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1-String B1-VPG Representations of Planar Partial 3-Trees
and Some Subclasses

Therese Biedl∗ Martin Derka†

Abstract

Planar partial 3-trees are subgraphs of those planar
graphs obtained by repeatedly inserting a vertex of de-
gree 3 into a face. In this paper, we show that planar
partial 3-trees have 1-string B1-VPG representations,
i.e., representations where every vertex is represented
by an orthogonal curve with at most one bend, every
two curves intersect at most once, and intersections of
curves correspond to edges in the graph. We also show
that some subclasses of planar partial 3-trees have {L}-
representations, i.e., a B1-VPG representation where
every curve has the shape of an L.

1 Introduction

A string representation is a representation of a graph
where every vertex v is assigned a curve v. Vertices u, v
are connected by an edge if and only if curves u,v inter-
sect. A 1-string representation is a string representation
where every two curves intersect at most once.

String representations of planar graphs were first in-
vestigated by Ehrlich, Even and Tarjan in 1976 [12].
They showed that every planar graph has a 1-string
representation using “general” curves. In 1984, Schein-
erman conjectured [18] that every planar graph has
a 1-string representation, and furthermore curves are
line segments (not necessarily axis-parallel). Chalopin,
Gonçalves and Ochem [7, 8] proved that every planar
graph has a 1-string representation in 2007. Scheiner-
man’s conjecture itself remained open until 2009 when
it was proved true by Chalopin and Gonçalves [6].

Our paper investigates string representations that use
orthogonal curves, i.e., curves consisting of vertical and
horizontal segments. If every curve has at most k bends,
these are called Bk-VPG representations. The hierar-
chy of Bk-VPG representations was introduced by Asi-
nowski et al. [1, 2]. VPG is an acronym for Vertex-
Path-Grid since vertices are represented by paths in a
rectangular grid.

It is easy to see that all planar graphs are VPG-graphs
(e.g. by generalizing the construction of Ehrlich, Even
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and Tarjan). For bipartite planar graphs, curves can
even be required to have no bends [17, 11]. For arbitrary
planar graphs, bends in orthogonal curves are required.
Chaplick and Ueckerdt showed that 2 bends per curve
always suffice [10]. In a recent paper we strengthened
this to give a B2-VPG representation that is also a 1-
string representation [3].

Bk-VPG representations were further studied by
Chaplick, Jelínek, Kratochovíl and Vyskočil [9] who
showed that recognizing Bk-VPG graphs is NP-
complete even when the input graph is given by a Bk+1-
VPG representation, and that for every k, the class of
Bk+1-VPG graphs is strictly larger than Bk-VPG.

Our Contribution Felsner et al. [14] showed that every
planar 3-tree has a B1-VPG representation. Moreover,
every vertex-curve has the shape of an L (we call this an
{L}-representation). This implies that any two vertex-
curves intersect at most once, so this is a 1-string B1-
VPG representation. In this paper, we extend the result
to more graphs, and in particular, show:

Theorem 1 Every planar partial 3-tree G has a 1-
string B1-VPG representation.

There are 4 possible shapes of orthogonal curves with
one bend. Depending on where the bend is situated,
we call them L, L, Land Lrespectively. Note that a
horizontal or vertical curve without bends can be turned
into any of the shapes by adding one bend.

The construction of our proof of Theorem 1 uses all 4
possible shapes L, L, L, L. However, for some subclasses
of planar partial 3-trees, we can show that fewer shapes
suffice. We use the notation {L, L}-representation for a
B1-VPG representation where all curves are either L orL, and similarly for other subsets of shapes. We can
show the following:

Theorem 2 Any IO-graph has an {L}-representation.

Theorem 3 Any Halin-graph has an {L, L}-
representation, and only one vertex uses a L-shape.

We give the definitions of these graph classes and the
proof of these theorems in the next three sections, and
end with open problems in Section 5.
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2 Planar partial 3-trees

A planar graph is a graph that can be drawn without
edge crossings. If one such drawing Γ is fixed, then a
face is a maximal connected region of R2−Γ. The outer
face corresponds to the unbounded region; the interior
faces are all other faces. A vertex is called exterior if it
is on the outer face and interior otherwise.

A 3-tree is a graph that is either a triangle or has a
vertex order v1, . . . , vn such that for i ≥ 4, vertex vi is
adjacent to exactly three predecessors and they form a
triangle. A partial 3-tree is a subgraph of a 3-tree.

Our proof of Theorem 1 employs the method of “pri-
vate regions” used previously for various string represen-
tation constructions [3, 8, 14]. We define the following:

Definition 1 (F-shape and rectangular shape)
An F-shaped area is a region bounded by a 10-sided
polygon with CW or CCW sequence of interior angles
90◦, 270◦, 90◦, 90◦, 270◦, 270◦, 90◦, 90◦, 90◦ and
90◦. A rectangle-shaped area is a region bounded by an
axis-aligned rectangle.

Definition 2 (Private region) Given a 1-string rep-
resentation, a private region of vertices {a, b, c} is an
F-shaped or rectangle-shaped area that intersects (up to
permutation of names) curves a,b, c in the way depicted
in Figure 1(a), and that intersects no other curves and
private regions.
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Figure 1: (a) An F-shaped (left) and rectangle-shaped
(right) private region of {a, b, c}. (b) The base case.
Intersections among {a,b, c} can be omitted as needed.

Now we are ready to prove Theorem 1. Let G be a
planar partial 3-tree. By definition, there exists a 3-tree
H for which G is a subgraph. One can show [4] that we
may assume H to be planar. Let v1, . . . , vn be a vertex
order of H such that for i ≥ 4 vertex vi is adjacent to
3 predecessors that form a triangle. In particular, v4 is
incident to a triangle formed by {v1, v2, v3}. One can
show (see e.g. [4]) that the vertex order can be chosen
in such a way that {v1, v2, v3} is the outer face of H in
some planar drawing.

For i ≥ 3, let Gi and Hi be the subgraphs of G (re-
spectively H) induced by vertices v1, . . . , vi. We prove
Theorem 1 by showing the following by induction on i:

Gi has a 1-string B1-VPG representation with
a private region for every interior face of Hi.

In the base case, i = 3 and G ⊆ K3 ' H. Construct a
representation R and find a private region for the unique
interior face of H as depicted in Figure 1(b).

Now consider i ≥ 4. By induction, construct a repre-
sentation R0 of Gi−1 that contains a private region for
every interior face of Hi−1.

Let {a, b, c} be the predecessors of vi inH. Recall that
they form a triangle. Since H is planar, this triangle
must form a face in Hi−1. Since {v1, v2, v3} is the outer
face of H (and hence also of Hi−1), the face into which
vi is added must be an interior face, so there exists an
interior face {a, b, c} in Hi−1. Let P0 be the private
region that exists for {a, b, c} in R0; it can have the
shape of an F or a rectangle.

Observe that in G, vertex vi may be adjacent to any
possible subset of {a, b, c}. This gives 16 cases (two
possible shapes, up to rotation and reflection, and 8
possible adjacencies).

In each case, the goal is to place a curve vi inside P0

such that it intersects exactly the curves of the neigh-
bours of vi in {a, b, c} and no other curve. Furthermore,
having placed vi into P0, we need to find a private re-
gion for the three new interior faces in Hi, that is, the
three faces formed by vi and two of {a, b, c}.
Case 1: P0 has the shape of an F. After possible
rotation / reflection of R0 and renaming of {a, b, c} we
may assume that P0 appears as in Figure 1(a). If (vi, a)
is an edge, then place a bend for curve vi in the region
above a. Let the vertical segment of vi intersect a and
(optionally) c. Let the horizontal segment of vi intersect
(optionally) the top occurrence of b. If (vi, a) is not an
edge but (vi, c) is an edge, then place a bend for vi in the
region below a, let the vertical segment of vi intersect c
and the horizontal segment of vi intersect (optionally)
b. Finally, if neither (vi, a) nor (vi, c) is an edge, then vi

is a horizontal segment in the region below a and above
c that (optionally) intersects b.

In all sub-cases, vi remains inside P0, so it cannot
intersect any other curve of R0. Private regions for the
newly created faces can be found as shown in Figure 2.
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Figure 2: Inserting curve vi into an F-shaped private
region. (Left) (vi, a) is an edge. (Middle) (vi, a) 6∈ E,
but (vi, c) ∈ E. (Right) (vi, a), (vi, c) 6∈ E.
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Case 2: P0 has the shape of a rectangle. After pos-
sible rotation / reflection of R0 and renaming of {a, b, c}
we may assume that P0 appears as in Figure 1(a). If
(vi, a) is an edge, then v is a vertical segment that inter-
sects a and (optionally) b and (optionally) c. If (vi, c)
is an edge, then symmetrically vi is a vertical segment
that intersects c and (optionally) b and a. Finally if
neither (vi, a) nor (vi, c) is an edge, then let v be a
horizontal segment between a and c with (optionally) a
vertical segment attached to create an intersection with
b.

In all cases, vi remains inside P0, so it cannot intersect
any other curve of R0. Private regions for the newly
created faces can be found as shown in Figure 3.
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Figure 3: Inserting curve vi into a rectangle-shaped
private region. (Left) (vi, a) is an edge. (Mid-
dle) (vi, a), (vi, c) 6∈ E, but (vi, b) ∈ E. (Right)
(vi, a), (vi, b), (vi, c) 6∈ E.

Theorem 1 now holds by induction. �

We note here that in our proof-approach, both types
of private regions and all four shapes with one bend are
required in some cases.

3 IO-Graphs

An IO-graph [13] is a 2-connected planar graph with a
planar embedding such that the interior vertices form a
(possibly empty) independent set. One can easily show
[13] that every IO-graph is a planar partial 3-tree.

We now prove Theorem 2 by constructing an {L}-
representation of an IO-graph G. Let O be the set of
exterior vertices; by definition these induce an outer-
planar graph, i.e., a graph that can be embedded so
that all vertices are on the outer face. Moreover, since
G is 2-connected, the outer face is a simple cycle, and
hence the outerplanar graph G[O] is also 2-connected.
We first construct an {L}-representation of G[O], and
then insert the interior vertices. To do so, we again use
private regions, but we modify their definition slightly
in three ways: (1) Interior vertices may have arbitrarily
high degree, and so the private regions must be allowed
to cross arbitrarily many curves. (2) Interior vertices
may only be adjacent to exterior vertices. It therefore
suffices for the private region of a face f to intersect
only those curves that belong to exterior vertices on f .

x1

xd

xd−1

x2

x3

xd−2

Figure 4: An IO-private region. We require that the
supporting line of xi (for i = 2, . . . , k− 2) intersects the
upper segment of xd.

It is exactly this latter observation that allows us to find
private regions more easily, therefore use fewer shapes
for them, and therefore use fewer shapes for the curves.
We can therefore also add: (3) The private region must
be an F-shape, and it must be in the rotation F. The
formal definition is given below:

Definition 3 (IO-private region) Given a 1-string
representation of an IO-graph, an IO-private region of
a face f is an F -shaped area P , in the rotation F, which
intersects curves x1,x2, . . . ,xd as shown in Figure 4.
Here, {x1, . . . , xd} is a subset of the vertices of f enu-
merated in CCW order, and includes all exterior ver-
tices that belong to f (it may or may not include other
vertices). Lastly, P intersects no other curves and no
other private regions.

Lemma 4 Any outer planar graph has an {L}-
representation with an IO-private region for every in-
terior face.

Proof. We may assume that the outerplanar graph is
2-connected, otherwise we can add vertices to make it
so and delete their curves later. Enumerate the vertices
on the outer face as v1, . . . , vk in CCW order. For every
vertex vi on the outer-face, let vi be an L with bend at
(i,−i). The vertical segment of vi reaches until (i,−ri+
ε), where ri = min{j : (vj , vi) ∈ E}. (Use r0 = 0.) The
horizontal segment of vi reaches until (si + ε, i), where
si = max{j : (vj , vi) ∈ E}. (Use sk = k.) See also
Figure 5.

It is quite easy to see that this is a 1-string repre-
sentation. For every edge (vi, vk) with i < k we have
created an intersection at (k,−i). Assume for contra-
diction that vi and vk intersect for some (vi, vk) 6∈ E
with i < k. Then we must have s = max{j : (vi, vj) ∈
E} > k, else there is no intersection. Also r = min{j :
(vj , vk) ∈ E} < i, else there is no intersection. But
then {vi, vk, vs, vr}, together with the outer face, form
a K4-minor; this is impossible in an outer planar graph.
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Figure 5: Example of an IO-graph and the {L}-
representation of G[O]. The IO-private regions are
shaded in grey.

Thus we found the {L}-representation. To find IO-
private regions, we stretch horizontal segments of curves
further as follows. For vertex vi, set ti = max{j : vi
and vj are on a common interior face}. If ti > si,
then expand vi horizontally until ti − ε. To see that
this does not introduce new crossings, observe that
adding (vi, vti) to the graph would not destroy outerpla-
narity, since the edge could be routed inside the common
face. The {L}-representation of such an expanded graph
would contain the constructed one and also contain the
added segment. Therefore the added segment cannot
intersect any other curves.

After stretching all curves horizontally in this way,
an IO-private region for each interior face f can then
be inserted to the left of the vertical segment of vj,
where vj is the vertex on f with maximal index; see
also Figure 5. �

Now we can prove Theorem 2, i.e., we can show that
every IO-graph G has an {L}-representation. Start with
the {L}-representation of G[O] of Lemma 4. We add the
interior vertices v1, . . . , vn−k to this in arbitrary order,
maintaining the following invariant:

For every interior face of the current graph
there exists an IO-private region.

Clearly this invariant holds for the representation of
G[O]. Let v be the next interior vertex to be added,
and let f be the face where it should be inserted. By
induction there exists a IO-private region P0 for face f
such that the curves x1, . . . ,xd that intersect P0 include
the curves of all exterior vertices that are on f , in CCW
order. We need to place an L-curve v into P0, intersect-

ing curves of neighbours of v and nothing else, and then
find IO-private regions for every newly created face.

Since the interior vertices form an independent set, all
neighbours of v are on the outer face, and hence belong
to {x1, . . . , xd}. Since G is 2-connected, v has at least
two such neighbours. We have two cases.

Case 1. If (v, xd) is not an edge, then v is a vertical
segment that extends from the topmost to the bottom-
most of the curves of its neighbours, and intersects these
curves after expanding them rightwards.

Since the order of x1, . . . ,xd is CCW around the
outer face, for every newly created face f ′ incident to v
we have a region inside P0 in which the curves of outer
face vertices on f ′ appear in CCW order. IO-private
regions for these faces can be found as shown in Fig-
ure 6(top). Note that some of these private regions in-
tersect v while others do not; both are acceptable since
v is on those faces, but not an exterior vertex.
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Figure 6: Inserting a vertex into a face of an IO-graph.
(Top) v is not adjacent to xd. (Middle) v is adjacent
to xd, but not xd−1. (Bottom) v is adjacent to both xd

and xd−1.

Case 2. If (v, xd) is an edge, then v is an L, with
the bend below xd−1 if (v, xd−1) is an edge and above
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xd−1 otherwise. The vertical segment of v extends
from this bend to the topmost of v’s neighbours in
{x1, . . . ,xd−1}, and intersects the curves of these neigh-
bours after expanding them rightwards. The horizontal
segment extends as to intersect xd.

IO-private regions can again be found easily, see Fig-
ure 6(middle and bottom).

Repeating this insertion operation for all interior ver-
tices hence gives the desired representation of G. �

4 Halin graphs

A Halin-graph [16] is a graph obtained by taking a tree
T with n ≥ 3 vertices that has no vertex of degree 2 and
connecting the leaves in a cycle. Such graphs were orig-
inally of interest since they are minimally 3-connected,
but it was later shown that they are also planar partial
3-trees [5].

We now prove Theorem 3 and show that any Halin-
graph G has a { L,L}-representation. We note here that
our construction works even if T has some vertices of
degree 2. Fix an embedding of G such that the outer
face is the cycle C connecting the leaves of tree T . Enu-
merate the outer face as v1, . . . , vk in CCW order. Since
every exterior vertex was a leaf of T , vertex vk has de-
gree 3; let r be the interior vertex that is a neighbour of
vk. Root T at r and enumerate the vertices of T in post-
order as w1, . . . , wn, starting with the leaves (which are
v1, . . . , vk) and ending with r.

Let Gi be the graph induced by w1, . . . , wi. Call ver-
tex vj unfinished in Gi if it has a neighbour in G−Gi.
For i = k, . . . , n, we create an {L}-representation of
Gi − (v1, vk) that satisfies the following:

For any unfinished vertex v, curve v ends in
a horizontal ray, and the top-to-bottom order
of these rays corresponds to the CW order of
the unfinished vertices on the outer face while
walking from v1 to vk.

The {L}-representation of Gk − (v1, vk) (i.e., the path
v1, . . . , vk) is obtained easily by placing the bend for vi

at (i,−i), giving the vertical segment length 1 + ε and
leaving the horizontal segment as a ray as desired. To
add vertex wi for i > k, let x1, . . . , xd be its children in
T ; their curves have been placed already. Insert a ver-
tical segment for wi with x-coordinate i, and extending
from just below the lowest curve of x1, . . . ,xd to just
above the highest. The rays of x1, . . . ,xd end at x-
coordinate i + ε, while wi appends a horizontal ray at
its lower endpoint.

Since adding wi means that x1, . . . , xd are now fin-
ished (no vertex has two parents), the invariant holds.
Continuing until i = n yields an {L}-representation of
G− (v1, vk). It remains to add an intersection for edge
(v1, vk). To do so, we change the shape of v1. Observe

that its vertical segment was not used for any intersec-
tion, and that its horizontal segment can be expanded
until (n + 1,−1) without intersecting anything except
its neighbours. After this expansion, we add a vertical
segment going downward at its right end. Since vk is
a neighbour of r, curve vk ended when r was added,
i.e., at x-coordinate n + ε, and we can extend it until
x-coordinate n + 1 + ε. Hence v1 and vk can meet at
(n + 1,−k) if we change the shape of v1 to L. We have
hence proved Theorem 3. �
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Figure 7: Example of an extended Halin-graph and its
{L, L}-representation, obtained by changing the curve of
v1 so that it intersects vk.

Notice that in the construction for Halin-graphs, any
intersection of curves occurs near the end one of the two
curves. Our result therefore holds not only for Halin
graphs, but also for any subgraph of a Halin graph.

The natural question to ask is whether any Halin
graph has an {L}-representation, i.e., whether it is
possible to avoid the single L-shape that we used for
v1. In very recent work [15] done independently from
ours, Francis and Lahiri answered this question affirma-
tively and proved that every Halin graph has an {L}-
representation.
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Figure 8: {L}-representation, obtained by changing the
curve of r and vk, if r has no other neighbours on the
outer face.

5 Conclusion

In this paper, we studied 1-string VPG-representations
of planar graphs such that curves have at most one bend.
It is not known whether all planar graphs have such a
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representation, but curiously, also no planar graph is
known that does not have an {L}-representation. Fel-
sner et al. [14] asked whether every planar graph has a
{L, L}-representation since (as they point out) a positive
answer would provide a different proof of Scheinerman’s
conjecture. They proved this for planar 3-trees.

In this paper, we made another step towards their
question and showed that every planar partial 3-tree has
a 1-string B1-VPG representation. We also showed that
IO-graphs and Halin-graphs have {L}-representations,
except that for Halin-graphs one vertex curve might be
a L.

The obvious direction for future work is to show that
all planar partial 3-trees have {L}-representations, or
at least {L, L}-representations. As a first step, an in-
teresting subclass would be those 2-connected planar
graphs G where deleting the vertices on the outer face
leaves a forest; these encompass both IO-graphs and
Halin graphs.

Note that all representations constructed in this pa-
per are ordered, in the sense that the order of inter-
sections along the curves of vertices corresponds to the
order of edges around the vertex in a planar embed-
ding. This is not the case for the 1-string B2-VPG-
representations in our earlier construction [3]. One pos-
sible avenue towards showing that planar graphs do not
always have an {L}-representation is to restrict the at-
tention to ordered representations first. Thus, is there
a planar graph that has no ordered {L}-representation?
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