
CCCG 2014, Halifax, Nova Scotia, August 11–13, 2014

Low Space Data Structures for Geometric Range Mode Query

Stephane Durocher∗ Hicham El-Zein† J. Ian Munro† Sharma V. Thankachan‡

Abstract

Let S be a set of n points in an [n]d grid, such that
each point is assigned a color. Given a query range
Q = [a1, b1] × [a2, b2] × . . . × [ad, bd], the geometric
range mode query problem asks to report the most fre-
quent color (i.e., a mode) of the multiset of colors cor-
responding to points in S ∩ Q. When d = 1, Chan
et al. (STACS 2012 [2]) gave a data structure that re-
quires O(n + (n/∆)2/w) words of space and supports
range mode queries in O(∆) time for any ∆ ≥ 1, where
w = Ω(log n) is the word size. Chan et al. also proposed
a data structures for higher dimensions (i.e., d ≥ 2)
with O(sn + (n/∆)2d) space and O(∆ · tn) query time,
where sn and tn denote the space and query time of
a data structure that supports orthogonal range count-
ing queries on the set S. In this paper we show that the
space can be improved without any increase to the query
time, by presenting an O(sn + (n/∆)2d/w)-space data
structure that supports orthogonal range mode queries
on a set of n points in d dimensions in O(∆ · tn) time,
for any ∆ ≥ 1. When d = 1, these space and query time
costs match those achieved by the current best known
one-dimensional data structure.

1 Introduction

Range query problems have proven to be of fundamen-
tal importance in computational geometry, both as tools
employed to provide efficient solutions to various geo-
metric problems, and also in the study of their opti-
mality with respect to space and query time. In this
paper we investigate the range mode query problem in
a multi-dimensional setting:

Definition 1 (Range Mode Query) Given S, a set
of n points in an [n]d grid, such that each point is a
assigned a color. A range mode query Q = [a1, b1] ×
[a2, b2]× . . .× [ad, bd] asks for the most frequent color in
S ∩ Q.

Although the one-dimensional range query problem
has received significant attention [3, 8, 10, 9, 6], only

∗Department of CS, University of Manitoba, Winnipeg,
Canada, durocher@cs.umanitoba.ca
†Cheriton School of CS, University of Waterloo, Waterloo,

Canada, {helzein,imunro}@uwaterloo.ca
‡School of CSE, Georgia Institute of Technology, Atlanta,

USA, sharma.thankachan@gmail.com

limited attention has been paid to the multi-dimensional
problem. The first solution for the multi-dimensional
case was proposed recently by Chan et al. [3]. They
gave a data structure that requires O(sn + (n/∆)2d)
words of space and supports d-dimensional range mode
queries in O(∆ · tn) time for any ∆ ≥ 1, where sn is the
space of an orthogonal range counting data structure in
d dimensions with query time tn. The model of compu-
tation is the standard Word RAM model with word size
w = Ω(log n). In this paper we show that the space of
the range mode query data structure can be improved to
O(sn + (n/∆)2d/w) words while maintaining the same
query time. That is, our data structure achieves the
same asymptotic space and query time costs as those of
the current best known range mode query data struc-
ture for one-dimensional data [2].

1.1 Related Work

The first range mode data structure (on arrays) was
proposed by Krizanc et al. [8], requiring O(n) space
for O(

√
n log log n) query time. They also described

data structures that provides constant query time us-
ing O(n2log log n/log n) space, and O(nε log n) query
time using O(n2−2ε) space. Petersen and Grabowski
[10] improved the first bound to constant time and
O(n2log log n/log2 n) space. Peterson [9] later improved
the second bound to O(nε) time queries using O(n2−2ε)
space for any ε ∈ (0, 1/2]. Chan et al. [3] further
improved the last bound to O(nε) time queries using
O(n2−2ε/log n) space. Using reductions from boolean
matrix multiplication, they showed show that query
times significantly lower than

√
n are unlikely for this

problem with linear space [3]. Finally, Greve et al. [6]
proved a lower bound of Ω(log n/log(s · w/n)) time for
any data structure that supports range mode query on
arrays using s memory cells of w bits in the cell probe
model.

Given a fixed α ∈ (0, 1] and a range Q, the ob-
jective of an approximate range mode query is to re-
turn an element whose frequency in S ∩ Q is at least
α · m, where m denotes the frequency of the mode of
S∩Q. Bose et al. [1] gave a data structure that requires
O(n/1− α) space and answers approximate range mode
queries in O(log log1/α(n)) time, as well as a data
structure that answers queries in constant time when
α ∈ {1/2, 1/3, 1/4}, using O(n log(n)), O(n log log(n)),
and O(n) space respectively. Greve et al. [6] improved



26th Canadian Conference on Computational Geometry, 2014

previous results by giving a data structure that supports
range mode queries in O(1) time using O(n) space when
α = 1/3, and O(log(α/1− α)) time using O(nα/1− α)
space when α ∈ [1/2, 1).

Another related question is the problem of finding
a least frequent element (with frequency at least one)
in a one dimensional range. Chan et al. [4] gave the
first solution with linear space and O(

√
n) query time.

Later, Durocher et al. [5] improved the query time to
O(
√
n/w). See the recent survey by Skala [11] for fur-

ther reading.

2 Framework

A point p ∈ S is represented by a (d + 1)-tuple
(p.x1, p.x2, . . . , p.xd, p.c), where for each i, p.xi is p’s co-
ordinate in dimension i, and p.c is the color associated
with p. When d is constant, we can map the input set
S to rank space using standard techniques,1 requiring
O(n) words of additional space and an O(log n) additive
increase to query time to map any point in rank space
back to its original value. Throughout the paper we
assume that points are in rank space. That is for any
point p ∈ S and any i ∈ {1, . . . , d}, p.xi ∈ {0, . . . , n−1}.
Moreover if p 6= q, then p.xi 6= q.xi. This ensures the
following:

Lemma 1 The number of points in a rectangle Q =
[α1, β1]× [α2, β2]× . . .× [αd, βd] is equal to the minimum
element in {βi − αi + 1 | 1 ≤ i ≤ d}.

Definition 2 Let ∆ ≥ 1 be an integer. A ∆-box is a
region R = [α1, β1]× [α2, β2]× . . .× [αd, βd], where for
all i, αi = k∆ and βi = k′∆ for some integers k and k′.

There are Θ((n/∆)2d) distinct ∆-boxes in our rank
space grid, which includes empty boxes, i.e., boxes with
αi = βi for some i ∈ [1, d]. Each ∆-box R = [α1, β1] ×
[α2, β2]× . . .× [αd, βd] can be identified using a unique
index, given by:

rank(R,∆) =

d∑
i=1

(αi/∆) · φ2i−2 + (βi/∆) · φ2i−1,

where φ = bn/∆c + 1. Notice that rank(R,∆) can be
computed in O(d) time (i.e., constant time when d is
constant) given any R and ∆.

1For k = 1, 2, ..., d, let Ek[0, n − 1] be an array of length n
sorted in ascending order such that the entries in Ek represent
the kth coordinates of the points in S. A point p ∈ S maps to
the point p′(z1, z2, ..., zd, p.c) in rank space, where Ek[zk] is equal
to the kth coordinate of p. The total space for maintaining these
arrays is d · n words.

A query Q = [a1, b1]× [a2, b2]× . . .× [ad, bd] on S maps to an
equivalent query Q∗ = [a∗1, b

∗
1] × [a∗2, b

∗
2] × . . . × [a∗d, b

∗
d] in rank

space, where Ek[a
∗
k − 1] < ak ≤ Ek[a

∗
k] and Ek[b

∗
k] ≤ bk <

Ek[b
∗
k + 1]. We can obtain Q∗ from Q in O(d logn) time by

applying 2d binary search operations.

3 Data Structure of Chan et al.

In this section we describe the data structure presented
by Chan et al. [3]. The data structure relies on the
following observation [8]: a mode of Q1 ∪Q2 is either a
mode of Q1 or an element in Q2. Throughout Sections 3
and 4 we assume that d is a constant.

Data Structure. The data structure consists of two
components:

1. An array A of length (1 + n/∆)2d, such that A[i]
stores a mode of the ∆-box R with rank(R,∆) = i.

2. For each color c, maintain an orthogonal range
counting data structure over the set of points in
S with color c. The total space and query time can
be bounded by sn and tn, where sn is the space of
an orthogonal range counting data structure over
n points in d dimensions and tn is its query time.

Therefore the total space used is O(sn+(n/∆)2d) words.

Query Algorithm. To answer a query Q = [a1, b1] ×
[a2, b2] × . . . × [ad, bd], first find the largest rectangle
Q′ = [a′1, b

′
1] × [a′2, b

′
2] × . . . × [a′d, b

′
d] inside Q, where

a′i = ∆dai/∆e and b′i = ∆bbi/∆c. If a′i ≥ b′i for some i,
then Q′ is empty. Otherwise, a mode of Q′ is given by
A[rank(Q′,∆)]. Recall that rank(Q′,∆) can be com-
puted in constant time when d is a constant. The num-
ber of points in the region Q \ Q′ (the region within
Q, but outside Q′) is at most 2d∆ (refer to Lemma 1).
Then the mode of Q is either the mode of Q′ or the color
of one of the points among the O(∆) points in Q \ Q′.
Call these O(∆) colors the candidate colors. Using the
range counting structure, for each candidate color c we
count the number of points with color c in Q and re-
port the one with the maximum count. The query time
is O(2d∆ · tn) = O(∆ · tn).

Theorem 2 (Chan et al. [3]) There exists an
O(sn + (n/∆)2d)-space data structure that supports
orthogonal range mode queries on a set of n points in
d dimensions in O(∆ · tn) time.

The current best orthogonal range counting data
structure requires sn = O(n(log n/log log n)d−2) space
and supports queries in tn = O((log n/log log n)d−1)
time [7]. The following result can be obtained by
choosing ∆ such that sn = (n/∆)2d. That is ∆ =

n(1−
1
2d )(log n/log log n)(

1
d−

1
2 ).

Corollary 1 (Chan et al. [3]) There exists an
O(n(log n/log log n)d−2)-space data structure that sup-
ports orthogonal range mode queries on a set of n points
in d dimensions in O(n(1−

1
2d )(log n/log log n)(d+

1
d−

3
2 ))

time.



CCCG 2014, Halifax, Nova Scotia, August 11–13, 2014

4 Improved Data Structure

Again we assume that the input point set S has been
transformed to rank space, and we denote by sn and
tn the space and query time of an orthogonal range
counting data structure on S. The main idea is to
maintain the array A in Θ((n/∆)2d) bits as opposed
to Θ((n/∆)2d) words. Doing so increases the cost of
accessing an entry of A from constant to O(∆ · tn) time.
The total query cost, however, does not increase.

We now describe how to encode A in less space.
We use the following common notation: let log(h) n =
log(log(h−1) n) for h > 1, let log(1) n = log n, and let

log∗ n be the smallest integer k such that log(k) n ≤ 2.
Let ∆h = ∆ log(h) n (rounded to the next highest power
of 2) and let Ah be an array of length (1+n/∆h)2d such
that Ah[i] stores the most frequent color in the ∆h box
with rank(·,∆) = i. Notice that ∆i is a multiple of
∆i+1, and ∆log∗ n = Θ(∆).

Lemma 3 There exists a scheme where Ah can be en-
coded in S(h) bits and any entry in Ah can be decoded
in T (h) time, where

S(h) =

{
O((n/∆1)2d log n) if h = 1

S(h− 1) +O((n/∆h)2d log(h) n) if h > 1,

T (h) =

{
O(1) if h = 1

T (h− 1) + tn ·O(∆/ log(h) n) if h > 1.

Proof. Let A′h be the desired encoding. The base case
can be achieved by storing A1 explicitly (i.e., A1 = A′1).
For h > 1, given an encoding A′h−1 we obtain A′h by

storing an additional arrayBh of size (1+n/∆h)2d where
each entry has size O(logh(n)) bits. Let R be a ∆h box
and R′ be the largest (possibly empty) ∆h−1 box within
R. We distinguish between two cases:

1. If the mode of R and R′ are the same, then we
simply store a special symbol $ in Bh[rank(R,∆h)].

2. Else, there must exists a point p in the region R\R′,
where p.c is the mode of R. Moreover the dis-
tance (say τ) from p to the boundary of R is at
most ∆h−1. Then we store Bh[rank(R,∆h)] =
dτ/δhe, an approximate value of distance, where

δh = ∆/ log(h) n. This approximate distance can

be encoded in O(log(∆h−1/δh)) = O(log(h) n) bits.

Since the space occupied by Bh is O((n/∆h)2d log(h) n)
bits, the equation S(h) = S(h − 1) +

O((n/∆h)2d log(h) n) follows.
We now describe how to decode the original value

of an entry in A′h. The array A′1 is stored explicitly,
therefore T (1) = O(1). For h > 1, assume that we can
decode entries of A′h−1 in the desired time. An entry
in A′h corresponding to a ∆h-box R can be decoded as
follows:

1. If Bh[rank(R,∆h)] = $, then the mode of R is same
as the mode of R′, the largest ∆h−1 box within R.
The mode of R′ is equal to Ah[rank(R′,∆h−1)] so
the time for decoding is T (h) = T (h− 1) +O(1).

2. Else, δh · Bh[rank(R,∆h)] represents the approx-
imate distance (within an additive error at most

δh = ∆/ log(h) n) from a point p from the bound-
ary of R, such that p.c is the mode of R. Since
the points are in rank space, the number of points
satisfying this approximate distance criteria is at
most 2d · δh and the color of a point among them
is the mode of R. So, the mode of R (i.e.,
Ah[rank(R,∆h)]) can be identified using O(δh)
range counting queries. Thus giving the equation:
T (h) = T (h− 1) + tn ·O(∆/ log(h) n).

By combining both cases, the equation T (h) = T (h −
1) + tn ·O(∆/ log(h) n) follows. �

Note that

S(log∗ n) = O

log∗ n∑
h=1

(n/∆h)2d log(h) n


= O

(n/∆)2d
log∗ n∑
h=1

(
1

log(h) n

)2d−1


= O
(
(n/∆)2d

)
, and

T (log∗ n) = tn ·O

log∗ n∑
h=1

δh


= tn ·O

∆

log∗ n∑
h=1

1

log(h) n


= tn ·O(∆).

Therefore, by maintaining an O((n/∆)2d)-bit or
O((n/∆)2d/w)-word data structure structure (along
with the range counting structures), we can compute
the mode of the largest ∆log∗ n box Q′ in any query Q
in tn ·O(∆) time. Since the number of points in Q\Q′
is at most 2d · ∆log∗ n = O(∆), the mode of Q can be
computed within an additional O(tn ·∆) time. We sum-
marize our results in the following theorem.

Theorem 4 There exists an O(sn + (n/∆)2d/w)-space
data structure that supports orthogonal range mode
queries on a set of n points in d dimensions in O(∆ ·tn)
time.

We get the following corollary by using the range
counting data structure of Jájá et al. [7] with ∆ =

n(w/n)(
1
2d )(log n/log log n)(

1
d−

1
2 ).



26th Canadian Conference on Computational Geometry, 2014

Corollary 2 There exists an O(n(log n/log log n)d−2)-
space data structure that supports orthogonal range
mode queries on a set of n points in d ≥ 2 dimensions
in O(n(w/n)(

1
2d )(log n/log log n)(d+

1
d−

3
2 )) time.

References

[1] P. Bose, E. Kranakis, P. Morin, and Y. Tang. Ap-
proximate range mode and range median queries. In
Proc. STACS, volume 3404 of LNCS, pages 377–388.
Springer, 2005.

[2] T. M. Chan, S. Durocher, K. G. Larsen, J. Morrison,
and B. T. Wilkinson. Linear-space data structures for
range mode query in arrays. In Proc. STACS, vol-
ume 14 of Leibniz International Proceedings in Infor-
matics, pages 291–301, 2012.

[3] T. M. Chan, S. Durocher, K. G. Larsen, J. Morrison,
and B. T. Wilkinson. Linear-space data structures for
range mode query in arrays. Theory of Computing Sys-
tems, pages 1–23, 2013.

[4] T. M. Chan, S. Durocher, M. Skala, and B. T. Wilkin-
son. Linear-space data structures for range minority
query in arrays. In Proc. SWAT, volume 7357 of LNCS,
pages 295–306. Springer, 2012.

[5] S. Durocher, R. Shah, M. Skala, and S. V. Thankachan.
Linear-space data structures for range frequency queries
on arrays and trees. In Proc. MFCS, volume 8087 of
LNCS, pages 325–336. Springer, 2013.

[6] M. Greve, A. G. Jørgensen, K. D. Larsen, and J. Tru-
elsen. Cell probe lower bounds and approximations for
range mode. In Proc. ICALP, volume 6198 of LNCS,
pages 605–616. Springer, 2010.

[7] J. JáJá, C. W. Mortensen, and Q. Shi. Space-efficient
and fast algorithms for multidimensional dominance re-
porting and counting. In Proc. ISAAC, volume 3341 of
LNCS, pages 558–568. Springer, 2005.

[8] D. Krizanc, P. Morin, and M. Smid. Range mode and
range median queries on lists and trees. Nordic Journal
of Computing, 12(1):1–17, 2005.

[9] H. Petersen. Improved bounds for range mode and
range median queries. In Proc. SOFSEM, volume 4910
of LNCS, pages 418–423. Springer, 2008.

[10] H. Petersen and S. Grabowski. Range mode and range
median queries in constant time and sub-quadratic
space. Information Processing Letters, 109(4):225–228,
2009.

[11] M. Skala. Array range queries. In Proc. Space-Efficient
Data Structures, Streams, and Algorithms, volume 8066
of LNCS, pages 333–350. Springer, 2013.


