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The Inapproximability of Illuminating Polygons by α-Floodlights
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Abstract

We consider variants of the art gallery problem where
guard visibility is limited to a certain angular aperture
α. We show that the problem is NP-hard even when
guards can be located in the interior of the polygon.
We then proceed to prove that both this problem and
its vertex variant, where guard placement is restricted
to the vertices of the polygon, are APX-hard.

We observe that earlier constructions for such results
in art gallery problems with 360◦ guards, usually re-
quired them to cover few specific elements. We exploit
this by carefully updating the construction to replace
360◦ guards with α-floodlights. Similar transformations
may be applicable to other constructions in traditional
art gallery theorems, which is of independent interest.

1 Introduction

The study of art gallery problems is a rich area in geom-
etry with a variety of combinatorial bounds, algorithms
and hardness results [20, 21, 24]. While we are only con-
cerned with floodlight illumination, we build upon the
construction of Lee and Lin [18] through the work of
Eidenbenz, Stamm and Widmayer [11]. This construc-
tion was used in [18] to show that deciding the minimum
number of guards in a polygon without holes is NP-hard.
The construction was refined in [11] to further show that
there exists a constant ε > 0, such that no polynomial
time algorithm can guarantee an approximation ratio of
1 + ε unless P = NP . In other words, the problem is
APX-hard, as was obtained independently in [5]. Exact
[10], approximate [17, 4] and heuristic [1] solutions have
been developed.

Most of the aforementioned work focused on omnidi-
rectional guards, i.e., guards with 360◦ range of vision.
However, many recent applications in sensor networks
and smart surveillance are more concerned with sensors
that have limited sensing ranges. This leads us to study
the α-floodlight illumination variant of the art gallery
problem.
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The first documented floodlight illumination prob-
lem is perhaps the stage illumination problem (SIP),
presented in 1992 by Urrutia [7, 3]. Given a line seg-
ment, i.e., the stage, together with a set of floodlights,
of known origins and angles, decide whether the flood-
lights may be rotated to illuminate the stage. The orig-
inal SIP remained unsolved for more than ten years [7]
and was later shown to be NP-complete [16], even under
two different restrictions. Variants of the SIP and other
problems related to floodlights include [23, 22, 6, 13, 9].

Estivill-Castro and Urrutia [14] asked whether com-
puting the minimum set of covering α-floodlights is NP-
hard. Indeed, Bagga, Gewali and Glasser [2] showed
that the vertex Floodlight Illumination Problem (FIP)
is NP-hard, for 0 < α ≤ 360◦. The status of the point
variant, where floodlights can be placed anywhere inside
the polygon, remains open.

The renewed interest in this classical problem is mo-
tivated by several coverage problems in visual and di-
rectional sensor networks. α-floodlights, which restrict
visibility to a certain angular aperture α, are partic-
ularly appealing as a better model for sensors with a
limited sensing range, e.g., cameras.

We define α-floodlights and the two polygon illumi-
nation problems at hand. We also define distinguished
arrows [11], which will be used in some of our arguments.

Definition 1 An α-floodlight at point p, with orienta-
tion θ, is the infinite wedge W (p, α, θ) bounded between
the two rays −→vl and −→vr starting at p with angles θ ± α

2 .
In a polygon P , a point q belongs to the α-floodlight if
pq lies entirely in both P and W (p, α, θ).

Definition 2 A distinguished arrow (DA) is an in-
finitesimal ray along an edge of the polygon such that
any α-floodlight that covers it must be placed in a pre-
specified region, i.e., the interior of a gadget or a cone.

Definition 3 The Vertex Floodlight Illumination Prob-
lem (FIP) [2] Given a simple polygon P with n sides, a
positive integer m and angular aperture α, determine if
P can be illuminated by at most m α-floodlights placed
only on the vertices of P with at most one α-floodlight
per vertex.

Definition 4 The Point Floodlight Illumination Prob-
lem (PFIP) Given a simple polygon P with n sides, a
positive integer m and angular aperture α, determine if
P can be illuminated by at most m α-floodlights placed
in the interior of P .
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In both FIP and PFIP, floodlights can be oriented in
any direction as long as P is illuminated. However, to
verify a given solution in polynomial time, we cannot
deal with arbitrary orientations. To remedy this, [2]
introduced a flushing restriction which brings FIP into
NP. As our main result uses a gap-preserving reduc-
tion from 5-OCCURRENCE-MAX-3-SAT (FOM-3SAT), which
we define below, a similar restriction will be necessary.
When the restriction is in effect, we prefix the problem
name with the letter R. We define flushing as follows:

Definition 5 An α-floodlight is flush with the vertices
of the polygon P if at least one of −→vl or −→vr passes through
some vertex of P , different from p, such that θ is deter-
mined implicitly.

Definition 6 (FOM-3SAT) Given a boolean formula Φ
in conjunctive normal form, with m clauses and n vari-
ables, 3 literals at most per clause, and 5 literals at most
per variable, find an assignment of the variables that
satisfies as many clauses as possible.

We develop a construction for point α-floodlights and
outline how to adapt it for vertex α-floodlights. This
allows us to obtain the following.

Theorem 7 PFIP is NP-hard.

Theorem 8 RPFIP is NP-complete.

Theorem 9 RFIP is APX-hard.

Theorem 10 RPFIP is APX-hard.

The construction in [2] utilizes beam machine gadgets
[8] to control the visibility of the α-floodlight guards in
FIP. In Section 2, we develop beam machines for point
α-floodlights in addition to the Point α-Floodlight Gad-
get (PFG) to have corresponding tools in PFIP. This
immediately yields Theorems 7 and 8 by plugging the
new gadgets in the construction from [2].

In Section 3, we start by examining the construction
of [11] and describe how 360◦ guards can be replaced
with α-floodlights without changing the essence of the
construction. The main observation is that while guards
can see in all directions, the construction only requires
them to guard few specific elements or regions. We ex-
ploit this to carry over the construction of [11] from the
360◦ guard setting to the α-floodlight setting, and carry
along the result obtained in the former to get Theorems
9 and 10.

2 Point α-floodlights

We develop the Point α-Floodlight Gadget (PFG) and
use it to create a Point α-Floodlight Beam Machine
(BM). Then, we discuss the extension of [2] using the
new BM to obtain the first proof of Theorem 7.

(a) Trapezoid, vertex -PFG, PFG. (b) ABM.

Figure 1: PFGs and Abstract Beam Machine (ABM).

2.1 PFG

The building block of our construction is the Point
Floodlight Gadget (PFG) in Figure 1a. The PFG is at-
tached to the polygon through its mouth and extrudes
outside forming a cavity. The cavity is the union of
two overlapping wedges. Both wedges share the same
axis with one outward wedge looking into the cavity
and one inward wedge extending into the interior of the
polygon. The extrusion includes two ears which require
an α-floodlight guard at the apex of the outward wedge
to cover their pockets. Depending on how the PFG
is used in a larger gadget, the PFG can be configured
such that a second α-floodlight at the apex of the in-
ward wedge is either optional or obligatory. Note that
both α-floodlights would satisfy the flushing condition.

When using vertex α-floodlights, a PFG equivalent is
just an ear vertex. We refer to both as PFGs and use
a trapezoidal symbol in our schematic diagrams as a
placeholder for the appropriate PFG. Figure 1a demon-
strates the correspondence.

2.2 Beam Machines

Beam machine gadgets were introduced in [8] which
showed the hardness of finding a minimum convex cover
for a given polygon. The beam machine (BM) is a
butterfly shaped extrusion that attaches to the poly-
gon through a mouth. The internal design of the BM
requires 4 convex polygons to cover the BM itself and
allows one of two slim polygons, i.e., beams, to shoot
into the interior of the polygon in two different direc-
tions. The construction needed such shooting beams to
cover other parts of the polygon, i.e., dents, which cor-
responds to the satisfaction of boolean clauses by the
assignment of their literals. This enabled a reduction
from 3SAT to show the problem is NP-hard.

BMs were reused in [2] to force the inclusion of one
of two vertex α-floodlights in a construction similar to
the one in [8]. The BMs in [2] required 3 vertex α-
floodlights to cover their interior and could shoot light
beams to illuminate their dents. Again, this enabled a
reduction from 3SAT to show that FIP is NP-hard.
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A BM can be stretched and skewed to control the
beams, which need not be symmetric. We abstract
BMs as an extrusion with two potential points for α-
floodlight placement, as in Figure 1b. We identify True

and False with the red and blue colors, respectively.
We can now develop a BM for point α-floodlights.

The BM is basically one big PFG to create the two
wings of the butterfly plus one PFG on each side to
extrude two cavities on the upper sides of the wings.
All 3 PFGs require 2 floodlights each, e.g. the big PFG
needs one guard for the edge denoted Z and another for
Z ′ as in Figure 2. The mouth is designed to require one
α-floodlight at one of the two cavities denoted B and
B′, which results in the two BM configurations. We
identify the red and blue points of the ABM with B
and B′, respectively. The BM requires 7 α-floodlights
which all satisfy the flushing condition by construction.

2.3 Updating the reduction by Bagga et al. [2]

Using the point α-floodlight BM and PFG, it is straight-
forward exercise to update the construction in [2]. The
Background of Variable Generator requires 4 PFGs at
vertices {v4, v11, v13, v20} where the inward wedge of the
PFGs at either v4 or v20 is used to specify an assign-
ment for the variable, for a total of 7 point α-floodlights.
Each literal is represented by a BM and the final poly-
gon requires a single PFG contributing 2 additional α-
floodlights. Given a 3SAT instance with m clauses and
n variables, the PFIP instance output by the reduction
can be covered using 21m+7n+2 point α-floodlights iff
the 3SAT instance is satisfiable. This yields Theorem 7.
As all our gadgets satisfy the flushing condition, Theo-
rem 8 follows as well. These two theorems also follow
from the construction presented in the next section.

3 Reusing the construction of Eidenbenz et al. [11]

[18] showed that determining the minimum number of
guards to cover an art gallery is NP-hard. They pre-
sented a construction for vertex guards and showed how
it can be modified to yield similar results for the edge
and point variants. [11] followed the lines of the reduc-
tion in [18] to describe a gap-preserving reduction from
the MAXSNP-complete FOM-3SAT, which shows these
problems are APX-hard. In doing so, [11] gives a de-
tailed construction for all gadgets to guarantee certain
properties necessary for the gap-preserving reduction.
A similar approach was applied to the construction in
[8] for the problem of finding a minimum convex cover
to show it is APX-hard as well [12]. Later on, [15] as-
signed weights to the edges of the construction of [11]
to show that maximizing the guarded boundary of an
art gallery is APX-hard. For that problem, a constant-
factor approximation was developed earlier [19], so the
problem is actually APX-complete.

A
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D D`
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Z Z`

C C`

(a) α ≤ 90◦.

C

X
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A`A D D`
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(b) α > 90◦.

Figure 2: BMs for different values of α.

We briefly recall the construction of [11] before we list
our observations and the modifications we apply.

3.1 Recalling the gadgets of [11]

Literal pattern for literal l is a triangular extrusion
with a spike that requires one literal guard at one of
two locations called T lit(l) and F lit(l).

Clause pattern for clause ci uses 3 literal patterns
lj(ci) such that it can be covered iff at least one literal
is assigned a guard at its T lit(lj(ci)).

Variable pattern for variable xk has two quadrilat-
eral extrusions called legs and a tail that requires one
variable guard at one of two locations called T var(xk)
and F var(xk).

Ear pattern is a cavity at the top-left corner of the
final polygon which hosts one ear guard w that covers
the ear itself plus the background quadrilateral support-
ing the gadgets which define the polygon and all left and
right legs of the variable patterns.

Spike pattern for a literal is a tiny extrusion in the
legs of its variable pattern to ensure consistent truth
assignments. The spike pattern is a cone that, in a
canonical solution, must be covered by either the vari-
able guard of the leg containing it or the literal guard
tied to it. Positive and negative literal guards are tied
to their variable by a spike in the appropriate leg.



27th Canadian Conference on Computational Geometry, 2015

3.2 Observations and modifications

Spike patterns are only a subset of the guard’s
visibility polygon. A guard can typically see a much
larger area containing the spike pattern. When using
α-floodlights, located in a BM, it is only necessary that
the spike extrusion is covered by the beam the floodlight
shoots through the BM’s mouth.

T lit and F lit. The only functions these two locations
may serve are: (1) Cover the interior of the literal gad-
get. (2) Cover the corresponding spikes in the variable
gadget. (3) Satisfy the clause. When using BMs, (1)
will be taken care of by the design of the BM. (2) and
(3) turn out to be difficult to achieve using a single α-
floodlight. To remedy this, we use two coupled BMs per
literal to collectively support two configurations corre-
sponding to the assignment of the literal’s variable. Fig-
ure 3 illustrates the coupling technique. Basically, we
copy the TRUE signal communicated through the spike
in the variable pattern by introducing a dent. A literal
can satisfy the clause iff the BM at the top is allowed to
shoot its left beam. This would only work if the dent is
covered by the BM to the right which only happens iff
this BM is allowed to shoot its TRUE beam. In addition,
we ensure that no single floodlight can cover two such
dents.

This allows us to redesign the clause pattern as in
Figure 4. Satisfying a clause corresponds to illuminating
the dent containing the DA denoted by 2. This dent
is adjusted such that it may not be illuminated by a
floodlight in any of the spike patterns of the 3 literals of
that clause. A single PFG at the top left corner covers
the background quadrilateral of the clause pattern and
DA-1, which only leaves uncovered the interiors of the
BMs, their dents and DA-2.

Figure 3: Coupled BMs. Dent must be covered.

Locating T lit and F lit. These two vertices of the
literal pattern are at a distance controlled by two arbi-
trary constants [11]: (1) Distance between T lit and s6.
(2) Distance between s6 and the vertical line v′. They
can be made arbitrarily close as required by the BM
to enable shooting the beams to illuminate the corre-

sponding spikes. Finally, we move these locations along
the lines defined by the spike patterns to place the BMs
on an oblique edge in the clause pattern to give it more
flexibility to adjust all BMs and beams to cover their as-
signed targets. Note that we only generate a restricted
class of the spike patterns constructed by the algorithm
in [11], but otherwise we do not move them. This pre-
serves the property that no 3 spike patterns of 3 different
legs intersect in a common point per Lemma 1 in [11].

Switching T lit and F lit. The roles played by either
of these two locations is determined by the spikes they
are tied to, which depends on the literal being positive
or negative. In addition, T lit can satisfy the clause while
F lit cannot. To avoid changing the construction in [11]
by much, we effectively exchange the roles of the guards
at T lit and F lit such that F lit is the location that can
satisfy the clause. While this would not work for the
literal pattern in [11], we will be replacing it anyway
with a BM.

Moving F lit. Due to the modifications we apply to
the variable pattern, we identify F lit with s4 instead
of s5. We then move it along to find its location in
the BM attached to the oblique edge. Again, while this
does not make sense in the construction of [11], we are
only interested in the coordinates produced for these
vertices. In particular, we only need to make sure the
spike patterns in the construction of [11] include the
locations of the α-floodlights inside their literal BMs.

Limiting the required aperture T var and F var.
Each of these two vertex guards is required to cover the
variable pattern’s tail in addition to the literal spikes
in its leg. This implies the effective range of vision is
bounded by the variable tail and the lowest spike in
the leg. To make sure a single α-floodlight can cover
both the variable tail and all the spikes in its leg, we
require that literal patterns are far enough to the right
from all variable patterns such that the lowest spike
in any leg does not require an aperture larger than α.
Adjusting the variable tail accordingly can be achieved
by stretching the variable pattern as shown in Figure 5.

T var and F var for vertex α-floodlights. As we
only assign one guard to either of these two locations,
the cavity of the unassigned vertex-PFG, as in Figure 5,
will need to be covered. This can be achieved by cutting
off the left supporting edge of the vertex-PFG such that
the cavity is covered by the ear guard. Note that the
right supporting edge is still sufficient for the variable
guards to satisfy the flushing condition.

The ear pattern and the final polygon. We re-
place the ear pattern with a PFG and stretch the poly-
gon to include the background quadrilateral and the legs
of all variable patterns in the PFG’s inward wedge.
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1

2

Figure 4: Clause Gadget. Circles highlight the neighborhoods of T lit(lj(ci)) computed in [11].

Figure 5: Variable Gadget. The spike to the left and the lowest spike in each leg must fit in the wedges of the PFGs.

Figure 6: Rough sketch of the final construction.

4 Inapproximability results

Using this construction for PFIP, we get that the PFIP

instance can be covered by 44m + 3n + 2 point α-
floodlights iff the FOM-3SAT instance is satisfiable. For
FIP, the number is 19m + n + 1. This provides an al-
ternative proof that both problems are NP-hard. The if
part is a straightforward mapping from Lemma 2 in [11],
observing the number of α-floodlights required for each
gadget. The only if part is obtained by observing that
all variable patterns will have exactly one α-floodlight
in such solutions, which yields a satisfying assignment.

Updating the construction of [11], per 3.2, preserves
all its relevant properties. In particular, at most two
spike patterns belonging to two different legs intersect.

Now, we may find an ε-approximate solution S to a
given FOM-3SAT instance I by reducing it to an RFIP

instance I ′, computing an ε′-approximate solution S′

of I ′ and then transforming S′ into S. We develop
a transformation process similar to the one described
in [11], which we could not fit here due to space con-
straints. This amounts to a gap-preserving reduction
from FOM-3SAT to RFIP. Since the former is MAXSNP-
complete, this shows RFIP is APX-hard.

As we managed to stay close to the construction in
[11], we carry over a close equivalent of their Lemma
3 and Theorem 1. With that, unless P = NP , no
polynomial time approximation algorithm for RPFIP can
achieve an approximation ratio of

44m+ 3n+ 2 + εm

44m+ 3n+ 2
= 1 +

εm

44m+ 3n+ 2
≥ 1 +

ε

54
.

This yields Theorem 10. As pointed out in [11], since
there will be no floodlights added in the transformation
of a given solution of RFIP, we would get a slightly big-
ger constant for the inapproximability of RFIP than the
constant of RPFIP and Theorem 9 follows.
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5 Conclusion

In this paper, we resolved the hardness and inapprox-
imability of two classical α-floodlight illumination prob-
lems for both vertex and point floodlights. We observed
that many earlier constructions for 360◦ guards, only re-
quired guards to cover specific regions in the construc-
tion. We exploit this to present a structured update
of such constructs to work for guards with limited an-
gle of view. We gave two examples of this process by
presenting APX-hardness proofs for vertex and point
α-floodlight polygon illumination problems for simple
polygons. A flushing restriction is introduced to avoid
dealing with arbitrary orientations of floodlights and
allow polynomial-time verification and gap-preserving
reduction. We believe that similar approaches can be
used to carry over more results for 360◦ guards to α-
floodlights which can greatly help the ongoing work in
sensor networks and smart surveillance.
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Appendix A: Additional Figures

We include additional figures to aid our description of the
gadgets we created.

Figure 7: Demonstration of the flexibility of the BM.

Figure 8: The BVG of [2] updated with PFGs.

Appendix B: α-Floodlights with α ≥ π

(Subsection 3.2) To motivate the intuition for the modifica-
tions we applied to the construction of [11], we informally
discuss the case when α ≥ π.

Define RFIP≥π and RPFIP≥π to be the restriction of these
α-floodlight illumination problems with α ≥ π. We can eas-
ily extend the construction in [11] to show similar inapprox-
imability results for these two problems. The key idea is to
ensure that all elements required to be covered by a given
guard location lies in a half-plane defined by a line passing
through this location.

We can ensure the ear guard only looks down by attaching
its ear to the left edge, instead of the top one. For T lit,
we smooth out the right pockets of the clause pattern and
introduce a second ear at the bottom side of the polygon,
right below the first ear, that looks up so it can cover the
right side of all clause patterns. F lit can be moved to the
same edge of the literal pattern as T lit by introducing a little
bend to it to create a new convex vertex, such that F lit can
still cover the entire literal pattern and its spike, but not
satisfy the clause. Finally, T var and F var need only cover
the half-plane below the line connecting them to the point
w, which requires no change.

Appendix C: How we computed the numbers

The construction we created in Section 3, by modifying the
one given in [11] uses the following gadgets:

1. Ear gadget: 1 PFG.

2. Literal gadget: 2 BMs.

3. Clause: 3 literal gadgets + 1 PFG = 6 BMs + 1 PFG.

4. Variable gadget: 2 PFGs.

Note that the PFGs in the variable gadget need not be ac-
tivated, i.e., receive a floodlight at their inward wedge is op-
tional. All other PFGs must be activated. For FIP, we use
3 vertex α-floodlights per BM and 1 α-floodlight for PFGs.
The number of vertex α-floodlights required to operate the
gadgets is

1 + (6 × 3 + 1)m+ 1 × n = 19m+ n+ 1. (1)

For PFIP, we use 7 α-floodlights per BM, 2 α-floodlights
per active PFG and 1 α-floodlight per inactive PFG. The
number of α-floodlights required to operate the gadgets is

2 + (6 × 7 + 2)m+ 3 × n = 44m+ 3n+ 2. (2)

Appendix D: Transformation of a feasible solution

Following the lines of the transformation process in [11] we
move α-floodlights in such a way that the set of DAs that a
floodlight sees changes in only one of two ways: either more
arrows are included or it is ensured that another floodlight,
possibly added to the solution, covers any arrows removed
from this set.

With that, the α-floodlights in a given solution S′ com-
puted for the RFIP instance I ′ are moved as follows:

1. Determine the, at least, 2 floodlights that cover the ear
PFG and move them to the standard PFG configura-
tion. In addition to the PFG itself, this also ensures
that the legs of all variable patterns are covered.

2. For each clause pattern, determine the, at least, 2 flood-
lights that cover its PFG and move them to the stan-
dard PFG configuration. In addition to the PFG itself,
this also ensures that the clause pattern, except for the
dent denoted by arrow 2 in Figure 4, is entirely covered.

3. For each BM, there will be at least 7 floodlights inside
it. We start with the, at least 6, floodlights that do
not illuminate any part of the mouth. We move these
6 to illuminate the interior of the BM, except for the
mouth, by the configurations shown in Figure 2. Any
remaining floodlights that do not illuminate any part of
the mouth are moved to the red configuration, i.e., such
that they illuminate the entire mouth, the associated
dent and spike, if one is associated with the BM at
hand, corresponding to setting the literal to TRUE. For
floodlights that illuminate parts of the mouth, there
will be three cases:

(a) If the floodlight also illuminates the DA associ-
ated with a FALSE assignment, we move it to the
blue configuration, i.e., such that it illuminates
the entire mouth and spike corresponding to set-
ting the literal to FALSE.
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(b) If the floodlight also illuminates the DA associ-
ated with a TRUE assignment, we move it to the
red configuration.

(c) If the floodlight does not illuminate any DAs, we
move it to the red configuration.

4. If a BM has more than one floodlight in either the red
or blue configurations, we leave only one and move the
extra floodlights to the configuration of the same color
in the variable pattern of its variable.

5. If a BM has floodlights in both the red and blue con-
figurations, switch all BMs of its variable to the red
configuration and move the, at least one, extra flood-
lights to the red configuration in its variable pattern. If
there is already a floodlight there, move the extra flood-
lights to the blue configuration instead. This ensures
that all dents and spikes associated with this variable
are illuminated. In addition, any clause dents that were
illuminated in the input solution by floodlights in any
gadget of this variable are still illuminated.

6. For floodlights inside a clause pattern but outside any
BM or PFG, we have a number of cases. As shown in
Figure 9, we need to consider floodlight configurations
within the intersection of cones belonging to different
dents. Observe the following: (a) The literal dents are
set up such that no two can be illuminated by a single
floodlight. (b) The design of the BM and the steps thus
far outlined in the transformation process ensure that
all BMs will have a floodlight in at least one of the red
or blue configurations. (c) The PFG illuminates the
entire clause pattern except for the dents and DA-2. .

• Cases 1 and 4: Even if the floodlight can illumi-
nate the DAs of both the literal dent and clause
dent, the BM above associated with the dent in
question must also be able to illuminate at least
one of the two DAs. As such, it suffices to move
the floodlight to the unoccupied configuration in
this BM, if any.

• Cases 2 and 3: Similar to the previous case, even if
the floodlight can illuminate the DAs of both the
literal dent and the spike, the BM must be able
to illuminate at least one. Likewise, the floodlight
is moved to the unoccupied configuration of the
BM, if any.

• Cases 5 and 6: Since the floodlight may be able
to illuminate the DAs of both a literal dent and a
spike belonging to a different literal, we will need
to add a floodlight and move one to illuminate the
spike from its corresponding configuration in the
BM and move the other to illuminate the literal
dent from the red configuration of its BM.

• Cases 7, 8 and 9: Such floodlights may illuminate
the DA of the clause dent or the spikes of some
literal. By moving these floodlights to the corre-
sponding configuration in the BM associated with
the DA, we can still illuminate it.

7. For each variable pattern, move the floodlight that sees
the DA of the variable pattern to the red configuration,
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Figure 9: Additional cases for floodlight placement.

if it also lies in a spike pattern containing the red point.
Otherwise, move it to the blue configuration.

8. Move all floodlights that cover a single spike to the red
or blue point of the spike pattern of that spike.

9. If a floodlight illuminates DAs of two spike pattens that
connect literals to two different legs of variable patterns,
add a floodlight and move one floodlight each to the two
red or blue points of the variable patterns of these two
spikes.

This is the only case where we add an α-floodlight and
increase the cost of the solution. Note that because of
Lemma 1 [11], no floodlight can see the DAs of three
spike patterns that belong to three different legs.

10. Any floodlights that can be removed without leaving
any DA uncovered are moved, and fixed, to any red or
blue point of any variable pattern, if there is no flood-
light there already.

We iterate this process until the locations of all floodlights
are fixed. One can verify that the transformed solution of
S′′ is still a feasible solution of I ′ as any element which was
covered in S′ remains covered in S′′. To obtain the solution
S of the FOM-3SAT instance I using S′′, we set the truth
values of the variables as follows. For variable xk, if the
corresponding variable pattern only has floodlights at the
blue point, we set it to False. If it has only floodlights at
the red point, we set it to True. If it has floodlights at both
points, we assign xk in such a way that makes the majority
of its, at most 5, literals True.
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Appendix E: Omitted theorems and proofs

We fill in the omitted steps following the analysis in [11].

5.1 Satisfiable(I) =⇒ MinFloodlightCost(I ′)

The proofs below also provide the if part needed for the
NP-hardness results we obtained in Section 4. Note that for
the only if part, we assign True to all variables having the
α-floodlight at the red points of their variable patterns and
False otherwise. In particular, these two proofs work for
FIP and PFIP as well and show both the two problems and
their restricted variants are NP-hard.

Lemma 11 If an instance of FOM-3SAT, with n variables
and m ≤ 5

3
n clauses, is satisfiable, then there exists a feasible

solution of the corresponding instance of RFIP with 19m +
n+ 1 α-floodlights.

Proof. Given a satisfying assignment of the n variables in
the FOM-3SAT instance, we add α-floodlights to a solution of
RFIP as follows. We start by placing 1 at the ear PFG, 1 for
the PFG in all m clauses, and 2 in each of the 2 BMs for
all 3m literal couples. Next, for each variable xk, we do the
following:

1. If xk is true, place 1 α-floodlight at the red point in its
variable pattern, 1 α-floodlight in the red point of each
of its positive literals and 1 α-floodlight in blue point
of its negative literals.

2. If xk is true, place 1 α-floodlight at the blue point in its
variable pattern, 1 α-floodlight in the blue point of each
of its positive literals and 1 α-floodlight in red point of
its negative literals.

For each positive literal, we place 1 α-floodlight in the red
point of its coupled BM. For each false literal, we place 1 α-
floodlight in the blue point of its coupled BM. This solution
is feasible and costs 1 + m + (2 × 2)3m + n + (1 + 1)3m =
19m+ n+ 1. �

Lemma 12 If an instance of FOM-3SAT, with n variables
and m ≤ 5

3
n clauses, is satisfiable, then there exists a feasible

solution of the corresponding instance of RPFIP with 44m+
3n+ 2 α-floodlights.

Proof. Given a satisfying assignment of the n variables in
the FOM-3SAT instance, we add α-floodlights to a solution of
RPFIP as follows. We start by placing 2 at the ear PFG,
2 for the outward wedges of the 2 PFGs in all n variable
patterns, 2 for the PFG in all m clauses, and 6 in each
of the 2 BMs for all 3m literal couples. We proceed as in
the proof of Lemma 11. This solution is feasible and costs
2+2n+2m+(6×2)3m+n+(1+1)3m = 44m+3n+2. �

5.2 ε′-APPROX(I ′) =⇒ ε-APPROX(I)

Given a feasible ε-approximate solution S′ to I ′ of the α-
floodlight illumination problem, we apply the transforma-
tion process described in Appendix D. The transformed so-
lution S′′ is still feasible, i.e., illuminates the entire polygon.
However, due to the possibility of having α-floodlights at
the intersection of two spike patterns, we resolved to adding

α-floodlights and ended up having variable patterns with α-
floodlights at both the red and blue points. Such variables
were then assigned in a manner that satisfies the majority of
their clauses, but we will not be able to guarantee satisfying
all clauses.

Lemma 13 If there exists an ε > 0 and a feasible solution
of the RPFIP instance I ′ with at most 44m+ 3n+ 2 + εm α-
floodlights, then there exists an assignment of the variables
of the corresponding FOM-3SAT instance I that satisfies at
least m(1 − 4ε) clauses.

Proof. Any feasible solution S′ can be transformed into a
canonical solution S′′ that only illuminates the polygon us-
ing the gadgets the way we designed them. In such a canon-
ical solution, we know the minimum number of α-floodlights
required by the gadgets themselves. Clearly, the algorithm
for the illumination problem could not illuminate the entire
polygon using that minimum number, possibly because it
was created using an unsatisfiable boolean formula. In both
cases, we know the algorithm incurred at most an additional
εm cost to ensure the entire polygon is covered. In the worst
case, all these additional εm α-floodlights were placed in the
intersections of two spike patterns. This means that when
the transformation process terminates, at most 2εm variable
patterns will have received an additional α-floodlight that
results, in the worst case, in all the 2εm variable patterns
having two α-floodlights at both their red and blue points.
This leaves at least n− 2εm variable patterns with only one
α-floodlight. For all variables in the second group, they can
be assigned a truth value unambiguously. For the variables
in the first group, however, we assign truth values to satisfy
the majority of their clauses. In the worst case, each such
variable will satisfy only 3 out of its 5 clauses. In the worst
case, all the 2 clauses left out by each of the variables in the
second group will not be satisfied by any other literal. This
means we may not be able to satisfy at most 2×2εm = 4εm
clauses. The number of satisfied clauses can then be lower
bounded by m− 4εm = m(1 − 4ε). �

5.3 Don’t make a promise that is hard to keep

Using Lemma 12 and the contraposition of Lemma 13, we
obtain the following.

Theorem 14 Let I be an instance of the promise problem
of FOM-3SAT, with n variables in I, m ≤ 5

3
n clauses. Let

OPT (I) denote the maximum number of clauses that can
be satisfied using any assignment of the n variables. Fur-
thermore, let I ′ be the corresponding instance of RPFIP and
let OPT (I ′) denote the minimum number of α-floodlights
needed to illuminate the polygon in I ′. Then the following
hold:

• If OPT (I) = m, then OPT (I ′) ≤ 44m+ 3n+ 2.

• If OPT (I) ≤ m(1 − 4ε), then OPT (I ′) ≥ 44m + 3n +
2 + εm.

Theorem 14 shows that the reduction is indeed gap-
preserving and that the promise problem of RPFIP with pa-
rameters 44m+ 3n+ 2 and 44m+ 3n+ 2 + εm is NP-hard.


