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Abstract

“If seven maids with seven mops
Swept it for half a year.
Do you suppose,” the Walrus said,
“That they could get it clear?”
“I doubt it,” said the Carpenter,
And shed a bitter tear.

We consider the problem of decontaminating (cleaning)
the interior of a planar shape by sweeping it with barrier
curves. The contaminant is assumed to instantly travel
any path not blocked by a barrier. We show that any
decontamination sweep can be converted to one that uses
only line segment barriers without increasing length. We
define the sweepwidth of a region as the minimum over
all decontamination sweeps of the maximum over time of
barrier length used, and determine sweepwidth for some
simple classes of orthogonal polygons. However, we also
show that computing sweepwidth in general, even for
orthogonal polygons, is NP-hard.

1 Introduction

We consider a problem of decontaminating or cleaning a
planar region (which we will consider a polygon, possibly
with holes) by sweeping it with moving barriers, under
the assumption that the contaminant spreads instantly
whenever it is not blocked by barriers. This is a natu-
ral extension of the cops and robbers game on graphs
where the goal is to minimize the overall number of cops
used – minimizing the node search number first intro-
duced by Kirousis and Papadimitriou [6]. The notion of
graph search was introduced by Torrence Parsons in the
1970’s [11]. For a detailed overview of different graph
searches, see [3].

It is well known that graph searching is NP-hard [9]
in general. In fact, graph searching is NP-complete even
on planar graphs of maximum degree three [10], which
are the direct discrete analogues of triangulated planar
shapes. An optimal graph search can always be achieved
without recontamination [8]; this is needed to establish
NP-completeness, rather than NP-hardness, for graph
searching, but is also interesting in its own right.

Many graph search problems have been generalized to
polygon search problems. Often the aim is to reach the
robber, spot the robber, or view the entire polygon [2,
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7, 13]. Variants of the decontamination problem where
both the contamination and the decontamination occur
at the same time in an initially clean/empty polygon
have been considered in the literature [1, 12]. We need
a few definitions for our specific variant.

Definitions Suppose that we are given a compact, path-
connected region S that is initially contaminated or
dirty. (Think of S as a polygon, possibly with holes.)
Define a dynamic set of moving barrier points in S,
b : [0, 1] → 2S , as a function from the unit interval to
subsets of S. At time t the barrier points of b(t) become
clean, but once the barriers move, whenever there exists
a path from a clean point p to a dirty point q that
does not intersect a barrier point, point p is immediately
recontaminated. Thus, S is decontaminated if and only if,
for every continuous curve σ : [0, 1]→ S and continuous
non-decreasing function τ : [0, 1]→ [0, 1] with τ(0) = 0
and τ(1) = 1, there exists some t ∈ [0, 1] such that σ(t)
is a barrier point at time τ(t).

We can clean any region S by sweeping with barrier
curves that stretch from boundary to boundary. Using
curves allows us to measure the length of the barriers
employed, so let us restrict our attention to barriers that
are piecewise continuous curves. That is, b : [0, 1]2 → S
is a piecewise continuous function b(s, t) in both curve pa-
rameter s and time t, and for any t, b(·, t) is 1-measurable.
The bottleneck length of a sweep is the supremum over
time on the sum of the lengths of all curves in the sweep.
We look for the minimum bottleneck length of a decon-
tamination sweep for S, which we call the sweepwidth
of S and denote sw(S). For instance, an a× b rectangle
has sweepwidth min(a, b), as shown in Corollary 6.

Alternatively, a decontamination sweep can be viewed
as a collection of 2D surfaces T ⊆ S×[0, 1] that separates
S×[0, 1] in the sense that any continuous time-monotone
curve in S × [0, 1] intersects T . In this view, bottleneck
length is the supremum over t ∈ [0, 1] of the length of
the intersection surface T with the plane at time t.

The problem of sweeping a simple polygon with a
single barrier curve is essentially the problem of elastic
ringwidth, which was solved in quadratic time by Yap [4,
14]. In contrast, our problem, which allows an arbitrary
number of moving barriers, is NP-hard by reduction
from Partition. We leave as an open question whether
every region S has a progressive decontamination of
bottleneck length sw(S): whether there is always a way
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to clean S and never have a point recontaminated. We
conjecture that there is, but suggest that a proof may
not be easy.

2 Canonical sweep

Our definitions of sweep are intentionally very general,
but already have simple consequences:

Observation 1 Time-reversing any decontamination
sweep gives a decontamination sweep with the same bot-
tleneck length.

Lemma 1 Let A and B be two compact, path-connected
planar regions, such that A ⊆ B. Then, sw(A) ≤ sw(B).

Proof. Take any sweep that cleans B. The intersection
of its barriers with A cannot be longer. It also cleans
A because any curve σ : [0, 1]→ A is a curve in B, and
whenever σ(t) is a barrier point at time τ(t), then it is
a barrier in A. �

Corollary 2 For any convex set A, sw(A) cannot exceed
the width of A, which is the minimum distance between
two supporting lines.

Proof. The infinite strip between two parallel lines at
distance w can be swept with a length w barrier segment,
so Lemma 1 says that sw(A) ≤ w. �

In the full version, we expect to show that this is tight;
that for convex regions sw(A) equals the width, which
would then simplify several of our lower bound argu-
ments. (The proof of the result currently depends on an
exhaustive enumeration of the ways to sweep triangles
with up to two segments, which we don’t have space
or time for here.) This and other results that we do
include, depend on the following theorem whose proof
we sketch: we can focus our attention on sweeps that
have a canonical form—the sweep at all times consists
of one- and two-segment curves that start and end on
the region border.

We claim that any decontamination sweep can be
made canonical without increasing its length. The proof
is by modifying a sweep in several steps. First, we
eliminate extraneous barrier points—barrier points that
are not on the boundary between dirty and cleaned
portions of the region (dotted in Figure 1). We anchor
each of the remaining barrier curves at its points along
the region border, or at a highest point if there are
no border points. We then replace barrier curves by
shortest paths between anchor points. Usually anchor
points move continuously; when they jump, we show
how to interpolate so that the entire region is still swept.

Theorem 3 From any decontamination sweep, we can
create a decontamination sweep in canonical form without
increasing length at any time.

(a)

(b) (c) (d)

2
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Figure 1: A “Danbo” polygon (a) with sweepwidth 4:
sweep head to neck, each arm, then down torso. For
the proof of Theorem 3, (b)–(d) show three steps of a
decontamination sweep and their canonical forms.

Proof. Suppose that we have a decontamination sweep.
At each time, each point on the boundary between the
dirty and cleaned points is necessarily a barrier point;
delete all barrier points that are not also boundary points,
such as the “smile” in Figure 1.

The remaining barrier points can

q

Figure 2: q’s
barriers made to
bound a single
dirty component

be grouped into curves that bound
cleaned portions of the region. If
multiple barrier curves meet at some
point q, they are considered to be
joined so that the dirty portion in
the neighborhood of q is a single com-
ponent. As Figure 2 suggests, this is
like resolving a monkey saddle into
simple saddles.

Barrier points that remain on the
region border are considered primary anchor points. Any
barrier/boundary curve that does not touch the region
border is given a top anchor at its highest point; take
the rightmost highest to break ties. Black dots in Figure
1(bcd) mark top anchors.

Any remaining barrier/boundary curve goes from an-
chor to anchor in the region. The next step replaces
each such curve by the shortest path that is in the same
homotopy class in the region—the shortest path that
winds around holes in the region in the same way [5].
Shortest paths that contract to a point (that are null
homotopic) are dropped, as are portions of shortest paths
that follow the region border; several examples can be
seen in Figure 1. Remaining points where the short-
est paths touch the region border are made secondary
anchors.

What remains after this step is a collection of line
segments that cross the region, joining pairs of anchor
points, at least one of which must be on the region
border. Obviously, length cannot increase by taking



shortest paths or dropping curve portions.
So far we have described how to make a single time

step canonical. We must now connect these steps into a
canonical decontamination sweep. The key is to observe
the motion of anchors—when they move continuously,
then the sweep by shortest paths is continuous. We
sketch how how to interpolate when anchors do not
move continuously, but are created by barrier curves
hitting the region border, destroyed by barrier curves
leaving the border, or jump because the highest point
on a barrier curve changes.

Let me sketch the idea for the first of these: When
a barrier curve hits a region border, one or more new
anchor points are created; we think of them as being
created in sequence, say ccw from some reference anchor
point, r. (By outlawing wild curves, we will assume
that when a barrier curve hits a border it does so in
a finite number of connected portions, each of length
greater than some ε > 0.) We sweep the canonical curve
in phases: first introducing an anchor point a on the
curve, and joining it to r in a way that is a retract of
the barrier curve. Then we move a to r maintaining the
canonical curve as a shortest path. If there are more
anchor points of the barrier curve connected to r, then
we fix an anchor at r, but continue to move our anchor a
to replace barriers with boundary, maintaining a shortest
path for the portion of the barrier curve that is not fixed
to the boundary.

The general idea for handling any discrete anchor
change event is the same: determine the location of the
event on the shortest path barrier curve and find the
primary anchors to either side. Temporarily restore the
original barriers between those anchors. Top anchors
can be moved continuously from old to new position by
sliding along these barriers, maintaining shortest paths.
Anchors can be deleted by interpolating from the cur-
rent shortest path to the shortest path with the anchor
removed. And a new anchor can be added by moving
it from a current anchor position, again maintaining
shortest paths.

Multiple anchors may change simultaneously, but we
can process them as a series of simple changes, much
like a monkey saddle is decomposed into a sequence of
simple saddles.

Finally, there are cases in which many barrier points
reach the region border simultaneously—e.g., when
sweeping a disk with a circular barrier growing from
the center, no anchors would have been created. We
can, at the final step, start at the highest border point
and sweep by sliding two anchors away along the re-
gion border, maintaining shortest path between them.
They will stop by meeting and joining other anchors or
themselves. �

A simple corollary and a lemma establish lower bounds
on sweepwidth for many specific regions that follow.

Corollary 4 A point p at distance x from the region
border needs segments at least 2x to sweep it.

Proof. Any curve of at most two segments that reaches
p with both ends on the border has length at least 2x. �

Two immediate conclusions from Corollaries 2 and 4:

Corollary 5 For a circle C, sweepwidth sw(C) equals
the diameter of C.

Corollary 6 An a × b rectangle, R, with side lengths
a ≤ b has sw(R) = a.

3 Sweepwidth for some orthogonal polygons

An L-polygon is the union of two rectangles, with dimen-
sions a×w and w× b that share a vertex with the a× b
rectangle that is their intersection, and and long ‘arms,’
say w ≥ a+ b. Key points are labeled in Figure 3.

Figure 3: Optimal sweep of an L-polygon.

Lemma 7 For an L-polygon with rectangles a× w and
w × b, where w ≥ a+ b, sw(L) =

√
a2 + b2.

Proof. If we sweep, at any time, the two corridors of
the L-polygon simultaneously, we incur length of at least
a + b. Thus, one of the corridors must be swept first,
and the other is swept afterwards. By Observation 1 we
may assume, without loss of generality, that the sweep
starts in position 1–2 at the left corridor of width a. If
a sweep proceeds without reaching position 3–4, then
it either allows recontamination, i.e. the corridor has
to be swept again, or leaves a barrier of length at least
a. Since the remaining part of the polygon includes a
rectangle of dimensions w × b, by Corollary 6 we incur
length of at least a+ b if we leave the barrier in the left
corridor. Thus, we may assume that we have reached
position 3–4 in the sweep of the left corridor, so corner 4
is reached by the sweep. Consider now point 5. It can be
cleaned as shown in Figure 3 at a cost of

√
a2 + b2. Any

segments not containing point 4, while cleaning point 5
would have length of at least b in order to reach the
barrier 3–4 (otherwise point 5 is recontaminated). In
addition, any two chain segment connecting point 5 to
point 4 or to the barrier 3–4 has length greater than the
segment 4–5 by the triangle inequality. �
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A T-polygon is the union of two rectangles, with di-
mensions w × a and b× w, again with sufficiently long
arms, say w ≥ 2a + b, glued as in Figure 4; the short
side of the b× w rectangle is glued to the middle of the
long side of the w × a rectangle, and their interiors are
disjoint.

Figure 4: Optimal sweep of a T-polygon.

Lemma 8 The sweepwidth of a T-polygon equals√
4a2 + b2 when a ≤ 2b/3 and a+ b otherwise.

Proof. As in the proof of the previous Lemma 7, we
observe that the vertical corridor of the T-polygon and
either end of the horizontal corridor being swept at the
same time immediately incurs sweepwidth of at least
a + b. This is indeed optimal in some cases, as shown
in Figure 4 on the left: the optimal sweep cleans the
vertical corridor first, stopping in position 1–2. Then,
the horizontal corridor is cleaned, say from left (4–5) to
right (6–7). There is another possibility for the sweep
to continue after the vertical corridor is cleaned, though.
The barrier 1–2 can be split into two segments and the
split point moved up until it reaches the opposite side of
the horizontal corridor. The shortest way to achieve this
is to move the split point along the perpendicular bisector
of 1–2 until it reaches point 3. Since the lengths of the
segments 1–3 and 2–3 are equal to

√
a2 + (b/2)2, the

bottleneck length of this sweep is twice that,
√

4a2 + b2.
Solving √

4a2 + b2 ≤ a+ b

yields a ≤ 2b/3. Note that moving the barrier 1–2
to position 1–8, as in the proof of Lemma 7, incurs
greater length since segment 2–8 has to be made a barrier
segment, too. �

A comb polygon, shortly comb, is the union of k+1 axis-
aligned rectangles: a w × d rectangle S called the shaft
and k rectangles of size q × pi, denoted T1, . . . , Tk and
called the teeth, that lie along a common side, separated
by at least b from each other and by d from the ends of
the shaft. The dimensions have the following names and
relations: q is the length of a tooth, pi < q is the width
of tooth Ti, b is the minimum separation between teeth,
w ≥ 2d+ (k− 1)b+

∑
1≤i≤k pi is the length of the comb,

and d < b is the thickness of the shaft. Teeth T1, . . . , Tk
are “glued” to the same long side of the shaft and lie in

the opposite half-plane as the shaft. Figure 5 illustrates
the structure of a comb polygon with these dimensions.

Figure 5: A three tooth comb. The shaft is horizontal
and the teeth are vertical.

Lemma 9 Let t = max{p1, . . . , pk}. If d > 2t/3, then
the sweepwidth of the comb polygon is equal to d+ t.

Proof. The claim follows from the proof of Lemma 8.
A decontamination sweep with bottleneck length d+ t
that cleans the polygon starts on the left vertical side of
the shaft, sweeps it with a vertical segment, and stops
at the upper left corner of each tooth. The tooth is then
cleaned by an upward sweep of a horizontal segment;
once the upward sweep reaches the shaft, the left-to-right
sweep of the shaft can continue. �

Note that if d ≤ 2t/3, we can start the sweep in the
widest tooth and split it into the shaft as in the proof
of Lemma 8. However, now the sweep progresses inde-
pendently in the two parts of the comb to the left and
to the right of the widest tooth. Whether we can finish
the sweep within a length of

√
4d2 + t2 depends on what

the dimensions of the other teeth are relative to t and
where exactly they are placed relative to the end(s) of
the two parts of the comb. Regardless of this, the ideas
developed in this section help us modify the comb poly-
gons in a way that significantly raises the complexity of
their decontamination.

4 Reduction from Partition

Partition asks whether a multiset of n given positive
integers {a1, a2, . . . , an} can be equi-partitioned into two
multisets whose sums are equal. Note that if the sum is
odd, the answer is negative.

We reduce Partition to sweep decontamination by
constructing the gadget of Figure 6. Let A = 1 +

∑
i ai

be one greater than the sum of all elements. Construct
a rectilinear polygon consisting of a long corridor of size
A × (n + 3)(A + 1) that is one unit below a series of
n+ 2 square rooms of size A×A, numbered 0 . . . n+ 1,
and each one unit apart from its neighbors. Rooms 0
and n+ 1 are joined to the corridor by doors of length
1× (A− 1)/2; room 1 ≤ i ≤ n by a door of length 1× ai.



We ask whether this polygon can be cleaned by a sweep
of length less than 2A.

A = 1 +
∑

1≤i≤n ai

A−1
2

(n+ 3)(A+ 1)

A+ 1

A

A

A

. . .

A−1
2

α β γ δ

a1 a2 a3 an. . .

Figure 6: Our gadget for reducing Partition to sweep
decontamination consists of n+ 2 square rooms joined
by doors to a long corridor. The proof references the
marked centers of rooms and corridor, and four line
segment barriers, α–δ, drawn dashed.

Theorem 10 An instance of Partition has an equi-
partition if and only if the polygon of Figure 6 has a
decontamination sweep of length less than 2A.

Proof. Suppose the Partition instance has an equi-
partition. That is, there exist sets S ⊂ [1..n] and S
with

∑
i∈S ai = (A − 1)/2. Clean as follows: For each

i ∈ S, sweep room i downward and leave a barrier at
the door, then do the same for room 0. This sweep has
maximum length A+ (A− 1)/2 and leaves barriers in
doors of total length A−1. Next, sweep the corridor from
left to right with a barrier segment of length A, giving
sweep length of 2A− 1. As the barrier segment passes
each door, it erases any door barrier that is present and
creates any door barrier that is absent. Since it begins
by erasing the barrier at door 0 (sweeping from dashed
line α to β in Figure 6), the sweep length while sweeping
doors 1 through n cannot exceed A+

∑
1≤i≤n ai = 2A−1.

Creating the final door (sweeping from dashed line γ
to δ in Figure 6) returns the sweep length to A+ (A−
1)/2 +

∑
i∈S ai = 2A− 1.

Note that reversing time would sweep the corridor
right to left, placing the initial barriers in the complement
of the doors; e.g., starting the corridor sweep by erasing
a barrier in door n+1 and ending by creating the barrier
in door 0.

Now we want to show that if there exists a canonical
decontamination sweep with length < 2A, then there
must be an equi-partition. By Corollary 4, any decon-
tamination sweep that simultaneously sweeps a room
center and a point on the centerline of the corridor must
have length at least 2A. Likewise for sweeping two room
centers or two points ≥ A apart in the middle of the
corridor. Thus, any cleaning strategy will sweep some set
of rooms, sweep the corridor from end to end (aborted
corridor sweeps that are picked up or that sweep forth
and back can be ignored since the corridor will be re-
contaminated and must be swept again), then sweep the

remaining rooms. By reversing time if necessary, we may
assume that the corridor is swept (net) left to right.

Since the length of all doors
∑

0≤i≤n+1 ai = 2A − 2,
the best that can be done is to partition them. Choosing
neither or both of doors 0 and n−1 would mean that the
corridor sweep has total length A+(A−1)+(A−1)/2 ≥
2A at position β or γ. Thus, a sweep of length < 2A
must choose one of these doors, and indicate a partition
of {a1, a2, . . . , an}. �

5 Open questions

The main open question is whether the sweepwidth of a
region can always be achieved by a progressive sweep that
avoids recontamination altogether. All our examples so
far certainly can be cleaned by progressive sweeps.

It is relatively easy to convert any decontamination
sweep to a progressive sweep. Consider the view of a
sweep as a collection of surface patches in S × [0, 1], and
fill in the portion of S that has been cleaned at each
time. In a decontamination sweep, for any point p ∈ S,
there is a time tp at which p is last cleaned. Make p a
barrier at that time. Unfortunately, this transformation
does not preserve length.

To see a specific illustration, consider sweeping a regu-
lar n-gon from right to left with a vertical line, but spin
the n-gon rapidly during the sweep (halting temporarily
as the sweep passes through the width so as not to exceed
the sweepwidth.) The spin means that the sweep line
has to reach the center before a point is finally cleaned
for the last time. Then, as the line continues, a cleaned
disk grows from the center to cover the polygon. In
S× [0, 1], the helical spiral surface of the spinning sweep
segment becomes a cone in conversion to a progressive
sweep, so the barrier length is the circumference rather
than the length of the n-gon. This shows that it will not
be easy to convert an arbitrary decontamination sweep
into a progressive one.

There are many other natural variations: the cost
of a decontamination sweep could be the integral of
length over time, or it could have a penalty for the
number of connected components. The sweepers and the
contaminant could have maximum travel speeds; some
of these have been considered in grids [12]. We expect
many variants to be NP-hard as well.
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