
CCCG 2015, Kingston, Ontario, August 10–12, 2015

Strongly Connected Spanning Subgraph for Almost Symmetric Networks

A. Karim Abu-Affash∗ Paz Carmi† Anat Parush Tzur‡

Abstract

In the strongly connected spanning subgraph (SCSS)
problem, the goal is to find a minimum weight span-
ning subgraph of a strongly connected directed graph
that maintains the strong connectivity. In this paper,
we consider the SCSS problem for two families of geo-
metric directed graphs; t-spanners and symmetric disk
graphs. Given a constant t ≥ 1, a directed graph G is a
t-spanner of a set of points V if, for every two points u
and v in V , there exists a directed path from u to v in
G of length at most t · |uv|, where |uv| is the Euclidean
distance between u and v. Given a set V of points in
the plane such that each point u ∈ V has a radius ru,
the symmetric disk graph of V is a directed graph G =
(V,E), such that E = {(u, v) : |uv| ≤ ru and |uv| ≤ rv}.
Thus, if there exists a directed edge (u, v), then (v, u)
exists as well.

We present 3
4 (t+ 1) and 3

2 approximation algorithms
for the SCSS problem for t-spanners and for symmet-
ric disk graphs, respectively. Actually, our approach
achieves a 3

4 (t + 1)-approximation algorithm for all di-
rected graphs satisfying the property that, for every two
nodes u and v, the ratio between the shortest paths,
from u to v and from v to u in the graph, is at most t.

1 Introduction

A directed graph is said to be strongly connected if it
contains a directed path from every node to any other

node. Given a directed graph
→
G, a spanning subgraph

of
→
G is a subgraph of

→
G that contains all nodes of

→
G.

In the strongly connected spanning subgraph (SCSS)
problem, one has to find a minimum weight spanning
subgraph of a strongly connected directed graph that
maintains the strong connectivity. The SCSS problem
is a basic network design problem [6] and is known to
be NP-hard [4,8]. The NP-hardness can be shown by a
simple reduction from the Hamiltonian cycle problem.

∗Software Engineering Department, Shamoon College of Engi-
neering, Beer-Sheva 84100, Israel, abuaa1@sce.ac.il.
†Department of Computer Science, Ben-Gurion University,

Beer-Sheva 84105, Israel, carmip@cs.bgu.ac.il. The research is
partially supported by the Lynn and William Frankel Center for
Computer Science and by grant 680/11 from the Israel Science
Foundation (ISF).
‡Department of Computer Science, Ben-Gurion University,

Beer-Sheva 84105, Israel, parusha@cs.bgu.ac.il.

For unweighted directed graphs (i.e., all edges have
weight 1), Khuller et al. [10,11] proposed a polynomial-
time 1.61-approximation algorithm for the SCSS prob-
lem. Later, Vetta [16] presented a polynomial-time
approximation algorithm achieving an approximation
ratio of 3/2. Zhao et al. [17] gave a linear-time
5/3-approximation algorithm. For weighted directed
graphs, Frederickson and JáJá [6] studied the SCSS
problem and presented a linear-time algorithm achiev-
ing an approximation ratio of 2.

Given a set V of points in the plane such that each
point u ∈ V has a radius ru, the symmetric disk

graph of V is a directed graph
→
G= (V,

→
E), such that

→
E= {(u, v) : |uv| ≤ ru and |uv| ≤ rv}, where |uv| is the
Euclidean distance between u and v. The weight of an

edge (u, v) ∈
→
E (denoted by wt(u, v)) is some polyno-

mial function on |uv|. This weight function is typically
used in wireless networks, where wt(u, v) = |uv|α, for
1 ≤ α ≤ 5.

Given a set V of points in the plane and a constant

t ≥ 1, a directed graph
→
G is a (geometric) t-spanner of

V if, for every two points u and v in V , there exists a

directed path from u to v in
→
G of length at most t · |uv|.

In this paper, we focus on the SCSS problem for
symmetric disk graphs and t-spanners. We present a
3
2 -approximation algorithm for the SCSS problem for
symmetric disk graphs. Then, we extend this algorithm
to obtain a 3

4 (t + 1)-approximation algorithm for the
SCSS problem for t-spanners. Our approximation al-
gorithms are based on Christofides’ algorithm for the
traveling salesman (TSP) problem.

Actually, our approach provides a 3
4 (t + 1)-

approximation algorithm for the SCSS problem for
an extended family of directed graphs, which is called

t-symmetric. For a weighted directed graph
→
G, let

δ→
G

(u, v) denote a minimum weight path from u to v in
→
G. A weighted directed graph

→
G is called a t-symmetric

directed graph, for a given constant t ≥ 1, if, for each

pair of nodes u and v in
→
G, the weight of δ→

G
(u, v) is at

most t times the weight of δ→
G

(v, u). Given a t-symmetric

directed graph
→
G that is strongly connected, the goal is

to find a minimum weight strongly connected spanning

subgraph of
→
G.

The TSP is defined as follows. Given a weighted com-
plete graph on n nodes, the goal is to find a tour, i.e., a

27th Canadian Conference on Computational Geometry, 2015

simple cycle spanning all the nodes, of minimum weight.
Shani and Gonzalez [14] proved that the TSP problem
is NP-Complete. In the metric TSP, the weight function
of the edge set forms a metric, i.e., the weight function
satisfies the triangle inequality; despite this restriction
the problem remains NP-hard. A 2-approximation algo-
rithm based on utilizing a minimum spanning tree was
proposed in [13]. Christofides [1] improved the algo-
rithm by also utilizing a minimum weight perfect match-
ing, and achieved a 3/2-approximation algorithm.

A connected graph G = (V,E) is called k-edge-
connected if, for each subset E′ ⊆ E of size at most
k − 1, the graph G′ = (V,E \ E′) is also connected.
In the k-edge-connectivity problem, the goal is to find
a minimum weight spanning subgraph of G that is k-
edge-connected. The k-edge-connectivity problem has
applications in network reliability (besides its theoreti-
cal interest), since it ensures that even when k− 1 links
fail , the network remains connected.

The 2-edge-connectivity problem is known to be
MAX-SNP-hard [2, 5], as is the unweighted version in
which the objective is to minimize the number of edges
of the subset. For unweighted graphs, Vempala and
Vetta [15] presented a 4/3-approximation algorithm for
the 2-edge-connectivity problem. Jothi et al. [9] im-
proved this result by describing a 5/4-approximation
algorithm for the 2-edge-connectivity problem. The
3-approximation algorithm for the 2-edge-connectivity
problem in weighted graphs that follows from the ap-
proximation algorithm of Frederickson and JáJá [6] for
the bridge augmenting connectivity problem, was af-
terwards improved to 2 by Khuller and Vishkin [12].
For weighted complete graphs whose cost function sat-
isfies the triangle inequality, Frederickson and JáJá [7]
presented 3/2-approximation algorithm for the 2-edge-
connectivity problem. For complete Euclidean graphs
in Rd this problem admits a PTAS [3].

At first glance, the SCSS problem in symmetric disk
graphs looks equivalent to the 2-edge-connectivity prob-
lem in undirected graphs, since any solution for the
2-edge-connectivity problem is also a solution for the
SCSS problem. However, the weight of an optimal solu-
tion for the 2-edge-connectivity problem can be Ω(nα−1)
times the weight of an optimal solution for the SCSS
problem, where the weight of an edge (u, v) is |uv|α and
α ≥ 1., as illustrated in Figure 1.

The rest of this paper is organized as follows. In
Section 2, we give a 3

2 -approximation algorithm for the
SCSS problem in symmetric disk graphs. Then, in Sec-
tion 3, we extend this algorithm to obtain a 3

4 (t + 1)-
approximation algorithm for the SCSS problem in t-
spanners.

a

b

c

d

Figure 1: Top, a symmetric disk graph H of n nodes,
where all nodes have radius 1 except nodes a, b, c and d
that have radius (n− 2)/2. Middle, an optimal solution
for the SCSS problem in H of weight n + 2. Bottom,
the unique solution to the 2-edge-connectivity problem
for the undirected version of H, of weight n+ 2(n−2

2)α,
where wt(u, v) = |uv|α.

2 The SCSS problem in symmetric disk graphs

Given a strongly connected symmetric disk graph
→
G=

(V,
→
E), in the SCSS problem, the goal is to find a min-

imum weight set R∗ ⊆
→
E, such that GR∗ = (V,R∗) is

strongly connected. Let OPT denote the weight of R∗,
i.e., the total weight of the edges in R∗. In this section,

we present an algorithm that computes a set R ⊆
→
E,

such that the graph GR = (V,R) is strongly connected
and the weight of R is at most 3

2 ·OPT .
A pair of nodes u and v in a strongly connected graph

→
G is called a cut pair if the edges (u, v) and (v, u) are

in G and their removal separates
→
G into two subgraphs.

Thus, if
→
G contains a cut pair, then this pair separates

the SCSS problem into two independent SCSS sub-
problems that can be approximated by the proposed
algorithm. Moreover, cut pairs must be in any feasi-
ble solution for the SCSS problem, and, in particular,
in any optimal solution. Therefore, from now on, we

assume that no cut pairs exist in
→
G.

Let δ→
G

(u, v) denote a minimum weight path from u

to v in
→
G, and let wt(δ→

G
(u, v)) denote the weight of

δ→
G

(u, v). The Shortest Paths Graph of
→
G (denoted

by SPG(
→
G)), is an undirected complete graph over

V , where the weight of an edge {u, v} is wt(δ→
G

(u, v)).

Notice that, since
→
G is a symmetric disk graph,

wt(δ→
G

(u, v)) = wt(δ→
G

(v, u)), and therefore, the weight

function of the SPG(
→
G) is well defined, and it forms a

metric.
Our algorithm applies the well known Christofides’

algorithm (for the TSP problem) on SPG(
→
G).

CCCG 2015, Kingston, Ontario, August 10–12, 2015

Christofides’ algorithm finds two edge sets, a minimum

spanning tree of SPG(
→
G) and a minimum weight per-

fect matching in the complete graph over the nodes of
odd degree in the minimum spanning tree. The graph
that consists of these two edge sets is connected and
all its nodes are of even degree, therefore, it contains
an Eulerian cycle. Due to the triangle inequality, the
Eulerian cycle can be relaxed into a Hamiltonian cycle
(by “shortcutting” whenever a node is revisited) with-
out increasing its weight. It has been shown that the
approximation ratio of this algorithm is 3/2 [1].

Given a strongly connected symmetric disk graph
→
G=

(V,
→
E), in Algorithm 1, we describe how to compute a set

R ⊆
→
E, such that GR = (V,R) is strongly connected.

Then, in Section 2.1 we bound the weight of R with
respect to OPT .

Algorithm 1

1: construct SPG(
→
G)

2: compute a solution T for the TSP in SPG(
→
G) using

Christofides’ algorithm
3: direct T arbitrarily and denote this directed tour by
→
T

4: R← ∅
5: for each edge (u, v) ∈

→
T do

6: R← R ∪ δ→
G

(u, v)

7: return R

It is not hard to see that the running time of Algo-
rithm 1 is polynomial (O(n3)), and the resulting graph
GR = (V,R) is strongly connected.

2.1 Approximation ratio

Let R∗ be an optimal solution for the SCSS problem

in
→
G= (V,

→
E), let OPT denote the weight of R∗, and

let R be the set obtained by Algorithm 1. In this sec-
tion, we prove that the weight of R (i.e., wt(R)) is at
most 3

2 · OPT . Let GR∗ be the undirected graph of

GR∗ = (V,R∗), that is, GR∗ contains an undirected
edge between nodes u and v if either (u, v) ∈ R∗ or
(v, u) ∈ R∗.

Lemma 1 If all the nodes in GR∗ are of even degree,
then wt(R) ≤ 3

2 ·OPT .

Proof. Each edge (u, v) in
→
T (the directed tour that

is constructed during Algorithm 1) contributes to R a
set δ→

G
(u, v) of edges that compose a minimum weight

path from u to v in
→
G. The weight of δ→

G
(u, v) is equal

to the weight of the edge (u, v) in
→
T . Notice that we

might add to R edges that are already in R. As a re-

sult, wt(R) ≤ wt(
→
T). Let T ∗ denote an optimal so-

lution for the TSP in SPG(
→
G). Then, by the bound

of Christofides’ algorithm, wt(
→
T) ≤ 3

2 · wt(T
∗). Fi-

nally, GR∗ contains an Eulerian cycle C (since all nodes
are of even degree) that yields a solution for the TSP

in SPG(
→
G). Therefore, OPT is an upper bound on

the weight of the edge set of T ∗, i.e., wt(T ∗) ≤ OPT .
Therefore, we have

wt(R) ≤ wt(
→
T) ≤ 3

2 · wt(T
∗) ≤ 3

2 ·OPT . �

In general, the inequality wt(T ∗) ≤ OPT does not
hold without the restriction of even degree on the nodes
in GR∗ . To see this, consider the example in Figure 2.
The weight of any optimal solution T ∗ for the TSP in

SPG(
→
G) is of weight (4 ·OPT −10)/3. Thus, wt(T ∗) ≥

(4/3− ε)OPT , for any ε > 0.

Figure 2: Left, a symmetric disk graph
→
G on n nodes, in

which the weight of each edge is 1. Middle, an optimal

solution for the SCSS problem in
→
G of weight n + 1.

Right, an optimal solution T ∗ for the TSP in SPG(
→
G)

of weight 4
3n− 2.

Lemma 2 Let G∆≤3 = (V,E) be a 2-edge-connected
undirected graph whose maximum degree is 3. Then,
G∆≤3 contains a path composed of edges Ep =
{(v1, v2), (v2, v3), . . . , (vk−1, vk)}, such that v1 6= vk, v1

and vk are of degree 3, each node in Vp = {v2, . . . , vk−1}
is of degree 2, and (V \ Vp, E \Ep) is 2-edge-connected.
We call such a path a chord.

Proof. We show the existence of such a chord using a
constructive method. In each iteration i, we maintain
a 2-edge-connected component Ci and extend Ci via an
unexplored node v∗ ∈ Ci of degree 3. Initially, i = 0, Ci
is a cycle, and v∗ ∈ Ci is a node of degree 3. Let Pi be a
path connecting v∗ to a node u ∈ Ci that is edge disjoint
from Ci (such a path exists since otherwise G∆≤3 is not
2-edge-connected). If the inner nodes of Pi are of degree
2 then Pi is a chord, and we are done. Otherwise, Pi
contains a node w of degree 3. Let Ci+1 = Ci ∪ Pi and
set v∗ to be w. Repeat this procedure until a chord is

27th Canadian Conference on Computational Geometry, 2015

found. This procedure halts, since in each iteration a
new node v∗ of degree 3 is explored. �

Lemma 3 Let P be a simple path composed of
vertices Vp = {v1, v2, . . . , vk} and edges Ep =
{(v1, v2), (v2, v3), . . . , (vk−1, vk)}. There exists a per-
fect matching Mp in P of the nodes in Vp except for
at most the two end-vertices v1 and vk, i.e., Vp \ W ,
where W ⊆ {v1, vk}, such that the weight of Mp is at
most half of the weight of P .

Proof. The correctness follows from the pigeonhole
principle for both cases of the parity of k.

• If k is odd, then one of the two match-
ings {(v1, v2), (v3, v4), . . . , (vk−2, vk−1)} or
{(v2, v3), (v4, v5), . . . , (vk−1, vk)} is at most
half of the weight of P .

• If k is even, then one of the two match-
ings {(v1, v2), (v3, v4), . . . , (vk−1, vk)} or
{(v2, v3), (v4, v5), . . . , (vk−2, vk−1)} is at most
half of the weight of P . �

Lemma 3 yields the following corollary.

Corollary 4 Let P , Ep, and Vp be as in Lemma 3, and
let V ′p ⊆ Vp. There exists a perfect matching M ′p of the
nodes in V ′p ∪ {v1, vk} \W , where W ⊆ {v1, vk}, such
that the weight of M ′p is at most half of the weight of P ,
where the weight of an edge {vi, vj} in M ′p is the weight
of the subpath between vi and vj in P .

Let T be the minimum spanning tree of SPG(
→
G) that

is found during Christofides’ algorithm. Let Vodd be the
set of nodes of odd degree in T , let Godd = (Vodd, Eodd)

be the (complete) subgraph of SPG(
→
G) induced by Vodd

(Eodd is the set of all edges of SPG(
→
G) having both end-

vertices in Vodd), and let M denote a minimum weight
perfect matching of Godd. Recall that R∗ is an optimal

solution for the SCSS problem in
→
G of weight OPT . In

the following, we bound the weights of T and M with
respect to OPT .

Lemma 5 wt(T) ≤ OPT .

Proof. Since the graph GR∗ = (V,R∗) is a spanning

subgraph of
→
G that is strongly connected, the undirected

graph GR∗ of GR∗ contains a spanning tree T of weight
at most OPT . Let {u, v} be an edge in T such that,
w.l.o.g., it is the undirected edge of (u, v) in GR∗ . Since

SPG(
→
G) is a complete graph over V , it also contains T ,

and the weight of the edge {u, v} in SPG(
→
G) is equal

to the weight of a minimum weight path from u to v in
→
G. Thus, the weight of {u, v} in SPG(

→
G) is equal to

the weight of (u, v) in GR∗ . Therefore,
wt(T) ≤ wt(T) ≤ OPT. �

Lemma 6 wt(M) ≤ OPT/2.

Proof. Let G′ = (V ′, R′), where V ′ ⊆ V and R′ ⊆ R∗,
be the minimum weight subgraph of GR∗ = (V,R∗), in
which the nodes of Vodd are strongly connected. Clearly,
wt(R′) ≤ OPT . We first show that G′ can be converted
to a graph G′∆≤3 (i.e., a 2-edge connected undirected
graph with degree at most 3) whose weight is equal to
wt(G′), and thus, wt(G′∆≤3) ≤ OPT . Then, we show
that there exists a perfect matching M ′ of Vodd in G′∆≤3,

such that wt(M ′) ≤ 1
2 · wt(G

′
∆≤3).

Let G′ be the undirected graph of G′, such that
G′ contains an undirected edge {u, v} between nodes
u and v if either (u, v) ∈ R′ or (v, u) ∈ R′, and
wt({u, v}) = wt(u, v). If both (u, v) and (v, u) are in
R′, then G′ contains two undirected edges {u, v} and
{u, v}′ between u and v, each of weight wt(u, v). No-
tice that G′ is a 2-edge connected undirected graph with
the same weight as G′, and the minimum degree of each
node in G′ is 2. Moreover, if G′ contains two edges
{u, v} and {u, v}′, then the nodes u and v are a cut
pair in G′. We show how to convert G′ to G′∆≤3. First,
while there exists a node u of degree greater than 3 in
G′ that is incident to two edges {u, v}, {u, v}′, select an
adjacent node w 6= v of u in G′. Add the edge {v, w} of
weight wt({u, v}) + wt({u,w}) to G′, and remove the
edge {u,w} and {u, v}′ from G′. At this stage, G′ does
not contain any cut pairs, i.e., if the number of vertices
in G′ is greater than two, then there is no node u in G′

that is incident to two edges {u, v}, {u, v}′.
Next, while there exists a node u of degree greater

than 3 in G′, select an adjacent node w of u in G′.
Since G′ is 2-edge connected undirected graph, there is
a path Pwu = (w, . . . , w′, u) in G′ from w to u which is
different from the edge {w, u}. Notice that w′ is the last
node before u in this path Pwu, and let v /∈ {w′, w} be a
node that is adjacent to u in G′. Add the edge {v, w} of
weight wt({u, v}) + wt({u,w}) to G′, and remove the
edges {u, v}, {u,w} from G′.

The obtained graph is 2-edge connected undirected
graph. Since, in each iteration, the degree of one node
is reduced (by two), and the degree of the other nodes
remains the same, this routine ends. Moreover, for each
edge that is added to the graph, two edges with equal
total weight are removed and, thus, the weight of the
graph G′ is preserved. At the end of this routine, set
G′∆≤3 to be G′.

We now show that there exists a perfect matching M ′

of Vodd in G′∆≤3, such that (i) each edge in M ′ corre-
sponds to a path in G′∆≤3; (ii) the weight of each edge
e ∈M ′ is equal to the weight of the corresponding path
of e in G′∆≤3; and (iii) wt(M ′) ≤ 1

2 · wt(G
′
∆≤3).

The existence of such a matching M ′ is shown in Pro-
cedure 2. In each iteration (Lines 2–19), the number of
nodes of degree 3 in Gtemp is reduced by 2, thus, this
while loop ends, and at Line 20 the resulting graph is

CCCG 2015, Kingston, Ontario, August 10–12, 2015

Procedure 2 Constructing a matching M ′

1: M ′ ← ∅, Gtemp ← G′∆≤3

2: while there is a node v in Gtemp of degree 3 do
3: let P = (VP , EP) be a chord in Gtemp

/* Such P exists by Lemma 2 */

4: let U be the set of the two endvertices of P
5: let V ′P ← Vodd ∩ VP
6: let Mchord be a perfect matching in P of the

nodes in V ′P ∪ U \W , where W ⊆ U , such that
wt(Mchord) ≤ 1

2wt(P)
/* Such Mchord exists by Corollary 4 */

7: M ′ ←M ′ ∪ {{vi, vj}|vi, vj ∈ V ′P }
8: Gtemp ← Gtemp \ (P \ U)

/* Remove all inner nodes of P and their incident edges

from Gtemp */

9: for each v ∈ U such that {vi, v} ∈Mchord do
10: let p and q be the two nodes adjacent to v that

are not in P
11: if v ∈ V ′P then
12: add the edge {p, q} to Gtemp
13: set wt({p, q}) to be wt({p, v}) + wt({v, q})
14: remove v and its incident edges from Gtemp
15: else
16: let Pvi,v be the path from vi to v in P that

corresponds to the edge {vi, v}
17: replace v by vi in Gtemp,
18: set wt({p, vi}) to be wt({p, v})
19: set wt({q, vi}) to be wt({q, v})
20: let Mc be a perfect matching in Gtemp of the nodes

in V ′P , such that wt(Mc) ≤ 1
2wt(Gtemp)

/* At this stage, Gtemp is a cycle */

21: M ′ ←M ′ ∪Mc

22: return M ′

a 2-edge-connected graph with nodes of degree 2, i.e.,
a cycle C. The number of nodes in Vodd is even, and
while removing a chord from Gtemp, an even number of
nodes from Vodd are removed. Therefore, C contains an
even number of nodes from Vodd.

In the following we bound the weight of M ′ obtained
by Procedure 2. The weight of the matching found at
Line 6 is at most 1

2 · wt(P). Thus, at Line 7, we add
to M ′ at most half of the weight of the path P . Then,
at Line 8, the edges of P are removed from Gtemp, and
these edges are not charged again. Clearly, the same
bound holds for the matching that is found at Line 20.
Thus, the weight of M ′ is bounded by half of the weight
of the edge set of G′∆≤3, i.e., wt(M ′) ≤ 1

2 · wt(G
′
∆≤3).

Consider a node v /∈ Vodd such that {vi, v} ∈ Mchord

in some iteration j of the while loop. Notice that
the weight wt({vi, v}) is charged in this iteration, even
though the edge {vi, v} is not added to M ′. This is
done to compensate that later, in some iteration j′ > j,
the node vi is matched to some node vl ∈ Vodd, and the
weight wt({vi, vl}) corresponds to the weight wt({v, vl})

(see Lines 18 or 19). Therefore, the weight wt({vi, vl})
might not include the weight wt({vi, v}). However, as
mentioned, this does not affect the bound on the weight
of the matching M ′, since the weight wt({vi, v}) has
already been charged in the iteration j.

In order to prove the lemma, we generate a perfect
matching M∗ in Godd based on M ′. For each edge
{vi, vj} ∈ M ′, we add to M∗ the edge {vi, vj} of Godd.
Each edge {vi, vj} has a corresponding path from vi to
vj in G∆≤3, i.e., an equivalent (in weight) path from

vi to vj in
→
G, and, therefore, the weight of the edge

{vi, vj} in M ′ is an upper bound on the weight of the
edge {vi, vj} in Godd, so, wt(M∗) ≤ wt(M ′). Recall
that wt(G′∆≤3) ≤ OPT . To sum up, we found a perfect
matching in Godd of weight at most half of the weight of
R∗. Clearly, the weight of the perfect matching found
is an upper bound on the weight of a minimum one,
M. Thus, we have wt(M) ≤ wt(M∗) ≤ wt(M ′) ≤
1
2 · wt(G

′
∆≤3) ≤ 1

2 ·OPT. �

Theorem 7 Algorithm 1 is a 3
2 -approximation algo-

rithm for the SCSS problem in symmetric disk graphs.

Proof. wt(R) ≤ wt(
→
T) ≤ wt(T)+wt(M) ≤ 3

2 ·OPT ,
where the first inequality is already noted in the proof
of Lemma 1, the second inequality follows immediately
from the description of Christofides’ algorithm, and the
last inequality holds due to Lemma 5 and Lemma 6. �

3 The SCSS problem in t-spanners

Given a set V of points in the plane and a constant

t ≥ 1, a directed graph
→
G is a t-spanner of V if, for

every two points u and v in V , there exists a directed

path from u to v in
→
G of length at most t · |uv|. In

this section, we generalize Theorem 7 for t-spanners.

The Shortest Paths Graph of a t-spanner
→
G of V

(denoted by SPG(
→
G)), is an undirected complete graph

over V , in which the weight of an edge {u, v} equals
to min{wt(δ→

G
(u, v)), wt(δ→

G
(v, u))}, where δ→

G
(u, v) is a

minimum weight path from u to v in
→
G.

Theorem 8 Algorithm 3 is a 3
4 · (t+ 1)-approximation

algorithm for the SCSS problem in t-spanners.

Proof. Let Et be the tour computed during Algo-
rithm 3. Consider an edge {u, v} ∈ Et of weight
min{wt(δ→

G
(u, v)), wt(δ→

G
(v, u))}, and assume, w.l.o.g.,

that wt({u, v}) = δ→
G

(u, v). Since the graph
→
G is t-

spanner,

wt(δ→
G

(u, v)) + wt(δ→
G

(v, u)) ≤wt(δ→
G

(u, v)) + t · |uv|

≤wt(δ→
G

(u, v)) + t · wt(δ→
G

(u, v))

=(t+ 1) · wt(δ→
G

(u, v))

=(t+ 1) · wt({u, v}).

27th Canadian Conference on Computational Geometry, 2015

Algorithm 3

1: construct SPG(
→
G) of

→
G

2: compute an Eulerian tour Et using Christofides’ al-
gorithm (the tour before the shortcuts)

3: let
→
Et be a directed tour obtained by traversing the

Eulerian tour Et arbitrary

4: let
←
Et denote the opposite directed tour of

→
Et

5:
→
R← ∅,

←
R← ∅

6: traverse the edges of
→
Et, (resp.

←
Et) and, for each

edge (u, v) visited during the traversal, add the set

of directed edges δ→
G

(u, v) to
→
R (resp.

←
R)

7: if wt(
→
R) ≤ wt(

←
R) then

8: return
→
R

9: else
10: return

←
R

We now bound the the output of Algorithm 3.

min{wt(
→
R),wt(

←
R)}

≤ 1

2
·
(
wt(
→
R) + wt(

←
R)
)

≤ 1

2
·
∑

{u,v}∈Et

(
wt(δ→

G
(u, v)) + wt(δ→

G
(v, u))

)
≤ 1

2
·
∑

{u,v}∈Et

(t+ 1) · wt({u, v})

=
1

2
· (t+ 1) · wt(Et)

≤ 3

4
· (t+ 1) ·OPT,

where the later inequality follows from Theorem 7. �

Corollary 9 Algorithm 3 is a 3
4 · (t+ 1)-approximation

algorithm for the SCSS problem in any graph
→
G, where

the weight of δ→
G

(u, v) is at most t times the weight of

δ→
G

(v, u), for each pair of nodes u and v in
→
G.

References

[1] N. Christofides. Worst-case analysis of a new
heuristic for the traveling salesman problem. Tech-
nical Report 388, Graduate School of Industrial Ad-
ministration, Carnegie-Mellon University, 1976.

[2] B. Csaba, M. Karpinski, and P. Krysta. Approx-
imability of dense and sparse instances of minimum
2-connectivity, TSP and path problems. In SODA,
pages 74–83, 2002.

[3] A. Czumaj and A. Lingas. On approximability of
the minimum-cost k-connected spanning subgraph
problem. In SODA, pages 281–290, 1999.

[4] K. P. Eswaran and R. E. Tarjan. Augmentation
problems. SIAM J. Comput., 5(4):653–665, 1976.

[5] C. G. Fernandes. A better approximation ratio for
the minimum size k-edge-connected spanning sub-
graph problem. J. Algorithms, 28(1):105–124, 1998.

[6] G. N. Frederickson and J. JáJá. Approximation al-
gorithms for several graph augmentation problems.
SIAM J. Comput., 10(2):270–283, 1981.

[7] G. N. Frederickson and J. JáJá. On the relationship
between the biconnectivity augmentation and trav-
elling salesman problems. Theoretical Computer
Science, 19(2):189 – 201, 1982.

[8] M. R. Garey and D. S. Johnson. Computers
and Intractability: A Guide to the Theory of NP-
Completeness. W. H. Freeman & Co., New York,
NY, USA, 1990.

[9] R. Jothi, B. Raghavachari, and S. Varadarajan. A
5/4-approximation algorithm for minimum 2-edge-
connectivity. In SODA, pages 725–734, 2003.

[10] S. Khuller, B. Raghavachari, and N. Young.
Approximating the minimum equivalent directed
graph. SIAM J. Comput., 24(4):859–872, 1995.

[11] S. Khuller, B. Raghavachari, and N. E. Young. On
strongly connected directed graphs with bounded
cycle length. Discrete Applied Mathematics,
69(3):281–289, 1996.

[12] S. Khuller and U. Vishkin. Biconnectivity approx-
imations and graph carvings. J. ACM, 41(2):214–
235, 1994.

[13] D. J. Rosenkrantz, R. E. Stearns, and P. M. Lewis
II. An analysis of several heuristics for the traveling
salesman problem. SIAM J. Comput., 6(3):563–
581, 1977.

[14] S. Sahni and T. Gonzalez. P-complete approxima-
tion problems. J. ACM, 23(3):555–565, 1976.

[15] S. Vempala and A. Vetta. Factor 4/3 approxima-
tions for minimum 2-connected subgraphs. In AP-
PROX, pages 262–273, 2000.

[16] A. Vetta. Approximating the minimum strongly
connected subgraph via a matching lower bound.
In SODA, pages 417–426, 2001.

[17] L. Zhao, H. Nagamochi, and T. Ibaraki. A linear
time 5/3-approximation for the minimum strongly-
connected spanning subgraph problem. Inf. Pro-
cess. Lett., 86(2):63–70, 2003.

