
CCCG 2014, Halifax, Nova Scotia, August 11–13, 2014

Maximum Independent Set for Interval Graphs and Trees in Space
Efficient Models

Binay K. Bhattacharya∗ Minati De† Subhas C. Nandy‡ Sasanka Roy§

Abstract

Space efficient algorithms for the maximum inde-
pendent set problem for interval graphs and trees
are presented in this paper. For a given set of
n intervals on a real line, we can compute the

maximum independent set in O(n
2

s + n log s) time
using O(s) extra-space. The lower bound of the
time × space product for this problem is Ω(n2−ε),
where ε = O(1/

√
log n). We also propose an (1+ 1

ε)
approximation algorithm for this problem that ex-
ecutes O(1

ε) passes over the read-only input tape
and uses O(k) extra space, where k is the size of
the reported answers. For trees with n nodes, our
proposed 5

3 -approximation algorithm runs in O(n)
time using O(1) extra-space.

1 Introduction

Computing the maximum independent set has been
a problem of fundamental interest to different com-
munity of researchers. Independent set for a graph
G = (V,E) is defined as a set of vertices I(⊆ V)
such that no two vertices of I are connected by an
edge. A maximum independent set, called MIS, is
an independent set of maximum size. In this paper,
we study the problem of computing the maximum
independent set for the interval graph and tree in
space-economic models. We consider both the read-
only model with random access and the sequential
access of the input.

Elberfeld et al. [5] in their seminal work provided
a logspace version of the theorems of Bodlaender
[2] and Courcelle [4]. Bodlaender’s theorem [2] in
conjunction with Courcelle’s [4] theorem provides
a generic framework to find linear time algorithms
for many problems in bounded tree-width graphs

∗School of Computing Science, Simon Fraser University,
Canada, binay@cs.sfu.ca
†The Technion – Israel Institute of Technology, Haifa, Is-

rael, minati@cs.technion.ac.il
‡Indian Statistical Institute, Kolkata, India,

nandysc@isical.ac.in
§Chennai Mathematical Institute, Chennai, India,

sasanka@cmi.ac.in

which also includes computing the MIS for bounded
tree-width graphs. Since Elberfeld et al. [5] gives a
logspace version of both Bodlaender [2] and Cour-
celle [4] theorems, this would imply a polynomial
time algorithm for computing the MIS of bounded
tree-width graphs using O(1) words (i.e, O(log n)
bits). But we could not analyze the correct running
time of Elberfeld et al. [5] for finding the MIS, even
for trees.

For computing the MIS of a given set of intervals,
Emek et al. [6] proposed a multi-pass algorithm
which reports (1 + 1

2p−1) approximate result in p

passes using O(p.k) space, where k is the number of
intervals reported. Here, we improve the space com-
plexity. We propose a (1 + 2

p) approximation algo-

rithm that executes (2p+1) passes on the input and
takes O(k) space, where k is the number of reported
intervals. We also show the time-space product
lower bound for this problem matches the problem
of element uniqueness problem which is Ω(n2−ε),
where ε = O(1/

√
log n) [9]. In the random-access

read-only model, we show a near optimal algorithm
whose time-space product is O(n2).

For tree, an O(n) time exact algorithm using O(h)
extra-space is easy to obtain, where h is the height
of the tree. We describe a 5

3 -approximation algo-
rithm for tree which takes O(n) time and uses only
O(1) space.

2 Maximum independent set for intervals

A set of n intervals I is given in a read-only array
I[1, 2, . . . , n]. For any interval I[t] ∈ I, we denote
it’s left end point by left(I[t]) and right end point
by right(I[t]). The objective is to find the max-
imum sized subset of non-overlapping intervals in
the set I.

Without any space restriction, the best known
result for this problem is by Snoeyink [8] which
shows that it can be solved in O(n log k) time
where k is the size of the maximum independent
set. An O(n log n) time greedy algorithm for this
problem works as follows [7]:

26th Canadian Conference on Computational Geometry, 2014

GREEDY-ALGO
Step 1: Sort the intervals of I according to their
right end-points.
Step 2: Find the interval i, whose right end-point
is left-most. Include i in the solution set MIS.
Step 3: Remove all intervals of set I which are
overlapping with i.
Step 4: Repeat Step 2 & 3 until I is not empty.
Step 5: Report MIS.

2.1 Exact algorithms

Now, we describe algorithms in the space-efficient
models for this problem.

1. An O(nk) time (where k is the size of the maxi-
mum independent set) and O(1) extra-space al-
gorithm for this problem is quite obvious which
mimics the GREEDY-ALGO. As it can not
store the sorted intervals, the execution of Step
2 for choosing the left-most right end-point dis-
carding all the intervals that starts before the
last chosen right end-point, takes O(n) time,
i.e, reporting each member of MIS takes O(n)
time. Thus the time complexity follows. We
will refer this algorithm as ALGO-2.

2. Here, we describe an algorithm which takes

O(s) space and O(n
2

s + n log s) time to report
all the members of the MIS.

Assume the input is given in the read-only
array I. The algorithm uses a min-heap
H of size O(s) words (i.e each containing
O(log n) bits). We will divide the array I
into s disjoint blocks each containing dns e
consecutive elements of the array I (except
the last one which may contain fewer ele-
ments). We denote the i-th block as Bi.
So, for i ∈ {1, 2, . . . , s − 1}, Bi contains the
elements {I[(i − 1)dns e + 1], . . . , I[idns e]}, and
Bs contains {I[(s − 1)dns e + 1], . . . , I[n]}.
Throughout the algorithm, the following
invariant is maintained

Invariant 1 At most one interval from each
block is in the heap H.

Initialize H: From each block find the inter-
val whose right end-point is left-most within
that block and insert these intervals into the

min-heap H according to the value of their
right end-points. Remember that the heap will
ideally contain the indices of these intervals in
the array I.

Algorithm 1: Exact-MIS-For-Intervals

Input: An array I[1, . . . , n] containing n
intervals

Output: Report the maximum independent
set of the given intervals

1 Initialize H;
2 E = 0; //E indicates the number of

blocks where all the intervals are

processed

3 Pop an interval from H. Let t be the index in
the array I of that interval.

4 ξ = right(I[t]);
5 Report t as an element of MIS;
6 while E 6= s do
7 j = d t

dns e
e; i.e, Bj is the block where the

index t belongs;
8 Now find the interval, c, whose right

end-point is left-most amongst all the
intervals in Bj with left boundary starting
after ξ; This can be done by scanning the
sub-array {I[(j − 1)dns e+ 1], . . . , I[jdns e]}
once.

9 if No such interval c is found then
10 E = E + 1;
11 else
12 Insert c into H;
13 Pop an interval from H. Let t be the index

in the array I of that interval.
14 if the left end-point of the interval I[t]

starts after ξ then
15 ξ = right(I[t]);
16 Report t as an element of MIS;

Time and Space Complexity The initializa-
tion takes O(n) time. Each interval is con-
sidered to be inserted into the heap H for at
most once. As each insertion needs a search
within the block taking O(ns) time and inser-
tion/deletion in/from the heap takes O(log s)
time, the total time complexity of the algo-

rithm is O(n(ns + log s)), i.e, O(n
2

s + n log s).

The space-complexity is O(s) since the size of
the heap H is s and it uses a constant number
of variables.

Theorem 1 Given a set of intervals in a
random-access read-only array, the maximum

CCCG 2014, Halifax, Nova Scotia, August 11–13, 2014

independent set can be computed in O(n
2

s +
n log s) time using only O(s) extra-space.

2.2 Lower-bound on time-space product

We will show that decision version of the element
uniqueness problem can be reduced to finding max-
imum independent set of intervals.

Element Uniqueness Decision Problem: Given a set
of n integers a1, a2, . . . , an, report 1 if for all the
pairs ((ai, aj), i 6= j) implies ai 6= aj , otherwise
report 0.

If we have an algorithm A which can compute
the maximum independent set of intervals, then
we can correctly compute the Element Uniqueness
Decision Problem for any input instance as fol-
lows. The algorithm A will consider the input in-
stance a1, a2, . . . , an of Element Uniqueness Deci-
sion Problem and it considers each of them as de-
generate interval having same left and right end-
points. If A gives maximum independent set of size
n then we report 1, otherwise we report 0.

So, if we have a good algorithm for computing the
maximum independent set of intervals, then we have
a good algorithm for Element Uniqueness Decision
Problem. In other words,

Lemma 2 The problem of computing the maxi-
mum independent set of interval is as hard as Ele-
ment Uniqueness Decision Problem.

Long ago, Borodin et al. [3] conjectured that the
lower bound of the time-space product for Element
Uniqueness Decision Problem is Ω(n2). Yao [9]
proved that time-space product lower bound for this
problem is Ω(n2−ε), where ε = O(1/(log n)1/2).

2.3 Approximation Algorithms

The algorithm for computing an O(log n)-

approximate MIS for intervals in O(n2

logn) time

using O(1) extra-space is easy to obtain. Split the
members in I into dlog ne blocks, each consisting of
O(n

logn) elements, excepting the last block, which
may contain fewer elements. In each block, apply
ALGO-2 separately to compute the maximum

independent set, which may take O(n2

log2 n
) time

using O(1) extra-space. Thus, the overall time

for processing all the log n blocks is O(n2

logn); the

space complexity remains O(1). Now, report the
MIS of the block for which the size of the output
is maximum. The approximation ratio of this

algorithm is O(log n) since (i) the size of the MIS
for all the intervals in I is less than or equal to the
sum of sizes of the MIS in these log n blocks, and
(ii) the size of the reported MIS is greater than the
average size of the MISs’ in these log n blocks.

We can generalize this method to get the following
result:

Theorem 3 Given a set of n intervals I in a read-
only memory, we can obtain a α-approximation
result for the maximum independent set of I in

O(n
2

αs + n log s) time using O(s) space.

Proof. In order to get a α approximate maximum
independent set, we need to split I into α blocks
each of size n

α . Now, since O(s) space is available
we can use Algorithm 1 instead of ALGO-2. Thus,

processing each block requires O((n/α)2

s + n
α log s),

and hence the overall time complexity for processing

all the α blocks becomes O(n
2

αs + n log s); the space
complexity is O(s). �

Conjecture 1 Given a set of n intervals I in a
read-only memory, the time and space product to
obtain a α-approximation result for the maximum
independent set of I is Ω(n2/α), where α = o(n).

(1 + ε)-approximation algorithm in O(1
ε) passes

using O(k) space:

Here we use the (streaming) single pass 2-
approximation algorithm of Emek et al. [6] as a sub-
routine. This subroutine takes O(k) space where
k is the number of reported intervals. In the
first pass, the algorithm evokes this subroutine and
stores the 2-approximation of the MIS in the extra-
space Temp. Let Temp[1, 2, . . . , k] be these inter-
vals sorted by their left end-points.

All the input intervals lie in [−∞,∞]. We call
it the initial-interval-span. For any positive inte-
ger 1 < p < k, we partition this initial-interval-
span into dkp e smaller-interval-span as follows. The

intervals Temp[p], T emp[2p], . . . T emp[dkp e − 1] are
considered as the barriers between two consecutive
smaller-interval-spans. So, the i-th smaller-interval-
span is [right(Temp[(i − 1)p]), left(Temp[ip])],
where i ∈ {2, 3, . . . , (dkp e − 1)}. The first and dkp e-
th smaller-interval-span are [−∞, left(Temp[p])],
[right(Temp[dkp e − 1]),∞], respectively. Let Inti
be the set of all the intervals in I whose both
ends are in the i-th smaller-interval-span, where
i ∈ {1, 2, . . . , dkp e}. Let Opt(Inti) denote the maxi-
mum independent set for all the intervals in Inti.

26th Canadian Conference on Computational Geometry, 2014

As |Opt(Inti)| ≤ 2p, we can find the Opt(Inti) by
scanning 2p times the entire input array I using
O(1) space as given in ALGO-2. Here we do the
processing of Inti, i = 1, 2, . . . , dkp e, in parallel. We

use an array H1 of size dkp e. During the first scan,

H1[i] stores the interval whose right end-point is
reached first among all the intervals observed so far
in Inti. So, after the first scan, we can correctly
identify the left most member of Opt(Inti) for each
i. In a similar way, we can report the next left most
member of Opt(Inti), for each i, in the next scan,
and so on. Our algorithm reports all Opt(Inti) and
the barriers as output.

Thus, in at most 2p + 1 passes an independent set
of the intervals in I is reported. The total space re-
quirement is O(k+ k

p) ≈ O(k). Now, we claim that

this independent set is of size (1− 2
p)|OPT |, where

OPT is the maximum independent set (MIS) for the
intervals in I. If our algorithm reports A intervals,
then A ≥ |OPT | − k

p . The reason is that we may
miss one member of MIS at each barrier as the 2-
approximation algorithm of Emek et al. [6] ensures
that no interval of I is properly contained in any of
the intervals Temp[p], T emp[2p], . . . T emp[dkp e− 1].

So, we may miss at most k
p intervals. Since k ≤

2|OPT |, we have A ≥ (1 − 2
p)|OPT |. Thus, we

have the following result:

Theorem 4 Given a set I of intervals in a one-
way read-only input tape, an (1 + ε)-approximation
result for the maximum independent set of I can
be obtained in O(1

ε) passes using only O(k) space,
where k is the number of reported intervals.

3 Maximum Independent Set for Tree

Let T = (V,E) be a tree where V is the set of
vertices (or nodes) and E is the set of edges. The
objective is to compute the maximum independent
set of vertices of the tree T . As in [1], we assume
that the tree T is represented as a DCEL (doubly
connected edge list) in a read-only memory where
for a vertex u ∈ V , we can perform the following
queries in constant time using constant space:

• Parent(u): returns the parent of the vertex u
in the tree T ,

• FirstChild(u): returns the first child of u in
the tree T ,

• NextChild(u, v): returns the child of u which
is next to v in the adjacency list of u.

Here we can perform post-order traversal starting
from any vertex in O(|V |) time using O(1) extra-
space.

3.1 Exact algorithm

If the depth of the tree is h and O(h) amount of
extra-space is given, then using a post-order traver-
sal on the tree T , we can compute the maximum
independent set in O(n) time following a dynamic
programming paradigm.

For a node v, let v(I+) denote the size of the
maximum independent set of the subtree rooted
at v including the node v. Similarly, let v(I−)
denote the size of the maximum independent set
of the subtree rooted at v excluding the node v.
So, v(I+) = 1 +

∑
u∈children(v) u(I−) and v(I−) =∑

u∈children(v) max{u(I−), u(I+)}.
While processing a node v, we dynamically allocate
two temporary variables A+ and A− for the node v
to compute its v(I+) and v(I−) values, respectively.
At the end of processing the node v (i.e., when all
its children are processed), these contain v(I+) and
v(I−). We propagate these to the parent of the node
v to update the A+ and A− attached to its parent,
and release the variables A+ and A− attached to
v. Thus, we may have to maintain these temporary
variables for all the nodes along a path from the
root to the leaf level of the tree in the worst case.
Thus, we have the following:

Theorem 5 Given a tree T with n nodes in a read-
only memory, the maximum independent set can be
reported in O(n) time using O(h) extra-space, where
h is the height of the tree T .

3.2 5
3 -approximation algorithm using constant
space

We will do a post-order traversal in the given tree
T . When all the children of a node p have been tra-
versed, then we take a decision regarding whether
p is to be reported as a member in the independent
set or not as follows:

• If p has at least two children, then p is not
reported.

• If p has 1 child, then report it if its child is not
reported.

• If p has no child, then p is reported.

This reported set is obviously an independent set.

CCCG 2014, Halifax, Nova Scotia, August 11–13, 2014

We use two one-bit variables state and i. We also
use two pointer variables p and q, each of O(log n)
bits; p stores the current node during the traver-
sal and q is a temporary variable to be used during
the backtrack. The variable state contains 0 or 1
depending on whether we reached p during the for-
ward traversal or backtrack. The variable i contains
0 or 1 if any successor of p is reported. Both of them
are initialized as 0 at the beginning of the execution.
These variables maintain the following invariant:

Invariant 2 If p is reached with state = 1, then we
have visited all the children of the node pointed by
the variable p.

The pseudo-code of the algorithm is given in Algo-
rithm 2.

Algorithm 2: Approx-MIS-For-Tree

Input: A tree T = (V,E) given as DCEL
Output: Report an independent set

1 p = root;
2 state = 0; i = 0;
3 while p 6= root or state 6= 1 do
4 if state = 0 then
5 if p has a child then
6 p = FirstChild(p);
7 else
8 state = 1;

9 else
10 // state = 1 and p 6= root
11 if {i = 0 and p has at most 1 child}

then
12 Report p; i = 1;
13 else
14 i = 0;
15 q = Parent(p);
16 if NextChild(q, p) 6= FirstChild(q)

then
17 p = NextChild(q, p);
18 state = 0; i = 0;

19 else
20 p = q; state = 1;

Lemma 6 Our algorithm produces a solution SOL
having size |SOL| ≥ 3

5 |OPT |, where OPT is the
optimum solution.

Proof. Let T = (V,E) be a tree with n nodes.
Let v be any node in T having degree δ(v). We
classify v as type-1, type-2 and type-3 depending on
on whether its degree δ(v) = 1, δ(v) = 2 or δ(v) > 2,
excepting the following:

• if v is the root of the tree and δ(v) ≥ 2, then it
is considered as a type-3 node.

Note that our algorithm does not report any type-
3 node in the independent set. Assume that our
algorithm reports SOL as the independent set, and
|SOL| = (s1+s2), where s1 (resp. s2) is the number
of type-1 (resp. type-2) nodes. So, the number of
leaf-nodes in T is s1. Similarly, let OPT be the
maximum independent set, and |OPT | = (m1 +
m2 + m3), where m1, m2 and m3 are the number
of type-1, type-2 and type-3 nodes, respectively. We
will give an upper bound of |OPT |.
We can obtain a tree T ′ and a collection of chains
C as follows:

Let P = v0 → v1 → v2 → . . . → vk → vk+1

(k ≥ 1) be a path in the tree T where C = v1 →
v2 → . . . → vk consists of type-2 nodes in T ,
and v0 and vk+1 are the two non-type-2 nodes
present at the two ends of C (see Figure 1(a)).
We denote C as a chain. Remove C from T ,
and connect (v0, vk+1) in the reduced tree T ′

(see Figure 1). Include the chain C in C. Do
this for all the chains in T .

v0

v1

v2

v3

v4

v6

T1

T2 T3

v0

v6

T1

T2 T3

(a) (b)

v5

Figure 1: Proof of Lemma 6 - getting the reduced
tree T ′ from the tree T

Now, observe the following:

• C consists of all the type-2 nodes of T .

• T ′ consists of all the type-1 and type-3 nodes of
T . In particular, degree of each node of T ′ is
same as in T .

Note that for a chain C ∈ C, our algorithm gives
the maximum independent set of C excepting the
following situation.

26th Canadian Conference on Computational Geometry, 2014

If C is a chain consisting of odd number of
nodes and in the tree T one end of C is at-
tached with a leaf-node (type-1 node), then our
algorithm reports |OPT (C)| − 1 many nodes,
where OPT (C) is the maximum independent
set of the chain C.

Let m2 = (s2 + t). Then at least t chains are there
for which the above exception holds. Note that for
each of these t chains, the corresponding attached
leaf-nodes of T (type-1) are not reported in the op-
timum. So, OPT contains at most (s1 − t) type-1
nodes. So, m1 +m2 ≤ (s1 − t) + (s2 + t).

As s1 is the number of leaves in T ′, the number of
internal nodes in T ′ can be at most s1 − 1 because
of the following reason.

Let k′ be the number of internal nodes in T ′.
As each non-leaf nodes (excepting root of T ′

which may have degree at least 2) has degree
at least three, so by 2|E| =

∑
δ(v), we get

2(k′+s1−1) ≥ 3(k′−1)+2+s1. So k′ ≤ s1−1.

Here, we give an upper bound of m3 as follows.

Now, consider the tree T ′′ after removing all
the type-1 nodes from T ′. First, we argue that
|OPT (T ′′)| ≤ 2

3s1.

We refer an edge e ∈ T ′′ as covered, if exactly
one adjacent vertex of e belongs to OPT (T ′′).
Note that at most all the edges of T ′′ can be
covered in OPT (T ′′). We will now see at most
how many nodes are enough to cover all the
s1 − 2 edges of T ′′. This will give an upper
bound of OPT (T ′′). As all the internal nodes
of T ′′ has degree at least 3, so an internal node
v is in the OPT (T ′′) implies that three edges
are covered by that node. Similarly, a leaf node
of OPT (T ′′) will cover only one edge of T ′′. As
the leaves of T ′′ are actually type-3 nodes of T
and there are only s1 leaves in T , so there may
be at most s1/2 leaves in T ′′. Hence, we need

at most s1
2 + s1/2−2

3 ≤ 2
3s1 nodes to cover all

the edges of T ′′. So, |OPT (T ′′)| ≤ 2
3s1

Now, observe that in the OPT if two adjacent
nodes v′ and v′′ of T ′′ appears, then there must
be a chain C = v1 → v2 → . . . → vk in between
v′ and v′′ in T , and v1 and vk are not in OPT ,
where k > 0. This means that OPT contains at
most |OPT (C)| − 1 nodes from the chain C. Re-
member that our algorithm always report OPT (C)
in this situation. So, if OPT contains 2

3s1 + t1
type-3 nodes, then m1 + m2 ≤ s1 + s2 − t1. So,
m1 +m2 +m3 ≤ s1 + s2 + 2

3s1.

Thus, our algorithm reports |SOL| = s1 + s2,
whereas the optimum may report |OPT | = (m1 +
m2 + m3) ≤ (s1 − t) + (s2 + t) + m3. So,
the approximation ratio | SOLOPT | ≥

s1+s2
s1+s2+

2
3 s1

≥
s1+s2

s1+s2+
2
3 (s1+s2)

≥ 3
5 . �

As a result, we have the following:

Theorem 7 Given a tree T with n nodes in a read-
only memory, a 5

3 -approximation result of the max-
imum independent set of T can be obtained in O(n)
time using O(1) extra-space.

4 Conclusion

In this note, we consider the problem of design-
ing the space efficient algorithms for two types of
graphs, namely interval graphs and trees, whose
maximum independent set can be computed in
polynomial time. For interval graph, we assume
that the interval representation is given. Our pro-

posed exact algorithm runs in O(n
2

s + n log s) time
using O(s) extra-space. This almost achieves the
lower bound for the time × space product for this
problem. A k-approximate maximum independent
set in O(n2/k) time using O(1) extra-space is easy
to obtain assuming that the read-only input array
is given in a random access memory. Our pro-
posed multi-pass algorithm assumes that the in-
put is given in a read-only tape; it reports (1 + ε)-
approximate maximum independent set by execut-
ing (1/ε) passes over the input stream, and using
O(k) extra-space where k is the size of the out-
put. For trees, we assume that the input is given
in the form of doubly connected edge list in the
read-only random access memory. The proposed 5

3 -
approximation algorithm runs in O(n) time using
O(1) extra-space.

Acknowledgement: The authors acknowledge
Jaikumar Radhakrishnan, Venkatesh Raman and
Saket Saurabh for the fruitful discussions related
to this work.

References

[1] T. Asano, W. Mulzer, and Y. Wang. Constant-
work-space algorithms for shortest paths in trees
and simple polygons. J. Graph Algorithms
Appl., 15(5):569–586, 2011.

[2] H. L. Bodlaender. A linear-time algorithm for
finding tree-decompositions of small treewidth.
SIAM J. Comput., 25(6):1305–1317, 1996.

CCCG 2014, Halifax, Nova Scotia, August 11–13, 2014

[3] A. Borodin, M. J. Fischer, D. G. Kirkpatrick,
N. A. Lynch, and M. Tompa. A time-space
tradeoff for sorting on non-oblivious machines.
J. Comput. Syst. Sci., 22(3):351–364, 1981.

[4] B. Courcelle. Graph rewriting: An algebraic
and logic approach. In Handbook of Theoretical
Computer Science, Volume B: Formal Models
and Sematics (B), pages 193–242. 1990.

[5] M. Elberfeld, A. Jakoby, and T. Tantau.
Logspace versions of the theorems of bodlaender
and courcelle. In FOCS, pages 143–152, 2010.

[6] Y. Emek, M. M. Halldórsson, and A. Rosén.
Space-constrained interval selection. In ICALP
(1), pages 302–313, 2012.

[7] U. I. Gupta, D. T. Lee, and J. Y.-T. Leung. Effi-
cient algorithms for interval graphs and circular-
arc graphs. Networks, 12(4):459–467, 1982.

[8] J. Snoeyink. Maximum independent set for in-
tervals by divide and conquer with pruning. Net-
works, 49(2):158–159, 2007.

[9] A. C.-C. Yao. Near-optimal time-space trade-
off for element distinctness. SIAM J. Comput.,
23(5):966–975, 1994.

	Introduction
	Maximum independent set for intervals
	Exact algorithms
	Lower-bound on time-space product
	Approximation Algorithms

	Maximum Independent Set for Tree
	Exact algorithm
	53-approximation algorithm using constant space

	Conclusion

