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Dimension Detection with Local Homology
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Abstract

Detecting the dimension of a hidden manifold from a
point sample has become an important problem in the
current data-driven era. Indeed, estimating the shape
dimension is often the first step in studying the pro-
cesses or phenomena associated to the data. Among
the many dimension detection algorithms proposed in
various fields, a few can provide theoretical guarantee
on the correctness of the estimated dimension. How-
ever, the correctness usually requires certain regularity
of the input: the input points are either uniformly ran-
domly sampled in a statistical setting, or they form the
so-called (ε, δ)-sample which can be neither too dense
nor too sparse.

Here, we propose a purely topological technique to
detect dimensions. Our algorithm is provably correct
and works under a more relaxed sampling condition: we
do not require uniformity, and we also allow Hausdorff
noise. Our approach detects dimension by determining
local homology. The computation of this topological
structure is much less sensitive to the local distribution
of points, which leads to the relaxation of the sampling
conditions. Furthermore, by leveraging various devel-
opments in computational topology, we show that this
local homology at a point z can be computed exactly
for manifolds using Vietoris-Rips complexes whose ver-
tices are confined within a local neighborhood of z. We
implement our algorithm and demonstrate the accuracy
and robustness of our method using both synthetic and
real data sets. Missing details from this abstract can be
found in the full version of this paper [7].

1 Introduction

Learning about a manifold embedded in IRd from its
point data is a key problem in various manifold learn-
ing applications. Most times, the intrinsic dimension
of the manifold M is one of the simplest, yet still very
important, quantities that one would like to infer from
input data. Therefore, there has been considerable re-
search in dimension estimation for manifolds. Under
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the statistical setting, different approaches estimate the
manifold dimension based on the growth rate of the vol-
ume (or some analog of it) of an intrinsic ball [9, 11].
They generally assume that the input points are sam-
pled from some probabilistic distribution supported on
the hidden manifold. In the computational geometry
community, there are provable dimension detection al-
gorithms which all require (ε, δ)-sampling condition that
points are both ε-dense and δ-sparse. Cheng et al. [5]
developed an improved algorithm from them to toler-
ate a small amount of Hausdorff noise (of the order ε2

times the local feature size). More recently, Cheng et al.
[4] proposed an algorithm to estimate the dimension by
detecting the so-called slivers. This algorithm assumes
that the input points are sampled from the hidden man-
ifold using a Poisson process without noise.

In this paper we develop a dimension detection
method based on the topological concept of local homol-
ogy. The idea of using local homology to study stratified
spaces from sampled points was first proposed by Ben-
dich et al. [1] and further explored in [2]. Both of them
used Delaunay triangulations in their algorithms. In a
recent paper [15], Skraba and Wang proposed to approx-
imate the multi-scale representations of local homology
using families of Rips complexes. In the same spirit,
we show that the dimension of a manifold can also be
deduced from Rips complexes using the local homology.

Our results. Given a smooth m-dimensional man-
ifold M embedded in IRd, the local homology group
H(M,M − z) at a point z ∈ M is isomorphic to the re-
duced homology group of a m-dimensional sphere, that
is H(M,M − z) ∼= H̃(Sm). Hence, given a set of noisy
sample points P of M, we aim to detect the dimen-
sion of M by estimating H(M,M − z) from P . Specif-
ically, we assume that P is an ε-sample1 of M in the
sense that the Hausdorff distance between P and M is
at most ε. Our main result is that by inspecting two
nested neighborhoods around a sample point p ∈ P and
considering certain relative homology groups computed
from the Rips complexes induced by points within these
neighborhoods, one can recover the local homology ex-
actly ; see Theorem 13. This in turn provides a provably
correct dimension-detection algorithm for an ε-sample

1Note that this definition of ε-sample allows points in P to be
ε distance off the manifold M. Our ε-sampling condition is with
respect to the reach of M while that used in [4, 5, 8, 10] is with
respect to local feature size and thus adaptive.
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P of a hidden manifold M when ε is small enough.

Compared with previous provable results in [4, 5, 8,
9, 10, 13], our theoretical guarantee on the estimated
dimension is obtained with a more relaxed sampling
condition on P . Specifically, there is no uniformity re-
quirement for the sample points P , which was required
by all previous dimension-estimation algorithms with
theoretical guarantees: either in the form of a uniform
random sampling in the statistical setting [4, 9, 13] or
the (ε, δ)-sampling in the deterministic setting [5, 8, 10].
We also allow larger amount of noise (ε vs. ε2 as in [4]).
Such a relaxation in the sampling condition is primarily
made possible by considering the topological informa-
tion, which is less sensitive to the distribution of points
compared to the approaches based on local fitting.

In Section 6, we provide preliminary experimental re-
sults of our algorithm on both synthetic and real data.
For synthetic data our method detects the right dimen-
sion robustly. For real data some of which are laden with
high noise and undersampling, not all points return the
correct dimension. But, taking advantage of the fact
that local homology is trivial in all but zero and intrin-
sic dimension of the manifold, we can eliminate most
false positives and estimate the correct dimension from
appropriately chosen points.

Finally, we remark that similar to the recent work in
[15], our computation of local homology uses the Rips
complex, which is much easier to construct than the
ambient Delaunay triangulation as was originally re-
quired in [1]. Different from [15], we aim to compute
H(M,M − z) exactly for the special case when M is a
manifold, while the work in [15] approximates the multi-
scale representations of local homology (the persistence
diagram of certain filtration) for more general compact
sets. The goals from these two works are somewhat
complementary and the two approaches address differ-
ent technical issues.

Remark. The missing details and proofs from this ab-
stract can be found in the full version of the paper [7].

2 Preliminaries and Notations

Manifold and sample. Let M be a compact smooth
m-dimensional manifold without boundary embedded
in an Euclidean space IRd. The reach ρ(M) is the min-
imum distance of any point in M to its medial axis. A
finite point set P ⊂ IRd is an ε-sample of M if every
point z ∈ M satisfies d(z, P ) ≤ ε and every point p ∈ P

satisfies d(p,M) ≤ ε; in other words, the Hausdorff dis-
tance between P and M is at most ε.

Balls. An Euclidean closed ball with radius r and cen-
ter z is denoted Br(z). The open ball with the same
center and radius is denoted B̊r(z) and its complement

IRd \ B̊r(z) is denoted Br(z).

Homology. We denote the i-th dimensional homology
group of a topological space X as Hi(X). We drop i and
write H(X) when a statement holds for all dimensions.
We mean by H(X) the singular homology if X is a man-
ifold or a subset of IRd, and simplicial homology if X is a
simplicial complex. Both homologies are assumed to be
defined with Z2 coefficients. We make similar assump-
tions to denote the relative homology groups H(X,A)
for A ⊆ X. Notice that both H(X) and H(X,A) are
vector spaces because they are defined with Z2 coef-
ficients. The following known result turns out to be
useful.

Proposition 1 ([3]) Let H(A) → H(B) → H(C) →
H(D) → H(E) → H(F ) be a sequence of homomor-
phisms. If rank(H(A) → H(F )) = rank(H(C) →
H(D)) = k, then rank(H(B) → H(E)) = k.

Overview of approach. We are given an ε-sample
P = {pi}n

i=1 of a compact smooth m-manifold M em-
bedded in IRd. However, the intrinsic dimension m of
M is not known, and our goal is to estimate m from the
point sample P . Note that for any point z ∈ M, we have
that H(M,M−z) ∼= H̃(Sm), which is the reduced homol-
ogy of Sm. This means that rank(Hi(M,M − z)) = 1 if
and only if i = m. Hence, if we can compute the rank
of Hi(M,M− z) for every i, then we can recover the di-
mension of M. This is the approach we will follow. In
Section 4, we first relate H(M,M − z) with the topol-
ogy of the offset of the point set P . This requires us
to inspect the deformation retraction from the offset to
M carefully. The relation to the offset, in turns, allows
us to provably recover the rank of H(M,M − z) using
the so-called Vietoris Rips complex, which we detail in
Section 5. One key ingredient here is to use only local
neighborhoods of a sample point to obtain the estimate.
First, in Section 3, we derive several technical results to
prepare for the development of our approach in Section
4 and 5.

3 Local Homology of M and its Offsets

Local homology H(M,M − z). In this section, we de-
velop a few results that we use later. First, we relate the
target local homology groups H(M,M−z) to some other
local homology which becomes useful later for connect-
ing to the local homology of Rips complexes that are
ultimately used in the algorithm. We start by quoting
the following known result.

Proposition 2 ([6]) Let Br(p) be a closed Euclidean
ball so that it intersects the m-manifold M in more than
one point. If r < ρ(M), then M ∩ Br(p) is a closed
topological m-ball.
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The next result now follows.

Proposition 3 Let D ⊂ M be a closed topological m-
ball from the m-manifold M, and z ∈ M a point con-
tained in the interior D̊ of D. Then i∗ is an isomor-
phism where

H(M,M − D̊)
i∗→ H(M,M − z).

We can extend Proposition 3 a little further.

Proposition 4 Let D1 and D2 be two closed topological
balls containing z in the interior where D1 ⊆ D2 ⊆ M.
The inclusion-induced homomorphisms i′∗ and i∗ in the
following sequence are isomorphisms:

H(M,M − D̊2)
i′
∗→ H(M,M − D̊1)

i∗→ H(M,M − z).

Local homology of the offset. We wish to relate the
local homology H(M,M − z) at a point z to the local
homology of an α-offset of an ε-sample P = {pi}n

i=1,
defined as

Xα = ∪n
i=1Bα(pi)

which is the union of balls centered at every pi with
radius α. For this, we will need a map to connect the two
spaces, which is provided by the following projection
map:

πα : Xα → M given by x 7→ argminz∈M
d(x, z).

Choose α < ρ(M)− ε. Since P is an ε-sample, no point
of Xα is ρ(M) or more away from M. This means that no
point of the medial axis of M is included in Xα. There-
fore, the map π is well defined. Furthermore, by a re-
sult of [14], π is a deformation retraction for appropri-
ate choices of parameters. In fact, under this projection
map, the pre-image of a point has a nice structure (star-
shaped).

For convenience denote θ1 =
(ε+ρ)−

√
ε2+ρ2−6ερ

2 and

θ2 =
(ε+ρ)+

√
ε2+ρ2−6ερ

2 and observe that ε ≤ θ1 and
θ2 ≤ ρ(M) − ε for ε, ρ > 0. We have:

Proposition 5 Let 0 < ε < (3 −
√

8)ρ(M) and θ1 ≤
α ≤ θ2. Let Aα = π−1

α (N) where N ⊆ M may be either
an open or a closed subset. Then πα : Aα → N is a
retraction and N is a deformation retract of Aα.

Based on the above observation, the map πα :
(Xα, Aα) → (M,N) seen as a map on the pairs provides
an isomorphism at the homology level.

Proposition 6 Let 0 < ε < (3−
√

8)ρ and θ1 ≤ α ≤ θ2.
The homomorphism πα∗ : H(Xα, Aα) → H(M,N) is an
isomorphism.

Proposition 7 Let 0 < ε < (3 −
√

8)ρ, and θ1 ≤ α <

α′ ≤ θ2. Let N ⊂ N′ be two closed (or open) sets of
M, and Aα = π−1

α (N) and Aα′ = π−1
α′ (N′). Denoting by

im(·) the image of a map, we have

im (H(Xα, Aα) → H(Xα′ , Aα′)) ∼= im (H(M,N) → H(M,N′)) .

4 Local Interleaving of Offsets

Let p ∈ P be any sample point. We show how to ob-
tain the local homology of the projected point π(p) on
M from pairs of p’s local neighborhoods in Xα. The
results from the previous section already allow us to re-
late the local homology of the projected point π(p) with
the local homology of some local neighborhoods in Xα

(which are the pre-image of some sets in M). We now
use interleaving to relate them further to local neighbor-
hoods that are intersection of Xα with Euclidean balls.
Since π(p) plays an important role here, we use a special
symbol p̄ = π(p) for it. For convenience, we introduce
notations (see Figure 1):

Mα,β = π−1
α (B̊β(p) ∩ M), M

α,β = Xα − Mα,β , and

Bα,β = B̊β(p) ∩ Xα, B
α,β = Xα − Bα,β .

The following simple observation follows from Proposi-
tions 3, 2, and 5.

Proposition 8 Let Dβ = Bβ(p) ∩ M. For 0 < ε <

(3 −
√

8)ρ , ε < β < ρ(M) and θ1 ≤ α ≤ θ2, the
maps πα∗ and i∗ are isomorphisms in the sequence:

H(Xα, Mα,β)
πα∗→ H(M,M − D̊β)

i∗→ H(M,M − p̄).

Now set δ = α + 3ε. Consider any z ∈ M. Since any
point x ∈ π−1

α (z) resides within a ball Bα(pi) for some
pi ∈ P , we have that

d(x, z) = d(x, π(x)) (1)

≤ d(x, π(pi)) ≤ d(x, pi) + d(pi, π(pi)) (2)

≤ α + ε = δ − 2ε. (3)

It follows that for any λ ∈ (ε, ρ(M) − δ) we get the
following inclusions.

Mα,λ ⊂ Bα,λ+δ ⊂ Mα,λ+2δ ⊂ Bα,λ+3δ ⊂ Mα,λ+4δ.

Taking the complements, a new filtration in the reverse
direction is generated:

M
α,λ+4δ ⊂ B

α,λ+3δ ⊂ M
α,λ+2δ ⊂ B

α,λ+δ ⊂ M
α,λ.

Considering each space as a topological pair, the nested
sequence becomes

(Xα, Mα,λ+4δ) ⊂ (Xα, Bα,λ+3δ)

⊂ (Xα, Mα,λ+2δ)

⊂ (Xα, Bα,λ+δ)

⊂ (Xα, Mα,λ) (4)
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Figure 1: The spaces Mα,β shown in cyan (left) and M
α,β shown in pink (right).

Inclusion between topological pairs induces a homomor-
phism between their relative homology groups. There-
fore, the following relative homology sequence holds.

H(Xα, Mα,λ+4δ) → H(Xα, Bα,λ+3δ)

→ H(Xα, Mα,λ+2δ)

→ H(Xα, Bα,λ+δ)

→ H(Xα, Mα,λ) (5)

Let ǫ ≤ α′ ≤ ρ(M) − ǫ and δ′ = α′ + 3ε. Similar to
sequence (4), for any λ′ ∈ (ε, ρ(M) − 4δ′) we have:

(Xα′ , Mα′,λ′+4δ′

) ⊂ (Xα′ , Bα′,λ′+3δ′

)

⊂ (Xα′ , Mα′,λ′+2δ′

)

⊂ (Xα′ , Bα′,λ′+δ′

)

⊂ (Xα′ , Mα′,λ′

) (6)

The stated range of λ, λ′ is valid if α, α′ <
ρ(M)−13ε

4 .
We also need θ1 ≤ α, α′. These two conditions are sat-

isfied for ε <
ρ(M)
22 . Let θ′2 = ρ(M)−13ε

4 .

Proposition 9 Let 0 < ε <
ρ(M)
22 , and θ1 ≤ α ≤ α′ ≤

θ′2. Set δ = α + 3ε and δ′ = α′ + 3ε. For ε < λ′ <

ρ(M) − 4δ′ and λ ≥ λ′ + 2(α′ − α), we have,

im
(

H(Xα, Bα,λ+3δ) → H(Xα′ , Bα′,λ′+δ′

)
)

∼= H(M,M − p̄). (7)

In particular,

im
(

H(Xα, Bα,λ+3δ) → H(Xα, Bα,λ+δ)
) ∼= H(M,M − p̄).

Finally, we intersect each set with a sufficiently large
ball Br(p) so that we only need to inspect within the
neighborhood Br(p) of p. Specifically, denote Xα,r =
Xα∩Br(p) and X

β
α,r = Xα,r∩Bβ(p). We obtain the next

proposition by applying the Excision theorem (details in
the full version [7]).

Proposition 10 Let all the parameters satisfy the
same conditions as in Proposition 9. Then, for r >

λ + 5δ, we have:

im
(

H(Xα,r, X
λ+3δ
α,r ) → H(Xα′,r, X

λ′+δ′

α′,r )
)

∼= H(M,M−p̄).

In particular,

im
(

H(Xα,r, X
λ+3δ
α,r ) → H(Xα,r, X

λ+δ
α,r )

) ∼= H(M,M − p̄).

In fact, one can relax the parameters, and the image ho-

mology im
(

H(Xα,r, X
β2

α,r) → H(Xα′,r, X
β1

α′,r)
)

captures

(that is, is isomorphic to) the local homology H(M,M−
p̄) as long as β1 ≥ α′ + 4ε, β2 ≥ β1 + α + α′ + 6ε and
r > β2 + 2α + 6ε.

5 Interleaving Nerves and Rips complexes

We now relate the relative homology of pairs as in
Proposition 10 to the relative homology of pairs in Rips
complexes so that they can computed. Our algorithm
works on these pairs of Rips complexes to derive the
local homology at a point on M. As before, let p ∈ P

be a point from the sample.

Nerves of spaces. Consider the space Xα,r = Xα ∩
Br(p). The connection of such spaces with simplicial
complexes (Vietoris-Rips complex in particular) is made
through the so-called nerve of a cover. In general, let
U be a finite collection of sets. The nerve NU of U
is a simplicial complex whose simplices are given by all
subsets of U whose members have a non-empty common
intersection. That is,

NU := {A ⊆ U | ∩A 6= ∅}.

The set U forms a good cover of the union
⋃U if the

intersection of any subsets of U is either empty or con-
tractible. The Nerve Lemma states that if U is a good
cover of

⋃U , then NU is homotopic to
⋃U , denoted by

NU ≈ ⋃U .
Now consider the set of sets Xα,r = {Bα(pi)∩Br(p) |

pi ∈ P}; note that Xα,r =
⋃Xα,r. Since each set in

Xα,r is convex, Xα,r forms a good cover of Xα,r and thus
NXα,r ≈ Xα,r by the Nerve Lemma. Furthermore, it
follows from Lemma A.5 of [15] that for r > β + 2α,
the set X β

α,r = {Bα(pi) ∩ Br(p) ∩ Bβ(p)}i∈[1,n] also

form a good cover of
⋃X β

α,r(= X
β
α,r). Thus, we have

NX β
α,r ≈ X

β
α,r. We can now convert the relative ho-

mology between Xα,r and X
β
α,r to the homology of their
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nerves. In particular, we have the following result. The
proof relies heavily on the proof of Lemma 3.4 of [3]
which gives a crucial commutative result for the space
and its nerve.

Lemma 11 Let all the parameters satisfy the same
conditions as in Proposition 9. Then, for r > λ + 5δ:

im
(

H(NXα,r,NX λ+3δ
α,r ) → H(NXα′,r,NX λ′+δ′

α′,r )
)

∼=
H(M,M − p̄).

Relating nerves and Rips complexes. First, we
recall that for α ≥ 0, the Čech complex Cα(Q) of a
point set Q is the nerve of the cover {Bα(qi) : qi ∈ Q}
of ∪Bα(qi) = Xα. The Vietoris-Rips (Rips in short)
complex Rα(Q) is the maximal complex induced by the
edge set {(pj , pk) | d(pj , pk) ≤ α}. It is well known that
for any point set Q, the following holds:

Cα(Q) ⊂ R2α(Q) ⊂ C2α(Q).

Bβ(p)

p

Br(p)

M

Figure 2: The points in Pα,r are the centers of yellow
and brown balls whereas the centers of the brown balls
are in P β

α,r.

Define Pα,r = {pi ∈ P | Bα(pi) ∩ Br(p) 6= ∅}. Ob-
viously, Pα,r forms the vertex set for the nerve NXα,r.
Similarly, let P β

α,r = {pi ∈ Pα,r | Bα(pi) ∩ Bβ(p) 6= ∅}
denote the vertex set of NX β

α,r. See Figure 2 for an ex-
ample, where the union of solid and empty dots forms
the set of points Pα,r, while P β

α,r consists the set of
empty dots. Note that from the definition, it follows
that P β

α,r ⊂ Pα,r and P β
α,r ⊂ P β′

α,r for β′ < β. Fur-
thermore, as the offset Xα grows, it is immediate that
Pα,r ⊂ Pα′,r and P β

α,r ⊂ P
β
α′,r for α < α′.

Each element in the good cover Xα,r or X β
α,r is in the

form of Bα(pi)∩Br(p) or Bα(pi)∩Br(p)∩Bβ(p). Since
the Čech complex of a point set is the nerve of the set
of balls centered at these points, it follows easily that

NXα,r ⊂ Cα(Pα,r) ⊂ R2α(Pα,r)

and

NX β
α,r ⊂ Cα(P β

α,r) ⊂ R2α(P β
α,r). (8)

(a) Head

(b) D1 (c) D0

Figure 3: Image data : Head, D1 and D0

Claim 12 (i) R2α(Pα,r) ⊂ NX3α,r, and (ii)

R2α(P β
α,r) ⊂ NX β

3α,r.

Combining the above claim and Eqn (8), we get an
interleaving sequence between the nerve and the Rips
complexes (see full version [7] for details) from which
we can derive our main result:

Theorem 13 Let 0 < ε <
ρ(M)
58 and θ1 ≤ α ≤ ρ(M)−13ε

22 .
Furthermore, let η1 and η2 be such that ε < η1, η2 <

ρ(M), η1 ≥ 9α + 4ε, and η2 ≥ η1 + 12α + 6ε. The
inclusion

jα : (R2α(Pα,r),R2α(P η2

α,r)) →֒ (R6α(P3α,r),R6α(P η1

3α,r))

satisfies im(jα∗)
∼= H(M,M − p̄) for any r ≥ η1 + η2.

Algorithm. Given a sample point p = pi, our algo-
rithm first constructs the necessary Rips complexes as
specified in Theorem 13 for some parameters α < η1 <

η2 < r. For simplicity, rewrite jα : (A1, B1) →֒ (A2, B2)
where B1 ⊂ A1 ⊂ A2 and B1 ⊂ B2 ⊂ A2. After obtain-
ing the necessary Rips complexes, one possible method
for computing im(jα∗) would be to cone the subcom-
plexes B1 and B2 with a dummy vertex w to obtain
an inclusion ι : A1 ∪ (w ∗ B1) →֒ A2 ∪ (w ∗ B2) where
w∗Bj = Bj∪{w∗σ|σ ∈ Bj} is the cone on Bj (j = 1, 2).
It is easy to see that im(jα∗) ∼= im(ι∗). Then, the
standard persistent homology algorithm can be applied.
However, the cone operations may add many unneces-
sary simplices slowing down the computation. Instead,
we order the simplices in A2 properly to build a filtra-
tion so that the rank of im(jα∗) can be read off from
the reduced boundary matrix built from the filtration.
The details of this algorithm can be found in the full
version [7].

6 Experimental results

Due to the lack of space, we refer the readers to the full
version [7] for the implementation details: in particular
to see how we choose points to perform our dimension
estimation algorithm and how we filter false positives.
The full version also includes experimental results of our
algorithm on synthetic data sets. In this abstract, we



26th Canadian Conference on Computational Geometry, 2014

only present the comparison results of our algorithm
with several state-of-the-art algorithms on real data;
which is shown in Table 1.

Specifically, the real data contains images of a 2D
translation of a smaller image within a black image
(Shift) (see [4]), a rotating head (Head, Fig. 3(a)),
handwritten 1’s (D1, Fig. 3(b)) and 0’s (D0, Fig. 3(c))
from MNIST database. Our method is compared with

Shift Head D1 D0
Ours 2 3 4 3
SLIVER 3 4 3 2
MLE 4.27 4.31 11.47 14.86
MA 3.35 4.47 10.77 13.93
PN 3.62 3.98 6.22 8.86
LPCA 3 3 5 8.86
ISOMAP 2 3 5 [3, 6]

Table 1: Comparison results

the dimension detection method via slivers (SLIVER)
[4], the maximum likelihood estimation (MLE) [12],

the manifold adaptive method (MA) [9], the packing
number method (PN) [11], the local PCA (LPCA) [5],
and the isomap method (ISOMAP) [16]. Notice that al-
though Shift is uniform and noise free, only ISOMAP
and ours get the correct dimension. The dimension of
Head is considered to be around 3 or 4 in the litera-
ture. Ours falls into this range. Although the ground
truth dimensions for D1 and D0 are unknown, ours
along with SLIVER, PN, LPCA and ISOMAP report
dimensions in range [3, 7] for D1 and in range [2, 9] for
D0.

7 Conclusions

In this paper, we present a topological method to esti-
mate the dimension of a manifold from its point samples
with a theoretical guarantee. The use of local topolog-
ical structures helps to alleviate the dependency of our
method on the regularity of point samples, and the use
of persistent homology for a pair of homology groups
(instead of a single homology group) helps to increase
its robustness.

It will be interesting to investigate other data analysis
problems where topological methods, especially those
based on local topological information (yields to efficient
computations), may be useful. Currently, we have con-
ducted some preliminary experiments to demonstrate
the performance of our algorithm. It will be interesting
to conduct large-scale experiments under a broad range
of practical scenarios, so as to better understand data
in those contexts.
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