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The Convex Hull of Points on a Sphere is a Spanner∗

Prosenjit Bose† Simon Pratt‡ Michiel Smid§

Abstract

Let S be a finite set of points on the unit-sphere S2. In
1987, Raghavan suggested that the convex hull of S is a
Euclidean t-spanner, for some constant t. We prove that
this is the case for t = 3π(π/2 + 1)/2. Our proof con-
sists of generalizing the proof of Dobkin et al. [2] from
the Euclidean Delaunay triangulation to the spherical
Delaunay triangulation.

1 Introduction

Let S be a finite set of points in Euclidean space and
let G be a graph with vertex set S. We denote the
Euclidean distance between any two points p and q by
d(p, q). Let the length of any edge (p, q) in G be equal
to d(p, q), and define the length of a path in G to be
the sum of the lengths of the edges on this path. For
any two vertices a and b in G, we denote by δG(a, b)
the minimum length of any path in G between a and b.
For a real number t ≥ 1, we say that G is a Euclidean
t-spanner of S, if δG(a, b) ≤ t · d(a, b) for all vertices a
and b. The stretch factor of G is the smallest value of
t such that G is a Euclidean t-spanner of S. See [3] for
an overview of results on Euclidean spanners.

It is well-known that the stretch factor of the De-
launay triangulation in R2 is bounded from above by a
constant. The first proof of this fact is due to Dobkin et
al. [2], who obtained an upper bound of (1 +

√
5)π/2 ≈

5.08. The currently best known upper bound, due to
Xia [4], is 1.998.

Since there is a close connection between the Delau-
nay triangulation in R2 and the convex hull in R3, it is
natural to ask if the graph defined by the convex hull
edges has a bounded stretch factor as well. It is easy to
define a point set in R3 whose convex hull is long and
skinny, resulting in an unbounded stretch factor. In
1987, Raghavan suggested, in a private communication
to Dobkin et al. [2], that the convex hull of a finite set
of points on a sphere in R3 has bounded stretch factor.
By scaling and translating, we may assume, without loss
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of generality, that the points are on the unit-sphere S2,
which is the set of all points in R3 that have distance 1
to the origin. In this paper, we prove that this is indeed
the case:

Theorem 1 Let S be a finite set of points on the unit-
sphere S2. The graph defined by the convex hull edges
of S is a Euclidean t-spanner of S, where

t = 3π(π/2 + 1)/2.

We will prove this result using the well-known fact
that the convex hull of a set S of points on the unit-
sphere is “equal” (to be formalized in Lemma 2) to the
spherical Delaunay triangulation of S. Based on this,
we will show how the proof of Dobkin et al. [2] can be
modified to show that the spherical Delaunay triangu-
lation has bounded stretch factor (where distances are
measured along the unit-sphere), resulting in a proof of
Theorem 1.

2 Preliminaries

Let S be a finite set of points on the unit-sphere S2.
We denote the convex hull of S by CH (S). Let a and
b be two distinct points on S2 and consider the plane
through a, b, and the origin. The intersection of this
plane with S2 is a great circle and the shorter of the
two arcs on this circle connecting a and b is a great arc.
The length of this great arc is the spherical distance
between a and b, which we will denote by d̆(a, b). This
distance function gives rise to the spherical Voronoi dia-
gram SVD(S) of S and its dual, the spherical Delaunay
triangulation SDT (S); note that these graphs are en-
tirely on the unit-sphere and each of their edges is a
great arc. The following result is well-known:

Lemma 2 Consider the graph with vertex set S that
is obtained by replacing each edge (p, q) of the spheri-
cal Delaunay triangulation SDT (S) by the straight-line
segment between p and q. This graph is the convex hull
CH (S) of S.

Let G be a graph with vertex set S, such that each of
its edges (p, q) is a great arc of length d̆(p, q). As before,
the length of a path in G is the sum of the lengths of
its edges. For any two vertices a and b in G, let δ̆G(a, b)
denote the minimum length of any path in G between
a and b. We say that G is a spherical t-spanner of S, if
δ̆G(a, b) ≤ t · d̆(a, b) for all vertices a and b.
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Lemma 3 If SDT (S) is a spherical t-spanner of S,
then CH (S) is a Euclidean (tπ/2)-spanner of S.

Proof. Let a and b be two distinct points in S, and let
P be a path in SDT (S) of length at most t · d̆(a, b). Let
P ′ be the path obtained by replacing each edge (a great
arc) of P by a straight-line segment. Then, P ′ is a path
in CH (S) between a and b, and the length of P ′ is at

most the length of P , which is at most t · d̆(a, b).

a b

0
α

Let α be the angle between the two vectors point-
ing from the origin to a and b. Then d̆(a, b) = α and
d(a, b) = 2 sin(α/2). It follows that

d̆(a, b) =
α/2

sin(α/2)
· d(a, b).

Since the function f(x) = x/ sinx is non-decreasing for
0 ≤ x ≤ π/2, it follows that

d̆(a, b) ≤ f(π/2) · d(a, b) = (π/2) · d(a, b).

�

Based on Lemma 3, Theorem 1 will follow from the
following result:

Theorem 4 Let S be a finite set of points on the unit-
sphere S2. The spherical Delauny triangulation of S is
a spherical 3(π/2 + 1)-spanner of S.

In the rest of this paper, we will prove Theorem 4.

3 Direct Paths in SDT (S)

Let a and b be two distinct points of S and consider
the great arc on S2 between a and b. Let p1, p2, . . . , pn
be the ordered sequence of points on Voronoi region
boundaries of the spherical Voronoi diagram SVD(S)
that are encountered when traversing this great arc from
a to b. Thus, each point pi is contained in some Voronoi
edge of SVD(S). Let b0 = a, b1, b2, . . . , bn = b be the
ordered sequence of points of S whose Voronoi regions
are visited during this traversal. Observe that, for each
i with 1 ≤ i ≤ n, pi is on the Voronoi edge that is shared
by the Voronoi regions of bi−1 and bi. We call

a = b0, b1, b2, . . . , bn = b

the direct path between a and b. Observe that this is a
path in the spherical Delaunay triangulation SDT (S).

a = b0
b1

b2

b3 = b

p1 p2

p3

C1

C2

C3

Lemma 5 The direct path is longitudinally monotone:
Let GC be the great circle through a and b. For each i
with 1 ≤ i ≤ n, let b′i be the point on GC whose spher-
ical distance to bi is minimum. Then, when traversing
the great arc along GC from a to b, we visit the points
b′1, b

′
2, . . . , b

′
n in this order.

Proof. We may assume without loss of generality that
a and b are on the equator, have positive y-coordinates,
and the x-coordinate of a is less than that of b.

Let i be an index with 1 ≤ i ≤ n. The spherical
bisector of bi−1 and bi is contained in their Euclidean
bisector, which is a plane that contains pi and separates
bi−1 from bi. Since bi−1 is to the left of this plane and,
thus, bi is to its right, the x-coordinate of bi−1 is less
than that of bi. As a result, when traversing the great
arc along G from a to b, we visit the point b′i−1 before
b′i. �

Consider the midpoint c of the great arc between a
and b. The spherical cap SC (a, b) is defined to be

SC (a, b) = {x ∈ S2 : d̆(c, x) ≤ d̆(a, b)/2}.

We will refer to the point c as the pole of the spherical
cap.

Lemma 6 The direct path between a and b is contained
in SC (a, b).

Proof. Consider the pole c of SC (a, b), and let k be the
index such that the points p1, . . . , pk are on the great
arc connecting a and c, and the points pk+1, . . . , pn are
on the great arc connecting c and b. If i is such that
1 ≤ i ≤ k, then the spherical bisector of bi−1 and bi is
a great circle that divides S2 into two half-spheres. The
point bi−1 is in one of these half-spheres, whereas both
bi and c are in the other half-sphere. It follows that
d̆(c, bi) ≤ d̆(c, bi−1). Thus, we have

d̆(c, bk) ≤ d̆(c, bk−1) ≤ . . . ≤ d̆(c, b0) = d̆(c, a).

By a symmetric argument, we have

d̆(c, bk+1) ≤ d̆(c, bk+2) ≤ . . . ≤ d̆(c, bn) = d̆(c, b).

�

For each i with 1 ≤ i ≤ n, define

Ci = SC (bi−1, bi).
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This spherical cap Ci has the point pi as its pole and
does not contain any point of S in its interior. Define

C =

n⋃
i=1

Ci.

Let Π be the plane through a, b, and the origin. If
the direct path between a and b is completely contained
in one of the two closed halfspaces bounded by Π, then
we say that this path is one-sided.

In Lemma 11, we will use the set C to prove that, if
the direct path between a and b is one-sided, then its
length is at most (π/2) · d̆(a, b). Before we can prove
this result, we need some properties of the set C.

Lemma 7 Let x and y be distinct points on the equator,
and consider the spherical cap SC (x, y). Let L be the
length of the part of the boundary of this cap that is
above the equator. Then L ≤ (π/2) · d̆(x, y).

Proof. Consider the plane through x and y whose nor-
mal is the vector pointing from the origin to the mid-
point c of the straight-line segment connecting x and
y. The boundary of SC (x, y) is the circle in this plane
that is centered at c and has x and y on its boundary.
It follows that L = (π/2) · d(x, y).

Let α be the angle between the two vectors pointing
from the origin to x and y. Then d̆(x, y) = α and

L = (π/2) · d(x, y)

= π · sin(α/2)

≤ π · α/2
= (π/2) · d̆(x, y).

�

Lemma 8 Let w, x, y, and z be four points that appear,
in this order, on a great arc. Then

SC (x, y) ⊆ SC (w, y) ∩ SC (x, z).

Proof. Let c1 be the midpoint of the great arc between
w and y, and let c2 be the midpoint of the great arc be-
tween x and y. Thus, c1 and c2 are the poles of SC (w, y)
and SC (x, y), respectively.

w

x y

z

c2

c1

Since
d̆(c2, y) = d̆(x, y)/2 ≤ d̆(c1, y),

the point c2 is on the great arc between c1 and y.

Let v be an arbitrary point in SC (x, y). Then,

d̆(c1, v) ≤ d̆(c1, c2) + d̆(c2, v)

≤ d̆(c1, c2) + d̆(c2, y)

= d̆(c1, y),

implying that v is in SC (w, y). By a symmetric argu-
ment, v is in SC (x, z). �

Lemma 9 Let w, x, y, and z be four points that appear,
in this order, on a great arc along the equator. Define
the following:

• A is the part of the boundary of SC (x, z) that is
above the equator and inside SC (w, y), and LA is
its length.

• B is the part of the boundary of SC (w, y) that is
above the equator and inside SC (x, z), and LB is
its length.

• C is the part of the boundary of SC (x, y) that is
above the equator, and LC is its length.

Then LC ≤ LA + LB.

Proof. The following figure illustrates the assumptions
in the lemma.

w

x y

z
A B

C

Let Πxy be the plane that contains the boundary of
SC (x, y), let Π′xy be the plane through the origin that is
parallel to Πxy, and let D′xy be the disk in Π′xy of radius
1 that is centered at the origin.

Let A′, B′, and C ′ be the orthogonal projections of A,
B, and C onto Π′xy, respectively. Observe that A′, B′,
and C ′ are contained inD′xy. Let L′A, L′B , and L′C be the
lengths of A′, B′, and C ′, respectively. Then L′A ≤ LA,
L′B ≤ LB , and L′C = LC . Thus, it is sufficient to prove
that

L′C ≤ L′A + L′B . (1)

First assume that both A and B are entirely on the
same side of Π′xy as C.

D′
xyA′ B′

C ′
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Then, using Lemma 8, the convex curve C ′ is con-
tained inside the curve obtained by concatenating A′

and B′. Since these curves have the same endpoints,
(1) follows from Benson [1, page 42].

Now assume that A and B are not entirely on the
same side of Π′xy as C. In this case, it may happen that
the common endpoint of A′ and B′ is inside the circle
through C ′. Therefore, we proceed as follows.

D′
xy

L′
1

L′
2

L′
3

p′ q′

L′
C

Let p′ be the intersection between A′ and the bound-
ary of D′xy, and let q′ be the intersection between B′

and the boundary of D′xy. Let L′1 be the length of the
part of A′ between x’s projection and p′, let L′2 be the
length of the part of B′ between y’s projection and q′,
and let L′3 be the length of the part of the boundary

of D′xy between p′ and q′. Observe that L′3 = d̆(p′, q′).
Then, again by Benson [1, page 42],

L′C ≤ L′1 + L′2 + L′3,

which, by the triangle inequality, is at most L′A + L′B .
Thus, also in this case, (1) holds. �

In the next lemma, we consider the set

C =

n⋃
i=1

Ci

that was defined before.

Lemma 10 Assume that the points a and b are on the
equator. Let L be the length of the part of the boundary
of C that is above the equator. Then

L ≤ (π/2) · d̆(a, b).

Proof. The proof is by induction on the number n of
edges on the direct path between a and b. If n = 1, then
the claim follows from Lemma 7.

Assume that n ≥ 2. Consider the set

C′ =

n−1⋃
i=1

Ci,

let L′ be the length of the part of its boundary that is
above the equator, and let y be the point on the equator
and on the boundary of Cn−1 whose spherical distance
to b is minimum. By induction, we have

L′ ≤ (π/2) · d̆(a, y).

a

x y
b

Cn−1

Cn

L1 L2

L3

L4

Let x be the point on the equator and on the bound-
ary of Cn whose spherical distance to b is maximum.
Define the following quantities:

• L1 is the length of the part of the boundary of Cn

that is above the equator and inside Cn−1.

• L2 is the length of the part of the boundary of Cn−1
that is above the equator and inside Cn.

• L3 is the length of the part of the boundary of
SC (x, y) that is above the equator.

• L4 is the length of the part of the boundary of Cn

that is above the equator and outside Cn−1.

By Lemma 9, we have L3 ≤ L1 + L2. It follows that

L = L′ + L4 − L2

= L′ + (L1 + L4)− (L1 + L2)

≤ (π/2) · d̆(a, y) + (L1 + L4)− L3.

Define the following two angles:

• α is the angle between the two vectors pointing
from the origin to x and y.

• β is the angle between the two vectors pointing
from the origin to y and b.

Observe that

L1 + L4 = (π/2) · d(x, b) = π sin((α+ β)/2)

and
L3 = (π/2) · d(x, y) = π sin(α/2).

Using the identity

sin γ − sin δ = 2 sin((γ − δ)/2) cos((γ + δ)/2),

it follows that

L1 + L4 − L3 = 2π sin(β/4) cos((2α+ β)/4)

≤ 2π sin(β/4)

≤ 2π(β/4)

= (π/2) · d̆(y, b).

We conclude that

L ≤ (π/2) · d̆(a, y) + (π/2) · d̆(y, b)

= (π/2) · d̆(a, b).

�
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Lemma 11 If the direct path between a and b is one-
sided, then its length is at most (π/2) · d̆(a, b).

Proof. Since each edge of the direct path between a
and b is a great arc, the triangle inequality implies that
the length of this path is at most the quantity L in
Lemma 10. �

4 Constructing a Short Path in SDT (S)

Consider again two distinct points a and b of S, together
with their direct path

P = (a = b0, b1, b2, . . . , bn = b).

In this section, we define a path Q in SDT (S) between
a and b. In Section 5, we will prove that the length of
Q is at most 3(π/2 + 1) · d̆(a, b).

We assume, without loss of generality, that a and b
are on the equator; thus the plane Π through a, b, and
the origin is the plane with equation z = 0.

We partition the direct path P into subpaths
P1, P2, . . . , Pm, where each subpath Pk is

• either of type 1, i.e., Pk is a maximal subpath of P
that is completely on or above Π,

• or of type 2, i.e., Pk is a subpath bi, bi+1, . . . , bj with
j ≥ i + 2, where both bi and bj are on or above Π
and all points bi+1, . . . , bj−1 are below Π.

For example, in the figure in the beginning of Section 3,
m = 2, P1 = (b0, b1), and P2 = (b1, b2, b3).

In the rest of this section, we will use the subpaths
P1, P2, . . . , Pm to define paths Q1, Q2, . . . , Qm. The fi-
nal path will be the concatenation of the latter paths.

Let k be an integer with 1 ≤ k ≤ m. If the subpath
Pk is of type 1, then we define Qk = Pk.

Assume that Pk = (bi, bi+1, . . . , bj) is of type 2. Let
b′i and b′j be the points on the equator whose spherical
distances to bi and bj are minimum, respectively, and
let

w = d̆(b′i, b
′
j).

Let Tk be the part of the boundary of C that is above
Π and that connects bi and bj . Let q be a point on Tk
whose spherical distance to the equator is minimum, let
q′ be the point on the equator whose spherical distance
to q is minimum, and let

h = d̆(q, q′).

a b

bi

bi+1
bj−1

bj

b′i b′j
q

q′

Tk

If h ≤ w/4, then we define Qk = Pk.
Assume that h > w/4. Let S′ be the set of points p

in S such that

• p is on or above Π,

• p is on or below the plane through bi, bj , and the
origin, and

• p′, i.e., the point on the equator whose spherical
distance to p is minimum, is on the great arc con-
necting b′i and b′j .

bi bj

b′i b′j

Consider the “lower” part H of the spherical convex
hull of S′; this is the path of solid edges in the figure
above. If S′ = {bi, bj}, then H consists of the edge
(bi, bj). Otherwise, H consists of the hull edges that are
not equal to (bi, bj). Observe that H is a path on S2
between bi and bj , all of whose edges are great arcs. For
each such edge on H, take the direct path in SDT (S)
between their endpoints, and define Qk to be the con-
catenation of all these direct paths.

Having defined a path Qk in SDT (S) for each integer
k with 1 ≤ k ≤ m, we define

Q = Q1Q2 · · ·Qm.

5 Bounding the Length of the Path Q

Let k be an integer with 1 ≤ k ≤ m, and consider
the subpath Pk of the previous section. We write this
subpath as

Pk = (bi, bi+1, . . . , bj).

Recall that Tk is the part of the boundary of C that is
above the plane Π and that connects bi and bj . Let Lk

be the length of Tk. As before, we denote by b′i and b′j
the points on the equator whose spherical distances to
bi and bj are minimum, respectively. We will prove that
the length of the path Qk is at most

3
(
Lk + d̆(b′i, b

′
j)
)
. (2)

By Lemma 5, this will imply that the length of the path
Q = Q1Q2 · · ·Qm is at most

3

(
m∑

k=1

Lk + d̆(a, b)

)
.

Since
∑m

k=1 Lk is equal to the quantity L in Lemma 10,
it will follow that the length of Q is at most

3 (π/2 + 1) · d̆(a, b),
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thus completing the proof of Theorem 4.

If Pk is of type 1, then the length of Qk (which is
equal to Pk) is at most Lk and, thus, the inequality in
(2) holds.

Assume that Pk is of type 2 and h ≤ w/4. The length
of Qk (which is equal to Pk) is at most

Lk + 2 · d̆(bi, b
′
i) + 2 · d̆(bj , b

′
j).

The point q splits Tk into two parts. We denote the part
connecting bi and q by T ′k, and the part connecting q
and bj by T ′′k . Let L′k and L′′k denote the lengths of T ′k
and T ′′k , respectively.

Let ai be the point on the great arc connecting bi and
b′i such that d̆(ai, b

′
i) = h. Then we have

d̆(bi, b
′
i) = d̆(bi, ai) + d̆(ai, b

′
i)

= d̆(bi, ai) + h

≤
(
L′k + d̆(q, ai)

)
+ h

≤ L′k + d̆(b′i, q
′) + w/4.

By a symmetric argument, we have

d̆(bj , b
′
j) ≤ L′′k + d̆(b′j , q

′) + w/4.

Thus, the length of Qk is at most

Lk + 2
(
L′k + d̆(b′i, q

′) + w/4
)

+2
(
L′′k + d̆(b′j , q

′) + w/4
)

= 3
(
Lk + d̆(b′i, b

′
j)
)

and, therefore, the inequality in (2) holds.

It remains to consider the case when Pk is of type 2
and h > w/4.

Lemma 12 For each edge (x, y) of the lower part of
the spherical convex hull of the set S′, the direct path in
SDT (S) between x and y is one-sided.

Proof. The proof uses Lemma 6 and is a straighforward
generalization of the proof of Lemma 4 in Dobkin et
al. [2]. �

Let Σ denote the sum of the lengths of the edges of
the lower spherical convex hull H of the set S′. Then,
by Lemmas 11 and 12, the length of the path Qk is at
most (π/2)Σ.

Since each edge of H is a great arc, it follows from
Lemma 13 in the appendix that Σ ≤ Lk. Thus, the
inequality in (2) holds.

6 Concluding Remarks

We have shown that the spherical Delaunay triangula-
tion SDT (S) of a finite set S of points on the unit-sphere
S2 is a spherical t-spanner of S, for t = 3(π/2 + 1). We
proved this result by modifying the proof of Dobkin et
al. [2] for the Euclidean Delaunay triangulation in R2.

By “straightening” the edges of SDT (S), we obtain
the convex hull CH (S) of S (see Lemma 2), implying
that CH (S) is a Euclidean (tπ/2)-spanner of S (see
Lemma 3). We leave as an open problem to decide if the
proof technique of Dobkin et al. can be used directly on
CH (S).

We also leave as an open problem to improve our
upper bound on the stretch factor of the convex hull of
points on the unit-sphere.
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Appendix

Lemma 13 Let p and q be two distinct points on S2, and
let H and R be curves on S2 between p and q. Assume that

• p, q, H, and R are on or above the equator,

• p and q are not contained in a great circle through the
north and south poles,

• both H and R are longitudinally monotone,

• H is on or below the plane through p, q, and the origin,

• H consists of a finite number of great arcs,

• H is spherically convex,

• and for each vertex x of H, the great arc between x and
the south pole intersects R.

Then the length of H is at most the length of R.

Proof. For any two points x and y on H, we denote by Σxy
H

the length of the portion of the curve H between x and y.
We define Σxy

R similarly with respect to the curve R. Using
this notation, the lemma states that

Σpq
H ≤ Σpq

R .

The proof is by induction on the number of great arcs on H.
To prove the base case, assume that H consists of one single
arc. Since this is a great arc, we have

Σpq
H = d̆(p, q) ≤ Σpq

R .
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Now assume that H consists of at least two great arcs. Con-
sider the first great arc (p, x) of H. Starting at x, walk along
the great circle through this arc, in the opposite direction of
p, and stop as soon as a point, say y, on R is encountered.
(Observe that this point y exists.)

p
q

H

R
x

y

Let H ′ be the portion of H between x and q, and let R′ be
the curve obtained by concatening the great arc between x
and y, and the portion of R between y and q. Since H ′ and
R′ satisfy the assumptions in the lemma and the number of
great arcs on H ′ is one less than the number of great arcs
on H, it follows by induction that

Σxq
H ≤ d̆(x, y) + Σyq

R .

It follows that

Σpq
H = d̆(p, x) + Σxq

H

≤ d̆(p, x) + d̆(x, y) + Σyq
R

= d̆(p, y) + Σyq
R

≤ Σpy
R + Σyq

R

= Σpq
R .

�


