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The Generalized Minimum Manhattan Network Problem (GMMN) —
Scale-Diversity Aware Approximation and a Primal-Dual Algorithm
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Abstract

In the d-dimensional GENERALIZED MINIMUM MAN-
HATTAN NETWORK (d-GMMN) problem one is inter-
ested in finding a minimum cost rectilinear network N
connecting a given set R of n pairs of points in R? such
that each pair is connected in N via a shortest Manhat-
tan path. The problem is known to be NP-complete
and does not admit a FPTAS, the best known upper
bound is an (’)(logd‘”'1 n)-approximation for d > 2 and
an O(logn)-approximation for d = 2 by Das et al. [3].

In this paper we provide some more insight into
the problem and develop two new algorithms, a ‘scale-
diversity aware’ algorithm with an O(D) approximation
guarantee for d = 2. Here D is a measure for the differ-
ent ‘scales’ that appear in the input, D € O(logn) but
potentially much smaller depending on the problem in-
stance. Moreover, this implies that a potential proof of
O(1)-inapproximability for 2-GMMN requires gadgets
of many different scales in the construction. The other
algorithm is based on a primal-dual scheme solving a
more general path covering problem. On 2-GMMN it
performs pretty well in practice with good a posteri-
ori, instance-based approximation guarantees. Further-
more, it can be extended naturally to deal with obstacle
avoiding requirements.

1 Introduction

We study the d-dimensional GENERALIZED MINIMUM
MANHATTAN NETWORK problem:

Input: A set R of n pairs of points (terminals) in R

Goal: Determine a finite set N of axis parallel line seg-
ments of minimum total length ¢(N) that connects
each pair via a shortest Manhattan path.

The problem is closely related to the rectilinear
Steiner network problem, where the goal is to connect
designated pairs in a minimum cost network but not
necessarily on shortest paths. In the context of circuit
design (d = 2 or d = 3) — one of the main application ar-
eas of many Steiner-type problems — restricting to short-
est paths for interconnection corresponds to keeping the
latency low.
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d-GMMN is a generalization of the d-dimensional
MINIMUM MANHATTAN NETWORK problem (d-MMN;,
all pairs of terminals are present in R) and the d-
dimensional RECTILINEAR STEINER ARBORESCENCE
problem (d-RSA, each pair in R contains the origin as
one of its elements). Already 2-RSA is N'P-complete
[10] and 2-MMN does not admit a fully polynomial time
approximation scheme (FPTAS) unless P = NP [2].

For 2-RSA several O(1)-approximation algorithms
are known. The algorithm given in [9] is conceptually
simple and achieves a 2-approximation. There is also a
polynomial time approximation scheme (PTAS) based
on Arora’s shifting-technique [7].

The situation for MMN problems is slightly different.
We know that 3-MMN does not admit a PTAS, unless
P =NP [4, 8]. [5] gives an O(1)-approximation. Sev-
eral subsequent papers improve on the running time and
the constant factor of the O(1)-approximation. [1] gives
the first 2-approximation for 2-MMN. Their approach
is based on a multiphase flow ILP formulation of poly-
nomial size and iteratively rounding an optimal frac-
tional solution. In their discussion section they intro-
duce GMMN and point out that their approach might
not translate easily.

3] were the first to come up with an O(log?** n) ap-
proximation for d-GMNN. For d = 2 they could even
prove an O(logn) upper bound. Their approach follows
the divide and conquer paradigm exhibiting sets of pairs
which can be connected via a common point in space;
these base cases are solved with a known d-RSA ap-
proximation algorithm. They also provide an instance
showing the analysis for their algorithm is essentially
tight (not excluding other, better algorithms).

The results in this paper are along the lines of [3] but
the approximation ratio of our ‘scale-diversity aware’ al-
gorithm depends rather on the scale diversity than the
arrangement of the input. For a set U C (1, n] of num-
bers, we denote by g(U) := |{i € Ny | Ju € U : 2! <
u < 271} the scale diversity of U. Intuitively, g(U)
describes how many different magnitudes of numbers
appear in the set U. Clearly g(U) € O(logn). In an
instance for 2-GMMN;, each pair (p,q) € R naturally
gives rise to 2 distance values d;(p,q) — their distance
in the j-th coordinate. In the later we argue that scal-
ing such that the biggest [; distance of a pair is exactly
n does not affect the form of solutions. After scaling,
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pairs with [; distance of no more than a constant can
be neglected when aiming at a constant approximation.
With U; :={ d;(p,q) € (1,n] | (p,q) € R } we denote
the spread in dimension j of the pairs after scaling. The
quantity D := max{g(U;), g(Uz)} denotes the scale di-
versity of R and essentially captures how many really
different magnitudes of spreads with respect to the max-
imum extent appear in R.

1.1 Our Contribution

The paper presents two algorithms for GMMN prob-
lems. The approximation ratio for the first algorithm
depends on the scale diversity of the terminal pairs in
R. More concretely, we show that our algorithm com-
putes an O(D) approximation to the 2-GMMN prob-
lem. This result always matches the result in [3],
but is better if the scale diversity of R is small, e.g.
D € o(logn). Moreover, this implies that a potential
proof of O(1)-inapproximability for 2-GMMN requires
gadgets of many different scales in the construction.

While we consider the first algorithm to be of rather
theoretical interest only, our second algorithm — follow-
ing a primal-dual approach based on an ILP formulation
of the d-GMMN problem — seems more practical. While
we could not prove an a priori approximation ratio, it
inherently produces lower bounds during its execution
which — at least in our experiments with an implemen-
tation for d = 2 — turn out to be very close to the costs
of the computed networks.

2 Scale-Diversity Aware Approximation

2.1 Decomposition Properties

Let us first make some general observations about the
d-GMNN problem.

Lemma 1 The cost of an optimal solution to any sub-
set R’ of a GMMN instance R 1is a lower bound to the
cost of an optimal solution for R.

Proof. Consider an optimal solution N for R having a
strictly lower cost than an optimal solution N’ for R'.
However, N contains a shortest path for each pair in R’.
A contradiction to the optimality of N’. O

This simple lemma gives rise to the following decom-
position property of GMMN instances:

Lemma 2 Let R = Ry U...U Ry (not necessarily
disjoint). If each N; is an «;-approzimation for R;,
then N = J, N; is a solution for R with ¢(N) <
OPT(R) - >, a;.

Proof. N clearly connects each pair in R. By Lemma
1 we have OPT(R;) < OPT(R) and ¢(N) < >, ¢(V;) <

2.2 Shape Properties

Let us now turn to more shape-dependent properties
of GMMN. We first show that if all terminal pairs
(p,q) € R exhibit about the same shape, that is, if in
one dimension every terminal pair has about the same
extent, then we can decompose R into constantly many,
not necessarily disjoint instances. KEach of these in-
stances has a very special structure which allows for
a constant approximation. To simplify notation, we as-
sociate with each pair (p,q) € R the minimum area
axis-parallel box r having p and q as corners.

Lemma 3 (Shapes in 2-GMMN) Let v > 0 be con-
stant and R a 2-GMMN instance. If for some dimension
J € {1,2} each pair (p,q) € R has v < d;(p,q) < 2,
then R can be decomposed into a constant number of
(not necessarily disjoint) instances R = RgURy - - -URs5.
Bozxes in each R; have either a common azis parallel in-
tersection line or no intersection at all.

Proof. Let j be the dimension fulfilling the shape prop-
erty. Consider axis parallel lines with distance v in di-
mension j. Each box of a pair (p,q) € R intersects at
least one and at most three lines. If boxes r and r’ con-
tain lines 7 and ¢’ respectively, then |i — /| > 6 implies
that » N7’ = (). This gives rise to the decomposition
where R; C R consists of all pairs that contain a line k
with £ =4 mod 6 in their box. O

2.3 Scale Properties

We call a d-GMMN instance R’ scaled, if it is derived
from an instance R by dividing each coordinate of a
terminal by a fixed ¢ > 0. We have an one-to-one cor-
respondence between their solutions, because a line seg-
ment between two points can be scaled up or down in
the same way. Moreover, the cost of a network is o
times the cost of the corresponding network. If we have
an instance of d-GMMN where some of the boxes asso-
ciated with terminal pairs are very ‘small’ compared to
the other boxes, we can essentially connect them naively
without losing more than a constant factor in the total
connection cost.

Lemma 4 Let R be a scaled d-GMMN instance such
that n = max, gerllp — ¢/l and R. = {(p,q) €
R | |lp—qlhh <d}. If N is an a-approzimation for
the instance R— R., then R can be approximated within

O(a).

Proof. As there exists a (p,q) with ||p — ¢||1 = n, we
know that the cost of the optimal solution to R must
be at least n. Connecting all terminal pairs in R, has
cost at most nd. The lemma follows. O
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2.4 An Algorithm for 2-GMMN

The algorithm in this section is based on the combina-
tion of decomposition, shape and scale properties. We
borrow the following lemma to solve the partitions in
each of the six covers of one shape class.

Lemma 5 (Lemma 8 in [3]) Let R be a 2-GMMN
instance. If all bozes of R have a common, axis-parallel
intersection line, then R can be approximated within

O(1).

Algorithm 1 Scale-Diversity Aware Approximation

1. Scale the instance R such that the biggest {; metric
of a pair is exactly n.

2. Partition R into

Re={(p.q) € R ||lp—aqlh <2},
Rl = {(p7 q) S R - RE ‘ dl(p7 Q) Z d2<pa q)}7
and R2 =R-— (Rl U RE)

3. Partition R; into g(U;) shape classes and solve.
4. Partition Ry into g(Us) shape classes and solve.

5. Solve R. trivially.

Essentially, after scaling we partition the problem in-
stance into three instances R., R; and Ry, where R,
contains terminal pairs with ‘very small’ boxes, R; all
terminal pairs whose box is wider than tall, and Ry the
remaining ones. Then for each R; we consider the scale
classes in dimension ¢ and solve each of them using Lem-
mas 3 and 5. The R, are solved trivially.

Theorem 6 (2-GMMN) If R is a 2-GMMN instance
with scale diversity D = max{g(U1),g(Uz)}, then Algo-
rithm 1 computes an O(D) approzimate solution.

Proof. The scaling property preserves optimality of so-
lutions. The pairs in R, can essentially be ignored ac-
cording to Lemma 4. R; can be decomposed into g(Uy)
shape classes of boxes. Using Lemma 3, each shape class
in R; can again be decomposed in a constant number of
instances each of which allows a partition in boxes shar-
ing a common intersection line or not having a intersec-
tion at all. The disjoint parts of these instances with
the common intersection line are solved with Lemma 5
within a constant factor of their optimum — their dis-
joint union remains within a constant factor of their op-
timum. Using Lemma 2 the approximation ratio of the
possibly not disjoint union follows. The same argument
holds for Rs. O

Clearly D € O(logn) but might be smaller in some
applications. We give an example that occupies many
shape classes. Let p, denote the point (x,0) and ¢, the
point (0,y). The arrangement {p,/2,Pn/4,---,P1/2} X

{4n/2:@nyas .- q1/2} has an optimal solution of cost
n. Consider the 2-GMMN instance R that contains
n/loga(n) disjoint copies of this arrangement (|R| = n).
We have an optimal solution of cost n?/log3(n) and all
shape classes in dimension 1 and 2 are occupied — e.g.
9(U1), 9(Uz) € ©(logn).

3 Practical Algorithms

Let us first make the following observation which re-
duces the potentially very large number of line segments
to consider for the network N.

3.1 Restriction to Hanan Grid

We consider the undirected, simple graph H(R) induced
by the instance R. Let P; be the projection of the ter-
minals in R on the i-th coordinate. The vertices are the
Cartesian product Hle P; and have an edge if and only
if they are identical in all but neighbored in one coordi-
nate. We call the difference in this coordinate the cost
ce of the edge e. Any d-GMMN instance with n pairs
has a Hanan Grid of size at most (2n)? vertices and
O(d(2n)?) edges. This is polynomial for fixed d. Given
two vertices we call a simple path connecting them a m-
path if the sequence of each coordinate of the vertices
along the path is monotonous.

The following property of the Hanan Grid is common
with many rectilinear problems. To make the paper
more self contained, we give a formulation of a simple
proof that follows the argument for Abstract Steiner
Minimal Trees[13] and yet has the generality of d di-
mensions as in [11].

Theorem 7 (Hanan Grid for d-GMMN) For any
d-GMMN instance R, there is an optimal solution N
using only edges of H(R) as line segments.

Given a solution N of line segments for R. We call a
point in the cut of at least two segments a node. This
prove constructs a set of line segments where nodes co-
incide with vertices of H(R). We apply a sweeping hy-
perplane argument over one dimension after the other:

Proof. Let N be an optimal solution to R with minimal
number of non-vertex nodes. We describe the sweep
over x1. After the sweep the x1 coordinate of each node
in N will be identical to one in P;.

Consider the non-vertex nodes of N with maximum
x1 coordinates and their hyperplane i containing them.
Now above or below h means that a point has a higher
or respectively lower x; coordinate than h. Inductively,
every node above h already has xi-coordinates as de-
sired. Let €T denote the distance in x; to the next
above coordinate in P; and €~ the distance in x; to the
smaller of either the next lower set of such nodes of N
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or to the next lower point in P;. Let also ST and S—
denote the set of line segments parallel to x; and inci-
dent to a node in h above and below respectively. The
change in total cost for moving line segments of N con-
tained in h along the x; direction for an —e~ < e < ¢e™
is

Ale)=¢e-(IS7| = [5*]) > 0.

If |ST| > |S~| we simply move the segments in h up-
wards by ¢ otherwise we move them downwards by ™.
In both cases we would only lower the total costs. More-
over, by moving all nodes in h an arbitrary m-path of
N crossing h remains monotonous in all ;. After this
sweep, the x; coordinates of a node in NN is identical to
one in P; and the total number of non-vertex nodes did
not increase. After d sweeps no non-vertex nodes are
left. O

The Hanan Grid enables us to compute an optimal
solution to d-GMMN with a brute-force approach. Ev-
ery feasible network consists of a covering of n m-paths
connecting a pair of terminals each. The number of m-
paths for two vertices is generally exponential in n. For
small instances however, one can enumerate all feasible
networks living on the Hanan Grid to find an optimal
GMMN solution.

3.2 Lower Bounds for Path Covering Problems

A canonical framework to derive lower bounds for dis-
crete problems is the theory of INTEGER LINEAR PRO-
GRAMS [12]. Unfortunately, the natural cut formulation
of the GMMN problem does not exhibit a weakly super-
modular function for the number of required edges in a
cut. Therefore, we cannot simply apply the known iter-
ative rounding procedure of [6]. We developed several
formulations to the problem. However, only the follow-
ing shows ‘good’ (c.f. Section 4) behavior. Consider
H({pW,q¢W},....{p™,q¢™}) = (V,E) of a given in-
stance. Note that some p(*) and ¢(¥) might be identical.
We use the superscript to denote their context.

By IL,:) we denote the set of prefixes of all m-paths
connecting p* to ¢(?. Given a subset B/ C E and a
pair’s terminal p(¥) we can define a subnetwork

SV, E")={e€ E'| In € I, withe e 7 C E'}.
The partial networks for a pair’s terminal are

Sy = U { S(p(i),E’) | ¢ no vertex in S(p(i),E')}.
E'CE

They essentially capture all situations where at least one
edge is missing for a m-path from p® to ¢(*). We also
define a multiset to capture all unfinished situations

S = @Spu) U Sq(i)

in which each network is rooted with one terminal and .
The boundary of a rooted partial network in the multiset
S is given by

0(Sym) = {e € F — S, |e extends a m-path in S, }

p

Note that one could easily integrate obstacle avoiding
requirements for some of the pairs in this boundary
function.

We define an indicator variable z, € {0,1} for ev-
ery edge of the Hanan Grid. We have an one-to-one
correspondence between optimal solutions on H(R) and
optimal solutions of the following primal ILP:

min : g Ce Te

ecE

s.t. Z Te > 1

e€d(S)

VS esS

xz. €{0,1}

The primal LP is given by relaxing to non-integral vari-
ables T, > 0. Any optimal solution X to the LP is a
lower bound to the ILP since any optimal ILP solution
x is also feasible for the LP.

In our primal LP (minc-X, A-x>1) all vari-
ables and objective-coefficients are non-negative. The
constraint-coefficients are either 0 or 1. Consider a sin-
gle row constraint of A multiplied by ¢ > 0. If ¢ is
small enough (e.g. ¢ = min{c.|e € E} ) the multiplied
constraint-coefficients are component wise smaller than
the objective-coefficients. Therefore, the right hand side
1-¢ is a lower bound to the objective for arbitrary non-
negative X. This canonical method gives the dual LP
with the objective to find a maximal lower bound using
a conical combination of constraints:

maX:Zngs

Ses

s.t. Z s < ce

SES : ees(S)
gs >0

This described property is known as weak duality:

Lemma 8 For any dual feasible assignment y we have
a lower bound to the objective of an optimal solution for
the primal LP and ILP for d-GMMN:

1-y<c-x<c-x
The maximum ratio (c-x)/(c-X) observed on in-

stances of a problem is called the integrality gap of a
particular formulation.
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3.3 A Primal-Dual Algorithm for Path Covering

The idea of a primal-dual scheme is to start with a pair
of assignments. A non-feasible, integral assignment of
the primal ILP (x = 0) and a complementary feasible,
however far from optimal relaxed assignment (y = 0) of
the dual LP. By alternately improving the dual assign-
ment and making the primal assignment more feasible
one obtains a lower bound that might have a close re-
lation to the eventually constructed primal feasible as-
signment. We now describe the process more precisely:

Given the above primal ILP and a not feasible set of
edges x — e.g. lacking a m-path for the pair {p(, ¢("}.
A maximal partial network S(p(?), x) can be found with
a simple depth-first search on m-paths from p(® to ¢(*
that only traverses edges that are given in x and the
box of {p¥),¢(?}. Therefore this generally exponential
number of constraints does not need to be stored — each
partial network can be constructed if needed.

The algorithm first creates an ordered sequence of
edges and increases the lower bound ) ¢ s7s = Y.
After the sequence is feasible, unnecessary edges are
pruned in reverse order.

Algorithm 2 Primal-Dual Scheme for Path Covering

x:=10 > The primal assignment
Y:=0 > The dual’s objective
c:=c > Copy of edge costs

while x not primal feasible do
I:={i|{p?,q™} not m-connected in (V,x)}
N = &Jiel{s(p(”? X), S(q“) ’ X)}
Let v(e) = [{S €N |eecd(S)}
¢ := min{ c'[e]/v(e) | v(e) >0}
for e with v(e) > 0 do
c'le] =c'le] —v(e)-e
if c’[e] = 0 then
x.append(e)
end if
end for
Y =Y 4¢-|N|
end while
for e € x in LiFo order do
if x — {e} primal feasible then
x:=x—{e}
end if
end for

Consider the pseudo code of Algorithm 2. Termina-
tion of the algorithm is given since at least one of the
polynomially many edges is added in each step. The
variable Y stores the dual’s objective: ¥ is feasible for
the relaxed dual problem at the beginning. If a dual
constraint becomes tight, the edge e is added and no set
containing e € §(S5) will be increased in any subsequent
loop. Hence y remains feasible for the dual LP and the
pruned set x remains primal feasible by construction.

Two implementations for this algorithm are obvious.
We can perform at most 2n depth-first searches during

80 T T

70 4

execution time (min)

20 40 60 80 100 120

problem size (n)

Figure 1: Execution times of the primal-dual algorithm
in minutes on each of the sampled random instances of
2-GMMN. We implemented the naive deep first search
approach without min-heaps or annotation of the Hanan
Grid. Calculations were performed on an Intel Core
i7-3930K 3.2 GHz. Each problem instance was solved
single threaded and we solved up to 4 problem instances
concurrently.

each of the while and the for loop. This shows poly-
nomial runtime for a fixed dimension d. Here we do
not even need to keep H(R) in memory but can work
directly on the sparse set of coordinates (P;) occurring
in R. In the other approach we annotate the edges of
‘H(R) with additional O(n) bits for the context an edge
is used. Further a min heap can be used to point to
the currently active boundary. The naive implementa-
tion for 2-GMMN enabled us to find solutions and lower
bounds for instances up to a size of n = 128, which is
considerably more than n = 7 with the brute-force ap-
proach. See Figure 1 for execution times.

4 Experimental Results

The proposed primal-dual strategy with reverse pruning
has the advantage of also constructing a lower bound to
the optimal cost of a solution. Let xopr and XopT be
optimal solutions for the primal ILP and LP respec-
tively. Consider x and Y as calculated from Algorithm
2. Given Lemma 8, we have that the actual approxima-
tion ratio is bounded:

c-X c-X c-X
< <

T c-Xopr © Y

C - XoPrT

The rightmost term — we call it approximation guarantee
in the following — is explicitly calculated on an evaluated
instance.

Along with the O(logn) approximation algorithm,
Das et al. also provided a family of recursively defined
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instances that show the tightness of the approximation
ratio of their algorithm. We evaluated several of those
instances and found them all to be solved optimally with
a tight lower bound by Algorithm 2 (data not shown).

4.1 Random Sampled Instances

We evaluated Algorithm 2 on random 2-GMMN in-
stances. To rule out solely good behavior on uniformly
chosen points of some square, we sampled different as-
pect ratios (z-range / y-range) and densities (number
of vertices in x / z-range). For a given number of
pairs n of a instance, we first choose an aspect ratio
a € {1,...,9} uniformly at random. Second we choose
a density d € {1n,2n,...,10n} uniformly at random.
Finally we choose n times the two z-coordinates in
{1,...,d-a} and the two y-coordinates in {1,...,d} uni-
formly at random. Out of these, we evaluated a total of
11274 random instances of several sizes (150 replicates
for each n € {2,...,64}, 50 for each n € {65,...,96}
and 7 for each n € {97,...,128}). Figure 2 shows the
achieved distribution of the sampling strategy in the
parameter space. See Figure 3 for the observed approx-
imation guarantees.

On the positive side, Algorithm 2 seems to find so-
lutions that are optimal and close to optimum in many
cases. Irrespective of size n, none of the instances ar-
ranged in a rather quadratic bounding box show an ap-
proximation guarantee bigger than 2.0, which also holds
for the majority of other instances we evaluated.

On the negative side, we found approximation guar-
antee worse than 2.0 on instances having many termi-
nals and a wvery high degeneracy in the aspect ratio
and density at the same time. Using this observation,
the worst experimentally observed approximation guar-
antee on a random 2-GMMN instance (n=70, aspect
ratio=10000/1, density=2/100000) was 3.385.

4.2 Looseness of the Lower Bound

Despite the experimental close relation between lower
bound Y and cost ¢ - x in many situations, one cannot
prove this ratio to be constant. In the following we
describe a family of instances that are solved optimally
by Algorithm 2. However, the lower bound calculated
can be off arbitrarily. Consider the 2-GMMN instance
T = {(0,0)} x {(z,y) € N3 | 0 < 2 +y < k} having
ng = k(k 4+ 1)/2 — 1 pairs. Each edge in H(T) has
cost 1 and each right hand side of a pair requires at
least one incoming edge for this pair. This implies the
cost of an optimal solution to T} is at least ng. In fact
the pruning step in Algorithm 2 already suffices that
the cost of the result is ny, too. The lower bound as
calculated of Algorithm 2 for this family of instances
is not tight and the approximation guarantee c - x/ Y
grows asymptotically with &k (c.f. Figure 4).
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Figure 2: Distribution of sampled random instances in

the parameter space. Instance size by aspect ratio (top)
and by density (bottom).
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Figure 3: Approximation guarantees of sampled random
instances by aspect ratio. Each aspect ratio class contains
instances of almost each size n € {2,...,128}.
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Figure 4: Asymptotic growth of the approximation
guarantee of the instances Tj. We spare a lengthy re-
cursive and non intuitive derivation of an upper bound
for Y on the instances Ty and give a picture of the re-
sults. Note that the solution of algorithm 2 is optimal
in this case.

However, this does not give implications on the in-
tegrality gap of our formulation. It might well exist a
dual assignment with a higher lower bound than the
calculated Y. Unfortunately we were not able to prove
a bound of ¢ - x against the cost of an optimal solution.

5 Conclusion and Open Problems

We have presented an algorithm that achieves an ap-
proximation factor constant in the scale diversity D of
a 2-GMMN problem. This result always matches the
O(log n)-approximation given in [3], but is considerably
better if the scale diversity is small. Moreover, this al-
gorithm implies that a potential O(1)-inapproximability
proof for 2-GMMN must use gadgets of many different
scales. This is in contrast to the proof in [2]. There
the existence of a FPTAS for 2-MMN is disproved (un-
less P = N'P) by arranging gadgets of about the same
shape. On the practical side we have presented a primal-
dual algorithm for a more general path covering problem
in graphs. The algorithm is applicable for d-GMMN
and generalizations that require obstacle avoiding for
all or some of the pairs. The approach performs well
on instances of 2-GMMN and produces instance based
lower bounds that are close to the cost of the solutions.
We could not prove a priori guarantees in the d-GMMN
setting. However, we show that the lower bounds are
not tight in some cases. This actually means that in
some cases the approximation ratio is even better than
guaranteed by the lower bound. The primal-dual algo-
rithm also solves instances optimal that are worst case
instances for [3].

The O(1) approximability of 2-GMMN is still un-
solved. = Given the good practical approximations
achievable and the rather specific requirements for O(1)-
inapproximability proofs for 2-GMMN — we still conjec-
ture that 2-GMMN admits an O(1) approximation.
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