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Abstract

We present efficient algorithms for partitioning 2-
dimensional space into faces arising from the boundaries
of overlapping polygons. In particular, we examine the
case where the partitioning arises from overlaying m
k-sided simple polygons. A dynamic data structure is
presented for storing the partitioning that arises from
m polygons with at most k sides each in space O(km?)
if the polygons are assumed to be convex, and space
O(k?m?) for simple polygons. Our structure returns 7
distinct regions from an axis-aligned orthogonal range
search in worst case O(mk + (m + k)(logmk)T) time,
and can be updated in O(k?m?) time.

1 Introduction

Geometric range searching has been widely studied [2]
[6] [7]. Range search on a variety of geometric primitives
such as points, line segments, half spaces and simplices
is of interest in many fields, with point range search
being widely studied (see e.g. [1]) due to the direct con-
nection with efficient database search. Here we consider
the less studied problem of orthogonal range search on
a planar subdivision induced by a set of intersecting
simple polygons. Our motivation arises from a compu-
tational geometry viewpoint where we wish to maintain
a collection of polygonal regions acting as an index to
massive point datasets collected in overlapping regions
at different times [5]. The dynamic data structure pre-
sented here supports efficient orthogonal range search
on a set of faces created by an arrangement of intersect-
ing simple polygons.

2 Definitions

We concern ourselves with planar subdivisions that arise
from the intersection of m overlapping k-sided simple
polygons.

We define a set P of simple polygons; if convexity
is assumed, then these polygons are convex. |P| = m
by definition, and each polygon p € P is defined by at
most k line segments. These line segments are referred
to as the “sides” of the polygon they define. We further
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assume that these defining line segments are in general
position such that at most two line segments touch any
given point.

The sides defining the m polygons in P will likely (but
not necessarily) intersect. Wherever two sides intersect,
we cut both into smaller line segments, using the point
of intersection as the endpoints for each resulting seg-
ment. Once all intersecting sides have been treated in
such a fashion, we have a set E of line segments such
that any endpoint is shared by either 2 or 4 line seg-
ments, and no two line segments cross. Each of these
segments is a part or whole of one side of a polygon in
P.

Finally, we define a set R of faces bounded by the seg-
ments in £. Each face is a polygon, but not necessarily
a simple one, as faces can contain holes. An example of
a face with a hole is shown in Fig. 5 (e). Each facer € R
is thus, by definition, a single component which can in-
clude holes. For clarity, when we refer to an element
of R, we will use the term ’face’; the term ’polygon’
is restricted to the original elements of P, even though
many faces are themselves simple polygons.

We explore the use of window queries on these pla-
nar subdivisions, which report all faces that partially or
entirely overlap an axis-aligned rectangle W.

3 Geometry

Theorem 1 A planar subdivision composed of m k-
sided convex polygons can be decomposed into O(km?)
segments and O(km?) faces.

Proof. Each of the mk sides that define the m convex
polygons in P can, by the definition of convexity, in-
tersect each polygon at most twice. This means that
when the mth polygon is added, each side defining it
passes through at most O(m) existing faces and splits
them. Therefore, adding the mth polygon creates at
most an additional O(km) faces; summing over m poly-
gons gives O(km?) faces. As shown in Figure la, each
side will intersect O(m) other sides, and decompose into
O(m) segments; summation again gives O(km?) total
segments. O

Theorem 2 A planar subdivision composed of m k-
sided simple polygons can decompose into O(k*m?)
faces.
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Figure 1: Convex cases. (a) Example of a set of m = 4,
k = 6-sided convex polygons, constructed to maximize
the number of segment intersections; |E| = 168. (b)
Example of a set of m = 4, k = 4-sided polygons, con-
structed to apply the worst case from Figure 5 (d) to
the outside face for all mk vertices.

Figure 2: Example of a set of m = 4, k = 4-sided poly-
gons, constructed to maximize the number of segment
intersections; |E| = 208.

Proof. Every side of the mth polygon can pass through
as many as k(m — 1) other sides. Adding the mth poly-
gon can create at most an additional O (k?m) faces; sum-
ming over m polygons gives O(k?m?) faces. As shown
in Figure 2, each side can cross every side from every
other polygon, and decompose into O(km) segments for
a total of O(k?*m?) segments. O

How much complexity can be added to a given face
from the addition of one more convex polygon? Exam-
ples can be constructed where a single line adds O(m)
sides to the face, as shown in Figure 3, but these are
special cases. It is possible to add O(k) sides by the ad-
dition of a k-sided polygon, as shown in Figure 4, and
this scenario may be repeated as many times as desired.

Theorem 3 Given a planar subdivision composed of m
k-sided overlapping simple polygons, a single face can
have O(km) line segments.

Figure 3: Example of a set of m =5, k = 3-sided poly-
gons, constructed such that the addition of the bolded
polygon results in face 1 going from 12 sides to 21, in a
fashion that is an increase of O(m).

Figure 4: Example of a set of m = 6, k = 6-sided
polygons, constructed such that each additional polygon
adds O(k) sides to face 2.

Proof. An arrangement of m k-sided simple polygons
consists of km line segments, any pair of which can cross
at most once. Furthermore, by the assumption of gen-
eral position, any given line segment s can touch at
most 2m + 2 other line segments, i.e. the two segments
adjacent to s on the polygon where s resides, and two
interactions from every other polygon.

A vertex of a polygon can add at most a constant
number of sides to a single face. Figure 5 shows the
general scenario for the number of sides added to a face
by the presence of a single vertex. The worst case for
any given vertex is the scenario shown in part (d) of
Figure 5, where the presence of one vertex results in
three additional sides being present in the face. Figure
1b shows that this scenario can be repeated for every
vertex of every polygon, even with the assumption of
convexity.

As illustrated in Figures 5 and 1b, each vertex con-
tributes at most 3 segments to any face. Conversely,
every segment in a face can correspond to one of the
mk vertices; the O(m) segments added by a single ad-
ditional side in Figure 3, for instance, are examples of
vertices transforming from Figure 5c cases to 5d ones.

The planar subdivision is induced by the m polygons
of P, each defined by k vertices, so a single face has at
most 3mk = O(mk) segments defining its boundary. O
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Figure 5: The possible cases for additional line segments
added to face 1 by given vertex i. (a) Vertex outside
face; both edges cut the same edge of the face adding
2 edges. (b) Vertex outside face; each edge cuts a dif-
ferent edge of the face adding 1 edge. (c) Vertex inside
face; each edge cuts a different edge of the face adding
2 edges. (d) Vertex inside face; both edges cut the same
edge of the face adding 3 edges. (e) Vertex inside face;
neither edge cuts an edge of the face. Each such vertex
adds 1 edge to the face.

Theorem 4 Given a planar subdivision composed of m
k-sided overlapping polygons, the average number of seg-
ments per face is O(k).

Proof. We start with a lower bound for the worst case.
Let the m polygons of P, each of which has k sides, be
disjoint. This gives us |E| = mk, |R| = m + 1, and as
m approaches infinity ‘I%l =k.

Asymptotically, the worst case cannot be worse than
k unless k < 4. This proof is by induction.

Our base case is a subdivision where |P| = 1. As the
single polygon does not intersect any others, we have
|E| =k and |R| = 2. The two faces are the interior and
exterior of the single polygon. For every polygon after
the first, we have the following scenarios.

We add a new k-sided polygon p to a set of faces R.
For every face r that contains some portion of the sides
of p, we create at least 1 new face as r is separated into
the interior and exterior of p. As at least one face must
contain any given vertex of p, we add at least 1 face to
R and k line segments to E.

The sides of p can intersect other line segments in F.
At every point where a newly added segment crosses
an existing one, we cut both segments into four non-
crossing segments sharing a common vertex, and in-
crease |E| by 2. There are limitations on how this can
occur. Every face r is bounded by line segments which
we call “contours”. We define a contour as a closed loop
that describes either the boundaries of the outside of r
or some island within it. By definition, these contours
are disjoint. If the sides of p cross a contour of r at all,

they must cross that contour an even number of times
since the sides of p themselves form a closed loop.

Since the number of intersections between p and any
given contour of r is even, we look at those intersections
in pairs. Every contour of r can have one pair of inter-
sections with p without creating additional faces beyond
the previously defined “interior of p within 7”. For every
pair of intersections between p and any given contour of
r beyond the first, an additional face arises. Further
intersections with a given contour will add a set of line
segments to cut some subset of r into an additional face.
If face r has ¢ distinct contours, the maximum number
of new line segments that creates the minimum number
of faces is 4c; i.e. two intersections creating two new
segments each for every one of the ¢ contours of r, while
separating r into two faces.

Each contour is disjoint, and different faces must be
associated with each one, so the edges of p pass into
at least ¢ other faces in R in this scenario, creating at
least ¢ new faces. The sum total of the contributions
caused by the addition of p is thus ¢+ 1 new faces, and
k + 4c new line segments. As c increases, the ratio of
new segments to new faces approaches 4.

If the sides of p intersect a contour of r» more than

twice, for instance 2h times, we obtain 4h new line seg-
ments, h — 1 new faces cut from r, and at least h new
faces from the opposite side of the contour, possibly
more. As the number of intersections h increases, the
ratio of new edges to new faces approaches 2.
, %7 starts at % in the
base case with |P| = 1. The ratio of new segments to
new faces at each step is at most %, with additional
intersections with contours of faces adding at most 2 or
le |segments for every additional face. As m increases,
E mk

{7 cannot be greater than Jt& = O(k).

The ratio of segments to faces

O

Lemma 5 Two faces i,j from a planar subdivision
composed of m k-sided overlapping simple polygons can
only share line segments if there is exactly one polygon
p for which i is a subset of p and j is disjoint from p,
or vice versa.

Proof. Given a face i € R, for each of the m polygons
p € P, i is either a subset of or disjoint from p. Every
line segment of 7 is derived from one of the sides of
one of the polygons in P, and is either contained or
excluded by all other polygons. Suppose there exists a
line segment ¢ that is part of the boundaries of faces 4
and j € R. There exists some polygon p for which ¢
is a portion of one of the sides of p. Thus, if 7 and j
are different faces, one must be a subset of p and the
other must be exterior to p. For every other polygon
q # p € P, if £ is contained by ¢ then i and 7 must be
subsets of q. Conversely, if £ is not contained by ¢, then
i and j are disjoint from gq. O
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Figure 6: Example of a set of m = 6, k = 6-sided
polygons, the O(mk) trapezoids from the most complex
face, and a rectangular query that hits a majority of
them but only one line segment.

Theorem 6 Two faces from a planar subdivision com-
posed of m k-sided overlapping simple polygons have at
most m + k — 1 common line segments.

Proof. From Lemma 5, two faces i,j € P can only
share line segments if there is exactly one polygon p
for which one face is a subset and the other is disjoint.
Any shared line segments will be drawn from the sides
of this single polygon p. Furthermore, the k sides of p
can be cut by other polygons at most m times to cre-
ate the border between two faces. Figure 1b shows that
while a polygon can cut multiple edges and add up to
O(k) additional line segments, doing so will create ad-
ditional faces that use some of those segments as their
boundaries; conversely, Figure 4 shows how the bound-
ary between faces 1 and 2 can be cut m times. As shown
in Theorem 4, any polygon that cuts a contour of a face
1 more than twice separates a portion of ¢ into a new
face. No polygon can have its sides belonging to more
than one contour of i. Thus, any polygon cutting the
edges of p more than twice will separate a portion of
the interior or exterior of p to become a new face, which
will have the newly cut segment as a boundary. As such,
the sides of p shared by ¢ and j can only be broken m
times by the other m —1 polygons of P without creating
a portion separate from 7 and j, meaning ¢ and j can
share at most m + k — 1 line segments.

O

4 Structure

Our initial design was an adaptation of the trapezoidal
map [8], which can be used for point location in O(logn)
time and O(nlogn) space for n line segments defining
the set of polygons. We know from Theorem 2 that
the intersection of m k-sided polygons can have at most
O(k*m?) line interactions, and an equal number of line
segments. More efficient algorithms exist for point lo-

cation [9] [4] [3], but our problem requires a window
query.

Our query is only concerned with reporting which
faces intersect the query window. Any given face can
consist of a large number of trapezoids. The worst case
has a face consisting of O(km) vertices, which decom-
poses into an equal number of trapezoids. Figure 6
shows an example of such a scenario. This would give
an overall query time of O(log(k?*m?) + kmT), where T
is the number of faces reported.

One simple alternative is to keep a list of all faces, and
check intersection of each one against a query rectangle.
As Theorem 4 shows, there are O(k) segments per face
on average; as such, this technique can be completed
in O(k|R]) time. While less than |E|, this still requires
O(k?*m?) time for simple polygons.

Our structure has two major components. One is a
standard planar point location structure used when no
segments of the query rectangle W intersect any seg-
ments in £. The other is an index for line segments
that supports range searching. While performance of
this may vary, the nature of this problem allows us to
avoid having to index, and later modify, the O(km?)
or O(k?m?) line segments that bound the planar sub-
division. Instead, we simply index the km sides of the
original polygons in P. While these km segments may
cross and will share endpoints, we reduce the cost of the
spatial index.

Each of the km line segments includes a pointer to
a secondary structure. The jth side of polygon ¢ has a
range index G7, which consists of the coordinates of the
side’s endpoints, and three dynamic arrays. As illus-
trated in Figure 7, one array has fractional values from
zero to one indicating the distance along the side where
intersections with other sides occur. This array is an
ordered list of the segments intersecting side j, which
is of length O(m) in the convex case and O(km) in the
simple polygons case. The other two arrays contain in-
dices for the faces that include each line segment, re-
spectively those internal and external to polygon i. By
recording face indices in this manner, every line segment
of the planar subdivision is represented once, and the
secondary structures require O(km?) or O(k*m?) space
in the convex or simple polygons cases, respectively.

By using a sorted list, the n pieces of a line segment
can be compared with a query rectangle in O(logn+T)
time, where T is the number of pieces returned. We
know that no line segment of a polygon can be divided
into more than O(m) pieces if the polygons are convex,
and O(km) if they are not.

Our main obstacle is over-reporting. In the worst
case, a query rectangle W could intersect all of the seg-
ments bounding a face, effectively reporting it O(km)
times in the worst case. Unlike a trapezoidal map, every
segment belongs to two faces. As Theorem 6 shows, two
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faces can share at most O(m+k) line segments. If a face
with O(mk) segments has all its segments intersecting
W, some number of these segments will belong to other
faces entirely. Averaging the number of segments over
the number of faces returned gives an over-reporting
factor of O(m + k).

In the event that a query rectangle neither intersects
nor contains any line segments, the entire query rect-
angle is contained inside a single face. The problem
reduces to planar point location; a query that intersects
no segments can be effectively reduced to a single point,
as we need only locate the face that contains some point
from the query region. Edelsbrunner et al’s [3] worst
case optimal linear space algorithm, for example, can
perform planar point location in logarithmic time.

Theorem 7 Orthogonal range search on a planar sub-
division arising from m k—sided overlapping simple poly-
gons can report the T faces in range in O(mk + (m +
k)(log mk)T) worst case time.

Proof. As illustrated in Algorithm 1, we can perform
a linear scan of the mk sides of all polygons p € P
in O(mk) time. For each side, a segment intersection
test will determine whether any segment from that side
intersects a query rectangle W. If no sides intersect W,
point location can be performed using a layered dag [3]
in O(log mk) time. Otherwise, the algorithm continues.
The range indices GY are sorted, so appropriate segment
information can be located in O(log mk) time, returning
a minimum of one segment. As shown in Theorem 6, no
two faces can share more than O(m + k) segments. In
the worst case, each of the T faces includes O(m + k)
segments intersecting W, where each segment requires
O(log mk) time to find in its range index. O

The time cost of over-reporting cannot be easily
avoided; any description of a face would require infor-
mation at least equal to the number of segments defin-
ing it. In practice, we may wish to report any inter-
sected face only once. To accomplish this, Algorithm
1 makes use of a “face list” L. We consider two possi-
bilities. The first is a simple array of boolean flags of
size |R|; while this requires time O(|R|) to build and
scan, we can still avoid requiring all the information
from each face, and gain an advantage over the naive
solution. The second is a balanced tree of face indices
that have been located; each of the O((m+k)T) indices
we locate can be checked against the tree and inserted
in O(logT) time; as T < |R| = O(k®>m?), this can be
done in time O(logmk) per segment which maintains
the range search cost of Theorem 7.

For Update Algorithm 2, faces are redefined to con-
sist of multiple disjoint components. Two components
are part of the same face if both components are con-
tained in the same set Q C P of polygons (see e.g. faces

Algorithm 1: Search(W, S)
Input

: A query rectangle W, a polygon overlap
index structure S
Output: A set of faces L

1 begin
2 Set up an empty list of faces L;
Perform a range search over W on the km sides
in S;
for Each line segment i intersecting W do
5 Use the endpoints of ¢ to determine what
length interval [a, b] is contained in W;
6 Perform a binary search on the secondary
structure of i to find the entry at length a;
7 for Each entry g of Gli) between lengths a
and b do
8 Insert both internal and external regions
L from g into L;
9 if L is empty then
10 Use planar point location to determine what
face s contains the top left corner of W;
11 Return s;
12 else
13 | Return L;

1 through 5 in Figure 7). This allows indexing to be
simplified; upon adding a polygon ¢ to the structure .S,
we construct a mapping M from existing face indices to
new indices for faces covered by q. We consider either a
deterministic algorithm using binary arithmetic (adding
2% to the index of any face covered by the ath polygon),
or an array of size |R| to be filled in incrementally, to
ensure that every face index pertains to some portion
of the plane. Algorithm 2 makes no assumptions about
which mapping is used; only that there exists a method
that takes an existing face index number and returns
another.

The layered dag [3] is not dynamic, but can be built in
time proportional to the number of segments as long as
they are sorted by their leftmost points. We can main-
tain such a sorted list by inserting each of the O(mk?)
new intersections into the sorted list in logarithmic time,
for a total insertion cost of O(mk?log(mk)); rebuilding
the layered dag would then require O(m?k?) time. Each
of the mk sides can have up to k new indices in the worst
case, for a similar insertion cost of O(mk?log(mk)).
This is worst-case optimal; the insertion algorithm also
requires indices covered by the new polygon to be up-
dated. In the worst case, a new polygon could cover all
O(m?k?) existing faces, requiring all of them to have
their indices modified.
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Figure 7: Example of a set of m = 3 k = 4-sided poly-
gons, with two polygon sides having their range indices
shown. Columns are, from left to right, fractional dis-
tance from the top corner, internal face, external face.

5 Conclusions

We present an algorithm for orthogonal range search
on a set R of faces arising from m k—sided overlapping
simple polygons. The T faces in range are reported in
O(mk+(m~+k)(log mk)T) worst case time, and the data
structures supporting the algorithm require O(k?m?)
space. Updating the data structure supporting this al-
gorithm to add a new simple polygon requires O(k*m?)
time. To our knowledge, ours is the first paper to ad-
dress the complexity of faces arising from overlapping
simple polygons, and to provide an efficient algorithm
for orthogonal range search on their planar arrange-
ment.
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