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Drawing the Horton Set in an Integer Grid of Minimum Size

Luis Barba ∗† Frank Duque ‡ Ruy Fabila-Monroy ‡ Carlos Hidalgo-Toscano ‡

Abstract

In this paper we show that the Horton set of n points can
be realized with integer coordinates of absolute value at

most 1
2

(
n

log(n)−1
2

)
. We also show that any set of points

with integer coordinates that has the same order type
as the Horton set contains a point with a coordinate of

absolute value at least
(
1
2n
) log(n)−1

32 .

1 Introduction

Throughout this paper all point sets are in general po-
sition and all logarithms are base 2. Let S be a set
of n points in the plane. A drawing of S is a set of
n points in the plane with integer coordinates and the
same order type as S. For computational purposes, hav-
ing integer-valued coordinates has various advantages
over real-valued coordinates. For example, many com-
binatorial questions depend only on the order type of
the point set, which is defined by the orientation of ev-
ery ordered triple of points. Deciding the orientation of
a triple can be done with a determinant. If the point
set has integer coordinates, any possible rounding errors
in this evaluation are avoided with arbitrary precision
integer arithmetic. As the computational cost of these
operations grows with the size of the integers, it is natu-
ral to seek drawings in which the largest absolute value
of the coordinates is minimized. Moreover, large draw-
ings require a large number of bits to be stored.

We define the size of a drawing as the maximum of
the absolute value of its coordinates. Goodman et al.
[10] found sets of n points whose smallest drawings have
size 22

c1n

, and proved that every point set has a drawing
with size at most 22

c2n

(where c1 and c2 are constants).
Our main purpose for searching for small drawings of
specific classes of point sets is to have fast algorithms
to generate drawings of these points sets. Afterwards,
many combinatorial parameters on these point sets can
be computed swiftly. Recently Bereg et al. [4] provided
a linear time algorithm to generate a drawing of size
O(n3/2) of the Double Circle of 2n points. They also
showed a lower bound of Ω(n3/2) on the size of every
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drawing of the Double Circle.
In this paper we show a drawing (that can easily be

constructed in linear time) of the Horton set of size

1
2

(
n

log(n)−1
2

)
. We provide a lower bound of

(
1
2n
) log(n)−1

32

on the minimum size of any drawing of the Horton set.
As a corollary Θ(n(log n)2) bits are necessary and suffi-
cient to store a drawing of the Horton set. In Section 2
we define and provide background on the Horton set.
The upper and lower bounds are given in Sections 3
and 4 respectively.

2 The Horton Set(s)

The Horton set was introduced to give a partial solu-
tion to a problem posed by Erdős [7] in 1978. He asked
whether every sufficiently large set of n points in the
plane contains the vertices of a convex k-gon with no
other points of the set in its interior (we call it an empty
k-gon). Shortly after, Harborth [11] showed that ev-
ery set of 10 points contains an empty pentagon. The
case for triangles is trivial and the case for four-gons
was settled in affirmative in another context by Esther
Klein long time before Erdős posed this question (see
[8]). Horton [12] constructed arbitrarily large point sets
with no empty heptagons (and thus no larger empty k-
gons). His construction is now known as the Horton set.
The remaining case of empty hexagons stayed open for
almost 30 years, until Nicolás [15], and independently
Gerken [9], showed that every sufficiently large point set
contains an empty hexagon.

Since its introduction, the Horton set has been used
as an extremal example in various similar combinato-
rial problems on point sets. For example, as every suf-
ficiently large set of points contains an empty k-gon for
k = 3, 4, 5, 6, a natural question is to ask: What is the
minimum number of empty k-gons in every set of n
points in the plane? The case of empty triangles was
first considered by Katchalski and Meir [13]; they con-
structed a point set with 200n2 empty triangles. This
bound was later improved by Bárány and Füredi [2]
who showed that the Horton set has 2n2 empty trian-
gles. The Horton set was then used in a series of papers
as a building block to construct sets with fewer empty
k-gons. The first construction was given by Valtr [18], it
was later improved by Dumitrescu [6], and the final im-
provement was given by Bárány and Valtr [3]. Devillers
et al. [5] considered chromatic versions of these prob-
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lems. In particular, they described a three-coloring of
the points of the Horton set with no empty monochro-
matic triangles. Since every set of 10 or more points
contains an empty pentagon, every two-colored set of at
least 10 points contains an empty monochromatic trian-
gle. The first non-trivial lower bound (of Ω(n5/4)) on
the number of empty monochromatic triangles on every
two-colored set of n points was given by Aichholzer et
al [1]. This was later improved by Pach and Tóth [16]
to Ω(n4/3). The known set with the least number of
empty monochromatic triangles is given in [1] and it is
based on the Horton set.

We now define the Horton set. Let S be a set of n
points in general position in the plane. Sort its members
by lexicographic order (first by x-coordinate and then
by y-coordinate) so that S := {p0, p1, . . . , pn−1}. Let
Seven be the subset of its even-indexed points, and Sodd

be the subset of its odd-indexed points. That is Seven =
{p0, p2, . . . } and Sodd = {p1, p3, . . . }.

Let X and Y be two sets of points in the plane. We
say that X is high above Y if:

• Every line determined by two points in X is above
Y .

• Every line determined by two points in Y is below
X.

Definition 1 (Horton set) A Horton set is a set Hk

of 2k points, defined recursively as:

(1) H0 is a Horton set.

(2) For k > 1, both Hk
even and Hk

odd are Horton sets.

(3) For k > 1 Hk
odd is high above Hk

even.

Note that a drawing of the Horton set does not neces-
sarily satisfy Definition 1. The Horton set was described
in [12] in a concrete manner. Our definition is similar
to the more abstract one found in [14] (page 36), and
has the advantage of supplying the structure needed for
our proofs.

At this point, we should mention that in the more re-
cent definitions of the Horton set (like the one in [14]),
either Hk

even is high above Hk
odd or Hk

odd is high above
Hk

even, and this relationship is allowed to change at each
step of the recursion. As a result, for a fixed value of
k, one gets a family of “Horton sets” (with different or-
der types), rather than a single Horton set. Normally,
this does not affect the properties that make Horton
sets interesting. For example, none of the them has
empty heptagons. However, in some circumstances it
does, as is the case in the constructions with few empty
k-gons [3]. In our case, we had to fix one of these two
options in order to make the proof of our lower bound
more readable. We conjecture that our hold for the
general setting. Another difference with the definitions

found in the literature is that no two points are allowed
to have the same x-coordinate. So usually the points
of H are sorted by their x-coordinate rather than lexi-
cographically. Because we are trying to bound the size
of any drawing of the Horton set, we need to relax this
condition a little.

To show that Horton sets do exist, let:

• H0 = {(1, 1)}.

• H1 = {(1, 1), (2, 2)}.

• Hk = {(2x−1, y) : (x, y) ∈ Hk−1}∪{(2x, y+dk−1) :
(x, y) ∈ Hk−1} for k ≥ 2.

where dk := 32
k

.

This drawing of the Horton set is given in [2]. Note
that it has size at least 3n. All other drawings we have
seen in the literature are also of exponential size. Then
again, to the best of our knowledge nobody has ever
tried to find drawings of small size.

3 Upper bound

In this section we prove our upper bound by construct-
ing a drawing P k of the Horton set Hk of n = 2k points.
Let:

f(k) =

{
0 if k = 1

2
k(k−1)

2 −1 if k ≥ 2

g(k) =

{
0 if k = 1

f(k)− f(k − 1) if k ≥ 2

We use f and g to construct P k recursively. Let P 0 :=
{(0, 0)}. For k ≥ 1, let P k

even := {(2x, y) : (x, y) ∈
P k−1}, P k

odd := {(2x+ 1, y+ g(k)) : (x, y) ∈ P k−1} and
P k := P k

even ∪ P k
odd. For k > 1, the largest x-coordinate

of P k is n−1, and its largest y-coordinate is
∑k

i=1 g(k) =

f(k) = 2
k(k−1)

2 −1 = 1
2

(
n

log(n)−1
2

)
. Therefore, P k has

size 1
2

(
n

log(n)−1
2

)
.

Theorem 1 There is a drawing of the Horton set of

n = 2k points of size 1
2

(
n

log(n)−1
2

)
.

Proof. It only remains to show that P k is a Horton set.
By definition P 0 and P 1 are Horton sets. By induction,
assume that k ≥ 2, and that P k

even and P k
odd are Horton

sets. It remains to show that P k
odd is high above P k

even.
Let p0, p1, . . . , p2k be the points of P k in lexicographical
order. The largest y-coordinate of P k

even is f(k− 1) and
the smallest y-coordinate of P k

odd is g(k) = f(k)−f(k−
1). Let 0 ≤ i < j ≤ n be two even integers and let `
be the directed line from pi to pj . We show that every
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point of P k
odd is above `, or rather that every point of

P k
odd is to the left of `. By induction P k

odd is above the
line segment joining p1 and pn−1 and these points are
above (1, g(k)) and (n − 1, g(k)). Therefore, it suffices
to show that both (1, g(k)) and (n− 1, g(k)) are to the
left of `.

The slope of ` is at least −f(k − 1)/2. So if (1, g(k))
is to the left of the directed line from (n − 6, f(k − 1))
to (n − 4, 0), then it is also to the left of `. This is the
case since:

∣∣∣∣∣∣
n− 6 f(k − 1) 1
n− 4 0 1

1 g(k) 1

∣∣∣∣∣∣
= −g(k)(−2) + f(k − 1)− (n− 4)f(k − 1)

= 2f(k)− (n− 3)f(k − 1)

= 2(k−1
2 ) [2k − (2k − 3)

]
> 0

Finally, the slope of ` is at most f(k − 1)/2. So if
(n− 1, g(k)) is to the left of the directed line from (0, 0)
to (2, f(k − 1)), then it is also to the left of `. Again,
this is the case since:

∣∣∣∣∣∣
0 0 1
2 f(k − 1) 1

n− 3 g(k) 1

∣∣∣∣∣∣
= 2(f(k)− f(k − 1))− (n− 3)f(k − 1)

= 2f(k)− (n− 1)f(k − 1)

= 2(k−1
2 )+k − (2k − 1)2(k−1

2 )−1

= 2(k−1
2 )−1 [2k+1 − 2k + 1

]
> 0.

An analogous proof shows that every line through two
points of P k

odd is above every point of P k
even. This com-

pletes the proof. �

4 Lower bound

The proof of the lower bound on the size of any drawing
of the Horton set is more technical and requires some
notation before proceeding.

As mentioned before, a drawing of the Horton set
might not satisfy Definition 1. We call a drawing that
does an isothetic drawing of the Horton set. We first
show a lower bound on the size of an isothetic drawing
of the Horton set; afterwards we consider the general
case.

Throughout this section, let P be an isothetic drawing
of the Horton set of n = 2k points. Let p0, p1, . . . , pn−1
be the members of P in lexicographical order. Define
recursively a rooted binary tree, T , on subsets of P as

follows: P is at the root; if Q is a vertex of T of at least
two points, then Qeven and Qodd are its left and right
children respectively. By construction, the vertices of T
are sets of 2i points of P for some 0 ≤ i ≤ k. Let Ti be
the vertices of T that consist of exactly 2i points of P .
We call Ti the i-th level of T . The following properties
of Ti are easily verified: the vertices of Ti are precisely
the subsets of points of P whose indices are congruent
modulo 2k−i; every vertex in Ti is at distance k − i
from the root and between the leftmost and rightmost
vertices of Ti, there are 2k − 2k−i + 1 points of P .

For 0 < t ≤ k, a t-vertical partition is a partition of
the n/2 middle points p2k−2 , p2k−2+1, . . . , p3·2k−2−1 of P
into sets of equal size by 2t−1 + 1 vertical lines. Specifi-
cally it is a set `0, `1 . . . `2t−1 of vertical lines, such that
li is between the points p2k−2+2k−ti−1 and p2k−2+2k−ti.
Therefore, between li and li+1 there are exactly 2k−t

points of P and exactly 2l−t points of every subset of P
in l-th level of T , for l > t.

Lemma 2 Let R be the region bounded by `0 and `2t−1

in a vertical t-partition of P . Let Q1 and Q2 be two
subsets of P which are vertices of T1. If γ1 and γ2 are
the supporting lines of Q1 and Q2 respectively, then they
do not intersect inside R.

Proof. We prove it for when Q1 is a sibling of Q2, the
general case follows easily. Without loss of generality
assume that Q1 is a left child and Q2 is a right child.
Let ql1 and ql2 be the leftmost points of Q1 and Q2

respectively. Likewise, let qr1 and qr2 be the rightmost
points of Q1 and Q2 respectively.

For every vertex of T label the edge incident to its left
child with “0” and the edge incident to its right child
with “1”. Note that by construction of T , the binary
expansion of an index i is precisely the labels of the
edges in the unique path from the root to pi in T . The
last two labels in the path from the root to left child of
Q1 are “00” and the the last two labels form the root
to the right child of Q2 are “11”. Therefore ql1 is to
the left of `0 and qr2 is to the right of `2t−1 . Note that
there are 2k−1 + 1 points of P between ql1 and qr1, and
2k−1 + 1 points of P between ql2 and qr2. Therefore,
neither Q1 and Q2 can be contained in R, and both qr1
and ql2 are inside R.

Since the convex hulls of Q1 and Q2 are disjoint, γ1
and γ2 cannot intersect inside R. Otherwise either γ1 is
above ql2 or γ2 is below qr1, a contradiction. �

In what follows, fix a vertical t-partition of P . An
immediate consequence of Lemma 2 is that in R, there
is a bottom-up order of the lines defined by every subset
of P at the first level of T . This order coincides with
the left to right order in T1. In fact every subset of P
that is a vertex of T with more than two points is the
union of its descendants in T1. Therefore we can extend
this order to every level of T .
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Figure 1: The bounding lines of Q.

Figure 2: The width and girth of Q with respect to `i.

Let Q be a vertex of T with more than 2 two points
and let P (Q) be its parent. If Q is the left child of P (Q),
let S(Q) be the right child of Q; otherwise let S(Q) be
the left child of Q. Let γD(Q) be the line containing
the leftmost descendant of Q. Let γU (Q) be the line
containing the rightmost descendant of Q. Note that Q
is bounded from below by γD(Q) and from above γU (Q);
see Figure 1.

Let `i be a line of the t-vertical partition. We de-
fine the width, widthi(Q), of Q with respect to `i as the
distance between the intersection points of γD(Q) and
γU (Q) with `i. Let QL and QR be the left and right chil-
dren of Q respectively. We define the girth, girthi(Q),
of Q with respect to `i as the distance between the in-
tersection points of γU (QL) and γD(QR) with `i; see
Figure 2.

Our general approach is to lower bound the girth of
a vertex of T in terms of the girth of one of its children.
This bound is expressed in the following lemma.

Lemma 3 Let `i and `j (j > i+ 1) be two lines of the
vertical t-partition. Let Q be a vertex of Tl (t < l <
k). If the distance between `i and `i+1 is d1, and the
distance between `j−1 and `j is d2, then:

(1) girthi(P (Q)) ≥
(

(d1)
2

(d1+d2)d2

)
2l−t−1 girthj(Q) −

widthi(S(Q))

(2) girthj(P (Q)) ≥
(

(d2)
2

(d1+d2)d1

)
2l−t−1 girthi(Q) −

widthj(S(Q))

Proof. We will prove inequality (1); the proof of (2) is
analogous. Assume that Q is the left child P (Q) and

let Q′ be the right child of P (Q). The case when Q
is the right child of P (Q) can be proven with similar
arguments. Note that by our assumption on Q, QR =
S(Q).

Let p′1 and p′2 be two consecutive points in QL be-
tween `j−1 and `j at a distance at most d2/2

l−t−1 from
each other. Such a pair exists as there are 2l−t−1 points
of QL between `j−1 and `j .

Let p′′ be the point between them in QR. Let
ϕ be the line through p′2 and p′′. Note that
the slope of ϕ with respect to γD(QR) is at most
−min

{
girthj−1(Q), girthj(Q)

}
· 2l−t−1/d2. Since triv-

ially girthj−1(Q) ≥ d1

d1+d2
girthj(Q), this is at most

− d1

(d1+d2)d2
2l−t−1 girthj(Q). Let q1 := γD(QR) ∩ `i,

q2 := ϕ ∩ `i and q3 := γD(Q′) ∩ `i.
Since there is at least a point in γD(Q′) ∩ P to the

left of `i and above ϕ, q2 cannot be above q3. There-
fore the distance from q1 to q2 is at most the dis-
tance from q1 to q3. Note that the distance from q1
to q3 is precisely girthi(P (Q)) + widthi(S(Q)). We
now show that the distance from q1 to q2 is at least

(d1)
2

(d1+d2)d2
2l−t−1 girthj(Q)—this completes the proof of

(1).
Let ϕ′ be the line parallel to ϕ and passing through

the intersection point of `j−1 and γD(QR). Note that
ϕ′ is below ϕ. Therefore, the distance from q1 to
the intersection point of ϕ′ and `i is at most the dis-
tance from q1 to q2. But this first distance is at least

(d1)
2

(d1+d2)d2
2l−t−1 girthj(Q). �

Two obstacles may prevent us from directly apply-
ing Lemma 3. One is that the difference between d1

and d2 may be too big and in consequence (d1)
2

(d1+d2)d2

or (d2)
2

(d1+d2)d1
is too small. This can be easily fixed by

taking an appropriate value for t and then choosing ap-
propriate values for i and j. We do this in Lemma 4.
The other problem is that the second term in the right
hand sides of inequalities (1) and (2) of Lemma 3 may
be too large. In this case, we need to prune T to get rid
of vertices of large width. We show how to do this in
Lemma 5.

Lemma 4 If t = dlog k2e and k ≥ 16, then either P

has size n
1
2 logn or there are two indices j > i+ 1 such

that the ratio of the distance between `i and `i+1 and
the distance between `j−1 and `j is at least 1/2 and at
most 2.

Proof. Let d′1 ≤ d′2 ≤ · · · ≤ d′2t−1 be the distances
between two consecutive lines of the vertical partition.
We look for a pair such that one is at most two times the
other. Suppose there is no such pair; then d′i+1 ≥ 2d′i.
Since between the two lines defining d1 there are exactly
2k−t points of P , and no three of them have the same
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x-coordinate, d1 ≥ 2k−t−1. Therefore:

d2t−2 ≥ 2k−t−1 · 22
t−1−1 ≥ 2

1
2k

2+k−t−2 ≥ n 1
2 logn

The latter part of the inequality follows from our as-
sumption that k ≥ 16 �

Lemma 5 For 0 ≤ l ≤ k − 1, let Q1, Q2, . . . , Q2k−l be
the vertices of Tl in their left to right order. Let P ′ be
the set that results from removing from P the points that
lie in a Qi with an even (or odd) index and let T ′ be its
corresponding tree. For every vertex Q′ in T ′, let Q be
the smallest vertex of T that contains Q′. Then, P ′ is an
isotethic drawing of the Horton set and S(Q′) ⊂ S(Q)
for every vertex Q′ in the (l + 1)-th level or higher of
T ′.

Proof. Assume that the even-indexed Qi’s where re-
moved, the other case is analogous. Let s = k − l.
If s = 1, then P ′ is trivially an isothetic drawing of
the Horton set on n/2 points, since it is equal to Podd.
Suppose that s > 1. Then, Peven and Podd are each iso-
thethic drawings of the Horton set of n/2 points. Each
Qi that was removed is either contained entirely in Peven

or in Podd. So by induction removing these Qi from
Peven and Podd provides isothetic drawings of the Hor-
ton set on n/4 points. Let P ′′0 and P ′′1 be these sets,
respectively. We claim that P ′ is constructed from P by
alternatively removing and keeping intervals of 2k−l−1

consecutive points of P , so that p0, . . . , p2k−l−1−1 are
removed, p2k−l−1 , . . . , p2k−l−1 are kept and so on. For
s = 1, this is trivial since P ′ = Podd. For s > 1,
P ′′0 and P ′′1 are constructed from Peven and Podd by
removing and keeping intervals of 2k−l−2 consecutive
points of Peven and Podd, respectively. Each interval of
2k−l−2 points that was removed from Peven, together
with an interval of 2k−l−2 that was removed from Podd,
forms and interval of 2k−l−1 that is removed from P .
The same holds for the intervals of Peven and Podd

that are kept. Therefore P ′even = P ′′0 and P ′odd = P ′′1 .
Since P ′even ⊂ Peven and P ′odd ⊂ Podd, P ′odd is high
above P ′even, and P ′ is a Horton set. The later part
of the Lemma follows easily from the previous observa-
tions. �

Theorem 6 For a sufficiently large value of k, every
isothetic drawing of the Horton set of n = 2k points has
size at least n

1
8 logn.

Proof. Let t = dlog k2e, and let di be the distance be-
tween `i and `i+1. By Lemma 4 we may assume then
that there exists a pair of indices j > i + 1 such that
the ratio between di and dj is at least 1/2 and at most
2. Without loss of generality suppose that dj ≥ di. Let

D :=
∑2t−2

i=1 di. We may assume that D < n
1
8 logn as

otherwise we are done.

Let Q be any vertex in the (t+ 1)-th level of T . Note
that there are exactly two points of Q between `i and
`i+1, and exactly two points of Q between `j−1 and
`j . Since these four points have integer coordinates,
by Pick’s theorem [17] the area of their convex hull
is at least one. Therefore so is the area of the trape-
zoid bounded by γD(Q), γU (Q), `i and `j . But this
area is at most D(widthi(Q)+widthj(Q)/2). Therefore
max{widthi(Q),widthj(Q)} ≥ 1/D. This bound also
holds for every vertex at a level higher than t+ 1.

Let l be the largest positive integer t < l ≤ k such
that there exists a vertex R in the l-th level of T that
satisfies:

max{widthi(S(R)),widthj(S(R))} ≥ 2(l−t−6)(l−t−7)/2

D
(1)

Such an l and R exist since (1) holds for every vertex
at the (t+ 6)-th level of T . We may assume that l < k,

otherwise P has size at least n
1
8 logn (for a sufficiently

large value of k). Remove all the vertices in the l-th level
of T , with the same parity as R, as in Lemma 5. By
the second part of Lemma 5 no vertex of T ′ in a level
higher than l satisfies (1). Without loss of generality
assume that widthi(S(R)) ≥ (2(l−t−6)(l−t−7)/2)/D Let
(P (R)′ = Q′l, Q

′
l+1, . . . , Q

′
k−1 = P ′) be the path from

P (R)′ to the root of T ′. We will prove inductively for
l ≤ m ≤ k − 1, that:

girthi(Q
′
m) ≥ 2(m−t−6)(m−t−7)/2

D
ifm ≡ l mod 2 (2)

girthj(Q
′
m) ≥ 2(m−t−6)(m−t−7)/2

D
ifm 6≡ l mod 2 (3)

This holds for m = l since girthi(Q
′
l+1) =

girthi(P (R)′) ≥ widthi(S(R)) ≥ (2(l−t−6)(l−t−7)/2)/D
Assume then that m > l and that it holds for smaller
values of m. Suppose that m has the same parity as l.
Then by inequality (1) of Lemma 3:

girthi(Q
′
m) ≥

(
(d1)2

(d1 + d2)d2

)
2m−t−2 girthj(Q

′
m−1)

− widthi(S(Q′m−1))

≥ 2m−t−5 girthj(Q
′
m−1)

− 2(m−t−7)(m−t−8)/2

D

≥ 2m−t−5
2(m−t−7)(m−t−8)/2

D

− 2(m−t−7)(m−t−8)/2

D

≥ 2m−t−6
2(m−t−7)(m−t−8)/2

D

=
2(m−t−6)(m−t−7)/2

D
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Therefore P has size at least n
1
8 logn, for a sufficiently

large value of n. The proof when m has different par-
ity as l is similar, but uses inequality (2) of Lemma 3
instead. �

We are now ready to prove the general bound.

Theorem 7 Every drawing of the Horton set of n = 2k

points has size
(
1
2n
) log(n)−1

32 , for a sufficiently large value
of n.

Proof. Let P ′ be a (not necessarily isotethic) drawing
of the Horton set of n points. As P and P ′ have the
same order type we can label P ′ with the same labels
as P , such that corresponding triples of points in P and
P ′ have the same orientation. Let then {p′0, . . . , p′n−1}
be P ′ with these labels.

Note that the clockwise order by angle around p′0 of
P ′odd is (p′1, p

′
2, . . . ), and that p′0 lies in an unbounded

cell of the line arrangement of the lines defined by ev-
ery pair of points of P ′odd. We may move p′0 towards
infinity without changing this radial order around p′0.

Therefore there is a direction ~d in which we can project
orthogonally P ′odd so that the order of the projection is

precisely (p′1, p
′
2, . . . ). Rotate ~d until it coincides with a

direction defined by a pair of points of P ′. Let v = (a, b)
be the direction vector defined by this pair. Note hat v
has integer coordinates. Moreover if we project in this
direction instead the order of P ′odd does not change. We

may assume that ||v|| ≤ (n/2)
1
32 log(n/2) as otherwise we

are done. Let v⊥ = (b,−a). Consider a change of basis
from the standard basis to {v, v⊥}. Note that under

this transformation (x, y) is mapped to
(

ax+by
a2+b2 ,

ay−bx
a2+b2

)
.

If we multiply the image of P ′ under this mapping by
a2 + b2 we obtain an isothethic drawing of the Horton
set on n/2 points. By Theorem 6, this drawing has size

at least (n/2)
1
8 log(n/2).Therefore, P ′ has size at least

((n/2)
1
8 log(n/2))/(a2 + b2) ≥ (n/2)

log(n)−1
16 . �

Finally we point out that the constants in the expo-
nent of the lower bounds of Theorems 6 and 7 can be
improved. We preferred to simplify the exposition at
the expense of these worse bounds.
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