
CCCG 2014, Halifax, Nova Scotia, August 11–13, 2014

On the d-Runaway Rectangle Escape Problem

Aniket Basu Roy∗, Sathish Govindarajan∗, Neeldhara Misra∗, Shreyas Shetty∗

Abstract

In the Rectangle Escape problem, we are given a
set of rectangles S in a rectangular region R, and we
would like to extend these rectangles to one of the four
sides of R while ensuring that the maximum number of
overlaps is minimized. More formally, define the density
of a point p in R as the number of extended rectangles
that contain p. The question is then to find an extension
with the smallest maximum density.
We consider the problem of maximizing the number

of rectangles that can be extended when the maximum
density allowed is at most d. It is known that this prob-
lem is polynomially solvable for d = 1, and NP-hard for
any d ≥ 2. We consider approximation and exact algo-
rithms for fixed values of d. We also show that a very
special case of this problem, when all the rectangles are
unit squares from a grid, continues to be NP-hard for
d = 2.

1 Introduction

The Rectangle Escape problem was introduced
in [9], and was further explored in [2]. In its original
formulation, the problem is the following. Let S be a
set of rectangles in a rectangular region R. The goal is
to extend these rectangles to one of the four sides of R
while ensuring that the maximum number of overlaps is
minimized. In particular, define the density of a point p
in R as the number of extended rectangles that contain
p. The question is then to find an extension with the
smallest maximum density.
The problem finds its motivation in a closely related

escape routing problem on the bus levels in PCBs. A
detailed exposition of how the formulation above cap-
tures the essence of the bus-routing problem is provided
in [2].
It turns out, by the combined results in [9, 2], that

this question is intractable — indeed, it is NP-hard to
determine if all rectangles can be extended with density
at most d for any fixed d ≥ 2 (the result was known
for d ≥ 3 in [9] and was established for d = 2 in [2]),
even when the given set of rectangles are disjoint to be-
gin with. However, the case when d = 1 is solvable in
polynomial time — the first proposed algorithm from [8]

∗Department of Computer Science and

Automation, Indian Institute of Science,

aniket.basu|gsat|neeldhara|shreyas.shetty@csa.iisc.ernet.in

had a running time ofO(n6). Subsequently, Assadi et al.
demonstrate a dynamic programming approach with an
improved running time of O(n4) in [2]. The recursive
formulations in the DP involve finding the maximum
number of rectangles that can be routed in a given sub-
set of directions while being completely disjoint in their
extended state. For the problem of optimizing the den-
sity, a factor-4 approximation is known in general (by
standard rounding techniques), and a PTAS can be ob-
tained when the optimal density is high. We refer the
readers to [2] for a more precise formulation.
In certain scenarios, the density of any point p in R

cannot exceed a threshold value d, which is fixed by
practical considerations. Here, the natural question is
to maximize the number of rectangles that can be ex-
tended, subject to this fixed density d. This problem is
clearly NP-hard for d ≥ 2, since it is NP-hard to deter-
mine if the OPT in this setting is equal to n. We explore
this problem from the point of view of approximation
and fixed-parameter tractability. On the approximation
front, we show that if the rectangles are disjoint, then
we have a 4(1 + 1/(d− 1))-approximation for the prob-
lem, and in general, we have a (4d)-approximation.
We also analyze the problems from a parameterized

perspective. In this setting, each problem instance
comes with a parameter k, and the central notion is fixed
parameter tractability (FPT) which means, for a given
instance (x, k), solvability in time f(k) · p(|x|), where f
is a computable function of k and p is a polynomial in
the input size |x|.
The decision version of the Rectangle Escape

problem may be informally stated as follows: are there
at least k rectangles that can be extended with den-
sity at most d? There are two natural parameters for
this problem; namely k, the number of rectangles that
we wish to extend, and d, the maximum density that
is allowed. Since the problem is NP-complete even for
constant values of d, we do not expect this problem to
be fixed-parameter tractable parameterized by d alone.
On the other hand, we show that when parameterized
by k, for fixed d, the problem is indeed fixed-parameter
tractable, as long as the input rectangles have density
at most (d− 1).
We also consider the following closely related ques-

tion: can we extend at least p non-boundary rectan-
gles horizontally (i.e, towards the right or left), and at
least q non-boundary rectangles vertically (i.e, towards
the top or bottom)? A non-boundary rectangle is one

26th Canadian Conference on Computational Geometry, 2014

that doesn’t share an edge with the boundary of R. It
is natural to consider only non-boundary rectangles in
our demand for extension, since the ones on the bound-
ary, without loss of generality, can be “extended” to the
boundary that they are on. We show that this prob-
lem is W[1]-hard, which implies that a fixed-parameter
tractable algorithm does not exist unless the Exponen-
tial Time Hypothesis fails.
Finally, we consider the version of Rectangle Es-

cape when all the rectangles are unit squares aligned
to an underlying grid. For this problem when d =
2, we show a non-trivial reduction from a variant
of Not-All-Equals SAT, establishing NP-hardness,
and demonstrate that the problem enjoys a 2-factor ap-
proximation algorithm.

2 Preliminaries

Let S be a set of rectangles in a rectangular region R.
For T ⊆ S, let Γ(S, T) be obtained from S by extending
all the rectangles in T to one of the four borders of
R. We call Γ(S, T) the extended configuration of S with
respect to T . Further, we say that Γ(S, T) has density
at most d if every point in R is contained in at most d
rectangles in the extended configuration.
For a fixed d, the size of the largest subset T for which

the density of Γ(S, T) ≤ d is called the runaway number
of S with respect to d, which we denote by ρ(S, d). We
study the following optimization version of the Rect-

angle Escape problem:

d-Runaway Rectangle Escape

Input: A set of n rectangles S in a rectangular re-
gion R, and an integer k.
Question: Is ρ(S, d) ≥ k?

The exact algorithms are considered in the framework
of parameterized complexity. We only introduce the ter-
minology that we use in this work, the reader is referred
to the books [10, 7, 4] for a comprehensive exposition.
A parameterized problem Π is a subset of Γ∗×N, where
Γ is a finite alphabet. An instance of a parameterized
problem is a tuple (x, k), where k is called the param-
eter. A central notion in parameterized complexity is
fixed-parameter tractability (FPT) which means, for a
given instance (x, k), decidability is in time f(k) ·p(|x|),
where f is a computable function of k and p is a poly-
nomial in the input size. We now define the notion of
parameterized reduction.

Definition 1 Let A,B be parameterized problems. We
say that A is (uniformly many:1) fpt-reducible to B
if there exist functions f, g : N → N, a constant α ∈ N

and an algorithm Φ which transforms an instance (x, k)

of A into an instance (x′, g(k)) of B in time f(k)|x|α

so that (x, k) ∈ A if and only if (x′, g(k)) ∈ B.

A parameterized problem is considered unlikely to be
fixed-parameter tractable if it is W [i]-hard for some i ≥
1. To show that a problem is W [1]-hard, it is enough
to give a parameterized reduction from a known W [1]-
hard problem. It is well known that the parameterized
version of the Maximum Clique problem is W [1]-hard.
In particular, we use the following popular variant of the
problem [6]:

Multi-Colored Clique

Input: A graph G whose vertex set is partitioned
into k parts, V1 ⊎ · · · ⊎ Vk.
Question: Is there a subset S of vertices such that
G[S] is a clique and |S ∩ Vi| = 1 for all 1 ≤ i ≤ k?
Parameter: k.

3 An Approximation Algorithm

Let (R,S, d) be an instance of d-Runaway Rectangle

Escape. In this section, we consider the optimization
version of the problem, where the goal is to extend the
maximum number of rectangles with density at most
d. Let T denote an optimal solution. Note that at least
half the rectangles in T are pushed either horizontally or
vertically. So we consider the following problem: given
the rectangles S, what is the largest number of rect-
angles that can be extended vertically with density at
most d? We show that this can be approximated to
within a factor of 2d, and repeating the argument along
the horizontal direction, and reporting the best of both
solutions leads us to a (4d)-approximation overall.
We remark that in [2], the problem of determining

if at least k rectangles can be extended vertically with
density one (that is, with no overlapping rectangles) is
shown to be polynomially solvable. They use a natural
greedy strategy: consider the rectangles in the order
of decreasing y-coordinate of the bottom edge, and let
this order be R1, . . . , Rn. For 1 ≤ i ≤ n, we try to
extend Ri upwards if this causes no conflicts, else we
attempt to extend it downwards. If Ri is blocked in
both directions, we choose not to extend it and move to
the next rectangle on the list. However, this strategy
does not work as-is, for instance, when d = 2.
As a preprocessing step, we will first forbid some rect-

angles from consideration. For a rectangle Y whose x-
projection is given by the interval (a, b), let us denote
by B(Y) the intersection of R with the region between
the lines x = a and x = b. Call a rectangle Y stuck
if there are points ℓ1, ℓ2 of density d (in the input con-
figuration) contained in B(Y), with ℓ1 above Y and ℓ2
below Y . Note that the set of stuck rectangles do not
participate in any solution. We now turn our attention

CCCG 2014, Halifax, Nova Scotia, August 11–13, 2014

to the remaining rectangles, which we refer to as “good”
rectangles.

We begin by considering the projections of the good
rectangles on the x-axis and arrange them according to
their left endpoints. Choose a maximum independent
set among these intervals by greedily choosing the inter-
vals that end the earliest (and eliminating intervals that
overlap with the chosen one). Let {X1, . . . , Xp} be such
an independent set, arranged according to their right
endpoints, and let χ := {T1, . . . , Tp} denote the rectan-
gles from S corresponding to this independent set. Let
ai and bi denote, respectively, the left and right end-
points of Xi.

For a good rectangle Y , we say that Y is a child of Xi

if the right endpoint of Y is at least bi and (if i+1 ≤ n)
strictly less than bi+1. Along these lines, we say that
the children of Xi are the set of rectangles whose parent
is Xi. Notice that every rectangle not in χ is the child
of exactly one rectangle from χ. Thus, we may partition
the set of rectangles into R1⊎· · ·⊎Rp, whereRi denotes
the set of children of the set Xi.

Note that an optimal solution can extend at most 2d
rectangles from Ri. Indeed, if not, then at least (d+1)
rectangles in Ri are extended either upwards or down-
wards. The extended solution has density (d + 1) ei-
ther on the top or the bottom, which is a contradiction.
Therefore, if k denotes the size of the optimal solution,
we have k ≤ 2dp (recall that the rectangles that are
stuck do not contribute to any optimal solution).

On the other hand, the rectangles in χ can be ex-
tended either upward or downward — for each Ti ∈ χ,
there is at least one direction in which Ti can be ex-
tended with density at most d. Also, since the x-
projections of the Ti’s were non-overlapping, their ex-
tensions in the vertical directions also do not overlap
with each other. Therefore, we have a solution with
at least p rectangles, which is a (2d)-approximation to
the optimal solution when the directions are vertically
constrained. A similar argument holds for the problem
of extending rectangles in the horizontal direction, and
the better of the two solutions is a (4d)-approximation
overall.

Improved Approximation With Disjoint Rectangles.

We consider the d-Runaway Rectangle Escape

when the rectangles are disjoint i.e., the input points
have density at most unity to begin with. We recall
that this problem remains NP-complete due to the re-
duction in [2] for all d ≥ 2. For this case, we obtain an
4(1+1/(d− 1))-approximation algorithm. Let S be the
optimal solution size for the given instance of the Dis-

joint d-Runaway Rectangle Escape problem. We
restrict the extensions to one of the four directions at a
time and choose the maximum among them. Let Sλ de-
note the maximum number of rectangles that can be ex-

tended in direction λ, where λ ∈ {left, right, up, down},
and let S† denote the maximum value of Sλ. Clearly,
S† ≥ S/4. We now approximate S†.

A d-fold packing is a collection of sets from a set sys-
tem such that no element from the ground set is con-
tained in more than d sets [3]. It is well known that an
optimal d-fold packing for a system of intervals on the
real line can be obtained in polynomial time [5].

Without loss of generality, let us assume that the re-
striction towards the top gives the maximum among the
four directions. As before, let S† denote the maximum
number of rectangles that can be extended upwards with
density d. Let I denote the projections of the input rect-
angles on the x-axis. Consider an optimal (d − 1)-fold
packing of I. Since the input rectangles are disjoint, the
upward extensions of the rectangles corresponding to
this packing constitute a feasible solution. Let OPTd−1

denote the size of this solution. The approximation al-
gorithm outputs the rectangles corresponding to this
solution.

We note that a d-fold packing may not be a feasi-
ble solution when the corresponding rectangles are ex-
tended upwards. This is because we may have an input
rectangle positioned such that it intercepts a density d
region from the extension, causing the overall density to
“spill over” to (d+1). On the other hand, since a d-fold
packing on the interval projection can be obtained from
an upward extension of density at most d, we have:

OPTd−1 ≤ S† ≤ OPTd

Now, we use the fact that any d-fold packing of inter-
vals is a disjoint union of d independent sets of intervals
(see, for example, [5]). Let C1, C2, ..., Cd be the inde-
pendent sets in an optimal d-fold packing of I, where
we index them in non-increasing order of their sizes. Let
ti = |Ci| and also ti ≥ ti+1 for 1 ≤ i < d. Thus, OPTd =
∑

1≤i≤d ti and OPTd−1 ≥ OPTd−td, since removing an
independent set from a d-fold packing yields a (d − 1)-
fold packing. Now, by an averaging argument, we have
td ≤ OPTd/d. Thus, OPTd−1 ≥ OPTd(1−1/d). Hence,
the following holds.

OPTd−1 ≥ S†(1− 1/d)

Relating S† to S we have:

OPTd−1 ≥
S

4(1 + 1
d−1)

,

giving us the desired approximation ratio.

Theorem 1 There exists a polynomial time 4(1+ 1
d−1)-

approximation algorithm for the Disjoint d-Runaway

Rectangle Escape problem.

26th Canadian Conference on Computational Geometry, 2014

4 Parameterized Algorithms and Hardness

In this section, we consider the d-Runaway Rectan-

gle Escape problem parameterized by k. Note that
if the input contains a point of density greater than d,
then we have a trivial No-instance. On the other hand,
we show that if all points in R have density at most
(d − 1) in the input configuration, then the problem is
FPT. Unfortunately, this algorithm does not immedi-
ately extend to accommodate the situation when the
input may have points of density d.
We also consider a natural variation of this problem,

for which we obtain a parameterized hardness result.
Let us call a rectangle internal if none of its sides co-
incide with the boundaries of R. We introduce the fol-
lowing question:

d-Constrained Runaway Rectangle Escape

Input: A set of n rectangles S in a rectangular re-
gion R, and integers p, q.
Question: Is it possible to extend at least p internal
rectangles along the horizontal axis, and at least q
internal rectangles along the vertical axis, such that
the extended configuration has density at most d?
Parameter: p+ q

We show that this particular variant is in fact W[1]-
hard by a reduction from Multi-Colored Clique,
even when d = 2.

Fixed-Parameter Tractability. Let (R,S, k, d) be an
instance of d-Runaway Rectangle Escape, where
the density of every point in R is at most (d − 1) in
the input configuration. We recall that this problem is
NP-complete since the problem was shown, in [2] to be
NP-complete for d = 2, k = n even when all the rectan-
gles are disjoint.
As with the approximation algorithm in the previ-

ous section, we consider the projections of the input
rectangles on the x-axis and arrange them according to
their left endpoints. Choose a maximum independent
set among these intervals by greedily choosing the in-
tervals that end the earliest (and eliminating intervals
that overlap with the chosen one). Let {X1, . . . , Xp}
be such an independent set, arranged according to their
right endpoints, and let T := {T1, . . . , Tp} denote the
rectangles from S corresponding to this independent set.
Let ai and bi denote, respectively, the left and right end-
points of Xi. Note that if p ≥ k, then we may return
Yes at this point, since the rectangles in χ can be ex-
tended upwards without any mutual conflicts, and this
extension will have density at most d because all in-
put points had density at most (d − 1) to begin with.
Therefore, p < k.

We repeat this process on the y-projections of the
rectangles, and let T ′ := {T ′

1, . . . , T
′
q} denote the rect-

angles from S corresponding to the independent set ob-
tained in this case. We let (a′i, b

′
i) denote the top and

bottom endpoints of the y-projection of T ′
i . Again, we

may assume that q < k, otherwise we are done. Now
consider the lines given by x = bi for 1 ≤ i ≤ p and
y = b′j for 1 ≤ j ≤ q. Let g(i, j) denote the intersection
of the lines x = bi and y = b′j . For every rectangle H
in S, observe that there exists 1 ≤ i ≤ p and 1 ≤ j ≤ q
such that H contains g(i, j). Indeed, suppose not. Then
this would imply, for instance, that H is not stabbed
by any of the vertical lines x = bi, which implies that
there exists i ∈ [p] for which the left endpoint of the
x-projection of H is after bi, and the right endpoint is
before bi+1. However, this contradicts the greedy con-
struction of χ. A similar argument can be made for the
horizontal lines.
Now, we have a collection of less than k2 points that

pierce all the rectangles in S. Since the input density
was at most (d − 1), each g(i, j) can be contained in
at most (d − 1) of the input rectangles. Therefore, the
total number of rectangles is at most (dk2). We may
now guess the subset of k rectangles that we would like
to extend in time:

(

dk2

k

)

≤

(

dk2e

k

)k

= (dke)k.

For each guess, we can further guess the direction of
the extension of the chosen rectangles — noting that
there are at most four possibilities for each rectangle,
this is an additional overhead of 4k. Note that we
spend polynomial time in identifying the stabbing lines
(and resolving the instance at that stage if it is called
for). So overall, the running time of our algorithm is
O((dke)k4k)nO(1).

Theorem 2 The d-Runaway Rectangle Escape

problem can be resolved in time 2O(k log k)nO(1) when the
input configuration has density at most (d− 1).

Note that the difficulty with input configurations that
have points of density d is that having an independent
set of size k on the x-projections does not imply that we
have a solution, because quite possibly many of the rect-
angles in the independent set are “blocked” by points
of density d. Even if we forbid such rectangles upfront,
as in the previous section, we may have an unbounded
number of rectangles that are stuck horizontally or ver-
tically. As it turns out, the rectangles that are stuck
horizontally and vertically pose no problems, because
they can be declared forbidden and eliminated from the
search space. Similarly, the number of rectangles that
are not stuck in either direction can be bounded by (k2d)
by an argument along the lines of what we had for The-
orem 2. However, there may be an unbounded number

CCCG 2014, Halifax, Nova Scotia, August 11–13, 2014

of rectangles that are stuck only vertically (or only hori-
zontally), and this is where the argument for Theorem 2
does not extend to the case when the input configura-
tion has points of density d.

W-hardness We now turn to the 2-Constrained

Runaway Rectangle Escape. Let (G,V, k) be an
instance of Multi-Colored Clique, where the par-
titions of V are given by V1 ⊎ · · · ⊎ Vk. We assume,
without loss of generality, that all the parts have the
same number of vertices. We denote the vertices in Vi

by vi[1], . . . , vi[t].

The reader is referred to Figure 1 for a schematic
of the construction that we are going to describe. We
first introduce the rectangles corresponding to vertices,
which we call selection gadgets. Every vertex in V is
associated with a rectangle of unit width and height (t+
1). We use Ti[j] to refer to the rectangle corresponding
to the vertex vi[j], where 1 ≤ i ≤ k and 1 ≤ j ≤ t.

We place the bottom-left corner of Ti[j] at (2+2j, 3+
j+(2t+5)(i− 1)). This is simply a collection of t rect-
angles cascading successively in the top-right direction,
with the collection of rectangles for vertices in Vi ap-
propriately offset from the collection corresponding to
vertices in Vi+1. We use Ti to refer to {Ti[j] | j ∈ [t]}.
Note that at most two of the rectangles from any Ti can
be extended either to the right or the left (since d = 2
and all of these rectangles are stabbed by a single hori-
zontal line). We will refine this observation further with
the help of additional rectangles, to ensure that at most
one of them can be extended to the right, and none of
them in any of the other directions.

We now turn to the edges in G. For each eℓ ∈ G, we
introduce an unit square Tℓ with its lower left corner at
(3t + 12ℓ, (2t + 5)2). Informally, all the squares corre-
sponding to the edges are placed on one horizontal line,
suitably spaced out. Further, the y-coordinates of their
lower-left corners are large enough to ensure that the
squares are placed above all the vertex gadgets.

Next, we add incidence gadgets. These rectangles en-
sure that if Ti[j] is extended to the right and Tℓ is ex-
tended downwards, then the edge eℓ is incident to vi[j].
We first informally describe the setup. Let Ba[r] denote
the rectangle obtained by extending Ta[r] towards the
right. Let eℓ = (va[p], vb[q]). We will place two rectan-
gles Wa[p], Za[p] to the right of Ta and below Tℓ. The
rectangle Wa[p] will intercept the bands Ba[r] for r > p,
but will not overlap Ba[p], and the rectangle Za[p] will
intercept the bands Ba[r] for r < p, but again will not
overlap Ba[p]. This ensures that if Ta[r] is extended
to the right and eℓ is not incident to r, then a point
of density two is created by the overlap of either Wa[p]
or Za[p] with the extended rectangle Ta[r], thus forbid-
ding Tℓ from being extended downwards. This process
is repeated for the collection Tb.

Figure 1: A cross-section schematic, not drawn to scale,
of the reduction from Multi-Colored Clique. The groups
of blue rectangles correspond to vertices from a partic-
ular partition in the instance of Multi-Colored Clique.
The red rectangles indicate two overlapping rectangles
placed along the borders of R, while the green rectangle
is a single rectangle, again aligned to the right border
of R. The orange rectangles are the incidence gadgets
and the black rectangles correspond to the edges.

Formally, for every edge eℓ = (va[p], vb[q]), we place
the following four rectangles, which we call incidence
gadgets. All these rectangles are seven units wide, and
the x-coordinate of their lower-left corner is three units
less than the x-coordinate of the lower-left corner of Tℓ.
That is, if we consider the x-projections of these four
rectangles along with the x-projection of Tℓ, then we
will find the x-projection of Tℓ exactly at the center,
and the remaining four intervals coinciding. We now
describe how Wa[p], Za[q] are placed along the y-axis,
and note that the rectangles Wb[q] and Zb[q] are placed
similarly.

1. The rectangle Wa[p]. The y-coordinate of the bot-
tom edge of Wa[p] is the same as the y-coordinate
of the upper edge of Ta[p]. The y-coordinate of the
top edge ofWa[p] is two more than the y-coordinate

26th Canadian Conference on Computational Geometry, 2014

of the upper edge of Ta[t], that is, we make sure
that this rectangle “juts out” over and above the
last rectangle in the group Ta. This will be useful
later, when we would like to forbid this rectangle
from extending to the right, without forbidding any
of the rectangles in Ti from extending to the right.

2. The rectangle Za[p]. The y-coordinate of the top
edge of Za[p] is the same as the y-coordinate of the
bottom edge of Ta[p]. The y-coordinate of the bot-
tom edge of Za[p] is two less than the y-coordinate
of the bottom edge of Ta[1].

We now incorporate some rectangles along the bound-
ary, which we will refer to as guards. The purpose here
is to “block” certain extensions. To begin with, we place
two overlapping unit-width rectangles along the entire
left boundary, and two overlapping unit-height rectan-
gles along the top boundary of R. This ensures, for
example, that none of the internal rectangles can be ex-
tended to either the left or the top. Further, we place
a single rectangle, denoted by H, that covers the entire
right boundary (stopping short of the guard rectangles
on top to avoid a region of density three).
Next, we would like to ensure that the rectangles Ti[j]

can only be extended to the right. To this end, we
place two overlapping rectangles of unit height along
the bottom boundary of R, wide enough to block any
Ti[j] from extending downwards, for 1 ≤ i ≤ k and
1 ≤ j ≤ t. Specifically:

• The x-coordinate of the bottom left corner of these
rectangles is one less than the x-coordinate of the
bottom left corner of T1[1].

• The x-coordinate of the bottom right corner of
these rectangles is one more than the x-coordinate
of the bottom right corner of T1[t].

We add a unit square on the right boundary (overlap-
ping H), whose lower-right corner has the y-coordinate
(2t + 5)2. This effectively blocks the rectangles corre-
sponding to the edges from extending to the right.
Finally, we add rectangles along the bottom and right

boundaries to ensure that the rectangles in the incidence
gadgets are blocked from being extended to either the
right or the downwards. In this context, we introduce
unit squares H1, . . . , Hk and H†

1 , . . . , H
†
k, to be placed

along the right boundary. The y-coordinate of the
upper-right corner of the squareHi is two more than the
y-coordinate of the upper edge of Ti[t]. This, together
with H, ensures that the rectangles Wi[j] are blocked
from extending towards the right, for any 1 ≤ i ≤ k and
1 ≤ j ≤ t. Similarly, the y-coordinate of the lower-right
corner of the squareH†

i is two less than the y-coordinate
of the bottom edge of Ti[1]. Again, together with H,
this ensures that the rectangles Zi[j] are blocked from

extending towards the right, for any 1 ≤ i ≤ k and
1 ≤ j ≤ t. Note that these rectangles do not block any
rectangles in Ti from extending to the right, because of
their unit height.

For this instance, we let p = k and q =
(

k
2

)

. This
completes the description of the construction, and we
now turn to a proof of correctness. It is useful to keep
in mind that the guards are the only rectangles that are
not internal.

In the forward direction, let c1, . . . , ct, ci ∈ [t], be such
that the vertices vi[ci] form a multi-colored clique. We
then extend the rectangles Ti[ci] to the right, and the
unit squares Tℓ corresponding to the edges of the clique
downwards. It is easy to check that the guards do not
interfere with any of these extensions, that is, there are
no points of density three on the boundary after these
rectangles are extended as described. Also, extending
the rectangles from the selection gadgets alone creates
no points of density greater than two. We now address
the edge extensions. Let eℓ = (vi[ci], vj [cj]) be an edge
in the clique. Observe that the rectangles in the inci-
dence gadget corresponding to the rectangle Tℓ skirt the
edges of the bands Bi[ci] and Bj [cj], without overlap-
ping them. Therefore, it can be verified that we create
no points of density greater than two when the square
Tℓ is extended downwards.

In the reverse direction, we observe that at most one
rectangle can be extended to the right from Ti, and none
of them can be extended to the left. Further, none of
the other internal rectangles can be extended along the
horizontal axis while maintaining density at most two.
Since we have to extend at least k rectangles along the
horizontal axis, it follows that any solution extends ex-
actly one rectangle from each Ti, for 1 ≤ i ≤ k. Let
1 ≤ ci ≤ t be such that Ti[ci] was the rectangle that was
extended to the right. We claim that the vertices vi[ci]
form a multi-colored clique in G. Indeed, observe that
if Tℓ is extended downwards, where eℓ = (vi[p], vj [q]),
then the rectangle extended from Ti must be Ti[p] and
the rectangle extended from Tj must be Tj [q] — indeed,
the extension of any other rectangle from either collec-
tion will lead to a point of density three (combined with
the incidence gadgets for Tℓ. Therefore, a rectangle cor-
responding to an edge can be extended downwards only
if it is an edge from G[{v1[c1], . . . , vt[ct]}]. Recall that
the guard vertices are positioned so that none of the
internal rectangles can be extended upwards, and only
the squares corresponding to the edges can be extended
downwards. Therefore, if the claimed subgraph does
not induce a clique, we conclude that the solution falls
short of the

(

k
2

)

extensions that were required along the
vertical axis. Thus, we have shown the following.

Theorem 3 The 2-Constrained Runaway Rect-

angle Escape is W [1]-hard.

CCCG 2014, Halifax, Nova Scotia, August 11–13, 2014

5 The Square Escape Problem

In this section, we look in to a special case of the Rect-

angle Escape problem, where the rectangular region
R is given as a grid of unit squares, and every rectan-
gle is a unit square aligned to the grid. This is same as
having grid points instead of squares and orthogonal line
segments joining the grid points to the boundary of R
instead of extensions of the squares. As it turns out this
problem, in the latter guise, has been studied for unit
density and an O(n2 log n) time algorithm is devised
in [11]. We show that despite being a rather severely
specialized version of Rectangle Escape, even this
formulation is NP-hard for density two. In particular,
the problem of determining if all the squares can be ex-
tended while maintaining density two is NP-hard, while
the “runaway” version enjoys an improved approxima-
tion algorithm and is fixed-parameter tractable irrespec-
tive of the density of the input squares.

d-Runaway Square Escape

Input: A set S of n squares from an m×m grid R,
and an integer k.
Question: Is ρ(S, d) ≥ k?

We first show that the d-Runaway Square Escape

is NP-hard even when k = n and d = 2. We reduce
from the version of Not-All-Equals SAT where ev-
ery clause has two or three variables, all variables appear
in their positive form, and every variable occurs in at
most three clauses. It is known that not-all-equals satis-
fiability continues to be NP-complete for this restricted
formulation [1].

Before we describe the construction, we introduce
some terminology. For a square s located on the ith

row and the jth column of the given grid, we use R(s)
and C(s) to refer to i and j, respectively. We say we
place a square at (i, j) to indicate that a square is placed
in the location determined by the intersection of the ith

row and jth column.

Suppose we are working on an m×m grid. When we
say that we block a square s, say, in the upward direc-
tion, then this means that we introduce two overlapping
squares at (m,C(s)), if they are not already present. We
are only allowed to block a square s if there are either
no squares at (m,C(s)), or if there are two squares at
(m,C(s)). The terminology is motivated by the fact
that when we block a square s in the upward direction,
no extension of density at most two can extend s in the
upward direction.

When we say that we partially block a square s in the
upward direction, then this means that we introduce one
square at (m,C(s)), if not already present. In particu-
lar, a square on column j cannot be partially blocked if

there are two squares placed already at (m, j). These
squares are called guards.
We let φ denote an instance of Not-All-Equals

SAT where every clause has two or three variables
and every variable occurs in at most three clauses.
Let v1, . . . , vn be the variables involved in φ, and let
C1, . . . , Cm denote the clauses of φ.
For every variable, we will introduce three squares

corresponding to the variable, which we simply call the
variable gadget. We then add more squares to ensure
that these three squares are always extended in the same
direction, and these collections of squares are called the
copy gadgets. Finally, we add three squares for every
clause, which we call the clause gadgets.
For a variable vi, let Vi := {si[1], si[2], si[3]} denote

the three squares involved in the corresponding variable
gadget. We say we place Vi at (x, y) to mean that si[1]
is placed at (x, y+4), si[2] is placed at (x+2, y+2) and
si[3] is placed at (x + 4, y). The envelope of a variable
gadget that is placed at (x, y), denoted by Ei, is defined
as the rectangular region whose lower-left corner is at
(x, y) and whose upper-right corner is at (x+25, y+25).
All the squares that participate in the copy gadget for
Vi will be placed in Ei. We now describe the individual
components of the construction.

Variable Gadgets The variable gadget corresponding
to v1 is placed at (0, 0). The variable gadget corre-
sponding to vi is placed at the top-right corner of Ei−1,
for 2 ≤ i ≤ n. All the squares in the variable gadgets
are blocked downwards and to their left, while they are
partially blocked upwards and to their right.

Clause Gadgets Let C1, . . . , Cm be an arbitrary but
fixed ordering of the clauses. Let Cj = {vi1 , vi2 , vi3} be
a clause of length three. Within a clause, we order the
variables according to increasing order of their indices.
Let Cj be the fj [x]

th clause that vix appears in. For
example, for a clause C3 := {v2, v3, v7}, we may have
f3[1] = 2 to denote the fact that C3 is the second clause
that v2 appears in. Note that fj [x] ∈ {1, 2, 3} for the
particular instance of Not-All-Equals SAT that we
have started with.
For this clause Cj , we introduce squares

tj [1]
U , tj [2]

U , tj [3]
U and tj [1]

R, tj [2]
R, tj [3]

R, placed in
the following manner.

1. For x ∈ {1, 2, 3}, the square tj [x]
U is placed in the

same column as six [fj [x]]. The row it is placed in
is 2j + 25n + 10. In particular, it is 2j + 10 units
above En.

2. For x ∈ {1, 2, 3}, the square tj [x]
R is placed in the

same row as six [fj [x]]. The column it is placed in
is 2j + 25n + 10. In particular, it is 2j + 10 units
to the right of En.

26th Canadian Conference on Computational Geometry, 2014

If we have a clause of length two, then we place
squares tj [1]

U , tj [2]
U and tj [1]

R, tj [2]
R exactly as de-

scribed above. Further, we add two dummy squares
P and Q, where P is placed on the same row as
tj [1]

U , tj [2]
U , and is placed on an empty column c such

that C(tj [1]
U) < c < C(tj [2]

U). Similarly, Q is placed
on the same column as tj [1]

R, and is placed on an empty
row r such that R(tj [1]

U) < r < R(tj [2]
U). The square

P is blocked up and down, while the square Q is blocked
on the right and left. We note that if empty rows or
columns are not available, then the spacing between the
envelopes of the variables can be easily adjusted to free
up space. We do not incorporate this detail in the in-
terest of a simpler presentation.

Copy Gadgets Let Vi be a variable gadget placed at
(x, y). Then we introduce the following squares in the
copy gadget corresponding to Vi:

• We place squares at (x, y + 8), (x+ 2, y + 12), (x+
2, y+16), (x+4, y+20). Further, we place squares at
(x+8, y+2), (x+12, y+4), (x+16, y), (x+20, y+2).

• We place squares at (x+8, y+8), (x+12, y+12), (x+
16, y+16), (x+20, y+20). We call these the block-
ers.

• For each blocker at (p, q), we place two additional
squares at (p−2, q) and (p, q−2). These we call the
anchors. The anchors at (p− 2, q) are blocked up-
wards and downwards, while the rest of the anchors
are blocked to their left and right.

The variable gadgets, their corresponding copy gad-
gets, and the clause gadgets, together comprise the re-
duced instance. We now argue the equivalence of the
two instances.
In the forward direction, let τ : {v1, . . . , vn} → {0, 1}

be a not-all-equals satisfying assignment. If τ(vi) = 1,
then we extend all the squares in Vi to the right, and if
τ(vi) = 0, then we extend all the squares in Vi upwards.
It can be shown that all the squares in the copy gadgets
continue to have a valid extension (see Figure 2 onwards
for illustration). It is important to ensure here that
for any fixed column (or row), we extend at most one
square upwards (or rightwards) along that column (or
row). This ensures that all the “crossings” encountered
when we proceed to extend the squares corresponding to
clause gadgets have density at most two. Also, extend-
ing two squares to the left or downwards along any row
or column causes no problems, because any potential
interference comes from clause gadgets being extended
(respectively) downwards or to the left — but the place-
ments of these gadgets are such that these extensions
are guaranteed to be parallel, and consequently, non-
crossing.

Among the squares tj [1]
U , tj [2]

U , tj [3]
U , notice that

at most two of them are in locations with density
two because at most two of the corresponding squares
in the variable gadgets were extended upwards (recall
that we start with a not-all-equals satisfying assign-
ment). Therefore, we extend the square that is free
upwards, and the other two to the left and right, re-
spectively. A similar argument works for the squares
tj [1]

R, tj [2]
R, tj [3]

R. Finally, all the guards can be triv-
ially extended to the edge that they are the closest to.

In the reverse direction, we first note that in any valid
extension, all the squares in a variable gadget must be
extended in the same direction. For example, for any
1 ≤ i ≤ n, if si[1] and si[2] are extended upwards and
to the right respectively, then there are corresponding
anchor squares that are forced to be extended to the
right and upwards, which then create a point of density
three at the corresponding blocker square. It can be
argued, therefore, that si[1] and si[2] must be extended
in the same direction, and similarly, that si[2] and si[3]
must be extended in the same direction. It follows that
all three of them must be extended in the same direction
— and since they are blocked on the left and downwards,
they must be extended either upwards or to the right.

We suggest an assignment to the variables of φ as fol-
lows. If the squares in Vi are extended to the right, then
we set vi to 1 and to 0 otherwise. If this is not a valid
not-all-equals assignment, then consider the squares cor-
responding to a violated clause. Assume, without loss
of generality, that all variables in this clause were set
to one, therefore, the squares corresponding to the vari-
ables were extended to the right. If this was a clause
of length three, then observe that the square in the
clause gadget corresponding to the second variable is
now blocked in all four directions (recall that the squares
corresponding to the variables were partially blocked on
the right), and cannot be extended. If this was a clause
of length two, then the dummy square Q corresponding
to the clause is similarly blocked in all four directions.
In all four cases, we get the desired contradiction. Thus
we have shown the following.

Theorem 4 d-Runaway Square Escape is NP-
complete even when d = 2 and k = n.

On the other hand, we know that for the d-Runaway
Square Escape problem, we may find the maximum
number of rectangles that can be extended vertically
in polynomial time. Indeed, for every column, we ex-
tend the d squares “closest to the top” upwards, and
the d squares “closest to the bottom” downwards. This
is evidently an optimal solution. A similar argument
holds for finding the maximum number of rectangles
that can be extended horizontally. Since any solution
that extends the squares in any of the four directions
extends at least half of the squares either vertically or

CCCG 2014, Halifax, Nova Scotia, August 11–13, 2014

horizontally, we have a simple two-approximation algo-
rithm. It is also easy to check that the fixed-parameter
tractable algorithm described for rectangles works for
squares with no assumptions on the density of the in-
put configuration.

Figure 2: A general schematic of a copy gadget.

Figure 3: When all copies of a variable are extended
upwards.

6 Future Directions

Studying this natural optimization version of Rectan-

gle Escape leads us to several new questions. First, to

Figure 4: When all copies of a variable are extended to
the right.

Figure 5: A violation when two copies are extended in
different directions.

obtain a constant-factor approximation algorithm that
is independent of d, we would like to be able to answer
the question of whether at least k rectangles can be
pushed along one direction in polynomial time, and fur-
ther address the question of whether k rectangles can be
pushed up or down with density at most d in polynomial
time. From the reduction in [9] it can be seen that the
question of whether all rectangles can be pushed with
density at most three when the only available directions
are top and right, is already NP-hard. It would be inter-

26th Canadian Conference on Computational Geometry, 2014

Figure 6: A schematic of the clause gadget.

esting to examine what happens when the combinations
of directions that are available are parallel (like up and
down, or right and left), and one of the motivations is
that this directly impacts the approximation ratio.

For optimizing density, a randomized PTAS is known
when the instance has a large value of OPT. We leave
open the question of whether the question of extending
the maximum number of rectangles for a fixed value of
density admits a PTAS, at least for the case when the
rectangles are squares from a grid.

There are unresolved questions in the parameter-
ized context as well. For example, is the problem
fixed-parameter tractable when the input configuration
has points of density d? Further, for the cases when
the input configuration has density at most (d − 1),
the algorithm presented here has a running time of
2O(k log k)nO(1). Can this be improved, for instance,
2O(k)nO(1)?

A general direction of interest is to obtain substan-
tially improved algorithms for the special case when the
rectangles are squares aligned to a grid, for which we
establish NP-hardness here.

References

[1] B. M. Anthony and R. Denman. k-Bounded Pos-
itive Not All Equal LE3SAT. In Brown Working
Papers, 2009.

[2] S. Assadi, E. Emamjomeh-Zadeh, S. Yazdanbod,
and H. Zarrabi-Zadeh. On the rectangle escape
problem. In Canadian Conference on Computa-
tional Geometry (CCCG), pages 235–240, 2013.

[3] P. Brass, W. Moser, and J. Pach. Research Prob-
lems in Discrete Geometry. Springer, 2006.

[4] R. G. Downey and M. R. Fellows. Parameterized
complexity, volume 3. Springer Heidelberg, 1999.

[5] U. Faigle and W. M. Nawijn. Note on schedul-
ing intervals on-line. Discrete Applied Mathemat-
ics, 58(1):13–17, 1995.

[6] M. R. Fellows, D. Hermelin, F. Rosamond, and
S. Vialette. On the parameterized complexity
of multiple-interval graph problems. Theoretical
Computer Science, 410(1):53–61, 2009.

[7] J. Flum and M. Grohe. Parameterized Complexity
Theory. Springer, 2006.

[8] H. Kong, Q. Ma, T. Yan, and M. D. F. Wong.
An optimal algorithm for finding disjoint rectangles
and its application to pcb routing. In Proceedings of
the 47th Design Automation Conference, DAC ’10,
pages 212–217, New York, NY, USA, 2010. ACM.

[9] Q. Ma, H. Kong, M. D. F. Wong, and E. F. Y.
Young. A provably good approximation algorithm
for rectangle escape problem with application to
pcb routing. In ASP-DAC, pages 843–848, 2011.

[10] R. Niedermeier. Invitation to Fixed-Parameter Al-
gorithms. Oxford University Press, 2006.

[11] L. Palios. Connecting the maximum number of
nodes in the grid to the boundary with noninter-
secting line segments. J. Algorithms, 22(1):57–92,
Jan. 1997.

