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Tradeoffs between Bends and Displacement in Anchored Graph Drawing
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Abstract

Many graph drawing applications entail geographical
constraints on positions of vertices; these constraints can
be at odds with aesthetic requirements such as the use of
straight-line edges or the number of crossings. Without
positional constraints on vertices, of course, every planar
graph can be drawn crossing-free with straight-line edges.
On the other hand, inflexible and precise specification
of all vertex positions essentially leaves no room for
presenting the graph in an aesthetically pleasing drawing.
However, small deviations from precise vertex positions
can often be tolerated, and so a natural middle ground
is to impose soft positional constraints on vertices and
then optimize for an appropriate aesthetic criterion.

We explore one such trade-off: the amount of vertex
position displacement vs. the number of bends in planar
polyline drawings. In particular, let G = (V,E) be a
planar graph, where each vertex v has a specified (target)
position α(v). We wish to draw G so that no vertex is
placed at distance more than δ from its target position
and no edge has more than b bends. Given a bound
on b, what is the smallest value of δ achievable for all
n-vertex planar graphs? Our main result establishes
that δ = Θ(n) is both necessary and sufficient if b is
constant. We also derive trade-offs between δ and b.

1 Introduction

Visual representations of graphs face multiple, often con-
flicting, constraints. This paper explores one such trade-
off: the tension between aesthetic aspects of a graph
drawing and its informational distortion. Specifically,
we have a planar graph G = (V,E) on n = |V | vertices,
where each vertex v has a specified (target) position α(v)
in the plane. Such positional constraints naturally arise
in many geo-spatial datasets, such as positions of cities
or municipalities in country maps. Positional constraints
also arise when the graph is visualized in a larger context:
for instance, if the graph is to be overlaid on another
graph with a common or overlapping set of entities, then
a close correspondence of vertices is highly desirable; the
same holds if both graphs are shown next to each other
or one after the other. In all these scenarios, placing
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vertices far away from their intended position can create
loss of information and readability since it distorts the
user’s knowledge of positions (the mental map).

Unfortunately, such positional constraints on vertices
can be at odds with other aspects of the drawing, such
as aesthetics and readability. For instance, every planar
graph can be drawn with straight-line edges and no edge
crossings [4], but doing so requires the freedom to move
vertices in the drawing space. On the other hand, fixing
each vertex’s position precisely does not leave much room
for an informative drawing: indeed, the vertex positions
fix the straight-line drawing and also the number of
edge crossings. A natural middle ground, therefore, is to
treat the vertex position constraints as soft constraints,
allowing the flexibility to place the vertices close to their
ideal position while improving the quality of the drawing.

Our paper is an exploration of one such trade-off. We
ask how much better can the drawing be made if each
vertex v is allowed to be displaced by some distance
δ from its target position α(v). All the edges must be
drawn as polylines with no crossings, and no polyline has
more than b bends, which we call the curve complexity
of the drawing. (The curve complexity of a straight-line
drawing is b = 0.) Our trade-off explores how much
benefit in terms of the curve complexity one can ex-
pect by increasing the displacement as a function δ(n);
more precisely, given a maximum displacement δ, what
is the smallest curve complexity b(δ, n) achievable for
all n-vertex planar graphs? Similarly, for a given curve
complexity b, we want to know the smallest displace-
ment δ(b, n) that is sufficient for all n-vertex graphs. We
call our problem the anchored graph drawing problem
because each vertex has an ideal (anchor) position.

Previous Work. Our research touches two important
topics in graph drawing: positional constraints on ver-
tices and bend-minimization in polyline drawings. If each
vertex has a disk-shaped region within which it must
be placed, then it is NP-hard to decide if a straight-line
planar drawing exists, as Godau showed [5]. In a fol-
lowup work, Angelini et al. showed that the problem
remains NP-hard even if the disk regions of all vertices
have the same radius [1]. Extending these hardness re-
sults, Löffler [9] showed that it is NP-hard to decide
if a straight-line embedding exists for regions that are
vertical line segments, even if the graph is only a cycle.

When the displacement shrinks to δ = 0 vertex move-
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ments are disallowed; this yields the classic point-set
embeddability problem with fixed vertex-point mapping.
In contrast to the version without given mapping, the
straight-line problem is trivial since there is only one
straight-line drawing which either is or is not planar.
However, there are several results for polyline edges.

Pach and Wenger [10] showed that, in polynomial
time, every planar graph can be embedded with fixed
vertex positions and O(n) bends per edge. Furthermore,
they proved that if the points are in convex position, for
every planar graph, the probability is high that a linear
number of edges will need a linear number of bends.
For non-convex position, Badent et al. [2] constructed
a family of instances in which a linear number of edges
must have a linear number of bends. In a recent arxiv
submission, Gordon [6] shows that for every set of vertex
positions, a planar graph that is sampled uniformly at
random (with fixed vertex-point mapping) will require
Ω(n2) bends in total with high probability.

Point-set embeddability has also been considered with-
out prescribed vertex-point mapping. In this setting,
a set of n points is prescribed and for each vertex one
of the input points must be chosen as the vertex po-
sition. Gritzmann et al. [7] introduced this problem
class and showed that a planar straight-line embedding
can be constructed for every outerplanar graph. How-
ever, for general planar graphs, it is NP-hard to decide
whether a planar straight-line embedding exists, as Ca-
bello proved [3]. Kaufmann and Wiese [8] showed that
for every planar graph a vertex-point mapping can be
found such that the graph can be embedded with only
two bends per edge (one bend for four-connected graphs).

Our Results. Our work differs from these earlier lines
of research in that we explore the trade-off between
positional displacement δ and maximum number b of
bends per edge (the curve complexity) for which a feasible
planar drawing exists. More specifically, given a curve
complexity b, we ask for the smallest displacement δ such
that a feasible anchored drawing exists. (b and δ may
be constants or functions of n.) When δ = 0, we get the
classic point-set embeddability problem. In our problem,
however, vertices can be displaced within the distance
bound δ, and we wish to explore the effect of δ on the
curve complexity b that is necessary for a plane drawing.
Since we must relate the value of δ to the area of the
drawing and the distance between vertices, we usually
assume that the target vertex positions are points of the
integer n×n grid, so that the smallest distance between
vertices is 1. However, we do not demand that in the final
drawing vertices and bends have integer coordinates.

We will see that even with a positive (but small) value
of δ, there are graphs and target positions for which a
linear number of edges require a linear number of bends
in every feasible drawing. If we allow displacement

δ = O(n), then an easy construction can achieve b =
0, namely, a straight-line embedding, for any n-vertex
planar graph. With some more effort and care, we can
show that curve complexity b = 2 is always possible for
δ > (n− 1)/2.

Our main result is to show that, surprisingly, this lin-
ear displacement is necessary for any constant number of
bends. More specifically, we show that for any constant b,
there are planar graphs that require a minimum vertex
displacement of Ω(n) to realize a polyline drawing with
at most b bends. In fact, if the vertex displacement is
o(n), then at least Ω(n) edges require more than b bends.
We also show that for curve complexity b = Θ( 3

√
n), a

displacement of Ω( 3
√
n) is necessary, and that for any

constant displacement, there are instances that force a
curve complexity of Ω(

√
n).

2 Preliminaries

We call our problem the Anchored Graph Drawing
Problem (AGD), following Angelini et al. [1]. In addi-
tion to planar input graph and target vertex positions,
the problem takes two parameters: the maximum dis-
placement δ of vertices from their target position and
the curve complexity b. Since we are interested in the
relation between δ and b, we call the problem δ-b-AGD.

Problem (δ-b-AGD) Given a planar graph G = (V,E)
with n = |V |, a function α : V → N× N that assigns to
each vertex v a position α(v) on the n×n grid, a number
δ ∈ R+, and a number b ∈ N find a planar polyline
drawing E of G such that every vertex v is placed within
distance δ of α(v) and no edge has more than b bends.

We call a feasible embedding for such an instance
a δ-b-AGD embedding. We will sometimes speak of
moving a vertex v to mean that the vertex is placed
within distance δ of its target position α(v). Similarly,
a δ-movement of the vertices allows to place each vertex
at a position up to δ from its target position.

Depending on instance and parameters, it is not clear
whether a δ-b-AGD embedding exists. Hence, the ques-
tion is how the parameters relate to each other and to n.
For given b and n, we would like to know how big δ must
be so that every instance of n vertices has a δ-b-AGD
embedding. To this end, we define two values.

Definition 1 Let G = (V,E) be a planar graph with
n = |V | and let α : V → N × N define target positions
for the vertices on the n×n grid. Let b ≥ 0 be the curve
complexity. We define δ(b,G, α) to be the minimum
value δ such that a δ-b-AGD embedding of G exists.

Now, we consider the relation between b, n, and δ.

Definition 2 (δ(b, n)) Let b, n ≥ 0 be integer val-
ues. We define δ(b, n) to be the maximum value
δ(b,G, α) over all instances of a planar graph
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G with n vertices and target positions α, i.e.,
δ(b, n) = max {δ(b,G, α) | G = (V,E) planar, |V | = n,
α : V → N× N}.

In the following sections, we will find upper and lower
bounds for δ(b, n). Since it turns out that for every
constant b the lower bound for δ(b, n) is linear in n, it
makes sense to also consider values for b that depend on
the size of the graph; then, b can be a function of n.

Analogously, we can define values corresponding to
the minimum number of bends for which a δ-b-AGD
embedding with given δ exists.

Definition 3 Let G = (V,E) be a planar graph on n
vertices and let a function α : V → N× N define target
positions for the vertices of G on the n × n grid. Let
δ ≥ 0 be the maximum vertex displacement. We define
b(δ,G, α) to be the minimum curve complexity b ≥ 0
such that a δ-b-AGD embedding of G exists.

Definition 4 (b(δ, n)) Let n ≥ 0 be an integer value
and let δ ≥ 0. We define b(δ, n) to be the maxi-
mum value b(δ,G, α) over all instances of a planar
graph G with n vertices and target positions α, i.e.,
b(δ, n) = max {b(δ,G, α) | G = (V,E) planar, |V | = n,
α : V → N× N}.

3 Upper Bounds

We recall that even without displacement of the vertices
(i.e. with fixed vertex positions), every planar graph
can be embedded with curve complexity O(n) using
the algorithm of Pach and Wenger [10]. Thus, there is
always a δ-O(n)-AGD embedding, no matter how small
δ is. Our lower bound result will later (cf. Theorem 8)
establish that a linear curve complexity is necessary even
if we allow positive displacement of vertices. We begin
with our upper bounds for δ(b, n).

By choosing δ =
√

2(n− 1), any vertex can be placed
freely in the area spanned by the n × n grid, thus ef-
fectively removing the restriction of the δ-movement
and allowing to use any algorithm for creating a planar
straight-line embedding. Since the final vertex positions
after the movement do not have to lie on the grid, any
value δ >

√
2(n− 1)/2 = (n− 1)/

√
2 is sufficient; such

a value allows all vertices to be moved to and within a
small area around the center of the n× n grid.

Observation 1 For any ε > 0, δ(0, n) ≤ (n−1)/
√

2+ε,
that is, for δ = (n − 1)/

√
2 + ε, there is a δ-0-AGD

embedding for every planar graph whose target positions
lie on the n× n grid.

If we allow two bends per edge, a smaller bound on δ
can be shown, using the following result of Kaufmann
and Wiese [8]. (This is not explicitly stated in their
paper, but follows from their point-set embeddability
construction without prescribed vertex-point mapping.)

Lemma 1 ([8]) For every planar graph G = (V,E)
there is an ordering V = {v1, . . . , vn} of the vertices,
such that for any assignment of coordinates that follows
the left-to-right order x(v1) < x(v2) < . . . < x(vn) a
planar 2-bend embedding can be found.

Using this lemma, we can prove the following result.

Theorem 2 For any ε > 0, δ(2, n) ≤ (n−1)/2+ε, that
is, for every planar graph G = (V,E) with n vertices
whose target positions α : V → N × N lie on the n × n
grid there is a δ-2-AGD embedding with δ = (n−1)/2+ε.

Proof. Let V = {v1, . . . , vn} be the order of vertices
achieved by Lemma 1. If we can find a δ-movement
that orders v1, . . . , vn from left to right, then a 2-bend
embedding follows. We achieve the ordering as follows.

By moving all vertices horizontally by at most (n−1)/2
we can put them on a vertical line through the middle of
the n× n grid. With the remaining movement of ε, we
create the correct left-to-right order. With these vertex
positions, the 2-bend embedding can be created. �

Since b bends are also feasible if higher curve com-
plexity would be allowed, we also get bounds for other
complexities. Summarizing, we get the following result.

Theorem 3 For any ε > 0, it holds δ(1, n) ≤ δ(0, n) ≤
(n− 1)/

√
2 + ε and δ(b, n) ≤ (n− 1)/2 + ε for b ≥ 2.

Our upper bound for δ does not improve with larger
values of b. Finding a construction for general b is an
interesting open problem.

We now present the main result of our paper, which is a
family of lower bounds for δ(b, n). Somewhat surprisingly
it turns out that the O(n) vertex displacement, so easily
achieved by our upper bound above, cannot be improved,
namely, δ(b, n) = Ω(n) for any constant value of b.

4 Lower bounds

We will construct negative examples that show that even
for relatively large values of δ, depending on b, no feasible
δ-b-AGD embeddings exist. More precisely, for every
number b (from constant to Θ(n)), we find a family of
planar graphs and point sets with according δ, such that
in every feasible embedding with a δ-movement of the
vertices, a linear number of edges will have more than b
bends. Our proof is constructive and draws inspiration
from the bad instances of point-set embeddability used
by Badent et al. [2].

Theorem 4 Let b ≥ 0. Then, for n ≥ 4
√

2(4b+5)/π2 +
1 it holds that δ(b, n) ≥ (n− 1)π2/(16(4b+ 5)2), that is,
δ(b, n) = Ω(n/b2). More precisely, for any such n there
is an example in which a linear number of edges must
have more than b bends if the vertices are moved by at
most (n− 1)π2/(16(4b+ 5)2).
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Figure 1: Schematic visualization of the graph used in
our constructions for lower bounds. Except for the choice
of the outer face, this is the only possible embedding.

Proof. The main idea is to have many 4-cycles such that,
in every planar embedding, every 4-cycle has to separate
two sets of red and blue vertices of equal size into vertices
inside and outside of the cycle. By carefully placing
the target positions of these red and blue vertices and
choosing the right value δ, we achieve that even after a δ-
movement of the vertices every 4-cycle separating the red
and blue vertices must be realized as a complex polygon,
having at least one edge with 1/4 of the necessary bends.

Our graph is constructed as follows; see Fig. 1. Let n′

be a multiple of 4, and let k ≥ 1. The graph consists of
a set of n′ black vertices V0 = {w0, w1, . . . , wn′−1}, a set
of k red vertices V1 = {u0, u1, . . . , uk−1}, and a set of
k blue vertices V2 = v0, v1, . . . , vk−1}. The set of edges
consists of five subsets, i.e., E = E0 ∪E1 ∪E2 ∪E3 ∪E4,
which are defined as follows.

E0 = {(w0, u0), (u0, u1), . . . , (uk−2, uk−1), (uk−1, w2)}
E1 = {(wn′−3, v0), (v0, v1), . . . , (vk−1, wn′−1)}
E2 = {(wi, wi+1), (wi+1, wi+2), (wi+2, wi+3), (wi+3, wi)

| 0 ≤ i < n′, i mod 4 = 0}
E3 = {(wi+4, wi+1), (wi+1, wi+6), (wi+6, wi+3), (wi+3, wi+4)

| 0 ≤ i < n′ − 4, i mod 4 = 0}
E4 = {(wi, wi+4) | 0 ≤ i < n′ − 4}

The edges in E0 form a path from w0 to w2 contain-
ing all red vertices and the edges in E1 form a path
from wn′−3 to wn′−1 containing all blue vertices. The
edges of E2 and E3 form n′/4 and n′/4 − 1 indepen-
dent 4-cycles, respectively. If we replace the paths
(w0, u0, . . . , uk−1, w2) and (wn′−3, v0, . . . , vk−1, wn′−1)
both by a single edge, the graph is triangulated; hence,
up to the choice of the outer face, there is only one
combinatorial embedding, the one in Fig. 1. Therefore,
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Figure 2: Angles and distances in the regular 2k-gon.

each of the 2n′/4 − 1 edge-disjoint 4-cycles defined by
E2 and E3 must separate the red vertices from the blue
vertices outside in any planar embedding.

In our target positions, the red and blue vertices will
form a bi-colored sequence (u0, v0, u1, v1, . . . , uk−1, vk−1).
Since every pair of consecutive vertices in the sequence
has different colors, each 4-cycle must cross the straight-
line segment connecting the vertices in order to separate
them. Badent et al. [2] arranged the bi-colored sequence
as consecutive points on a straight-line. However, if
δ′ > 0, a δ′-movement that moves all red vertices down
and all blue vertices up, easily allows the points to be
separated by a single straight-line segment. Hence, we
need a different construction in order to ensure that even
after a δ-movement the vertices are hard to separate.

We do so by putting the points of the bi-colored se-
quence at the corners of a regular 2k-gon with circum-
radius r = (n − 1)/2 centered in the center c of the
n × n grid. We want that after a δ′-movement of the
vertices the 2k-gon must still be convex, no matter how
the vertices are moved. To this end, consider the relative
positions of three consecutive vertices u, v, and w in
the bi-colored sequence; see Fig. 2. As long as v stays
on the same side of the line uw, the angle at v remains
convex. Since we can move both this line (by moving u
and w) and v, we therefore require that δ′ ≤ r′/2. We
have cos(π/k) = r̃/r. Hence,

δ′ ≤ r′

2
=
r − r̃

2
=
r − r cos(π/k)

2
=
r · (1− cos(π/k)

2
.

The Taylor series definition of the cosine function yields
cos(π/k) ≥ 1 − (π/k)2/2 = 1 − π2/(2k2). Hence, δ′ ≤
(rπ2)/(4k2). For any such δ′ any δ′-movement of the
vertices of the bi-colored sequence results in a convex
polygon defined by the sequence in the input order.

We now modify the construction for the bi-colored
sequence so that all target positions lie on points of the
n×n grid. We assume that n is sufficiently large so that
we can feasibly set rπ2/4k2 ≥ δ′ ≥

√
2/2. Let δ = δ′/2.

We move each vertex of the 2k-gon to the nearest grid
point, which is at most

√
2/2 away. In any feasible

solution, the distance of a vertex to its position on the
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curve complexity b Θ(1) Θ( 3
√
n) Θ(

√
n)

δ(b, n) Ω(n) Ω( 3
√
n) Ω(1)

Table 1: Lower bounds for the displacement δ depending
on the curve complexity b from Theorem 4.

2k-gon—resulting both from moving the vertex and from
placing it on a grid point—is at most δ +

√
2/2 ≤ δ′.

Hence, the bi-colored sequence forms a convex polygon.
After placing the target positions for the bi-colored

sequence, we place the target positions of the remaining
vertices on unused points of the n× n grid.

The intersection of a straight line with a convex poly-
gon is a straight-line segment, and, hence, each edge
segment crosses the polygon’s boundary at most twice.

Property A polyline that crosses the boundary of a convex
polygon b times has at least db/2e − 1 bends.

On the other hand, each 4-cycle must separate the
two sets of the bi-colored sequence and especially every
pair of consecutive vertices; hence, every 4-cycle must
cross each of the 2k edges of the corresponding convex
polygon. Therefore, at least one of the edges of such a
4-cycle must have at least d2k/4e = dk/2e crossings with
the boundary of the convex polygon. This edge must,
hence, have at least d(dk/2e)/2e − 1 = dk/4e − 1 bends.

Recall that δ ≤ rπ2/(8k2) = (n− 1)π2/(16k2). Since
we want to create an instance where each 4-cycle has
an edge with at least b + 1 bends, we must have k ≥
4b + 5; we choose k = 4b + 5. Hence, we can set δ =
(n − 1)π2/(16 · (4b + 5)2) = Θ(n/b2). Recall that we
required that rπ2/4k2 ≥

√
2/2. This is the case if n ≥

4
√

2(4b+ 5)2/π2 + 1. Furthermore, since there is a total
of 2k = 8b+ 10 red and blue vertices, there is a linear
number n′ = n− 2k of remaining vertices forming the
4-cycles. Hence, in any planar drawing with just a δ-
movement of the vertices, there will be a linear number
of edges with more than b bends. �

The general form of the theorem allows to choose the
curve complexity b, as long as n ≥ 4

√
2(4b+ 5)2/π2 + 1.

This yields some interesting bounds; see also Table 1.
We first consider constant curve complexity. It is not

surprising, that there are examples in which no constant
curve complexity is sufficient. However, this is even the
case with δ = Θ(n), i.e., a linear size of δ may still be
not enough freedom for constant curve complexity.

Corollary 5 For every constant number b ≥ 0 of bends
and every number n ≥ 4

√
2(4b+ 5)2/π2 + 1 it holds that

δ(b, n) = Ω(n). Furthermore, for every such n, there is
an instance with δ = Θ(n) such that in every feasible
embedding Θ(n) edges must have more than b bends.

Our construction also works for a curve complexity of
b = Θ(

√
n), and yields a constant δ-value.

Corollary 6 Let b = Θ(
√
n). For n ≥ 4

√
2(4b(n) +

5)2/π2 + 1 it holds that δ(b, n) = Ω(1).

Finally, both δ and b can be of Θ( 3
√
n); especially,

both values are sublinear but not constant.

Corollary 7 Let b = Θ( 3
√
n). For n ≥ 4

√
2(4b(n) +

5)2/π2 + 1 it holds that δ(b, n) = Ω( 3
√
n).

Note that Theorem 4 does not yield a bound for lin-
ear b. However, this restriction stems only from requiring
that the target positions must lie on the grid. If we drop
this requirement, we can place the bi-colored sequence
on the corners of the regular 2k-gon and get an example
with a small—but positive—δ, for which a linear number
of edges needs a linear number of bends. Note that,
although the target positions do not lie on grid points,
we still have the property that between every pair of
vertices there is a larger distance, i.e., points do not come
too close; in this case, the distance is at least constant.

Corollary 8 Let b be a function linear in n. For every
n with n ≥ 4b(n) + 9, there is a planar graph with target
positions (not lying on the n×n grid) and a value δ > 0
such that every AGD embedding will have an edge with
at least b(n) bends.

If n − 4b = Θ(n), these instances will even have a
linear number of edges with a linear number of bends.

5 Bounds for b(δ, n)

We now assume that δ is prescribed and derive bounds
for the minimum b(δ, n) that is sufficient for all instances
on n vertices. We reuse the constructions for δ(b, n).
However, we must be careful with the modified analysis.

Upper Bounds. The constructions in Section 3 can be
used directly for obtaining upper bounds on b(δ, n).

Theorem 9 For δ > (n− 1)/2 it holds that b(δ, n) ≤ 2
and for δ > (n− 1)/

√
2 it holds that b(δ, n) = 0.

Lower Bounds. Using the examples of Section 4, we
can also derive lower bounds on b(δ, n).

Theorem 10 Let δ ≥
√

2/4. Then, for every n ≥ 1
it holds that b(δ, n) ≥

√
(n− 1)/δ · π/16 − 1, that is,

b(δ, n) = Ω(
√
n/δ).

More precisely, there is always an example in which a
linear number of edges must have at least

√
(n− 1)/δ ·

π/16− 1 bends if the vertices are moved by at most δ.

Proof. We can use the same construction as in Theo-
rem 4. However, now the displacement δ is prescribed
and we want to maximize k such that the resulting 2k-
gon will stay convex after any δ-movement of the vertices.
We require δ ≥

√
2/4 since otherwise moving the vertices
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maximum displacement δ Θ(1) Θ( 3
√
n) Θ(n)

b(δ, n) Ω(
√
n) Ω( 3

√
n) Ω(1)

Table 2: Lower bounds for the curve complexity b de-
pending on the displacement δ from Theorem 10.

from the corners of the regular 2k-gon to the closest grid
points can have more influence than the δ-movement.

Recall that we required δ ≤ (n− 1)π2/(16k2). Hence,
we can set k = d

√
(n− 1)/δ · π/4e. Since every 4-cycle

must have an edge with at least dk/4e − 1 bends, we
know that every feasible planar embedding with only a
δ-movement of the vertices must have curve complexity
at least d

√
(n− 1)/δ · π/16e − 1. Therefore, b(δ, n) ≥

d
√

(n− 1)/δ · π/16e − 1.
Since in the example we have 2k = O(

√
n) vertices

in the bi-colored sequence, there will still be a linear
number of 4-cycles and, hence, a linear number of edges
that need at least

√
(n− 1)/δ · π/16− 1 bends. �

As a consequence, for every constant δ we get b(δ, n) =
Ω(
√
n). Especially, no constant curve complexity can be

guaranteed with a constant displacement.

Corollary 11 For every constant displacement δ ≥ 0
and n ≥ 1 it holds that b(δ, n) = Ω(

√
n).

Furthermore, for every n, there is an instance with b =
Θ(
√
n) such that in every feasible δ-b-AGD embedding

Θ(n) edges must have at least b bends.

Again, we can also make δ depend on n. We get
essentially the same relation between δ and b(δ, n) as we
did for b and δ(b, n); see Table 2.

Corollary 12 For δ = Θ(n), b(δ, n) = Ω(1).

Again, there are examples in which both δ and b are
of Θ( 3

√
n), that is, both are sublinear but not constant.

Corollary 13 For δ = Θ( 3
√
n), b(δ, n) = Ω( 3

√
n).

6 Conclusion and Open Problems

We explored the interplay between flexibility in moving
vertices away from their target position with the number
of bends in planar drawings. We proved upper and
lower bounds for the value δ(b, n) that describes the
displacement that has to be allowed in order to be able
to draw all planar instances with only b bends per edge.
Most importantly, we have seen that for every constant
curve complexity b, δ(b, n) is still linear. Furthermore,
even Θ( 3

√
n) curve complexity is not achievable with

constant displacement, but requires Ω( 3
√
n) displacement.

On the other hand, we have also shown that any constant
maximum displacement δ still requires b(δ, n) = Ω(

√
n).

There are still several interesting open questions. For
instance, for higher constant values of b, the gap in terms
of the constants for the upper and lower bounds is quite
large. Is there an algorithm that finds a drawing with
constant curve complexity b and relatively small linear
displacement? Furthermore, we know that for curve
complexity Θ(

√
n) a constant displacement is necessary.

Is such a displacement also sufficient, i.e., is there a
constant δ such that we can draw every planar graph
with displacement just δ and curve complexity O(

√
n)?
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