
CCCG 2014, Halifax, Nova Scotia, August 11–13, 2014

Improved bounds for Smallest Enclosing Disk Range Queries

Sankalp Khare∗ Jatin Agarwal† Nadeem Moidu‡ Kannan Srinathan§

Abstract

Let S be a set of n points in the plane. We present a
method where, using O(n log2 n) time and space, S can
be pre-processed into a data structure such that given
an axis-parallel query rectangle q, we can report the
radius of the smallest enclosing disk of the points lying
in S ∩ q in O(log6 n) time per query.

1 Introduction

The range-aggregate query problem is a variant of range
searching wherein the goal is to preprocess a set of
points, S, into a data structure such that given a query
region q, the value of an aggregate function f , over
the region S ∩ q, can be computed efficiently. When
compared to standard range queries, a range-aggregate
query provides a more informative summary of the out-
put. Range aggregate query problems have been the
focus of much work in recent literature [15] [8] [13] [14]
[4] [3].

Aggregate functions can be numeric, for example
count, sum (of weights), etc. or geometric, such as
width, closest/farthest pair, maximal/dominating chain
etc. Geometric aggregate functions are, in general, non-
decomposable, i.e., the desired result f(S∩q) cannot be
derived efficiently from the results obtained by applying
f on partitions of S ∩ q. This calls for the development
of more sophisticated techniques to answer geometric
range aggregate queries.

All previously known non-trivial results for the small-
est enclosing disk range-aggregate query problem were
approximation versions [11] [10] . Brass et al. [3]
presented the first exact, non-trivial solution. Their
solution requires O(n log2 n) preprocessing time and
O(n log2 n) space to build a data structure which an-
swers queries in O(log9 n) time. We improve upon
their result, presenting a method that utilizes the same
amount of time and space for preprocessing, but answers
queries in O(log6 n) time.

∗Center for Security, Theory & Algorithmic Research
(CSTAR), International Institute of Information Technology, Hy-
derabad (IIIT-H), India, sankalp.khare@research.iiit.ac.in
†CSTAR, IIIT-H, India, jatin.agarwal@research.iiit.ac.in
‡CSTAR, IIIT-H, India, nadeemoidu@gmail.com
§CSTAR, IIIT-H, India, srinathan@iiit.ac.in

2 Preliminaries

We assume that the points in S are in general position.
Let q be an orthogonal query range of the form [ax, bx]×
[ay, by], where ax < bx and ay < by.

Proposition 1 Given a set of points, S, in the plane,
the smallest enclosing disk, sed(S), is the minimal ra-
dius disk such that every point p ∈ S lies on or within
the boundary of sed(S).

Query Range

Smallest
Enclosing
Disk

Convex Hull

Figure 1: Smallest Enclosing Disk and Convex Hull in
a query range

3 Previous Work

In Section 5.1 of [3], the authors demonstrate how, for a
set of points in the plane, the problem of computing the
radius of the smallest enclosing disk can be transformed
to the problem of finding the minimum vertical distance
between a convex polyhedron and a paraboloid in the
dual space. The methods used to achieve this transfor-
mation are well studied in the literature (Section 5.7 of
[12]), but for completeness we will outline the procedure
here.

The remainder of section 3 covers relevant parts of
the solution by Brass et al. [3].

3.1 The lifting map:

A lifting map lifts points in two dimensions into the
three dimensional space by assigning them a z co-
ordinate which is a function of their x and y co-
ordinates. We define our lifting map so that a point

26th Canadian Conference on Computational Geometry, 2014

in R2 is mapped to a point on the paraboloid P : z =
x2 + y2 in R3:

z = f(x, y) = x2 + y2

p = (x, y) 7→ p↑ = (x, y, x2 + y2)

3.2 The duality transform

A duality transform defines a mapping between any two
sets of parameterized geometric objects. It provides an
alternative way to view the same information. We em-
ploy the following duality transform, which maps a non-
vertical plane H to a point H∗, in R3:

H : z = ax+ by + c 7→ H∗ : (a/2, b/2, c)

Let C be a circle in R2, centered at (a, b) and with
radius r. Let HC be the non-vertical plane defined as:

HC : z = 2ax+ 2by + r2 − a2 − b2

A point p : (x, y) in R2 lies on, inside or outside the
circle C if and only if the point p↑ : (x, y, x2 + y2) lies
on, below or above HC , respectively.

3.3 The Dual Problem

Using the lifting map, our point set S is mapped to the
set S↑ defined as:

S↑ = {p↑ | p ∈ S}

Let C be a circle with center (a, b) and radius r, such
that it encloses all points in the set S. Then all points
in S↑ lie on or below the plane HC . Define the plane
H ′C :

H ′C : z = 2ax+ 2by − a2 − b2

Clearly H ′C is (a) parallel to HC , and (b) tangent to the
paraboloid P . Also, the vertical distance between the
two planes, HC and H ′C is r2.

If C were the smallest enclosing disk for the set S,
then either two or three points in S would lie on the
boundary of C and their lifted counterparts in S↑ would
lie on HC , i.e., either an edge (in the two-point scenario)
or a face (in the three-point scenario) of the upper con-
vex hull of S↑ would lie on HC (since all points in S↑ lie
below HC , in the negative z-direction). This brings us
to the following observation:

Observation 1 The square of the radius of sed(S) is
the vertical distance between two parallel planes H and
H ′, such that

1. all points of S↑ are on or below H,

2. H contains either a face or an edge of the upper
convex hull (positive z-direction) of S↑, and

3. H ′ is tangent to the paraboloid P .

G∗ = {H∗ | H is a non-vertical plane on or above

the convex hull of G}

The following observation then holds:

Observation 2 For a set of points G in R3, the set G∗

is convex and unbounded in the positive z-direction.

For a set P ′ defined as follows,

P ′ = {H∗ | H is a non-vertical plane on or below

the paraboloid P}

Let P ∗ be the boundary of P ′. Then we can make the
following observation, similar to Observation 2:

Observation 3 The set P ′ is convex and unbounded in
the negative z-direction, and P ∗ is the paraboloid z =
−(x2 + y2).

We now have the following geometric constructs:

• S↑, in the primal space, is the set of points obtained
by lifting the input point set S.

• S∗↑ , in the dual space, is the set of points obtained
by applying the duality transform on S↑.

• P ∗, in the dual space, is the paraboloid obtained
by applying the dual transform on the paraboloid
P .

We define a set of points B∗, in the dual space, as fol-
lows:

B∗ = {H∗ | H is a non-vertical plane containing some

face of the upper convex hull of S↑}

Furthermore, we define B∗ as follows:

B∗ = {p∗ | p∗ is a point in the dual space which lies

in the region vertically above the lower

convex hull of B∗}

In other words, all points in B∗ project down (negative
z-direction) to some point on the lower convex hull of
B∗. Clearly, B∗ is a convex polyhedron unbounded in
the positive z-direction, such that (a) B∗ is fully con-
tained within S∗↑ , and (b) B∗ and P ∗ are disjoint.

3.4 Finding the radius of the smallest enclosing disk

Consider the planesH andH ′, as defined in Observation
1. In the dual space, the point H∗, obtained by applying
the duality transform on H, lies on the boundary of S∗↑ ,
and the point (H ′)∗ lies on the paraboloid P ∗. Since H
must contain either an edge or a face of the upper convex
hull of S↑, this implies that H∗ is either an edge or a
vertex of the lower convex hull of B∗, in other words,
H∗ is either an edge or a vertex of B∗. Thus we have
the following:

CCCG 2014, Halifax, Nova Scotia, August 11–13, 2014

Observation 4 Let S be a set of n points in the plane.
The radius of sed(S) is equal to the minimum vertical
distance between B∗ and P ∗.

For a point set S and query region q in a standard range
tree, S ∩ q can be expressed as the union of the points
rooted at canonical nodes v1, v2, . . . , vm which fall in the
desired range. For all canonical nodes vi, let S(vi) be
the set of points rooted at the node. We define S↑(vi),
S∗↑(vi) and B∗(vi), as described above. For the disk
to contain all points in S ∩ q, the associated plane H
must be such that the points in S↑(vi), for all canonical
nodes, lie on or below it. In other words, the plane
H associated with sed(S ∩ q) must lie on or above the
convex hull of the union of all S↑(vi). In the dual space
equivalent, what this means is that the point H∗ must
lie on the boundary of the intersection of all S∗↑(vi). By
definition of B∗, this implies that H∗ must be a point
on the intersection of all B∗(vi).

Thus, the problem of computing sed(S ∩ q) is equiva-
lent to that of computing the minimum vertical distance
between

• the paraboloid P ∗, and

• the intersection of the convex polyhedra
B∗(v1),B∗(v2), . . . ,B∗(vm). We call it B∗(S ∩ q).

4 Our Solution

A standard two dimensional range tree partitions q into
O(log2 n) rectangular sub-regions. The points in each
region, via lifting and duality transforms, are mapped
to a convex polyhedron in the dual space. To construct
the polyhedron B∗(S ∩ q) the authors, in [3], take the
intersection of all these O(log2 n) polyhedra.

We propose a solution that allows us to discard a
large set of canonical nodes in the query range while
preserving nodes whose points contribute to the small-
est enclosing disk. More precisely, our solution reduces
the number of canonical nodes (and corresponding poly-
hedra B∗(vi)) under consideration to O(log n). This re-
duces the search-space, and therefore query time, sig-
nificantly.

5 Data Structures and Query Algorithm

We use a modified version of the two dimensional range
tree, described in [9], to partition the orthogonal range
into a grid, as shown in Figure 2. The idea used is
similar to the one used in [2] to enhance kinetic kd -trees.

Given a point set P , we first construct a tree Tx,
which is a one-dimensional range tree, on the x co-
ordinates of the points. For any node v of this tree,
the set of all points rooted at v is called the canoni-
cal subset of v. We denote the canonical subset of a
node v by P (v). The standard two-dimensional range

Standard 2D Range Tree Modified Range Tree

Figure 2: Space partitioning by the standard v/s mod-
ified range tree

tree associates each node v with a secondary tree Ty(v),
which is a balanced binary search tree built on the y
co-ordinates of the points in P (v). Our data structure
differs in the method of building these secondary trees.

We build a one-dimensional range tree, Ty, based on
the y co-ordinates of the entire point set P . We call
this the template tree. For each node v, we reduce the
template tree into a structure that we call the contracted
tree for the set P (v). To do so, we perform the following
two operations on the template tree Ty (Figure 3):

• First, all subtrees that do not have a leaf in P (v)
are removed.

• Subsequently all nodes that have a single child are
contracted, i.e., the child of such a node is directly
connected to its parent, and the node itself is re-
moved. This process is carried out recursively until
no nodes with a single child remain.

a b c d e f g h

a

c d

f

Figure 3: Template tree and Contracted tree for nodes
a, c, d and f .

Notice that every range associated with a node of such
a contracted tree is also present in Ty, as we are merely
eliminating ranges that do not correspond to points in
P (v). Since each range in Ty corresponds to a horizontal
section of the plane, the contracted tree for any node v
represents a subset of these horizontal sections. By us-
ing the space partitioning produced by Ty, we can parti-
tion the space into a tiled grid, such that all space par-
titions induced by the contracted secondary trees will
automatically be aligned with this grid. This produces
the tiled space partitioning shown in Figure 2.

Consider the tiled alignment generated by the mod-
ified range tree. For each query we can identify blocks

26th Canadian Conference on Computational Geometry, 2014

Algorithm 1 Finding candidate blocks in the top-right
region

Initialize: B ← empty list
Set: bx ← block enclosing the point with max x value
Set: by ← block enclosing the point with max y value
1: B.append(bx)
2: while bx 6= by do
3: if ∃ bx′ | bx′ is non-empty and lies vertically

above bx, in the same column then
4: bx ← bx′

5: else
6: bx ← left-neighbour of bx
7: end if
8: B.append(bx)
9: end while

10: return B (List of Candidate Blocks)

(tiles) that (a) together capture all points on the bound-
ary of the point-set, and (b) therefore must contain the
bounding points of sed (S ∩ q). We call these blocks
candidate blocks. These blocks alone are sufficient for
computing both the convex hull and the smallest en-
closing disk.

Lemma 2 The set C of candidate blocks can be com-
puted in O(log n) steps, and |C| = O(log n).

Orthogonal
Query Range

point with
maximum x

point with
maximum y

candidate
blocks

O(log n)

O(log n)

Figure 4: candidate blocks

Proof. The set C of candidate blocks can be partitioned
into four continuous chains based upon the extreme
points in each orthogonal direction. We demonstrate
how to compute the upper-right quarter (dark shaded
blocks in Figure 4):

We begin at the block containing the point with max-
imum x co-ordinate. We then find the first non-empty
block in the positive y direction in the same column. If
such a block is found, we move to that block. If not,
we move one block to the left and repeat the process

until the block enclosing the point with the maximum
y co-ordinate is reached. In each step we move either
towards the top or towards the left, therefore we may
move a maximum of O(log n) steps in both directions.
All non-empty blocks visited in this process constitute
the max x to max y chain of candidate blocks. Algo-
rithm 1 describes the process rigorously.

The remaining chains can be computed in a similar
manner and the results combined to get the set C. �

In place of the polyhedron B∗ of Section 3.3, we can
now use a convex polyhedron B∗∗, defined as the in-
tersection of these O(log n) candidate blocks/nodes (as
opposed to O(log2 n) required previously).

At each candidate canonical node v, we store the hi-
erarchical representation [6] of the corresponding con-
vex polyhedron Bv, which can be constructed in O(|Bv|)
time and requires an equivalent amount of space. There-
fore the entire tree requires O(n log2 n) time and space.

Using hierarchical representations of polyhedra and
the data structures described in Section 5.2 of [3], we can
compute the distance between the paraboloid P ∗ and a
convex polyhedron A in its hierarchical representation,
hier(A), in O(log |A|) time.

Lemma 3 (Eppstein, 1992. [7], as given in [3])
Given m convex polyhedra represented by their hier-
archical representations, we can optimize any given
objective function over their common intersection in
O(γ · m3 log2 n) time, provided that the elementary
problem of optimizing the function over one convex
polyhedron can be done in O(γ) time.

We have m = O(log n) polyhedra and γ = O(log n),
as explained above, therefore the minimum vertical dis-
tance between the paraboloid P ∗ and the convex polyhe-
dron B∗∗ = ∩

i∈C
Bi can be computed in O(log6 n). Thus,

the radius of sed (S ∩ q) can also be computed within
the same time bound.

Theorem 4 Let S be a set of points in the plane.
We can construct an O(n log2 n) size data structure in
O(n log2 n) time, such that for any axis-parallel query
rectangle q, the radius of the smallest enclosing disk for
the points lying in S ∩ q can be computed in O(log6 n)
time.

6 Conclusions and Future Work

In this paper we have shown how a non-decomposable
range searching problem that uses range trees can be
solved in a much more efficient manner using the range
tree variant proposed by Moidu et al. in [9]. There exist
other problems to which the same optimization can be
applied, i.e. problems wherein the aggregate function

CCCG 2014, Halifax, Nova Scotia, August 11–13, 2014

can be computed without examining the points lying in
the interior1 of the query region.

We hope that more such problems will be found and
improved upon using the ideas herein.

References

[1] Proceedings of the 22nd Annual Canadian Confer-
ence on Computational Geometry, Winnipeg, Man-
itoba, Canada, August 9-11, 2010, 2010.

[2] M. A. Abam, M. de Berg, and B. Speckmann. Ki-
netic kd-trees and longest-side kd-trees. SIAM J.
Comput., 39(4):1219–1232, 2009.

[3] P. Brass, C. Knauer, C. S. Shin, M. Smid, and I. Vi-
gan. Range-aggregate queries for geometric extent
problems. In CATS: 19th Computing: Australasian
Theory Symposium, 2013.

[4] A. S. Das, P. Gupta, A. K. Kalavagattu, J. Agar-
wal, K. Srinathan, and K. Kothapalli. Range ag-
gregate maximal points in the plane. In M. S. Rah-
man and S.-I. Nakano, editors, WALCOM, volume
7157 of Lecture Notes in Computer Science, pages
52–63. Springer, 2012.

[5] M. de Berg, O. Cheong, M. van Kreveld, and
M. Overmars. Computational Geometry: Algo-
rithms and Applications. Springer, 2008.

[6] D. P. Dobkin and D. G. Kirkpatrick. Determining
the separation of preprocessed polyhedra - a unified
approach. In M. Paterson, editor, ICALP, volume
443 of Lecture Notes in Computer Science, pages
400–413. Springer, 1990.

[7] D. Eppstein. Dynamic three-dimensional linear
programming. INFORMS Journal on Computing,
4(4):360–368, 1992.

[8] R. Janardan, P. Gupta, Y. Kumar, and M. H. M.
Smid. Data structures for range-aggregate extent
queries. In CCCG, 2008.

[9] N. Moidu, J. Agarwal, and K. Kothapalli. Pla-
nar convex hull range query and related problems.
In CCCG. Carleton University, Ottawa, Canada,
2013.

[10] Y. Nekrich and M. H. M. Smid. Approximating
range-aggregate queries using coresets. In CCCG
[1], pages 253–256.

[11] F. Nielsen and R. Nock. A fast deterministic small-
est enclosing disk approximation algorithm. Inf.
Process. Lett., 93(6):263–268, 2005.

1the meaning of which is made clear in our exposition above

[12] J. O’Rourke. Computational Geometry in C. Cam-
bridge University Press, 1998.

[13] S. Rahul, H. Bellam, P. Gupta, and K. Rajan.
Range aggregate structures for colored geometric
objects. In CCCG [1], pages 249–252.

[14] S. Rahul, A. S. Das, K. S. Rajan, and K. Srinathan.
Range-aggregate queries involving geometric aggre-
gation operations. In N. Katoh and A. Kumar, ed-
itors, WALCOM, volume 6552 of Lecture Notes in
Computer Science, pages 122–133. Springer, 2011.

[15] R. Sharathkumar and P. Gupta. Range-aggregate
proximity detection for design rule checking in vlsi
layouts. In CCCG, 2006.

