
CCCG 2014, Halifax, Nova Scotia, August 11–13, 2014

Bottleneck Bichromatic Plane Matching of Points

Ahmad Biniaz∗ Anil Maheshwari∗ Michiel Smid∗

Abstract

Given a set of n red points and n blue points in the
plane, we are interested to match the red points with
the blue points by straight line segments in such a way
that the segments do not cross each other and the length
of the longest segment is minimized. In general, this
problem in NP-hard. We give exact solutions for some
special cases of the input point set.

1 Introduction

We study the problem of computing a bottleneck non-
crossing matching of red and blue points in the plane.
Let R = {r1, . . . , rn} be a set of n red points and
B = {b1, . . . , bn} be a set of n blue points in the plane.
A RB-matching is a non-crossing perfect matching of
the points by straight line segments in such a way that
each segment has one endpoint in B and one in R.
The length of the longest edge in an RB-matching M
is known as bottleneck which we denote by λM . The
bottleneck bichromatic matching (BBM) problem is to
find a non-crossing matching M∗ with minimum bottle-
neck λ∗. Carlsson et al. [4] showed that the bottleneck
bichromatic matching problem is NP-hard. Moreover,
when all the points have the same color, the bottleneck
non-crossing perfect matching problem is NP-hard [1].

Notice that, the bottleneck (possibly crossing) per-
fect matching of red and blue points can be computed
exactly in O(n1.5 log n) time [5]. In addition, a non-
crossing perfect matching of red and blue points always
exists and can be computed in O(n log n) time by ap-
plying the ham sandwich cut recursively. In [3] the au-
thors considered the problem of non-crossing matching
of points with different geometric objects.

In this paper we present exact solutions for some spe-
cial cases of the BBM problem when the points are ar-
ranged in convex position, boundary of a circle, and on
a line. For simplicity, in the rest of the paper we refer
to a RB-matching as a “matching”.

2 Points in Convex Position

In this section we deal with the case when R ∪ B form
the vertices of a convex polygon. Carlsson et al. [4]

∗School of Computer Science, Carleton University, Ottawa,
Canada. Research supported by NSERC.

presented an O(n4 log n)-time algorithm for points on
convex position. We improve their result to O(n3)
time. Let P denote the union of R and B, that is
P = {r1, . . . , rn, b1, . . . , bn}. We have the following ob-
servation:

Observation 1 Let (ri, bj) be an edge in any RB-
matching of P , then there are the same number of red
and blue points on each side of the line passing through
ri and bj.

Using Observation 1, we present a dynamic program-
ming algorithm which solves the BBM problem for P .
For simplicity of notation, let P = {p1, . . . , p2n} denote
the sequence of the vertices of the convex polygon in
counter clockwise order, starting at an arbitrary vertex
p1; see Figure 1. By Observation 1, we denote (pi, pj)
as a feasible edge if pi and pj have different colors and
the sequence pi+1, . . . , pj−1 contains the same number
of red and blue points. In other words we say that pj
is a feasible match for pi, and vice versa. Let Fi denote
the set of feasible matches for pi. Figure 1 shows that
F1 = {p4, p8, p10}. Therefore, we define a weight func-
tion w which assigns a weight wi,j to each pair (pi, pj),
where

wi,j =

{
|pipj | : if (pi, pj) is a feasible edge
+∞ : otherwise

p1 p2
p3

p4

p5

p6

p7p8
p9

p10

p11

p12

Figure 1: Points arranged on convex position.

Consider any subsequence Pi,j = {pi, . . . , pj} of P ,
where 1 ≤ i < j ≤ 2n. Let A[i, j] denote the bottle-
neck of the optimal matching in Pi,j if Pi,j has an RB-
matching; otherwise, A[i, j] = +∞. So A[1, 2n] denotes
the optimal solution for P . We use dynamic program-
ming to compute A[1, 2n]. We derive a recurrence for
A[i, j]. For a feasible edge (pi, pk) where i + 1 ≤ k ≤ j
and pk ∈ Fi, the values of the sub-problems to the left
and right of (pi, pk) are A[i + 1, k − 1] and A[k + 1, j].

26th Canadian Conference on Computational Geometry, 2014

We match pi to a feasible point pk which minimizes the
bottleneck. Thus,

A[i, j] =
min

i+1≤k≤j
pk∈Fi

{max{wi,j , A[i+ 1, k − 1], A[k + 1, j]}}.

The size of A (which is the total number of sub-
problems) is O(n2). For each sub-problem A[i, j] we
have at most k = j − i lookups in A. Therefore, the
total running time is O(n3).

Theorem 1 Given a set B of n blue points and a set
R of n red points in convex position, one can compute
a bottleneck non-crossing RB-matching in time O(n3)
and in space O(n2).

Note that in [1] the authors showed that for points in
convex position and when all the points have the same
color, a bottleneck plane matching can be computed in
O(n3) time and O(n2) space via dynamic programming.
In the journal version of their paper [2] they extended
their result and obtained the same time and space com-
plexities for the bichromatic set of points.

2.1 Points on Circle

In this section we consider the BBM problem when the
points in R and B are arranged on the boundary of
a circle. Clearly, we can use the same algorithm as
for points in convex position to solve this problem in
O(n3) time. But for points on a circle we can do better;
we present an algorithm running in O(n2) time. Con-
sider P = {p1, . . . , p2n} as the sequence of the points in
counter clockwise order on a circle. We prove that there
is an optimal matching M∗, such that each point pi ∈ P
is connected to its first feasible match in the clockwise
or counter clockwise order from pi.

pk

pj

pi

(a) (b)

Figure 2: (a) illustrating the proof of Lemma 2, (b) the
resulting graph of procedure CompareToOpt.

Lemma 2 There is an optimal RB-matching for a
point set P on a circle, such that each pi ∈ P is con-
nected to its first feasible match in the clockwise or
counter clockwise order from pi.

Proof. Consider an optimal matching M∗ with an edge
(pi, pj). Consider two arcs p̂ipj and p̂jpi. W.l.o.g. let
p̂ipj be the smaller one. Clearly, the distance between
any two points on p̂ipj is at most |pipj |. If pi+1, . . . , pj−1
contains no feasible match for pi, then pj is the first fea-
sible match to the right of pi. Otherwise, let pk be the
first feasible match for pi in p̂ipj ; see Figure 2(a). By
connecting pi to pk we have two smaller arcs ̂pi+1pk−1
and p̂k+1pj . Obviously, |pipk| < |pipj |, and any match-
ing of the vertices on ̂pi+1pk−1 and p̂k+1pj have the
bottleneck smaller than |pipj |. By repeating this pro-
cess for all edges of M∗ and all new edges, we obtain a
matching M which satisfies the statement of the lemma
and λM ≤ λ∗. �

As a result of Lemma 2, for each point pi ∈ P , we
consider at most two feasible matches in Fi. Thus, using
the dynamic programming idea of the previous section,
for each sub-problemA[i, j] we have at most two lookups
in A. Thus, it takes O(n2) time to fill the table A. By
preprocessing P , for each point pi ∈ P we can find its
first matched points in O(n2) time. Thus, the total
running time of the algorithm is O(n2).

2.1.1 A Faster Algorithm

Let R = {r1, . . . , rn} be a set of n red points and
B = {b1, . . . , bn} be a set of n blue points on the
boundary of a circle C. Without loss of generality let
P = {p1, . . . , p2n} be the clockwise ordered set of all the
points. In this section we present an O(n log n) time al-
gorithm which solves the BBM problem for P .

Let Fi denote the first feasible matches of pi in clock-
wise and counter-clockwise order. Note that |Fi| ≤ 2.
We describe how one can compute Fi for all points in
P in linear time. First, consider the case that we are
looking for the first clockwise-feasible match for each
red point. We make a copy P ′ of P . Consider an empty
stack, and start from an arbitrary red point rstart and
walk on P ′ clockwise. If we see a red point, push it
onto the stack. If we see a blue point pj and the stack
is not empty, we pop a red point pi from the stack and
add pj to Fi, and delete pi and pj from P ′. If we see a
blue point pj and stack is empty, we do nothing. The
process stops as soon as we find the proper match for
each red vertex. As we visit each point in P at most
twice, this step takes linear time. We can do the same
process for the counter-clockwise order. Therefore, Fi
for all 1 ≤ i ≤ 2n can be computed in O(n) time.

Let F denote the set of all feasible edges, in sorted
order of their lengths. Let G be the graph with vertex
set P and edge set F . Note that the degree of each
vertex in G is at most two and hence the total number of
edges is 2n. Let Gλ be the subgraph of G containing all
the edges of length at most λ. Our algorithm performs a
binary search on the edges in G and for each considered

CCCG 2014, Halifax, Nova Scotia, August 11–13, 2014

edge e, we use the following procedure to decide whether
Gλ, where λ = |e|, has a non-crossing perfect matching.
The running time of the algorithm is O(n log n).

For each edge e = (pi, pj) in Gλ let Ie be the set
of all vertices of P in the smaller arc between pi and
pj , including pi and pj . Let P0 and P1 be the lists of
vertices of degree zero and one in Gλ, respectively. If P0

is non-empty, then it is obvious that a perfect matching
does not exist. If P0 is empty and P1 is non-empty, then
for each point p ∈ P1, do the following. Let e = (p, q)
be the only edge incident to p. It is obvious that any
perfect matching in Gλ should contain e. In addition,
(p, q) is a feasible edge, and then all the points in Ie can
be matched properly. Thus, we can remove the points of
Ie from Gλ. Note that this changes the lists P0 and P1.
The algorithm CompareToOpt receives Gλ as input and
decides whether it has a perfect non-crossing matching.

Algorithm 1 CompareToOpt(Gλ)

Input: a graph Gλ
Output: TRUE, if Gλ has a non-crossing perfect
matching, FALSE, otherwise

1: P0 ← vertices of degree zero in Gλ
2: P1 ← vertices of degree one in Gλ
3: while P0 6= ∅ or P1 6= ∅ do
4: if P0 6= ∅ then return FALSE

5: p← a vertex in P1

6: q ← the vertex adjacent to p in Gλ
7: for each r in I(p,q) do
8: remove r and its adjacent edges from Gλ
9: update P0 and P1

10: return TRUE

The algorithm CompareToOpt consider each vertex
and each edge once, so it executes in linear in the size of
Gλ. At the end of the while loop, we have P0 = P1 = ∅.
All the vertices of the remaining part of Gλ have degree
two and this case is the same as the problem that we
started with (BBM problem) and by Lemma 2, it has
a perfect non-crossing matching, thus we return TRUE.
See Figure 2(b).

Notice that, if the procedure returns FALSE for some
λ, then we know that λ < λ∗. Let e be the shortest edge
for which the procedure returns TRUE. Thus |e| ≥ λ∗,
and a bottleneck RB-matching is contained inGλ, where
λ = |e|.

Theorem 3 Given a set B of n blue points and a set
R of n red points on a circle, one can compute a bottle-
neck non-crossing RB-matching in time O(n log n) and
in space O(n).

3 Blue Points on Straight Line

In this section we deal with the case where the blue
points are on a horizontal line and the red points are
on one side of the line. Formally, given a sequence
B1,n = b1, . . . , bn of n blue points on a horizontal line
` and n red points above `, we are interested to find a
non-crossing matching M between the points in R and
B, such that the length of the longest edge in M is min-
imized. We show how to build dynamic programming
algorithms that solve this problem. In Section 3.1 we
present a bottom-up dynamic programming algorithm
that solves this problem in O(n5) time. In Section 3.2
we present a top-down dynamic programming algorithm
for this problem running in O(n4) time.

3.1 First algorithm

In this section we present a dynamic programming algo-
rithm for the problem. We define a subproblem (R′, B′)
in the following way: given a quadrilateral Q with one
face on `, we are looking for a bottleneck RB-matching
in Q, where R′ = R ∩ Q and B′ = B ∩ Q. For sim-
plicity, we may refer to the sub-problem (R′, B′) as its
bounding box Q. In the top level we imagine a bound-
ing quadrilateral which contains all the points of R and
B. See Figure 3(a). Let b(Q) denote the bottleneck of
the sub-problem Q. If Q is empty, we set b(Q) = 0. If Q
is not empty but |R′| 6= |B′|, we set b(Q) = +∞, as it is
not possible to have a RB-matching for (R′, B′). Other-
wise, we have |R′| = |B′| > 0; let rt be the topmost red
point in R′ in Q. It has at most |B′| possible matching
edges. Each of the matching edges defines two new in-
dependent sub-problems Ql and Qr to its left and right
sides, respectively. See Figures 3(b) and 3(c). Thus, we
can compute the bottleneck of a sub-problem Q, using
the following recursion:

b(Q) = min
bk∈B′

{max{|rtbk|, b(Ql), b(Qr)}}.

Note that the y-coordinate of all the red points in Ql
and Qr are smaller than y-coordinate of rt. If we re-
curse this process on Ql and Qr, it is obvious that each
sub-problem (R′, B′) is bounded by the left and right
sides of its corresponding quadrilateral. Thus, each sub-
problem is defined by a pair of edges (or possibly the
edges of the outer bounding box).

Note that the total number of edges is n2 +2 (includ-
ing the edges of the outer box). The dynamic program-
ming table contains n2+2 rows and n2+2 columns, each
corresponds to an edge. The cells correspond to sub-
problems. The dynamic programming table contains
O(n4) cells, and for each we have at most n pairs of pos-
sible sub-problems, which implies at most 2n lookups in
the table. Therefore, the algorithm runs in time O(n5)
and space O(n4).

26th Canadian Conference on Computational Geometry, 2014

rt

`

Q rt

`

Ql

Qr

bk
`

+∞

(a) (b) (c)

Figure 3: (a) definition of a sub-problem, (b) possible matching edges for rt, and (c) Qr returns +∞ as it does not
contain a matching; recurse on Ql.

3.2 Second algorithm

In this section we present a top-down dynamic pro-
gramming algorithm that improves the result of Section
3.1. Consider the problem (R,B), where B = B1,n =
{b1, . . . , bn}. Let rt be the topmost red point. In any so-
lution M to the problem, consider the edge (rt, bk) ∈M
which matches rt to a point bk in B, then there is no
edge in M that intersects (rt, bk). Thus, (rt, bk) is a
feasible edge if on each side of (rt, bk) the number of red
points equals the number of blue points. In this case,
bk is a feasible match for rt. Recall that Ft denotes the
set of all feasible matches for rt. See Figure 4(a). In
other words,

Ft = {k : (rt, bk) is a feasible edge}.

For a feasible edge (rt, bk), let Rl (resp. Rr) and
Bl (resp. Br) be the red and blue points to the left
(resp. right) of (rt, bk), respectively. That is, the
edge (rt, bk) divides the (R,B) problem into two sub-
problems (Rl, Bl) and (Rr, Br), where |Rl| = |Bl| and
|Rr| = |Br|. Clearly, Bl = B1,k−1 = {b1, . . . , bk−1} and
Br = Bk+1,n = {bk+1, . . . , bn}. We develop the follow-
ing recurrence to solve the problem:

b(R,B) = min
k∈Ft

{max{|rtbk|, b(Bl, Rl), b(Br, Rr)}}.

Let lt denote the horizontal line passing through rt.
Note that the y-coordinate of all red points in Rl and Rr
is smaller than the y-coordinate of rt, and hence they
lie below lt. This implies that the left (resp. right) sub-
problem is contained in a trapezoidal region Tl (resp.
Tr) with bounding edges `, lt, and (rt, bk). See Figure
4(a). Since, in each step we have two sub-problems, in
the rest of this section we describe the process for the
right sub-problem; the process for the left sub-problem
is symmetric. Note that rt is the top-left corner of the
right sub-problem. Thus, given Br and rt, we know that
rt is connected to a blue point immediately to the left of
Br. In addition, we can find the red points assigned to
the right sub-problem in the following way. Stand at a
blue point immediately to the right of Br and scan the

plane clockwise, starting from `. Count the red points
in Tr while scanning, and stop as soon as the number of
red points seen equals the number of blue points in Br.
These red points form the set Rr. See Figures 4(b) and
4(c).

Since, rt defines the right (resp. left) and top bound-
aries of Tl (resp. Tr) which contains the left (resp. right)
sub-problem, we call rt a “boundary vertex”. We de-
fine a sub-problem as a sequence Bi,j = {bi, . . . , bj} of
blue points, a boundary vertex, rt, connected to bj+1

(resp. bi−1) for the left (resp. right) sub-problem.
More precisely, a sub-problem (Bi,j , rt, d) consists of
an interval Bi,j , a boundary vertex rt, and a direction
d = {left, right} which indicates that rt is connected
to a point immediately to the left or to the right of Bi,j .
For a sub-problem (Bi,j , t, d), where d = left we find
the vertex set Ri,j in the following way. Scan the plane
by a clockwise rotating line s anchored at bj+1. Count
the red points in trapezoidal region formed by `, lt, and
(rt, bi−1), and stop as soon as j − i+ 1 red points have
been encountered. These red points form the set Ri,j .
See Figures 4(b) and 4(c).

In the top level, we add points b0 and bn+1 on ` to
the left and right of B, respectively. We add a point r0
as the boundary vertex of the (R,B) problem in such a
way that R and B are contained in the trapezoid formed
by `, l0, and the line segment r0b0. Thus in the top level
we have the sub-problem (B1,n, r0, left).

The dynamic programming table is a four-
dimensional table A[1..n, 1..n, 0..n, 1..2], where the
first and second dimensions correspond to an interval
of blue points, the third dimension corresponds a
boundary vertex, and the fourth dimension corresponds
to the directions. For simplicity we use l and r for left
and right directions, respectively. Each cell A[i, j, t, d]
stores the bottleneck of the sub-problem (Bi,j , rt, d),
and we are looking for A[1, n, 0, l] which corresponds to
the bottleneck of M∗. We fill A in the following way:

A[i, j, t, d] =
min
k∈Ft′

{max{|rt′bk|, A[i, k − 1, t′, r], A[k + 1, j, t′, l]}},

CCCG 2014, Halifax, Nova Scotia, August 11–13, 2014

b1 bk bn

rt

`

lt
Tl Tr

bi−1 bi bj+1bj

rt

`

lt

s

Bi,j

bi−1 bi bj+1bj

rt
rt′

`

lt

(a) (b) (c)

Figure 4: (a) feasible matches for rt, (b) scanning the red points in the trapezoidal region (shaded area), and (c) the
trapezoidal region which contains the same number of red and blue points.

where rt′ is the topmost red point in the point set Ri,j
assigned to (Bi,j , t, d).

Algorithm 2 computes the bottleneck of each sub-
problem using top-down dynamic programming. In the
top level, we execute LineMatching(1, n, 0, l). Before
running algorithm LineMatching, for each point, we pre-
sort the red points in the following way. For each red
point r, we keep a sorted list of all the red points be-
low lr in clockwise order. For each blue point, we keep
two sorted lists of red points in clockwise and counter-
clockwise orders. This step takes O(n2 log n) time.

Algorithm 2 LineMatching(i, j, t, d)

Input: sequence Bi,j , top point rt, and direction d.
Output: bottleneck of M∗.

1: if A[i, j, t, d] > 0 then
2: return A[i, j, t, d]

3: if i > j then
4: return A[i, j, t, d]← 0

5: Ri,j ← j − i+ 1 red points assigned to Bi,j
6: t′ ← top-index(Ri,j)
7: if i = j then
8: return A[i, j, t, d]← |rt′bi|
9: b← +∞

10: Ft′ ← indices of feasible blue points for rt′

11: for each k ∈ Ft′ do
12: A[i, k − 1, t′, r]← LineMatching(i, k − 1, t′, r)
13: A[k + 1, j, t′, l]← LineMatching(k + 1, j, t′, l)
14: m← max{|rt′bk|, A[i, k−1, t′, r], A[k+1, j, t′, l]}
15: if m < b then
16: b← m
17: return A[i, j, t, d]← b

Lemma 4 Algorithm LineMatching computes the bot-
tleneck of M∗ in O(n4) time.

Proof. Each cell A[i, j, t, d] corresponds to a sub-
problem formed by an interval Bi,j , a boundary vertex
rt, and a direction d. The total number of possible Bi,j
intervals is

(
n
2

)
+ n (i can be equal to j). For each in-

terval, any of the n red points can be the corresponding

boundary vertex, which can be connected to the left or
right side of the interval. Thus, the total number of
subproblems is 2n

(
n
2

)
+ 2n2 = O(n3). In order to com-

pute Ri,j for each sub-problem, we use the sorted lists
assigned to bi−1 (or bj+1) and scan for the red points
in the trapezoidal region. To compute the feasible blue
vertices for rt′ ∈ Ri,j , we use the sorted list assigned
to rt′ and keep track of feasible matches for rt′ in Bi,j .
Thus, for each sub-problem, we can compute Ri,j , rt′ ,
and Ft′ in linear time. Therefore, the total running time
of the algorithm is O(n4). �

Finally, we reconstruct M∗ from A in linear time.

Theorem 5 Given a set B of n blue points on a hor-
izontal line `, a set R of n red points above `, one can
compute a bottleneck non-crossing RB-matching in time
O(n4) and in space O(n3).

References

[1] A. K. Abu-Affash, P. Carmi, M. J. Katz, and Y. Trabelsi.
Bottleneck non-crossing matching in the plane. In ESA,
pages 36–47, 2012.

[2] A. K. Abu-Affash, P. Carmi, M. J. Katz, and Y. Trabelsi.
Bottleneck non-crossing matching in the plane. Comput.
Geom., 47(3):447–457, 2014.

[3] G. Aloupis, J. Cardinal, S. Collette, E. D. Demaine,
M. L. Demaine, M. Dulieu, R. F. Monroy, V. Hart,
F. Hurtado, S. Langerman, M. Saumell, C. Seara, and
P. Taslakian. Non-crossing matchings of points with ge-
ometric objects. Comput. Geom., 46(1):78–92, 2013.

[4] J. Carlsson and B. Armbruster. A bottleneck matching
problem with edge-crossing constraints. Manuscript, see
http://users.iems.northwestern.edu/˜armbruster/2010m
atching.pdf, 2010.

[5] A. Efrat, A. Itai, and M. J. Katz. Geometry helps in
bottleneck matching and related problems. Algorithmica,
31(1):1–28, 2001.

