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Abstract

Two points p, q of an orthogonal polygon P are s-visible

from one another if there exists a stairase path (i.e., an

x- and y-monotone hain of horizontal and vertial line

segments) from p to q that lies in P . The s-kernel of P

is the (possibly empty) set of points of P from whih all

points of P are s-visible.

We are interested in the problem of omputing the

s-kernel of a given orthogonal polygon (on n verties)

possibly with holes. The problem has been onsidered

by Gewali [1℄ who desribed an O(n)-time algorithm

for orthogonal polygons without holes and an O(n2)-
time algorithm for orthogonal polygons with holes. The

problem is a speial ase of the problem onsidered by

Shuierer and Wood [5℄, whose work implies an O(n)-
time algorithm for orthogonal polygons without holes

and an O(n log n + h2)-time algorithm for orthogonal

polygons with h ≥ 1 holes.

In this paper, we give a simple output-sensitive al-

gorithm for the problem. For an n-vertex orthogo-

nal polygon P that has h holes, our algorithm runs in

O(n+h log h+k) time where k = O(1+h2) is the num-

ber of onneted omponents of the s-kernel of P . Ad-

ditionally, a modi�ed version of our algorithm enables

us to ompute the number k of onneted omponents

of the s-kernel in O(n + h log h) time.

Keywords: s-kernel, visibility, orthogonal polygon,

output-sensitive algorithm.

1 Introduction

A polygon is orthogonal if its edges are either horizon-

tal or vertial; an edge e of suh a polygon is a N-edge

(S-edge, E-edge, and W-edge, resp.) if the outward-

pointing normal vetor to e is direted towards the

North (South, East, and West, resp.); see Figure 1(a).

Of partiular importane are the dents, i.e., edges whose

endpoints are reex verties of the polygon, harater-

ized as N-dents, S-dents, E-dents, and W-dents (see Fig-
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Figure 1: (a) Illustration of the main de�nitions (the

portions of the polygon not s-visible from p are shown

dark); (b) the s-visibility polygon of p, whih is an s-

star, with its s-kernel shown darker.

ure 1(a)); the dents are a measure of non-onvexity of

an orthogonal polygon.

A set of points is x-monotone (y-monotone, resp.) if

its intersetion with any line perpendiular to the x-axis

(y-axis, resp.) is a onneted set. A stairase path is a

hain of horizontal and vertial segments that is both

x- and y-monotone.

Then, two points p, q of an orthogonal polygon P are

s-visible from one another if there exists a stairase path

from p to q that lies in P (Figure 1(a) shows two suh

points p and q). The set of points that are s-visible

from a point p form the s-visibility polygon of p. The

s-kernel of P is the (possibly empty) set of points of P

whose s-visibility polygon is equal to P , i.e., the set of

points from whih all points of P are s-visible (the s-

kernel of the orthogonal polygon in Figure 1(b) is shown

darker); note that the s-kernel may be disonneted. An

orthogonal polygon is an s-star if it has non-empty s-

kernel. The orthogonal polygon in Figure 1(b) is an

s-star; as an be seen in the �gure, an s-star may have

holes.

Visibility problems are losely related to reahability

and to overing problems. The s-kernel of a polygon

is the set of points from whih all other points of the

polygon an be reahed by means of x- and y-monotone

paths. So, if a robot restrited to move parallel to the

oordinate axes is onsidered to \guard" a point p in

an orthogonal polygon provided that it an get to p a-

long a monotone path, then the polygons that an be

\guarded" are those with non-empty s-kernel. Addi-

tionally, beause the s-stars may be highly non-onvex
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Figure 2: An orthogonal polygon with Θ(n) holes whose
s-kernel (shown darker) has Θ(n2) size.

(see Figure 1(b)), a minimum over of an orthogonal

polygon using s-stars (see [3℄ for an algorithm) is ex-

peted to involve a smaller number of piees ompared

to other minimum overs. (Note also that in the usual

sense of visibility, the kernel of a polygon with holes is

empty and that the kernel of an n-vertex polygon an

be omputed in O(n) time [2℄.)

Gewali [1℄ has onsidered the problem of omputing

the s-kernel of an orthogonal polygon; he desribed an

O(n)-time algorithm for an orthogonal polygon without

holes and an O(n2)-time algorithm for orthogonal poly-

gons with holes where n is the number of verties of

the polygon. He also showed that the latter algorithm

is worst-ase optimal sine the s-kernel of an orthogo-

nal polygon with holes may be of Θ(n2) size; Figure 2

shows an orthogonal polygon with Θ(n) holes whose s-

kernel has Θ(n2) size [1℄. Gewali used this result to give

an O(n log n)-time algorithm for reognizing whether an

orthogonal polygon with holes is an s-star.

Shuierer and Wood [5℄ studied the notion of O-vi-

sibility, that is, visibility along a set O of orientations

and gave an O(n log |O|)-time algorithm for the ompu-

tation of the O-kernel of an orthogonal polygon without

holes and an O(n(log |O|+ log n) + h(|O|+ h))-time al-

gorithm for polygons with h holes, respetively. Their

algorithms imply O(n)-time and O(n log n + h2)-time

algorithms for the s-kernel of orthogonal polygons with-

out holes and of orthogonal polygons with h ≥ 1 holes,

respetively.

In this paper, we present a simple output-sensitive

O(n + h log h + k)-time and O(n)-spae algorithm for

omputing the s-kernel of an orthogonal polygon having

n verties, h ≥ 0 holes, and an s-kernel onsisting of k

onneted omponents; as we will see k = O(1 + h2).
The algorithm also enables us to ount the number k of

onneted omponents of the s-kernel of suh a polygon

in O(n + h logh) time using O(n) spae (i.e., without

omputing the s-kernel), and thus we an determine if

an orthogonal polygon is an s-star in the same time and

spae omplexity.
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Figure 3: (a) An orthogonal polygon A that is orthogo-

nally onvex; (b) some of the quadrants whose union is

equal to the omplement of A.

2 Theoretical Framework

For an edge e of an orthogonal polygon P , let De be

a small enough disk entered at the midpoint of e; we

de�ne the in-halfplane of e as the losed halfplane that is

de�ned by the line supporting e and ontains the portion

of De that lies in P .

An orthogonal polygon is orthogonally onvex if it is

both x-monotone and y-monotone. For simpliity and

sine we deal with orthogonal polygons, in the follow-

ing, an orthogonally onvex orthogonal polygon will be

referred to as \orthogonally onvex polygon." Clearly,

an orthogonally onvex polygon annot have dents. The

reverse also works, and we have:

Observation 1 An orthogonal polygon is orthogonally

onvex if and only if it has no dents.

Therefore, the boundary of an orthogonally onvex

polygon onsists of x- and y- monotone hains onnet-

ing the leftmost edge of the polygon, to the uppermost

edge, to the rightmost edge, to the bottommost edge,

and bak to the leftmost edge (see Figure 3(a)); any

one of these hains may degenerate to a single point.

Moreover, it is important to observe that the following

lemma holds.

Lemma 1 Let A be an orthogonally onvex polygon

having n verties. Then, the omplement of A an be

expressed as the union of Θ(n) open quadrants.

The lemma follows from the fat that the omplement

of an orthogonally onvex polygon is equal to the union

of as many open quadrants as the polygon's reex ver-

ties (for a reex vertex, the orresponding quadrant is

the omplement of the union of the in-halfplanes of the

edges inident on the reex vertex) plus 4 more (one for

eah of the leftmost, topmost, rightmost, bottommost

edge); Figure 3(b) shows the quadrants belonging to the

omplement of an orthogonally onvex polygon that are

assoiated with the boundary hain from the leftmost
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Figure 4: Illustration of BBox(H), S=(H), S||(H),
QNW (H), QNE(H), QSE(H), and QSW (H) for a

hole H .

to the topmost edge (the remaining three hains on-

tribute additional quadrants in a similar fashion). As a

result, the total number of quadrants is nearly half the

number of verties of the polygon.

2.1 The s-kernel of orthogonal polygons without

holes

The algorithm of Gewali [1℄ omputes the s-kernel of

an orthogonal polygon P without holes by interseting

P with the in-halfplanes of the lowermost N-dent, the

rightmost W-dent, the topmost S-dent, and the leftmost

E-dent. This implies the following result.

Lemma 2 Let P be an orthogonal polygon without

holes that has n verties. The s-kernel of P is an or-

thogonally onvex polygon of O(n) size.

2.2 Notation for orthogonal polygons with holes

Let D be an orthogonal polygon or a hole in an orthog-

onal polygon. Then, we de�ne:

ϑD : the boundary of D;

BBox(D) : the smallest axes-aligned retangle ontain-

ing D.

Additionally, for a hole H , we have:

S=(H) : the smallest open horizontal strip ontain-

ing the interior of H ;

S||(H) : the smallest open vertial strip ontaining

the interior of H ;

QNW (H) : the losed axes-aligned quadrant that is the

omplement of the union of the interiors of the in-

halfplanes of the top and left edges of the retan-

gle BBox(H) (see Figure 4) | similarly, we de�ne

QNE(H), QSW (H), and QSE(H);
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Figure 5: Illustration of the boundary subhain nota-

tion for a hole H (the subhain ϑHNE is point q; no

ϑHWW , ϑHSS exist).

ϑHNW : the part of the boundary of H in ounter-

lokwise diretion from the leftmost among the

points of H with maximum y-oordinate to the

topmost among the points of H with minimum x-

oordinate (see Figure 5) | similarly, we de�ne

ϑHNE , ϑHSW , and ϑHSE ;

ϑHNN : let p, q be the leftmost and rightmost, re-

sp., verties of H with maximum y-oordinate; if

p, q are adjaent in H then no ϑHNN exists; oth-

erwise, if p′ (q′, resp.) is the other endpoint of the

horizontal edge inident on p (q, resp.), ϑHNN is

the part of the boundary of H onneting p′ and q′

after the edges pp′ and qq′ have been removed (see

Figure 5) | similarly, we de�ne ϑHWW , ϑHSS ,

and ϑHEE .

The following lemma provides important properties

of the s-kernel of orthogonal polygons with holes.

Lemma 3 Let H be a hole of an orthogonal polygon P .

Then:

(i) No point of the strips S=(H) and S||(H) belongs to
the s-kernel of P .

(ii) If ϑHNW is not a single point, then no point of

the quadrant QSE(H) belongs to the s-kernel of P .

Moreover:

if ϑHNW ontains a S-dent or an W-dent, then no

point of the quadrant QSW (H) belongs to the s-

kernel of P (see Figures 6 and 7);

if ϑHNW ontains a N-dent or an E-dent, then no

point of the quadrant QNE(H) belongs to the s-

kernel of P ;

if ϑHNW ontains a N-dent or an W-dent, then

no point of the quadrant QNW (H) belongs to the

s-kernel of P .

Similar results hold for the boundary subhains

ϑHNE, ϑHSW , and ϑHSE.

(iii) If the boundary of H ontains a subhain ϑHNN ,

then no point of the quadrants QSW (H)∪QSE(H)
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Figure 6: If ϑHNW ontains a S-dent, then no point of

the quadrant QSW (H) belongs to the s-kernel.

belongs to the s-kernel of P . Moreover:

if ϑHNN ontains a N-dent or an E-dent, then no

point of the quadrant QNE(H) belongs to the s-

kernel of P ;

if ϑHNN ontains a N-dent or an W-dent, then no

point of the quadrant QNW (H) belongs to the s-

kernel of P .

Similar results hold for the boundary subhains

ϑHWW , ϑHSS, and ϑHEE.

The fat that if ϑHNW ontains a S-dent, then no point

of the quadrant QSW (H) belongs to the s-kernel of P

(statement (ii) of Lemma 3) follows from the fat that

there annot exist x- and y-monotone paths from any

point p of QSW (H) to both points q, q′ on either side

of the S-dent; see Figure 6. Figure 7 shows examples of

subhains ϑHNW ontaining a S-dent but no W-dents

(at left) and an W-dent but no S-dents (at right).

Lemma 3 implies that for a hole H of the given or-

thogonal polygon P , points of the s-kernel of P belong

to all, some, or none of the four quadrants QNW (H),
QNE(H), QSW (H), and QSE(H).

3 Computing the s-Kernel

Let P be an orthogonal polygon. In [5℄, the s-kernel

of an orthogonal polygon P with h holes is omputed

as the intersetion of the s-kernel A of P after having

ignored the holes in P with the external s-kernels of

all of P 's holes. However, as the external s-kernel of

eah hole ontains a horizontal and a vertial strip, the

intersetion of the external s-kernels may result to om-

puting a partial s-kernel of quadrati (in h) size, most

of whih may be lipped in the end. So, in order to get a

faster algorithm, we need to avoid this. Hene, we pro-

ess the horizontal strips S=( ) of the holes separately,
omputing the horizontal \in"-strips, i.e., the horizon-

tal strips that form the omplement of the strips S=( );
these strips thus ontain the entire s-kernel of P (see

Lemma 3(i)). We work similarly for the vertial strips

S||( ). Next, we lip the omplement of the union UQ of

all the quadrants not ontaining points of the s-kernel
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Figure 7: No point of the quadrant QSW (H) belongs to
the s-kernel if ϑHNW ontains: (left) a S-dent or (right)

an W-dent.

(resulting from the holes as desribed in Lemma 3(ii)

and (iii)) about the polygon A. Finally, we interse-

t the lipped omplement of UQ with the vertial and

horizontal \in"-strips. A detailed desription of the al-

gorithm is given in Algorithm s-Kernel below.

Algorithm s-Kernel(P )

Input : an orthogonal polygon P possibly with holes

Output : the s-kernel of P

1. ompute the s-kernel A of the orthogonal polygon

bounded only by P 's outer boundary omponent;

if P has no holes

then return A as the s-kernel of P ;

exit;

let xmin, xmax, ymin, ymax be the extreme values

of x- and y-oordinates of the bounding retangle

BBox(A) of A;

2. proess the holes of P to determine the (open)

strips and (losed) quadrants that do not ontain

points of the s-kernel of P (see Lemma 3);

if all 4 quadrants QNW (H), QNE(H), QSW (H),
QSE(H) of a hole H do not ontain points of

the s-kernel of P

then print(\The s-kernel of P is empty.");

exit;

let C= (C||, CQ, resp.) be the set of horizontal strip-

s (vertial strips, quadrants, resp.) not ontaining

points of the s-kernel of P ;

3. {proess the strips in C= and C||}
ompute the union of the horizontal strips in C=,

lip it about the range [ymin, ymax], and store it in

a y-ordered array M= of alternating losed \in"-

strips (ontaining points of the s-kernel) and open

\out"-strips (not ontaining points of the s-kernel);

work similarly for the vertial strips in C|| using
the range [xmin, xmax], produing an x-ordered ar-

ray M||;

4. {proess the quadrants in CQ}
ompute the union UQ of all the quadrants in CQ,

and lip its omplement about the boundary of the
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polygon A omputed in Step 1;

if the lipped omplement of the union UQ of

the quadrants in CQ is empty

then print(\The s-kernel of P is empty.");

exit;

5. for eah polygon Bj in the lipped omplement of

UQ in y-order do

for eah horizontal \in"-strip I interseting

Bj in y-order do

ompute the boundary ϑBj(I) = ϑBj ∩ I;

loate a leftmost point of ϑBj(I) in the

vertial strips array M||;

walk on ϑBj(I) and in M|| until a right-

most point of ϑBj(I) is found, printing
eah polygon (if any) ontributed by

Bj ∩ I and eah \in"-strip of M||;

(Note that the lipped omplement of the union UQ

at the ompletion of Step 4 does not ontain its en-

tire boundary; it ontains the edges that resulted from

the lipping about A but it does not ontain the edges

that resulted from the quadrants in CQ.)

The orretness of Algorithm s-Kernel follows from

Lemma 3 and the fat that the s-kernel of P indeed is

the intersetion of polygon A (see Step 1) with the om-

plement of the union of the olleted strips and quad-

rants from the holes of P .

Time and Spae Complexity. Let n and h be

the number of verties and holes of the input orthogo-

nal polygon P . In the following lemma, we show that

the omplement of the union of axes-aligned quadrants

has some very interesting properties; two polygons are

horizontally (vertially, resp.) separated if no horizontal

(vertial, resp.) line intersets both them.

Lemma 4 (i) Eah haline bounding a quadrant in

CQ ontributes at most one edge to the polygons

forming the omplement of the union UQ of all the

quadrants in CQ.

(ii) The omplement of UQ onsists of O(h) orthogonal-
ly onvex polygons that are horizontally and verti-

ally separated and have O(h) total size.

(iii) The lipped omplement of UQ omputed upon om-

pletion of Step 4 of Algorithm s-Kernel onsists of

O(h) horizontally and vertially separated orthogo-

nally onvex polygons of O(n) total size.

Lemma 4(iii) and the fat that the intersetion of

O(h) horizontal strips with O(h) vertial strips onsist-
s of O(h2) onneted omponents of O(h2) total size

imply the following orollary.

Corollary 5 The s-kernel of an n-vertex orthogonal

polygon that has h holes onsists of O(1 + h2) orthogo-

nally onvex polygons of O(n + h2) total size.

The number of orthogonally onvex polygons and the

size of a s-kernel given in Corollary 5 are tight; a lower

bound an be obtained by a generalization of the poly-

gon in Figure 2.

The omputation of the s-kernel in Step 1 takes O(n)
time [1℄ and so does the entire Step 1. Step 2 takes O(n)
time as well by traversing the boundary of eah hole H

of P , omputing the subhains ϑHNW , ϑHNW , ϑHNE ,

ϑHSW , ϑHSE , ϑHNN , ϑHWW , ϑHSS , and ϑHEE , de-

termining whether they ontain dents, and applying

Lemma 3. The proessing of the h horizontal strips

in C= in Step 3 an be ompleted in O(h log h) time by

sorting them by non-dereasing bottom side and then

proessing them from bottom to top; similarly, the pro-

essing of the vertial strips in C|| takes O(h log h) time.

In Step 4, we sort the quadrants in y-order in O(h log h)
time and ompute the right-bounding line of the union

of quadrants QNW (Hi) and QSW (Hi′ ) in CQ and the

left-bounding line of the union of quadrants QNE(Hi)
and QSE(Hi′ ) in O(h) time. The omplement of these

unions is lipped about polygon A and by traversing

their boundaries from top to bottom we ompute the

lipped omplement of UQ in O(n) time. In total, Step 4

takes O(n+h log h) time. For Step 5, let tj be the num-

ber of horizontal \in"-strips interseting polygon Bj .

Beause the polygons in the lipped omplement of UQ

are horizontally separated (Lemma 4(iii)), then any oth-

er polygon may be interseted only by the topmost or

bottommost of these tj \in"-strips. Then, the num-

ber of pairs of polygons and \in"-strips onsidered is∑
j tj =

∑
j 2+

∑
j(tj − 2) = O(h) sine the total num-

ber of polygons Bj (see Lemma 4(iii)) and the total

number of \in"-strips are both O(h). Thus, if the s-

kernel of P has k onneted omponents, Step 5 takes

O(n + h log h + k) time by using binary searh in the

x-sorted array M|| for loating leftmost points. There-

fore:

Theorem 6 Let P be an orthogonal polygon having n

verties and h = O(n) holes. Algorithm s-Kernel om-

putes the s-kernel of P in O(n + h log h + k) time using

O(n) spae where k is the number of onneted ompo-

nents of the s-kernel of P .

4 Computing the Number of Components of the s-

Kernel

Algorithm s-Kernel an be modi�ed to help us om-

pute the number k of onneted omponents of the s-

kernel of a given orthogonal polygon P ; it suÆes to

modify Step 1 so that if P has no holes it returns 0 if

A is empty and 1 otherwise, Steps 2 and 4 to return
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0 if the s-kernel is found empty, and Step 5 as follows:

for eah polygon Bj and eah horizontal \in"-strip I

interseting Bj , we ompute a leftmost point a and a

rightmost point z of the boundary of Bj in I, and lo-

ate them in the vertial strips array M|| using binary

searh; then, depending on the indies of the strips to

whih a, z belong and whether they are \in"- or \out"-

strips, we ompute the number κ(Bj , I) of \in"-strips

(if any) between (and inluding) the strips of a and of

z. The total number of omponents of the s-kernel of P

is the sum of all the omputed κ(Bj , I).
The orretness of the modi�ed algorithm follows

immediately from the fat that for eah polygon Bj

and eah horizontal \in"-strip I, eah\in"-strip between

(and inluding) the strips ontaining a and z ontributes

a separate omponent to the s-kernel of P . The om-

plexity analysis of Step 5 of Algorithm s-Kernel and

the fat that κ(Bj , I) an be omputed in onstant time

after the strips ontaining a and z have been determined

imply that the modi�ed Step 5 takes O(n+h log h) time.

Reall that the number k of onneted omponents of

the s-kernel may be as large as Θ(1 + h2); see Corol-

lary 5.

Therefore, we have:

Theorem 7 Let P be an orthogonal polygon having n

verties and h = O(n) holes. The desribed modi�ed al-

gorithm omputes the number of onneted omponents

of the s-kernel of P in O(n + h log h) time using O(n)
spae.

5 Recognizing s-Stars

The modi�ed algorithm of Setion 4 to reognize

whether a polygon P is an s-star (i.e., its s-kernel on-

sists of at least 1 omponent) or not. A simpler version

that does not ompute the number k of omponents sim-

ply heks in Step 5 whether a and z fall in the same

vertial \out"-strip of M||; if they don't, then there ex-

ists a point in Bj ∩ I belonging to the s-kernel of P and

hene P is an s-star (the algorithm an be augmented

to return suh a point as a erti�ate of its deision). If

the above ondition for a, z does not hold for all poly-

gons Bj and \in"-strips I, then learly the s-kernel of

P is empty, and hene P is not an s-star.

Theorem 8 Let P be an orthogonal polygon having n

verties and h = O(n) holes. It an be deided whether

P is an s-star in O(n + h log h) time using O(n) spae.

6 Concluding Remarks

In this paper, we presented a simple output-sensitive

algorithm for omputing the s-kernel of an orthogonal

polygon possibly with holes. The algorithm runs in

O(n + h logh + k)-time using O(n) spae, where n and

h are the numbers of verties and holes, respetively,

of the input polygon, and k is the number of onnet-

ed omponents of the omputed s-kernel. Modi�ations

of our algorithm enable us to ompute the number k of

onneted omponents and to reognize if an orthogonal

polygon is an s-star in O(n + h log h) time using O(n)
spae.

Shuierer and Wood [5℄ mention that Rawlins in his

PhD thesis [4℄ showed that the omputation of the ker-

nel of a multiply onneted polygon under restrited

orientation visibility has a lower bound of Ω(n log n).
This may imply that our s-kernel algorithm is optimal.

It is interesting to investigate the omplexity status

of the s-star reognition problem, i.e., an there be an

algorithm running in o(n + h logh) time or is there an

Ω(n + h logh) lower bound? Additionally, it would be

interesting to study extensions of the problem to 3-

dimensional spae.

References

[1℄ L.P. Gewali. Reognizing s-Star Polygons. Pattern

Reognition 28(7), 1019-1032, 1995.

[2℄ D.T. Lee and F.P. Preparata. An Optimal Algorithm

for Finding the Kernel of a Simple Polygon. J. ACM

26, 415-421, 1979.

[3℄ R. Motwani, A. Raghunathan, and H. Saran. Covering

Orthogonal Polygons with Star Polygons: the Perfet

Graph Approah. J. Comput. Systems Siene 40, 19-

48, 1990.

[4℄ G. Rawlins. Explorations in Restrited-Orientation Ge-

ometry. PhD Thesis, University of Waterloo, 1987.

[5℄ S. Shuierer and D. Wood. Generalized Kernels of Poly-

gons with Holes. Pro. 5th Canadian Conf. on Compu-

tational Geometry, 222-227, 1993.


