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Pursuit and Evasion with Uncertain Bearing Measurements
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Abstract

We study pursuit-evasion games in which a determinis-
tic pursuer tries to capture an evader by moving onto
the evader’s position. We investigate how sensing ca-
pability of the pursuer affects the game outcome. In
particular, we consider a pursuer which can sense only
the bearing to an evader. Furthermore, there is noise in
the measurements such that an adversary may adjust
each bearing measured by an angle up to α away from
the true value.

We consider two classical pursuit evasion games un-
der this bearing uncertainty model. The first game is
played on the open plane. The pursuer tries to main-
tain the distance to an evader with equal speed. If the
pursuer has full knowledge of the evader’s location the
pursuer can maintain the separation between the play-
ers by moving toward the evader. However, when an
adversarial sensing model is introduced, we show that
for any pursuer strategy, the evader can increase the
distance to the pursuer indefinitely. The rate at which
the distance increases is linear in time.

In the second game, both players are inside a bounded
circular area. This version is known as the Lion-and-
Man game, and has been well studied when no sens-
ing limitations are imposed. In particular, the pursuer
(Lion) is known to have an O(r log r) strategy to capture
the evader, where r is the radius of the circle. In con-
trast, when sensing uncertainty is introduced, we show
that for any α > 0, there exist circular environments in
which the man can evade capture indefinitely.

1 Introduction

In a typical pursuit-evasion game, a pursuer tries to cap-
ture an evader who in turn tries to avoid capture. Ear-
lier pursuit-evasion games were studied as recreational
mathematics problems. For example, in the lion-and-
man game presented in [1] a lion tries to capture a man
in a circular arena. In recent years, pursuit-evasion
games have received significant attention due to their
applications in robotics and related fields [2].

In the last couple of years, our group has been working
on building a system of autonomous boats for tracking
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Figure 1: The robots designed for tracking fish during
the winter (left) and summer (middle). The direction-
sensitive antenna mounted on the robots (right). The
bearing to the target can be estimated by rotating the
antenna every α degrees. The bearing corresponding
to the maximum signal strength is taken as the true
bearing. Thus, the uncertainty is at most α.

radio-tagged invasive fish [3]. In our system, each boat
can rotate its directional antenna to measure the bear-
ing of a fish. See Figure 1. The goal is to track the
movement of the fish using these measurements. Mod-
eling such tracking problems as pursuit-evasion games
is advantageous because we do not have good models
for how the fish move. By modeling the targets as ad-
versaries that are trying to escape and designing cor-
responding pursuit strategies, we can obtain tracking
strategies which work regardless of the motion of the
fish. Furthermore, by considering adversarial sensing,
tracking strategies are made robust against sensor bi-
ases or incorrect sensing models.

For such pursuit strategies to be practically applica-
ble, they must work under realistic sensing models. Un-
fortunately, traditional formulations assume idealized
measurements. For example, consider the lion-and-man
game in which a lion tries to capture a man in a circular
arena [1]. The players have equal maximum velocities.
The lion can obtain the exact location of the man at all
times. In contrast, in most robotics settings the loca-
tion of the target is not available. In our fish tracking
application, the pursuer can measure only the bearing
rather than the exact location. Moreover, the measure-
ments are uncertain: if we rotate the antenna 2α degrees
between consecutive measurements and obtain the an-
gle with the highest signal value, our estimate of the
bearing can be off by α degrees.

In this work, we study pursuit-evasion games in which
the pursuer can obtain only uncertain bearing measure-
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ments. Bearing sensors, in particular cameras and mi-
crophone arrays, are commonly used in robotics and
sensor network applications. We provide two results.
First, we look into the simple setting of chasing the

evader in the open plane. When the players have the
same speed, the best the pursuer can do is to maintain
the initial distance between the players by moving to-
ward the evader along the line connecting them. The
evader can ensure that the separation is maintained by
moving away from the pursuer in the same direction.
The pursuer can execute this strategy even if he ob-
tains only bearing measurements (rather than the exact
location of the evader). In Section 2, we show that, if
the there is any uncertainty in bearing measurements,
the evader can increase the distance between the play-
ers. Specifically, we show that for any pursuer strategy,
there exists an evasion strategy which guarantees that
the distance between the players increases indefinitely.
Second, we study the lion-and-man game in a circu-

lar arena. Intuitively, it is easy to see that the pursuer
can get closer and closer to the evader by moving to-
ward it. This is because the evader has to move away
from the pursuer to maintain separation which is not
possible indefinitely in a bounded arena. Every time
the evader turns, the distance between the players de-
creases. Note that this greedy strategy can be executed
even when the pursuer can obtain only bearing measure-
ments 1. In Section 3, we show that the outcome favors
the evader if there is uncertainty in the measurements.
We show that, for any uncertainty value α, there are
circular environments in which the evader can escape
by presenting an evasion strategy.

1.1 Related Work

There are numerous pursuit-evasion games. A survey
of robotics-related pursuit evasion games can be found
in [2]. However, very few game models consider sensing
uncertainty. A notable exception is the result by Rote
who studied the problem of chasing the target in the
open plane [5]. In his model, the evader can hide its
true location and present any location within distance
d from his true location as the measurement. It was
shown that the evader can increase his distance from
the pursuer at a rate of Θ( 3

√
t), where t is the time spent

playing. In case of bearing measurements, we show that
the evader can do much better and ensure that the in-
crease in the distance is linear in t. Independent from
this work, Klein showed a linear rate for a distance-
dependent position error [6] with and without obstacles
in the open plane.
In the next section, we start by studying the game on

the open plane, followed by the Lion and Man version in

1This is not the most efficient pursuit strategy. Alonso et al.
present a near optimal strategy for capture [4]. Their strategy
however requires measuring the exact location of the man.

Section 3. For convenience, in the appendix we present
notation and explanations of variables used throughout
the paper.

2 Open Plane Pursuit

In this section we describe the evader’s strategy to win
the open-plane pursuit. We first cover the game model.
Let the position of the evader and pursuer at the begin-
ning of turn t be e(t) and p(t) respectively. Each turn
proceeds as follows. First, the pursuer measures the an-
gle b(t) = b⋆(t)+α(t), where b⋆(t) is the true bearing to
the evader and α(t) is the offset applied by the evader,
subject to |α(t)| ≤ α. Next, the pursuer chooses his next
location p(t + 1) subject to ||p(t + 1) − p(t)|| ≤ 1. The
strategy by which the pursuer chooses his next location
is given by the deterministic policy π : (P,B)→ p(t+1),
where P = {p(1), p(2), · · · , p(t)} is the previous pursuer
positions, and B = {b(1), b(2), · · · , b(t)} is all the mea-
surements received by the pursuer up to time t. Next,
the evader moves to e(t+1) where ||e(t+1)−e(t)|| ≤ 1.
It is worth noting that we allow the evader to have full

knowledge of the policy chosen by the pursuer. Since
the pursuer is deterministic, this gives the evader the
power to predict the pursuer’s actions as a function of
his measurement history. We show that there is no pur-
suer policy which can account for all evader strategies
even though the pursuer can obtain bearing measure-
ments along the way.

2.1 Evader Strategy

We will show that for any deterministic pursuer policy
π, the evader can specify a trajectory and measurement
sequence to increase the distance between the pursuer
and evader. Let πp be the pursuer’s specified strategy.
The evader strategy proceeds in rounds, each consist-
ing of N turns. The evader will first simulate a possi-
ble measurement sequence, B, and observe the output
of the policy πp(P,B) (i.e., the pursuer’s trajectory).
Based on the pursuer’s trajectory, the evader will choose
a trajectory to follow, but will use the same measure-
ment sequence, B, used in the simulation step. Since
the pursuer’s response is a function of only the mea-
surements, the evader can follow a different trajectory
without altering the pursuer response, as long as the
measurements remain the same.
As shown in Figure 3, let the line p(0)e(0) be the

x axis of a coordinate frame which remains fixed for
the current round. Let d(0) be the separation between
p(0) and e(0) at the beginning of the round. There are
two parameters to the simulation, a constant Tα and
ρ. Here, N = Tα · d(0) is the length of the round (in
turns) and is specified by the evader, and ρ is an acute
angle (offset from p(0)e(0))) which is less than α. Tα

is given as follows (and is derived in Theorem 4). The
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Figure 2: The pursuer starts location p(0) and the
evader at e(0) separated by distance d(0). After N

steps, the pursuer is in a closed disc C of radius N cen-
tered at p(0). The key component of the evader strategy
is to generate two motions which produce the same set
of bearing measurements. Since the pursuer’s strategy
is deterministic (as a function of the bearing measure-
ment), the evader knows which half of C the pursuer
ends in (above or below the line p(0)e(0)). If the pur-
suer is anywhere in the lower half of C, (shaded portion),
the evader will be at location e(N). The closest posi-
tion the pursuer can take is at p⋆(N), and the ending
distance between the players is given by d(N). The case
if the pursuer is above or on the line is symmetric.

Figure 3: The evader’s simulation, which is used to
find the final pursuer’s location after N steps, given
measurement sequence B. The evader path is shown
along with one possible pursuer path. The true bearing
(b⋆(t)) and offset bearing (b(t)) are solid lines.

value of the constant Tα was chosen to maximize the
final distance at the end of the round (as a function of
α).

Tα =

(
1−

√
1

2 + 2 cosα

)
−1

. (1)

Given Tα, we solve for ρ (Figure 2) using the triangle
formed by the points e(0), p⋆(N), and e(N). This yields

ρ = π − sin−1
(
(1− T−1

α ) sinα
)
. (2)

The specific steps of the simulation are given in Algo-
rithm 2.1, and illustrated in Figure 3. The evader will
calculate the pursuer’s simulated location, p̂ as a func-
tion of the declared strategy πp for N = Tα · d(0) steps.
To construct an input measurement for each turn, the
evader will first find b⋆(t), the orientation of the line
p̂(t)e(t), where e(t) = (d + t cos ρ, t sin ρ) for each turn
t ∈ [1, N ]. Then, the sequence B = {b(1), · · · , b(N)} is
given by b⋆(t)− α for all N steps.

At the end of the simulation, the evader knows the
pursuer’s final location after N steps, p̂(N) as a re-
sponse to the measurement sequence B. The goal of
the evader’s strategy is to move to a final position e(N)

Algorithm 1 Evader Strategy: πe(α, d, πp)

Tα ←
(
1−

√
1

2 + 2 cosα

)−1

ρ← π − sin−1
(
(1− T−1

α ) sinα
)

⊲ Departure angle
p̂(1)← (0, 0) ⊲ Simulated pursuer location
B ← ∅ ⊲ Generated bearing measurements
N ← Tα · d ⊲ Optimal round length
for all t ∈ [1, N) do ⊲ Simulation Step

b⋆ ← orientation of the line connecting p̂(t)
and the point (d+ t cos ρ, t sin ρ)

B(t)← b⋆ − α

p̂(t+ 1)← πp(P̂ , B)
end for
if p̂(N) on or below pe then ⊲ Evader response

for all t ∈ [1, N ] do
e(t)← (d+ t cos ρ, t sin ρ)
Give measurement B(t)

end for
else

for all t ∈ [1, N ] do
e(t)← (d+ t cos ρ,−t sin ρ)
Give measurement B(t)

end for
end if

which is on the opposite side of pe as the final pursuer
position, p̂(N). We separate the result into two cases,
and show in both cases the desired result is possible.

Case 1 The final simulated pursuer position, p̂(N), is
on or below the line pe.

In this case the evader will move along the path spec-
ified by e(t) = (d+ t cos ρ, t sin ρ), and generate bearing
measurements B. Since the input does not change from
the simulation, p(N) will be p̂(N), and the final position
of the evader will be (d+N cos ρ,N sin ρ).

Case 2 The final simulated pursuer position, p̂(N), is
above the line pe.

In this case, the evader will follow a different trajec-
tory, E′ which is the reflection of E about pe. Or, e(t)
is the point (d + t cos ρ,−t sin ρ) for all t ∈ [1, N ]. As-
suming B does not change, the pursuer will again follow
the simulated output, p̂, and arrive at p(N) at the end
of the round, this case is similar to the previous case:
Both pursuer and evader are on the opposite side of pe.
We now show the bearing measurements B, do not need
to change while the evader is moving along the path E′.
To proceed, we need the following structural lemma.

Lemma 1 As shown in Figure 5, let ℓ1 and ℓ2 be
two parallel lines separated by perpendicular distance
d. Place any two non-coincident points on ℓ2, p1 and
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Figure 4: An illustration of Lemma 2: An evader at po-
sition e or e′ can generate the measurement b(t) because

the angle êp⋆e′ is less than 2α.

p2, separated by distance s > 0. Now consider a third
point at distance d or greater from ℓ2, x. The function
β(x)=p̂1xp2 is maximized at x⋆, which is at distance d

along the perpendicular bisector of p1 and p2.

Proof. The function β(x) is the angle between the two
points p1 and p2 from the point x, as shown. First,
notice if x is anywhere left of the line, ℓ1, we can move
the point toward the centroid of p1 and p2 and strictly
increase the angle β(x). Thus, the point maximizing
β(x) is on the line ℓ1.
Without loss of generality, let p1 be at the point (d,

s
2 )

and p2 be at (d,− s
2 ), and let the coordinates of the point

x be (0, y).

β(x) = tan−1

( s
2 − y

d

)
+ tan−1

( s
2 + y

d

)
(3)

It can be verified the maximum of the function occurs
when y = 0, corresponding to the point x being along
the perpendicular bisector of p1 and p2. �

Figure 5: An illustration of Lemma 1: The angle p̂1xp2,
labelled β(x), is maximized at the distance d along the
perpendicular bisector of p1 and p2.

We are now ready to prove the evader can take ei-
ther trajectory, E or E′, and still generate the same
measurement sequence B.

Lemma 2 Let E′ be the sequence of evader positions
given by {(d + t cos ρ,−t sin ρ) : t = [1, N ]}, and E

be the sequence of evader positions given by {(d +
t cos ρ, t sin ρ) : t = [1, N ]}. The bearing measurement
sequence B described in Algorithm 2.1 can be generated
by an evader following either E or E′.

Proof. As shown in Figure 4, the pursuer at every time
step is inside the circle denoted Cp(t) of radius t cen-

tered on p(0). Let β(t) be the angle ̂e(t)p(t)e′(t). By
Lemma 1, the position p(t) which maximizes the angle
β(t) is at the intersection of the x axis and the boundary
of Cp(t). We call this point p⋆(t) and the corresponding
angle β⋆(t).
Let the distance between p⋆(t) and the line e(t)e′(t)

be d(t). For all t ∈ [1, N ] the following holds.

d(t) = d(0) + t(cos ρ− 1) (4)

Note the minimum value is at t = N and d(N) > 0 by
design. The separation between e(t) and e′(t) is,

s(t) = |e(t)− e′(t)| = 2t sin ρ (5)

which is maximized when t = N . The angle, β⋆(t)
satisfies the following.

β⋆(t) = 2 · tan−1

(
s(t)

2d(t)

)
(6)

Recall tan−1(x) is monotone in x and the argument s(t)
2d(t)

is maximized at t = N . Therefore β⋆(t) is maximized
when t = N . By inspecting Figure 2 we see,

β⋆(t) = 2 · tan−1

(
d(N) sinα

d(N) cosα

)
(7)

which implies β⋆(N) = 2α, or β(t) ≤ 2α for all t ∈
[1, N ].
Consider the measurements B from the evader’s sim-

ulation (Algorithm 2.1). Recall each b(t) was given by
the angle to the point e(t) from p(t), minus α. We have

just proven the angle ̂e(t)p(t)e′(t) is less than 2α for any
p(t), as illustrated in Figure 4.
Thus, the angle between b(t) and e′(t) is less than α

for all p(t) and an evader at e′(t) can use an offset less
than α to generate the same measurement b(t) for all
t ∈ [1, N ]. �

The previous lemmas show that the evader can always
end up in Case 1, either by directly following trajectory
E, or by following an alternate trajectory E′, with the
choice resolved by the simulation before the first move is
made by either player. Thus, the ending configuration
is as shown in Figure 2. We are now ready to prove the
first main result of the paper: That each application of
the evader’s strategy yields a constant-factor increase in
the distance between the pursuer and evader.

Lemma 3 For any deterministic pursuer strategy, πp,
an evader distance d(0) away with maximum bearing
offset α, using Algorithm 2.1 produces a final separation
after N turns satisfying d(N) = η ·d(0) with η > 1 when
α > 0.
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Proof. The proof follows directly from the configura-
tion of the players at the end of the round. As shown
in Figure 2,

[Tαd(0)]
2
= [d(N) sinα]

2
+ [(Tα − 1)d(0) + d(N) cosα]

2

(8)

After some manipulation, we solve for d(N) as a func-
tion of d(0) as follows.

d(N) = d(0)
[√

cos2 α(Tα − 1)2 + 2Tα − 1− cosα(Tα − 1)
]

(9)

We call the term in brackets in the previous equation
η, and note Tα > 1 by design making η > 1 for any
positive α. �

We now consider repeated applications of the evader’s
strategy e.g., after playing for some large time, t. Since
each round increases the separation between the players
by a constant factor, and the length of the round is also
proportional to the separation at the start of the round,
we expect a logarithmic number of rounds played be-
fore any time t. We combine the logarithmic number
of rounds played before a given time t, with the expo-
nential increase to prove the following: the distance will
increase at a rate proportional to the time t.

Theorem 4 For any deterministic pursuer strategy,
πp, an evader using repeated applications of the strat-
egy given in Algorithm 2.1 increases the distance to the
pursuer, d(t), at a linear rate. At the end of t turns
playing, the distance satisfies the following at the end of
each evader round.

d(t) ≥ γ · t+ d(0) (10)

with γ =

(√
2

1 + cosα
− 1

)
(11)

Proof. Given the result of Lemma 3, we see the first
round takes time Tαd(0), and produces d(1) = βd(0).
Continuing, the ith round takes time Tα · d(i − 1), and
produces end-of-round separation d(i) = βd(i− 1). Or,
after expansion back to the first round, d(i) = βid(0).

For any time t, which falls at the end of n rounds, the
following holds.

t =

n∑

i=0

Tα · (βid(0)) (12)

Which implies n = logβ

(
1 + t β−1

Tα·d(0)

)
. At the end of

these n rounds, the separation is,

d(t) = d(0)βn (13)

= d(0)βlogβ(1+t
β−1

Tα·d(0) ) (14)

= d(0) + t
β − 1

Tα

(15)

(a) (b) (c)

Figure 6: a) The lion-and-man starting configuration.
At the start of the game, the evader chooses his lo-
cation diametrically opposite the pursuer’s location. b)
The three-phase strategy starts when the pursuer enters
(or starts within) the home region H, a circle of radius
rα, or moves to within distance 2rc of the evader. The
boundary of the arena is assumed to be much larger
than rα, but is upper-bounded in Theorem 7. c) Af-
ter sufficiently increasing the distance between players
(Phase 1), and inducing an angular offset (Phase 2) the
evader dashes back to the home region, re-entering with-
out being captured (Phase 3).

Note the constant β contains both Tα and α. It can be
verified the choice of Tα given in Equation (1) maximizes
β−1
Tα

when α ∈ (0, π
2 ], and produces a rate of increase as

given in the theorem statement. �

3 The Lion and Man Game

We now investigate the effect of uncertain bearing mea-
surements in the context of the classical Lion-and-Man
game. The game is played in a circular arena. At the be-
ginning of the game, the pursuer specifies a starting lo-
cation p(0) followed by the evader choosing a starting lo-
cation e(0). The game proceeds in turns. First, the pur-
suer obtains a measurement, i.e. the angle to the evader,
b(t). As before, due to uncertainty, b(t) = b⋆(t) + α(t)
where b⋆ is the orientation of the line through the two
players, adjusted by α(t), an angle of the evader’s choos-
ing up to absolute value α. The pursuer moves to a
point contained inside the arena and within the step size
which is normalized to one unit. We again assume the
pursuer must choose a deterministic strategy πp which
is a function of the bearing measurements and his prior
locations. After the pursuer’s move, if the evader is
within a fixed radius (rc) the pursuer wins the game.
Otherwise, the evader may make his move of up to one
unit distance in the same way as the pursuer.
To win the Lion-and-Man game, the evader (the man)

must maintain a separation from the pursuer (the lion)
which is greater than the capture radius (rc), regardless
of the pursuer strategy. We will show it is possible: For
any given α > 0, there exist environments in which the
evader can forever escape a deterministic pursuer.
The evader’s strategy proceeds in three phases, each
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illustrated in Figure 6. During the first phase, the
evader will move away from the lion and repeatedly
use Algorithm 1 to increase the separation between the
players. In the second phase, the evader will execute
a local maneuver, which ensures the man is offset from
the line between the center of the arena and the pur-
suer by an angle greater than α

3 . In Phase 3, the evader
will exploit the separation between itself and the lion
to make a dash toward the center of the arena. When
it is “close enough” to the center, the evader will start
over from Phase 1. In the remainder of the paper we
will show the evader can repeat these three steps indef-
initely while avoiding capture, regardless of the lion’s
strategy.

3.1 Evader’s Winning Strategy

We now present the strategy for the evader to win the
Lion-and-Man game. The technical details of the three
phases are given as separate proofs (Corollary 1 and
Lemmas 5- 6). Following, we show the three phases,
taken together, produce a repeatable evader strategy in
Theorem 7.
The starting configuration is depicted in Figure 6(a).

As shown, let c be the center of the arena. The evader
will identify a home region H inside the arena where H

is a circle centered at c. The radius ofH, rα is a function
of α and rc and specified in Theorem 7. Let the pursuer
start at location p, at distance rp from c. The evader
will choose to start inside the boundary of H at distance
rα − 2rc diametrically opposite the pursuer. Before the
first Phase, the evader will simply wait until the pursuer
enters H. Then, the evader will move directly away
from the pursuer’s current location until he reaches the
boundary of H. At this time, Phase 1 begins.
The beginning of Phase 1 is illustrated in Fig-

ure 6(a). In Phase 1, the evader will repeatedly apply
the distance-increasing strategy from Section 2 (Algo-
rithm 2.1). Each application of the strategy is called
a round, and Phase 1 ends when enough rounds have
been completed to increase the separation between the
players to a desired distance d > 1

sin α
3
. The key to

the analysis of Phase 1 is to show that the players do
not travel an unbounded distance from the center of the
arena. Since Theorem 4 provides a lower bound on the
separation between the players as a function of the num-
ber of turns spent, we can bound the number of turns
required in Phase 1 as follows.

Corollary 1 (Effect of Phase 1) Let the distance
between the pursuer and evader at the start of Phase
1 be d(0) ≥ rc. After T turns, the separation is greater
than d(T ) ≥ γT , where γ = 1

cos α
2
− 1, is given in The-

orem 4. For any given desired separation d, T ≤ d
γ
=

d
(

cos α
2

1−cos α
2

)
turns are required.

Figure 7: At the end of Phase 1 the pursuer p and
evader e are separated by a distance d given in Corol-
lary 1. At the start of Phase 2, the evader examines
the angle θ. If θ > α

3 the evader can move on to Phase
3. Otherwise, he chooses his next move based on the
next pursuer location, in region I, II, or III, as stated in
Lemma 5

After Phase 1, the players are in the configuration
shown in Figure 7. Let the pursuer’s distance from c

at the end of Phase 1 be rp, and let Cr be the circle of
radius rp centered on c. Similarly, let re be the distance
of the evader from c. Because the players traveled at
most distance d

γ
from the region H, we know Phase

1 ensures rp ≤ rα + d
γ
. Since the distance between

the players is d, we know Phase 1 also ensures re ≤
rα + d(1+ 1

γ
). The evader will check the angle θ, which

is the orientation of the line pe with respect to the line
cp (i.e., the angle π − êpc), as labelled in Figure 7. If
θ > α

3 , the evader will move on to Phase 3. Otherwise,
the evader must make a local move (Phase 2) to create
the desired value of θ as described next.

First, the evader will wait until the pursuer makes
a move outside the circle Cp or θ ≥ α

3 . While the pur-
suer remains inside Cp, the evader does not need to take
any action, and does not adjust the pursuer’s bearing
measurements from their true value. When the pursuer
exits the circle Cp, and θ is still less than α

3 , the evader
will begin a simulate step, exactly as described in Sec-
tion 2, for d turns (just enough time for the pursuer to
reach the evader’s initial location, e).

Let e1 and e2 be two points, offset by ±α from the line
pe at distance d from e. As before, the evader constructs
the bearing measurement sequence to be the orientation
between the current simulated pursuer location p̂(i) and
the point distance i along the line segment ee2, starting
at the point e when i = 0. As before the bearings are
offset by negative α.

Let p̂ be the final pursuer location after the simulated
move. First, if p̂ is inside the circle Cp (in region III in
Figure 7), the evader does not need to take any action,
and will continue to wait in Phase 2. Otherwise, we par-
tition the possible locations of p̂ into two sets, I and II,
divided by the line ce, as shown in Figure 8(a) and 8(b),
respectively. If p̂ ∈ I, the evader will choose to move
to e1, otherwise he moves to e2. In such a case, Phase
2 ends when the evader reaches e1 or e2 after d turns.
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We use the following lemma to show the configuration
of the players after Phase 2.

Lemma 5 (Effect of Phase 2) Let p and e be the
pursuer and evader position after Phase 1 as shown in
Figure 8. Consider the point p̂, at most distance d from
p, and falling into region I or II (outside the radius rp).
For any such p̂ there exists a corresponding point ê, at
most distance d from e such that all of the following
hold.

1. Max rp: The distance between p̂ and c is at most
d(1 + 1

γ
) + rα

2. Max re: The distance between ê and c is at most
rp + d = d(2 + 1

γ
) + rα

3. Separation: The distance between p̂ and ê is at least
d.

4. Angular Offset: The angle θ, which is measured
between the line p̂ê and the line cp̂ is at least α

3 .

Proof. As illustrated in Figure 8, Let c be the center of
the playing environment. Let the pursuer be at position
p and radius rp from c, and the evader be at radius
re ≥ rp + d. From Corollary 1, we know the players
travelled at most distance d

γ
after exiting H and the

evader is distance d away.

(a)

(b)

Figure 8: a and b) By Lemma 5, the evader can choose
to move to location e1 or e2, based on the pursuer’s
chosen location in region I or II, producing θ1 or θ2
greater than α

3 , respectively. If the pursuer moves to
region III, the evader will remain at position e.

For any pursuer location, p̂, and evader location ê,
we notice the first two conditions stated in the theorem
hold, since the evader and pursuer move at most dis-
tance d. Also note for any p̂ above (resp. below) the
line ce, the point e1 (resp. e2) is at least distance d away,
since l(ee1) = d and l(ee2) = d. It remains to show the
evader has achieved an angular offset as stated.

Consider case I: p̂ ∈I, and the evader has moved to
e1, as illustrated in Figure 8(a). Let β be the angle

ê1p̂c, implying θ1 = π − β. Of all p̂ ∈I, β is maximized
(θ1 minimized) when p̂ = p2. To see this, draw the
line ce1, find its midpoint, and recall from Lemma 1 β

increases by moving p̂ toward the midpoint. We now
show θ1 ≥ α

3 .
First find the perpendicular projection of e1 onto the

line ce. The distance of the projection from the point
p2 is d + d cos(α + µ). The length of the projection is

d sin(α + µ). Since tan θ1 = d sin(α+µ)
d+d cos(α+µ) = tan

(
α+µ
2

)
,

θ1 > α
2 .

Consider case II: p̂ ∈II, and the evader has moved to
e2, as illustrated in Figure 8(b). By a similar argument
as before, we see β is maximized when p̂ = p2. We
again find the projection of e2 onto the line ce, which
has length d cos(α − µ), and intersects ce at distance
d + d sin(α − µ) from p2 Now, we note µ < θ < α

3

by assumption. Therefore tan θ2 >
d sin( 2α

3 )
d+d cos( 2α

3 )
which

implies θ2 > α
3 . Thus, all four conditions are proved.

�

To recap the result of Phase 1 and 2, we know the
pursuer is inside a circle Cp, with radius rp ≤ rα+d(1+
1
γ
), and the evader is inside the circle Ce with radius

re ≤ rp + d. We also know the evader is offset from the
line cp by an angle at least α

3 and is distance at least d
from the pursuer. The evader will now move on to the
last phase. Now the evader will move at an angle from
the line pe, given by π

2 +φ, where φ = θ− sin−1 rc
d
. The

angle φ is chosen so for any rc, there exists a separation
d which makes it possible for the evader to move closer
to the center of the arena without being captured. This
move is called Phase 3, and is illustrated in Figures 9(a)
and 9(b).

Lemma 6 (Effect of Phase 3) Let c be the center of
the playing circle, and a pursuer with capture radius rc
be distance rp from the c. Let the evader be distance d

away from the pursuer, and offset from the line between
the pursuer and center of the circle by an angle θ. The
evader can reach a point distance r⋆ from the center of
the circle without being captured where r⋆ satisfies

r⋆ ≤ rp cos (φ) +
√
d2 − r2c (16)

with φ = θ − sin−1
(rc
d

)
> 0. (17)

Proof. For simplicity, let us consider the case of rc = 0
as illustrated in Figure 9(a). The locus of all points
equidistant from p and e is given by the perpendicular
bisector of the line pe, which we label ℓ. By travelling
parallel to ℓ the evader can reach the point e2 before
the pursuer can. Since the line pe and ce2 are parallel,
we see the angle p̂ce2 is exactly θ. The distance l(pe2)
is given by rp cos θ + l(pe) = rp cos θ + d, as desired.
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(a)

(b)

Figure 9: During Phase 2, the evader will move at an
angle φ + π

2 , where φ is measured with respect to the
line from the center of the circle to the point p. After
Phase 2, the evader is at position e2. Lemma 5 shows
θ ≥ α

3 and bounds rp and Lemma 6 bounds the distance

from the center to e′. Note φ = θ − sin−1 rc
d

and d is
chosen such to ensure φ > 0.

In the case of rc > 0, the evader modifies his strategy
as follows. We observe escaping capture by a pursuer
with rc > 0 is the same as escaping any pursuer p′ with
rc = 0, when the initial position of p′ is at most distance
rc from the point p. We will find an escape path for the
evader along which no p′ which can achieve capture.

To proceed we draw a line tangent to the circle of
radius rc and passing through e. Let the tangent point
on the circle be pt. The evader will travel parallel to the
perpendicular bisector of the line segment ept, labelled
ℓ until he reaches the location closest to c, labelled e2
in Figure 9(b).
To see the evader can reach e2 without being cap-

tured, consider any pursuer with no capture radius
(rc = 0) at location p′, at most distance rc from the
point p. Let ℓ′ be the perpendicular bisector of the line
ep′. For any p′ 6= pt, the line ℓ′ rotates away from e2,
leaving e2 safely on the evader’s side. For any p′ closer
to e, the line ℓ′ moves closer to e2, but for e2 to lie on
ℓ′, p′ must be coincident with e. Since the evader enters
Phase 2 with separation d > 0, this is not possible.

To find the inner radius, note ce2 is parallel with the
line passing through e and tangent to the capture circle,
implying p̂ce2 is exactly θ − sin−1

(
rc
d

)
. The distance

l(pe2) is given as stated in the lemma.
�

We now show the evader ends in the home region,
H. After entering the home region, the evader can con-

tinue to move directly away from the pursuer’s location.
Upon exiting H, the game has reset, and the evader can
start over in Phase 1, repeating indefinitely.

Theorem 7 Let φ be α
3 − sin−1 rc

d
, and let d be any

constant greater than rc
sin α

3
. Let γ be the constant(√

2
1+cosα − 1

)
from Theorem 4. An evader beginning

inside a circle H of radius rα =
d(1+ 1

γ
) cosφ+

√
d2

−r2c
1−cosφ

can, after all three phases described, return to the circle
H without being captured.

Proof. By assumption, the radius of H is rα =
d(1+ 1

γ
) cosφ+

√
d2

−r2c
1−cosφ . After Phase 2, as stated in

Lemma 5, the pursuer is at most distance rp = rα +
d(1 + 1

γ
) from the center, c.

rp =
d(1 + 1

γ
) cosφ+

√
d2 − r2c

1− cosφ
+ d(1 +

1

γ
) (18)

We now apply Lemma 6 to find the inner radius reach-
able by the evader. Let the inner radius be r⋆.

r⋆ =
[
d(1 + 1

γ
) cosφ+

√
d2 − r2c

1− cosφ
+ d(1 +

1

γ
)

]
cosφ+

√
d2 − r2c

(19)

After distributing cosφ and the denominator we have,

r⋆ =

d(1 + 1
γ
) cos2 φ+

√
d2 − r2c cosφ

1− cosφ

+
d(1 + 1

γ
) cosφ(1− cosφ) +

√
d2 − r2c (1− cosφ)

1− cosφ
(20)

=
d(1 + 1

γ
) cosφ(cosφ+ 1− cosφ)

1− cosφ

+

√
d2 − r2c (cosφ+ 1− cosφ)

1− cosφ
(21)

=
d(1 + 1

γ
) cosφ+

√
d2 − r2c

1− cosφ
(22)

Thus, at the end of Phase 3, assuming rα, φ, and d are
chosen as stated, the evader is again inside the home
region, H and is outside the capture radius of the pur-
suer. �

4 Concluding Remarks

In this paper, we studied novel pursuit-evasion games
in which the pursuer can obtain only uncertain bearing
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measurements. We showed that the evader can exploit
bearing uncertainty to change the outcome of the game
in his favor in two classical games.
In the games we considered, there is only one pur-

suer and the players have the same maximum speed. It
is likely that the evader can be captured by either in-
creasing the number of pursuers or the maximum speed
of the (single) pursuer. Obtaining bounds for these ver-
sions are interesting avenues for future research.
Another avenue is to allow randomization in pursuer

strategies. The evader strategy in the open plane can
be modified to work against randomized strategies since
this game is infinite. In the lion-and-man game how-
ever, when the pursuer can measure the true location,
the number of steps until capture is finite. It is plausi-
ble that by discretizing the disk, we can obtain a finite
set containing all pursuit strategies. No matter which
strategy the evader plays, at least one element of this
set would capture the evader and this strategy can be
“guessed” using randomization. Hence the evader can
be captured even without any measurements. The cap-
ture time resulting from this argument would be expo-
nential in the duration of the game. In [7], it was shown
that the capture time is indeed exponential when the
game takes place on arbitrary graphs. Whether this
bound can be improved when bearing measurements are
available is left for future research.
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A Notation and Constants

p The pursuer’s current position. p(t) is used for time-
indexed positions.

e The evaders’s current position. e(t) is used for time-
indexed positions.

b⋆(t) the orientation of the line ℓ in a fixed world coor-
dinate frame at the start of turn t.

âbc the angle formed by the points a, b, and c

ab the line passing through points a and b

l(ab) the length of the line segment connecting points
a and b

b(t) The pursuer’s measurement of the orientation of
pe, as adjusted by the evader during turn t.

α The evader’s maximum angular disturbance of b(t)

C(a, r) a circle centered on point a of radius r

rc The capture radius of the pursuer, as used in the
Lion-and-Man game.

Tα The optimal duration of Algorithm 1 is given by
Tα · d, where d is the distance between the players
at the start of the algorithm. Defined in Equation 1

γ
(√

2
1+cosα − 1

)
The rate at which an evader can in-

crease the distance between himself and a purser,
defined in Equation 11.

α The maximum angular disturbance in the pursuer’s
bearing measurement.

ρ The evader’s escape angle during the Open Plane
Pursuit game. Defined in Equation 2 to be π −
sin−1

(
(1− T−1

α ) sinα
)

θ The angle between cp and pe, or ĉpe.

φ The evader’s escape angle during Phase 3 of the Lion
and Man game. Defined in Theorem 7
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