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A Separator Theorem for Intersecting Objects in the Plane
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Abstract

Separators in graphs are instrumental in the design of
algorithms, having proven to be the key technical tool in
approximation algorithms for many optimization prob-
lems. In the geometric setting, this naturally translates
into the study of separators in the intersection graphs
of geometric objects. Recently a number of new separa-
tor theorems have been proven for the case of geometric
objects in the plane. In this paper we present a new sep-
arator theorem that unifies and generalizes some earlier
results.

1 Introduction

Basic combinatorial problems such as the independent
set problem and the set-cover problem are provably hard
to approximate in the general setting. Therefore con-
siderable work has focused on specific cases arising in
applications. Of those, a well-studied problem is the
geometric independent set problem: given a set O of
geometric objects, compute the largest subset of objects
in O that are pairwise disjoint. While there has been
considerable progress on this problem (e.g., PTAS for
the case when O is a set of balls [4]), many fundamen-
tal cases are still open. For example, the current best
polynomial-time algorithm for computing the maximum
independent set of a set of line-segments in the plane re-
turns a O(nε)-approximation, for ε > 0 [8].

Recently in a breakthrough result, Adamaszek-
Wiese [1] showed the existence of a QPTAS for approx-
imating the maximum independent set in the intersec-
tion graph of a set of line segments in the plane. For any
ε > 0, their algorithm returns a (1 + ε)-approximation

in time O(n(logn/ε)O(1)

). Building on that idea, very
recently Mustafa et al. [12] presented QPTAS for the
geometric set-cover problems for weighted pseudodisks
in the plane, and weighted halfspaces in R3.

Geometric Separators

The main structural result on which the breakthrough
of Adamaszek-Wiese [1] rests is the following:
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Theorem Given a set of weighted disjoint rectangles,
with no rectangle having more than a third of the total
weight W , and a parameter δ > 0, there exists a closed
piece-wise linear curve C with O(1/δ4) vertices so that:

1. The total weight of the set of rectangles intersecting
C is at most δW , and

2. The total weight of the set of rectangles that lie en-
tirely in the bounded (unbounded) region defined by
C is at most 2W/3.

Their long proof immediately raised the following
questions: 1) Does it hold for objects more general than
axis-parallel rectangles? 2) Can the bound O(1/δ4)
on the complexity of the curve C be improved? 3)
Is there a simpler proof? 4) Can the result be gen-
eralized to situations where the objects are not disjoint?

Adamaszek-Wiese [2] answered 1) by showing that
their technique can be extended to work for line seg-
ments (and thus also for regions whose boundaries have
a bounded number of segments). The “complexity” of
their separator went up to O(1/δc) for some constant
c ≥ 6. Subsequently, the work of Mustafa-Raman-Ray
(first published in [13]), Adamaszek-Wiese [3] and Har-
Peled [9] independently answered 2) and 3) by showing
that there exists a simple proof, using cuttings, for a set
of disjoint line segments in the plane, and such that the
bound on the complexity of C can be brought down to
O(1/δ):

Theorem 1 ([3, 9, 13]) Given a set of weighted dis-
joint line-segments in the plane and a parameter δ >
0, there exists a closed piece-wise linear curve C with
O(1/δ) vertices so that:

1. The total weight of segments intersecting C is at
most δW and

2. The total weight of segments that lie entirely in the
bounded (unbounded) region defined by C is at most
2W/3.

In Section 3 we present an example showing that this
is optimal. Given a set of objects in the plane with total
weight W , a piece-wise linear closed curve C is balanced
if the total weight of the objects contained in its interior
(resp. exterior) is at most 2W/3.



26th Canadian Conference on Computational Geometry, 2014

Intersecting Objects

Har-Peled [9] also gave an answer to 4) showing that the
result could be extended to work in situations where the
intersection graph of the regions have some hereditary
“sparsity” properties (furthermore, his technique also
works for polygons with arbitrary number of sides). For
this sparsity property, Fox-Pach [7] have shown that the
number of intersections between the objects is linear.
The proof proceeds by adding vertices for these linear
number of intersection points and applying the sepa-
rator result for disjoint segments. For the case where
the number of intersections can be arbitrary, the best-
previous result is:

Theorem 2 (Fox-Pach [7]) The intersection graph
of a collection L of curves in the plane with a total of m
intersection points among them has a separator of size
at most O(

√
m).

First observe that in general if both the weights and
number of intersections can be arbitrary, then no such
separator exists, even when m is o(n). To see this, given
the parameter δ, consider L to be n line-segments in the
plane where 1/2δ of these segments i) pairwise inter-
sect, and ii) each such segment has weight 2δW . The
remaining segments are disjoint with 0 weight, and set
n large enough so that m = O(1/δ2) = o(n). Then any
balanced curve must intersect at least one segment of
weight 2δW , so it is not a δ-separator.

2 Our Result

If the objects are allowed to intersect arbitrarily, we
need to consider the unweighted setting. In this paper,
we present and prove a statement that partially unifies
several previous results: it implies as a special case the
Fox-Pach Theorem 2 for line segments, it implies as a
special case the unweighted disjoint separator of Theo-
rem 1, and extends the result of [9] for set of segments
with arbitrary pattern of intersections.

Theorem 3 Given a set S of n line-segments in the
plane with m intersections, and a parameter r, there
exists a piece-wise linear simple closed curve C in the
plane such that the number of segments completely in-
side (or outside C) is at most 2n/3 (call any such curve
balanced), and

• the number of vertices of C are O

(√
r + mr2

n2

)
,

• the number of line-segments in S intersecting C are

O

(√
n2

r +m

)
.

Implications of Theorem 3 are:

• Theorem 1 (unweighted case). As the segments
are disjoint, m = 0. Set r = 1/δ2, and apply The-
orem 3.

• Theorem 2 (for line segments). Set r = n2/m.
The separator in the intersection graph of the seg-
ments then is the set of segments of S intersecting
the curve C returned by Theorem 3.

Remark: While we consider only line segments in
this paper for ease of exposition, all the results in this
paper can be generalized to x-monotone curves and
thus also to regions whose boundary can be decom-
posed into a finite number of x monotone curves. This
includes convex sets, for instance, since their boundary
can be decomposed into two x-monotone curves. The
generalization is straightforward and no new ideas are
needed.

3 Proofs

Proof of optimality of Theorem 1. First note that
we can always find a balanced separator of size O(

√
n)

which does not intersect any of the objects. This can
be done by taking the trapezoidal decomposition of the
arrangement of the objects and finding a cycle sepa-
rator of size O(

√
n). Thus for the case δ = o(1/

√
n),

there always exists a balanced separator curve inter-
secting at most δn segments, and having complexity
O(
√
n) = o(1/δ). We therefore consider only the case

when δ ≥
√

12/n.

For a fixed δ ≥
√

12/n, we construct a set of n disjoint
line segments (with weight one for each segment) in the
plane such that there is no balanced closed curve i) that
has less than 1/δ vertices, and ii) intersects at most
δn/12 segments in S. Since Theorem 1 is for all values
of δ, this shows that the bound in the theorem cannot
be improved in general.

Our construction consists of δn/2 concentric layers –
each made up of 2

δ segments. Each layer has 1
δ long seg-

ments which are the sides of a regular polygon shrunk
and shifted slightly so that they don’t intersect and an-
other set of 1

δ short segments called blockers. See Fig-
ure 1. The blockers have very small length, and so and
the layers can be packed arbitrarily close to each other.

Consider any balanced closed curve C′ in the plane. If
it contains at least one layer completely inside, and one
layer completely outside, then it has at least 1/δ vertices
since it is ‘sandwiched’ between two of the layers that
are arbitrarily close to each other. Otherwise, without
loss of generality, say there is no layer completely inside
C′. As C′ is balanced, it contains at least n/3 segments
inside or intersecting C′; these segments belong to at
least (n/3)/(2/δ) = δn/6 different layers. The curve C′
must ‘cross’ each of these layers by either intersecting
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one of its edges or by having at least one more bend.
Since δn/6 ≥ δn/12 + 1/δ for δ ≥

√
12/n, either the

number of intersections of C′ is at least δn/12 or the
number of bends (and hence vertices) is at least 1/δ.

Figure 1: Lower-bound construction.

Proof of Theorem 3. The proof relies on the following
technical tool, whose proof follows in a standard man-
ner from well-known sampling techniques in the study
of ε-nets. Very recently we became aware that it was
proved in [6]; for completeness we briefly sketch our
proof, which is similar.

Lemma 4 Given a set S of n line segments in R2 with
m intersections and a parameter r > 0, there exists a

triangulation T of the plane of size O(r + mr2

n2 ) such
that each triangle ∆ ∈ T intersects at most n/r line
segments of S in its interior.

where the size of a triangulation is the number of trian-
gles in it.

Assume Lemma 4. Then given the set S of n
segments with m intersections, apply Lemma 4 to S to
get a triangulation T of R2 into O(r+mr2/n2) regions
(see Figure 2). T can be seen as a planar graph G. Give
weights to each face of T : if a segment s ∈ S intersects t
faces of T , add weight 1/t to the weight of each of these
t faces. Now from [11] we get a simple cycle C in T of
O(
√
r +mr2/n2) vertices such that faces completely

inside (and outside) have total weight at most 2n/3,
and hence so do the segments of S inside (and outside)
C. By Lemma 4, the total number of segments of S
intersected by each edge of T is O(n/r), and so the
total number of segments of S intersected by C is at
most O(

√
r +mr2/n2) ·O(n/r) = O(

√
m+ n2/r).

Figure 2: Segments of S in black, the triangulation T
in red, and the curve C in green.

Proof of Lemma 4. All the tools used in the proof
for cuttings1 directly apply (or can be generalized in
a straightforward manner) to work for this purpose.
We first briefly review the basic partitioning method
of using trapezoidal decompositions. Given a set R ⊆ S
of segments, one can partition the space (say inside a
large-enough rectangle containing all the segments of S)
as follows. For each endpoint of a segment in R or an
intersection-point between segments in R, shoot a ver-
tical ray upwards (and downwards) till it hits another
segment (or the bounding rectangle). The union of all
these vertical segments together with R partitions the
bounding rectangle into a set of regions. A crucial fact
is that each region ∆ in this partition is determined by a
constant (2, 3 or 4) number of segments in R. Call such
regions trapezoidal regions (or trapezoids for brevity),
and the partition is called a trapezoidal decomposition2.
Denote by Ξ(R) this set of trapezoidal regions in the
trapezoidal decomposition of R. The size, |Ξ(R)|, of the
trapezoidal decomposition of R is the number of trape-
zoids in Ξ(R); it is, within a constant-factor, equal to
the total number of end- and intersection- points in R.
A trapezoid present in the trapezoidal decomposition of
any subset R of S is called a canonical trapezoid. For
a canonical trapezoid ∆, let S∆ denote the set of seg-
ments of S intersected by ∆. A trapezoid ∆ is present
in the trapezoidal decomposition of R if and only if its
determining segments are present in R, and R does not
contain any of the segments of S that intersect ∆. For
the rest of the proof, we only work with canonical trape-

1We refer the reader to Chazelle [5] and Matoušek [10] for a
full account.

2We refer the reader to [10] for a nice exposition on trapezoidal
decompositions.
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zoids determined by 4 segments. The case for canonical
trapezoids determined by 2 and 3 segments is similar.
See Figure 3.

Figure 3: The trapezoidal decomposition of a set of seg-
ments (red) sampled from the set S (black).

Proof. First note that a slightly weaker bound (within
logarithmic factors) follows immediately from ε-nets.
Given S, consider the set-system (S,F) induced by in-
tersection with segments in the plane, i.e.,

F ∈ F iff there exists a line segment l s.t.

F = {s ∈ S | s ∩ l 6= ∅}

Pick a random set R by uniformly adding each segment
of S with probability p = (Cr log r)/n, where C is a
large constant. Then R is a (1/3r)-net for (S,F) with
probability at least 9/10 [10] (i.e., any line segment l
in the plane that intersects more than n/3r segments
of S must intersect a segment of R; alternatively, any
segment l that does not intersect any segment of R in-
tersects at most n/3r segments of S). The expected
size of R is np, and the expected number of intersec-
tions of segments in R is mp2. By Markov’s inequality,
the probability that the size of R is more than 10np is
at most 1/10. Similarly the probability that the num-
ber of intersections in R is more than 10mp2 is also at
most 1/10. Thus, with probability at least 7/10, R is a
(1/3r)-net for (S,F) and the size of the trapezoidal de-
composition of R, |Ξ(R)|, is O(r log r+(mr2 log2 r)/n2).
One can triangulate the trapezoidal decomposition of R
to get a triangulation T with asymptotically the same
number of triangles. Finally note that each triangle in
T intersects at most n/r segments of S in the interior:
any line segment l forming an edge of a triangle in this
triangulation must intersect at most n/3r segments of
S, as otherwise the set of segments intersecting l would
not be hit by a segment from R, contradicting the fact
that R is a (1/3r)-net. Therefore each triangle in T in-
tersects at most 3 · n/3r = n/r segments in its interior.

We now show how the log factor can be shaved off.
Set p = Cr/n (for a large-enough constant C), and
pick each segment in S with probability p to get a ran-
dom sample R. Construct the trapezoidal decomposi-
tion Ξ(R) of R. If all trapezoids ∆ ∈ Ξ(R) intersect
at most n/r segments in S, we are done. Otherwise we
will further partition each violating trapezoid ∆ (i.e.,
a trazepoid that intersects more than n/r segments of
S), based on two ideas. First, the expected number of
trapezoids in Ξ(R) intersecting more than n/r segments
is small. In particular, we will show (Lemma 6) that,
for any t > 0, the expected number of trapezoids in-
tersecting at least tn/r segments in S is exponentially
decreasing as a function of t.

Second, consider a ∆ ∈ Ξ(R) intersecting a set, say
S∆, of n∆ = tn/r segments of S. Use the weaker bound
(derived earlier) on S∆ with parameter t (i.e., com-
pute a (1/t)-net for S∆) to get a partition inside ∆ of
O(t log t + (m∆t

2 log2 t)/n2
∆) = O(t2 log2 t) trapezoids.

By definition, each such new trapezoid inside ∆ inter-
sects at most n∆/t = n/r segments of S∆ (and hence of
S). Thus refining each ∆ by adding new trapezoids, and
taking the union of all these trapezoids for all ∆ ∈ Ξ(R)
gives the required partition on S with parameter r.

It remains to bound the overall expected size of this
partition. Towards that we will need the two lemmas
below.

Lemma 5 Given a set S of n segments in the plane
with m intersections, the number of canonical trapezoids
defined by S that intersect at most k segments of S is
O(nk3 +mk2).

Proof. Let Ξ≤k be the set of canonical trapezoids de-
fined by S that intersect at most k segments of S. The
proof uses the Clarkson-Shor technique. Construct a
sample T by adding each segment of S to T with prob-
ability p0; the expected total number of picked segments
is np0 and the expected number of intersections between
the segments of T is mp2

0. The trick is to count the
expected size of Ξ(T ) in two ways. On one hand, it
is O(np0 + mp2

0) (i.e., the expected number of vertices
present in Ξ(T )). On the other hand, the probability of
a canonical trapezoid ∆ being in Ξ(T ) is p4

0(1−p0)|∆∩S|

– recall that a trapezoid ∆ appears in Ξ(T ) iff its four
defining segments are picked in T , and none of the seg-
ments of S intersecting ∆ are picked in T . Therefore
the size of Ξ(T ) is∑
∆

p4
0(1−p)|∆∩S| ≥

∑
∆∈Ξ≤k

p4
0(1−p)|∆∩S| ≥

∑
∆∈Ξ≤k

p4
0(1−p0)k

where the sum is over all canonical trapezoids ∆ which
intersect at most k segments of S. Therefore putting
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the two bounds together,∑
∆∈Ξ≤k

p4
0(1− p0)k = |Ξ≤k| · p4

0(1− p0)k

≤ E[|Ξ(T )|] = O(np0 +mp2
0)

|Ξ≤k| = O(
np0 +mp2

0

p4
0(1− p0)k

) = O(nk3 +mk2)

for p0 = 1/2k. �

Lemma 6 Expected number of trapezoids in Ξ(R)
which intersect at least tn/r segments of S is

O

(
(t3r +

mr2t2

n2
)e−t

)
Proof. Consider first the expected number of trape-
zoids in Ξ(R) which intersect tn/r segments of S:

E[|∆ ∈ Ξ(R) s.t. |∆ ∩ S| = tn/r|]
= |∆ s.t. |∆ ∩ S| = tn/r| · p4(1− p)tn/r.

Using Lemma 5,

E[|∆ ∈ Ξ(R) s.t. |∆ ∩ S| = tn/r|]
≤ O

(
n(tn/r)3 +m(tn/r)2

)
p4(1− p)tn/r

= O

(
(t3r +

mr2t2

n2
)e−t

)
Observe that the above bound is decreasing exponen-
tially in t, and therefore the required bound, which
would follow by summing up over all trapezoids inter-
secting at least tn/r segments in S, will be asymptoti-
cally the same. Formally:

∑
∆:|∆∩S|≥tn/r

p4(1− p)|∆∩S|

=
∑
i=0

∑
2itn/r≤|∆∩S|≤2i+1tn/r

p4(1− p)|∆∩S|

≤
∑
i

(
n(2i+1tn/r)3 +m(2i+1tn/r)2

)
· p4(1− p)2itn/r

≤
∑
i

(
t3r23i+3 +mr2t222i+2/n2

)
e−2it

This series is geometrically decreasing, so it is asymp-
totically equal to the required bound. �

Now we can complete the proof of the theorem. Let
n∆ = t∆n/r be the number of segments in S inter-
sected by each trapezoid ∆ ∈ Ξ(R) (and m∆ the num-
ber of their intersections). Using the weaker bound, re-
fine trapezoid ∆ by adding a (1/t∆)-net R∆ for all the
t∆n/r segments of S intersected by ∆. The resulting

expected total size of the trapezoidal partition is:

= |R|+
∑
∆

Pr[∆ ∈ Ξ(R)] ·

(Size of trapezoidal decomp. of (1/t∆)-net within ∆)

= |R|+
∑
∆

Pr[∆ ∈ Ξ(R)]

·O
(
t∆ log t∆ +

m∆t
2
∆ log2 t∆
n2

∆

)
(using the weaker bound)

≤ |R|+
∑
∆

Pr[∆ ∈ Ξ(R)] ·O
(
t2∆ log2 t∆

)
(as m∆ ≤ n2

∆)

= |R|+
∑
j

∑
∆ s.t.

2j≤t∆≤2j+1

Pr[∆ ∈ Ξ(R)] ·O
(
t2∆ log2 t∆

)
≤ |R|+

∑
j

E[ # trapezoids ∆ in Ξ(R) with 2j ≤ t∆ ]

· O
(

22(j+1) log2 2j+1
)

≤ |R|+
∑
j

O

(
(23jr +

mr222j

n2
)e−2j

)
·O
(

22(j+1) log2 2j+1
)

(Lemma 6)

= |R|+ r
∑
j

O
(

23je−2j
)

·O
(

22(j+1) log2 2j+1
)

+
mr2

n2

∑
j

O
(

22je−2j
)
·O
(

22(j+1) log2 2j+1
)

= np+mp2 +O(r) +O(
mr2

n2
) = O(r +

mr2

n2
)

(the summands form a geometric series)

as required. This finishes the proof of Lemma 4. �
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