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On the Spanning Ratio of Constrained Yao-Graphs
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Abstract

We present upper bounds on the spanning ratio of con-
strained Yao-graphs with at least 7 cones. Given a set
of points in the plane, a Yao-graph partitions the plane
around each vertex into k disjoint cones, each having
aperture θ = 2π/k, and adds an edge to the closest
vertex in each cone. Constrained Yao-graphs have the
additional property that no edge properly intersects any
of the given line segment constraints. We show that
constrained Yao-graphs with an even number of cones
(k ≥ 8) have spanning ratio at most 1/ (1− 2 sin(θ/2))
and constrained Yao-graphs with an odd number of cones
(k ≥ 7) have spanning ratio at most 1/ (1− 2 sin(3θ/8)).
These bounds match the current upper bounds in the
unconstrained setting.

1 Introduction

A geometric graph G is a graph whose vertices are points
in the plane and whose edges are line segments between
pairs of points. Every edge is weighted by the Euclidean
distance between its endpoints. The distance between
two vertices u and v in G, denoted by dG(u, v), is defined
as the sum of the weights of the edges along the shortest
path between u and v in G. A subgraph H of G is a t-
spanner of G (for t ≥ 1) if for each pair of vertices u and
v, dH(u, v) ≤ t · dG(u, v). The smallest value t for which
H is a t-spanner is the spanning ratio or stretch factor.
The graph G is referred to as the underlying graph of
H. The spanning properties of various geometric graphs
have been studied extensively in the literature (see [8, 15]
for a comprehensive overview of the topic). We look at
a specific type of geometric spanner: Yao-graphs.

Introduced independently by Flinchbaugh and
Jones [14] and Yao [16], Yao-graphs partition the plane
around each vertex into k disjoint cones, each having
aperture θ = 2π/k. The Yk-graph is constructed by, for
each cone of each vertex u, connecting u to the vertex v
that is closest to u. However, neither Flinchbaugh and
Jones nor Yao proved that these graphs are spanners. To
the best of our knowledge, the first such proof was given
by Althöfer et al. [1], who proved that for every spanning
ratio t > 1, there exists a k such that the Yk-graph is a
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t-spanner. It appears that a similar result was already
known by that time, since Clarkson [10] remarked in
1987 that the Y12-graph is a 1 +

√
3-spanner, though

without providing a proof or reference.
In 2004, Bose et al. [7] provided a more precise

bound on the spanning ratio. They showed that Yao-
graphs with at least 9 cones have spanning ratio at most
1/(cos θ−sin θ). This was later strengthened to show that
Yao-graphs with at least 7 cones are 1/ (1− 2 sin(θ/2))-
spanners [3]. Recently, Damian and Raudonis [11]
showed that the Y6-graph is a 17.64-spanner and Bose et
al. [4] showed that the Y4-graph has spanning ratio at
most 663. Barba et al. [2] showed that the Y5-graph
is a

(
2 +
√

3
)
-spanner. In the same paper, they also

improved the upper bound on the spanning ratio of the
Y6-graph to 5.8 and that of Yao-graphs with an odd num-
ber of cones to 1/ (1− 2 sin(3θ/8)). On the other hand,
when a Yao-graph has less than 4 cones, El Molla [13]
showed that there is no constant t such that it is a
t-spanner.

The above results, however, focus on Yao-graphs where
the underlying graph is the complete Euclidean geomet-
ric graph. We study this problem in a more general
setting with the introduction of line segment constraints.
Specifically, let P be a set of points in the plane and let
S be a set of line segments between two vertices in P ,
called constraints. The set of constraints is plane, i.e.
no two constraints intersect properly. A vertex in P can
be the endpoint of multiple constraints. Two vertices
u and v can see each other if and only if either the line
segment uv does not properly intersect any constraint or
uv is itself a constraint. If two vertices u and v can see
each other, the line segment uv is a visibility edge. The
visibility graph of P with respect to a set of constraints
S, denoted Vis(P, S), has P as vertex set and all visibil-
ity edges as edge set. In other words, it is the complete
graph on P minus all edges that properly intersect one
or more constraints in S.

This setting has been studied extensively within the
context of motion planning amid obstacles. Clarkson [10]
was one of the first to study this problem and showed how
to construct a linear-sized (1 + ε)-spanner of Vis(P, S).
Subsequently, Das [12] showed how to construct a span-
ner of Vis(P, S) with constant spanning ratio and con-
stant degree. The Constrained Delaunay Triangulation
was shown to be a 2.42-spanner of Vis(P, S) [6]. Recently,
it was also shown that the constrained θ6-graph is a 2-
spanner of Vis(P, S) [5] and this spanning ratio is tight,
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i.e. there is a matching lower bound. This result was
generalized to show that the constrained θ(4k+2)-graph
(k ≥ 1) has a tight spanning ratio of 1 + 2 sin (θ/2) [9].
This paper also improved the spanning ratio of the other
constrained θ-graphs with at least 6 cones.

To the best of our knowledge, Yao-graphs have not
been considered in the constrained setting. As such, it is
unknown whether they are spanners of Vis(P, S). In this
paper, we set an important first step towards answering
this question by showing that constrained Yao-graphs
with at least 7 cones are spanners. In particular, we
prove that constrained Yao-graphs with an even number
of cones have spanning ratio at most 1/ (1− 2 sin(θ/2)).
When the constrained Yao-graph has an odd number of
cones, we can improve on this result and show an upper
bound of 1/ (1− 2 sin(3θ/8)). These bounds match the
current upper bounds in the unconstrained setting.

2 Preliminaries

We define a cone C to be the region in the plane between
two rays originating from a vertex referred to as the apex
of the cone. When constructing a (constrained) Yk-graph,
for each vertex u consider the rays originating from u
with the angle between consecutive rays being θ = 2π/k.
Each pair of consecutive rays defines a cone. The cones
are oriented such that the bisector of some cone coincides
with the vertical halfline through u that lies above u. Let
this cone be C0 of u and number the cones in clockwise
order around u (see Figure 1). The cones around the
other vertices have the same orientation as the ones
around u. We write Cui to indicate the i-th cone of
a vertex u. For ease of exposition, we only consider
point sets in general position: no two points lie on a line
parallel to one of the rays that define the cones and no
three points are collinear.

C0
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Figure 1: The cones having apex u in the Y8-graph

Let vertex u be an endpoint of a constraint c and let
the other endpoint v lie in cone Cui . The lines through
all such constraints c split Cui into several subcones. We

use Cui,j to denote the j-th subcone of Cui (see Figure 2).
When a constraint c = (u, v) splits a cone of u into two
subcones, we define v to lie in both of these subcones. We
consider a cone that is not split to be a single subcone.
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Figure 2: The subcones having apex u in the Y8-graph.
Constraints are shown as thick segments

We now introduce the constrained Yk-graph: for each
subcone Ci,j of each vertex u, add an edge from u to
the closest vertex in that subcone that can see u (see
Figure 3). When there exist multiple closest vertices in
a subcone, we add an edge to only a single one of them.
More formally, we add an edge between two vertices u
and v if v can see u, v ∈ Cui,j , and for all points w ∈ Cui,j
that can see u, |uv| ≤ |uw|, where |xy| denotes the length
of the line segment between two points x and y and ties
are broken arbitrarily.

u

v

w

x

y

Figure 3: Vertex v is the closest visible vertex to u in
the left subcone and w is the closest visible vertex to u
in the right subcone, since y is not visible to u

Finally, we re-introduce a property of visibility graphs.
Though the following lemma was applied to constrained
θ-graphs in [5], the property holds for any visibility graph.
To avoid confusion, we explicitly define that we call a
region empty if it does not contain any vertex of P .
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Lemma 1 Let u, v, and w be three arbitrary points in
the plane such that uw and vw are visibility edges and
w is not the endpoint of a constraint intersecting the
interior of triangle uvw. Then there exists a convex
chain of visibility edges from u to v in triangle uvw,
such that the polygon defined by uw, wv and the convex
chain is empty and does not contain any constraints.

u

v

w

x
y

Figure 4: The convex chain between vertices u and v,
where thick lines are visibility edges

3 Spanning Ratio

In this section, we prove that constrained Yao-graphs
with at least 7 cones are spanners of the visibility graph.

Theorem 2 The constrained Yk-graph (k ≥ 7) is a
1/
(
1− 2 sin

(
θ
2

))
-spanner of Vis(P, S).

Proof. Let u and w be two vertices that can see each
other. We show that there exists a path connecting u
and w in the constrained Yk-graph (k ≥ 7) of length at
most t · |uw| for t = 1/(1− 2 sin(θ/2)), by induction on
the distance between every pair of vertices u and w that
can see each other. For ease of exposition, we assume
without loss of generality that w ∈ Cu0 .

Base case: Vertices u and w are a closest visible pair.
Since the closest visible pair need not be unique, we
proceed to show that the subcone of Cu0 that contains w
does not contain any vertices visible to u at distance at
most |uw|: If there were such a vertex x, since ux and
xw are visibility edges that lie in the same subcone, by
Lemma 1 there exists a convex chain of visibility edges
connecting x to w. Since we have at least 7 cones, the
vertex adjacent to w along this chain is strictly closer
to w than u, contradicting that |uw| is a closest visible
pair. Hence, since w is the closest visible vertex, uw
is an edge in the constrained Yk-graph and thus there
exists a path between u and w of length |uw| < t · |uw|.
Induction step: We assume that the induction hy-

pothesis holds for all pairs of vertices that can see each
other and whose distance is less than |uw|.

If uw is an edge in the constrained Yk-graph, the
induction hypothesis follows by the same argument as
in the base case. If there is no edge between u and w,
let v be the closest visible vertex to u in the subcone of
u that contains w, and let x be the point along uw such

that |uv| = |ux| (see Figure 5). Since x lies on uw, both
ux and xw are visibility edges.

w

u

v x

Figure 5: A convex chain from v to w

Next, we show that vx is also a visibility edge: If vx
is not a visibility edge, that implies that it crosses some
constraint. Since uv and ux are visibility edges, this
constraint cannot cross them. Therefore, one endpoint
of the constraint is contained in triangle uvx. Let y be
this endpoint. Since v and w lie in the same subcone
of u, u is not the endpoint of a constraint intersecting
the interior of uvx. Hence, we can apply Lemma 1 and
obtain a convex chain of visibility edges from v and x
and the polygon defined by uv, ux, and the convex chain
is empty and does not contain any constraints. This
implies that u can see every vertex along the convex
chain, each of which is closer to it than v, contradicting
that v was the closest visible vertex to u.

Since vx and xw are visibility edges, we can apply
Lemma 1 to triangle vxw and we obtain a convex chain of
visibility edges v = p0, ..., pj = w connecting v and w (see
Figure 5). Since we have at least 7 cones, the distance
between any consecutive pair of vertices is strictly less
than |uw|. Hence, since every consecutive pair of vertices
along this convex chain can see each other, we can apply
induction on each of them. Therefore, there exists a
path from u to w via v of length at most

|uv|+ t ·
j−1∑
i=0

|pipi+1|.

Since the chain between v and w is contained in tri-
angle vxw and the chain is convex, it follows that the
total length of the chain is at most |vx| + |xw|. Thus,
we can upper bound the length of the path by

|uv|+ t · (|vx|+ |xw|) .

Since |uv| = |ux|, triangle uvx is an isosceles triangle
and we can express |vx| as 2 sin (∠vux/2) · |uv|. Since
this function is increasing for ∠vux ∈ [0, 2π/7] and ∠vux
is at most θ, it follows that |vx| ≤ 2 sin (θ/2) · |uv|. Next,
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we look at |xw|: Since x lies on uw and |uv| = |ux|, it
follows that |xw| = |uw| − |ux| = |uw| − |uv|. Hence,
the path between u and w has length at most

|uv|+ t · (|vx|+ |xw|)

≤ |uv|+ t ·
(

2 sin

(
θ

2

)
· |uv|+ |uw| − |uv|

)
= t · |uw|+

(
1 + 2 sin

(
θ

2

)
· t− t

)
· |uv|.

Hence, for the length of the path to be at most t · |uw|,
we need that

1 + 2 sin

(
θ

2

)
· t− t ≤ 0,

which can be rewritten to

t ≥ 1

1− 2 sin
(
θ
2

) ,
completing the proof. �

For odd values of k, the spanning ratio can be de-
creased a bit: Let Cui be the cone of u that contains
w and let Cwj be the cone of w that contains u. When
we look at two vertices u and w in the constrained Yk-
graph, we notice that when the angle between uw and
the bisector of Cui is α, the angle between wu and the
bisector of Cwj is θ/2− α (see Figure 6). Hence, when
bounding the worst case spanning ratio of constrained
Yk-graphs with an odd number of cones, we can assume
without loss of generality that the angle between the
bisector of the cone and uw is at most θ/4.

w

u

α

α
θ
2
−α

Figure 6: The angle between uw and the bisector of Cui
is α and the angle between wu and the bisector of Cwj
is θ/2− α

Theorem 3 For odd values of k ≥ 7, the constrained
Yk-graph is a 1/

(
1− 2 sin

(
3θ
8

))
-spanner of Vis(P, S).

Proof. Let u and w be two vertices that can see each
other. We show that there exists a path connecting u

and w in the constrained Yk-graph (k ≥ 7) of length at
most t · |uw| for t = 1/(1− 2 sin(3θ/8)), by induction on
the distance between every pair of vertices u and w that
can see each other. For ease of exposition, we assume
without loss of generality that w ∈ Cu0 . We also assume
without loss of generality that the angle between the
bisector of Cu0 and uw is at most θ/4.
Base case: Vertices u and w are a closest visible pair.

Using the same argument as in Theorem 2, it follows that
uw is an edge of the constrained Yk-graph and thus there
exists a path between u and w of length |uw| < t · |uw|.

Induction step: We assume that the induction hy-
pothesis holds for all pairs of vertices that can see each
other and whose distance is less than |uw|.

If uw is an edge in the constrained Yk-graph, the
induction hypothesis follows by the same argument as
in the base case. If there is no edge between u and w,
let v be the closest visible vertex to u in the subcone of
u that contains w, and let x be the point along uw such
that |uv| = |ux| (see Figure 7). Since x lies on uw, both
ux and xw are visibility edges.

w

u

v x

≤ 3θ
4

Figure 7: A convex chain from v to w

Using the same argument as in Theorem 2, it follows
that vx is also a visibility edge. Hence, we can apply
Lemma 1 to triangle vxw and we obtain a convex chain of
visibility edges v = p0, ..., pj = w connecting v and w (see
Figure 7). Since we have at least 7 cones, the distance
between any consecutive pair of vertices is strictly less
than |uw|. Hence, since every consecutive pair of vertices
along this convex chain can see each other, we can apply
induction on each of them. Therefore, there exists a
path from u to w via v of length at most

|uv|+ t ·
j−1∑
i=0

|pipi+1|.

Analogous to Theorem 2, this expression can be upper
bounded by |uv|+ t · (|vx|+ |xw|).

Since |uv| = |ux|, triangle uvx is an isosceles triangle
and we can express |vx| as 2 sin (∠vux/2) · |uv|. Since
this function is increasing for ∠vux ∈ [0, 2π/7] and ∠vux
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is at most 3θ/4, it follows that |vx| ≤ 2 sin (3θ/8) · |uv|.
Analogous to Theorem 2, it holds that |xw| = |uw|−|uv|.
Hence, the path between u and w has length at most

|uv|+ t · (|vx|+ |xw|)

≤ |uv|+ t ·
(

2 sin

(
3θ

8

)
· |uv|+ |uw| − |uv|

)
= t · |uw|+

(
1 + 2 sin

(
3θ

8

)
· t− t

)
· |uv|.

Hence, for the length of the path to be at most t · |uw|,
we need that

1 + 2 sin

(
3θ

8

)
· t− t ≤ 0,

which can be rewritten to

t ≥ 1

1− 2 sin
(
3θ
8

) ,
completing the proof. �

4 Conclusion

We showed that constrained Yao-graphs with at least 7
cones are spanners of the visibility graph and the upper
bounds on the spanning ratio we obtained match those
of the unconstrained Yao-graphs. This raises a number
of new questions, the obvious one being whether we can
reduce the upper bounds or find matching lower bound
constructions.

Another set of open problems involves constrained
Yao-graphs with at most 6 cones. In the unconstrained
setting, it is known that the Yk-graph is a spanner if
and only if k ≥ 4. Since the proof presented in this
paper can be applied only to Yao-graphs with at least 7
cones, it remains unknown whether this is also true in
the constrained setting.

Finally, though we have upper bounds on the spanning
ratio of constrained Yao-graphs with at least 7 cones,
we do not have a local competitive routing algorithm to
actually route messages between any two visible vertices.
The main difficulty stems from the inductive steps along
the convex chain, since these steps make it unclear where
the routing algorithm should forward the message to. In
particular, we cannot assume that there exists an edge in
the subcone that contains the destination, since visibility
may be blocked by a constraint. Hence, routing remains
a major open problem in this area.
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