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Abstract

Let P be a polygonal curve in Rd of length n, and S
be a point set of size k. The Curve/Point Set Matching
problem consists of finding a polygonal curve Q on S
such that the Fréchet distance from P is less than a given
ε. We consider eight variations of the problem based
on the distance metric used and the omittability and re-
peatability of the points. We provide closure to a recent
series of complexity results for the case where S consists
of precise points. We also formulate a more realistic ver-
sion of the problem that takes into account measurement
errors and attempts to match a given curve to a set of
imprecise points. We show that all three variations of
the problem that are in P when S consists of precise
points become NP-complete when S consists of impre-
cise points. Finally, we present a 3-factor approximation
algorithm for a version of the problem.

1 Introduction

We study the problem of curve and point set matching,
using the Fréchet distance as the similarity metric. Given
a point set and a polygonal curve, the goal is to connect
the points into a new polygonal curve that is similar to
the given curve. Formally, given a polygonal curve P
of length n, a point set S of size k, and a real number
ε > 0, determine whether there exists a polygonal curve
Q on a subset of the points of S such that δF (P,Q) ≤ ε.

The version of this problem in which the points to be
matched are precise has been well studied in the litera-
ture [1,11,13], and we refer to it as the Curve/Point
Set Matching (CPSM) problem. However, the limita-
tions of modern scanner technology suggest that a more
realistic version of this problem would be to consider the
input points as imprecise regions. Here, we introduce
this new version of the problem and refer to it as the
Curve/Imprecise Point Set Matching (CIPSM)
problem.

Eight versions of the original CPSM problem can
be classified based on whether the use of all points is
enforced, whether points are allowed to be visited more
than once, and whether the Fréchet distance metric
used is discrete or continuous. Table 1 summarizes the
versions and their complexity classes.
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Discrete Continuous

Subset Unique NP-C [13] NP-C
Non-Unique P [13] P [11]

All-Points Unique NP-C [13] NP-C [1]
Non-Unique P [13] NP-C [1]

Table 1: Complexity results for versions of the CPSM.

Our results. At an earlier workshop, we presented
preliminary results showing that the CPSM problem is
NP-complete when coverage of all points is enforced [1].
Here we extend this work by also proving the last re-
maining open question in Table 1, the Unique Subset
version (bold), is also NP-complete (Section 4). Also,
we formulate and present complexity results on match-
ing a curve to imprecise points using Fréchet distance
(CIPSM). Naturally, all the versions shown in Table 1
that are NP-complete are also NP-complete for their
imprecise variations. However, we show that the other
three versions are also NP-complete (Sections 5, 6). Fi-
nally, we present an approximation algorithm for one of
the NP-complete CPSM variants.

2 Previous Work

The basic Fréchet distance problem asks, given two geo-
metric objects of complexity n and m and a real number
ε > 0, is the Fréchet distance δF between the two ob-
jects less than ε? When the objects are curves, Alt
and Godau [5] showed that problem can be solved in
O(nm). Later, Alt et al. [4] showed that if the two ob-
jects are a curve and a graph, the problem can be solved
in O(nm log(m)). When the input graph is a clique,
their problem becomes the Continuous Non-unique Sub-
set version of the CPSM problem. Maheshwari et al.
presented an algorithm in [11] that decides this version
of the problem in time O(nk2), improving on the result
in [4] by a log factor. They also showed that the curve
of minimal Fréchet distance can be computed in time
O(nk2 log(nk)) using parametric search.

Wylie [13] also explored the CPSM problem from
the perspective of discrete Fréchet distance, which only
takes into account the distance at the vertices along
the curves. They showed that the non-unique versions
were solvable in O(nk) time, and the unique versions
were NP-complete, as listed in Table 1. However, as we
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later note in Section 6, the Discrete Non-Unique Subset
version is equivalent to the directed Hausdorff distance
problem between the curve vertices and the point set,
which implies an O((n+ k) log k) algorithm.

A typical scenario in geometric applications occurs
when there exist measurement errors or finite precision
computations. In such cases, it makes sense to integrate
data imprecision into the formulation of the geometric
problem [3, 10]. Related to our work, Ahn et al. [3]
recently studied discrete Fréchet distance between two
polygonal chains with imprecise vertices. Even when we
limit ourselves to discrete Fréchet distance, this differs
from our problem where only one curve is given. The
CIPSM problem turns out to be hard, while their version
of the problem admits a polynomial time solution.

3 Preliminaries

Let the continuous function P : [0, 1]→ Rd be a polyg-
onal curve composed of n segments in Rd, denoted by
(P1, P2, . . . , Pn). Let Q be another curve defined anal-
ogously. The Fréchet distance between P and Q is de-
fined as δF (P,Q) = infσ,τ maxt∈[0,1] ‖P (σ(t)), Q(τ(t))‖,
where σ, τ : [0, 1]→ [0, 1] range over all continuous non-
decreasing surjective functions [8]. The region of points
at most ε distance away from a segment Pi is referred
to as the cylinder of Pi, following the notation of [11].
Given a point s within the cylinder of Pi, we define Lεi (s)
to be the earliest occurring point on Pi which is at most
ε distance away from s, and Rε

i (s) to be the latest.
Let Q be a polygonal curve whose vertices are in S

and whose Fréchet distance from P is at most ε. For
some vertex s ∈ S, Q is said to visit a point s ∈ S
at segment i if there exist subcurves P ′ and Q′ such
that Q′ ends at s, P ′ ends at some point p ∈ Pi, and
δF (P ′, Q′) ≤ ε. A point s ∈ Si is said to be reachable at
i if there exists a curve that visits it at i, and the pair
(s, p) is called a feasible pair.

As in [9], we use S̃ to denote a set of imprecise points,
which are regions in Rd. A realization S of S̃ is a set
of points such that there exists a surjective function
R : S̃ → S with R(s̃) ∈ s̃ for all s̃ ∈ S̃.

4 Continuous Unique Subset CPSM Complexity

We now show that the Continuous Unique Subset version
of the CPSM problem is NP-complete. Our reduction is
from the (3,B2)-SAT problem, a variant of the famous 3-
SAT problem in which each literal, positive and negative,
is restricted to occur exactly twice. This variant was
shown to be NP-complete in [6]. We note that our reduc-
tion would also work from the standard 3-SAT problem,
but we use (3,B2)-SAT to simplify the construction. Let
Φ be a formula given as input to the (3,B2)-SAT prob-
lem. We construct a polygonal curve P and a point set

Figure 1: Normally, once the curve starts down one path,
changing to the other is impossible (top) unless an extra
point on the cylinder boundaries exists (bottom).

S such that Φ is satisfiable if and only if there exists a
vertex-unique polygonal curve Q with Fréchet distance
at most ε from P . A curve is vertex-unique if it has no
shared vertices.

Our reduction makes use of a gadget we call separation
corners, a special version of which was introduced in
[1]. These corner constructs force a choice between two
possible paths in S, allowing the effects of binary choice
to be propagated to other parts of the construction
(Figure 1 Top). Ordinarily, there exist only two path
possibilities, and once the first corner point is decided,
the curve is fully determined until the end of the loop.
However, an extra point on the cylinder boundary allows
the curve to change tracks to the other path possibility
(Figure 1 Bottom). We will use this property when
constructing the clause section of the construction.

We will first create a series of small chains, each con-
sisting of two separation corners, laid out horizontally.
These chains will represent the variables of Φ, and the
four corner points used in the separation corners will
represent the four literal instances of the variable. Then,
we will create a separation corner loop for each clause.
However, instead of allowing both possible paths, we
will force one of the two to be chosen. At the end of
the loop, we will force the chosen path to terminate in a
dead end. The loop will be arranged so that the literal
points corresponding to the literals used in the clause
provide an opportunity for the curve to “change tracks”
and avoid the dead end. Since points cannot be used
more than once, a literal point will only be available for
use to change tracks if it was not already used in the
initial variable assignment path. Thus, there exists a
path that can traverse the entire curve if and only if Φ
has a satisfying assignment.
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Figure 2: The variable section of the construction for a formula with three variables. The curve corresponding to the
assignment true, true, false is shown.

4.1 Construction: Variable Section

The construction is composed of two sections: one for
the variables and one for the clauses. We begin with
the variable section. The construction starts with a
set of separation corners for each variable laid out as in
Figure 2, creating two path alternatives for each variable.
The two path possibilities will correspond to true or
false assignments to that variable. Note that in order
to traverse this part of the construction, either the inner
or outer corner points must be visited. We refer to these
points as literal points, as they will represent the literals
of Φ. The outer corner points of each variable construct
will be referred to as the positive-points, and the inner
corner points will be the negative-points.

The purpose of the variable section is to “use up” the
literal points corresponding to whichever true/false
value is not assigned to the variable, leaving the points
corresponding to the actual variable value for later use
by the clause section. Figure 2 shows how an assignment
to the variables of Φ maps to a traversal of the variable
section in the construction. Variables assigned to true
take the inner path, leaving the outer points available
for use later, while variables assigned to false take the
outer path, leaving the inner points available.

4.2 Construction: Clause Section

We next create the clause section of the construction,
appending it to the variable section. We begin by adding
a separation corner loop. However, we leave out one

of the two corner points in the first separation corner.
This will force the curve to pick a specific possibility
and remove the option to pick the other. Next, we place
more separation corners, arranging the loop so that the
three literal points corresponding to the clause’s literals
are exactly on the cylinder boundaries of the segments.
Once this is done, we remove another point from the
next separation corner in the loop corresponding to the
path that was forced earlier, creating a dead end. The
only way to proceed will be to use one of the literal
points to change tracks before the dead end is reached.
If no literal point is available for use, then the clause is
not satisfied and there will be no way for the curve to
proceed without increasing the Fréchet distance.

Figure 3 demonstrates a single clause loop. Note that
the first and last separation corners of the clause loop are
missing a corner point. Since the corresponding literal
points are already used, there is no place to switch, and
the solid curve cannot continue because of the missing
point at the end. However, if the value of variable y is
changed from true to false, the corresponding literal
point is free to be used by the clause loop and escape the
dead end. The dashed curve shows this configuration.

This process is then repeated for every clause, with
a dead end separation corner between each clause loop.
The full construction is therefore only traversable if every
clause loop has a point at which it can switch tracks,
which corresponds to a satisfying assignment. Figure
6 in the Appendix shows an example of a completed
construction.

x y z

Figure 3: A clause loop for the clause (x ∨ y ∨ z).
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4.3 Hardness Result

Lemma 1 There exists a vertex-unique polygonal path
Q on S with δF (P,Q) ≤ ε if and only if the formula Φ
is satisfiable.

Proof. (→) Assume Φ has a satisfying assignment. The
variable portion of the construction always has a vertex-
unique polygonal path Q on S with δF (P,Q) ≤ ε; as-
sume each variable gadget is chosen according to the
satisfying assignment. Then each clause loop will have
at least one literal point that can be used to change
tracks before its dead end is reached. After all clause
loops have been traversed, the path will have Fréchet
distance less than ε from P.
(←) Assume Φ does not have a satisfying assignment.

Then, no matter how the initial variable portion of the
construction is traversed, there will be at least one clause
loop which will not be able to use any literal point it
passes. Once the end of the clause loop is reached, there
will be no way to continue the path without increasing
the Fréchet distance beyond ε. �

The variable section contains two separation corners
for each variable, and the clause section contains six
separation corners for each clause, so the construction is
clearly of polynomial size. This leads to the following
result.

Theorem 2 The Unique Subset Continuous CPSM
Problem is NP-complete.

5 Continuous Non-unique Subset CIPSM

In the CIPSM problem, we are given a curve P and an
imprecise point set S̃, and the goal is to find a realization
S on which there exists a curve with Fréchet distance at
most ε from P . For simplicity, we will treat the imprecise
points as line segments, but we observe that all results
trivially extend to other regions. The CIPSM problem
has eight versions corresponding to the eight versions of
the CPSM problem. However, note that the CPSM is a
special case of the CIPSM in which the diameter of the
imprecise points happens to be zero. This shows that
the five NP-complete versions of the CPSM imply the
NP-completeness of their corresponding CIPSM versions.
As such, we focus on the remaining versions.

Here, we show that the Continuous Non-unique Subset
CIPSM problem is NP-complete, using a reduction simi-
lar to the one presented in the previous section. A key
property of the construction in Section 4 is that after the
variable section has been traversed, exactly two of the
four corner points of each variable remain usable by the
clause section. This is due to the fact that points cannot
be reused, and two of the four points must be used to
traverse the variable section. To adapt the reduction to
the Non-unique CIPSM problem, we simply connect the

Figure 4: The two corner points of the variable section’s
corners are replaced with a single segment joining them.

two points of each corner into a single imprecise segment
(Figure 4). Since each imprecise segment must resolve
to a single point, and since points can be used more
than once in this version of the problem, the end result
after traversing the variable section is exactly the same:
two points for each variable are available for the clause
section to choose, either in the positive literal positions
or the negative literal positions. Thus, instead of “using
up” corner points, we are “making them available” for
the clause loops to use to escape their dead ends.

We have modeled imprecise points as line segments for
simplicity. However, the model can easily be extended
to disks by placing them so that they are tangent to
the appropriate cylinders at the appropriate locations.
Other shapes can also be positioned to correctly intersect
the cylinders by aligning the cylinder boundaries at their
extremal points. Since the entire construction is scalable,
there is no danger of being forced to place imprecise
points close enough to interfere with each other. This
leads to the following theorem.

Theorem 3 The Continuous Non-unique Subset
CIPSM is NP-complete.

6 Discrete CIPSM Problem

In this section, we study the CIPSM under discrete
Fréchet distance, a variation of the standard Fréchet dis-
tance that only takes into account distance at the curve
vertices [7]. For two curves P and Q of lengths n and m
respectively, a paired walk or coupling sequence is a pair
of integer sequences (a1, b1), . . . , (ak, bk), k ≥ max(n,m),
with the properties that (a1, b1) = (1, 1), (ak, ak) =
(n,m), and for all i, (ai+1, bi+1) ∈ {(ai + 1, bi), (ai, bi +
1), (ai + 1, bi + 1)}. Let W be the set of all paired walks
for P and Q. Then the discrete Fréchet distance can be
defined as δF = min(a,b)∈W maxi ‖Pai , Qbi‖.

Since the edges of the given curve have no impact
on the discrete Fréchet distance, and since we are al-
lowed to visit the points of S̃ in any order, the discrete
Fréchet distance between P and a given realization of
S̃ is the same for any curve with the same vertex set as
P . Thus, the Discrete Subset CPSM can be restated
as follows: does every ε-ball around the vertices of P
contain at least one point from S? This is equivalent
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to the directed Hausdorff distance problem, which is to
determine if maxp∈V (P ) mins∈S ‖p− s‖ ≤ ε. This prob-
lem has already been studied under imprecision in [9],
and all the results apply. Namely, the Discrete Subset
CIPSM is NP-complete, but the optimization version
can be 4-approximated in O((n+ k)3 log2(n+ k)). The
problem can also be solved exactly O((n + k)3) if the
imprecise points are circular, disjoint, and sufficiently
large relative to the optimal discrete Fréchet distance.

Furthermore, the All-points version can be reduced to
the Subset version. For a given curve and point set, if
there is no solution to the Subset version, then there is
clearly no solution to the All-points version either. But,
given a solution to the Subset version, one can easily
determine if there is a solution to the All-points version.
Every vertex of P must have at least one associated point
of S̃ from the output curve Q within distance ε. As long
as the unused imprecise points each overlap with the
ε-ball around some vertex of P , the output curve Q can
jump from that vertex’s associated point in S̃ and visit
the unused points close to that vertex before continuing.
Thus, the All-points version is also NP complete.

Theorem 4 The Discrete Non-Unique CIPSM prob-
lems, both Subset and All-Points, are NP-Complete, even
when the given curve P is simple.

7 An Approximation Algorithm for CPSM

In this section, we consider the optimization version
of the Continuous Non-Unique All-Points CPSM and
detail an approximation algorithm for it. To do so, we
develop an exact algorithm for a restricted version of
the problem, which also serves as a 3-approximation to
the unrestricted version.

The main combinatorial challenge of the All-Points
version of the problem stems from the fact that a point in
cylinders of multiple segments can be visited at any one
of the segments. To remove this challenge, we introduce
an additional restriction to the problem; we enforce that
each point in S be visited at its closest segment. Visiting
points at other segments is also allowed, but each point
must be visited at its nearest segment even if it is also
visited at another one. We call a curve that respects this
condition NS-compliant (Nearest Segment compliant).

7.1 NS-Compliant Algorithm

We follow the parametric search paradigm by first de-
veloping an algorithm for the decision version of the
problem. Let Si be S intersected with the cylinder of
Pi. For convenience, let S0 and Sn+1 be the members
of S that are within ε of the start and end points of P
respectively. For a given s ∈ S, let P s be the segment
of P closest to s. Let the essential points of Pi, denoted
by S∗i , be the set {s ∈ S | P s = Pi}.

An obvious preprocessing step is to confirm that all
points of S are a member of some Si. Another is to
confirm that S0 and Sn+1 are non-empty. If either of
these conditions are false, we can stop and return false
immediately. Note that, under this assumption, S∗i ⊂ Si.

Per our restriction of NS-compliance, every point must
be visited at its closest cylinder. However, it may be
necessary to visit points in other cylinders as well. For
example, even if S∗i = ∅, some point s ∈ Si may need
to be visited in order to stay close to the given curve
and reach future points. If we think of single points in
multiple cylinders as if they were separate points, then
there are two types: points we must visit, and points we
may skip. In this way, the problem is very similar to the
Subset version, in which all points are the latter type.

In order to visit every point in a segment’s essential
set, care must be taken regarding the first and last points
visited for a given segment. Let s ∈ Si be the first point
visited in Pi, which may not be an essential point of
Pi. If there exists an essential point s′ for which Rε

i (s
′)

comes before Lεi (s), then it will not be possible to visit s′;
the curve has already gone too far and cannot backtrack
far enough. By the same token, if t ∈ Si is the last point
visited in Pi and there exists an essential point t′ for
which Lεi (t

′) comes after Rε
i (t), then t′ must not have

been visited, because it is too far ahead to have been
backtracked from.

To formalize this notion, we say a point t is an entry
point for Pi if Lεi (t) comes before Rε

i (s) for all s ∈ S∗i .
Analogously, we say t is an exit point if Rεi (t) comes after
Lεi (s) for all s ∈ S∗i . Note that, if S∗i = ∅, then every
point in Si is an entry and exit point for that segment.
In order to ensure that every point in S∗i can be visited,
we must enter each cylinder via an entry point and leave
it through an exit point. As long as this is enforced, we
can simply visit all the essential points in monotonic
order along the segment.

To turn this idea into an algorithm, we adapt the
algorithm for the Subset version of the problem given
in [11]. We provide a small review here. The first step
of the Subset algorithm is to precompute a reachability
function ri(s, t). Let s ∈ Si be a point that is reachable
at Pi by some feasible curve Q ending in s. Given a
point t ∈ S, ri(s, t) is defined as the largest index j ≥ i
such that the curve Q+ st visits t at Pj , or 0 if Q+ st
is not feasible. As proven in [11], t is reachable at Pj
for all i ≤ j ≤ ri(s, t). Therefore, this value provides
reachability information for all pairs of points in S from
any segment to any other. To ensure that no essential
points are skipped, we must modify ri(s, t) to obtain a
new function r′i(s, t) with the following properties:

• r′i(s, t) = 0 or i if s is not an exit point for Pi.

• r′i(s, t) > i only if t is an entry point for Pr′i(s,t).

• For all i < j < r′i(s, t), S
∗
j = ∅.
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The third item ensures that previously stated property
of t being reachable at Pj if t ∈ Pj for i ≤ j ≤ r′i(s, t)
still holds; recall that every point in a cylinder with an
empty essential set is an entry point. Given ri(s, t), we
define r′i(s, t) to be the smaller of ri(s, t) and the index
of the first segment after i with a non-empty essential
set. It is straightforward to verify that this definition
respects the three rules above. Note that r′i(s, t) can
be computed in O(nk2) time by pre-computing which
segments have non-empty essential sets.

Under this modified reachability function, the Subset
algorithm decides the NS-compliant problem. Note that,
even though the actual curve returned by the Subset
algorithm is not guaranteed to visit all points, it will
return a curve that enters each cylinder via an entry
point and exits via an exit point, which is sufficient to
guarantee the existence of an NS-compliant curve. The
algorithm pseudo-code is shown in Algorithm 1 below.

Algorithm 1 NS-compliant CPSM (P, S, ε)

1: Compute Si and S∗i for all i
2: If any point is outside all Si, return no
3: Compute ri(s, t) for all 1 ≤ i ≤ n and s, t ∈ S
4: Compute the entry and exit sets for each segment.
5: Modify ri(s, t) to obtain r′i(s, t)
6: Apply the Subset algorithm using r′i(s, t)
7: Return the result

Time Complexity. Lines 1 and 2 of Algorithm 1
takes O(nk) time. Lines 3 and 6 take O(nk2) time
[4, 11]. Computing the entry and exit sets on Line 4
requires comparing O(k) candidates with O(k) other
points, repeated for each of the n cylinders, so this step
takes O(nk2) time. Finally, computing r′i(s, t) in Line 5
takes O(nk2) time, as previously discussed. Thus, the
complexity of the algorithm is O(nk2).

Theorem 5 Algorithm 1 correctly decides the NS-
compliant version of the Continuous Non-unique Subset
CPSM in O(nk2) time.

With an algorithm for the decision version in hand,
the technique of parametric search is employed to find
the optimal curve. By analyzing the so-called free space
diagram of P and each of the S×S possible segments of
Q, as done in [4] and [11], O(nk2) critical values of ε can
be identified. These values can then be sorted, and the
decision version of the algorithm can be used to binary
search for the smallest value. This technique yields an
algorithm with running time O(nk2 log(nk)).

Theorem 6 Given a polygonal curve P and a point set
S, a polygonal curve Q whose vertices are exactly S
with δF (P,Q) at most 3 times that of the optimal can be
computed in O(nk2 log(nk)) time.

Not only does the algorithm as described com-
pute the NS-compliant problem exactly, but it also 3-
approximates the unrestricted version. This is due to
the fact that any curve that visits all points in S can be
transformed into an NS-compliant curve with Fréchet
distance from P at most 3 times the original. We present
the proof of this statement in the Appendix. However,
if the algorithm yields a Fréchet distance for which no
point in S belongs to more than one cylinder, then this
solution must also be optimal for the unrestricted version.
In a related study [2], we make use of this very algorithm
in combination with another algorithm by Wenk [12] to
solve the CPSM problem under affine transformations.
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distance between two polygonal curves. Int. J. of
Comp. Geom. & Appl., 5(01n02):75–91, 1995.

[6] P. Berman, M. Karpinski, and A. Scott. Approx-
imation hardness of short symmetric instances of
MAX-3SAT. El. Coll. on Comp. Complex., (049),
2003.

[7] T. Eiter and H. Mannila. Computing discrete
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Appendix A: Approximation Proof

We now show that any curve can be transformed into
an NS-compliant curve while only increasing its Fréchet
distance by a factor of 3. This will show that the NS-
compliant algorithm given in Section 7 is a 3-factor
approximation algorithm for the unrestricted version.

Theorem 7 Let ε = δF (P,Q), where P and Q are
curves. There exists an NS-compliant curve Q′ with
the same vertex set as Q such that δF (P,Q′) ≤ 3ε.

Proof. Since Q might not be NS-compliant, there may
be some vertices of Q that are not visited at their closest
segment of P ; let u1, . . . , um be the set of such vertices.

Since each ui is visited at a segment other than its
closest, each can be no further than ε distance away from
Pui . Consider a given ui and let p be a point in Pui that
is within ε of ui. Since P and Q have Fréchet distance ε,
there must be at least one feasible pair for any point on
P ; let u′i be a point (not necessarily a vertex) in Q such
that (u′i, p) is feasible. Then, add u′i as a new vertex
of Q. Note that the distance between ui and u′i is at

most 2ε. Repeating this process for every ui yields a
new curve Q∗. Since each new vertex has been added
along an existing segment, δF (P,Q) = δF (P,Q∗).

Now, merge each u′i with ui by translating the former
to the position of the latter, yielding a new curve Q′ with
a potentially different Fréchet distance from P . Let σ
and τ be reparameterizations of P and Q∗, and consider
the point Q∗(τ(t)) for some t ∈ [0, 1], which lies on some
segment of Q∗. The endpoints of the corresponding
segment in Q′ may have been displaced up to 2ε, and
thus the point Q′(τ(t)) may be up to 2ε away from
Q∗(τ(t)). Therefore, ‖P (σ(t)), Q′(τ(t))‖ can be at most
2ε larger than ‖P (σ(t)), Q∗(τ(t))‖. Finally, since the
Fréchet distance is the infimum of the maximum distance
over all reparameterizations, we have that δF (P,Q′) ≤
δF (P,Q∗) + 2ε = 3ε. As Figure 5 shows, this bound is
realizable.

Since each u′i was visited at Pu
′
i in Q∗, the same logic

used to show that the Fréchet distance has increased by
at most a factor of 3 can again be used to show that
each ui is visited at Pui in Q′. Thus, we conclude that
Q′ is NS-compliant. �

ε

(a) Unrestricted optimal solution

3ε

(b) NS-compliant optimal solution

Figure 5: If the two middle points are slightly closer to the top segments than the bottom segment, the optimal
solution for the NS-compliant version has Fréchet distance 3 times that of the unrestricted version.
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Appendix B: Complete Construction Figure

x y z

Figure 6: A completed construction for the formula Φ = (x ∨ y ∨ z) ∧ (x ∨ y ∨ z) ∧ (x ∨ y ∨ z) ∧ (x ∨ y ∨ z).


