
A Succinct, Dynamic Data Structure for Proximity Queries
on Point Sets

Prayaag Venkat∗ David M. Mount†

Abstract

A data structure is said to be succinct if it uses an
amount of space that is close to the information-
theoretic lower bound, but still allows for efficient
query processing. Quadtrees are among the most
widely used data structures for answering queries
on point sets in Euclidean space. In this paper we
present a succinct quadtree structure. Our data
structure can efficiently answer approximate range
queries and approximate nearest neighbor queries
and supports insertion and deletion of points.

1 Introduction

In the field of computational geometry, there exists
a wide variety of data structures that are used to
efficiently solve retrieval problems on point sets. A
set P of n points is given in real Euclidean space
Rd, which is preprocessed into a data structure. In
range searching, a query region Q is provided and
the points of P∩Q are to be reported or counted. In
nearest neighbor searching, a query point q is given,
and the nearest point of P to q is to be reported. If
some degree of error is allowed, it is often possible
obtain significantly more efficient solutions.

A number of data structures have been proposed
for approximate retrieval problems for points sets.
We will focus on methods based on regular subdi-
visions of space, and in particular on the quadtree
and its variants (see, e.g., [9, 17]). An important
feature of the quadtree that makes it appropriate
for approximate retrieval problems, is that it de-
composes space into disjoint regions, which are of
constant combinatorial complexity and bounded as-
pect ratio.

∗Department of Computer Science, University of Mary-
land College Park, pkvasv@gmail.com
†Department of Computer Science, University of Mary-

land College Park, mount@cs.umd.edu. Supported by NSF
grant CCF-1117259 and ONR grant N00014-08-1-1015.

The focus of this paper will be on dynamic, space-
efficient data structures for answering approximate
range and approximate nearest-neighbor queries.
Although traditional implementations of quadtrees
provide fast query times and use O(n) words of
space, when dealing with very large data sets it is
often desirable to have even higher standards for
space efficiency. A data structure is said to be
succinct if the number of bits needed to represent
the structure is close to the information-theoretic
minimum number of bits needed to store the struc-
ture. More formally, if Z denotes this information-
theoretic lower bound, then a succinct data struc-
tures uses only Z + o(Z) bits.

In the literature there are several examples of suc-
cinct representations of trees that provide efficient
support for a diverse set of operations. The first
of these representations was introduced by Jacob-
son [11]. There has been a good deal of research
since then focused on supporting different types of
structures and a wider variety of operations (see,
e.g., [4, 14–16]). Arroyuelo et al. have shown that
succinct tree implementations are quite efficient in
practice [1].

Succinct data structures have also been applied
to geometric data structures. Bose et al. [5] showed
how to answer orthogonal range queries succinctly.
Hudson [10] applied principles from succinct data
structures to the quadtree and used lossy compres-
sion techniques to represent a set of n well-spaced
points using only O(n) bits (irrespective of the
number of bits needed to represent the point co-
ordinates). Perhaps the ultimate in succinctness
is Chan’s “minimalist” in-place randomized algo-
rithm for approximate nearest neighbor searching,
which stores nothing more than the points sorted in
Morton order (defined below) [6]. Although Chan’s
structure uses the minimum number of bits, it can-
not answer range counting queries.

Here we are interested in developing a succinct
representation of a quadtree for storing the points
of P . We assume the word RAM model of computa-

26th Canadian Conference on Computational Geometry, 2014

tion, in which memory consists of w = Θ(log n) bit
words. We assume that each point is represented as
a d-element vector of coordinates, where each co-
ordinate is represented as a bit string of length b.
We make the relatively weak assumption that b is
polynomial in w. In order to answer range queries
(even approximately) it is necessary to represent
each point to its full precision, and therefore d · b ·n
is a lower bound on the number of bits needed by
any data structure. However, given the quadtree’s
structure, it is possible to infer information about
the coordinates to reduce the space requirements.
For range counting, we assume that point weights
are drawn from a group (thus allowing subtraction),
and the maximum weight is polynomial in w.

2 Preliminaries

2.1 Basic Definitions and Results

Recall that we have an n-element point set P in Rd,
and we assume that each coordinate is represented
as a bit string of length b. We are interested in an-
swering approximate nearest neighbor and approx-
imate range queries over this set. In ε-approximate
nearest neighbor searching we are given a query
point q and an error parameter ε > 0. The query al-
gorithm may return any point p ∈ P whose distance
to q is at most (1+ε)δ, where δ is the distance from
q to its closest point in P . In ε-approximate range
searching we are given two convex shapes, an inner
range Q− and an outer range Q+, where Q− ⊂ Q+,
and the boundaries of these two ranges are sepa-
rated by a distance of at least ε · diam(Q−). We
wish to count (or report) any subset of P that in-
cludes all the points of P lying within Q− and may
optionally include points lying in Q+ \Q−. In gen-
eral, we allow each point to be associated with an
integer weight (all having an equal number of bits),
and a counting query returns the weighted sum of
such a subset. The query shapes are assumed to
satisfy the unit-cost assumption, which states that
it is possible to determine in constant time whether
a hypercube lies entirely inside Q+ or entirely out-
side Q−.

Our data structure is a succinct representation
of a standard (uncompressed) quadtree (formally
a PR-quadtree [17]). We assume that the points
of the set P have been transformed to lie within
the half-open unit hypercube [0, 1)d. Each node of
the quadtree represents an axis-aligned hypercube

u

t

s

f

c

h

i l

j

o

(a) A quadtree decomposition of a point set. Each
point is labeled with its corresponding quadtree leaf
node (see (b)).

a

b

c d e f h i j

l m n o

g p u

q r s t

k

(b) A quadtree for the point set of (a), where white
circles denote internal nodes, black squares denote
leaf nodes that contain a point, and white squares
denote empty leaf nodes.

Figure 1

in Rd, called a quadtree box, and is associated with
the points of P that lie within its box (see Figure 1).
Each level of the tree corresponds to one bit of each
coordinate, and therefore the tree’s depth cannot
exceed b. Let Φ = Φ(P) denote the aspect ratio
(or spread) of the point set, defined to be the ra-
tio between the maximum and minimum inter-point
distances. It is also well known that the tree’s depth
is O(log Φ) (see, e.g., [9]). We now present our main
results.

Theorem 1 Consider an n-element point set P in
Rd, where each coordinate is represented as a bit
string of length b. Let Φ denote P ’s aspect ratio.
Let m denote the total number of nodes of an (un-
compressed) quadtree T (P) defined by P . There
exists a representation of P and T (P) that uses
(d+ 2)m+ o(m) bits for T (P) and (conditioned on
T (P)) a minimum number of bits to represent P

CCCG 2014, Halifax, Nova Scotia, August 11–13, 2014

that supports the following operations:

(i) ε-approximate range counting queries can be
answered in O((log Φ + 1/εd) lg2 lgm) time.

(ii) ε-approximate nearest neighbor and ε-
approximate k-nearest neighbors queries
can be answered in O((1/ε)d(log Φ) lg2 lgm)
and O(((1/ε)d + k)(log Φ) lg2 lgm) time,
respectively, for any fixed k.

Recall that for range counting we assume that point
weights are drawn from a group, and the maximum
weight is polynomial in w. We can generalize this
to dynamic point sets, where insertion and deletions
are supported. In this context, let Φ be an upper
bound on the aspect ratio of the point set at any
time.

Theorem 2 There is a dynamic version of the data
structure of Theorem 1 that uses the same asymp-
totic space and supports the following operations,
where N = d · b · n denotes the total number of co-
ordinate bits.

(i) Points can be inserted in O
(

log Φ+ b logN
log logN +

logm
)

amortized time.

(ii) Points can be deleted in O
((
b logN
log logN +

logm
)

log Φ
)

amortized time.

(iii) The query times of Theorem 1 are slower by a
multiplicative factor of O

(
logN

log logN

)
.

2.2 The Morton Code

An important concept underlying our approach is
the Morton order of a set of points. The Mor-
ton order (or Z-order) is a mapping from the unit
hypercube [0, 1)d to one dimensional space [13].
Consider a point p ∈ [0, 1)d, which we assume to
be presented as a d-element vector of coordinates
p = (p1, . . . , pd), where each pi is a b-element bit
string in base-2, that is, pi = 0.pi1pi2 . . . pib. The
Morton code of p, denoted M(p), is obtained by
interleaving these bits into a string of length d · b

M(p) = p11 . . . pd1 p12 . . . pd2 · · · p1b . . . pdb.

We can associate each quadtree node u with a
Morton code, denoted M(u), as follows. Let `(u)
denote u’s level in the tree. M(u) is the Morton
code of the lower left corner of u’s quadtree box us-
ing coordinate bit strings of length ` (so that the
Morton code is of total length d · ` bits). The fol-
lowing are easy consequences:

• The side length of u’s box is 1/2`.

• The Morton codes of u’s 2d children in a
quadtree subdivision are M(u) + ω, where ω
ranges over all bit strings of length d and “+”
denotes concatenation.

• A point p lies within u’s quadtree box if and
only if M(u) is a prefix of M(p).

2.3 Review of Succinct Trees

The minimum number of bits required to represent
an element from a set S is lg |S|. We will represent
a quadtree in Rd as a rooted cardinal k-ary tree, for
k = 2d. This means that every node has k positions
that may or may not contain a pointer to a child
node. It is well known that the number of such trees
of degree k is 1

kn+1

(
kn+1

n

)
[8], so the information-

theoretic lower bound on the number of bits needed
to represent an n-node cardinal tree of degree k is

[4, 7] lg
(

1
kn+1

(
kn+1

n

))
≈ 2n+ n lg k − o(n+ lg k).

We extend the methods presented by Benoit et
al. [4] and Davoodi and Rao [7] for succinctly repre-
senting quadtrees as k-ary cardinal trees. We begin
by defining an ordinal k-ary tree to be a rooted tree
in which every node has up to k children, but in-
formation is not maintained about child nodes that
may be absent. The general approach to represent-
ing a cardinal tree succinctly is to implement a suc-
cinct ordinal tree and then maintain additional in-
formation about the children of each node.

The unary degree sequence (or UDS) of a node in
an ordinal tree is defined as follows: for each child
that the node possesses, write down a 1-bit (or “(”)
and after accounting for all the children, write down
a single 0-bit (or “)”). To represent the whole tree,
the tree is traversed in depth-first order, and the
UDS of each node is written down. After obtaining
the final bit string, a single 1-bit is added to the
front so that every 1-bit has a matching 0-bit.

This representation of tree is called the depth-first
unary degree sequence (or DFUDS) representation
(see Figure 2). In the DFUDS representation of
an ordinal tree, a node is defined by the index of
the first bit of its UDS. Given an ordinal tree, we
can use it to represent a cardinal tree by storing in-
formation about child nodes (including information
pertinent to the application) in a separate array.

Now that we have a succinct representation of
the cardinal tree, we introduce basic operations on
the DFUDS representation that will form the ba-
sis of all other operations. (Proofs and details on

26th Canadian Conference on Computational Geometry, 2014

11110 11110 0 0 0 0 11110 0 0 0 11110 0 0 0 0 11110 0 0 0 0 0
a b c d e f g h i k l n o p r s t uj m q

DFUDS Representation 1

Figure 2: The DFUDS representation of the quadtree from Figure 1b.

their actual implementation and requirements can
be found in [1, 4, 11, 16].) Essentially, the DFUDS
representation of a tree is a bit string that can sup-
port primitive operations with the help of auxil-
iary data structures. Given a DFUDS bit string
D, c ∈ {0, 1}, and i ranging over the positions in
D, the following constant time operations are sup-
ported and require only o(n) bits.

• rankc(i) returns the number of occurrences of
c in the DFUDS bit string D up to position i.

• selectc(i) returns the position of the ith occur-
rence of c in D.

3 Succinct Quadtree

We now adapt this succinct tree structure to the
special case of the quadtree, and we discuss how
to store the associated point set. The total space
requirements of the point set are d·b·n bits. We will
exploit the fact that the quadtree structure itself
provides partial information as to where the points
reside.

Consider an internal node u at level ` of the tree.
For each child v of u, the d bits of the corresponding
index are equal to the next d-bits of the Morton
code of the points that lie within v’s quadtree box.
(The quadtree is effectively a trie defined by the
Morton codes of P ’s points.) These are the (`+1)st
bits of each of the d coordinates of these points.
Therefore, as we traverse a path of length ` in the
tree from the root to a leaf, we implicitly know the
first ` bits of each coordinate of any point that lies
within this leaf.

As mentioned earlier, we represent the quadtree
as a k-ary rooted cardinal tree, for k = 2d. The
children of a node are indexed from 0 to 2d − 1.
Following Benoit et al. [4], for each internal node
we store only the children that contain at least one
point of P . Based on the implementation described
by Davoodi and Rao [7], our tree is represented as
a DFUDS bit string, which we denote by D(P) or
simply D when P is clear. Our subsequent process-
ing will make use of the following operations, which
run in O(1) time.

• Given a node at position i in the DFUDS bit
string D, compute the position of its jth child,
where 0 ≤ j < 2d (see [4] for the proof).

• As we traverse a path from the root to any
node, whenever we visit a node at level `, we
can maintain the first ` bits of the coordinates
of the points that lie within the quadtree box
associated with this point.

As mentioned above, once we know the leaf node
containing a point at some level `, we know the first
` bits of each of the coordinates of this point. There-
fore, the minimum amount of information needed
to faithfully represent the point’s exact position are
the remaining b− ` bits of each coordinate. We call
these the leftover coordinate bits. We store these
leftover bits for all the points contiguously in a sin-
gle bit string. These are sorted first according to a
depth-first ordering of the leaves of the tree (which
is the same as the Morton ordering of P). For each
point, we store d bit strings, one for each of the
point’s coordinates. Therefore, if a point is stored
at a leaf at level ` of the tree, this point contributes
d(b− `) bits to this bit string.

The challenge arising from this representation is
locating the leftover bits for a given point p. It
suffices to determine how many leftover bits there
are in all the points that precede p in the Morton
order. Given p, define P<p to be the subset of P
that precedes p in Morton order. For any q ∈ P , let
`(q) denote the level of the leaf node that contains
q. Then the starting position of p’s leftover bits in
this string is pos(p) =

∑
q∈P<p

d(b− `(q)).

Clearly d and b are known, and |P<p| can be com-
puted in O(1) time by the standard DFUDS oper-
ation leaf-rank. (It is straightforward to adapt the
algorithm for leaf-rank presented in Sadakane and
Navarro [16] from ordinal trees to cardinal trees.)
Given the index i of a leaf node in the DFUDS
string representing a point p, define leaf-sum(i) =∑

q∈P<p
`(q). In the next section we will show how

to compute leaf-sum(i), the only unknown in the
formula above, in O(lg2 lgm) time.

CCCG 2014, Halifax, Nova Scotia, August 11–13, 2014

3.1 Leaf sum

In this section we discuss how to answer the
leaf-sum query defined in the previous section. Fol-
lowing standard methods, our approach is to subdi-
vide the DFUDS bit string into successively smaller
blocks such that the query can be answered by ac-
cumulating answers from these blocks [11,14].

First, we divide D into blocks of size t =
⌈
lg2m

⌉
bits each. At the head of each block, we store the
sum of the heights of all leaf nodes that precede this
block in DFS order. There are O(m/t) such blocks.
The maximum leaf-sum(i) value that can be stored
in a block is at most m2, because the height of the
quadtree cannot exceed m and the number of leaves
up to any block is less than m. So, the total space
in bits is O

(
m
t lg(m2)

)
= O

(
m

lgm

)
= o(m).

Next, we divide D again into miniblocks, of size
s =

⌈
lg2 lgm

⌉
bits each. In each miniblock, we

store the sum of the heights of all leaves that pre-
cede the miniblock in DFS order but are still in
the same block. There are O(m/s) miniblocks alto-
gether, and the maximum leaf-sum(i) value stored
in any miniblock is O(t · b) because there are no
more than t nodes in a block, and the height of the
tree is at most b. Also, the tree has at least as
many nodes as there are points in P , implying that
n ≤ m. By our assumptions that b = O(wc) and
w = O(log n), the value stored in any miniblock is
at most O(t · lgcm). Therefore, the total number
of bits for all the miniblocks is O

(
m
s lg(t · lgcm)

)
=

o(m).

Finally, we must be able to answer leaf-sum(i)
queries within a miniblock. Since the result is not
uniquely determined by the miniblock’s contents,
we explicitly calculate the sum of the heights of the
leaves that precede the current node. There are
at most s nodes within a miniblock, so calculat-
ing the heights of each leaf and adding them takes
O(lg2 lgm) time.

In conclusion, we compute leaf-sum(i) as follows.
First, we obtain the value stored at the head of the
block that immediately precedes i. Next, we add to
this the value stored at the head of the miniblock
that immediately precedes i. Finally, we calculate
the answer to the intra-miniblock query, add it to
the current sum, and return the sum as the final
value. It follows that leaf-sum queries can be an-
swered in O(lg2 lgm) time.

3.2 Succinctness

First, we show that the quadtree representation is
succinct. Recall from Section 2.3 that the minimum
number of bits required to represent a k-ary cardinal
tree is at least 2m+m lg k−o(m+lg k), which in the
case of quadtrees (k = 2d) is m(d+2)−o(m+lg k).
Following the analysis of Davoodi and Rao [7], and
the fact that our auxiliary structure for answering
leaf-sum queries involves o(m) space, we have the
following.

Lemma 3 Our DFUDS representation stores an
m-node quadtree using (d+ 2)m+ o(m) bits.

In addition to storing the quadtree, we also store
the leftover bit coordinates of the points. We assert
that conditioned on the existence of the quadtree,
these bits must all be stored in order for the data
structure to function properly. In particular, given
any point p ∈ P , consider a range query consist-
ing of any closed ball centered at p whose radius
is smaller than 1/2b(1 + ε). If our representation
fails to represent p’s position with complete fidelity,
this query cannot be correctly answered (even ap-
proximately). Also, observe that all information
about the point’s location that could be gleaned
from an inspection of the data structure has been
eliminated from the leftover bits. Therefore, given
the quadtree structure, the number of bits used to
store the leftover coordinates is the minimum re-
quired by an information-theoretic argument.

4 Approximate Range Searching

In order to answer ε-approximate range counting
queries for P using the succinct quadtree, we adapt
the algorithm of Arya and Mount [2]. The algo-
rithm begins at the root of the tree and traverses
downwards until there are no more nodes that need
to be checked, at which point the algorithm termi-
nates and the total weight is returned. If the cur-
rent node’s box falls completely inside Q+, we add
the weight of that node to the total weight. If the
current node’s box falls completely outside of Q−,
we ignore it. If the node is a leaf, then we check
whether its point lies within Q−, and if so, we add
its weight to the total. Finally, if the node inter-
sects Q− but is not entirely contained in Q+, we
apply the process recursively to its children.

First, we need to be able to compare the quadtree
box of the current node to the query ranges. Recall

26th Canadian Conference on Computational Geometry, 2014

that as we descend the tree, we can maintain the
coordinates of the lower left corner of the quadtree
box associated with the current node. Since we can
also maintain the level in the tree, we can compute
its side lengths as well. Given this, we can compare
the quadtree box with the ranges in O(1) time. Sec-
ond, we must be able to access any given child node
of the current node in O(1) time. This is handled
by the underlying DFUDS-based tree representa-
tion (see, e.g., Benoit et al. [4]).

Finally, we must return, report, and access the
weights of the points. This operation is more com-
plicated and will be described in the next section.
If we can perform these operations in the men-
tioned times, then it follows that the running time
is at most the count of the number of nodes vis-
ited multiplied by the time it takes to access a
point. In the quadtree, similar to the BBD-tree,
the number of nodes that must be evaluated is
O(lg2 lgm(log Φ + 1/εd)), as shown by Arya and
Mount [2].

4.1 Processing Weights for Range Searching

The weight of a node is the sum of weights of the
points descended from this node. Define weight(i)
to be the weight of the node at the ith position. We
present auxiliary data structures, similar to those in
Section 3.1, that allow us to compute weight(i) in
O(1) time using o(m) bits of space. In addition, we
require that maximum weight value W is polyno-
mial in the word size w.

First, we divide the DFUDS bit string D into
blocks of size t = lg2m bits each. At the
head of each block, we store the sum of the
weights of all leaves up to that point. There are
O(m/(lg2m)) blocks, and the maximum weight
value stored at any block is nW , so the total num-
ber of bits required to store answers at each block is
O(m(lg(nW))/(lg2m)). Because W is polynomial
in w and the number of points n is not greater than
the number of nodes m, this is o(m).

Next, we divide D into miniblocks of size s =
1
2 lgm its each. At the head of each miniblock,
we store the sum of the weights of all leaves that
precede i within its block. There are O(m/(lgm))
miniblocks and the maximum weight value stored
at any miniblock is W lg2m, so the total number of
bits required to store answers at each miniblock is
O(m(lg(W lg2m))/(lgm)), which is o(m) because
W is polynomial in w.

Finally, we use a look-up table to store the sum
of all leaf weights that precede a given node within
a miniblock. There are 2

1
2 lgm =

√
m possible

distinct miniblocks and there are O(lgm) nodes
to query in a miniblock. The maximum weight
value within a miniblock is O(W lgm), so it costs
O(W

√
m lg2m) = o(m) bits to store a look-up table

for intra-miniblock queries.
Using these auxiliary data structures, we can find

the sum of the weights of all leaves that precede
node i (called preweight(i)) by adding up the value
stored at the block before i, the value stored at
the miniblock before i, and the value stored in the
look-up table for i. To find the sum of the weights
of all points that fall inside i, we need to find the
sum of all weights of leaves that are descendants
of i. This is accomplished by finding the preweight
of the node that immediately follows rightmost leaf
of i and subtracting from it preweight(i). Thus we
have, weight(i) =

preweight(rightmost-leaf(i) + 1)− preweight(i).

It takes constant time to compute this value
because there are three O(1) time look-ups per
preweight, arithmetic, and the rightmost-leaf oper-
ation which takes O(1) [16].

4.2 Updating Point Weights for Range Search

In the dynamic case, we may wish to insert new
points or modify the weight of an existing point. In
order to update the weights of the points, we use
a solution similar to that of Section 6.4, where we
will provide more detail. The basic idea is that for
inner miniblock queries, we store look-up tables for
miniblocks of all sizes up to and including 1

2 logm,
in the case that a miniblock changes size. Then,
we directly modify the values stored at the head
of each miniblock that follow the newly inserted
node, which takes O(logm) time because there are
at most O(logm) such miniblocks. Finally, we cre-
ate an update array U that has an element for every
block. If a weight is inserted (or deleted), we add
(or subtract) the new weight value to the element
in the U that corresponds to the block in which the
corresponding node is found. When we wish to re-
turn a value stored at the head of block i, we obtain
the value stored at the head of block i, we find the
sum of all values in the U up to an including po-
sition i, and return the sum of the preceding two
values. If we maintain the U as a dynamic partial

CCCG 2014, Halifax, Nova Scotia, August 11–13, 2014

sums array [7], then we can perform all these oper-
ations in constant time and o(m) bits of space. In
total, updating a point weight takes O(logm) time.

5 Approximate Nearest Neighbor Searching

In order to answer ε-approximate nearest neighbor
queries, we modify the algorithm presented by Arya
et al. [3]. We now provide a short description here,
with details to follow. The basic idea behind the al-
gorithm is to maintain a priority queue of tree nodes
in order of increasing distance from the query point
to find its approximate nearest neighbor. We show
that the priority queue never becomes too large, al-
lowing us to represent it using o(n) bits and answer
the query with a slightly modified version of the
original algorithm.

In order to answer ε-approximate nearest neigh-
bor queries, we modify the algorithm presented by
Arya et al. [3]. The algorithm uses the priority
search technique in which the basic idea is to search
for p′ in increasing distance away from q. Arya et
al. make use of a BBD-tree data structure, but the
quadtree is similar in nature and is easily adapt-
able to the algorithm. First, we maintain a priority
queue that contains quadtree nodes that are ordered
in increasing distance away from q. Initially, the
root of the tree is inserted into the queue. Then,
the node v with the highest priority, or closest dis-
tance to q, is extracted from the queue. We traverse
v to a leaf of the tree by moving to the closest node
to q at each step of the traversal. When we reach
a leaf node, we repeat the process and extract the
next highest priority node from the queue. As we
traverse the tree, the siblings of nodes along the
path are inserted into the queue. During this pro-
cess, we keep track of the closest point found inside
a node encountered so far.

Arya et al. show that at termination, the closest
point so far is in fact p′. Furthermore, the number
of leaf nodes visited before termination is given by
Cd,ε = O(1/εd). We omit the proof, but the basic
idea is that p′ must be contained in some Euclidean
ball centered at q, and the number of leaf nodes that
can intersect that ball is bounded by Cd,ε. Because
we are looking at leaf nodes in order of increasing
distance from q, looking at leaf nodes after the Cd,ε

closest leaf nodes cannot yield a point closer than
one obtained from the Cd,ε closest nodes.

Lemma 4 Let S be the set of the O(Cd,ε) closest
nodes (of any level in the quadtree) to the query
point q and T be the set of the Cd,ε closest leaf nodes
to q. Then, every leaf node t ∈ T is a descendant
of or equivalent to some node s ∈ S

Proof. Assume that this assertion is false, Then,
there is at least one leaf ti ∈ T that is not contained
any of the nodes of S. The node ti must therefore
be descended from some other node u, higher in the
quadtree, such that x /∈ S. However, ti is one of the
Cd,ε closest leaf nodes to q. The shortest distance
from q to x can be no farther than the distance
from q to ti. If we apply this to all other tj ∈ T
and the respective sj ∈ S that contains tj , then x
can be at worst the Cd,ε farthest node out of all the
nodes in S, which is a contradiction because x /∈ S
and S consists of the O(Cd,ε) closest nodes to q.
Therefore, x must be in S, and every t ∈ T is a
descendent of some s ∈ S. �

Thus, we only have to maintain the O(Cd,ε) clos-
est nodes during the algorithm because these nodes
are the ancestors of the Cd,ε closest leaf nodes,
in which the approximate nearest neighbor must
be contained. A pointer to the description of a
node in the DFUDS representation of the quadtree
only costs O(logm) bits, so the priority queue costs
O(Cd,ε logm) = o(m) bits to store.

It takes at most O(log Φ) time to traverse the
quadtree and reach a leaf node and O(lg2 lgm)
to access points of a node in the leftover array,
and there are Cd,ε leaves that the algorithm will
access, so the running time of the algorithm is
O(Cd,ε log Φ lg2 lgm).

5.1 Approximate k-Nearest Neighbor

We can extend the solution to the single near-
est neighbor problem to solve the approximate k-
nearest neighbors problem, in which we wish to
return k points such that the ith point returned,
p′i, satisfies dist(q, p′i) ≤ (1 + ε)dist(q, pi), where pi
is the actual ith closest point to q. As described
in [3], the number of leaves that must be looked
at is O(Cd,ε + k), so the running time and space
usage (in bits) of the algorithm become O((1/εd +
k) log Φ lg2 lgm) and O(Cd,ε logm) = o(m), respec-
tively. We also maintain the k-closest points to q en-
countered so far, and as in the previous case, these
points will be approximate k-nearest neighbors af-
ter the algorithm terminates. We maintain these

26th Canadian Conference on Computational Geometry, 2014

points in a queue that is ordered by decreasing dis-
tance from q and occupies kb bits of space. If we
find a point that is closer to q than any of the k so
far, we insert it into the queue and remove the kth
point.

6 Dynamic Case

We now provide a brief sketch of the techniques em-
ployed in insertion. First, we show that the DFUDS
bitstring requires only O(log Φ) time to be updated.
Then, we represent the leftover array as a dynamic
array, as in [15], so that we can efficiently add or
remove bits from the leftover array. Finally, we im-
plement an update array that allows us to update
the values stored in the auxiliary data structures so
that we can accurately answer queries after insert-
ing a new point.

6.1 Insertion

In this section, we describe the process by which a
new point p in the unit hypercube can be inserted
into the data structure. In a standard quadtree, the
general procedure for inserting p consists of travers-
ing the quadtree until a leaf node is reached that
contains p. If this leaf does not contain any other
point, then we associate it with p without making
any modifications. If there does exist a point in-
side the leaf, then we split the leaf and perform a
quadtree decomposition on that leaf and the points
inside it until p and the other points are separated
into different leaf nodes. In the case of the succinct
quadtree, must update the DFUDS bit string of the
quadtree, the leftover array, and all other auxiliary
data structures.

In addition to the changing information in the
data structures, the size of the parts of various data
strucutres are dependent on the number of points.
That is, as the value of log n changes upon insertion
or deletion of points, the data structures depending
on this value must also structurally change. We do
not deal with this issue in this paper, but instead
direct the reader to [12], where a thorough solution
is developed such that the sizes of the substructures
can be updated without affecting the running times
of any other algorithms presented. We now describe
methods for updating each of the data structures to
reflect the insertion of p.

6.2 DFUDS bit string

As previously mentioned, the basic idea for insert-
ing p is to traverse the quadtree until the leaf node
u containing p is reached. Because we require that
every leaf node is associated with exactly one point,
u already contains some point q and we must recur-
sively split u into child nodes until p and q are in
different leaves. When we split u, at most two new
child nodes will be created, if p and q are in differ-
ent child nodes. Inserting a new node into the tree
structure requires the insertion of a pair of match-
ing parentheses (that is, a pair of bits, 1 and 0) into
the DFUDS bit string. This can be performed in
O(1) amortized time (see Davoodi and Rao [7]).

However, we must also consider the worst case in
which p and q require many recursive splits to be
separated into different leaves. The height of the
tree can be at most O(log Φ), which is the maximum
number of recursive splits necessary to separate p
and q. If each split adds O(1) new nodes to the
tree and it takes O(1) time to insert a single pair
of parentheses into the DFUDS bitstring, then the
worst case time to update the DFUDS bit string is
O(log Φ) amortized time.

6.3 Leftover array

Upon inserting p, we must update the leftover bit
array to include the leftover bits of p. If p fell into
a leaf node that was occupied by a point q, then
the resulting splits will increase q’s level as well and
therefore reduce the number of leftover bits for q.
Since only two points are involved, only O(b) bits
of the leftover array will be changed. The running
time of updating the leftover array will be O(b) · T ,
where T is the time to update a single bit of the
leftover array.

The problem of updating the leftover array is
quite similar to the well-studied dynamic array
problem. In the dynamic array problem, we are
given an array and we wish to access, insert, or
delete elements at any position. Raman et al. ob-
tained optimal results for this problem [15], with
O
(

lgn
lg lgn

)
time for insert, delete, and access opera-

tions on an array of length n, while using o(n) extra
bits. The length of the leftover array contains O(bn)
bits, so we can represent the leftover array as a dy-
namic array that supports the desired operations in
O
(

lg bn
lg lg bn

)
time and o(bn) bits. Therefore, it takes

O
(
b lg bn
lg lg bn

)
time in total to update the leftover array

after the insertion.

CCCG 2014, Halifax, Nova Scotia, August 11–13, 2014

6.4 Auxiliary Data Structures

As previously mentioned, we must also update any
auxiliary data structures to reflect any new points
that have been inserted. The auxiliary data struc-
tures associated with the DFUDS bit string already
are adapted for the dynamic case [7], so we will not
discuss them further. We now develop a dynamic
representation of the leaf-sum(i) data structure pre-
sented in Section 3.1.

The leaf-sum(i) structure consists of two levels of
subdivision that need to be updated upon insertion
of a new leaf. First, we must update the values
stored at the head of each miniblock that precede
the inserted node within the same block. There
are O(t/s) = O(logm) miniblocks within a block.
We simply iterate through each one that precedes
the newly inserted node and add one to the stored
value. This takes O(logm) time, but requires no
additional space.

Next, we must update the values stored at the
head of each block that come after the newly in-
serted node. There are too many blocks to iterate
through, so we implement another auxiliary data
structure, called the update array U , that contains
an element corresponding to each block. When we
insert a leaf node into block i, we need to add one
to all the values stored at the heads of the blocks
that come after block i to account for the new leaf.
Instead of directly adding one to the value at the
heads of the blocks, we add one to the value stored
at position i in the U (likewise, we subtract one for
deletion). Element U [i] contains the number of ad-
ditional leaf nodes present in block i that are not
accounted for in the value stored at the head of the
block. When we are returning a leaf-sum(i) value,
we first locate the preceding block and obtain the
value stored at its head. Then, we look at all the
elements up to and including that block in U and
sum the values up to the position corresponding to
the block. The final returned value is the sum of
the value stored at the head of the block and the
accumulated sum from U . U can be dynamically
maintained to support the cumulative sum opera-
tion and an update operation by representing it as
a dynamic partial sums array of [7]. Under this rep-
resentation, the desired operations take O(lg2 lgm)
time and require O

(
m log logm

log2 m

)
= o(m) bits of ad-

ditional space.

6.5 Point Deletion

Point deletion is largely symmetrical to point in-
sertion. To delete a point p from our structure,
we first locate the leaf node that contains p. We
remove this leaf node from the DFUDS representa-
tion of the quadtree (as shown in [7]) and follow the
same path back up the tree that was traversed when
locating p. We continue to delete nodes along this
path up the tree until we reach a node that has a
sibling. At each step, we are deleting a node, so as
in the previous section, we must update the three
mentioned data structures. Each of theses struc-
tures supports both insertion and deletion of their
respective elements, as noted above. At each step
of the traversal up the tree, we are deleting a node,
which takes O

(
b log bn
log log bn + logm

)
time. The num-

ber of nodes deleted is no more than the height of
the tree, so the total time required to perform the
delete operation is O

(
log Φ

(
b log bn
log log bn + logm

))
.

7 Conclusions

In this paper, we presented a succinct variant of
the quadtree that requires only Z + o(Z) bits to
store. Using the succinct quadtree, points can be in-
serted and deleted in roughly polylogarithmic time
and dynamic approximate range counting and ap-
proximate nearest neighbor queries can be answered
in the times specified in Theorems 1 and 2.

There is significant improvement to be made in
reducing the various logarithmic factors. Further-
more, only empirical tests can confirm the theo-
retical improvements to the space efficiency of the
quadtree in practice. Empirical results may reveal
that more space efficient data structures for geomet-
ric queries will yield improvements in running time
because of reduced memory usage and increased
memory locality of data.

The algorithms and data structures presented in
this paper depend on the aspect ratio Φ of the point
set, which may result in slow running times for ex-
treme data sets. Imposing reasonable and empiri-
cally determined restrictions on Φ may yield run-
ning times more comparable to those of algorithms
that do not depend on the distribution of the points.
It should also be noted that several quadtree-based
algorithms traverse the tree by moving only one
edge at a time. A method for compressing paths
or moving over multiple edges at once using a suc-
cinct structure may speed up the many algorithms
that rely on traversal of the quadtree.

26th Canadian Conference on Computational Geometry, 2014

8 Acknowledgments

We would like to express our gratitude to one of the
anonymous reviewers, who pointed out an error in
the processing of the leaf-sum queries.

References

[1] D. Arroyuelo, R. Cánovas, G. Navarro, and
K. Sadakane. Succinct trees in practice. In
Proc. ALENEX’10, pages 84–97, 2010.

[2] S. Arya and D. M. Mount. Approximate
range searching. Comput. Geom. Theory Appl.,
17:135–163, 2001.

[3] S. Arya, D. M. Mount, N. S. Netanyahu, R. Sil-
verman, and A. Y. Wu. An optimal algorithm
for approximate nearest neighbor searching
fixed dimensions. J. of the ACM, 45(6):891–
923, 1998.

[4] D. Benoit, E. D. Demaine, J. I. Munro, and
V. Raman. Representing trees of higher degree.
In Algorithms and Data Structures, pages 169–
180. Springer, 1999.

[5] P. Bose, M. He, A. Maheshwari, and P. Morin.
Succinct orthogonal range search structures on
a grid with applications to text indexing. In
Proc. 16th Internat. Workshop on Algorithms
and Data Structures, volume 5664 of Lecture
Notes Comput. Sci., pages 98–109. Springer-
Verlag, 2009.

[6] T. Chan. A minimalist’s implementation
of an approximate nearest neighbor algo-
rithm in fixed dimensions. (Unpublished.
Available from http://www.cs.uwaterloo.

ca/~tmchan/pub.html), 2006.

[7] P. Davoodi and S. S. Rao. Succinct dynamic
cardinal trees with constant time operations
for small alphabet. In Theory and Applica-
tions of Models of Computation, pages 195–
205. Springer, 2011.

[8] R. Graham, D. Knuth, and O. Patashnik. Con-
crete mathematics: A foundation for computer
science. Addison & Wesley, 1989.

[9] S. Har-Peled. Geometric Approximation Algo-
rithms. American Mathematical Soc., 2011.

[10] B. Hudson. Succinct representation of well-
spaced point clouds. CoRR, abs/0909.3137,
2009.

[11] G. Jacobson. Space-efficient static trees and
graphs. In 30th Annual Symp. on Foundations
of Computer Science, pages 549–554. IEEE,
1989.

[12] V. Mäkinen and G. Navarro. Dynamic entropy-
compressed sequences and full-text indexes.
ACM Trans. on Algorithms, 4(3):32, 2008.

[13] G. M. Morton. A computer oriented geodetic
data base and a new technique in file sequenc-
ing. International Business Machines Com-
pany, 1966.

[14] J. I. Munro and V. Raman. Succinct represen-
tation of balanced parentheses and static trees.
SIAM J. on Computing, 31(3):762–776, 2001.

[15] R. Raman, V. Raman, and S. S. Rao. Suc-
cinct dynamic data structures. In Algorithms
and Data Structures, pages 426–437. Springer,
2001.

[16] K. Sadakane and G. Navarro. Fully-functional
succinct trees. In Proc. 21st Annual ACM-
SIAM Symp. on Discrete Algorithms, pages
134–149. Society for Industrial and Applied
Mathematics, 2010.

[17] H. Samet. Foundations of Multidimen-
sional and Metric Data Structures. Morgan-
Kaufmann, San Francisco, 2006.

