
CCCG 2014, Halifax, Nova Scotia, August 11–13, 2014

Quickly Placing a Point to Maximize Angles

Boris Aronov∗

boris.aronov@nyu.edu
Mark Yagnatinsky†

myag@cis.poly.edu

Polytechnic School of Engineering, NYU, Brooklyn, New York

Abstract

Given a set P of n points in the plane in general position,
and a set of non-crossing segments with endpoints in P ,
we seek to place a new point q such that the constrained
Delaunay triangulation of P ∪ {q} has the largest possi-
ble minimum angle. The expected running time of our
(randomized) algorithm is O(n2 log n) on any input, im-
proving the near-cubic time of the best previously known
algorithm. Our algorithm is somewhat complex, and
along the way we develop a simpler cubic-time algorithm
quite different from the ones already known.

1 Introduction

Often in applications one needs a triangulation (or more
generally a mesh) of a point set in the plane, and the tri-
angulation should be as “nice” as possible. What counts
as “nice” varies with the application, but one common
desire is for the triangles produced to be fat, instead
of long and skinny. The ideal in this case is equilateral
triangles, but this is usually impossible. However, it is
also overkill, since it often suffices that all angles are in a
Goldilocks range of “not too big and not too small”; say
between 30 and 120 degrees. One common way to for-
malize the wish for fat triangles is to ask for the smallest
angle in the triangulation to be as big as possible. It is
well known that the Delaunay triangulation of a planar
point set has precisely this property.

Unfortunately, the smallest angle in a Delaunay tri-
angulation can be arbitrarily small. Sometimes, it is
acceptable to introduce extra points, known as Steiner
points, so as to get a better triangulation. However,
it is desirable to avoid introducing too many, because
they increase the memory and time requirements of all
algorithms that operate on the triangulation.

There are two natural approaches to this problem.
One is: given that we want all angles to measure at least
x degrees, how many additional points do we need? The
other is: given a budget of k points, how large can we
force the smallest angle to be?

∗Research supported by NSF grants CCF-11-17336 and CCF-
12-18791.
†Research supported by GAANN Grant P200A090157 from the

US Department of Education and by NSF grant CCF-11-17336.

The fixed-budget question was actually addressed
in [1], which presented an algorithm that, given a point
set P , finds the best placement of k additional points
q1, . . . , qk, so that the minimum angle in the Delaunay
triangulation of P ∪ {q1, . . . , qk} is maximized. In fact,
the problem they solved was slightly more general, in
that the input also included a set S of non-crossing line
segments connecting points of P , which must be in the
final triangulation. (These are sometimes called con-
strained edges, or simply constraints, and the resulting
triangulation is called a constrained Delaunay triangu-
lation.) This generalization allows one to triangulate a
simple polygon, by specifying the polygon boundary as
the set of mandatory edges, and more generally handle
real-world applications with boundary conditions.

Unfortunately, the running time of the algorithm in [1]
is nO(k), because it relies on explicit construction of
high-dimensional arrangements. They also present an
algorithm for the case k = 1, which runs in time O(n4+ε).
In [2], we present a slightly super-cubic algorithm for
the same problem. In [3], a very simple algorithm was
presented for the case where S is empty, running in
O(n2+ε) time. A slight tweak handles the non-empty
case, slowing the running time down to O(n3+ε).

In this paper we present yet another near-cubic time
algorithm for this problem, and then improve it to
O(n2 log n) by removing the main bottleneck.

2 The algorithm

We first describe a decision procedure, which takes as
input a set P of n points, an edge set S, and a num-
ber z representing an angle measurement. It determines
whether there exists a placement of a new point q such
that all angles in Tq, the constrained Delaunay trian-
gulation of P ∪ {q}, have measure at least z. It does
this by actually computing the locus Vz of all such place-
ments, and reporting whether it is empty. This decision
procedure is used as a black box by a search procedure,
which uses it to implicitly search a space of O(n3) critical
values of z to find the largest value z∗ of z such that Vz
is not empty.



26th Canadian Conference on Computational Geometry, 2014

2.1 Decision procedure

We begin with some terminology. The circumcircle of
a Delaunay triangle is a Delaunay circle. The interior
of a Delaunay circle is an (open) Delaunay disk. If two
Delaunay triangles share an edge, the intersection of the
two corresponding disks is a Delaunay lune, or just lune
for short. Every edge of a Delaunay triangulation has
an associated Delaunay lune. For edges of the hull, this
is not obvious, since there is no triangle on the outer
side. However, we imagine the third point in that case to
be the “point at infinity,” and thus the circumdisk has
infinite radius and degenerates to a “circumhalf-plane”;
that is, the half-plane which lies on the outside of the
hull, whose line goes through the edge in question.

Lastly, we say that two points see each other, if the
line segment connecting them does not cross any edge
of S. Note that the two endpoints of an edge in S see
each other.

We now review the characterization of Delaunay tri-
angulations. Let P be a point set (in general position)
with r, s, t ∈ P . Then 4rst is part of the Delaunay tri-
angulation T of P if and only if the triangle’s circumdisk
contains no other points of P .

The characterization of constrained Delaunay triangu-
lations is more complicated than that of unconstrained
ones. Let P again be a point set in general position with
r, s, t ∈ P , and let S be the set of constraints. Then
4rst is part of the Delaunay triangulation if and only if
the following two conditions are met. First, the vertices
of the triangle must see each other. Second, the interior
of the triangle’s circumcircle must contain no points of
P that can be seen from inside the triangle.

Let T be the constrained Delaunay triangulation of P ,
and let Tq be the triangulation after point q is added.
The decision procedure works by computing two types of
regions: “bad” regions, and “good” regions. All angles
in Tq have measure at least z if and only if q is in all good
regions and no bad regions. Thus Vz is the intersection
of the good regions minus the union of the bad regions.
The decision procedure computes Vz by constructing
the good and bad regions, building the arrangement
induced by their boundaries, and then traversing this
arrangement to label each arrangement feature (face,
edge, vertex) as “in Vz” or “not in Vz,” in quadratic
time. We now fill in the details of the plan above.

2.1.1 Bad regions

Each edge e = rs of T is associated with an existence
region. This is the locus Ee of points such that placing
the new point q there will result in 4qrs being a part
of Tq. In the absence of constrained edges, Ee would
be the symmetric difference of e’s two Delaunay disks
(that is, their union minus their intersection). If e itself
is constrained, then Ee is their union instead of their

r

s

Figure 1: Ers, clipped by three constraints

symmetric difference.
What happens to Ee in the presence of other con-

strained edges? Let R be what Ee would look like if
there were no constraints other than possibly e. That
is, R is either the symmetric difference or union of e’s
two Delaunay disks. Any constraint that does not inter-
sect R does not affect visibilities inside it. A constraint
with an endpoint inside R must not be visible to e, so
we can disregard those too. That leaves segments that
“clip” R. Such segments divide R into two parts, and e
is visible from only one of them. Placing q in the part
that does not see e would not cause 4qrs to appear in
Tq, hence, that part of R doesn’t belong to Ee. So, in
the presence of constraints, an existence region is the
symmetric difference or union of two clipped disks, see
Figure 1. Note that due to clipping, the complexity of
an existence region may be linear in n.

r

s

Figure 2: Brs (unclipped), with z = 45◦

For a fixed value of z, the bad region Be of e is the
subset of Ee where some angle of 4qrs has measure
less than z (see Figure 2). We now describe what the
bad region Be for e = rs looks like. Consider the locus
Le of points that see e at an angle with measure at
least z. Since z is less than 90 degrees, it is the union



CCCG 2014, Halifax, Nova Scotia, August 11–13, 2014

r

s

t

Figure 3: G∠rst, for z > 52◦

of two congruent disks, both of whose boundaries go
through the endpoints of e. Define L′e to be the locus
of points q such that the measure of ∠qrs is at least z;
L′e is the union of two half-planes. Define L′′e analogously
for ∠qsr. Then Be = Ee − (Le ∩ L′e ∩ L′′e ) is the bad
region associated with e: if q is in Be then triangle qrs
exists and at least one of its three angles has measure
less than z. Note that we need not analyze the effect
of constraints on a bad region, since it is a subset of its
existence region, which we have analyzed. Like existence
regions, bad regions can have linear complexity due to
clipping by constraints.

2.1.2 Good regions

Intuitively, bad regions are our mechanism to avoid
placements of q that create new small angles. To ensure
that we eliminate all preexisting small angles, each angle
α of T is associated with a good region Gα. If the
measure of α is at least z, then Gα is the entire plane.
Otherwise, it is the locus of points such that placing q
there will eliminate at least one of α’s two bounding
edges from Tq; see Figure 3. (Intuitively, if α is small,
we want to merge it with a neighboring angle.) In the
absence of constraints, if α measures less than z, then
Gα is the union of the Delaunay lunes of α’s bounding
segments. If one of those segments is constrained, then
Gα is simply the lune of the other segment. If both
segments are constrained, then Gα is the empty set.
Good regions are affected by clipping in the same way
as existence regions, for the same reasons.

2.1.3 Wrap-up

So, to conclude, in order to have all angles of Tq larger
than z, we must ensure q lies in no bad region, and in
every good region. Letting α(T ) denote the set of angles
of T , we have:

Lemma 1 No angle of Tq is smaller than z if and only
if q is in Vz, where Vz =

⋂
β∈α(T )Gβ −

⋃
e∈T Be.

Proof. One direction is immediate: if q /∈ Vz, then there
will be some angle smaller than z in Tq, for if q fails

to be in some good region, there is a preexisting small
angle that remains, and if q ends up in a bad region, a
new small angle is created.

It remains to show the other direction: if q ∈ Vz, can
there be small angles? There are two possible sources
of small angles. The first source is a new small angle
created by q: either ∠qrs or maybe ∠rqs, for some
rs ∈ T . Then q is in Brs and thus not in Vz.

The other source is a small angle already present in T .
This also can’t happen, because then q fails to be in
that angle’s good region. This last statement seemingly
sweeps a bit under the rug. Suppose two adjacent angles
are both so small that their sum measures less than z.
The good region requirement is satisfied if we merely
merge the two angles by eliminating their shared edge,
but we are still left with an angle whose measure is less
than z. We are saved by the bad regions.

To see how, we first take a brief detour to ask: how
does T change when q is added to P? This actually
becomes obvious once we look at the situation backwards:
starting from Tq, remove q to obtain T . Clearly, all
edges (and triangles) which were incident to q are gone,
leaving a star-shaped polygonal hole. The certificate
that it is star-shaped comes from q itself, since of course
q was able to see all of its neighbors! Edges that were
not incident to q remain, since if they were Delaunay
edges before, they were associated with some Delaunay
disk, and removing q can not cause a disk that used
to be empty to suddenly become non-empty. Thus, in
the forward direction, inserting q makes some edges go
away, and the resulting polygonal hole is triangulated
by connecting q to all vertices of the hole.

e

f

g

qr

Figure 4: Merging two small angles does not allow q to
sneak into Vz.

We can now answer our original question: what pre-
vents us from merging two adjacent small angles into
a new angle that is still too small, and then mistak-
enly declaring victory? Let one of the small angles be
bounded by edges e and f , and the other by e and g;
see Figure 4. Now, suppose insertion of q eliminates e,
but f and g remain. By assumption, f and g bound an
angle α measuring less than z. Clearly, f and g are two
consecutive edges of the star-shaped hole created by q,



26th Canadian Conference on Computational Geometry, 2014

and thus Tq has an edge connecting q to the common
endpoint r of f and g. But qr splits α into two smaller
angles! These are both new angles, and thus are pro-
tected from being too small by the bad regions of f and
g. (The case of three or more consecutive small angles
is handled identically.) �

2.1.4 Building Vz

We begin by taking care of some technicalities. Let the
universe U be the portion of the plane strictly inside
the convex hull of P , minus all constraints of S and all
points of P . From now on, all the calculations will be
confined to U , unless otherwise explicitly stated. The
notions of “open” and “closed” for subsets of U will be
interpreted relative to U .

It is not difficult to see that good regions are closed
(relative to U) and bad regions are open, intuitively,
because bad regions were defined using strict inequality
in terms of the angles of Tq, and good regions use non-
strict. By Lemma 1, we conclude that Vz is closed.

We now explain how to compute the overlay of all
the good and bad regions. The boundaries of such
regions come from a collection Cz of O(n) rays, lines,
circles, and segments. Let Az be the arrangement of
Cz. Note that Az is a refinement of the arrangement
of the boundaries of the good and bad regions. It can
be constructed in O(n2 log n) time by a standard sweep-
line algorithm, as any two objects of Cz intersect only a
constant number of times. Since this would introduce
a bottleneck, we instead use a randomized incremental
construction from [5, Theorem 6.20] to get expected
quadratic time. We would now like to augment this
arrangement with information related to the good/bad
regions that will be useful for computing Vz. To do that,
we must first identify which pieces of Az correspond to
which regions. To this end, we explain how to trace
the relative boundary ∂R of a fixed good/bad region R
through Az in linear time. In the absence of constraints,
∂R consists of a constant number of connected portions
of objects from Cz and hence is a union of O(n) edges of
Az. We start with a point on ∂R in Az and just walk
along the edges of Az tracing out the boundary, in time
proportional to the number of edges and vertices of Az
visited.

With constraints present, we need a mechanism for
clipping R by the constraints. We first identify a point of
∂R that does not lie on a constraint, by picking a point
on the unclipped boundary and adding constraints one
by one. Each constraint either clips off the chosen point
or not. If it does, there is an unclipped point adjacent
to the new constraint. Once all constraints have been
processed, we have a point on the boundary that has
not been clipped off.

We then proceed as before, tracing the boundary of the
unclipped R until the current curve crosses a constraint

c, necessarily at a vertex v of Az. As we know the arcs
defining the unclipped R and we know c, we can compute
the other intersection point w of c with the curve we are
tracing. When we hit v, we set a flag saying we have
left ∂R, and continue tracing the unclipped boundary.
When we hit w, we unset the flag. As long as the flag
is not set, all edges and vertices of ∂R that we trace
through Az will be marked as “this vertex/edge lies on
∂R relative to U (and hence in R if R is a good region
and not in R if R is a bad region),” and for edges, we
also record which side of the edge lies in R and which
outside of it.

We repeat this process for each good/bad region and
obtain, in O(n2) time, an arrangement Az decorated
with O(n2) pieces of information marking the relative
boundary of each good/bad region.

By construction, Az is (a refinement of) the overlay
of the boundaries of all the good and bad regions, and
hence, Vz, being a Boolean combination of said regions,
is the union of some faces in Az and, being relatively
closed, their relative boundaries as well. Now recall
that we view Az as contained in U , so S and P are
removed. In general, U consists of several connected
components we call rooms, separated from each other
by the constraints (which can be considered as walls).
We will compute Vz by computing its part in each room
separately, as follows.

Consider the following version of the adjacency graph
G of A: there is a node for every feature of A (vertex,
edge, and face), and each node corresponding to an edge
of A is connected to the two nodes corresponding to
the edge’s adjacent faces and also to its (at most) two
adjacent vertices (recall that some vertices and edges are
considered removed from A as they are not in U). Each
room of U has a connected component of G associated
with it. We build a spanning forest F of G, in which all
vertices of A appear as leaves. We traverse each tree of
F in depth-first order, starting at a non-leaf node, as
follows.

First, we generate a generic point q in a face f of
a room. By construction, either f is completely in
Vz or completely outside of it. By running a standard
constrained Delaunay triangulation algorithm on P∪{q},
we could construct Tq in O(n log n) time. Instead, by
taking advantage of the fact that the old and new point
sets are almost identical, we obtain Tq from T in linear
time [4]. We then compare the angles of Tq against z
to decide whether f ⊂ Vz or not. In fact, we get more
information—we can determine if f is contained in or
disjoint from every good/bad region and we record this
information in an array indexed by the regions. We
also keep track of the number of good and bad regions
containing f : recall f is in Vz if and only if it is contained
in all good regions and none of the bad ones.

An edge of F corresponds to either a face/edge in-



CCCG 2014, Halifax, Nova Scotia, August 11–13, 2014

cidence or an edge/vertex incidence in Az. At each
face/edge incidence, we have recorded what good/bad
regions contain the edge on the boundary and whether
the region lies to the left or the right of the edge, which
is sufficient to modify the good/bad region counts and
the current region array when transitioning between a
face and an incident edge, in either direction.

As for an edge/vertex incidence, since vertices of Az
appear as leaves in F , we will enter a vertex v of Az
from an adjacent edge e and immediately leave it, again
by e, so we have to explain only how to handle an “edge
TO vertex” traversal, since the next step is just reversing
the previous one and can be implemented by recording
the changes made and explicitly undoing them. Since a
vertex is decorated with the list of regions it is adjacent
to, we simply use this information to update the array.

To summarize, for every one of O(n) rooms of U ,
we spend linear time initializing Tq and then traverse
the corresponding component of F at cost proportional
to the complexity of the room (that is, the number
of features and decorations in the room). Since the
combined complexity of all rooms is O(n2), we have:

Lemma 2 Given a set P of n points, a set S of non-
crossing edges with endpoints in P , and a number z
representing an angle measurement, the decision proce-
dure computes Vz in quadratic time.

2.2 Search procedure

We already have enough to numerically approximate
the best achievable angle z∗. We know that it must be
between zero and sixty degrees, so we simply do a binary
search on that interval, looking for the largest value of z
for which Vz is not empty. Hence we can find z∗ with
additive error ε in time O(n2 log 1

ε ), or relative error δ in
time O(n2(log 1

δ + log 1
z∗ )). In this section we describe

how to find the exact answer.
Recall that z∗ is the highest value of z such that

Vz contains at least one point. To find it, we must
somehow reduce the set of candidate z values to finite
size. Clearly, if z is the measure of some angle in T , then
it is a candidate, but there are also many others. To
identify them observe that as z changes, the curves of
Cz (and hence the bounding curves of Vz) defining good
and bad regions also change: some lines rotate, some
circles grow, etc. We visualize the dependence on z by
letting it represent the third dimension. In particular, a
moving curve sweeps a surface in three dimensions. Let
A be the arrangement of the set C of the O(n) surfaces
that arise in this way, and let V =

⋃
z Vz × {z}.

Viewed in this manner, the curves defining Vz become
unions of two-dimensional faces of A bounding V ; V is
the union of some three-dimensional cells in A. Note
that our original problem is equivalent to locating a

topmost point of V ; its z-coordinate is z∗ and its xy-
projection is an optimal location for q. This point must
be the topmost point of some cell of A, and not at
an interior point. There are only three ways to be
the topmost point of a cell: you must either be at the
interior maximum of some face bounding the cell (and
thus at the local maximum of a surface from C), or at the
interior maximum of an edge of the cell (and thus at the
local maximum of the intersection curve of two surfaces
from C), or at a vertex of the cell formed by intersecting
three surfaces. Since these are bounded-degree algebraic
surfaces (after suitable re-parametrization), intersecting
three of them yields a set of vertices with a size which is
upper-bounded by a constant. This is enough to achieve
a running time of O(n3 log n): compute all vertices and
local maxima by brute force, and then sort them by z
coordinate. After that, perform binary search using the
decision procedure. In fact, we can speed this up to cubic,
using linear-time median-find in order to avoid sorting:
find the median z value, invoke the decision procedure,
and eliminate half the z values. Repeat O(log n) times.

To speed this up, we need to avoid enumerating all
vertices of A, which means we can’t afford to find all
intersections. (We can afford to find all local maxima,
since there are only O(n2) of those.) Instead, we wish
to do a binary-like search on the z values that we would
obtain from the enumeration of triples of surfaces of C,
without actually enumerating them all. We first pick a
random subset of n2 triples. For each chosen triple, we
compute the relevant arrangement vertices and collect
their z values. This gives us a set Z of O(n2) different
z values. Thus, Z partitions the set of O(n3) candidate
z values into O(n2) intervals, with the largest interval
having expected size O(n log n). We can afford to do
a binary search on Z, which will narrow it down to a
single interval [z0, z1], and then explicitly enumerate
all vertices within the slab I = R2 × [z0, z1] defined by
that interval. We then conclude by performing a binary
search on the vertices of I using the decision procedure.

We now explain how to enumerate every vertex in I.
Fix a surface σ from C. Intersecting σ with all other
surfaces in C produces a collection of O(n) curves in σ
forming an arrangement. We find the vertices of this
arrangement lying in I by using a “plane” sweep from z0
to z1, in O((kσ + n) log n) time, where kσ is the number
of vertices found. Repeating this for each surface σ ∈ C
produces the list of all the vertices of A lying in I in
time O((n2 +

∑
kσ) log n), where we already observed

that
∑
kσ is O(n log n), in expectation. Performing a

binary search on this set identifies the critical value z∗

of z in time O(n2 log n), as claimed. This finally gives
us:

Theorem 3 Given a set P of n points in the plane in
general position, and a set of non-crossing segments with
endpoints in P , the algorithm described finds a point



26th Canadian Conference on Computational Geometry, 2014

q such that the constrained Delaunay triangulation of
P ∪ {q} has the largest possible minimum angle. The
expected running time of our algorithm is O(n2 log n) on
any input.

3 Unfinished business and open problems

Most likely, a deterministic algorithm with comparable
running time exists. We postpone its discussion until a
full version of this paper.

Does there exist a significantly faster approximation
algorithm for our problem?

Finally, it would be nice to have a non-trivial lower
bound for this problem. Is it 3sum-hard to determine
whether Vz is empty, for a given value z?

References

[1] B. Aronov, T. Asano, and S. Funke. Optimal trian-
gulations of points and segments with Steiner points.
Int. J. Comput. Geom. Appl., 20(1) 89–104, 2010.

[2] B. Aronov and M. Yagnatinsky. How to place a point
to maximize angles. Canadian Conference on Com-
putational Geometry 2013, pages 259–263; see also
http://arxiv.org/abs/1310.6413.

[3] B. Aronov and M. Yagnatinsky. A simple way to
place a point to maximize angles; presented at Fall
Workshop on Computational Geometry 2013;
http://www-cs.engr.ccny.cuny.edu/~peter/

fwcg13/abstracts/m_yagnatinski.pdf.

[4] L. De Floriani and E Puppo. An on-line algorithm for
constrained Delaunay triangulation. CVGIP: Graphi-
cal Models and Image Processing, 54(4) 290–300, 1992.

[5] M. Sharir and P. K. Agarwal. Davenport-Schinzel
Sequences and Their Geometric Applications. 1995.
Cambridge University Press.


