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Abstract

Consider wrapping the unit cube with a square with-
out stretching or cutting. Beebee demonstrated such a
wrapping with a square of side length 2

√
2, and proved

that no smaller square can fulfill the task [1]. We show
that Beebee’s construction is the unique optimal wrap-
ping, up to the symmetries of the unit cube and the
placement of the junk material.

1 Introduction

Optimal cube wrapping with a square is one of the few
solved instances regarding optimal wrappings of 3D ob-
jects. In the problem, the square must cover the entire
surface of the unit cube, without being stretched or cut.
Furthermore, the square is not allowed to go inside the
unit cube, that is, the unit cube is a solid. Under those
conditions, Beebee showed that the smallest possible
square that can wrap the unit cube has side length 2

√
2

[1].
In proving that 2

√
2 is the minimum, Beebee observed

that the surface distance between any point on the unit
cube and its antipodal point is at least 2. With this
observation, Beebee considered the point P ′ on the unit
cube covered by the center of the square, and the point
Q on the square covering the antipodal point of P ′.
It then follows, due to the fact that the square isn’t
stretched, that Q is at least 2 away from the center of
the square. Because the farthest points on the square
from the center are the four corners, the square must
have side length at least 2

√
2.

Beebee demonstrated that a square of side length 2
√

2
suffices with a wrapping that uses the crease pattern
shown in Figure 1 (left). The square region of side
length 1 in the middle is used to cover the bottom facet
of the unit cube. The four surrounding square regions
are used to cover the four side facets (let’s say that the
unit square to the lower left of the central square cov-
ers the front facet, that to the lower right covers the
right facet, etc). Finally, the four triangular regions at
the corners are combined to cover the top facet. The
placement of the rest of the square, the junk material,
doesn’t matter. We call this optimal construction the
standard wrapping.

We show that the standard wrapping represents the

Figure 1: Square of side length 2
√

2 with the standard
wrapping crease pattern (left), and the unit cube (right)

unique wrapping of the unit cube with a square of side
length 2

√
2, up to the symmetries of the unit cube and

the placement of the junk material. Given any opti-
mal wrapping, we match it gradually with the standard
wrapping. That is, we first show that the center of the
square must coincide with the center of a facet of the
unit cube, then show that the four corners of the square
must coincide with the center of the opposite facet, etc.

Among the properties of a wrapping, our proof relies
only on that paths and regions on the square can’t be
stretched. This implies, for example, that a region R
on the square can cover a surface area no bigger than
the area of R. Our proof also relies on a lemma similar
to Beebee’s observation on surface distance (Lemma 2):
Given any point P ′ on the unit cube that is not the
center of any facet, there is a point Q′ on the unit cube
such that the surface distance between P ′ and Q′ is
strictly greater than 2. This lemma is applied when we
show that the center of the square must coincide with
the center of a facet. To prove the lemma, we describe a
general scheme to calculate the surface distance between
an arbitrary pair of points.

It seems that Beebee’s observation that the surface
distance between any pair of antipodal points is at least
2 is only stated without proof in [1]. Our Lemma 2 in-
cludes a formal proof of this observation. Furthermore,
it seems that Beebee’s proof implicitly relies on the ex-
tra condition that the entire square is restricted to the
surface of the unit cube. For example, he assumed that
the center of the square coincides with some point on
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the surface. Our result does not require this condition.

2 Proof of Uniqueness

In this section, we prove that the standard wrapping
represents the unique optimal cube wrapping by a
square, up to the symmetries of the unit cube and the
placement of the junk material, under the conditions
that 1) the square is not stretched or cut, and 2) the
square does not intersect the interior of the unit cube.

Let S be a square of side length 2
√

2, and U the unit
cube. We identify S and U with the regions [0, 2

√
2]2 in

R2 and [0, 1]3 in R3, respectively, as in Figure 1. Let ∂U
be the surface of the unit cube, and V = R3− (U −∂U)
the complement of the interior of the unit cube.

A given optimal wrapping can be identified with a
continuous map f : S → V satisfying

∂U ⊂ f(S). (1)

For P ,Q in S or V , let d(P,Q) be the length of
the segment connecting P and Q. For P ′,Q′ ∈ V , let
dV (P ′, Q′) be the length of the shortest path through
V between P ′ and Q′. For a 2-dimensional region R in
S or V , let a(R) be the area of R. That the square is
not stretched or cut implies that

d(P,Q) ≥ dV (f(P ), f(Q)) (2)

for any pair of P,Q ∈ S, and that

a(R) ≥ a(f(R)) (3)

for any R ⊂ S.
For a path p in S or V , let l(p) be its length. If p is

a path in S, then f(p) is a path in V . We have

l(p) ≥ l(f(p)). (4)

Notice that (4) can be deduced from an infinitesimal
version of (2). In fact, (2) and (4) imply each other.

Our goal is to show that any continuous f : S → V
satisfying (1), (2), (3) and (4) is essentially equivalent
to the standard wrapping.

Although the range of f is V , our analysis ends up
mostly focusing on the surface of the unit cube ∂U ⊂ V .
Intuitively, mapping some part of the square outside of
the unit cube is only going to make covering the surface
more difficult, due to waste of material. Our next lemma
provides some insights by showing that, for any P ′,Q′ ∈
∂U , the minimal path length from P ′ to Q′ through V
is achieved by, and only by, some path entirely in ∂U .

Lemma 1 Given P ′,Q′ ∈ ∂U and any path q ⊂ V be-
tween them that is not entirely in ∂U , there exists a path
p ⊂ ∂U between them such that l(p) < l(q).

Proof. Let π0
z be the operator that acts as the identity

for points on or above the z = 0 plane, and acts as the
perpendicular projection onto the z = 0 plane for points
below the z = 0 plane. Let π1

z be the operator that acts
as the identity for points on or below the z = 1 plane,
and acts as the perpendicular projection onto the z = 1
plane for points above the z = 1 plane. Define π0

x, π1
x,

π0
y, and π1

y similarly. Lastly, let

π = π0
x ◦ π1

x ◦ π0
y ◦ π1

y ◦ π0
z ◦ π1

z .

Obviously, π(P ′) = P ′, π(Q′) = Q′, and π sends
points of V to ∂U . Therefore, p = π(q) is a path in ∂U
between P ′ and Q′. Clearly, none of the six “projection”
operators composing π can increase the path length. To
see that l(p) < l(q), consider point P ′

1 ∈ q that is not in
∂U . Say P ′

1 is below the z = 0 plane. Because Q′ is on
or above the z = 0 plane, there must exist P ′

2 ∈ q such
that 1) P ′

2 is on the z = 0 plane, and 2) the section of q
from P ′

1 to P ′
2 lies on or below the z = 0 plane. Because

π eliminates the change in z-coordinate for this section
of q, its length is strictly decreased. As a result, we have
l(p) < l(q). �

Now we describe a general scheme to calculate
dV (P ′, Q′) for P ′,Q′ ∈ ∂U . This scheme is applied sev-
eral times throughout the paper, including in the proof
of Lemma 2.

By Lemma 1, we only need to consider paths en-
tirely in ∂U . If P ′ and Q′ are on the same facet, then
dV (P ′, Q′) is obviously just d(P ′, Q′). Otherwise, we
evaluate cases based on the different possible sequences
of facets visited on a path from P ′ to Q′. For conve-
nience, let the back, front, left, right, bottom, and top
facets be the facets of U that lie on, respectively, the
x = 0, x = 1, y = 0, y = 1, z = 0, and z = 1 planes.
For example, if a path starts at ( 1

2 ,
1
2 , 0), heads straight

to (1, 12 , 0), then (1, 0, 12 ), and finally arrives at ( 1
2 , 0,

1
2 ),

we say that the path visits facets in the sequence of
bottom, front, and left (see Figure 2).

Clearly, the shortest path from P ′ to Q′ wouldn’t visit
the same facet more than once. If the path exits, say,
the top facet at point P ′

1, and later reenters the top facet
at point P ′

2, then it could achieve a smaller length by
heading straight from P ′

1 to P ′
2 instead.

Consequently, there are finitely many different pos-
sible sequences of visited facets. For each sequence of
facets F1, F2, . . ., Fk, we evaluate the shortest path
from P ′ to Q′ that visits the facets according to this
sequence by reducing it to a 2-dimensional problem, as
follows. First place F1 in a plane. Suppose that facets
up till Fi have been placed in the plane, we place Fi+1

in the plane so that 1) Fi and Fi+1 share the same edge
as the one they share in R3, and 2) Fi and Fi+1 don’t
completely overlap. Notice that there is a unique way of
placing Fi+1. Let Γ be the 2-dimensional region formed



CCCG 2014, Halifax, Nova Scotia, August 11–13, 2014

Figure 2: Example of a path that visits the facets in the
sequence of bottom, front, and left

by those k facets. Notice that P ′ ∈ F1 and Q′ ∈ Fk

each corresponds to a point in Γ. Then, the minimal
path length visiting this sequence of facets equals the
length of the shortest path in Γ from P ′ to Q′, which
can be calculated easily.

After we calculate the shortest path length for each
possible sequence of visited facets, we can calculate
dV (P ′, Q′) as being the smallest of those values.

There are dozens of cases. Fortunately, we don’t al-
ways need exact answers for our arguments. Moreover,
symmetries and additional observations also greatly re-
duce the number of cases.

The next lemma, generalizing Beebee’s observation
discussed in the introduction, is later used to show that
the center of the square must coincide with the center
of some facet.

Lemma 2 For any P ′ ∈ ∂U , there exists Q′ ∈ ∂U such
that dV (P ′, Q′) ≥ 2. If P ′ is not the center of any of
the facets, then Q′ can be chosen so that the inequality
is strict.

Proof. Let A′, B′, C ′, D′, E′, F ′, G′, and H ′ be the
vertices of U as shown in Figure 2. Without loss of
generality, suppose P ′ = (x, y, 0) is on the bottom facet.
Let Q′ = (1− x, 1− y, 1) be the antipodal point of P ′.
We apply our scheme described above. Any surface path
from P ′ to Q′ visits the bottom facet at the beginning,
the top facet at the end, and at least one side facets in
between.

Suppose that the total number of facets visited is 3.
Without loss of generality, suppose that the facet vis-
ited between the bottom and the top facets is the front
facet. Figure 3 shows the 2-dimensional problem this
case reduces to. The minimal path length in Γ between
P ′ and Q′ is

√
22 + (1− 2y)2 ≥ 2. The inequality is

strict unless y = 1
2 .

Figure 3: The equivalent 2-dimensional problem for
finding the shortest surface path from P ′ = (x, y, 0) to
Q′ = (1−x, 1−y, 1) through the bottom, front, and top
facets

Suppose that the total number of facets visited is
4. Without loss of generality, suppose that the facets
visited between the bottom and the top facets are
the front and the left facets. Figure 4 shows the 2-
dimensional problem this case reduces to. The min-
imal path length in Γ between P ′ and Q′ is at least√

(x+ y)2 + (3− x− y)2 ≥ 3√
2
> 2.

Finally, Suppose that the total number of facets vis-
ited is at least 5. Without loss of generality, suppose
that the three facets visited right after the bottom facet
are the front, the left, and the back facets. Let P ′

1 be
the point through which the path exits the front facet
and enters the left facet, and P ′

2 be the point through
which the path exits the left facet and enters the back
facet (see Figure 5). By looking at the x- and y- co-
ordinates of the points, we see that d(P ′, P ′

1) ≥ y,
d(P ′

2, Q
′) ≥ 1 − y, and d(P ′

1, P
′
2) ≥ 1. Moreover, the

three equalities can’t hold simultaneously, because at
least one of the three pairs of points have distinct z-
coordinates, yielding the strict inequality. So in this
case, the minimal path length between P ′ and Q′ is
greater than 2.

Combining all the cases, we see that, by taking Q′ to
be the antipodal point of P ′, we have dV (P ′, Q′) ≥ 2.
The inequality is strict unless P ′ is on at least one of
the x = 1

2 , y = 1
2 , and z = 1

2 planes (see the first case).

To finish the proof, we need to pick Q′ a little differ-
ently when P ′ is on exactly one of the x = 1

2 , y = 1
2 , and

z = 1
2 planes (if P ′ is on two of those three planes, then
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Figure 4: The equivalent 2-dimensional problem for
finding the shortest surface path from P ′ = (x, y, 0) to
Q′ = (1 − x, 1 − y, 1) through the bottom, front, left,
and top facets

Figure 5: A surface path from P ′ = (x, y, 0) to Q′ =
(1 − x, 1 − y, 1) through the bottom, front, left, back,
and top facets. P ′

1 is the point where the path exits the
front facet and enters the left facet, and P ′

2 is the point
where the path exits the left facet and enters the back
facet.

P ′ is the center of some facet). Without loss of general-
ity, suppose that P ′ = (x, 12 , 0), where x 6= 1

2 . We pick
Q′ = (1− x, 12 + ε, 1), ε > 0, to be a slight perturbation
of the antipodal point. We proceed to cases as before.

Suppose that the total number of facets visited is 3. If
the facet visited between the bottom and the top facets
is the front or the back facet, the minimal path length
is
√

22 + ε2 > 2. If it is the left or the right facet, the
minimal path length is

√
(2± ε)2 + (1− 2x)2, which is

greater than 2 for small enough ε.
Finally, suppose that the total number of facets vis-

ited is at least 4. Previous analysis shows that, when Q′

is exactly the antipodal point of P ′, the minimal path
length is greater than 2. Thus, as long as ε is small
enough, the minimal path length is still greater than 2.
Combining all the cases, we see that dV (P ′, Q′) > 2 for
Q′ = (1− x, 12 + ε, 1), where ε > 0 is small enough. �

The next lemma shows that Lemma 2 is true even if
the condition P ′ ∈ ∂U is replaced by P ′ ∈ V .

Lemma 3 For any P ′ ∈ V , there exists Q′ ∈ ∂U such
that dV (P ′, Q′) ≥ 2. If P ′ is not the center of any of
the facets, then Q′ can be chosen so that the inequality
is strict.

Proof. The lemma is true if P ′ ∈ ∂U by Lemma 2.
Now suppose P ′ /∈ ∂U . Let P ′

1 = π(P ′) ∈ ∂U , where
π is as defined in the proof of Lemma 1. Let Q′ be the
antipodal point of P ′

1. We claim that dV (P ′, Q′) > 2.
Let p be any path in V between P ′ and Q′. Then

π(p) is a path in ∂U between P ′
1 and Q′. The proof of

Lemma 2 implies that l(π(p)) ≥ 2. Because p is not
entirely in ∂U , the same argument as in the proof of
Lemma 1 shows that l(p) > l(π(p)) ≥ 2. Since p is
arbitrary, we have dV (P ′, Q′) > 2. �

We now proceed to prove our main result.

Theorem 4 Any wrapping of the unit cube by a square
of side length 2

√
2 is equivalent to the standard wrap-

ping, up to the symmetries of the unit cube and the
placement of the junk material.

Proof. Let f : S → V represent the given wrapping,
then f is continuous and satisfies (1), (2), (3) and (4).
The proof is divided into six steps, as we gradually
match f with the standard wrapping.

Step 1: Let O = (
√

2,
√

2) be the center of S, then
f(O) is the center of some facet of U.

To establish Step 1, suppose for the sake of con-
tradiction that f(O) is not the center of any of the
facets. By Lemma 3, there exists Q′ ∈ ∂U such that
dV (f(O), Q′) > 2. By (1), there exists Q ∈ S such that
f(Q) = Q′. By (2), we have

d(O,Q) ≥ dV (f(O), Q′) > 2,
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Figure 6: ΦS(O, t) (left) and ΦV (f(O), t) (right), for

some
√
10
2 ≤ t ≤ 2

which is impossible.

Without loss of generality, we assume that
f(O) = (1

2 ,
1
2 , 0), the center of the bottom facet.

Let A = (0, 0), B = (2
√

2, 0), C = (2
√

2, 2
√

2),
and D = (0, 2

√
2) be the four corners of S, and

O′ = ( 1
2 ,

1
2 , 1) the center of the top facet of U .

Step 2: f(A) = f(B) = f(C) = f(D) = O’.
To establish Step 2, we first define

ΦS(P, t) = {Q ∈ S | d(P,Q) ≥ t}
ΦV (P ′, t) = {Q′ ∈ ∂U | dV (P ′, Q′) ≥ t}

(5)

for any P ∈ S, P ′ ∈ V , and t ≥ 0.
The key observation is that for√

(
3

2
)2 + (

1

2
)2 =

√
10

2
≤ t ≤ 2,

we have
a(ΦS(O, t)) = a(ΦV (f(O), t)). (6)

The two regions are shaded in Figure 6. To see (6),
notice that for a point P ′ in the triangular region
O′E′F ′ in the top facet, the shortest surface path from
f(O) = (1

2 ,
1
2 , 0) to P ′ visits the facets in the sequence of

bottom, front, and top. This can be established through
the general scheme described prior to Lemma 2. We
omit the details. Thus, if we form the 2-dimensional
region Γ as in the scheme by concatenating the bottom,
front, and top facets in a plane, we see that the part
of triangle O′E′F ′ in ∂U that belongs to ΦV (f(O), t)
corresponds exactly to the part of O′E′F ′ in Γ that lies
outside of the circle of center f(O) and radius t (see
Figure 7). The situations for the other three triangles
O′F ′G′, O′G′H ′, and O′H ′E′ are similar.

On the other hand, the part of S that belongs to
ΦS(O, t) is exactly the region that lies outside of the

Figure 7: The part of triangle O′E′F ′ that belongs to
ΦV (f(O), t)

circle of center O and radius t. For t in the range speci-
fied above, that region consists of four disjoint parts that
lie inside, respectively, the four triangles at the corners
of S that are combined to cover the top facet of U in
the standard wrapping. It is easy to see that each of
the four disjoint parts that belongs to ΦS(O, t) is con-
gruent to the part of each of O′E′F ′, O′F ′G′, O′G′H ′,
and O′H ′E′ that belongs to ΦV (f(O), t). Furthermore,
the non-top facets of U don’t intersect ΦV (f(O), t) at
all (for example, any point on the front facet can be
connected to f(O) via a surface path of length at most√

( 3
2 )2 + ( 1

2 )2 =
√
10
2 that visits only the front and the

bottom facets). Thus, (6) is established.

From (2) and (5), we see that f(P ) ∈ ΦV (f(O), t)
implies that P ∈ ΦS(O, t). Combining this with (1),
(3) and (6), we see that the converse is also true for√

10
2 ≤ t ≤ 2. In other words, ΦV (f(O), t) can only

be covered by material from ΦS(O, t), and ΦS(O, t) has
just enough material to do the job. So no waste can
occur.

As t approaches 2, ΦS(O, t) shrinks to the four
corners of S, and ΦV (f(O), t) shrinks to the point
( 1
2 ,

1
2 , 1) ∈ ∂U . So Step 2 is established.

We let p1, p2, p3, and p4 be the paths on ∂U covered
by OA, OB, OC, and OD in the standard wrapping.
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Figure 8: Segments OA, OB, OC, and OD (left), and
paths p1, p2, p3, and p4 (right)

In other words,

p1 : (
1

2
,

1

2
, 0)→ (1,

1

2
, 0)→ (1,

1

2
, 1)→ (

1

2
,

1

2
, 1)

p2 : (
1

2
,

1

2
, 0)→ (

1

2
, 1, 0)→ (

1

2
, 1, 1)→ (

1

2
,

1

2
, 1)

p3 : (
1

2
,

1

2
, 0)→ (0,

1

2
, 0)→ (0,

1

2
, 1)→ (

1

2
,

1

2
, 1)

p4 : (
1

2
,

1

2
, 0)→ (

1

2
, 0, 0)→ (

1

2
, 0, 1)→ (

1

2
,

1

2
, 1),

where arrows mean heading straight towards. We
include a time parameter s, 0 ≤ s ≤ 1, and imagine
walking on each of the four paths in constant speed
from the start to the end as s goes from 0 to 1. Let
pi(s) be our position at time s when we are tracing pi.
For example, we have p1( 1

4 ) = (1, 12 , 0).

Step 3: Up to some symmetries of the unit cube, f
maps the segments OA, OB, OC, and OD to p1, p2,
p3, and p4, respectively (see Figure 8). Moreover, the
mappings are uniform in that if P on OA is such that
d(O,P ) = s·d(O,A), then f(P ) = p1(s). Similar results
hold for points on OB, OC, and OD.

To establish Step 3, we first claim that p1, p2, p3, and
p4 are the only four paths of length at most 2 through
V connecting the antipodal pair ( 1

2 ,
1
2 , 0) and ( 1

2 ,
1
2 , 1)

(their lengths are exactly 2, the smallest possible by
Lemma 2). To see that, notice that Lemma 1 suggests
that we only need to consider paths in ∂U . Given such a
path of length 2, consider the sequence of visited facets
as in the general scheme. The proof of Lemma 2 shows
that the sequence contains no more than three facets
(otherwise length is greater than 2). Suppose the se-
quence is bottom, front, and top, then in the result-
ing 2-dimensional region Γ, the points corresponding to
( 1
2 ,

1
2 , 0) and ( 1

2 ,
1
2 , 1) are exactly Euclidean distance 2

apart (see Figure 3 with x = y = 1
2 ). Therefore, only

the straight segment between them has length 2 in Γ,
which corresponds to the path p1 on ∂U .

Notice that f(OA), f(OB), f(OC), and f(OD) are
paths in V from ( 1

2 ,
1
2 , 0) to ( 1

2 ,
1
2 , 1). By (4), their

lengths are at most 2, because OA, OB, OC, and OD
have length 2. Thus, each of f(OA), f(OB), f(OC),
and f(OD) must coincide with some pi.

SupposeOA is mapped to some pi. For any 0 ≤ s ≤ 1,
let P ∈ OA be such that d(O,P ) = s · d(O,A). Let
0 ≤ s′ ≤ 1 be the unique value such that f(P ) = pi(s

′).
If s < s′, then OP is shorter than the part of pi from
f(O) = ( 1

2 ,
1
2 , 0) to f(P ), contradicting (4). If s > s′,

then PA is shorter than the part of pi from f(P ) to
f(A) = ( 1

2 ,
1
2 , 1), again contradicting (4). As a result,

s = s′. Since s is arbitrary, the mapping from OA to pi
is uniform, as required. Similar analysis holds for OB,
OC, and OD.

No two of OA, OB, OC, and OD can be mapped to

the same pi. Otherwise, for any
√
10
2 ≤ t < 2, a posi-

tive measure amount of material in ΦS(O, t) is wasted
due to overlapping, so ΦS(O, t) can’t cover ΦV (f(O), t)
completely, contradicting the analysis in Step 2.

Without loss of generality, suppose that OA is
mapped to p1. If OB is mapped to p3, then consider
P ∈ OA and Q ∈ OB that are both ε away from O, for
some small ε. By (2), we have

√
2ε = d(P,Q) ≥ dV (P ′, Q′) = 2ε,

a contradiction. Therefore, OB is mapped to p2 or
p4. Without loss of generality, suppose OB is mapped
to p2. Similar analysis then shows that OC can’t be
mapped to p4, so it must be mapped to p3, and so OD
must be mapped to p4.

Step 4: The action of f on ΦS(O,
√
10
2 ) matches the

standard consturction.
To establish Step 4, we first define

φS(P, t) = {Q ∈ S | d(P,Q) = t}
φV (P ′, t) = {Q′ ∈ ∂U | dV (P ′, Q′) = t}

(7)

for any P ∈ S, P ′ ∈ V , and t ≥ 0. Intuitively, φS(P, t)
and φV (P ′, t) can be thought of as the derivatives of,
respectively, ΦS(P, t) and ΦV (P ′, t) with respect to t.

For any
√
10
2 ≤ t < 2, φS(O, t) is the portion of the

boundary of the circle of center O and radius t that
lies in S. It consists of four congruent and disjoint arcs
(see Figure 9). Denote the arc that is closest to A, B,
C, and D by γA(t), γB(t), γC(t), and γD(t), respec-
tively. On the other hand, φV (f(O), t) is the boundary
of ΦV (f(O), t) on the top facet of U ; it is composed of
four arcs of the same shape, but connected (see Figure
9). Denote the arc that lies in triangles O′E′F ′, O′F ′G′,
O′G′H ′, and O′H ′E′ by γ′A(t), γ′B(t), γ′C(t), and γ′D(t),
respectively. All eight arcs just defined are congruent.
So φS(O, t) and φV (f(O), t) have the same total length.

By the discussion in Step 2, for any
√
10
2 ≤ t < 2,

P ∈ ΦS(O, t) if and only if f(P ) ∈ ΦV (f(O), t). By
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Figure 9: Arcs γA(t), γB(t), γC(t), and γD(t) composing
φS(O, t) (left), and arcs γ′A(t), γ′B(t), γ′C(t), and γ′D(t)

composing φV (f(O), t) (right), for some
√
10
2 ≤ t < 2

varying t, we see that, for any
√
10
2 ≤ t < 2, P ∈ φS(O, t)

if and only if f(P ) ∈ φV (f(O), t).

For a fixed
√
10
2 ≤ t < 2, let PA = φS(O, t)∩OA, and

P ′
A = φV (f(O), t)∩ p1 (p1 is as in Step 3). By Step 3,

we have f(PA) = P ′
A. Now PA is the midpoint of γA(t),

and P ′
A is the midpoint of γ′A(t), where γA(t) and γ′A(t)

are congruent. By (4) and the fact that f(φS(O, t)) ⊂
φV (f(O), t), we deduce that f(γA(t)) ⊂ γ′A(t), because
γA(t) doesn’t have enough length to “escape” outside of
γ′A(t) while staying within φV (f(O), t).

Similarly, it must be that f(γB(t)) ⊂ γ′B(t),
f(γC(t)) ⊂ γ′C(t), and f(γD(t)) ⊂ γ′D(t). However, we
noted before that φV (f(O), t) must be completely cov-
ered by φS(O, t), that is, φV (f(O), t) ⊂ f(φS(O, t)), or,
equivalently,

γ′A(t) ∪ γ′B(t) ∪ γ′C(t) ∪ γ′D(t)

⊂ f(γA(t) ∪ γB(t) ∪ γC(t) ∪ γD(t)).

Therefore, we have f(γA(t)) = γ′A(t), f(γB(t)) = γ′B(t),
f(γC(t)) = γ′C(t), and f(γD(t)) = γ′D(t). Since the
midpoint of γA(t) is mapped to the midpoint of γ′A(t),
by (4), the only points on γA(t) that can possibly be
mapped to either end points of γ′A(t) are the two end
points of γA(t). Therefore, the two end points of γA(t)
are mapped to the two end points of γ′A(t). Using a
similar argument as in Step 3, we see that the mapping
of γA(t) to γ′A(t) is uniform. That is, if we walk from
one end point of γA(t) to another in constant speed, our
image under f traces γ′A(t) in constant speed.

There is a catch. There are still two ways to map
γA(t) to γ′A(t) based on which end point gets mapped
to which. Unfortunately, given the assumptions we have
made so far, we can’t eliminate this uncertainty using
“up to symmetries” anymore. One of the two orienta-
tions is impossible. Specifically, the end point of γA(t)
on AB must be mapped to the end point of γ′A(t) on
O′F ′. Now we prove that the other orientation is im-
possible.

Suppose that, for some t, the end point of γA(t) on
AB is mapped to the end point of γ′A(t) on O′E′. Be-
cause orientation clearly depends continuously on t, the

orientation must be “wrong” for all
√
10
2 ≤ t < 2. In

particular, by taking t =
√
10
2 , we see that

f((

√
2

2
, 0)) = E′ = (1, 0, 1).

Let Q = ( 5
√
2

4 , 3
√
2

4 ) be the point on OB such that
d(O,Q) = 1

4d(O,B). By Step 3, we have

f(Q) = p2(
1

4
) = (

1

2
, 1, 0).

So by (2),

dV ((1, 0, 1), (
1

2
, 1, 0))

≤d((

√
2

2
, 0), (

5
√

2

4
,

3
√

2

4
)) =

3

2
.

(8)

However, this is incorrect. Since ( 1
2 , 1, 0) is 1

2 away
from C ′ = (0, 1, 0), (8) would imply that dV (E′, C ′) ≤
2. This contradicts the proof of Lemma 2, as C ′ is
the antipodal point of E′ without being the center of
any facet. (We could also have directly showed that
dV ((1, 0, 1), ( 1

2 , 1, 0)) > 3
2 using the general scheme de-

scribed prior to Step 2.)
Thus, we have eliminated the possibility of the

“wrong” orientation. Similar argument works for
γB(t), γC(t), and γD(t). As a result, the action of f on

ΦS(O,
√
10
2 ) is completely matched with the standard

wrapping.

For the next step, we define

Ψ(t) = ΦS(A, t) ∩ ΦS(B, t) ∩ ΦS(C, t) ∩ Φ(D, t).

We are mainly interested in Ψ(t) for
√
10
2 ≤ t ≤ 2. The

shaded region in Figure 10 (left) shows Ψ(t) for some t
in this range.

Step 5: The action of f on Ψ(
√
10
2 ) matches the stan-

dard wrapping.
Consider ΦV (O′, t), shown by the shaded region in

Figure 10 (right). It is the antipodal set of ΦV (f(O), t),

which we described in Step 2. For
√
10
2 ≤ t ≤ 2,

ΦV (O′, t) lies entirely in the bottom facet. Now, Ψ(t) is
the part of S outside of the four circles of radius t and
centers A, B, C, and D. Simple calculation shows that
Ψ(t) is in fact congruent to ΦV (O′, t), for t in the above
range.

Let P ∈ S be such that f(P ) ∈ ΦV (O′, t). Because
f(A) = O′, we have by (2) and (5)

d(P,A) ≥ dV (f(P ), O′) ≥ t.
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Figure 10: Ψ(t) (left) and ΦV (O′, t) (right), for some√
10
2 ≤ t ≤ 2

Thus, P ∈ ΦS(A, t). Similarly, P belongs to ΦS(B, t),
ΦS(C, t), and ΦS(D, t). Thus, P ∈ Ψ(t).

The last paragraph shows that f(P ) ∈ ΦV (O′, t) im-
plies P ∈ Ψ(t). By (1), (3), and the fact that ΦV (O′, t)
and Ψ(t) are congruent, we see that the converse is also

true for
√
10
2 ≤ t ≤ 2 (a similar argument was used in

Step 2 for ΦS(O, t) and ΦV (f(O), t)). From here on,
we can use essentially the same arguments as in Step

2 and Step 4 to show that the way f maps Ψ(
√
10
2 ) to

ΦV (O′,
√
10
2 ) matches the standard wrapping. Almost

all changes are notational, so we omit the details.

Step 6: The action of f on S matches the standard
wrapping, up to the placement of the junk material.

Figure 11 shows what we’ve matched so far. The
four shaded regions near the corners of S, namely

ΦS(O,
√
10
2 ), are mapped to cover the shaded region on

the top facet of U , namely ΦV (f(O),
√
10
2 ). The shaded

region in the middle of S, namely Ψ(
√
10
2 ), is mapped

to cover the shaded region on the bottom facet of U ,

namely ΦV (O′,
√
10
2 ). Lastly, the segments OA, OB,

OC, and OD are mapped to cover the paths p1, p2, p3,
and p4 as defined in Step 3. All those partial mappings
match the standard wrapping.

We match the rest using the following argument. If
P ,Q ∈ S are such that 1) f(P ) and f(Q) are on the same
facet of U , and 2) d(P,Q) = d(f(P ), f(Q)) = a, then
f must map the segment PQ uniformly to the segment
connecting f(P ) and f(Q). To see why it must be so,
notice that 1) By (4), f(PQ) is a path of length at most
a in V from f(P ) to f(Q), and 2) The only path in V
of length at most a from f(P ) to f(Q) is the segment
between them.

Pick P = (
√
2
2 ,
√

2) and Q = (0,
√
2
2 ). We know that

f(P ) = A′ = (1, 0, 0) and f(Q) = E′ = (1, 0, 1). Since
A′ and E′ are both on the front facet with d(A′, E′) = 1,
and since d(P,Q) = 1, our argument shows that PQ

Figure 11: At the beginning of Step 6, the shaded
region on the left has been matched with the shaded
region on the right.

is mapped uniformly to A′E′. Similarly, we see that

the segment between (
√

2,
√
2
2 ) and (

√
2
2 , 0) is mapped

uniformly to B′F ′.

By picking P to be arbitrary points on the segment

between (
√
2
2 ,
√

2) and (0,
√
2
2 ), and Q to be arbitrary

points on the segment between (
√

2,
√
2
2 ) and (

√
2
2 , 0), we

see that the unit square S1 (see Figure 11) is mapped to
the front facet of U in a way that matches the standard
wrapping. Similarly, we deduce that the unit squares
S2, S3, and S4 (see Figure 11) are mapped to the right,
back, and left facets of U , respectively, in ways that
match the standard wrapping. At this point, all except
for the eight tiny gaps and the junk material have been
matched. It is easy to see that our argument can match
those gaps as well: for any point inside one of the gaps,
just pick P and Q to be the intersections of any line
through that point with the boundary of that gap. The
argument goes through since the boundary of each of
those gaps is already matched, and its image is on a
single facet, congruent to the boundary itself.

The proof of the theorem is complete.

�

3 Conclusion

Although it is likely that our method of deduction would
assist in solving similar uniqueness problems, its appli-
cation is so far limited by the fact that very few in-
stances of optimal wrapping of 3D objects are solved.
For example, it remains unknown how big a square is
needed to wrap a regular tetrahedron, or general rect-
angular boxes.

A possible direction is to consider wrapping a unit
cube with a square of side length 2

√
2 + ε, for some

small ε > 0. The proof for Lemma 2 actually implies
that, for any δ > 0, there exists ε > 0 such that in
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any wrapping of the unit cube with a square of side
length at most 2

√
2 + ε, the center of the square must

be within δ from the center of some facet. Could similar
statements be proved for other points on the square for
slightly suboptimal wrappings? It seems highly likely.

Acknowledgements

The author thanks Erik Demaine for suggesting the
problem discussed in this paper, and Ioana Alexandra
Zelko for providing valuable support in writing and sub-
mitting the paper.

References

[1] M. L. Catalano-Johnson, D. Loeb, and J. Beebee.
“Problem 10716: A cubical gift.” American Mathe-
matical Monthly, 108(1):81–82, 2001.


