
CCCG 2014, Halifax, Nova Scotia, August 11–13, 2014

The Maximum Disjoint Set of Boundary Rectangles

AmirMahdi AhmadiNejad∗ Hamid Zarrabi-Zadeh∗

Abstract

We consider the problem of finding a maximum disjoint
set of boundary rectangles, where all rectangles are at-
tached to the boundary of a bounding box. We present
an algorithm for solving the problem in O(n4) time,
improving upon the best previous O(n6)-time solution
available for the problem.

1 Introduction

In this paper, we study the problem of finding a max-
imum disjoint set of boundary rectangles, which is de-
fined as follows.

Problem 1 Given an axis-parallel rectangular region
R, and a set S = {1, 2, . . . , n} of n boundary rectan-
gles inside R, where all rectangles are attached to the
boundary of R, find a subset T ⊆ S of disjoint rectan-
gles such that

∑
i∈T wi is maximized, where wi is the

weight of rectangle i.

Figure 1 illustrates an instance of the problem, in which
all rectangles have the same weight. The problem is
mainly motivated by the following bus escape routing
application in VLSI design [2, 8]. Suppose n chips are
placed on a circuit board, where all chips and the circuit
board are axis-parallel rectangles. We want to route all
chips to the boundary of the board using a set of disjoint
horizontal/vertical buses of minimum total length/area.
One can reduce this problem to Problem 1 by replac-
ing each chip by four boundary rectangles obtained by
extending the chip in four directions, and assigning to
each boundary rectangle an appropriate weight, e.g., its
area or length.

The problem of finding a maximum disjoint set of
axis-parallel rectangles in the plane is known to be NP-
hard [6]. The current best approximation algorithm for
the problem is due to Chan and Har-Peled [4], which
has an approximation factor of O(log log n/ log n).
Adamaszek and Wiese [1] have introduced a quasi-
polynomial time (1+ε)-approximation algorithm for the
problem. When all rectangles are fat (i.e., have bounded
aspect ratio), PTASs are available [3, 5]. Kong et al. [7]
have recently considered a special case of the problem

∗Department of Computer Engineering, Sharif Uni-
versity of Technology. am ahmadinejad@ce.sharif.edu,

zarrabi@sharif.edu

Figure 1: A set of boundary rectangles. A maximum
disjoint set is shown in gray.

where all rectangles are attached to the boundary of a
bounding box (i.e., Problem 1). They showed that this
problem can be solved optimally in O(n6) time.

Our Contribution. In this paper, we present an im-
proved O(n4)-time algorithm for the problem of finding
a maximum-weight disjoint set of boundary rectangles.
Our algorithm improves the best previous O(n6)-time
algorithm for the problem presented by Kong et al. [7].
As a byproduct, we show that a 2-approximation to the
problem can be computed in O(n2) time.

The idea is to use a dynamic programming technique,
solving the problem using solutions to the smaller sub-
problems. In particular, similar to [7], we first solve the
restricted k-sided subproblems, in which all boundary
rectangles are attached to only k sides of the bounding
box. The 1-sided case is equivalent to the problem of
finding a maximum-weight set of disjoint intervals, and
can be solved in O(n log n) time via dynamic program-
ming.

For the 2-sided case, we present a new O(n2)-time
dynamic programming algorithm, improving the O(n3)-
time solution provided in [7]. Our algorithm is not only
faster, but is also simpler and self-contained. In partic-
ular, our algorithm avoids using topological sorting and
DAG shortest paths used as subroutines in [7]. For the
3-sided case, Kong et al. claimed an O(n3)-time algo-
rithm which is not fully correct, as it misses to consider
all possible configurations of the optimal solution (see
Section 4 for more details). A simple adaption of their
solution to fix this issue increases the running time of
the 3-sided case to O(n4), and hence, increases the total
complexity of their algorithm to O(n7). Our solution to
the 3-sided case uses a novel decomposition, enabling



26th Canadian Conference on Computational Geometry, 2014

us to solve all possible 3-sided subproblems in O(n4)
total time. Finally, for the general 4-sided problem, we
devise a new decomposition, and manage to solve the
whole problem in O(n4) overall time.

2 Preliminaries

Let R be a rectangular region in the plane, and S =
{1, 2, . . . , n} be a set of n boundary rectangles inside
R, where each boundary rectangle is attached to one of
the four sides of R. Each rectangle i ∈ S has a weight
wi > 0. Throughout this paper, we assume that all
rectangles are axis-parallel. Two rectangles are disjoint,
if their interior do not intersect. We denote by S`, Sr,
St, and Sb the subsets of rectangles in S attached to
the left, right, top, and bottom sides of R, respectively,
with ties being broken arbitrarily.

We denote by it and ib the (y coordinates of the) top
and bottom sides of rectangle i, respectively. Similarly,
we use i` and ir to denote the (x coordinates of the)
left and right side of rectangle i, respectively. For ease
of presentation, we assume that no two rectangles have
vertical or horizontal sides at the same x or y coordi-
nates. This restriction can be easily relaxed by imposing
a total ordering on the rectangles sides to properly order
sides with the same x or y coordinates.

Given two rectangles i and j in S` ∪ Sr, attached to
the opposite sides of R, we define the following types of
borders:

• The border δ(it) is obtained by extending it. Sim-
ilarly, δ(ib) is obtained by extending ib.

• If jb 6 it 6 jt, the border δ(it, jb) is obtained by
extending it until it hits rectangle j, then moving
downward to reach jb, and then finishing the border
by adding jb to it (see Figure 2).

• If jb 6 ib 6 jt, the border δ(ib, jb) is obtained just
like δ(it, jb), except first extending ib instead of it.
If ib 6 jb 6 it, we set δ(ib, jb) = δ(jb, ib).

There are O(n2) different borders. Given a border δ,
let R(δ) denote the subregion of R bounded from above
by δ. Let B(δ) be the set of all borders specified by the
rectangles in R(δ). We define next(δ) to be a border
δ′ ∈ B(δ) with the largest R(δ′), i.e., with no other
border of B(δ) lying between δ and δ′.

Lemma 1 For each border δ, next(δ) can be computed
in O(1) time, after O(n2) preprocessing time.

Proof. For each rectangle i, we keep a sorted list Li

of all borders containing ib as their lower segment. If
a border consists of only one segment, its lower and
upper segments are the same. Furthermore, we define

i

jδ(it, jb)

r

δ(ib, rb)

δ(jt)

δ(kb)k

Figure 2: Different types of borders.

n(ib) (resp., n(it)) to be the rectangle with the highest
top which is below ib (resp., below it).

Suppose that the lower segment of δ is jb. We look
for the next element of δ in Lj . If such border exists, it
is next(δ). Otherwise, next(δ) = δ(n(jb)), since there is
no border after δ in Lj , and the highest border below
δ should be completely below bottom(δ) = jb. If δ =
δ(it), then next(δ) is equal to δ(n(it)).

Now we show how to compute Li and n(·) function for
all rectangles in O(n2) time. For each rectangle i, n(ib)
(resp., n(it)) can be computed by scanning all the rect-
angles and finding the one with the highest top which is
below ib (resp., below it). This takes O(n) time for one
rectangle, and O(n2) time for all rectangles. To com-
pute Li’s, we first sort the set of all horizontal segments
of borders (i.e., the top and bottom sides of the rect-
angles) in the decreasing order of their y coordinates in
O(n log n) time. After that, for each rectangle i, Li can
be computed by a simple scan over the sorted list and
generating all valid borders containing the bottom side
of i in O(n) time. Therefore, we can compute Li for all
rectangles in O(n2) overall time. �

3 The 2-Sided Problem

We start by solving the 2-sided problem, in which all
input rectangles are attached to only two sides of the
region R. If these two sides are parallel, an opposite
case arise, otherwise, it is called a corner case.

3.1 The Opposite Case

In the opposite case, either S = S` ∪ Sr or S = St ∪ Sb.
We assume, w.l.o.g., that S = S` ∪ Sr. Given a border
δ, we denote by Opposite(δ) the weight of an optimal
solution lying completely inside R(δ). The answer to
the opposite case is equal to Opposite(δ(kt)), where k
is the topmost rectangle in S.

Theorem 2 For all borders δ, Opposite(δ) can be com-
puted in O(n2) total time.



CCCG 2014, Halifax, Nova Scotia, August 11–13, 2014

δ

k

i

j

r

δ′

Figure 3: The region R(δ, δ′).

Proof. Let OPT be an optimal solution for the rectan-
gles inside R(δ). We recursively compute Opposite(δ)
as follows:

• δ = δ(it, jb): In this case, either i ∈ OPT or
not. If i ∈ OPT, then Opposite(δ) = wi +
Opposite(δ(ib, jb)). Otherwise, Opposite(δ) =
Opposite(next(δ)).

• δ = δ(ib, jb): In this case, Opposite(δ) is simply
equal to Opposite(next(δ)), since there is no valid
rectangle between δ and next(δ).

• δ = δ(it): Again, either i ∈ OPT or not. If i ∈
OPT, let k be the topmost rectangle below it in the
opposite side of i, which does not intersect i. If kt ∈
[ib, it] then Opposite(δ) = wi + Opposite(δ(kt, ib)),
otherwise, Opposite(δ) = wi + Opposite(δ(ib)). If
i 6∈ OPT, then Opposite(δ) = Opposite(next(δ)).

• δ = δ(ib): In this case, Opposite(δ) is simply equal
to Opposite(next(δ)).

By Lemma 1, the next borders are accessible in O(1)
time after O(n2) preprocessing time. Moreover, the
rectangle k in the third case can be obtained simi-
lar to n(it) function in Lemma 1 in O(1) time after
O(n2) preprocessing time. In all cases described above,
Opposite(δ) can be computed using a constant number
of previously-computed borders in a dynamic program-
ming fashion. Since the number of borders is O(n2),
Opposite(δ) for all borders δ can be computed in O(n2)
total time. �

We define another related subproblem here. Given two
borders δ and δ′, we denote by R(δ, δ′) the region of R
lying between δ and δ′ (see Figure 3), and denote by
Opposite(δ, δ′) the weight of an optimal solution for the
rectangles lying inside R(δ, δ′).

Corollary 1 For all pairs of borders δ and δ′,
Opposite(δ, δ′) can be computed in O(n4) total time.

Proof. Fix a border δ′. We remove all rectangles below
δ′ in O(n) time. We then use Theorem 2 to obtain the
solutions to Opposite(δ, δ′), for all borders δ (above δ′),
in O(n2) time. Since the number of borders δ′ is O(n2),
the total time needed is O(n4). �

j

i

`′

`

Figure 4: Illustration for the splitter line.

j

i

Figure 5: The region corresponding to Corner(i, j).

3.2 The Corner Case

In the corner case, all input rectangles are attached to
only two neighboring sides of R. We assume, w.l.o.g.,
that the two neighbor sides are the left and the bottom
ones, i.e., S = S` ∪ Sb.

Consider an optimal solution to the corner case. We
call a line a splitter, if it does not cut any rectangle
in the optimal solution. The following lemma reveals a
nice structural property of the optimal solution.

Lemma 3 Let OPT be an optimal solution to the cor-
ner case, i be the topmost rectangle in OPT∩S`, and j
be the rightmost rectangle in OPT∩Sb. If ` and `′ are
the lines obtained by extending ib and j`, respectively,
then either ` or `′ is a splitter (see Figure 4).

Proof. Suppose, to the contrary, that both lines cut
some rectangles in OPT. Note that ` can only cut rect-
angles from Sb, and `′ can only cut rectangles from S`.
Suppose that ` cuts a rectangle k ∈ Sb ∩ OPT. Then
k is either j or a rectangle completely to the left of j.
Now any rectangle in S`∩OPT intersecting `′ (which is
either i or a rectangle below it) must also intersect rect-
angle k, which contradicts the disjointness of rectangles
in OPT. �

Given two rectangles i ∈ S` and j ∈ Sb, we denote
by R(it, jr) the region below it and to the left of jr
(see Figure 5). The regions R(ib, jr), R(it, j`), and
R(ib, j`) are defined analogously. We use Corner(it, jr)
to denote the weight of an optimal solution to the cor-
ner case composed of the rectangles within R(it, jr).



26th Canadian Conference on Computational Geometry, 2014

Corner(it, j`), Corner(ib, jr), and Corner(ib, j`) are de-
fined analogously. We set Corner(i, j) = Corner(it, jr).

Theorem 4 For all pairs of rectangles i ∈ S` and j ∈
Sb, Corner(i, j) can be computed in O(n2) total time.

Proof. Let H = {it : i ∈ S`} ∪ {ib : i ∈ S`}, and V =
{j` : j ∈ Sb}∪ {jr : j ∈ Sb}. For each x ∈ H, we denote
by nb(x) the topmost item in H below x. Moreover, for
each v ∈ V , we denote by n`(v) the rightmost item in
V to the left of v.

By Lemma 3, there is always a splitter that separates
one rectangle of the optimal solution from the others.
We consider two cases:

• Case 1: The splitter is defined by a rectangle
in Sb. This rectangle is either j or some rectan-
gle to the left of jr. Therefore, Corner(it, jr) =
max{wj + Corner(it, j`),Corner(it, n`(jr))}. More-
over, Corner(it, j`) = Corner(it, n`(j`)), since
there is no valid rectangle between j` and n`(j`).
Corner(ib, jr) and Corner(ib, j`) are computed sim-
ilarly in this case.

• Case 2: The splitter is defined by a rectan-
gle in S`. This rectangle is either i or some
rectangle below it. Therefore, Corner(it, jr) =
max{wi + Corner(ib, jr),Corner(nb(it), jr)}.
Moreover, Corner(ib, jr) = Corner(nb(ib), jr).
Corner(it, j`) and Corner(ib, j`) are computed
similarly in this case.

By the above formulae, we need to check a con-
stant number of subproblems in order to compute
Corner(ix, jz) for x ∈ {t, b} and z ∈ {`, r}. Since the
values of nb(·) and n`(·) are accessible in O(1) time,
after O(n log n) preprocessing (sorting) time, and the
total number of subproblems is O(n2), we can compute
Corner(i, j), for all pairs (i, j), in O(n2) total time. �

4 The 3-Sided Problem

In the 3-sided problem, one of the subsets S`, Sr, Sb

and St is empty. We assume, w.l.o.g., that St is empty.
Therefore, S = S` ∪ Sb ∪ Sr. For a border δ, we define
3-sided(δ) to be the weight of an optimal solution for
the rectangles inside R(δ).

Theorem 5 For all borders δ, 3-sided(δ) can be com-
puted in O(n4) total time.

Proof. Assume δ = δ(it, jb). (The other borders are
handled analogously.) Let OPT be an optimal solution
realizing 3-sided(δ). We have two cases:

• Case 1: Sb ∩OPT = ∅. Since there is no rectangle
from Sb in OPT, the problem reduces to a 2-sided
opposite case, i.e., 3-sided(δ) = Opposite(δ).

δ
i

j

b

R1 R2

`

(a) Subcase 2.1

δ
i

j

b

`R(δ, δ′)

δ′
k

(b) Subcase 2.2

Figure 6: Case 2 of the 3-sided problem.

• Case 2: Sb ∩OPT 6= ∅. Here, there is at least one
rectangle from Sb in OPT. Let b be the tallest such
rectangle. We extend br until it touches δ to obtain
the line segment ` (see Figure 6). The following two
subcases arise:

− Subcase 2.1: No rectangle in OPT intersects `.
Here, the region R(δ) is divided by ` into two dis-
joint subregions R1 and R2 (see Figure 6a), each
of which contains rectangles from only two sides.
Therefore, 3-sided(δ) = Corner(R1) + Corner(R2).

− Subcase 2.2: At least one rectangle in OPT,
say k, is intersecting ` (see Figure 6b). We as-
sume, w.l.o.g., that k ∈ Sr. We construct a bor-
der δ′ by extending kb until it reaches the other
side of the rectangular region R, or it reaches an-
other rectangle in S` ∩ OPT. Note that no rect-
angle in Sb ∩ OPT intersects δ′, because b is the
tallest rectangle in Sb ∩ OPT. Now the region
R(δ) is divided into two subregions R(δ, δ′) and
R(δ′). R(δ, δ′) is an opposite case and R(δ′) is a
3-sided subproblem with δ′ below δ. Therefore,
3-sided(δ) = Opposite(δ, δ′) + 3-sided(δ′).

The final solution, 3-sided(δ), is obtained by taking the
maximum of all the above cases. In Case 1, we need
the solution to Opposite(δ), which is available in O(1)
time, after O(n2) preprocessing time by Theorem 2. In
Case 2.1, we remove all rectangles not in R(δ), and
use Theorem 4 to compute all corner subproblems in



CCCG 2014, Halifax, Nova Scotia, August 11–13, 2014

i
R1 R2

R3

j

k

i∗

Figure 7: Illustrating a bug in Kong et al.’s algorithm.

R(δ)∩ (S`∪Sb) and R(δ)∩ (Sr ∪Sb) in O(n2) time. Af-
ter that, Corner(R1)+Corner(R2) can be computed, for
all rectangles b ∈ Sb ∩R(δ), in O(n) time. Case 2.2 re-
quires Opposite(δ, δ′), which is available in O(1) time,
after O(n4) preprocessing time by Corollary 1. Since
δ′ is below δ, by a dynamic programming approach,
we compute 3-sided(δ′) before 3-sided(δ), and hence,
it is available upon computing 3-sided(δ) in O(1) time.
Overall, since there areO(n2) borders, and each requires
O(n2) time, computing 3-sided(δ) for all borders δ takes
O(n4) time, plus an O(n4) preprocessing time. �

Kong et al. [7] claimed an O(n3)-time algorithm for the
3-sided case. Here, we briefly mention a bug in their
solution. Let i be the tallest rectangle in St ∩ OPT,
and j be a rectangle in S` ∩ OPT intersecting the line
obtained by extending ib (see Figure 7). Kong et al.
solved this case by partitioning the region R into three
subregions R1, R2, and R3, where R1 is defined as the
region above jt and to the left of i`. The final solution
is then obtained by taking Corner(R1) + Corner(R2) +
Opposite(R3) + wi + wj . However, the solution com-
puted this way may not be optimal. In particular, there
can be a rectangle i∗ ∈ St ∩ OPT with i∗b < jt, which
is not included in the computed solution. The same
problem occurs when the extension line of ib intersects
a rectangle k ∈ Sr ∩OPT.

5 The 4-Sided Problem

In this section, we consider the general 4-sided problem,
in which the input rectangles can be attached to any side
of the region R. Let OPT be an optimal solution, and
let t, b, `, and r be the tallest boundary rectangles in
OPT attached to the left, top, right and bottom sides
of R, respectively. If at least one of these rectangles
is not present in OPT, then the problem reduces to
a 3-sided case, whose solution can be computed using
Theorem 5. Otherwise, there are two possible structures
for the optimal solution as follows.

• Disjoint Structure — This structure occurs when
either bt 6 tb or `r 6 r`. We assume, w.l.o.g.,

b

t
R1

R2

k

(a) Case 1

b

tR1

R2

R4

R3

i
j

R5

(b) Case 2

Figure 8: Two 4-sided disjoint structures.

that the first condition holds here. There are two
possible cases:

− Case 1: There is a rectangle k ∈ (S` ∪ Sr) ∩OPT
whose top (or bottom) side lies in the range [bt, tb].
We draw two borders by extending k’s top (or bot-
tom) as shown in Figure 8a. Note that these two
borders may be the same. Since t and b are the
tallest rectangles in St ∩ OPT and Sb ∩ OPT, re-
spectively, no rectangle in OPT can cross these two
borders. Therefore, the region R is divided by these
two lines into two subregions R1 and R2. Now rect-
angles in R1 and R2 form two 3-sided subproblems
whose optimal solution can be obtained using The-
orem 5. A similar case applies when no rectangle
of OPT intersects the range [bt, tb].

− Case 2: The boundary of R between bt and tb is
covered by exactly two rectangles i and j from OPT
(see Figure 8b). The four rectangles t, b, i, and j di-
vide the region R into five subregions R1,R2,R3,R4

and R5, as shown in Figure 8b. R5 has no rectangle
other than i, j. The other four regions form corner
problems, each of which specified by two rectangles.
Thus there are O(n2) such corner subproblems to
consider.

• Wheel Structure — The wheel structure occurs
when bt > tb and `r > r` (see Figure 9). Assume,
w.l.o.g., that b is to the left of t. The decompo-
sition in this case is the same as [7]. Let t′ be



26th Canadian Conference on Computational Geometry, 2014

b

t
R1

R2

R4

R3

`′

r′

r

`

b′

t′

R5

Figure 9: The 4-sided wheel structure.

the leftmost rectangle in St not intersecting `. We
similarly define rectangles b′, r′, and `′. Now we
obtain five regions R1 to R5 by extending t′`, b

′
r,

r′t and `′b, as shown in Figure 9. R5 contains no
rectangle, and the other four regions are all corner
cases. All of these corner problems are specified by
two rectangles, and therefore, the number of such
subproblems is O(n2).

Theorem 6 Problem 1 can be solved in O(n4) time.

Proof. The optimal solution is obtained by taking the
maximum of all the possible cases described above. If
one of the four rectangles t, b, r, and ` is not present in
OPT, the problem reduces to a 3-sided subproblem. We
set each of S`, St, Sr and Sb to ∅, and solve four 3-sided
problems to consider this case. This takes O(n4) time
by Theorem 5.

For Case 1 of the disjoint structure, we consider each
possible border as a separating border and find the op-
timum solution for its top and bottom region. This
can be done in O(n2) time after O(n4) preprocessing
time by Theorem 5. For Case 2, we first preprocess, for
each of possible borders, the optimal solution to O(n2)
corner subproblems. This takes O(n4) time by Theo-
rem 4. Then, considering every four rectangles as t, b,
r, and `, we can compute Corner(R1) + Corner(R2) +
Corner(R3) + Corner(R4) in O(1) time. Therefore, we
need O(n4) time to compute all possible configuration
for this case.

The wheel structure can be handled similarly, by con-
sidering every four rectangles as t′, b′, r′, and `′, and
computing Corner(R1) + Corner(R2) + Corner(R3) +
Corner(R4) in O(1) time. The total time needed is
therefore O(n4). �

6 Approximation Algorithms

In practical application, where the number of input rect-
angles is high, one may desire to obtain a faster solution
at the expense of relaxing the optimality condition.

Theorem 7 A 2-approximation to Problem 1 can be
computed in O(n2) time.

Proof. Given an instance of Problem 1, we construct
two opposite subproblem P1 and P2, consisting of the
rectangles in S` ∪Sr and St ∪Sb, respectively. We then
compute optimal solutions O1 and O2 to P1 and P2,
respectively, and return the maximum of the two. To
justify the approximation factor, let OPT be an optimal
solution to the main problem. Then it is easy to see
that w(OPT) 6 w(O1) +w(O2), since the restriction of
OPT to S` ∪ Sr (resp., St ∪ Sb) is a feasible solution
to P1 (resp., P2). Therefore, max {w(O1), w(O2)} >
1
2w(OPT). The whole procedure takes O(n2) time by
Theorem 2. �

Remark. Using a similar strategy, we can obtain a 4/3-
approximation in O(n3) time. Details will be provided
in the full version.

7 Conclusions

In this paper, we presented an O(n4)-time algorithm for
the maximum disjoint set of boundary rectangles, im-
proving upon the previous algorithm of Kong et al. [7]
by a factor of O(n2). It remains open whether the
running time of the algorithm can be further im-
proved. Finding better approximation algorithms, with
improved approximation factors and/or running time is
another interesting problem.

References

[1] A. Adamaszek and A. Wiese. Approximation schemes
for maximum weight independent set of rectangles. In
Annu. IEEE Sympos. Found. Comput. Sci., FOCS ’13,
pages 400–409, 2013.

[2] S. Assadi, E. Emamjomeh-Zadeh, S. Yazdanbod, and
H. Zarrabi-Zadeh. On the rectangle escape problem. In
Proc. 25th Canad. Conf. Computat. Geom., CCCG ’13,
pages 235–240, 2013.

[3] T. M. Chan. Polynomial-time approximation schemes
for packing and piercing fat objects. J. Algorithms,
46(2):178–189, 2003.

[4] T. M. Chan and S. Har-Peled. Approximation algorithms
for maximum independent set of pseudo-disks. Discrete
Comput. Geom., 48(2):373–392, 2012.

[5] T. Erlebach, K. Jansen, and E. Seidel. Polynomial-
time approximation schemes for geometric intersection
graphs. SIAM J. Comput., 34(6):1302–1323, 2005.

[6] R. J. Fowler, M. S. Paterson, and S. L. Tanimoto. Opti-
mal packing and covering in the plane are NP-complete.
Inform. Process. Lett., 12(3):133–137, 1981.

[7] H. Kong, Q. Ma, T. Yan, and M. D. F. Wong. An optimal
algorithm for finding disjoint rectangles and its applica-
tion to PCB routing. In Proc. 47th ACM/EDAC/IEEE
Design Automation Conf., DAC ’10, pages 212–217,
2010.

[8] Q. Ma, H. Kong, M. D. F. Wong, and E. F. Y. Young.
A provably good approximation algorithm for rectangle
escape problem with application to PCB routing. In
Proc. 16th Asia South Pacific Design Automation Conf.,
ASPDAC ’11, pages 843–848, 2011.


