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Squeeze-Free Hamiltonian Paths in Grid Graphs

Alexandru Damian∗ Robin Flatland†

Abstract

Motivated by multi-robot construction systems, we in-
troduce the problem of finding squeeze-free Hamiltonian
paths in grid graphs. A Hamiltonian path is squeeze-free
if it does not pass between two previously visited ver-
tices lying on opposite sides. We determine necessary
and sufficient conditions for the existence of squeeze-free
Hamiltonian paths in staircase grid graphs. Our proofs
are constructive and lead to linear time algorithms for
determining such paths, provided that they exist.

1 Introduction

We introduce a problem motivated by collective con-
struction systems in which a large number of simple,
autonomous robots build complex structures using mod-
ular building blocks. Such systems are inspired by the
decentralized construction methods of termites and bees
in which global structure emerges from the efforts of
individual insects following seemingly simple rules and
using environmental cues. They are robust to failure be-
cause damaged robots are easily replaced, making them
suitable in uncertain and inhospitable environments.

In the TERMES collective construction system intro-
duced in [6], the modular building blocks are cubes that
are placed on a regular grid to form lattice-based struc-
tures. Robots move from cell to cell on the grid while
carrying a block, which they can attach to the struc-
ture at an adjacent cell. Physical limitations restrict
the class of structures that the robots can build and the
order in which they can attach the blocks. For example,
it is impossible for a robot to carry blocks down a corri-
dor one block wide, or to place a block directly between
two others. Inappropriate intermediate configurations
that can no longer be traversed by the robots should
therefore be avoided by proper robot coordination.

Coordination in the TERMES system is achieved by
precomputing a path that all robots follow while adding
blocks to the structure. The path starts at a grid cell on
the boundary of the final structure, visits each grid cell
of the final structure exactly once, and satisfies the re-
striction that the path may not “squeeze” into a cell that
has two previously visited cells adjacent to it on opposite
sides. We call such a path a squeeze-free Hamiltonian
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path. The problem thus reduces to finding a squeeze-
free Hamiltonian path in a grid graph. See Figure 1.
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Figure 1: (a) A squeeze-free path, and (b) a path in
which the last three vertices are squeezed between two
previously visited vertices on opposite sides.

To our knowledge we are the first to study the algo-
rithmic complexity of the squeeze-free Hamiltonian path
problem. In [6], their main focus is on engineering the
robots rather than algorithms, so they use an exponen-
tial time backtracking algorithm to compute the paths.
Computing Hamiltonian cycles in general grid graphs
is known to be NP-Complete [4], although the problem
can be solved in polynomial time for specialized classes
of grid graphs [5], [2]. See [1] for a survey and new re-
sults on Hamiltonicity of square, triangular, and hexag-
onal grid graphs. In other related work, [3] presents
an O(n2) algorithm for computing a partial ordering on
the placement of blocks subject to the squeeze-free con-
straint for 2D structures with holes. Here we take a first
step to understanding the complexity of the squeeze-free
Hamiltonian path problem by providing an O(t) algo-
rithm that determines for any staircase grid graph G
with t steps, if G has a squeeze-free Hamiltonian path
that starts at a boundary vertex located on a step of G.

2 Notation and Definitions

A grid graph is a graph induced by a finite subset of the
vertices of a square tiling of the plane. In this paper
we consider staircase grid graphs which consist of the
edges and vertices bounding a set of tiles whose union
forms the shape of a staircase extending rightwards and
upwards from the bottom leftmost vertex.

For a staircase grid graph G, let ∂G denote the por-
tion of the staircase boundary that extends clockwise
from the bottom leftmost vertex to the top rightmost
vertex of G. Refer to Figure 2. For any pair of ver-
tices a, b ∈ ∂G, let ∂G[a, b] denote the portion of ∂G
extending from a to b. For any vertex x, let xs, xw, xn
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Figure 2: Staircase grid graph. Only some of the inte-
rior grid vertices and edges are illustrated.

and xe refer to the vertices adjacent to x that lie south,
west, north and east of x, respectively (if such a vertex
exists). We sometimes double the subscript to refer,
for instance, to the vertex south of xe as xes. At each
vertex x ∈ G, the coordinate axes with origin x parti-
tion the plane into four quadrants. Let Gne[x], Gnw[x],
Gsw[x] and Gse[x] denote the subgraph of G that lies
entirely in the first, second, third and fourth quadrant,
respectively. We assume that each quadrant is closed,
so it includes the points on the bounding axes. Define
Gn[x] = Gne[x]∪Gnw[x], and similarly for Gs[x], Ge[x]
and Gw[x]. Let H be a (directed) Hamiltonian path in
G. For any two vertices a, b ∈ G, such that a is visited
by H before b, let H[a, b] denote the directed subpath
of H from a to b. A vertex v ∈ H is squeezed if ve and
vw are both visited before v, or if vn and vs are both
visited before v.

A corner is a boundary vertex on G with interior
angle π/2 (if convex) or 3π/2 (if reflex). For any con-
vex corner c ∈ ∂G, let Γ[c] denote the closed rectan-
gle bounded by the two line segments extending from c
to the next and previous corners located clockwise and
counterclockwise (respectively) from c. We refer to Γ[c]
as the step with corner c. The height of Γ[c] is the height
of the corresponding rectangle. The case where G con-
sists of a single step is trivial, so we assume that G has
at least two steps. We refer to the highest step of G as
Γtop and the lowest step as Γbot.

For any two vertices a, b ∈ G, let h(a, b) denote the
horizontal extent of the line segment ab, and let v(a, b)
denote the vertical extent of ab. For any vertex x ∈ G
and any staircase step Γ of G, let h(x,Γ) denote the
horizontal distance from x to the left side of Γ, and let
v(x,Γ) denote the vertical distance from x to the top
side of Γ. The following definition (depicted in Figure 2
for j = s) will play an important role in our discussion.

Definition 1 Let Z be a sequence of consecutive grid
points z1, . . . , zk lying on a horizontal (vertical) grid
segment. For a fixed j ∈ {s, n} (j ∈ {e, w}), we say

z z

yyw

ysw
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Figure 3: (a) pattern1 and (b) pattern2.

that the grid segments z1zk and z1jzkj form a zigzag
sequence in H if, for each i = 1, . . . , k, −−→zizij ∈ H if i is
odd, and −−→zijzi ∈ H if i is even.

We call a zigzag sequence separating if it extends be-
tween two boundary edges.

2.1 Hamiltonian Patterns

Let G′ ⊆ G be an arbitrary staircase subgraph of G. We
define two distinct Hamiltonian path patterns H1 and
H2 on G′, which will later be used in stitching a Hamil-
tonian path H for G. Each of these patterns is defined
for a fixed orientation for the first edge – say east – and
grows in a particular direction – say south – with the
understanding that the pattern can undergo rotations
and reflections as necessary to construct H. Each of H1

and H2 begins at a vertex on ∂G′. The first pattern
H1, which we refer to as pattern1, includes straight hor-
izontal path segments with orientations alternating east
and west on each row, and extending between boundary
points of G′. See Figure 3a. The second pattern H2,
which we refer to as pattern2, is identical to the first
pattern, with the only difference that, for each reflex
corner y, the straight horizontal subsegment extending
west from ysw is replaced by a subpath of unit height
that includes the zigzag sequence starting with −−−→yswyw
and extending west. See Figure 3b. Observe that both
patterns are squeeze-free.

3 Preliminaries

Here we prove some properties of squeeze-free Hamilto-
nian paths in G, if it has any. Therefore, throughout
this section, assume there exists a squeeze-free Hamil-
tonian path in G, and H is one such path.

Lemma 1 At any time during the traversal of H, there
can be no unvisited vertices between any two vertices a
and b on a grid line that have already been visited.

Proof. If there were unvisited vertices along the line
segment ab, then the vertex last visited among these
vertices would cause a squeeze. �
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Let p be a directed, simple path in G from a boundary
point x to a boundary point y. A vertex v ∈ G is said
to be left (right) of p if v 6∈ p and v is on or to the
left (right) of the oriented closed curve consisting of p
followed by the path counterclockwise (clockwise) along
the boundary of G from y to x.

Lemma 2 Let x be any boundary vertex of G, and let
y be a vertex of ∂G such that y ∈ Gne[x] and H visits
x before y. At the time y is visited, all vertices that
are left of H[x, y] and also in Ge[x] are visited, with the
possible exception of those vertices to the left of y on its
horizontal grid line.

Proof. For contradiction, suppose there is an unvisited
vertex z to the left of H[x, y] and in Ge[x] that is not
left of y on y’s horizontal grid line. E.g., in Figure 4a, z
may be any vertex in the shaded regions. Let d be the
intersection of an upward ray from x and a leftward ray
from y. (Note that d need not be in G, as illustrated in
Figure 4a.) To reach z from y, H must eventually either
traverse an edge −→vvs with v on dy, or it must traverse an
edge−→vve with ve on dx. (These edges, which are the only
edges taking H into the shaded regions containing z, are
depicted in Figure 4a.) In the first case, there must be
a previously visited vertex of H[x, y], call it u, located
below vs on its vertical grid line. Thus there is a time
during the traversal of H in which vs is unvisited and
between visited vertices v and u in the same vertical grid
line, which contradicts Lemma 1. In the second case
there is a previously visited vertex of H[x, y] located to
the right of ve on its horizontal grid line, which similarly
contradicts Lemma 1. �

Lemma 3 The end point e of H is one of the following
vertices: (i) a top corner of Γtop, (ii) a left corner of
Γbot, or (iii) the lowest rightmost corner of G.

Proof. Clearly e must be a convex corner, or else it is
squeezed between previously visited vertices. Suppose
for contradiction that e is a convex corner of a step that
is not Γtop or Γbot. Then the top left vertex x of Γbot

and the top left vertex y of Γtop are both visited before
e. Without loss of generality, assume x is visited before
y. (If y is visited before x, just rotate the staircase by
90o and reflect it across the vertical, thus reversing the
roles of x and y.) By Lemma 2, e must be visited before
y, a contradiction. �

Lemma 4 Let x ∈ G be the first vertex visited by H in
Gne[x] and let −−→xxn ∈ H. Then −−−→xnexe ∈ H and xne is
the first vertex visited by H in Gse[xne].

Proof. Because x is the first vertex visited in Gne[x],
H traverses −−→xxn before visiting xe. Therefore H cannot
enter xe from the east (because xe would be squeezed
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Figure 4: (a) Lemma 2 (b) Lemma 7.

between vertices x and xee which would both be visited
before it) or the west (because −−→xxn ∈ H). It also can-
not enter it from the south via −−−→xsexe because H, which
begins on the boundary of G in a quadrant other than
Gne[x], would have to circle clockwise from xn around
to xse. In doing so, it crosses xe’s vertical grid line L
at a vertex above xe before reaching xse below it, thus
leaving xe unvisited between two visited vertices on L.
This contradicts Lemma 1. Therefore, −−−→xnexe ∈ H.

By Lemma 1, at the time −−−→xnexe is traversed, no vertex
south of xne on its vertical grid line is visited. Also by
Lemma 1, at the time xne is visited, no vertex east
of it on its horizontal grid line is visited (because xn
is already visited). Therefore, xne is the first vertex
visited by H in Gse[xne]. �

Lemma 5 Let i ∈ {n, s} and j ∈ {e, w}. Let x ∈ G
be the first vertex visited by H in Gij [x] and −−→xxj ∈ H
(−→xxi ∈ H). Then the two parallel grid lines containing
x and xj (xi) in Gij [x] form a zigzag sequence in H.

Proof. The case (i = n, j = e, −−→xxn ∈ H) follows im-
mediately from Lemma 4, by induction on the number
of vertices to the right of x. The other cases are similar
by symmetry of rotations and reflections. �

Lemma 6 If −→vw is the first edge visited in a zigzag se-
quence σ, the zigzag edges to each side of −→vw are visited
in sequential order starting with −→vw. (E.g., the edge ad-
jacent to (furthest from) −→vw on a side is visited first
(last) among all the edges on that side). If σ is sepa-
rating, then (i) if the last visited edge in σ points north
(west), then H ends in Γtop (Γbot), and (ii) if the last
visited edge in σ points south (east) then H does not
end in Γtop (Γbot).

Proof. The first claim of this lemma follows immedi-
ately from Lemma 1. By Lemma 3, H must end in either
a top corner vertex of Γtop, a left corner vertex of Γbot,
or the rightmost bottom corner of G. If the last visited
edge in σ points north, there is no way for H to return
to any of these end points other than the ones in Γtop.
The other claims follow from similar arguments. �

Due to space considerations, the proof of the following
lemma can be found in Appendix 7.
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Lemma 7 Let x be a vertex (interior or boundary) of
G. If x is first visited by H, from among all vertices of
Gne[x], then the following properties hold:

(1) If −−→xxn ∈ H, then for each step Γ[c] ⊂ Gne[x] of
odd height, either h(x,Γ[c]) is even, or c is the end
point of H.

(2) If −−→xxs ∈ H, then for each step Γ[c] ⊂ Gne[x] of odd
height, either h(x,Γ[c]) is odd, or c is the end point
of H.

The following lemma follows immediately from
Lemma 7 (by symmetry of rotations and reflections).

Lemma 8 Let x be a vertex (interior or boundary) of
G. If x is first visited by H, from among all vertices of
Gsw[x], then the following properties hold:

(1) If −−→xxw ∈ H, then for each step Γ[c] ⊂ Gsw[x] of
odd width, either v(x,Γ[c]) is even, or c is the end
point of H.

(2) If −−→xxe ∈ H, then for each step Γ[c] ⊂ Gsw[x] of odd
width, either v(x,Γ[c]) is odd, or c is the end point
of H.

4 Existence of a Squeeze-Free Hamiltonian Path

An algorithm we call VisitWest(G) constitutes a key
ingredient in our Hamiltonian path algorithm. It can
be applied on any staircase subgraph G that satisfies
the condition that, if x is the top right corner of G,
then v(x,Γ) is even for any step Γ of G of odd width.
It constructs a squeeze-free Hamiltonian path H that
starts at x and moves in the direction −−→xxw. From xw
H follows pattern1 until it reaches a step of G at odd
vertical distance from x, then it follows pattern2 until it
reaches a step of G at even vertical distance from x, then
repeats. See Figure 5a for an example and Appendix 8
for more details.

In building a Hamiltonian path for an arbitrary stair-
case graph G, we will use three other variations of
the VisitWest algorithm on various subgraphs of G
– namely VisitEast, VisitNorth and VisitSouth.
The algorithm VisitEast is similar to VisitWest,
with the only difference that the starting point is at
the top left corner and H begins by moving east. One
may view the path produced by VisitWest(Gsw[x]) as
composed of the subpath extending from x to the hori-
zontally opposite corner y (see Figure 5a), the edge −→yys,
and the path produced by VisitEast(Gsw[xs]). The
precondition for VisitEast(G) is that v(x,Γ) is odd
for each step Γ of G of odd width.

The algorithm VisitNorth is identical to Vis-
itWest, when operating on copy of G rotated clock-
wise by 90◦ and then reflected vertically. In this case,
the first edge in H is −−→xxn, where x is the lower left cor-
ner of G. The precondition for VisitNorth(G) is that

h(x,Γ) is even for each step Γ of G of odd height. The
algorithm VisitSouth is similar to VisitNorth, with
the only difference that the starting point is at the top
left corner of the lowest stair and H begins by mov-
ing south. The precondition for VisitSouth(G) is that
h(x,Γ) is odd for each step Γ of G of odd height. Thus
we have the following lemma.

Lemma 9 Let G be a staircase graph that satisfies
the preconditions of the VisitWest(East, North,
South) algorithm. The path H produced by running
VisitWest(East, North, South) on G is a squeeze-
free Hamiltonian path for G.

We now prove our main result in Theorems 10, 11,
and 12. The proofs of Theorems 11 and 12 are similar
to Theorem 10, so we leave their details for Appendix 9.

Theorem 10 Let x be a vertex on a horizontal segment
of ∂G that is not the top left corner of a step. There is
a squeeze-free Hamiltonian path H that starts at x and
includes −−→xxw if and only if the following three conditions
hold:

(1) For each step Γe of odd height lying east of x,
h(x,Γe) is odd. If the width of Gse[x] is odd, then
Γtop is exempt from this condition.

(2) For each step Γw of odd width lying west of x,
v(x,Γw) is even. If the height of Gse[x] is even,
then Γbot is exempt from this condition.

(3) If the height of Gse[x] is even, then the width of
Gse[x] is also even.

Proof. For the if direction, assume that the three con-
ditions hold. Our goal is to find a squeeze-free Hamil-
tonian path H in G.

If-Case 1. Consider first the case where the height of
Gse[x] is odd. (See Figure 5b.) By condition (2), any
step Γw of odd width lying west of x (including Γbot) sat-
isfies the restriction that v(x,Γw) is even. This implies
that Gsw[x] satisfies the precondition of the VisitWest
algorithm, so we begin with H =VisitWest(Gsw[x]).
(See Figure 5c). By Lemma 9 all vertices of Gsw[x] have
been visited by this method.

Let z be the vertex at the intersection between the
bottom boundary segment of G and the vertical line
through x. Because the height of Gse[x] is odd, H
points east into z. We let H take another step east (so−→zze ∈ H), then proceed depending on the parity of the
width of Gse[x]. If the width of Gse[x] is even, by con-
dition (1) each step Γe lying east of ze (including Γtop)
satisfies the restriction that h(ze,Γe) is even (because
h(z,Γe) is odd). This implies that Gne[ze] satisfies the
precondition of the VisitNorth algorithm, so we ap-
pend to H the path produced by VisitNorth(Gne[ze]).

The case where x is a reflex corner needs special at-
tention, because in this case the left side xy of the step
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Figure 5: (a) VisitWest(Gsw[x]). (b) Theorem 10: Gse[x] has odd height and width. (c) Hamiltonian path.

Γ[y] with lower left corner x is not in Gne[ze]. In this
case h(x,Γ[y]) = 0 is even, and by condition (1) the
height of Γ[y] is even. This allows us to replace the
vertical segment in H running alongside xy by a zigzag
subpath of unit width that includes all vertices on the
segment xy (similar to the pattern2 procedure). This
along with Lemma 9 guarantees that, at the end of this
procedure, all vertices of G have been visited.

If the width of Gse[x] is odd (as in Figure 5c), condi-
tion (1) allows h(x,Γtop) to be even and Γtop to be of odd
height. In this case h(ze,Γtop) is odd and Gne[ze] does
not satisfy the precondition imposed by VisitNorth.
We handle this situation by restricting our attention to
the subgraph G′ne[ze] obtained from Gne[ze] after elim-
inating Γtop, with the exception of the lowest row of
vertices in Γtop. (The subgraph G′ne[ze] is shaded in Fig-
ure 5c.) Note that G′ne[ze] satisfies the precondition of
VisitNorth, so we append to H the path produced by
VisitNorth(G′ne[ze]). By Lemma 9, at the end of this
procedure all vertices of G′ne[ze] have been visited. If x
is a reflex corner, H absorbs the vertices along the ver-
tical boundary segment sitting on x as described above.
At this point, H is a squeeze-free Hamiltonian path for
Gsw[u], where u is the lower right corner u of Γtop.

Because the width of Gse[x] is odd, at the end of Vis-
itNorthH points north into u. We add −−→uun and −−−→unune
to H, then let H follow pattern1 (reflected vertically)
across Γtop until all vertices of G have been visited. The
result is a squeeze-free Hamiltonian path for G.

If-Case 2. The case when Gse[x] has even height is
similar and omitted for space considerations. See Ap-
pendix 9.

For the only-if direction, assume that there is a
squeeze-free Hamiltonian path H in G. We next show
that the three theorem conditions hold. We begin with
the following two observations. Refer to Figure 5b.

(a) Because x is the start point of H and −−→xxw ∈ H (by

the theorem statement), by Lemma 5 the two right-
most columns in Gsw[x] form a separating zigzag
sequence σx.

(b) By Lemma 1, −−−→xeexe 6∈ H. In addition, −−−→xnexe /∈ H,
because such an edge could only exist in H if x
or xe were a reflex corner, and in either case it
would require that H[x, xne] intersect a vertical line
L through xe both above and below xe, which con-
tradicts Lemma 1. Therefore −−−→xsexe ∈ H. We claim
that none of the vertices in Gne[xse] has been vis-
ited at the time xse is visited. Otherwise, if there
were such a vertex y ∈ Gne[xse] already visited at
the time xse is visited, then H[x, y] would have to
intersect the horizontal line L passing through xse
in two vertices on either side of xse, leaving xse
unvisited between two visited vertices on L. This
contradicts Lemma 1. Thus we are in the context
of Lemma 5, with xse being first visited among all
vertices of Gne[xse] and −−−→xsexe ∈ H, therefore the
two bottom rows of Gne[xse] form a zigzag sequence
σe.

Condition (1). By observation (b) above, xse is the
first visited by H among all vertices of Gne[xse], and−−−→xsexe ∈ H. Thus we can use the result of Lemma 7 on
Gne[xse] to show that, for each step Γe of odd height
other than Γtop, h(xse,Γe) is even and h(x,Γe) = 1 +
h(xse,Γe) is odd. If the width of Gse[x] is even, then
the rightmost edge in σe points south. By Lemma 6,
the end point of H lies outside of Γtop. Thus Lemma 7
applies to show that, if the height of Γtop is odd, then
h(x,Γtop) is odd. Thus condition (1) holds.

Condition (2). Because x is the start point of H and−−→xxw ∈ H, we can use the result of Lemma 8 on Gsw[x]
to show that, for each step Γw of odd width other than
Γbot, v(x,Γw) is even. If the height of Gse[x] is odd
(see Figure 5b), then the lowest edge in σx points east.
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By Lemma 6, the end point of H is not in Γbot. Thus
Lemma 7 applies to show that, if the width of Γbot is
odd, then v(x,Γbot) is even. Thus condition (2) holds.

Condition (3). Assume that the height of Gse[x] is
even. Because it is even, the lowest edge in σx points
west. By Lemma 6, the end point of H lies in Γbot. This
implies that the rightmost edge in σe points south (oth-
erwise H would end in Γtop). Because −−−→xsexe ∈ σe points
north (see observation (b)), this is possible only if σe has
odd length. This implies that Gse[x] has even width, so
condition (3) holds. This completes the proof. �

Theorem 11 Let x ∈ ∂G be a vertex on a horizontal
segment of a step Γ[c] of G, such that removing xxs does
not disconnect G. Let Γ[c1] be the first odd width step
that lies west of x (if one exists). There is a squeeze-free
Hamiltonian path H that starts at x and includes −−→xxs
if and only if the following conditions hold:

(1) For each step Γe of odd height lying east of x,
h(x,Γe) is odd. If the width of Gse[x] is odd, then
Γtop is exempt from this restriction.

(2) If c1 exists, then for each step Γw of odd width ly-
ing west of Γ[c1], v(c1,Γw) is even. If the height
of Gse[c1] is even, then Γbot is exempt from this
restriction.

(3) If c1 exists and the height of Gse[c1] is even, then
the width of Gse[x] is also even.

(4) If x does not lie on Γbot, then |xc| is even.
(5) If |xc| is odd, then the width of Gse[x] is even.

Theorem 12 Let x ∈ ∂G be a vertex on a horizontal
segment of a step Γ[c] of G, such that removing xxe does
not disconnect G. Let Γ[c2] be the first odd height step
that lies east of x (if one exists). There is a squeeze-free
Hamiltonian path H that starts at x and includes −−→xxe
if and only if the following conditions hold:

(1) For each step Γw of odd width lying west of x,
v(x,Γw) is odd. If the height of Gse[x] is odd, then
Γbot is exempt from this restriction.

(2) If c2 exists, then for each step Γe of odd height ly-
ing east of Γ[c2], h(c2,Γe) is even. If the width of
Gse[c2] is even, then Γtop is exempt from this re-
striction.

(3) If c2 exists and the width of Gse[c2] is even, then
the height of Gse[x] is also even.

(4) If x does not lie on Γbot, then |xc| is even.
(5) If |xc| is odd, then the height of Gse[x] is odd.
(6) If c2 exists and h(x, c2) = 0, then Γ[c2] = Γtop, |xc|

is even, and the height of Gse[x] is even.

The case where the first edge in H is −−→xxn is symmetric
to the case where the first edge in H is −−→xxw (subject
to a 90◦ clockwise rotation and a vertical reflection).
Similarly, the case where the start point x of H is on
a vertical staircase segment is symmetric to the case
where x is on a horizontal staircase segment.

5 Complexity of the Decision Problem

Using a sweep line algorithm described in Appendix 10,
we have the following result.

Theorem 13 Given a staircase grid graph G repre-
sented as a sequence of t pairs of numbers indicating
the height and width of each step in order from left to
right, there is an O(t) algorithm that decides whether G
admits a squeeze-free Hamiltonian path starting from a
vertex on ∂G.

6 Conclusions

In this paper we give an O(t) algorithm for deciding
if a staircase grid graph with t steps has a squeeze-
free Hamiltonian path starting at a boundary vertex
on a step. Although not included here, we can use the
same proof techniques to determine similar necessary
and sufficient conditions for the existence of such paths
starting from the bottom or right side of the staircase.
We conjecture though that if there exists a squeeze-free
Hamiltonian path starting at the bottom or right side,
then there also exists a squeeze-free Hamiltonian path
starting from a vertex on a step.
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Appendix

7 Proof of Lemma 7 from Section 3

This section contains the proof of Lemma 7 that was omitted
from the body of the paper due to space considerations. We
begin with Lemma 14 which is referenced in Lemma 7.
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Figure 6: (a) Lemma 14. (b) Lemma 7

Lemma 14 Let x be the start point of H. For any reflex
corner vertex r ∈ Gne[x] (r ∈ Gsw[x]), r is first visited
among all vertices in Gne[r] (Gsw[r]).

Proof. Let r ∈ Gne[x] be an arbitrary reflex corner vertex,
and let Γ[c] be the step with top right corner vertex r. Be-
cause r is a reflex corner, rn and rw exist. No vertex y ∈ ∂G
above r can be visited before r by Lemma 2. Therefore rn
is visited after r. So assume for contradiction that there is
some other vertex y ∈ Gne[r] that is visited by H prior to
r. See Figure 6a. Then there is a vertex r′ to the right of
r, at the intersection between the horizontal through r and
H[x, y]. By Lemma 1, rw is not visited at the time r is vis-
ited (because r′ is already visited). But H[x, r], which links
two boundary vertices, splits G into two pieces, and H can-
not visit both unvisited vertices rn (to the right of H[x, r])
and rw (to the left of H[x, r]) without crossing itself. The
arguments for the case r ∈ Gsw[x] are symmetric. �

Lemma 7 Let x be a vertex (interior or boundary) of G.
If x is first visited by H, from among all vertices of Gne[x],
then the following properties hold:

(1) If −−→xxn ∈ H, then for each step Γ[c] ⊂ Gne[x] of odd
height, either h(x,Γ[c]) is even, or c is the end point of
H.

(2) If −−→xxs ∈ H, then for each step Γ[c] ⊂ Gne[x] of odd
height, either h(x,Γ[c]) is odd, or c is the end point of
H.

Proof. For (1), assume for contradiction that there exists a
step Γ[c] ⊂ Gne[x] of odd height such that h(x,Γ[c]) is odd
and c is not the end point of H. Refer to Figure 4b. Let y
be the left bottom corner of Γ[c]. Consider the three pos-
sible directions from which H might visit yn. Observe that
−−−→ynnyn /∈ H, because if it were then subpath H[x, ynn] would
have to intersect the vertical line L passing through yn in
two vertices on either side of yn, leaving yn unvisited be-
tween two visited vertices on L. This contradicts Lemma 1.
So consider the case when −−−→yneyn ∈ H. Then yne is the first

vertex visited in Gnw[yne] (otherwise, if there were a ver-
tex y′ ∈ Gnw[yne] visited prior to yne, then the subpath
H[x, y′] would cross the vertical through yne at two vertices
on either side of yne, contradicting Lemma 1). Thus we can
apply Lemma 5 to show that −−−→yneyn is the start of a zigzag
sequence in Gnw[yne], and because |yc| is odd, the last edge
in the zigzag is directed into corner c, thus H ends at c. This
contradicts our assumption that H does not end at c, and
thus −−−→yneyn 6∈ H.

Before completing the proof of property (1), first observe
that by Lemma 5, the bottom two rows of Gne[x] form a
zigzag sequence. Refer to Figure 6b. Because h(x,Γ[c]) is
odd and the zigzag starts with the upward directed edge−−→xxn,
the zigzag edge in c’s vertical grid line points downward.
Label this edge −→zzs. Now consider the last case for property
(1) which is when −−→yyn ∈ H. By Lemma 14, y is first visited
among all vertices in Gne[y]. By Lemma 5, −−−→yneye ∈ H, which
points in a direction opposite to that of −−−→zseze, contradicting
Lemma 1.

For property (2), note that because −−→xxs ∈ H, no vertex
below x on its vertical line is visited before x. This com-
bined with the fact that x is the first vertex visited in Gne[x]
shows that x is also the first vertex visited in Gse[x]. Thus
by Lemma 5, the upper two rows of Gse[x] form a zigzag
sequence, with the first edge, −−→xxs, pointing downward. The
rest of the proof is analogous to the proof of property (1). �

8 Additional Details For VisitWest from Section 4

Algorithm 1 details the VisitWest algorithm. See Figure 5a
for an example.

Algorithm 1: VisitWest(staircase G)

Precondition: Let t be the upper right corner of
G. For each step Γ of G of odd width, v(t,Γ) is
even.

Initialize x← t and H ← {−−→xxw}. Let b be the
lower left corner of G.
repeat

Let y1 be the reflex corner west of x closest to
x, such that v(x, y1) is odd.
If no such vertex exists, then y1 ← b.
Let y2 be the reflex corner west of y1 closest to
y1, such that v(y1, y2) is odd.
If no such vertex exists, then y2 ← b.
From x, let H follow pattern1 south-west until
it meets y1.
From y1, let H follow pattern2 south-west until
it meets y2.
Reset x← y2.

until all vertices of G have been visited ;
Output H.
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Figure 7: (a) Theorem 10: Gse[x] has even height and even width. (b) Hamiltonian path.

9 Proofs of Theorems 10,11, and 12 from Section 4

We begin by supplying the portion of the proof of Theo-
rem 10 that was omitted in the body of the text.

Omitted Portion of Theorem 10 proof: If-Case 2.
Consider now the case where the height of Gse[x] is even,
as depicted in Figure 7a. By condition (3), the width of
Gse[x] is also even. Let G′ be the graph obtained from G af-
ter eliminating all vertices on the lowest boundary segment
of G, along with all vertices in Γbot, with the exception of
those lying on the right boundary segment of Γbot. (G′ is
shown shaded in Figure 7b.) Thus G′se[x] is of odd height
and even width. We trace H across G′se[x] using the same
procedure as described above for the case where Gse[x] was
of odd height and even width. It can be verified that, at
the end of this procedure, H points south into the lower
right corner of G′. At this point H takes a unit step south,
then continues west along the bottom boundary segment of
G up to the vertex pw, where p is the lower right corner
of Γbot. From pw H follows pattern1 (rotated counterclock-
wise by 90◦ and reflected vertically) until all vertices of Γbot

have been visited. At that point, all vertices of G have been
visited, and H is a squeeze-free Hamiltonian path for G.

We now provide complete proofs of Theorems 11 and 12.

Theorem 11 Let x ∈ ∂G be a vertex on a horizontal seg-
ment of a step Γ[c] of G, such that removing xxs does not
disconnect G. Let Γ[c1] be the step of odd width closest to
x that lies west of x (if one exists). There is a squeeze-free
Hamiltonian path H that starts at x and includes −−→xxs if and
only if the following five conditions hold:

(1) For each step Γe of odd height lying east of x, the hor-
izontal distance h(x,Γe) is odd. If the width of Gse[x]
is odd, then Γtop is exempt from this restriction.

(2) If c1 exists, then for each step Γw of odd width lying
west of Γ[c1], the vertical distance v(c1,Γw) is even. If
the height of Gse[c1] is even, then Γbot is exempt from
this restriction.

(3) If c1 exists and the height of Gse[c1] is even, then the
width of Gse[x] is also even.

(4) If x does not lie on Γbot, then |xc| is even.

(5) If |xc| is odd, then the width of Gse[x] is even.

Proof. We consider each of the two directions (if, and only
if) in turn.

If direction. For the if direction, assume that the five con-
ditions hold. Our goal is to find a squeeze-free Hamiltonian
path H in G. Let b be the lower left corner of Γbot.

If-Case 1. Consider first the case where either of the fol-
lowing is true: (i) c1 does not exist and |xc| is even, and (ii)
c1 exists and the height of Gse[c1] is odd. In the latter case
x may not lie on Γbot (due to the existence of c1), and by
condition (4) |xc| is even.

Define d = c1 if c1 exists (see Figure 8), and d = bn
otherwise (see Figure 9a). Let y be the intersection point
between the vertical through x and the horizontal through
d. In either case, ys exists. (Note that in case (i) when x is
the top left corner of Γ[bot], Gnw[y] degenerates to a vertical
line segment.) Otherwise, by the definition of c1 and the fact
that |xc| is even, every step in Gnw[y] has even width. In
either case pattern1 (starting with −−→xxs) can be used to visit
all vertices of Gnw[y] (regardless of the existence of c1). We
let H follow this path until it reaches the lower left corner d1

of Gnw[y], coming from north (so
−−−→
d1nd1 ∈ H). If d1w exists,

H continues west as far as it can go (up to c1 in Figure 8b).
Next H takes a step south.

Let z be the intersection point between the vertical
through x and the bottom boundary segment of G. If c1
does not exist, z = ys and H continues east up to ze (see Fig-
ure 9a). If c1 exists, H visits all vertices of Gsw[ys] on its
way to ze as follows. By condition (2), any step Γw of odd
width lying west of c1 (including Γbot) satisfies the restriction
that v(c1,Γw) is even. This implies that v(c1s,Γw) is odd,
so the precondition of VisitEast restricted to the subgraph



CCCG 2015, Kingston, Ontario, August 10–12, 2015

xc

d = c1

Γbot

z ze

Γtop

Gse[c1]

height=9

c1s

y

ys

b

d1

bn

xc

d = c1

c2

z ze

d1

d1n

y
ys

v(c1,Γ[c2] = 4

(end)

(a) (b)
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Figure 9: Theorem 11, x ∈ Γbot (a) |xc| even (b) |xc| odd.

Gsw[ys] (see left shaded subgraph in Figure 8b) is satisfied.
We append to H the path produced by VisitEast(Gsw[ys]).
Using the result of Lemma 9, it can be verified that at this
point H is a squeeze-free Hamiltonian path in Gnw[z]. Let
H take another step −→zze.

If the width of Gse[x] is even, or if Γtop has even height,
then by condition (1) h(x,Γe) is odd for every step Γe of odd
height lying east of x. Then h(ze,Γe) is even and therefore
the precondition of VisitNorth is satisfied when restricted
to Gne[ze] (see right shaded subgraph in Figure 8b). We
append to H the path produced by VisitNorth(Gne[ze]).

The case where x is a reflex corner needs special attention,
because in this case the left side xy of the step Γ[y] with lower
left corner x is not in Gne[ze]. In this case h(x,Γ[y]) = 0 is
even, and by condition (1) the height of Γ[y] is even. Then we
can replace the vertical segment in H running alongside xy
by a zigzag subpath of unit width that includes all vertices
on the segment xy (similar to the pattern2 procedure). This
along with Lemma 9 guarantees that, at the end of this
procedure, all vertices of G have been visited.

Finally, consider the situation where the width of Gse[x]
is odd and Γtop has odd height. Let G′ be the subgraph

of G obtained by removing the top row of vertices in Γtop.
Then the top step in G′ has even height. This along with
condition (1) shows that G′ne[ze] satisfies the precondition
of VisitNorth, so we let H follow the path produced by
VisitNorth(G′ne[ze]). If x is a reflex corner of G, we ad-
just H as described above so that it visits all vertices on the
vertical boundary segment incident on x. This along with
Lemma 9 guarantees that H is a squeeze-free Hamiltonian
path for G′. Because Gse[x] has odd width, H ends up point-
ing north into top right corner of G′. Let H take another
step north, then west all the way to the top left corner of
Γtop. The resulting path is a squeeze-free Hamiltonian path
for G.

If-Case 2. Consider now the case where either of the fol-
lowing is true: (i) c1 does not exist and |xc| is odd, and (ii)
c1 exists and the height of Gse[c1] is even. In either case,
conditions (3) and (5) guarantee that the width of Gse[x] is
even. If |xc| is odd, by condition (4) x lies on Γbot.

Define d = c1 if c1 exists (see Figure 10), otherwise d = b
(see Figure 9b). Let y be the intersection point between
the vertical through x and the horizontal through d. By
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Figure 10: Theorem 11: (a) Gse[c1] has even height (b) Hamiltonian path H.

condition (1), for any step Γe of odd height lying east of
x (including Γtop), h(x,Γe) is odd. Thus the precondition
of VisitSouth restricted to the subgraph Gne[yn] (see top
shaded subgraph in Figures 10b and 9b) is satisfied. Let H
follow the path produced by VisitSouth(Gne[yn]). By The-
orem 9, H is a squeeze-free Hamiltonian path for Gne[yn].
Because the width of Gse[x] is even, H ends up pointing
south into the lower right corner of Gne[yn]. Let H take
another step south, then west all the way to yw. As in the
previous case, from yw the path H follows pattern1 (start-
ing with −−−−→ywynw) restricted to Gnw[yw]. If x lies on Γbot,
pattern1 completes a squeeze-free Hamiltonian path for G
(see Figure 9b).

If x does not lie on Γbot, the width of Gnw[yw] is even
and therefore H arrives at the top right corner d1 of Γ[c1]
coming from north. Refer to Figure 10b. At this point H
is a squeeze-free Hamiltonian path of Gne[d1]. From d1 H
continues west until it reaches c1, then takes a step south.
If Γ[c1] is identical to Γbot, then VisitEast(Gse[c1s]) com-
pletes a squeeze-free Hamiltonian path for G.

Assume now that Γ[c1] is not identical to Γbot. Let G′

be the subgraph of G obtained by removing the vertices in
Γbot, with the exception of the rightmost vertex column in
Γbot. Let z be the intersection point between the horizontal
through c1s and the right boundary segment of G. From c1s,
H follows the path produced by VisitEast(G′sw[z]), up to
the lower right corner p of Γbot. Condition (2) guarantees
that the precondition of VisitEast is satisfied, so at this
point H is a squeeze-free Hamiltonian path of Gne[p] (by
Lemma 9). Because the height of G′sw[z] is odd, H arrives
at p from east, so −→pep ∈ H. We let H take another step east,
then trace pattern1 (rotated counterclockwise by 90◦ and
reflected vertically) across Γbot to complete a squeeze-free
Hamiltonian path for G.

Only if direction. For the only-if direction, assume that
there is a squeeze-free Hamiltonian path H in G. We next
show that the five lemma conditions hold. We begin with
two observations:

(a) Because x is the starting point of H and −−→xxs ∈ H (by
the theorem statement), we can use Lemma 5 to show

that the top two rows in Gs[x] form a separating zigzag
sequence σx (see Figure 11).

(b) Assuming that c1 exists, let d be the top right corner of
Γ[c1]. By Lemma 14 d is first visited among all vertices

in Gsw[d]. If
−−→
ddw ∈ H, by Lemma 5 the rightmost two

columns of Gsw[d] form a separating zigzag sequence σd

(see Figure 11a).

If
−−→
ddw 6∈ H, then

−−−−→
dswdw ∈ H (as the only way to reach

dw). Also note that dsw is first visited among all ver-
tices in Gnw[dsw]. Otherwise, if there were a vertex
y ∈ Gnw[dsw] already visited at the time dsw is visited,
then H[x, y] would have to intersect the horizontal line
L passing through dsw in two vertices on either side
of dsw, leaving dsw unvisited between two visited ver-
tices on L. This contradicts Lemma 1. By Lemma 5,
the two rows of Gnw[dsw] form a zigzag sequence σw

(see Figure 11b). Because the width of Γ[c1] is odd (by
definition), the leftmost edge in σw is −−−→c1sc1, therefore
c1 is the end point of H.

Condition (1). Let Γe = Γ[ce] be an arbitrary step of odd
height lying east of x (if no such step exists, there is nothing
to prove). By Lemma 7, either h(x,Γe) is odd or ce is the
end point of H. If Γe 6= Γtop, then by Lemma 3 ce cannot
be the end point of H, so condition (1) holds. Assume now
that Γe = Γtop and the width of Gse[x] is even. In this case
the rightmost edge in σx points south, and by Lemma 6 H
many not end in Γtop. Thus Lemma 7 applies again to show
that h(x,Γe) is odd, so condition (1) holds.

Condition (2). Assume that c1 exists and let Γw = Γ[cw]
be an arbitrary step of odd width lying west of c1 (if no such
step exists, there is nothing to prove). Note that Γ[c1] 6=
Γtop because of the existence of Γ[c], and there is nothing to
prove if Γ[c1] = Γbot. By Lemma 3, H may not end at c1.

This along with observation (b) above implies that
−−→
ddw ∈ H

(otherwise H would end at c1). By Lemma 8 either v(c1,Γw)
is even or cw is the end point of H. If Γw 6= Γbot, then by
Lemma 3 cw cannot be the endpoint of H, so condition (2)
holds. Assume now that Γw = Γbot and that the height of
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Figure 11: Theorem 11, only-if direction (a)
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Gse[c1] is odd. In this case the lowest edge in σx points east,
and by Lemma 6 H cannot end in Γbot. This implies that
cw is not the endpoint of H, so condition (2) holds.

Condition (3). Assume that c1 exists and the height of
Gse[c1] is even. Note that Γ[c1] 6= Γtop due to the existence
of Γ[c]. We prove by contradiction that the width of Gse[x] is
even. Assume to the contrary that the width ofGse[x] is odd.
Then the rightmost edge in σx points north (see Figure 11a),
and by Theorem 6 H must end in Γtop. This along with

observation (b) above implies that
−−→
ddw ∈ H (otherwise H

would end at c1). Because
−−→
ddw ∈ H and the height of Gse[c1]

is even, the lowest edge in σd points west. By Lemma 6 H
must end in Γbot, a contradiction. We conclude that the
width of Gse[x] is even.
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Figure 12: Theorem 11, only-if direction, x ∈ Γtop (a)
qw exists (b) qw does not exist.

Condition (4). Assume that x 6∈ Γbot. We prove by con-
tradiction that |xc| is even. Assume to the contrary that |xc|
is odd. In this case −→csc ∈ H is the leftmost edge in σx, so H
ends at c. Because Γ[c] 6= Γbot, Lemma 3 implies that c is
the top left corner of Γtop.

Let q ∈ G be such that qc is the longest vertical subpath of
H that ends at c. Refer to Figure 12. Then either −−→qwq ∈ H
or −→qeq ∈ H (as the only way to reach q). Note that −−→qwq
would create a squeeze at q, because H must have visited

qe prior to q. Thus −−→qwq 6∈ H and therefore −→qeq ∈ H. This
implies that qw does not exist (otherwise H would create
a squeeze at q). Because G has at least two steps (by our
problem statement) we conclude that q lies above the lower
left corner of Γtop, and qse exists. Note that all three vertices
qse, qne and qee must have been visited prior to qe, so any
of −−−→qseqe, −−−→qneqe and −−−→qeeqe would create a squeeze of qe. This
means that H has no way of reaching qe, contradicting the
fact that H is Hamiltonian. We conclude that |xc| is even.

Condition (5). Assume that |xc| is odd. By condition (4),
x ∈ Γbot. In this case −→csc ∈ σx, so H ends at c. If the width
of Gse[x] is odd, then the rightmost edge in σx points north,
and by Lemma 6 H ends in Γtop, a contradiction. Thus
the width of Gse[x] is even and condition (5) holds. This
completes the proof. �

Theorem 12 Let x ∈ ∂G be a vertex on a horizontal seg-
ment of a step Γ[c] of G, such that removing xxe does not
disconnect G. Let Γ[c2] be the step of odd height closest to
x that lies east of x (if one exists). There is a squeeze-free
Hamiltonian path H that starts at x and includes −−→xxe if and
only if the following six conditions hold:

(1) For each step Γw of odd width lying west of x, the ver-
tical distance v(x,Γw) is odd. If the height of Gse[x] is
odd, then Γbot is exempt from this restriction.

(2) If c2 exists, then for each step Γe of odd height lying
east of Γ[c2], the horizontal distance h(c2,Γe) is even.
If the width of Gse[c2] is even, then Γtop is exempt from
this restriction.

(3) If c2 exists and the width of Gse[c2] is even, then the
height of Gse[x] is also even.

(4) If x does not lie on Γbot, then |xc| is even.

(5) If |xc| is odd, then the height of Gse[x] is odd.

(6) If c2 exists and h(x, c2) = 0, then Γ[c2] = Γtop, |xc| is
even, and the height of Gse[x] is even.

Proof. We consider each of the two directions (if, and only
if) in turn.
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If direction. For the if direction, assume that the five con-
ditions hold. Our goal is to find a squeeze-free Hamiltonian
path H in G. Let z be the intersection point between the
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Figure 13: Theorem 12 (a) h(x, c2) = 0 (b) c2 does not
exist and x ∈ Γbot.

horizontal through x and the right boundary segment of G.

If-Case 1. We begin with the simplest case where c2 exists
and h(x, c2) = 0. Refer to Figure 13a. By condition (6) |xc|
is even and the height of Gse[x] is even. In this case H
proceeds east until it reaches zw, then takes one step south.
By condition (1) v(x,Γw) is odd for every step Γw of odd
width lying west of x. Thus v(zsw,Γw) is even and therefore
the precondition of VisitEast is satisfied when restricted to
Gsw[zsw] (see shaded subgraph in Figure 13a). We append to
H the path produced by VisitEast(Gsw[zsw]). If xw exists,
we replace the segment in H running along xwc by a zigzag
subpath of unit height (starting with −−−−→xswxw) that includes
all vertices on xwc. Because |xc| is even, this subpath ends
with−→ccs and attaches seamlessly to the subpath ofH starting
at cs. This along with Lemma 9 guarantees that, at this
point, all vertices of Gsw[zw] have been visited. Because the
height of Gse[x] is even, H ends pointing east into the lower
right corner of Gsw[zw]. We let H take another step west to
meet the the right boundary segment of G, then north up to
zn. Because h(x, c2) = 0, by condition (6) Γ[c2] = Γtop, so
we let H follow pattern1 (starting with −−−→znznw) to complete
a squeeze-free Hamiltonian path for G.

If-Case 2. Consider now the case where either c2 does
not exist, or c2 exists and h(x, c2) > 0. Define the follow-
ing points: b be the lower left corner of G; t is the upper
right corner of G; d = d1 = tw if c2 does not exist (see Fig-
ure 13b), else d = c2 and d1 is the lower reflex corner of Γ[c2]
(see Figure 14a); and y is the intersection point between the
horizontal through x and the vertical through d.

If x is not a reflex corner, H proceeds east from x until
it reaches the first reflex vertex a. By the definition of c2,
every step in Gnw[y] has even height See the top left shaded
subgraph Gnw[y] in Figure 14a for an example. This implies
that pattern1 (starting with −→aae) can be used to visit all
vertices of Gnw[y] (regardless of the existence of c2). We let
H follow this path until it reaches d1 coming from the west

(so
−−−→
d1wd1 ∈ H). If d1n exists, H continues north as far as it

can go (up to d). Next H takes a step east, then continues
south all the way down to ye. From here the path taken by
H depends on the parity of the width of Gse[c2].

If-Case 2a. Assume first that the width of Gse[c2] is odd.
Note that if c2 does not exist, ye coincides with z and H
points south into z (see Figure 13b). Otherwise, if ye does
not coincide with z, then yee exists and is not on the bound-
ary of G, because the width of Gse[c2] is odd. In this case
H visits all vertices of Gne[yee] on its way to z as follows.
By condition (2), any step Γe of odd height lying east of c2
(including Γtop) satisfies the restriction that h(c2Γe) is even.
This implies that h(yee,Γe) is also even, so the precondition
of VisitNorth restricted to the subgraph Gne[yee] (see top
right shaded subgraph in Figure 14a) is satisfied. We append
to H the path produced by VisitNorth(Gne[yee]). Using
the result of Lemma 9, it can be verified that at this point H
is a squeeze-free Hamiltonian path in Gnw[z]. Because the
width of Gse[c2] is odd (by our assumption), H arrives at z
from north, so −→znz ∈ H. Let H take another step −→zzs.

If the height of Gse[x] is even, H continues along the path
produced by VisitEast(Gsw[zs]). Arguments similar to the
ones used in the first case show that at the end of this visit,
H is a squeeze-free Hamiltonian path for G.

Assume now that the height of Gse[x] is odd, as depicted
in Figure 14a. Let x1 = x if x is on Γbot (see Figure 13b),
otherwise x1 is the top right corner of Γbot (see Figure 14a).
Let G′ be the subgraph obtained by removing from G all
vertices left of the vertical through x1. Condition (1) guar-
antees that, for each step Γw of odd width lying west of
x, v(x,Γw) is odd. This implies that G′sw[zs] satisfies the
precondition of VisitEast, so we let H follow the path pro-
duced by VisitEast(G′sw[zs]). If x is not on Γbot, by condi-
tion (4) |xc| is even. In this case we adjust H to incorporate
all vertices on the horizontal boundary segment xwc (if such
vertices exist), as in the first case discussed above. At this
point H is a squeeze-free Hamiltonian path for G′. Because
Gse[x] has odd height, H ends up pointing west into the
lower left corner of G′. Let H take another step west, then
follow pattern1 across the vertices in G \G′. The resulting
path H is a squeeze-free Hamiltonian path for G.

If-Case 2b. Assume now that the width of Gse[c2] is even.
Refer to Figure 14b. By condition (3) the height of Gse[x]
is also even. By condition (5) |xc| is even. By condition
(1), for each step Γw of odd width lying west of x (includ-
ing Γbot), v(x,Γw) is odd. This implies that v(yse,Γw) is
even, so the precondition of VisitWest restricted to the
subgraph Gsw[yse] (see lower left shaded subgraph in Fig-
ure 14b) is satisfied. Let H follow the path produced by
VisitWest(Gsw[yse]). If |xc| > 0, we adjust H to incor-
porate all vertices on the horizontal boundary segment xwc,
as discussed above. Because |xc| is even, this adjustment is
possible. Because the height of Gse[x] is even, H ends up
pointing east into the lower right corner u of Gsw[ye]. At
this point H is a squeeze-free Hamiltonian path for Gnw[u].
Let H take another step east, so −−→uue ∈ H.

Let G′ be the graph obtained by removing from G all ver-
tices above the bottom row in Γtop. By condition (2), for
each step Γe of odd height in G′ lying east of c2, h(c2,Γe) is
even. Then h(ue,Γe) is also even. This implies that the pre-
condition of VisitNorth restricted to the subgraph G′ne[ue]
(see right shaded subgraph in Figure 14b) is satisfied. Let
H follow the path produced by VisitNorth(G′ne[ue]). Be-
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Figure 14: Path H from Theorem 12; the width of Gse[c2] is (a) odd (b) even.

cause the width of Gse[c2] is even, the width of G′ne[ue] is
also even, therefore H ends up pointing north into the lower
right corner of Γtop. Let H take another step north, then
follow pattern1 across the vertices in G \G′. The resulting
path H is a squeeze-free Hamiltonian path for G.

Only if direction. For the only-if direction, assume that
there is a squeeze-free Hamiltonian path H in G. We next
show that the six theorem conditions hold. We begin with
three observations:

(a) Because x is the starting point of H and −−→xxe ∈ H (by
the theorem statement), we can use Lemma 5 to show
that the two leftmost columns in Ge[x] form a separat-
ing zigzag sequence σx. Refer to Figure 15.

(b) If xw exists, then −−−−→xswxw ∈ H. This is because −−→xxe ∈ H
(by the theorem statement), and by Lemma 1 H cannot
arrive at xw from the left, therefore it must reach it
coming from south. Also note that xsw is first visited
among all vertices in Gnw[xsw]. Otherwise, if there
were a vertex y ∈ Gnw[xsw] already visited at the time
xsw is visited, then H[x, y] would have to intersect the
horizontal line L passing through xsw in two vertices
on either side of xsw, leaving xsw unvisited between
two visited vertices on L. This contradicts Lemma 1.
By Lemma 5 the two rows in Gnw[xsw] form a zigzag
sequence σw (provided that xw exists).

(c) If c2 exists, let d be the lower left corner of Γ[c2]. By
Lemma 14 d is first visited among all vertices in Gne[d].

If
−−→
ddn ∈ H, by Lemma 5 the bottom two rows of Gne[d]

form a separating zigzag sequence σd (see Figure 15a).

If
−−→
ddn 6∈ H, then

−−−→
dnedn ∈ H (as the only way to reach

dn). Arguments similar to the ones used in observa-
tion (b) above show that dne is first visited among all
vertices in Gnw[dne]. By Lemma 5, the two columns of
Gnw[dne] form a zigzag sequence σn (see Figure 15b).
Because Γ[c2] is of odd height (by definition), the top-

most edge in σn is −−−→c2ec2, therefore c2 is the end point
of H.

Condition (1). Because −−→xxe ∈ H and x is the start point
of H, we can use the result of Lemma 8 to show that, for
each step Γw of odd width other than Γbot lying west of x,
v(x,Γw) is odd. If the height of Gse[x] is even, then the
lowest edge in σx points east. By Lemma 6, H does not end
in Γbot. Thus Lemma 8 applies to show that, if the height
of Gse[x] is even, then v(x,Γbot) is odd.

Condition (2). Assume that c2 exists and let Γe = Γ[ce]
be an arbitrary step of odd height lying east of c2 (if no such
step exists, there is nothing to prove). Note that Γ[c2] 6=
Γbot because of the existence of Γ[c], and there is nothing to
prove if Γ[c2] = Γtop. By Lemma 3, H may not end at c2.

This along with observation (c) above implies that
−−→
ddn ∈ H

(otherwise H would end at c2). Lemma 7 applied on Gne[d]
tells us that either h(d,Γe) = h(c2,Γe) is even, or ce is the
end point of H. If Γe 6= Γtop, then by Lemma 3 ce cannot be
the endpoint of H, so condition (2) holds. Assume now that
Γe = Γtop and that the width of Gse[c2] is odd. In this case
the rightmost edge in σd points south, and by Lemma 6 H
cannot end in Γtop. This implies that ce is not the endpoint
of H, so condition (2) holds.

Condition (3). Assume that c2 exists and the width of
Gse[c2] is even. Note that Γ[c2] 6= Γbot due to the existence
of Γ[c]. We prove by contradiction that the height of Gse[x]
is also even. Assume to the contrary that the height ofGse[x]
is odd. In this case the lowest edge in σx points west, and
by Lemma 6 the end point of H lies in Γbot. This along

with observation (c) above implies that
−−→
ddn ∈ H (otherwise

H would end at c2). Because
−−→
ddn ∈ H and the width of

Gse[c2] is even (by the case statement), the rightmost edge
in σd points north (see Figure 15a). By Lemma 6 the end
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Figure 15: Theorem 12, only-if direction (a)
−−→
ddn exists (b)

−−→
ddn does not exist.

point of H lies in Γtop, contradicting the fact (established
above) that H ends in Γbot.

Condition (4). This proof that |xc| is odd is identical to
the proof for condition (4) in Theorem 11.

Condition (5). Assume that |xc| is odd. By condition
(4), Γ[c] = Γbot. Because |xc| is odd, −→csc ∈ σw, so H ends
at c. If the height of Gse[x] is even, then the lowest edge in
σx points east, and by Lemma 6 H does not end in Γbot, a
contradiction. It follows that Gse[x] has odd height.

Condition (6). Assume that c2 exists and h(x, c2) = 0,
meaning that x is the lower left corner of Γ[c2]. Because
the height of Γ[c2] is odd, the highest edge in σx is −−−→c2ec2, so
H ends at c2. If the lowest edge in σx points west, then by
Lemma 6 H ends in Γbot, a contradiction. So the lowest edge
in σx points east, which by the definition of a zigzag sequence
is possible only if the height of Gse[x] is even. So condition
(6) of the theorem holds. This completes the proof. �

10 Running Time Details from Section 5

We show that there is an O(t) time algorithm for decid-
ing whether a staircase grid graph G with t steps contains
a squeeze-free Hamiltonian path that starts at a boundary
vertex of ∂G. We assume G is represented as a sequence
of pairs of numbers indicating the height and width of each
step in order from left to right.

Theorems 10 through 12 list the conditions necessary and
sufficient for the existence of a squeeze-free Hamiltonian
path H that starts at a given vertex x on a horizontal stair-
case segment, and begins in the west, east or south direction.
The cases with H beginning north from x, or with x on a
vertical staircase segment, are symmetric. Therefore it suf-
fices to show that we can determine in O(t) time whether or
not the conditions listed by Theorems 10 through 12 hold
for at least one vertex x located on a horizontal staircase
segment.

We begin by introducing two decision variables that will
play a critical role in our decision procedure. For a fixed

vertex x ∈ ∂G, define

v(x) =



0 if v(x,Γw) is even for each step Γw 6= Γbot

of odd width lying west of x

1 if v(x,Γw) is odd for each step Γw 6= Γbot

of odd width lying west of x

−1 otherwise

Similarly, define

h(x) =



0 if h(x,Γe) is even for each step Γe 6= Γtop

of odd height lying east of x

1 if h(x,Γe) is odd for each step Γe 6= Γtop

of odd height lying east of x

−1 otherwise

Observe that Theorems 10 through 12 are concerned with
the parity of distances, not with the actual distances. We
will keep track of these parities by taking all distances mod-
ulo 2 (with 0 representing even and 1 representing odd). In
addition to the two variables defined above for all vertices
x (including the special corner vertices c1 from Theorem 11
and c2 from Theorem 12), Theorems 10 through 12 employ
the following decision variables: h(x,Γtop); v(x,Γbot); parity
of width and height of Gse[x]; x ∈ Γbot; parity of |xc|; exis-
tence and location of c1 and c2; height of Gse[c1]; width of
Gse[c2]; and Γ[c2] = Γtop.

We begin by determining the values of these decision vari-
ables for the top left corner vertex of each step and then
show that this is sufficient to determine if any vertex on a
horizontal staircase segment satisfies the conditions of The-
orems 10 through 12. Our method of computing these vari-
ables consists of two stages: a preprocessing stage, and an
incremental update stage. The preprocessing stage initial-
izes all variables corresponding to the top left corner of Γbot.
In addition, it sets up some helper variables that will be
used in the incremental update stage. In the incremental
update stage, the top left corners of the steps are processed
from left to right, and the variable values for the current cor-
ner are determined from the values of the previous corner in
constant time.
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Preprocessing

Let Γ[x1] = Γbot,Γ[x2], . . . ,Γ[xt] = Γtop be the steps in
order from left to right. Imagine a vertical line sweeping
left-to-right across the steps, stopping at each corner vertex
x1, x2, . . . , xt. Let o1 be the top right corner of the first step
of odd width encountered after Γbot. At each step Γ[xi] of
odd width north of o1, check the vertical distance from xi to
the previously visited step of odd width. If even, continue;
if odd, let p1 = xi and halt the sweeping process. Note that,
for any vertex x at or above p1, v(x) = −1; and for any
vertex x above o1 and strictly below p1, v(x) is either 0 or
1. For vertex o1 and all vertices west of it, v(x) is undefined
because there is no step of odd width lying west of these
vertices (except possibly Γbot).

Similarly, imagine a vertical line sweeping right-to-left
across the steps. Let o2 be the bottom left corner of the
first step of odd height encountered after Γtop. At each step
Γ[xi] of odd height south of o2, check the horizontal distance
from xi to the previously visited step of odd height. If even,
continue; if odd, let p2 = xi and halt the sweeping process.
Note that, for any vertex x left of p2, h(x) = −1; and for
any vertex x at or to the right of p2, h(x) is either 0 or 1.

We create a list of all steps of odd height, to be used
in determining the existence and position of c2. We also
determine the values for all decision variables corresponding
to x1. Note that every part of this preprocessing stage can
be easily implemented in O(t) time.

Incremental Update

Imagine a vertical line starting at x2 and sweeping left-to-
right across the steps, stopping at each top left corner vertex
and initializing its decision variables. Let width(Γ[xi]) and
height(Γ[xi]) be the width and height of step Γ[xi]. At each
corner xi encountered by the sweep line, we initialize a se-
lection of its decision variables as follows:

• h(xi): If o2 does not exist, or if the sweep line has
already passed o2, this variable is undefined (since there
are no steps of odd height east of xi). If xi is left of
p2, then h(xi) = −1. If xi = p2, initialize h(xi) = 1
(since the horizontal distance from p2 to the closest step
of odd height lying east of p2 is odd, by the definition
of p2). If xi is strictly right of p2, update h(xi) =
(h(xi−1) + width(Γ[xi−1])) mod 2.

• v(xi): If o1 does not exist, or if the sweep line has not
yet reached o1, this variable is undefined (since there
are no steps of odd width west of x). If the sweep
line is at o1, initialize v(xi) = height(xi) mod 2. If
the sweep line has passed pi, v(xi) = −1; otherwise,
update v(xi) = (v(xi−1) + height(Γ[xi])) mod 2.

• h(xi,Γtop) and width of Gse[xi]: set to the value of the
variable for xi−1 incremented by width(xi−1) (modulo
2).

• v(xi,Γbot) and height of Gse[xi]: set to the value of the
variable for for xi−1 incremented by height(xi) (modulo
2).

Next we restart the sweeping process to update the remain-
ing decision variables in O(1) time (per step). Note that

testing if Γ[xi] = Γbot and Γ[c2] = Γtop can be easily de-
termined in constant time, and |xic| is zero for all top left
corner step vertices. The only decision variables left concern
the existence and location of c1 and c2, which are initialized
for each xi in O(1) time as follows:

• existence of c1: true if o1 exists and the sweep line has
passed it, false otherwise. If xi is the corner vertex of
a step of odd width, update a temporary copy c1 =
xi, to become permanent once a new corner vertex is
encountered.

• existence of c2: true if o2 exists and the sweep line
has not reached it yet, false otherwise. We maintain a
pointer to the step Γ[c2] (and the associated width of
Gse[c2]) in the list of steps of odd height. If xi coincides
with c2, advance the pointer.

Having determined c1 and c2, we can access in constant time
the values v(c1), v(c1,Γbot), height of Gse[c1], h(c2), h(Γtop),
and the width of Gse[c2], computed in the previous sweep
stage.

Running Time

The preprocessing stage and incremental update stage for
computing the values of the decision variables for each step’s
top left corner run in O(t) time. Observe that for each deci-
sion variable, its value is either the same for all the vertices
on a stair’s horizontal top segment or its value alternates
between 0 and 1 (as the distance of the vertex from the top
left corner of the step alternates between even and odd).
Therefore, for any step Γ[c], the values of the decision vari-
ables for c are the same as the values for cee, and the values
for ce are the same as the values for ceee, and so on... This
means it is only necessary to check the conditions listed by
Theorem 10 for vertices ce and cee, because the variable val-
ues for all the other vertices on the step will be the same as
for one of these two vertices. For Theorems 11 and 12, it is
only necessary to check the conditions for vertices c and ce.
After computing the values of the variables for c using the
algorithm described, the variable values for ce, cee can easily
be determined in constant time because, depending on the
variable, they are either the same or the opposite value as
that for c.

Thus, once the variable values are calculated for each
step’s top left corner, we can determine in constant time
per step if there is any vertex on its top horizontal segment
that satisfies the conditions of Theorems 10- 12. This gives
us the result in Theorem 13 from Section 5.
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