position locatePoint

Input : Polygon Triangulation T, Guard
positions R, Distance Vector d

Output: Unique point p that generates d
P = All solutions to system ‖ri − di‖ = p
if |P | = 1 then

Return the unique p ∈ P
end
else

P = {p1, p2}
Take ri, rj ∈ R on distinct diagonals Di, Dj

Let t be the first triangle in the unique path
between Di and Dj in T
Let x be the vertex of T not on Di

if ccw(ri, rj , x) == ccw(ri, rj , p1) then
return p1

end
else

return p2
end

end

5 Conclusion

We introduced the minimum trilateration problem, and
showed that it has an upper bound of 8N/9 guards.
We gave an O(N logN) algorithm for achieving this
bound, as well as an algorithm for using the given
placement to invert distance vectors to locate points in

the polygon.

Having introduced the trilateration problem and de-
rived an upper bound similar to that for the art gallery
problem, there are several questions left unanswered.
The ones we are most interested in are finding a tight
upper bound, giving an algorithm to verify proposed
guard sets, and showing improved bounds for the usual
variants of art gallery, such as orthogonal polygons,
guards which can move along edges, or guards which
can see through k walls.
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Appendix

We provide the omitted proofs for several lemmas.

Lemma 4 Every fan of k edges can be trilaterated with 3
guards, which can be found in O(k) time.

Proof. First, note that if a vertex can view all other ver-
tices, it can view all other points in the polygon [1]. This
asserts that all fans have a non-null kernel containing the
center vertex v. We will now examine the kernel as the in-
tersection of k half-planes.

Each edge of the polygon defines a half plane, the inter-
section of which is the kernel of the polygon. The two edges
adjacent to v will map to half planes which intersect v. Since
these half planes cannot be parallel or anti-parallel (defining
opposite half-spaces of the plane), their intersection is a re-
gion which v is on the border of. Observe that every other
half plane must contain v, since v is in the kernel, and that
every other half plane cannot intersect v on its boundary.
To see why, consider the half plane defined by the edge ab.
We have that both av and bv are non-intersecting valid diag-
onals of P . Since they are not intersecting, v is not collinear
with ab. Hence the edge of that half plane is at least some
distance ε away from v.

Hence if we take the intersection of all these half planes,
the result is a region around v with an infinite number of
points. Taking any 3 of them as the guard set will suffice.

To find these guards, the linear time kernel algorithm
can be used to determine the kernel [9], from which we re-
turn several random non-collinear points. If we wished for a
slightly simpler algorithm, we do not need the explicit ker-
nel, but just a subset of it. We calculate the distance of v
from each half plane, and take the min of these as r. Then
any point which is in the intersection of the av and bv half
planes and within distance r of v will be in the kernel. It
suffices to pick one and move it ±ε to get three non-collinear
points.

�

Lemma 5 Every 1-fan has 3 prospective edges, every 2-fan
has at least 2 prospective edges, and every 3-fan has at least
1 prospective edge. Further, these edges can be found in O(1)
time.

Proof. The lemma is clearly true of a 1-fan since it is a
triangle which is convex. Thus all edges are prospective
edges.

A 2-fan is a quadrilateral. Let v be the center of the fan,
a and b the vertices adjacent to v, and c the last vertex.
Note that the angles at a and b must be convex. Consider
the visibility regions V (a) and V (b). First note they must
intersect an edge not adjacent to a and b respectively.
Hence V (a) contains ac and intersects part of bc, while V (b)
contains bc and intersects part of ac. Thus some sections of
bc and ac are in the kernel, making them prospective edges.

A 3-fan is a pentagon. Consider the vertices of the fan
labeled in CW order a, v, b, c, d, so that a and b are adjacent
to v. Note that the angles at a and b must be convex. If
the angle at v is convex, then following Lemma 4, the kernel
intersects both va and vb. Else, we consider the case where
v is a reflex angle. Since a pentagon can have at most two
reflex angles, at least one of c or d is a convex angle. WLOG
assume c is convex.

Suppose that d is a reflex angle. Then, we have that we
can extend both ad and av until they hit the boundary of
the fan. They must both end at bc, creating a subsegment
which can see every vertex. Thus bc is a prospective edge.

Suppose instead that d is a convex angle. Then instead
consider extending av and bv until they hit the boundary of
the fan. If av hits bc, then because d is convex, c can see a.
Thus c could also be the vertex center, and we can reduce
to the case where it is a fan with convex angle at the center.
A similar argument applies to if bv hits ad. Thus, we must
have that both av and bv extend to meet cd. Then similar
to the previous case, they create a subsegment which can
see every vertex. Thus cd is a prospective edge. Thus in all
cases, a pentagon has a prospective edge.

To find these edges, we can explicitly compute the kernel,
and determine which edge of the polygon it intersects with
in a continuous region. Since our fan size is no more than 5
edges, this takes O(1) time.

�

Lemma 1 Algorithm 1 runs in O(N logN) time.

Proof. Triangulating the polygon can be done in
O(N logN) time. 3-coloring this triangulation and de-
termining the resulting fan partition can be done in
O(N logN) time, by computing the DCEL representation
of the partition [2], and considering the bounded faces to
be the fans.

For each fan of k edges, either determining the prospec-
tive edges or finding three points in the kernel takes O(k)
time. Thus summing over all fans in the partition, the total
time from these operations is O(N).

To find the maximum matching in our bipartite graph,
it is known that a maximum matching on trees can be
found in O(N) time by using dynamic programming. Since
our graph was induced by the edges of the polygon and
diagonals of the fan partition, it is a tree.

Thus the dominating factor in the run time is using the
diagonals of the triangulation to retrieve the DCEL repre-
sentation of the partition, which takes O(N logN) time.

�

Theorem 2 Any simple polygon P with N vertices can be
trilaterated by a guard set of size no more than 8N/9.

Proof. We derive an upper bound for the linear program,
which we restate here:
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max 3k − F3/2− F2 − F1

s.t. F1 + F2 + ... = k

k ≤ bN/3c
F1 + 2F2 + 3F3 + ... = N − 2

Fi ≥ 0

First note that our objective function is equivalent to
2F1 + 2F2 + 2.5F3 + 3F4 + 3F5 + .... We show that a linear
combination of the constraints bounds our objective func-
tion.

Take 5/3 of the first inequality, and add it to 1/3 of the
second equality, yielding:

(5/3)(F1 + F2 + F3 + ...) ≤ (5/3)bN/3c ≤ 5N/9

(1/3)(F1 + 2F2 + 3F3 + ...) = (N − 2)/3

2F1 + (7/3)F2 + (8/3)F3 + 3F4 + ... ≤ (8N − 6)9

Where the LHS of the final inequality is greater than our
objective function. Thus our objective function is bounded
above by 8N/9. �

Lemma 2 Let r1 6= r2 be points in P such that the line
segment e = r1r2 intersects δ(P ), the boundary of P . Then,
the intersection of visibility regions V (r1)∩V (r2) is entirely
in one closed half plane induced by r1r2.

Proof. We will consider a coordinate frame of axis where
r1 and r2 are both on the x-axis and have opposite signs for
their x coordinate. First, we consider the case where either
r1 or r2 is on an edge e of P . In our coordinate frame, e is
coincident with the x-axis. In this case, it should be clear
that, depending on which side of e P is on, WLOG r1 can
only see above or below the x axis, but not both. Hence the
intersection of visibility regions must be above or below the
x-axis, as desired.

Let X 6= r1, r2 be a point in δ(P ) which is on e. Take a
point with arbitrarily small x coordinate Z = (−∞, 0), and
consider any closed curve path from Z to X which does not
intersect P before touching X. Let Y be the first point on
e which P meets, which may end up being Z. Then, we
now consider the close curve path P ′, which is P from Z to
Y . Consider the side of e that P ′approaches Y from. Since
there is a path from Z to Y that lies completely outside
the polygon, V (r1) and V (r2) cannot intersect on that side
of e, as this would mean that they also intersect P ′, which
lays entirely outside the polygon.

�

Figure 3: An illustration of Lemma 2. The existence of
the path P guarantees us that V (r1) and V (r2) cannot
intersect above the x-axis.


