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Abstract

The minimum backward Fréchet distance (MBFD)
problem is a natural optimization problem for the weak
Fréchet distance, a variant of the well-known Fréchet
distance. In this problem, a threshold ε and two polyg-
onal curves, T1 and T2, are given. The objective is to
find a pair of walks on T1 and T2, which minimizes the
union of the portions of backward movements while the
distance between the moving entities, at any time, is at
most ε. In this paper, we generalize this model to cap-
ture scenarios when the cost of backtracking on the in-
put polygonal curves is not homogeneous. More specif-
ically, each edge of T1 and T2 has an associated non-
negative weight. The cost of backtracking on an edge
is the Euclidean length of backward movement on that
edge multiplied by the corresponding weight. The ob-
jective is to find a pair of walks that minimizes the sum
of the costs on the edges of the curves, while guaran-
teeing that the curves remain at weak Fréchet distance
ε. We propose an exact algorithm whose run time and
space complexity is O(n3), where n is the maximum
number of the edges of T1 and T2.

1 Introduction

Measures for similarity between two polygonal curves
have been studied in areas such as computational ge-
ometry, Geographical Information Systems (GIS), pat-
tern recognition, shape matching, and robotics. Finding
measures that capture the requirements of a particular
domain remains challenging, both in practice and the-
ory. One of the widely used measures for similarity be-
tween curves is the Fréchet distance which takes into
account global features of the curves [1]. In some ap-
plications (such as map matching) a global approach as
taken e.g., by the Fréchet distance, achieves a better
result than a local approach [2].

The Fréchet distance is typically illustrated via the
person-dog metaphor. Assume that a person wants to
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walk along one curve and his/her dog on another. Each
curve has a starting and an ending point. The per-
son and the dog walk, from the starting point to the
ending point, along their respective curves. The stan-
dard Fréchet distance is the minimum leash length re-
quired for the person to walk the dog without back-
tracking. A variant of the standard Fréchet distance is
the weak Fréchet distance, also known as non-monotone
Fréchet distance [1]. In this variant, backtracking is al-
lowed during the walks. In [1], Alt and Godau pro-
posed algorithms to compute the weak Fréchet distance
in O(n2 log n) time, where n is the maximum number of
segments in the input polygonal curves. The time com-
plexity is improved by Har-Peled and Raichel [6]. They
proposed an algorithm with quadratic time complexity
for computing a generalization of the weak Fréchet dis-
tance. In some applications, the weak Fréchet distance
is preferable to the standard Fréchet distance (see [2]).

In [4], Gheibi et al. introduced and solved an opti-
mization problem on the weak Fréchet distance, called
the minimum backward Fréchet distance (MBFD) prob-
lem. Their problem is to determine the minimum total
length of backward movements on both input polygonal
curves, required for the walks to achieve the given leash
length. In that paper, it is assumed that the cost (i.e.,
weight) of backward movement is uniform and depends
only on the Euclidean distance traveled on each of the
input polygonal curves. They proposed an algorithm
with time complexity O(n2 log n) and space complexity
O(n2), to solve MBFD exactly. Here, in this paper, we
generalize this model to capture scenarios when the cost
of backtracking on the input polygonal curves is not ho-
mogeneous. These weights could represent, for example,
the cost of moving against a flow, or the cost for a mov-
ing entity (e.g., a human) to move backwards because of
the entity’s physiology [3]. Thus, in the new model, each
edge of the input polygonal curves has an associated
non-negative weight for backward movement. Then, the
cost of backtracking on an edge is the Euclidean length
of backward movement on that edge multiplied by the
corresponding weight. The objective is to design an al-
gorithm that a) finds a pair of walks that minimizes
the sum of the costs on the edges of the curves, while
guaranteeing that the leash length is at most ε, b) halts
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Figure 1: Moving backwards from a3 to b3 allows to walk on
T1 and T2 and keeping the distance between moving entities
at most ε during the walks while the cost is minimized.

with the answer of no feasible solution if such a pair of
walks does not exist for the given leash length. We call
this problem, the weighted minimum backward Fréchet
distance (WMBFD) problem. Note that if the standard
Fréchet distance between the input curves is already at
most ε, then no backtracking is necessary and the opti-
mal solution is identical to a pair of walks that realizes
the Fréchet distance.

Figure 1 shows an example. In this figure, two polyg-
onal curves, T1 and T2, and a length ε are drawn. The
person walks on T1 and the dog walks on T2. The
weights, wi, i = 1, 2, 3, for segments of T1 are given.
For this illustration, we let the cost of backtracking on
all segments of T2 be 1. In this example, it is impossible
to walk from the starting point to the end and maintain
the leash length at most ε, without moving backwards.
Six points, a1, b1, a2, b2, a3, and b3 are specified on T1.
If the person moves backwards, either from a1 to b1,
or from a2 to b2, or from a3 to b3, then the curves are
at weak Fréchet distance ε. In this example, the Eu-
clidean length of a1b1 is less than the Euclidean length
of a3b3. However, the weight of moving backwards on
the first segment is 10, while that on the third one is 1.
Therefore, the pair of walks that minimizes the cost is as
follows: the dog and the person move forwards together
from the starting point, until the dog reaches the end
of the third segment of T2 and the person reaches the
point a3 on T1. Then, the dog keeps moving forwards
until the end of the fourth segment of T2, while the per-
son moves backwards from a3 to b3. Finally, they move
forwards again together until the end of the respective
curves. The cost of this pair of walks is the Euclidean
length of a3b3 multiplied by 1.

This paper is organized as follows. In Section 2, we
discuss preliminaries and define the problem formally.
In Section 3, we propose a polynomial time algorithm to
solve the problem exactly. Then, in Section 4, we design
an algorithm with improved time and space complexity.
At the end, we conclude the paper.

2 Preliminaries and Problem Definition

In this section, first, preliminary concepts are discussed.
Then, the WMBFD problem is defined formally. A ge-
ometric path in R2 is a sequence of points in the Eu-

clidean space, R2. A discrete geometric path, or a polyg-
onal curve, is a geometric path, sampled by a finite se-
quence of points (i.e., vertices), which are connected by
line segments (i.e., edges) in order. Let T1 : [0, n]→ R2

and T2 : [0,m] → R2 be two polygonal curves of com-
plexity (number of segments) n and m, respectively.
W.l.o.g., assume that m ≤ n. A vertex of T1 (resp.
T2) is denoted by T1(i) (resp. T2(j)), i = 0, . . . , n
(resp. j = 0, . . . ,m). An edge of T1 (resp. T2) be-
tween two vertices T1(i − 1) and T1(i) (resp. T2(j − 1)
and T2(j)) is denoted by ei (resp. ej), i = 1, . . . , n
(resp. j = 1, . . . ,m). Furthermore, each edge, ei (resp.
ej), i = 1, . . . , n (resp. j = 1, . . . ,m), of T1 (resp. T2)
has an associated non-negative weight (or cost) wi ∈ R
(resp. wj ∈ R). A parameterization of a polygo-
nal curve, T1 : [0, n] → R2, is a continuous function
f : [0, 1] → [0, n], where f(0) = 0 and f(1) = n ([0, 1]
is a time interval). If f is non-decreasing, then the pa-
rameterization is monotone. The weak Fréchet distance,
δw(T1, T2), is defined as Formula 1, where d(., .) is the
Euclidean distance and f and g are two parameteriza-
tion of [0, n] and [0,m], respectively. Note that f and
g are not necessarily monotone. However, for the stan-
dard Fréchet distance, they must be monotone.

δw(T1, T2) = inf
f,g

max
t∈[0,1]

d(T1(f(t)), T2(g(t))) (1)

Weighted Quality. For a parameterization, f , of a
polygonal curve, T1, let Bf,i ⊆ [0, 1] be the closure of
the set of times in which f(t) is decreasing (i.e., the
movement is backward), and f(t) ∈ [i− 1 i) (it is on
edge ei of T1). Bg,j ⊆ [0, 1] is defined analogously for a
parameterization, g, of T2. For a pair of parameteriza-
tions, f and g, of two polygonal curves, T1 and T2, we
define the weighted quality by Formula 2, where ‖.‖ is
the Euclidean length.

WQf,g(T1, T2) :=

n∑
i=1

||T1 (f (t)) ||t∈Bf,i
· wi

+

m∑
j=1

||T2 (g (t)) ||t∈Bg,j · wj
(2)

Problem Definition. We formally define the
WMBFD problem as follows. For a pair of weighted
polygonal curves, T1 and T2, and a given leash length,
ε, we are looking for a pair of optimal parameteriza-
tions, (f, g), as defined in Formula 3. We consider only
pairs of parameterizations that guarantee to maintain
the leash length at most ε, during the walks.

WQε(T1, T2) = inf
f,g
WQf,g(T1, T2) (3)

Weighted Deformed free-space diagram. A use-
ful structure to decide whether the Fréchet distance
between two polygonal curves is upper bounded by a
given ε, is the free-space diagram [1]. For two polygo-
nal curves, T1 with n vertices and T2 with m vertices,
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and two corresponding parameterizations, f and g, the
free-space is defined formally by Formula 4.

W = {(t1, t2) ∈ [0, 1]2 | d(T1(f(t1)), T2(g(t2))) ≤ ε}
(4)

The free-space diagram is the rectangle [0, 1]×[0, 1], par-
titioned into n columns and m rows. It consists of nm
parameter cells Ci,j , for i = 1, ..., n and j = 1, ...,m,
whose interiors do not intersect with each other. The
cell Ci,j represents the multiplication of two subranges
of [0, 1] that are mapped to the edge between ver-
tices T1(i− 1) and T1(i) and the edge between vertices
T2(j− 1) and T2(j). For each parameter cell Ci,j , there
exists an ellipse such that the intersection of the area
bounded by this ellipse with Ci,j is equal to the free-
space region of that cell. The boundary of this ellipse
and the boundary of the cell, Ci,j , intersect at most
eight times (i.e., at most two intersections per side of
Ci,j). These intersection points form at most four in-
tervals on the boundary of Ci,j . These intervals could
be empty or contains only one point. In addition, two
adjacent cells have the same interval on the shared side
between the cells. The union of all cells’ free-space
builds the free-space (or white-space) of the diagram
and is denoted by W . The complement of W is the
forbidden-space (or black-space) of the diagram and is
denoted by B. In this paper, we stretch and compress
the columns and rows of the free-space diagram, such
that their widths and heights are equal to the lengths of
the corresponding segments of T1 and T2, respectively.
Also, each cell, Ci,j , has two associated weights, wix and
wjy. The weight wix is the weight of the edge between

vertices T1(i − 1) and T1(i) and the weight wjy is the
weight of the edge between vertices T2(j−1) and T2(j).
The resulting diagram is called the weighted deformed
free-space diagram and is denoted by F . The bottom
left corner of F represents the starting points of T1 and
T2 and is denoted by s . The top right corner of F rep-
resents the ending points of T1 and T2 and is denoted
by t . For the given polygonal curves and ε in Figure
1, the corresponding weighted deformed free-space dia-
gram is shown in Figure 2. As the diagram illustrates,
to be able to walk on T1 and T2 with a leash length
at most ε, there must be a backward movement on the
polygonal curves (since there is no xy-monotone path
from s to t in W ). However, the possible walks are not
unique. We are looking for a pair of walks that has the
minimum backward movement cost, as we discussed in
Section 1. In Figure 2, the red solid polygonal chain,
called Π′, is a path in W that realizes an optimal pair
of walks on T1 and T2.

3 Algorithm

In this section, we propose a polynomial time algo-
rithm, by transforming the WMBFD problem to a
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Figure 2: The corresponding weighted deformed free-space
diagram of the given polygonal curves in Figure 1 is drawn.
Π (the black dashed path) is an arbitrary path in W . Π′ ⊂ Gw
(the red solid path) is a path in W that realizes a pair
of parameterizations which gives an optimal solution for
WMBFD. Π′′ (the blue dashed path) is a path in W that
realizes the optimal solution for MBFD.

shortest path problem on a weighted directed graph,
Gw = 〈V,E〉, defined as follows.

Let F be the weighted deformed free-space diagram
and W (resp. B) be the corresponding free-space (resp.
forbidden-space) of F . The vertices of W are the end
points of the intervals on the boundary of the cells in F
(i.e., at most 4 intervals per cell). The set of vertices,
V , of Gw, is the set of all vertices of W . Each vertex,
v, has a x-coordinate (resp. y-coordinate), denoted by
vx (resp. vy). Also, V contains s and t . We say two
points are visible if it is possible to link them by a line
segment in W . Every two visible vertices, v1 and v2, are
linked by two directed edges in E, from v1 to v2, 〈v1, v2〉,
and vice versa, 〈v2, v1〉. The weight of a directed edge
e = 〈v1, v2〉 ∈ E is a function of its direction, the x- and
y-coordinates of v1 and v2, and the associated weights of
the cells that e intersects. The weight function is defined
as follows: suppose e intersects a sequence of k cells,
〈Cσ(1),σ′(1), Cσ(2),σ

′(2), . . . , Cσ(k),σ
′(k)〉, of F , where σ

(resp. σ′) is a function that maps the set {1, 2, . . . , k}
to a sub-sequence (or a reversed sub-sequence) of the
index sequence 〈1, 2, . . . , n〉 (resp. 〈1, 2, . . . ,m〉). The
line segment e enters a cell, Cσ(i),σ

′(i), i = 1, . . . , k, at
point aσ(i),σ

′(i) and exits that cell at point bσ(i),σ
′(i).
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Note that aσ(1),σ
′(1) (resp. bσ(k),σ

′(k)) is identical to v1
(resp. v2). The x-coordinate (resp. y-coordinate) of a
point, a, is denoted by ax (resp. ay). Note that each

cell, Cσ(i),σ
′(i), has two associated weights, w

σ(i)
x and

w
σ′(i)
y .

Let |e|wx =
∑k
i=1 |a

σ(i),σ′(i)
x − b

σ(i),σ′(i)
x | · wσ(i)x and

|e|wy =
∑k
i=1 |a

σ(i),σ′(i)
y − bσ(i),σ

′(i)
y | ·wσ

′(i)
y . The weight

of e, |e|w, is calculated by the following function.

• If e is xy-increasing (i.e., it is non-decreasing from
v1 to v2 in both x and y axes), then |e|w = 0.

• If e is only x-increasing (resp. y-increasing), then
|e|w = |e|wy (resp. |e|w = |e|wx).

• Otherwise, |e|w = |e|wx + |e|wy.

Finding an Optimal Solution. By construction of
Gw, both s and t are vertices in V . If either s or t is not
in W , or there is no path from s to t in Gw, then there
is no solution for the given leash length. Otherwise, we
prove that a shortest path from s to t , in Gw, gives an
optimal solution. Note that a vertex of the graph also
corresponds to a point in F . Therefore, the geometric
embedding of a path in Gw is constructed by connecting
the consecutive vertices of the path by line segments.

Observation 1 Let Π : [0, 1]→ [0, n]× [0,m] be a path
in the free-space W , from s to t . Π is equivalent to
a pair of parameterizations, f : [0, 1] → [0 : n] and
g : [0, 1] → [0 : m], of the two polygonal curves, that
maintains the leash length at most ε, for all t ∈ [0, 1].

In this paper, we use norms in two spaces: (1) the
Euclidean space of the input polygonal curves, called
the input space, (2) the weighted deformed free-space
diagram, called the configuration space. In the input
space, we use the Euclidean length of a polygonal curve
T and denote it by ||T ||. In the configuration space, a
path from s to t in W , is denoted by its vertices, Π :
〈s = p1, p2, . . . , pk = t〉. All segments in Π are directed,−−−−→pipi+1, i = 1, . . . , k−1. The weighted length (or simply
length), |.|w, of each segment of Π is calculated by the
weight function that we explained earlier in this section,
for computing the weight of a directed edge in the graph.
The weighted length (or simply length) of a path, |Π|w,
is the sum of the length of its segments. In addition, the
notation Πi is used to denote the sub-path of Π from p1
to pi.
Correctness. Lemma 3 is at the heart of the correct-
ness proof. In order to prove that lemma, we need Lem-
mas 1 and 2. Their proofs are provided in the Appendix.
This section is concluded by a corollary to Lemma 3 and
Observation 1, that is, in order to find an optimal pair
of parameterizations in our problem setting, it suffices
to find a shortest path from s to t in Gw.

b c
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pi+1p′z

q2
q1

a b

Figure 3: a) The visibility chain from a to c (the blue solid
polygonal chain), CCc

a = 〈a, q1, q2, c〉. b) The visibility chain
from p′z to pi+1, CC

pi+1

p′z
(see Algorithm 1).

Definition 1 A path Π ∈ W is x-monotone (resp. y-
monotone), if and only if, any vertical (resp. horizontal)
line intersects it at most once. Π is xy-monotone, if and
only if, it is both x- and y-monotone.

Observation 2 Let a and b be two points in W such
that ax 6= bx and ay 6= by. Suppose Π is a xy-monotone
path from a to b. In addition, let R(a, b) be the axes-
aligned rectangle uniquely determined by a and b as cor-
ners. Π lies inside R(a, b).

Lemma 1 Let Π1 and Π2 be two xy-monotone paths in
W , from a to b, where a, b ∈ W . Then, |Π1|w = |Π2|w.
Furthermore, if Π3 is an arbitrary path in W from a to
b, then |Π1|w ≤ |Π3|w.

Definition 2 Let a, b, and c be three distinct non-

collinear points in W such that
−→
ab ∈ W ,

−→
bc ∈ W and−→ac 6∈ W . We define the visibility chain from a to c,

denoted by CCca, as follows (see Figure 3a). Let Babc
denote the portion of B (the black-space) inside the tri-
angle 4abc. Let CH be the convex hull of Babc and the
points a and c. Then, CCca is defined to be the chain
comprising the boundary of CH from a to c that lies
inside 4abc. The visibility chain is directed from a to
c, CCca = 〈a, q1, . . . , qlast, c〉.

Lemma 2 Let a, b, c ∈ W be three distinct non-

collinear points that
−→
ab,
−→
bc ∈ W and −→ac 6∈ W . If

4abc lies in R(a, c), then CCca is xy-monotone and

|CCca|w = |−→ab|w + |−→bc|w (Figure 3a).

Lemma 3 For any path Π : 〈s = p1, p2, . . . , pk1 = t〉 in
W , there is a path Π′ : 〈s = p′1, p

′
2, . . . , p

′
k2

= t〉 in W
such that Π′ ⊂ Gw and |Π′|w ≤ |Π|w.

Proof. We prove this lemma by designing an algorithm
that constructs the path Π′ ⊂ Gw, through a transfor-
mation of path Π. Initially, Π′ contains only s = p′1 = p1
and p′z = s . In this algorithm, p′z is the latest vertex
appended to the tail of Π′. Π′ is constructed as follows.
When considering the i-th vertex of Π, pi, the algorithm

tests if
−−−−→
p′zpi+1 ∈W . If so, pi is skipped and Π′ remains

unchanged. Otherwise, the visibility chain from p′z to
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pi+1 is constructed (Figure 3b) and its vertices from q1
to qc are appended to the tail of Π′. The algorithm for
constructing Π′ is stated in Algorithm 1. The correct-
ness of this algorithm is given in the Appendix, Lemma
5. The output, Π′, of this algorithm is a path from s to
t , such that Π′ ⊂ Gw and |Π′|w ≤ |Π|w. �

Algorithm 1 Constructing Π′ ∈ Gw
Input: The free-space W , A path Π = 〈p1, p2, . . . , pk1〉,
where s = p1 and pk1 = t .
Output: A path Π′ = 〈p′1, p′2, . . . , p′k2〉, where s = p′1
and p′k2 = t , such that Π′ ⊂ Gw and |Π′|w ≤ |Π|w.

1: Π′ := 〈s〉;
2: p′z = s ;
3: for i=2 to k1 − 1 do

4: if
−−−−→
p′zpi+1 6∈W then

5: Compute the visibility chain from p′z to pi+1,
CC

pi+1

p′z
= 〈p′z, q1, . . . , qc, pi+1〉, in 4p′zpipi+1;

6: Append qj , j = 1, ..., c, to Π′;
7: p′z = qc;

8: Append t to Π′;
9: return Π′;

Corollary 1 There is a path from s to t in Gw with
minimum weighted length in the free-space W .

Proof. Assume Π is a path from s to t with minimum
weighted length in the free-space W . If Π is not a subset
of Gw, then, by Lemma 3 there is a path from s to t , Π′

in W such that Π′ ⊂ Gw and |Π′|w ≤ |Π|w. Since Π has
minimum weighted length, |Π′|w = |Π|w. �

Theorem 1 Let T1 and T2 be two polygonal curves and
ε be a given leash length. Each segment of T1 and T2
has an associated weight, corresponding to the backward
movement on that segment. A pair of parameterizations
of T1 and T2 that minimizes the weighted sum of the
backward movements during the walks can be found in
polynomial time and space.

Proof. It follows from Observation 1 and Corollary 1
that a shortest path in Gw yields an optimal pair of
parameterizations for the WMBFD problem. Since F
has a complexity of O(n2), the number of edges of Gw is
O(n4). We construct the topology of the graph in O(n4)
time by the method in [5]. Since the weight of each edge
of Gw is computed based on the projections onto x and y
axes, it is possible to compute it in constant time using
prefix sums [7]. We find a shortest path in the graph
in O(n4) time by Dijkstra’s algorithm. Therefore, the
total time complexity is O(n4). �

4 Improved Algorithm

In Section 3, we showed that the weighted graph Gw =
〈V,E〉 contains a path that yields an optimal pair of

parameterizations for the WMBFD problem. In this
section, we will discuss that it is sufficient to compute
only a subgraph of Gw to obtain an optimal solution. Let
Gw′ = 〈V,E′〉 be a sub-graph of Gw such that E′ = {e′ ∈
E | e′ lies completely within a row or within a column
of F}, where F is the weighted free-space diagram.

Lemma 4 There is a path in Gw′ that realizes an opti-
mal pair of parameterizations for our problem setting.

Proof. We will show that, for any directed edge e =
〈u1, u2〉 ∈ E that is not in E′, we can construct a xy-
monotone path from u1 to u2, πu1,u2

, in Gw′ (see Figure
4). Then, by Lemma 1, |πu1,u2

|w = |e|w. By Theorem
1, a shortest path, Π′ in Gw yields an optimal solution.
Therefore, if for any directed edge, e = 〈u1, u2〉, of Π′,
πu1,u2

exists in Gw′, then there is a path in Gw′ that
realizes an optimal pair of parameterizations.

Now, we prove that πu1,u2
exists in Gw′, for any

directed edge e = 〈u1, u2〉 ∈ E. If e stays com-
pletely within a row or a column of F , then πu1,u2

=
e. Otherwise, e crosses several rows and columns.
There are four cases, depending on the orientation of e:
a) xy-increasing b) x-increasing and y-decreasing c) y-
increasing and x-decreasing d) xy-decreasing. We prove
this lemma for the last case. The proofs for the other 3
cases are analogous. Assume that e is xy-decreasing.
The edge e intersects a sequence of intervals on the
boundary of the cells of F . We partition e into sub-
edges so that each sub-edge is contained within a row
or within a column of F , as follows (Figure 4).

We traverse e from u1 to u2. The point p1 ∈ e is
the point where we exit the row and the column that
contain u1. Therefore, any point after p1 on e during the
traversal is not in the row or the column that contains
u1. We continue the traversal from p1 to u2. The point
p2 ∈ e is defined analogously. It is the point where we
exit the row and the column that contain p1. We define
pi, i = 3, . . . , z, analogously with respect to pi−1. Then,
the sequence of sub-edges of e is 〈−−→u1p1,−−→p1p2, . . . ,−−→pzu2〉.

Denote the interval that contains pi, i = 1, . . . , z, by
Ii. Let u1 = p0 ∈ I0 and u2 = pz+1 ∈ Iz+1. Note that
Ii and Ii+1, i = 0, . . . , z, are on the boundary of a row
or a column. We say a point q = (qx, qy) dominates a
point p = (px, py), if px ≤ qx and py ≤ qy. In this proof,
the endpoint of Ii that dominates pi is denoted by qi.
We construct πu1,u2

, in two phases. In the first phase,
we construct a xy-monotone path, π′u1,u2

, from u1 to u2
(the green dashed polygonal chain in Figure 4). Then,
in the second phase, we transform it to a path, πu1,u2

,
in Gw′ (the blue dotted polygonal chain in Figure 4).

In the first phase, we start from p0 = u1. For each
sub-edge of e, −−−−→pipi+1, i = 0, . . . , z, if we construct a
xy-monotone path, π′pi,qi+1

, from pi to qi+1, then the

concatenation of π′pi,qi+1
and −−−−−→qi+1pi+1 is a xy-monotone

path from pi to pi+1, π′pi,pi+1
, because qi+1 dominates
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p2

q1

q2

p′1
p′2

u1

u2
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p2

b

π′u1,u2πu1,u2

Figure 4: Illustration of proof of Lemma 4.

pi+1. Then, the concatenation of π′pi,pi+1
, i = 0, . . . , z

is a xy-monotone path, π′u1,u2
, from u1 to u2. Now,

we explain how to construct π′pi,qi+1
. If −−−→piqi+1 ∈ W ,

then π′pi,qi+1
= −−−→piqi+1. It is obviously xy-monotone.

If −−−→piqi+1 6∈ W , then π′pi,qi+1
is the visibility chain,

CC
qi+1
pi , from pi to qi+1, in 4pip′i+1qi+1, where p′i+1

is a point, defined as follows. Let I ′i+1 be the last in-
terval that −−−−→pipi+1 intersects before intersecting Ii+1 and
p′i+1 be the intersection point of I ′i+1 and −−−−→pipi+1. The
point p′i+1 dominates qi+1. Therefore, 4pip′i+1qi+1 lies
in R(pi, qi+1), the axes-aligned rectangle that is deter-
mined by pi and qi+1 as opposite corners. Thus, by
Lemma 2, CC

qi+1
pi is xy-monotone.

In the second phase, we transform π′u1,u2
to a xy-

monotone path, πu1,u2
, in Gw′. This transformation

is done by replacing the edges in π′u1,u2
that are not

in E′. These edges are −−→qipi and
−−−−→
piS(pi), i = 1, . . . , z,

where S(.) is the successor operation and S(pi) is the
vertex after pi in π′u1,u2

. These are the edges that con-
nect pi, i = 1, . . . , z, to the previous and next vertex
of pi in π′u1,u2

. Note that S(pi) is a vertex in V and

could be identical to qi+1. If
−−−−→
qiS(pi) ∈W , then the two

edges, −−→qipi and
−−−−→
piS(pi), are replaced by

−−−−→
qiS(pi) ∈ E′.

It is obviously xy-monotone. If
−−−−→
qiS(pi) 6∈ W , then the

two edges, −−→qipi and
−−−−→
piS(pi), are replaced by the visi-

bility chain, CC
S(pi)
qi , from qi to S(pi), in 4qipiS(pi).

Since π′u1,u2
is a xy-monotone path, the concatenation

of −−→qipi and
−−−−→
piS(pi) is also a xy-monotone path. There-

fore, 4qipiS(pi) lies in R(qi,S(pi)). Thus, by Lemma

2, CC
S(pi)
qi is xy-monotone. Also, CC

S(pi)
qi ⊂ Gw′ since

the vertices of this visibility chain belong to one column
or one row of F . By repeating this process for every pi,
i = 1, . . . , z, the resulting path, denoted by πu1,u2 , is
in Gw′. Since all sub-paths of πu1,u2 are xy-monotone,
πu1,u2

is also xy-monotone. �

Theorem 2 Assume we are given two polygonal
curves, T1 and T2, and a leash length, ε. Each seg-
ment of T1 and T2 has an associated weight, correspond-
ing to the backward movement on that segment. A pair
of parameterizations of T1 and T2 that minimizes the
weighted sum of the backward movements during the

walks can be found in O(n3) time and space, where n is
the number of segments in the input polygonal curves.

Proof. The correctness follows from Lemma 4. F has
O(n2) cells and each vertex of Gw′ on the boundary of a
cell is connected to at most O(n) vertices of Gw′ that are
in the same row or column. Therefore, the number of
edges of Gw′ is O(n3). It is possible to find all the edges
of Gw′ that lie in a column or row of F in O(n2) time by
the method proposed in [5]. In addition, to compute the
weight of the edges that are in one row or column, O(n2)
time and O(n) space suffice (by using prefix sums, see
[7]). Using Dijkstra’s algorithm, we find a shortest path
in Gw′ in O(n3) time. Therefore, both time and space
complexities of our algorithm are O(n3). Note that if
the representing nodes for s and t in Gw′ are not in a
connected component of Gw′, then there is no feasible
walk with the leash length of ε. �

5 Conclusion

In this paper, we generalized the MBFD problem by
capturing weighted scenarios. We established that this
problem setting is dual to a weighted shortest path prob-
lem in a weighted deformed free-space diagram, F . We
proposed an exact algorithm to solve the problem in
O(n3) time and space. We are currently working on
improving the time complexity.
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tance between two polygonal curves. Int. J. Comput.
Geometry Appl., 5:75–91, 1995.

[2] S. Brakatsoulas, D. Pfoser, R. Salas, and C. Wenk.
On map-matching vehicle tracking data. 31st
VLDB, pp. 853–864, 2005.

[3] T. Flynn, S. Connery, M. Smutok, R. Zeballos,
and I. Weisman. Comparison of cardiopulmonary re-
sponses to forward and backward walking and run-
ning. Med. Sci. Sports Exerc., 26(1):89–94, 1994.

[4] A. Gheibi, A. Maheshwari, J.-R. Sack, and C. Schef-
fer. Minimum Backward Fréchet Distance. 22nd
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6 Appendix

Lemma 1 Let Π1 and Π2 be two xy-monotone paths in
W , from a to b, where a, b ∈ W . Then, |Π1|w = |Π2|w.
Furthermore, if Π3 is an arbitrary path in W from a to
b, then |Π1|w ≤ |Π3|w.

Proof. If ax = bx or ay = by, then Π1 and Π2 are
identical and the proof is trivial. Otherwise, by Obser-
vation 2, Π1 and Π2 lie in R(a, b). Since Π1 (also Π2)
is xy-monotone, its orthogonal projections onto x and
y axes are not overlapping and equal to the width and
height of R(a, b), respectively. Because Π1 and Π2 have
identical projections onto x and y axes and the weighted
length of a path is defined based on its projection, then
|Π1|w = |Π2|w. Also, any xy-monotone path from a to
b has minimum weighted length among all paths from
a to b, because its orthogonal projections onto x- and
y-axis are non-overlapping. �

Lemma 2 Let a, b, c ∈ W be three distinct non-

collinear points that
−→
ab,
−→
bc ∈ W and −→ac 6∈ W . If

4abc lies in R(a, c), then CCca is xy-monotone and

|CCca|w = |−→ab|w + |−→bc|w (Figure 3a).

Proof. Since4abc lies in R(a, c), the path that consists

of
−→
ab and

−→
bc is a xy-monotone path from a to c. If we

show that CCca is also a xy-monotone path from a to c,

then by Lemma 1, |CCca|w = |−→ab|w + |−→bc|w.
To prove this, we need to define the angle of a vector.

Suppose a directed segment in the free-space is a vec-
tor from the origin of the Cartesian coordinate system.
The angle of a vector is defined as the angle between
that vector and the positive direction of x-axis. Let α

(resp. β) be the angle of
−→
ab (resp.

−→
bc). Since 4abc lies

in R(a, c), |α − β| = π/2. In addition, since R(a, c) is
axes-aligned, precisely one of the four following cases is
true: 0 ≤ α, β ≤ π/2, π/2 ≤ α, β ≤ π, π ≤ α, β ≤ 3π/2,
3π/2 ≤ α, β ≤ 2π. We denote the angles of segments,−→aq1,−−→q1q2, . . . ,−−−→qlastc, of CCca = 〈a, q1, . . . , qlast, c〉 by θµ,
µ = 1, . . . , last + 1. Since CCca is a convex chain, the
sequence of θµ, µ = 1, . . . , last + 1, is in a sorted or-
der (either increasing or decreasing), between α and β.
Therefore, all θµ, µ = 1, . . . , last + 1, are in one of the
four mentioned quadrants. Thus CCca is xy-monotone.
This proves the lemma. �

Lemma 5 Algorithm 1 is correct.

Proof. We show that prior to the execution of the i-th
iteration, i = 2, . . . , k1−1, of the for-loop in Algorithm
1 the following invariant holds:

I1.
−−→
p′zpi ∈W

I2. Π′z ⊂ Gw and

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

x

y

Figure 5: There are 16 cases for the combination of two
directed segments.

I3. |Π′z|w + |−−→p′zpi|w ≤ |Πi|w.

We prove this by induction on i, the index of the vertices
of Π (and index of the for-loop in Algorithm 1). The
base case is i = 2. In this case, p′z is equal to p′1 = s .

Clearly,
−−→
p′1p2 ∈ W , Π′1 ⊂ Gw and |Π′1|w + |−−→p′1p2|w =

|Π2|w, because
−−→
p′1p2 = −−→p1p2. The induction hypothesis

is that the invariant holds for all loop iterations before
the i-th iteration of the for-loop. In the following, it is
proved that it also holds before (i + 1)-th iteration of
the for-loop.

In each iteration of the for-loop in Algorithm 1, we

distinguish between the two cases: a)
−−−−→
p′zpi+1 ∈ W ,

b)
−−−−→
p′zpi+1 6∈W .

Case a) In Case a, pi is skipped and Π′ thus remains
unchanged. Therefore, I1 and I2 hold, due to the in-

duction hypothesis. In addition, since
−−−−→
p′zpi+1 is a seg-

ment in W and thus trivially xy-monotone, by Lemma

1, |−−−−→p′zpi+1|w ≤ |
−−→
p′zpi|w + |−−−−→pipi+1|w. By induction hy-

pothesis, we have |Π′z|w + |−−→p′zpi|w ≤ |Πi|w. By adding
|−−−−→pipi+1|w to the both sides of the inequality, we obtain

|Π′z|w+ |−−−−→p′zpi+1|w ≤ |Πi|w+ |−−−−→pipi+1|w = |Πi+1|w. There-
fore, I3 remains true after i-th iteration (i.e., before
(i+ 1)-th iteration).
Case b) In Case b, the then part of the if statement
of the algorithm is entered and the visibility chain from
p′z to pi+1 is constructed. It is denoted by CC

pi+1

p′z
:

〈p′z, q1, . . . , qc, pi+1〉 ∈ W , where qj ∈ V , j = 1, . . . , c.
Then, the qj , from j = 1 to j = c, is appended to the
tail of Π′. Finally, p′z is updated to qc. In the remaining,
it is proved that the invariant holds.

Since CC
pi+1

p′z
is the visibility chain, it is easy to see

that all qi, i = 1, . . . , last, are represented by a node in
the graph, Gw, because they are vertices of W . There-
fore, I1 and I2 hold. In order to check if I3 holds, we
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need to analyze different cases. Each directed segment
in W is of one of the following types: 1. xy-increasing
2. x-increasing and y-decreasing 3. y-increasing and x-
decreasing 4. xy-decreasing. Therefore, there are 16

cases for the combination of two segments,
−−→
p′zpi and−−−−→pipi+1 (Figure 5). In all 16 cases, the orthogonal pro-

jection of CC
pi+1

p′z
onto the x-axis (resp. y-axis) is not

longer than the sum of the orthogonal projections of−−→
p′zpi and −−−−→pipi+1 onto the x-axis (resp. y-axis). There-

fore, |CCpi+1

p′z
|w ≤ |

−−→
p′zpi|w + |−−−−→pipi+1|w. Here we only

show the proofs for two cases of Figure 5 as the proofs
for the other cases are analogous.

Consider the case when both
−−→
p′zpi and −−−−→pipi+1 are y-

increasing and x-decreasing (see Case 6 in Figure 5). In
this case, since 4p′zpipi+1 lies in R(p′z, pi+1), by Lemma

2, |CCpi+1

p′z
|w = |−−→p′zpi|w + |−−−−→pipi+1|w. By inductive hy-

pothesis we have |Π′z|w + |−−→p′zpi|w ≤ |Πi|w. Add now
|−−−−→pipi+1|w to both sides of the inequality. We obtain
|Π′z|w + |CCpi+1

p′z
|w ≤ |Πi|w + |−−−−→pipi+1|w. It follows that

|Π′z+c|w + |−−−−→qcpi+1|w ≤ |Πi+1|w, where qc is the latest in-
serted vertex to the tail of Π′ and Π′z+c is the sub-path
of Π′ from index 1 to index z + c. Therefore, I3 holds.
The proofs for cases 1,11 and 16 are similar.

Now consider Case 9, when
−−→
p′zpi is xy-increasing and−−−−→pipi+1 decreases in both x and y axes (illustrated in Fig-

ure 6). In this case, |−−→p′zpi|w + |−−−−→pipi+1|w = 0 + |−−−−→pipi+1|w.

The vertical line that passes through pi+1 is denoted
by L⊥x . The horizontal line that passes through pi+1

is denoted by L⊥y . Suppose these lines are directed to-
ward +∞. The following two properties hold. First,
any directed segment of CC

pi+1

p′z
that lies on the left of

L⊥x is increasing in x. Therefore, they have a weighted
length zero in the x-dimension. Second, any directed
segment of CC

pi+1

p′z
that lies below L⊥y is increasing in

y. Therefore, they have a weighted length of zero in
the y-dimension. By these two properties, any directed
segment of CC

pi+1

p′z
: 〈p′z, q1, . . . , qc, pi+1〉 that lies on the

left of L⊥x and below L⊥y is xy-increasing and has the
weighted length zero.

Suppose −−−−→qrqr+1 is the first line segment in CC
pi+1

p′z
on

the right side of L⊥x that is x-decreasing. Since CC
pi+1

p′z
is a convex chain and is inside the triangle 4p′zpipi+1,
the sub-chain 〈qr, . . . , qc, pi+1〉 is x-monotone and its
weighted length in x-dimension is less than or equal to
the weighted length of−−−−→pipi+1 in x-dimension. Therefore,
the weighted length of CC

pi+1

p′z
in x-dimension is less

than or equal to the weighted length of −−−−→pipi+1 in x-
dimension.

It is analogous for the y-dimension. Suppose −−−−→ququ+1

is the first line segment in CC
pi+1

p′z
above L⊥y that is y-

decreasing. Since CC
pi+1

p′z
is a convex chain and is inside

the triangle 4p′zpipi+1, the sub-chain 〈qu, . . . , qc, pi+1〉

pi

pi+1

p′z
L⊥
x

L⊥
y

qr

qu

Figure 6: The segment from qr to qr+1 is the first line seg-
ment in CC

pi+1

p′z
on the right side of L⊥x that is x-decreasing.

The segment from qu to qu+1 is the first line segment in
CC

pi+1

p′z
above of L⊥y that is y-decreasing.

is y-monotone and its weighted length in y-dimension is
less than or equal to the weighted length of −−−−→pipi+1 in y-
dimension. Therefore, the weighted length of CC

pi+1

p′z
in

y-dimension is less than or equal to the weighted length
of −−−−→pipi+1 in y-dimension.

To conclude, the weighted length of CC
pi+1

p′z
, which is

the sum of the weighted length of CC
pi+1

p′z
in x- and y-

dimensions, is less than or equal to the weighted length
of −−−−→pipi+1, which is the sum of the weighted length of−−−−→pipi+1 in x- and y-dimensions. Thus, |CCpi+1

p′z
|w ≤

|−−−−→pipi+1|w = |−−→p′zpi|w + |−−−−→pipi+1|w. By inductive hypoth-

esis, |Π′z|w + |−−→p′zpi|w ≤ |Πi|w. By adding |−−−−→pipi+1|w to
the both sides of the inequality, we conclude |Π′z|w +

|CCpi+1

p′z
|w ≤ |Π′z|w + |−−→p′zpi|w + |−−−−→pipi+1|w ≤ |Πi|w +

|−−−−→pipi+1|w. It follows that |Π′z+c|w+ |−−−−→qcpi+1|w ≤ |Πi+1|w.
Therefore, I3 also holds for this case. The proofs for the
other remaining cases are similar. �


