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Searching by Panning and Zooming
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Abstract

We consider the problem of searching through visualiza-
tions of large amounts of data by performing panning
and zooming operations. We give algorithms to travel
from a source to an unknown target using a number
of pans and zooms that is competitive with the opti-
mal number of pans and zooms depending on certain
parameters, and consider both the one-dimensional and
two-dimensional versions of this problem.

1 Introduction

The ability to navigate through large amounts of data
has become an important skill with the proliferation of
visualization tools. Imagine navigating financial data
to evaluate the performance of a stock: initially, data
for the current week might be visible, but the user can
zoom out to get a broader picture of long-term trends
and find a particular week of interest. A similar task is
that of navigating a digital map. Perhaps the user might
begin with the screen centered and fully zoomed-in on
his or her home, and must find the location of some
buried treasure that is marked elsewhere on the map.
To complete the search, the user must center his or her
fully-zoomed screen on the treasure. In both cases, one
can simply pan around the data until successful, but
it is likely much faster to zoom out so that subsequent
pans move over a much larger area.

We will consider two operations: panning (i.e., trans-
lating the view so that it is centered elsewhere), and
zooming (i.e., increasing the detail of the view but de-
creasing the total area viewed). We wish to minimize
the total number of pans and zooms to get from a source
location to a target location. Note that in the examples
in the preceding paragraph, the financial data problem
is one-dimensional, since the user can pan forward and
backward in time, while the digital map example is two-
dimensional, since the user can pan horizontally and
vertically.

Such navigation tasks have received attention in the
human-computer interaction literature (e.g., [1, 2, 3, 5]).
In particular, van Wijk and Nuij [5] consider optimal
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zooming and panning, but in a continuous setting and
with the requirement of smoothness, for the sake of an-
imation. To our knowledge, a rigorous examination of
the number of zooms and pans required (and how to
apply them) has not been undertaken in the discrete
case.

Results. We consider the number of pans and zooms
required in both the one- and two-dimensional cases and
offer algorithms that are competitive with the optimal
number of pans and zooms depending certain parame-
ters.

2 Definitions and Model

In this section, we formally define the model for search-
ing by panning and zooming. The model consists of
an undirected graph Gn,d. The parameter n refers to
the number of world vertices, which correspond to what
the user sees when he or she is fully zoomed-in, and
the parameter d indicates that pans may be performed
along one of d axes, for a total of 2d possible pans. For
simplicity, we assume that n is a power of 2d.

We construct the graph Gn,d over log2d n zoom levels.
At the bottom level (level 0), are the n world vertices
arranged in a d-dimensional n1/d × n1/d × · · · × n1/d

grid. At level 0 < i < log2d n are n/(2d)i zoom vertices,
which correspond to what the user sees when zoomed
out. These vertices are arranged in a d-dimensional
n1/d/(2d)i/d × n1/d/(2d)i/d × · · · × n1/d/(2d)i/d grid.
There are two types of edges in Gn,d: pan edges and
zoom edges. A vertex at level 0 ≤ i < log2d n has
2d pan edges (or fewer, at the extremes of the grid)
to adjacent vertices in the grid on level i. On level
0 ≤ i < log2d n − 1, every vertex in each contiguous
(2d)1/d × (2d)1/d × · · · × (2d)1/d block of vertices has a
zoom edge to the vertex on level i+1 that is above that
block if the two grids were overlayed (and scaled appro-
priately). Traversing a zoom edge from a lower level to
a higher one is called zooming out, while traversing a
zoom edge from a higher level to a lower one is called
zooming in. Figures 1 and 2 show G16,d for d = 1 and
d = 2.

Two vertices u and v have a lowest common ancestor
lca(u, v) that is defined as the lowest common ancestor
of u and v in the tree induced by the zoom edges. The
height of a vertex u is denoted h(u) and is defined as the
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Figure 1: The graph G16,1. Solid edges are zoom edges
and dotted edges are pan edges. White vertices are
marked.

Figure 2: The graph G16,2. Solid edges are zoom edges
and dotted edges are pan edges. For clarity, pan edges
on different zoom levels are coloured differently. White
vertices are marked.

height of the vertex u in the tree induced by the zoom
edges.

The problem is to start at a world vertex s and reach
a different world vertex t by traversing a sequence of
pan and zoom edges, and the cost of the traversal is the
number of pan and zoom edges used. Our goal is to
use a number of pans and zooms as close as possible to
the length of a shortest path between s and t in Gn,d,
denoted δ(s, t). To assist in this task, all vertices that
are reachable from t using a sequence of only zoom edges
are marked. Note that the marked vertices are precisely
those on the path in the tree induced by the zoom edges
from the target (which is a leaf) to the root.

We also consider a parameter r which represents the
number of vertices viewable at once. At a given vertex,
a traversal algorithm knows the location of any marked
vertex that can be reached by traversing a sequence of at
most r pan edges (and no zoom edges). Additionally, if
the traversal algorithm is currently at a marked vertex,
it knows which child of that vertex is marked.

3 Searching in One Dimension

In this section, we study the one-dimensional case, when
d = 1 and the graph Gn,1 looks similar to a level-linked

tree [4]. We begin with two observations about shortest
paths in this graph.

Observation 1 For any two vertices u and v on the
same zoom level of the graph Gn,1, if there is a path of
k ≤ 3 pan edges between u and v, then δ(u, v) = k.

Proof. Since u and v are connected by a path of k pan
edges, we know that δ(u, v) ≤ k. We must now show
that δ(u, v) ≥ k. Since moving to a child of u or v
produces a strictly longer path, we need only consider
paths using vertices on the level of u and v and above.

Any shortest path between u and v that is not the
unique path consisting only of pan edges must use zoom
edges at least twice: once to zoom out and once to zoom
in. If k ≤ 2, then any path that uses zoom edges will
have length at least 2 and so δ(u, v) ≥ 2 = k. Otherwise,
if k = 3, u and v zoom out to different vertices, which
means there is at least one pan edge between them, so
the total path length is at least 3 and therefore δ(u, v) ≥
3 = k �

Observation 1 tells us that if we wish to move to an-
other vertex at the same level and it is within 3 pan
edges, then the shortest path to that vertex is simply to
walk directly to it along those pan edges, i.e., there are
no savings to be had by additional zooming out.

For the next observation, we will use p(v) to denote
the unique vertex reached by traversing the zoom edge
at vertex v to the zoom level above it.

Observation 2 For any two vertices u and v on the
same zoom level of the graph Gn,1, if there is a path
of k ≥ 4 pan edges between u and v, then δ(u, v) =
2 + δ(p(u), p(v)).

Proof. Since k ≥ 4, there is a shortest path from u to
v that zooms out from the level that u and v are on.
Furthermore, any pan edges on a shortest path must be
between on a path from u to v, or p(u) and p(v), or
p(p(u)) and p(p(v)), and so on. Therefore, one shortest
path from u to v consists of a sequence of k1 ≥ 0 pan
edges from u towards v ending at u′, followed by a zoom
edge to p(u′). Symmetrically, this shortest path from u
to v contains a sequence of k2 ≥ 0 pan edges from v
towards u ending at v′, preceded by a zoom edge from
p(v′).

We argue that a shortest path from u to v has k1 =
k2 = 0, so that u = u′ and v = v′, which shows that
δ(u, v) ≥ 2 + δ(p(u), p(v)). To see this, observe that the
path from u to u′ to p(u′) has length k1 + 1. However,
the path from u to p(u) and then onto p(u′) has length
at most 1 + dk1/2e ≤ 1 + k1. Symmetrically, the path
from p(v′) to v′ to v can be replaced by a path of length
at most 1 + dk2/2e ≤ 1 + k2. Therefore, a shortest path
between u and v zooms out from u to p(u), takes the
shortest path from p(u) to p(v), and then zooms in to
v, which has length 2 + δ(p(u), p(v)) = δ(u, v). �
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Observation 2 tells us that if we wish to move to an-
other vertex at the same level and it is more than 3
pan edges away, then the shortest path to that vertex
involves zoom edges (at least one to zoom out from the
current zoom level and at least one to zoom back into
it).

We are now ready to present an algorithm for travers-
ing from s to t. If we are currently at a marked ver-
tex, we zoom in by following a zoom edge down to the
marked child. Otherwise, if we are not at a marked ver-
tex but one is visible and within distance 3, then we pan
towards the marked vertex. Otherwise, we zoom out.

Theorem 1 In traversing from s to t, the strategy out-
lined above uses a number of pans and zooms that is at
most: 

δ(s, t) if r ≥ 3

δ(s, t) + 1 if r = 2

δ(s, t) + 2 if r = 1

2 h(lca(s, t)) if r = 0

Proof. If r ≥ 3, then the traversal algorithm can al-
ways determine if there is a marked vertex within three
pan edges, and will therefore zoom out until there is a
marked vertex within 3 pan edges, pan to it, and then
zoom in to t. The zooming out and zooming in is paid
for by Observation 2, and the panning is paid for by
Observation 1. The total length of the path is δ(s, t).
However, if r < 3, the traversal algorithm can no longer
always determine if there is a marked vertex within 3
pan edges, and so it can no longer necessarily follow a
shortest path.

When r = 2, the algorithm will perform one addi-
tional zoom-out when there are three pan edges between
the current vertex and the marked vertex. This zoom
out will cause either one or two pan edges to be crossed
on the next zoom level, as illustrated in Figure 3. If
only one pan edge is crossed, then we will have per-
formed two zooms and a pan, which is the same as the
cost of traversing the three pan edges below. However,
if two pan edges are crossed, we will have performed two
zooms and two pans, which is one more than the cost
of traversing the three pan edges below. Therefore, the
total length of the path is at most δ(s, t) + 1.

Similarly, when r = 1, the algorithm will perform
one or two additional zoom-out operations when there
are three pan edges between the current vertex and the
marked vertex. If after one zoom-out, the marked ver-
tex is within distance one, then we will perform two
zooms and one pan, when either two or three pans were
sufficient, which is at most one more than the length of
the shortest path. If two zoom-outs are needed before
the marked vertex is within distance one, then we per-
formed four zooms and one pan when three pans were
sufficient, which is at most two more than the length
of the shortest path. See Figure 4 for an illustration of

Figure 3: The possible cases when traversing Gn,1 with
radius r = 2. The initial vertex is dotted and the
marked vertices are shaded. The shortest path consists
of the blue edges, while the actual path consists of red
edges.

Figure 4: The possible cases when traversing Gn,1 with
radius r = 1. The initial vertex is dotted and the
marked vertices are shaded. The shortest path consists
of the blue edges, while the actual path consists of red
edges.

these cases. In any case, the total length of the path is
at most δ(s, t) + 2.

Finally, if r = 0, the algorithm has no choice but
to zoom out until it is at a marked vertex and then
zoom back in to t. Therefore, h(lca(s, t)) zoom-outs are
performed, followed by h(lca(s, t)) zoom-ins, for a total
cost of 2 h(lca(s, t)). �

Note that h(lca(s, t)) can be large compared to δ(s, t).
To see this, consider the two centermost world vertices:
their lowest common ancestor is the root of the tree
induced by the zoom edges, but δ(s, t) = 1.

4 Searching in Two Dimensions

In this section, we study the two-dimensional case. Gn,2

is drawn as a
√
n×
√
n grid of world vertices along with

smaller and smaller grids of zoom vertices for each zoom
level above, as in Figure 2. We first note that the proof
of Observation 1 applies equally well to the case when
d = 2.

Observation 3 For any two vertices u and v on the
same zoom level of the graph Gn,2, if there is a path of
k ≤ 3 pan edges between u and v, then δ(u, v) = k.

Unfortunately, Observation 2 no longer holds true
in two dimensions: it is possible for two vertices on
the same level to have a path of 4 pan edges between
them while a shortest path that involves zoom edges has
length 5. See Figure 5 for an example of this.



26th Canadian Conference on Computational Geometry, 2014

Figure 5: It is possible for two vertices (drawn heavy)
on the same level to have a path of 4 pan edges (drawn
heavy) between them while a shortest path that involves
zoom edges (drawn dotted) has length 5.

Observation 4 For any two vertices u and v on the
same zoom level of the graph Gn,2, if there is a path of
4 pan edges between u and v, then δ(u, v) = min{4, 2 +
δ(p(u), p(v))}.

Proof. If p(u) and p(v) are connected by a pan edge,
then there is a shortest path of length 3 between u and
v: zoom out from u to p(u), cross the pan edge be-
tween p(u) and p(v), then zoom into v. As before, no
shorter path is possible. Since δ(p(u), p(v)) = 1, we
have δ(u, v) = min{4, 2 + δ(p(u), p(v))}.

Otherwise, if p(u) and p(v) are not connected by a
pan edge, there must be at least two pan edges between
them. Any path that uses zoom edges must use at least
two of them, and at least two additional pan edges be-
tween p(u) and p(v) (or at least two additional zoom
edges) must be used to produce a path of length at
least 4. Since u and v are already connected by 4 pan
edges, we have δ(u, v) = min{4, 2 + δ(p(u), p(v))}. �

It is important to note that a traversal algorithm will
not be able to distinguish between these two cases with-
out additional exploration, and so this will ultimately
lead to a slightly longer path. As we shall see, however,
the difference is minimal for sufficiently large r.

Observations 3 and 4 cover all cases with at most 4
pan edges separating u and v. An analogue of Observa-
tion 2 applies when there are at least 5 pan edges.

Observation 5 For any two vertices u and v on the
same zoom level of the graph Gn,2, if there is a path
of k ≥ 5 pan edges between u and v, then δ(u, v) =
2 + δ(p(u), p(v)).

Proof. In the proof of Observation 2, we claimed there
was a sequence of k1 pan edges between u to u′ and k2
pan edges between v and v′. We now subdivide k1 into
k1 = k1,v+k1,h where k1,v counts the number of vertical
pan edges (to the north or south) and k1,h counts the
number of horizontal pan edges (to the east or west). It

is straightforward to see that a path that has both north
and south (east and west) pan edges can be replaced by
a path with only north or only south (only east or only
west) pan edges. Similarly, k2 can be subdivided into
k2 = k2,v + k2,h.

As before, we argue that k1 = k2 = 0. To see this,
observe that the path from u to u′ to p(u′) has length
k1 +1, while the path from u to p(u) to p(u′) has length
at most 1+dk1,v/2e+dk1,h/2e ≤ 1+k1,v +k1,h = 1+k1.
Symmetrically, the path from p(v′) to v′ to v can be
replaced by a path of length at most 1 + dk2,v/2e +
dk2,h/2e ≤ 1 + k2,v + k2,h = 1 + k2. Therefore, as in
Observation 2, a shortest path between u and v zooms
out from u to p(u), takes the shortest path from p(u)
to p(v), and then zooms in to v, which has length 2 +
δ(p(u), p(v)) = δ(u, v). �

Applying the algorithm for the one-dimensional case
to the two-dimensional case yields the following result:

Theorem 2 In traversing from s to t, the strategy out-
lined in Section 3 uses a number of pans and zooms that
is at most: 

δ(s, t) + 1 if r ≥ 3

δ(s, t) + 2 if r = 2

2 h(lca(s, t)) if r ≤ 1

Proof. If r ≥ 3, then the traversal algorithm can al-
ways determine if there is a marked vertex within three
pan edges, and will therefore zoom out until there is a
marked vertex within 3 pan edges, pan to it, and then
zoom in to t. The zooming out and zooming in is paid
for by Observation 5, except possibly on the last zoom
level, where one pan might be replaced by two zooms
by Observation 4, for a net increase of 1 in the length
of the path. In all other cases, pans are fully paid for
by Observations 3 and 4. The total length of the path
is δ(s, t) + 1.

If r = 2, then (as in the proof of Theorem 1), one
additional zoom-out and zoom-in may be performed,
but one of these is offset by saving a pan. The total
length of the path is thus δ(s, t) + 2, since, as in the
previous case, an additional pan may be performed as
a result of Observation 4.

If r = 1, it is possible to force the algorithm to zoom
out from s to lca(s, t) and back to t: consider two cen-
termost world vertices that are two pan edges apart
(i.e., opposite corners of the centermost world grid cell).
When r = 0, the same is true for any two vertices s and
t. �

The application of Theorem 2 to the case r = 1 is
somewhat disappointing, since it is no longer a function
of δ(s, t) as it is in Theorem 1. This can be overcome by
checking for a marked vertex at each one of these “diag-
onally adjacent” vertices, which can be accomplished by
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panning north, checking for a marked vertex, panning
south twice, checking for a marked vertex, and panning
north back to the original vertex. This uses a total of
4 additional pans. If a marked vertex is seen from any
of these vertices and it is sufficiently close, pan towards
it. Otherwise, return to the original vertex, zoom out,
and repeat. We therefore have:

Corollary 3 In traversing from s to t, the strategy out-
lined above uses a number of pans and zooms that is at
most: 

δ(s, t) + 1 if r ≥ 3

δ(s, t) + 2 if r = 2

4 δ(s, t) + 8 if r = 1

2 h(lca(s, t)) if r = 0

5 Conclusion and Future Work

We have studied the problem of searching by panning
and zooming in both the one- and two-dimensional
cases. Our results are summarized in the following ta-
ble.

r d = 1 d = 2
0 2 h(lca(s, t)) 2 h(lca(s, t))
1 δ(s, t) + 2 4 δ(s, t) + 8
2 δ(s, t) + 1 δ(s, t) + 2

≥ 3 δ(s, t) δ(s, t) + 1

Whenever r > 0, our traversal algorithm produces
a path that is within length at most 2 of the shortest
path, except for the case when r = 1 and d = 2.

Returning to the motivation for this problem men-
tioned in Section 1, it is perhaps interesting to note that
Furnas and Bederson [1] mention several strategies for
panning and zooming in the context of usability. One
such strategy was to zoom-out until a marked vertex is
visible, pan to the marked vertex, and then zoom in.
As our results show, this strategy is not too far from
optimal, except that the panning should only be done
when the marked vertex is sufficiently close by.

There are at least three possible directions for future
research:

1. Is it possible to improve the case when d = 2 and
r = 1? The length of the path produced is at most
4 δ(s, t) + 8, which is an outlier when compared to
the other results. The reason for this is because we
simulate having r = 2 by panning around before
zooming out; can this be avoided or reduced?

2. We have only considered the cases d = 1 and d = 2.
What is a good traversal algorithm for the case
when d > 2? How do the paths produced by such
an algorithm compare to a shortest path?

3. What happens in different models? For example,
what if the algorithm can pan directly to any ver-
tex that is within r pan edges? What if only the
existence of a marked vertex can be determined,
rather than its location? What if the distance r
is measured in the L∞ metric (instead of the L1

metric considered here)?
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