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Turning Orthogonally Convex Polyhedra into Orthoballs
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Abstract

As a step towards characterizing the graphs of orthogo-
nally convex polyhedra, we show that for any simple or-
thogonally convex polyhedron there is an orthoball that
is equivalent in the sense that it has the same graph
and the same face normals. An orthoball is a simple or-
thogonally convex polyhedron with a point inside that
sees the whole interior (informally, it is “round”). The
consequence for reconstructing polyhedra from graphs is
that if we start from a 3-regular planar graph labelled
with face normals, and wish to find a corresponding or-
thogonally convex polyhedron, then we can restrict our
search to orthoballs.

1 Introduction

A famous result of Steinitz [6] characterizes the graphs
of 3D convex polyhedra as precisely the 3-connected
planar graphs (see e.g. [8]). This gives a polynomial
time algorithm to recognize such graphs. There are
also polynomial time algorithms to reconstruct a poly-
hedron from a given graph [5]. Recently, Eppstein and
Mumford [3] characterized the graphs of some classes
of 3D orthogonal polyhedra. They restrict attention,
as we will, to simple orthogonal polyhedra: polyhedra
with the topology of a sphere, with simply-connected
faces, and with exactly three mutually-perpendicular
axis-parallel edges meeting at every vertex. They char-
acterized the graphs of simple orthogonal polyhedra as
well as two subclasses, and they gave polynomial time
recognition and reconstruction algorithms. See below
for further details.

Eppstein and Mumford leave open the question of
characterizing and efficiently recognizing the graphs
of 3D [simple] orthogonally convex polyhedra. This
seems difficult, but might be easier with extra in-
formation added to the graph. While the face ori-
entations (i.e., {X,Y, Z}) are unique up to rotation,
one could add the desired face normals from the set
{X+, X−, Y +, Y −, Z+, Z−}. We call this the face-
labelled graph. Even with such extra information the
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questions of characterizing or recognizing the graphs of
3D [simple] orthogonally convex polyhedra remain open.

Our main result is that, even with face labels, the
graphs of simple orthogonally convex polyhedra are all
graphs of “ball-shaped” orthogonal polyhedra. More
precisely, an orthoball is a simple orthogonally convex
polyhedron with a point inside that sees the whole in-
terior and we prove:

Theorem 1 Let P be a simple orthogonally convex
polyhedron. Then there exists an orthoball B with the
same face-labelled graph as P.

The 2D analogue of this result is quite obvious, see
Figure 1. Our proof of Theorem 1 involves modifying
a simple orthogonally convex polyhedron until it is an
orthoball. The modification does not preserve edge di-
rections (see also Figure 5b and c).

Figure 1: A 2D orthogonal polygon (left) and an equiv-
alent 2D orthoball (right).

Background. Eppstein and Mumford [3] characterized
the graphs of simple orthogonal polyhedra and of two
subclasses: corner polyhedra, which have only one X−,
one Y −, and one Z− face; and xyz polyhedra, which
have at most two vertices in any axis-parallel line. The
graphs of the latter class are precisely the cubic bipartite
3-connected planar graphs.

Biedl and Genç [1, 2] have studied the problem of
reconstructing an orthogonal polyhedron from informa-
tion that includes not only the graph but also edge
lengths, facial angles, or dihedral angles.

2 Definitions

An α-line (for α ∈ {X,Y, Z}) denotes a line parallel
to the α-axis. An α-plane (in 3D) is a plane that is
perpendicular to the α-axis. For any geometric object
O where the α-coordinate is the same throughout, we
write α(O) to denote that fixed coordinate.

All polygons in this paper are required to have a non-
empty interior that is simply connected. An orthogo-
nal polygon has axis-aligned edges. An orthogonal 2D
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polygon is orthogonally convex if its intersection with
any axis-aligned line is either empty or a line segment.
An orthogonal polyhedron P has only axis-aligned face-
normals. An orthogonal polyhedron P is orthogonally
convex if the intersection (or “cross-section”) of P with
any axis-aligned plane is either empty or an orthogo-
nally convex 2D polygon. (Recall that the latter are
required to be connected.) An orthoball B is an or-
thogonally convex polyhedron that is star-shaped, i.e.,
it contains a point o such that all points in B are visible
from o (where two points are visible if the straight line
between them remains in the polyhedron).

An orthogonal polyhedron P is simple if it has the
topology of a sphere, all faces are simply-connected, and
any vertex is incident to exactly three pairwise perpen-
dicular edges. The underlying graph of a simple orthog-
onal polyhedron is planar, 2-connected, 3-regular, and
bipartite. By Heawood’s theorem (see [7]), such an em-
bedded graph has a unique 3-coloring of the faces, and
hence a unique labelling (up to rotation) of the faces as
X-faces, Y -faces or Z-faces. However, the graph does
not determine the face-normals, i.e., whether the out-
ward normal of (say) an X-face is in the positive or
negative direction along the X-axis. The face-labelled
graph of an orthogonal polyhedron P is the underlying
graph of P with each face labelled by its outward face
normal from the set {X+, X−, Y +, Y −, Z+, Z−}.

A realization of a face-labelled graph is a 3D orthogo-
nal polyhedron with that face-labelled graph. Note that
when all vertices in the graph have degree 3 we can al-
ways perturb edge lengths in any given realization to
ensure no two faces are co-planar (this fact will simplify
later constructions). This condition does not hold in
the presence of vertices of degree 4 or higher.

3 Equivalent Properties

There exist many equivalent characterizations of orthog-
onally convex polygons. We list here a few that we need
later (see also [4] for many related results.) See the ap-
pendix for a full proof.

Theorem 2 The following are equivalent for an orthog-
onal (2D) polygon P :

1. P is orthogonally convex.

2. For any two points p, q in P , there exists a path
from p to q inside P that is XY-monotone [4].

3. For any axis-aligned rectangle R, the intersection
R ∩ P is empty or connected.

4. For any axis-aligned rectangle R, the intersection
R ∩ P is empty or an orthogonally convex polygon.

One can easily show similar characterizations for or-
thogonally convex polyhedra in 3D. Note that we do not
require them to be simple. See the appendix for a full
proof.

Theorem 3 The following are equivalent for an orthog-
onal polyhedron P:

1. P is orthogonally convex.

2. For any two points p, q in P, there exists a path
from p to q inside P that is XYZ-monotone.

3. For axis-aligned box B, the intersection B ∩ P has
at most one connected component.

4. For axis-aligned box B, the intersection B ∩ P is
either empty or an orthogonally convex polyhedron.

For our later transformation from orthogonally con-
vex polyhedra to orthoballs, it will be convenient to
know equivalent characterizations of orthoballs as well.
Again, we do not require simplicity for this theorem.

Theorem 4 The following are equivalent for an orthog-
onal polyhedron P:

1. P is an orthoball.

2. The link-distance of P is at most 2, i.e., for any
two points p, q ∈ P there exists a point o ∈ P such
that the line segments po and oq are within P.

3. For any α ∈ {X,Y, Z}, no α−-face has a greater
α-coordinate than any α+-face.

Proof. (1) ⇒ (2) holds because we can use as point o
a point that can see all of the star-shaped polyhedron.

To show (2) ⇒ (3), let f+ be (say) an X+-face and
f− be an X−-face f−. Let p+ and p− be points in
the relative interior of f+ and f− respectively. Let o
be a point such that the line segments p+o and p−o
are inside P. Since p+ is in the interior of f+, this is
possible only if X(o) ≤ X(p+) = X(f+) and similarly
X(o) ≥ X(f−). Hence X(f−) ≤ X(f+).

To see (3)⇒ (1), let Xo be an X-coordinate between
the maximum X-coordinate of an X−-face and the min-
imum X-coordinate of an X+-face. Similarly define Yo
and Zo. We claim that point o := (Xo, Yo, Zo) can see
all of P. To prove this, let p be any point in P, and
assume wlog that it is in the (+,+,+)-quadrant of o. If
op is not in P, then it must intersect an α−-face in its
interior, for some α ∈ {X,Y, Z}. But by choice of o no
such face can exist in the (+,+,+)-quadrant of o, and
so op belongs to P. �

Finally, we will need the fact that projections preserve
orthogonal convexity. The proof is in the appendix.

Lemma 5 If P is an orthogonally convex polyhedron
and Q is its projection to a coordinate plane then Q is
an orthogonally convex polygon.
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4 Main Result

In this section we prove our main result, Theorem 1.
The idea is to modify any simple orthogonally convex
polyhedron P to be an orthoball. We use the fact that P
is an orthoball if and only if no α−-face appears before
an α+-face in α-coordinate ordering (Property 3 of The-
orem 4). If this property fails, there must be two con-
secutive out-of-order faces. We show how to exchange
the relative order of these two faces, while maintaining
orthogonal convexity, the same face-labelled graph, and
the same planes of all other faces. By repeatedly apply-
ing this construction over all axes, we can “bubblesort”
the faces so that P becomes an orthoball.

Let us formalize the idea. Assume P is a simple
orthogonally convex polyhedron. Define the α-face
sequence f1, f2, . . . , fk of polyhedron P on dimension
α ∈ {X,Y, Z} to be its α-faces listed in order of strictly
increasing α-coordinates. That is, for every fi, fi+1,
α(fi) < α(fi+1). (Recall that in Section 2, we estab-
lished that every pair of α-faces can be assumed to be
not co-planar.) Two consecutive α-faces are called a bad
pair if they face opposite directions (i.e., one + and one
− face), and the α-coordinate of the − face is greater
than the α-coordinate of the + face. See Figure 2a for
an example of a bad pair.

f−

f+

(a)

f+

f−

Y
X

Z

(b)

f+ f−

(c)

f+ ℰ−

f−

ℱ0

ℰ+

(d)

Figure 2: A bad pair and the result of swapping them:
(a) the bad pair f+, f− in P; (b) the result of the swap;
(c) the polygon f0∪f+∪f− where f0 is shown with the
wavy pattern; (d) the polyhedron F0 and the extrusions
E+ and E−.

A bad pair can be “fixed” by a swap operation that
exchanges the α-coordinates of the vertices of fi with
the α-coordinates of the vertices of fi+1 (see Figure 2b).
Lemma 7 formalizes this swap operation and shows that
it does the right thing, i.e., produces a valid simple

orthogonally convex polyhedron with the same face-
labelled graph and the same face sequences except for
the exchange of fi and fi+1. We begin with some nota-
tion to be used throughout this section.

Notation. Let f+ and f− be a bad pair of α-faces in
P; for ease of description let us assume that α = X.
We can express P as a union of three orthogonal poly-
hedra: F+, the points with X-coordinate greater than
or equal to X(f−); F−, the points with X-coordinate
less than or equal to X(f+); and F0, the closure of the
set of points of P with X-coordinate strictly between
X(f−) and X(f+). All three polyhedra are orthogo-
nally convex by Property 4 of Theorem 3. Observe that
F0 has the same cross-section in any X-plane—call this
polygon f0, and note that it is orthogonally convex. See
Figure 2c. We will use the notation f+ and f− not only
for the bad faces, but also for the polygons resulting
from projecting them onto an X-plane—the distinction
will be clear from the context. Observe that the cross-
section of P at X(f−) consists of f0∪f− and that these
polygons are therefore internally disjoint. Similarly, the
cross-section of P at X(f+) consists of f0∪f+ and these
polygons are internally disjoint.

Lemma 6 Polygons f0, f+, and f− have the following
properties:

1. f− ∪ f0 ∪ f+ is orthogonally convex.

2. f+ and f− are internally disjoint.

3. f+ and f− do not share a line segment.

4. f+ and f− intersect in at most two vertices.

Proof. Assume that α = X. (1) Observe that f− ∪
f0 ∪ f+ is the X-projection of the orthogonally convex
polyhedron formed by slicing P by two X-planes just
before f+ and just after f− and taking the middle piece.
Therefore, by Lemma 5, it is orthogonally convex.

(2) An internal point of polygons f+ and f− corre-
sponds to an axis-parallel line ` that exits P on face
f+ and enters on face f−, contradicting the assumption
that P is orthogonally convex (see Figure 3).

f−

f+

ℓ⊗ f−

f+

ℓ

Figure 3: f+ and f− cannot have an interior point in
common. The left side shows f− ∪ f0 ∪ f+ where f0 is
shown with the wavy pattern.
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(3) If polygons f+ and f− share a line segment then
the polygon f0 includes the shared line segment but not
the points in small neighbourhoods to either side (see
Figure 4), contradicting the fact that f0 is orthogonally
convex.

f+ f−

f+

f−

Figure 4: f+ and f− cannot share a line segment. The
left side shows f−∪f0∪f+ where f0 is shown with the
wavy pattern.

(4) Suppose polygons f+ and f− have 3 shared ver-
tices corresponding to edges, say, e1, e2, e3, between
faces f+ and f−. Consider the polygon f0. Edges
e1, e2, e3 project to vertices of f0. The polygons f+

and f− also have the projections of e1, e2, e3 as vertices.
But the three polygons f0, f+, and f− are internally
disjoint. We claim that this violates planarity. Select
three points F,A and B in the interior of f0, f+ and
f− respectively, and connect them to all of e1, e2, e3 by
disjoint paths interior to the respective polygons. This
creates a planar K3,3 with the two partitions formed by
e1, e2, e3 and F,A,B. Contradiction. �

Lemma 7 Let P be a simple orthogonally convex poly-
hedron, and let f+ and f− be a bad pair of α-faces of
P for some α ∈ {X,Y, Z}. Then there exists a simple
orthogonally convex polyhedron P ′ with the same face-
labelled graph as P and the same face-sequences except
that f+ and f− have been exchanged.

Proof. Assume w.l.o.g. that α = X. We defined a swap
to exchange the α-coordinates of the vertices of f+ with
the α-coordinates of the vertices of f−. We first express
this in terms of the change to the solid body P. Face
f− moves from X(f−) to X(f+) sweeping out a vol-
ume E−, the extrusion of f−. Similarly, face f+ moves
from X(f+) to X(f−) sweeping out a volume E+, the
extrusion of f+. Observe that E+ and E− are internally
disjoint because f+ and f− are, by Lemma 6. We will
define P ′ to be P ∪ E+ ∪ E−. Our proof will justify
that this does in fact correspond to a swap. Recall that
F−, F0, and F+ were defined at the beginning of the
section.

We will prove three things: (1) For every face (except
f+, f−) in P there exists a face in P ′ with the same sup-
porting plane and face normal; (2) Face-edge incidences
have not changed, which implies that P ′ has the same
face-labelled graph as P; (3) P ′ is orthogonally convex.

Since P is simple, (2) also implies that P ′ is simple be-
cause simplicity of a polyhedron depends only on its face
lattice (the vertices, edges, faces and their incidences).
Also, (1) implies that face-sequences remain the same
except for the swap of the two consecutive faces f+ and
f−, since faces retain their supporting planes and hence
their order.

For step (1), we claim that any face (except f+, f−)
contains a vertex v that is neither on f+ nor f−. As-
sume for contradiction that for some face f 6= f+, f− all
vertices belong to f+ and f−. Then the X-projection
of f is inside both polygons f+ and f−, and so f+ and
f− share at least an edge, contradicting Lemma 6. So f
contains a vertex v not in f+ or f−. The X-coordinate
of v is outside the interval [X(f+), X(f−)] (since f+

and f− are consecutive in the X-face sequence) and
hence adding E+ and E− does not change the polyhe-
dron near v. Therefore, in particular, all incident faces
of v (which include f) are unchanged near v and retain
their supporting planes and face normals.

For step (2), we consider different kinds of edges.
First, let e be an edge where neither endpoint belongs
to f+ or f−. Then neither endpoint changes coordi-
nates, and so e is unchanged and adjacent to the same
faces as before. Next, let e be an edge where exactly one
endpoint belongs to f+ or f−. The other endpoint of
e does not change coordinates, and so the two incident
faces at e (which both exist at this endpoint) remain the
same. Next, let e be an edge where both ends are on,
say, f+ (the case of f− is similar). Then e is incident
to f+, and the extrusion E+ of f+ contains two edges
corresponding to e. When adding E+ to P hence e dis-
appears, but is replaced by its copy, which is incident
to the new location of f+ as well as the (extended or
retracted) other face that was incident to e.

The final (and most complicated) kind of edge to con-
sider for (2) is an edge e = (v+, v−) where endpoint v+

belongs to f+ and endpoint v− belongs to f−. This im-
plies that e is an X-edge and its X-projection belongs
to both polygons f+ and f−; by Lemma 6 there are at
most two such edges.

Case 1: There exists exactly one edge e with ends
incident to f+ and f−. Consider f−∪f0∪f+; see also
Figure 5a. Since all three polygons meet the projection
of e, but f+ and f− share no edge, the facial angle of f+

at v+ is 90◦, as is the facial angle of f− at v−, and the
dihedral angle at e. Hence up to symmetry, the situation
at e looks (locally, i.e., in a small neighbourhood around
e) exactly as in Figure 5b.

Consider the four extruded quadrants at e. Exactly
one is occupied by F0. Two of them belong to E+ and
E− and become filled in P ′. The final quadrant remains
empty in P ′, resulting in a new edge e′ in P ′. While the
facial angles at the ends of e′ are different from those at
e, an inspection of the resulting structure (see Figure 5c)
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ef+

f−f0
(a)

f−

e

f+

(b)

f−
e'

f+

(c)

Figure 5: Case 1 of Lemma 7: one edge e has ends in
f+ and f−.

shows that the ends of e′ have the same adjacent faces,
in the same clockwise order, as the ends of e.

Case 2: There exist two edges e1, e2 with ends
incident to f+ and f−. Consider again f− ∪ f0 ∪
f−; see Figure 6a, 6b. The two points that e1 and e2
project to can be separated by a (horizontal or vertical)
line. Suppose there exists a Y -coordinate Yc such that
Y (e2) < Yc < Y (e1); we may pick Yc such that no vertex
of P has this Y -coordinate.

Now cut P with the (Y = Yc)-plane into two poly-
hedra P1 and P2. By construction Pi contains ei (for
i = 1, 2), and hence contains parts of f− and f+ as a
bad pair. So we can apply the swap of this bad pair
to each Pi separately. Since each of them has only one
edge which begins and ends at the faces of the bad pair,
Case 1 applies and the graph of Pi remains unchanged.
It only remains to argue that the two resulting polyhe-
dra P ′1 and P ′2 can be re-combined. By construction the
(Y = YC)-plane intersects no vertices, so it only inter-
sects Y -edges of P. For any Y -edge not in f+ or f−,
the coordinates of its endpoints remain unchanged dur-
ing the swaps in P1 and P2, so the pieces can simply be
recombined. For any Y -edge that belongs to f+, both
endpoints increase X-coordinates by X(f−) − X(f+),
regardless of which one of P1,P2 they belong to. Hence
again the pieces can be re-combined. Similarly one ar-
gues for a Y -edge in f−. So in summary, for each of the
two parts of P the transformation maintains the graph,
and the two graphs can be re-combined and hence give
the same graph as in P. This finishes the proof of (2).

It remains to show that P ′ is orthogonally convex. We
will use Property 2 of Theorem 3 and show that any two
points p, q ∈ P ′ are joined by an XY Z-monotone path
in P ′. If both points are in P, then we already know
the property holds. The case where both points are in
the middle portion F0 ∪ E+ ∪ E− is also fine because
this polyhedron is the extrusion of f− ∪ f0 ∪ f+, which

e1

e2

f+

f−
Yc

(a)

f+
f−

e1

e2

Yc

(b)

f−

e1

e2

f+

(c)

f−e2

f+

e1

(d)

e1

f−

e2

f+

(e)

f−
e2

f+
e1

(f)

Figure 6: Case 2 of Lemma 7: two edges have ends in
f+ and f−. These two edges may or may not belong to
a common Y -plane or Z-plane.

is orthogonally convex by Lemma 5. So suppose that
p ∈ E+ (the case where p ∈ E− is analogous.) Let p′ be
the projection of p in the X-direction to f+. We will
separate into two cases depending whether q is in F−
or F+.

Case a: q ∈ F−. We get an XYZ -monotone path in
P ′ from p to q by taking segment pp′ followed by an
XYZ -monotone path in P from p′ to q.

Case b: q ∈ F+. Take an XYZ -monotone path from
q to p′ in P. Cut it where it crosses the X-plane of p
into subpaths σ1 and σ2. Let σ′2 be the projection of
σ2 to the X-plane of p. Observe that σ1σ

′
2 is an XYZ -

monotone path from q to p as it is formed by removing
X-segments of σ1σ2. It remains inside P ′ because the
Y Z-projection between p and p′ is uniform. �

With Lemma 7 in hand, proving Theorem 1 is easy, by
induction on the number of face-pairs that consist of an
α+-face preceeding an α−-face in some α-face sequence.
If there are no such pairs, then we have an orthoball by
Property 3 of Theorem 4. If there is such an “out-of-
order” pair, then there is a consecutive out-of-order pair,
i.e., a bad pair, and we can apply Lemma 7 to exchange
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this bad pair without affecting any other pairs.

5 Restrictions and Possible Extensions

In this section we remark on some of the restrictions we
placed on our polyhedra and graphs.

Degree 3 Vertices. Our construction requires that all
vertices in the face-labelled graph have degree 3. With-
out this requirement, there exist face-labelled graphs
that can be realized as orthogonally convex polyhedra,
but not as orthoballs. See the example in Figure 7,
and observe that the degree 4 vertex v prevents us from
performing a swap to create an orthoball. But degree 4
(or higher) vertices do not always prevent realizations
of face-labelled graphs as orthoballs. Exact characteri-
zation of such graphs would be interesting.

v

Figure 7: Orthogonally convex polyhedron, but not re-
alizable as an orthoball due to degree-4 vertices.

Simply Connected Faces. We suspect our construc-
tion still works when faces need not be simply con-
nected. In the presence of the degree-3 constraint, the
only additional possibility is faces with “holes”, i.e., a
disconnected graph. We conjecture that any such or-
thogonally convex polyhedron can be realized as an or-
thoball as follows. First, no face can be incident to
three connected components of the face-labelled graph.
Hence the connected components form a tree-structure
(with an arc if and only if two connected components
share a face.) Say an αc-face (for some α ∈ {X,Y, Z}
and c ∈ {+,−}) is incident to two components. Then
by orthogonal convexity one of the two subgraphs sep-
arated by this face cannot contain an αc-face, where c
is the opposite of c. It follows that at most one con-
nected component can have all six face-types, and vice
versa, one such component must exist; call this the root-
component and root the tree at it.

Our idea is to study each rooted sub-tree separately
(after replacing the αc-face that separates it from its
parent in the tree by an αc-face) and to build from it
an ortho-pyramid, i.e., an orthoball whose α-projection
is exactly that αc-face. The face between the subtree
and its parent must be an extreme face in the realiza-
tion of the parent, so we can then paste each ortho-
pyramid onto the appropriate extreme face of the parent
component to obtain an orthoball even for disconnected
graphs.

Constraints on Edge Directions or Facial Angles.
One cannot constrain edge directions or facial angles to
remain unchanged in the underlying graph while con-
verting an orthogonally convex polyhedron into an or-
thoball. Refer to Figure 5. If an edge has one endpoint
on each of a pair of bad faces f+, f−, then maintain-
ing the edge direction would force the order of f+, f−

and hence preclude conversion into an orthoball. Fur-
thermore, since facial angles are determined by edge di-
rections, they also cannot be preserved during such a
transformation.

6 Conclusions and Future Work

We have shown that the [face-labelled] graphs of simple
orthogonally convex polyhedra are the same as the [face-
labelled] graphs of simple orthoballs. Can this be used
to characterize these graphs?

Acknowledgements. The question of reconstructing
an orthogonal polyhedron from a graph with specified
face normals was posed by Alla Sheffer.
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orthogonal polyhedra. Int. J. Comput. Geometry
Appl., 21(4):383–391, 2011.

[3] D. Eppstein and E. Mumford. Steinitz theorems for
orthogonal polyhedra. In Symposium on Computa-
tional Geometry, pages 429–438, 2010.

[4] G. J. E. Rawlins and D. Wood. Ortho-convexity
and its generalizations. In G. T. Toussaint, editor,
Computational morphology: a computational geo-
metric approach to the analysis of form, Machine
intelligence and pattern recognition, pages 137–152.
North-Holland, 1988.

[5] G. Rote. Realizing planar graphs as convex poly-
topes. In M. Kreveld and B. Speckmann, editors,
Graph Drawing, volume 7034 of LNCS, pages 238–
241. Springer Berlin Heidelberg, 2012.

[6] E. Steinitz. Polyeder und Raumeinteilungen. Ency-
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Appendix

Theorem 2 The following are equivalent for a con-
nected orthogonal (2D) polygon P :

1. P is orthogonally convex.

2. For any two points p, q in P , there exists a path
from p to q inside P that is XY-monotone [4].

3. For any axis-aligned rectangle R, the intersection
R ∩ P is empty or connected.

4. For any axis-aligned rectangle R, the intersection
R ∩ P is empty or an orthogonally convex polygon.

Proof. To prove (1) ⇒ (2), recall that P is connected
and hence any two points p, q in P can be connected
by a curve inside P . Let C be the shortest such curve.
We claim that C is XY -monotone. Assume for con-
tradiction that C is not X-monotone. Then some X-
coordinate X0 is visited twice by C, i.e., there are two
points p1, p2 with X-coordinate X0 that belong to C,
but the sub-curve C[p1, p2] between p1 and p2 is not the
line segment between p1 and p2. By (1) the (X = X0)-
line intersects P in an interval, so since p1, p2 ∈ C ⊂ P
the line segment p1p2 belongs to P . If we now replace
C[p1p2] by this line segment, we again get a curve from
p to q inside P , and it is shorter than C. Contradiction.

To see (2)⇒ (3), let R be any axis-aligned rectangle
and let p and q be any points in R ∩ P . Then the XY -
monotone path from p to q inside P necessarily stays
inside R by monotonicity, so p and q are connected by
a path in R ∩ P .

Now we show that (3) ⇒ (4). Observe first that (3)
trivially implies (1) since an α-line is a degenerate axis-
aligned rectangle. Let R be any axis-aligned rectangle.
There is nothing to show if R ∩ P is empty. If it is
not, then by (3) R ∩ P is connected. Let ` be any α-
line, for α ∈ {X,Y }. Then ` ∩ P is an interval by (1)
and `∩R in an interval since R is a rectangle. Since the
intersection of intervals is an interval, therefore `(R∩P )
is an interval. So R ∩ P is orthogonally convex.

Finally (4)⇒ (1) is trivial since we can take R to be
a rectangle that encloses all of P . �

Theorem 3 The following are equivalent for an orthog-
onal polyhedron P:
1. P is orthogonally convex.

2. For any two points p, q in P, there exists a path
from p to q inside P that is XY Z-monotone.

3. For axis-aligned box B, the intersection B ∩ P has
at most one connected component.

4. For axis-aligned box B, the intersection B ∩ P is
either empty or an orthogonally convex polyhedron.

Proof. To prove (1) ⇒ (2), recall that P is connected
and hence any two points p, q in P can be connected by a
curve inside P. We may assume that the curve is polyg-
onal, i.e., consists of a finite number of line segments.

For any polygonal curve C, define ||C||1 to be the sum of
the L1-distances of its segments, i.e., if C is defined by
points q1, q2, . . . , qn, then set ||C||1 =

∑n−1
i=1 |X(qi+1)−

X(qi)| + |Y (qi+1) − Y (qi)| + |Z(qi+1) − Z(qi)|. Now
let C be a curve from p to q within P that minimizes
||C||1. We claim that C is XY Z-monotone. Assume for
contradiction that C is not X-monotone. Then some
X-coordinate X0 is visited twice by C, i.e., there are
two points p1, p2 with X-coordinate X0 that belong to
C, but the sub-curve C[p1, p2] between p1 and p2 is not
entirely within the (X = X0)-plane π. By (1) the inter-
section π∩P is orthogonally convex, and so there exists
a Y Z-monotone curve C ′ from p1 to p2 within π∩P. Ob-
serve that C ′ is XY Z-monotone and has the same end-
points C[p1, p2], which implies ||C ′||1 ≤ ||C[p1, p2]||1. In
fact, the inequality is strict since C[p1, p2] leaves plane
π while C ′ does not. Replacing C[p1, p2] by C ′ hence
gives a shorter curve, a contradiction.

The proofs of (2)⇒ (3), (3)⇒ (1), and (4)⇒ (1) are
the same as in the previous proof (except one dimension
higher) and are left to the reader. Finally we must show
(1)&(3) ⇒ (4). Let B be any axis-aligned box. There
is nothing to show if B ∩ P is empty. If it is not, then
by (3) B ∩ P is connected. For α ∈ {X,Y, Z} and any
α-plane π, set π ∩ P is orthogonally convex by (1) and
π∩B in an axis-aligned rectangle. By the previous theo-
rem the intersection of an axis-aligned rectangle with an
orthogonally convex polygon is empty or orthogonally
convex. So π(B ∩ P) = (π ∩ B) ∩ (π ∩ P) is empty or
orthogonally convex as desired. �

Lemma 5 If P is an orthogonally convex polyhedron
and Q is its projection to a coordinate plane then Q is
an orthogonally convex polygon.

Proof. We use the result that orthogonal convexity—
in 2D or 3D—is equivalent to having orthogonal mono-
tone paths between all pairs of vertices (Theorem 2,
Property 2 for 2D, and Theorem 3, Property 2 for 3D).
Suppose Q is the X-projection of P. Any points p, q
in Q are projections of points p′, q′ in P. There is an
XYZ -monotone path between p′ and q′ in P, and this
projects to a YZ -monotone path between p and q in Q.
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