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Abstract

We discuss how (not) to use number types based on ex-
pression dags and adaptive precision in geometric com-
puting. Such number types provide exact decisions for
(a subset of the) real algebraic numbers.

1 Introduction

Wrapped in a C++ class, expression-dag-based
adaptive-precision number types support exact ge-
ometric computing in an utmost user-friendly way.
Such number types like CORE::Expr [12, 33] and
leda::real [4, 6, 17, 18] guarantee exact decisions in
geometric computing for (a subset of the) real algebraic
numbers. Since all decisions are exact, inconsistencies
caused by numerical imprecision are abandoned and the
correctness of the combinatorial part of a geometric
computation is ensured. Thanks to the wrapping in
a number type a user need not know how it works. The
available number types of this kind support a subset
of the real algebraic numbers that includes the ratio-
nal numbers and is closed under the basic arithmetic
operations +, −, ∗, / and √ .

You can use these number types like other number
types provided in the programming language. There
are a few caveats, however, that we are going to address
in this paper. Furthermore, some sales messages regard-
ing the number types CORE::Expr and leda::real are
debatable. We will have a closer look at them and revise
some conclusions.

Geometric algorithms branch on geometric predi-
cates, e.g., on the orientation of three points in the
plane. The evaluation of a geometric predicate usually
amounts to the evaluation of the sign of an arithmetic
expression. If such a sign computation returns a wrong
sign due to numerical impression, the computation may
go astray, see [13] for illustrating examples. The exact
geometric computation approach to reliable geometric
computing [15, 16, 32, 30] proposes a simple remedy:
Evaluate all geometric predicates exactly. Plugging ex-
act decisions number types into a parameterized CGAL
kernel [3, 7] lets you apply the exact geometric compu-
tation paradigm very easily. You get a foolproof geom-
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etry kernel that you can use in implementation projects
accompanying classes teaching computational geometry
without ever worrying about numerical imprecision and
its consequences. It lets you focus on algorithmic is-
sues and have a course on geometry instead of a course
on numerical mathematics. Using the exact geometric
computation paradigm saves the correctness proof of the
paper and pencil algorithm to the actual code. Further-
more, these number types provide a valuable tool for
rapid prototyping, enable the use of symbolic pertur-
bation schemes [9, 10, 26, 28, 29], allow one to reliably
detect geometric degeneracies, and can be used to debug
incorrect decisions in geometric floating-point computa-
tions. However, you have to pay for the exact decisions
in terms of time and space efficiency. Thus, unfortu-
nately, for exact decisions with utmost efficiency you
have to learn more about numerical precision and ro-
bustness problems in geometric computing [23, 31] and
supporting techniques, e.g. [27], that are much less user-
friendly.

2 How It Works

Before we discuss the use of exact decision number types
based on expression dags and lazy evaluation we briefly
recap how they work. These number types record the
computation history in expression trees, more precisely
in expression dags (i.e., directed acyclic graphs), since
different operations can share operands. For exam-
ple, Fig. 1 shows an expression dag that is built when
evaluating the orientation predicate for three points
p = (px, py), q = (qx, qy), and r = (rx, ry) in the plane
by computing the sign of the determinant∣∣∣∣∣∣

px py 1
qx qy 1
rx ry 1

∣∣∣∣∣∣ =
∣∣∣∣ px − rx py − ry
qx − rx qy − ry

∣∣∣∣
The expression dags allow one to (re)compute an ap-

proximation of the value of the expression at any time
at any precision. The expression dag they maintain is
an exact symbolic representation. However, in contrast
to other exact representations you can not easily read
off the sign of the represented real number. Therefore,
whenever the sign is needed but not known yet, we itera-
tively compute better and better approximations using
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Figure 1: Expression dag for orientation predicate of 2D
points p = (px, py), q = (qx, qy), and r = (rx, ry). Note
that the nodes representing px, . . . , ry might be (root
nodes of) expression dags as well.

the expression dag. If the actual value is zero this is
verified with the help of zero separation bounds [24].
If the value is non-zero, increasing the target precision
will sooner or later reveal the correct sign. The ap-
proximation process stops as soon as we can verify the
sign with the help of error bounds and zero separation
bounds. Further techniques can be used to enhance ef-
ficiency, for example, interval arithmetic can be used as
an initial floating-point filter.

Thanks to this lazy approximation strategy, the sign
is more quickly computed if the absolute value of the
expression is large. Therefore we call this an adaptive
precision computation. CORE::Expr and leda::real
were the first to implement such a strategy. A simi-
lar strategy without adaptive evaluation was previously
used by Benouamer et al. [1] in the context of robust
geometric computing. Their number type records the
computation history in an expression dag as well. How-
ever, whenever an evaluation with double precision is
not sufficient to verify the computed sign, the compu-
tation is redone with a number type for the rationals
based on integers of arbitrary length. √ -operations are
not supported.

Since the first releases of CORE::Expr and
leda::real these number types have been extended
to support a larger subset of real algebraic numbers.
In a fruitful competition between the groups at NYU
and Max Planck Institute improved constructive zero
separation bounds have been developed [5, 22] and
integrated into the number types. More recently, a

configurable expression-dag-based number type called
RealAlgebraic [19, 20] has been designed and imple-
mented. Like the most recent version of CORE::Expr
[33] this number type is a C++ class template. For
instance, RealAlgebraic allows one to exchange the
underlying bigfloat arithmetic, to select a floating-
point filter, to use different strategies for deferring
dag-construction, e.g., by using error-free floating-point
transformations or adding tests that check whether the
result of a floating-point computation is exact.

3 Not a Floating-Point Number Type

In the following sections, we take a closer look at some
sales slogans. The LEDA guide [14] says leda::reals

can be used like double and together with built-
in number types.

Indeed, thanks to features provided by the C++ pro-
gramming language, these exact decisions number types
can be used like any other number type, at least syn-
tactically. However, they are not always a reasonable
substitute for floats or doubles or bigfloats.

For example, floating-point numbers are used in it-
erative numerical processes. While increasing the pre-
cision of the floating-point type usually leads to better
results, replacing the floating-point type used in iter-
ative processes by an expression-dag-based exact deci-
sions number types does not make much sense. Let’s
take a closer look at an example: approximating square
roots by Newton’s method disguised as the Babylonian
method, also known as Heron’s method. In order to
compute an approximation for

√
a from a starting value

x0 we use the formula

xn+1 =
xn + a

xn

2

and stop, if the relative difference

|xn+1 − xn|
|xn+1|

is smaller than some given bound ε. The adaptive, exact
decisions number types record the overall computation
in an expression dag, see Fig. 2.

While the intermediate arithmetic operations basi-
cally just extend the dag, the comparison in the termi-
nation test triggers a lazy evaluation of xn+1 and xn. If
zero separation bounds are recomputed at the beginning
of each sign evaluation, this causes a walk over an ex-
pression dag, whose size is proportional to the number
of previous iteration steps. If zero separation bounds
are buffered, we might nevertheless walk over the whole
expression dag in order to compute a new improved ap-
proximation. Only if the current approximation from a
previous lazy evaluation is already sufficiently precise at
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Figure 2: (Lower part of) the expression dag con-
structed when computing

√
a by the Babylonian

method.

a node, we do not inspect its sub“trees”. Fig. 3 shows an
expression dag (sketch) corresponding to a termination
test.

If you use such iterative processes in order to com-
pute floating-point approximations in your code, sim-
ply substituting the floating-point number type by an
adaptive, expression-dag-based exact decisions number
type is usually not a good idea. Surprisingly, using
leda::real in the Babylonian method is as fast as us-
ing leda::rational, i.e., the adaptive lazy evaluation
pays off. However, even for small integral values of a,
both are about three orders of magnitude slower than
using double.

4 Exact vs. Exact Decisions Number Types

The LEDA guide [14] says that leda::reals are

in general less efficient than integers of arbi-
trary length and rational numbers.

a 2

/xn

/

+

/xn+1

ε

−

/

−

Figure 3: An expression dag corresponding to the ter-
mination test of the Babylonian method. Such a test
whether the desired tolerance has been reached might
trigger a pass over the expression dag representing the
whole computation history. The red part of the dag is
deallocated after the test.

On the contrary, in general they are more efficient. As-
sume we have a computation within the rational num-
bers. If the sign of the actual value is zero, the adaptive
precision computation internal to expression-dag-based
exact decisions number types must detect this with the
help of a zero separation bound. The number types
adaptively increase the precision of the computed ap-
proximation until the computed zero separation bound
allows for the conclusion that the sign is zero. Although
we know that the algebraic degree is at most one, a
number of iterations are required, where, in the case of
integers, the last one essentially computes exact values.
Number types for integers of arbitrary length compute
the exact value immediately, saving all the precision in-
creasing iterations of the lazy evaluation except for the
last one. Thus they are faster if the actual sign is zero.

If the sign is positive or negative, the situation is dif-
ferent. Sooner or later, the verified approximation error
will be smaller than the absolute non-zero approxima-
tion value. Sooner or later, this depends on the absolute
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value. The larger the absolute value, the sooner the cor-
rect sign is detected. Thus, if there are not too many de-
generacies and near-degeneracies, adaptive, expression-
dag-based exact decisions number types will be faster.
For example, for input data generated uniformly at ran-
dom exact decisions number types with adaptive pre-
cision will in general be more efficient, since the lazy
evaluation strategy will frequently lead to quick deci-
sions. You can observe this behavior when comparing
Cartesian CGAL kernels with adaptive, expression-dag-
based exact decisions number types and CGAL kernels
with arbitrary precision rational types, where both are
applicable.

5 Programming Style

CORE [8] says,

it is intuitive, as users can achieve numeri-
cally robust algorithms without any change in
programming style and prior knowledge of non-
robustness issues.

Most programmers already have some prior knowledge
of precision and robustness problems. When they im-
plement a paper and pencil algorithm, they do not sim-
ply replace the exact real arithmetic of the Real-RAM
from theory by a floating-point number type. They also
introduce epsilon-tolerances in their code. Then, how-
ever, simply replacing the floating-point number type
by an exact decisions number type does not rescue the
theoretical correctness proof anymore. First, you have
to get rid of the tolerances again.

In the context of geometric computing with real al-
gebraic numbers arising from polynomial system solv-
ing, users often use zero testing with potential solution
vectors to identify the actual solutions. They plug ar-
bitrary combinations of solution coordinates into mul-
tivariate polynomials and check which of them evaluate
to zero. Since the actual solution vectors are among
the test candidates, we have some self-made degenera-
cies here. You better use more geometry! For example,
assume you want to compute the intersection points of
two circles. Using elimination, one can compute the x-
and y-coordinates as expressions involving radicals. In
order to identify the correct combinations among the
four possible pairs, one is tempted to plug pairs of co-
ordinates into the circle equations and to check which
pairs yield zero. However, a comparison of the coordi-
nates of the centers of the circles suffices to detect the
valid combinations, see Fig. 4.

There is another caveat regarding programming style.
With software number types, programmers can not rely
anymore on compiler optimization. For example, users
should take care of common subexpression elimination
themselves. There have been efforts to let leda::reals

Figure 4: Avoid zero testing using geometric reasoning:
By comparing the center coordinates you can identify
the correct combination of solution coordinates.

search for common subexpressions automatically at run
time [25]. However, since the rare savings did not com-
pensate the always present additional cost, this strategy
never made it into a release version.

6 Algorithm Design Style

While you might have to change your programming style
regarding numerical issues, you do not have to change
your paper and pencil algorithm design style. You may
assume that all decisions involving numerical compu-
tations are correct. However, you might have to think
about handling degeneracies, since they are correctly de-
tected if you use exact decisions number types. If you
are an epsilon-tweaker you have to do that anyway, but
with exact decisions you have to handle the real ones
only. CORE [8] also correctly says,

it is intuitive, as users can achieve numeri-
cally robust algorithms without any change to
the algorithms themselves.

7 Not A Number Type for Rational Numbers?

The LEDA guide [14] recommends to use leda::reals

to do exact computations with square roots and
k-th roots and to consider using bigfloats oth-
erwise.

As discussed above, in general the adaptive, exact de-
cisions number types based on expression dags are not
less efficient than arbitrary precision integers or ratio-
nals. The same holds for bigfloats: Use of bigfloats for
exact geometric computing makes sense only if the com-
putation is division-free, e.g. if we use homogeneous co-
ordinates. Furthermore, for exact geometric computing,
bigfloats must adjust the precision (mantissa length) as
necessary in order to get exact results and hence exact
decisions. Then, however, bigfloats basically behave like
scaled arbitrary precision integers. Thus, as discussed
above, the level of degeneracies is crucial for choosing



the number type, not the presence of square root oper-
ations. If we use leda::bigfloat in the exact mode in
our code for the Babylonian method, the resulting code
is not faster than the code based on leda::real.

The misleading recommendation might have its roots
in a corresponding comparison of LEDA’s geometry ker-
nels. The well-engineered rat-kernel of LEDA, which
uses Cartesian coordinates for floating-point filtering
and homogeneous integer computations otherwise, is in
general significantly faster than the so-called real-kernel
of LEDA, which has been added later on and uses Carte-
sian coordinates of type leda::real only.

8 Efficiency

The LEDA guide [14] says leda::reals

are about 10-80 times slower than double.

Frankly speaking, this is sometimes quite euphemistic.
For degeneracies where a zero separation bound must
be used to terminate adaptive approximation, the fac-
tor can be much worse and for cascaded computations, it
can be arbitrarily bad. Even for simple geometric calcu-
lations with low arithmetic demand recording the com-
putation history in expression dags causes a big slow-
down. Even if rough approximations suffice to compute
sign correctly, there is a significant slow-down because
of the cost of dynamic memory allocation.

9 User-friendly Alternatives

For rational geometric computations, both CGAL [7]
and LEDA [17] provide exact decisions geometry ker-
nels that are much more efficient than a CGAL kernel
parameterized with an adaptive exact decisions num-
ber type based on expression dags. Both CGAL’s exact
predicates exact construction kernel and LEDA’s ra-
tional kernel support cascaded rational computations.
For geometric computations involving √ -operations,
CGAL provides yet another exact decisions kernel,
whereas LEDA offers its real-kernel for this context.
The latter is usually faster than CGAL’s kernel param-
eterized with leda::real.

These kernels are user-friendly as well, since they
wrap all the numerical issues regarding exact decisions
in geometric predicates and algorithms, whereas exact
decisions number types do this on the level of arith-
metic. However, for these exact decisions geometry ker-
nels you have to stick with the operations they offer. It
is not that easy to add similarly efficient auxiliary func-
tionality. Here, adaptive, exact decisions number type
based on expression dags can be very useful. More re-
cently, more evolved geometry kernels have been added
to CGAL in order to better support non-linear computa-
tional geometry [2]. These kernels handle real algebraic

Figure 5: Delaunay triangulation of the intersection
points of a set of circles.

numbers that are given as roots of univariate polynomi-
als and bivariate polynomial systems.

While the adaptive, exact decisions number types
considered here record the computation history on the
level of arithmetic operations, it is also possible to
record the computation history on the level of geometric
constructions. This has been done in LOOK [11] and
similar approaches [21] are used in CGAL. This saves
space and can be a source of efficiency. Once again,
however, this approach is limited to geometric opera-
tions predefined in these kernels. Recording the com-
putation history on the level of arithmetic operations is
the more general approach.

10 Cascading

Recording the computation history allows for adaptive
approximation and makes the adaptive, expression-dag-
based exact decisions number types applicable to cas-
caded geometric computations where the output of some
previous calculations is used as input for later ones. For
example, using adaptive, exact decisions number type
based on expression dags you can easily compute the
Voronoi Diagram of the intersection points of the cir-
cumcircles of the Delaunay triangles of a set of points
in the plane. Fig. 5 shows a similar example.

Although cascaded computations is one of the
strengths of these number types, it also shows its perfor-
mance limitations. You have to perform some geometric
rounding after some stages.
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11 Conclusions

Adaptive expression-dag-based exact decisions number
types are a very useful tool for rapid-prototyping when
implementing the exact (decisions) geometric computa-
tion paradigm, for adding additional primitives to ex-
isting exact decisions geometry kernels, for debugging
geometric programs suffering from numerical precision
issues, and for student implementation projects when
teaching computational geometry. Using such a num-
ber type you get the Real-RAM behavior restricted to
(a subset of) algebraic numbers. They are inferior to ex-
act decisions kernels implementing advanced techniques
or recording computation history on a higher level, in
terms of efficiency, but in general superior to kernels
parameterized with rational number types. However,
due to different design philosophies, it is not straightfor-
ward to turn well-engineered robust geometric programs
based on tolerances into exact decisions programs sim-
ply by replacing floating-point computations by compu-
tations with adaptive, expression-dag-based exact deci-
sions number types.

The author would like to thank Martin Held, Stefan
Huber, Kurt Mehlhorn, Marc Mörig, and Chee Yap for
interesting discussions on the topic.
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